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Abstract001

Pretrained language models have transformed002
text classification, yet their computational003
demands often render them impractical for004
resource-constrained settings. We propose a005
linguistically-grounded framework for context006
minimization that leverages theme-rheme struc-007
ture to preserve critical classification signals008
while reducing input complexity. Our approach009
integrates positional, syntactic, semantic, and010
statistical features, guided by functional linguis-011
tics, to identify optimal low-context configura-012
tions. We present a methodical iterative feature013
exploration protocol across 6 benchmarks, in-014
cluding our novel CMLA11 dataset. Results015
demonstrate substantial efficiency gains: 69-016
75% reduction in GPU memory, 81-87% de-017
crease in training time, and 82-88% faster in-018
ference. Despite these resource savings, our019
configurations maintain near-parity with full-020
length inputs, with F1 (macro) reductions av-021
eraging just 1.39-3.10%. Statistical signifi-022
cance testing confirms minimal practical im-023
pact, with some configurations outperforming024
the baseline. SHAP analysis reveals specific025
feature subsets contribute most significantly026
across datasets, and these recurring configu-027
rations offer transferable insights, reducing028
the need for exhaustive feature exploration.029
Our method also yields remarkable data com-030
pression (72.57% average reduction, reaching031
92.63% for longer documents). Ablation stud-032
ies confirm synergistic feature contributions,033
establishing our context minimization as an ef-034
fective solution for resource-efficient text clas-035
sification with minimal performance trade-offs.036

1 Introduction037

Pretrained language models have achieved remark-038

able results across various downstream natural lan-039

guage understanding (NLU) tasks such as text clas-040

sification. However, attaining high accuracy of-041

ten requires training these models on large-scale042

datasets, which demands significant computational043

resources and entails considerable training and in- 044

ference times (Brown et al., 2020). As modern 045

PLMs continue to grow in size, fine-tuning them 046

with extensive datasets and long contexts becomes 047

impractical for many regular computing environ- 048

ments. 049

The disk sizes of prominent NLU models, such 050

as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 051

2019), XLM-R (Conneau and Lample, 2019), XL- 052

Net (Yang et al., 2019), and ELECTRA (Clark 053

et al., 2020), range from approximately 419 MB 054

to 11.5 GB, depending on the variant. As train- 055

ing datasets expand, computational power, stor- 056

age, and time requirements increase exponentially 057

in the pursuit of higher accuracy (Kaplan et al., 058

2020). Fine-tuning these models for downstream 059

tasks often improves accuracy but also amplifies 060

resource demands. Similarly, generative large lan- 061

guage models (LLMs), such as the largest vari- 062

ants of LLaMA (Touvron et al., 2023) and GPT 063

(OpenAI et al., 2024), are several gigabytes in size, 064

making them infeasible for fine-tuning on everyday 065

computers, unusable in many real-world scenarios, 066

and resulting in a large carbon footprint (Strubell 067

et al., 2020). 068

Driven by the challenges of high computational 069

demands, large datasets, and extended training 070

times, we explored methods to reduce context 071

while maintaining competitive accuracy. Our ini- 072

tial experiments revealed that the first sentence of- 073

ten strongly predicts the class. Fine-tuning mod- 074

els using only the first sentence achieved competi- 075

tive performance with significantly lower compu- 076

tational costs, motivating further exploration of 077

key linguistic and statistical features. Our exper- 078

iments include a combination of three positional 079

elements: first sentence (ϕ1), second sentence (ϕ2), 080

and last sentence (ϕn); four syntactic components: 081

nouns (n), verbs (v), adverbs (av), and adjectives 082

(ad); two semantic attributes: named entities (ne) 083

and proper nouns (pn); and two statistical mea- 084
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sures: TF-IDF scores (tf ) (Salton et al., 1975) and085

RAKE keywords (rk) (Rose et al., 2010). Each086

feature uniquely contributes to text representation,087

enabling the reduction of contextual requirements088

while maintaining task performance. For certain089

combinations, we selected subsets in four different090

amounts (top 5, 10, 15, and 20) from each article091

to ensure focused and efficient representation.092

Our extensive experiments on 7 NLU models and093

5 popular text classification benchmark datasets,094

AGNews (Zhang et al., 2015), Enron (Klimt and095

Yang, 2004), IMDB (Maas et al., 2011), BBC096

(Greene and Cunningham, 2006), and 20 News-097

Groups (Lang, 1995), as well as our custom dataset,098

CMLA11 (Clean Mixed Long Articles - 11 cate-099

gories), confirm our hypothesis: models can be100

fine-tuned with minimal context, requiring fewer101

computational resources, enabling faster training102

and inference speeds, while still achieving compa-103

rable accuracy.104

Our contributions are as follows:105

• We propose a linguistically-grounded frame-106

work for context minimization in text classifi-107

cation using theme-rheme structure (Halliday108

and Matthiessen, 2014) to preserve essential109

signals while reducing input complexity.110
• We present a methodical feature exploration111

protocol evaluating linguistically-motivated112

feature combinations across 6 benchmarks,113

restraining our evaluation to 35 linguistically-114

motivated feature combinations per dataset115

due to practical feasibility from a larger possi-116

ble space.117
• We introduce CMLA11, a curated dataset118

from 26 diverse sources across 11 balanced119

classes, addressing limitations in existing120

benchmarks for robust evaluation of context121

minimization.1122
• We demonstrate through ablations and inter-123

pretability analysis that our approach achieves124

69-75% GPU memory reduction and 81-88%125

faster training/inference with minimal perfor-126

mance loss (1.39-3.10%), establishing effi-127

cacy for resource-constrained scenarios.128

2 Related Works129

While no prior work directly addresses the specific130

problem investigated in this paper, several studies131

offer relevant insights that inform our approach. Re-132

cent research has focused on optimizing language133

model performance and efficiency across various134

1All datasets and codes will be publicly released.

dimensions. Regarding context utilization, Liu et al. 135

(2024) demonstrate that increasing context length 136

doesn’t necessarily improve performance, as mod- 137

els struggle with information positioned in the mid- 138

dle of contexts. An et al. (2024) observed that a 139

long context does not always lead to better results 140

in language models. 141

On the efficiency front, Schick and Schütze 142

(2021) show that smaller models like ALBERT 143

can rival larger models through Pattern-Exploiting 144

Training, achieving superior performance on bench- 145

marks like SuperGLUE with fewer parameters. 146

Similarly, Dacrema et al. (2019) found that sim- 147

ple heuristic methods often outperform complex 148

neural approaches in recommendation systems, re- 149

inforcing our premise that computational efficiency 150

need not compromise performance. In text clas- 151

sification, Cunha et al. (2021) demonstrated that 152

properly-tuned non-neural methods achieve com- 153

petitive results while requiring significantly less 154

computational resources than neural alternatives, 155

further validating our context minimization strat- 156

egy. For hardware optimization, Ren et al. (2021) 157

introduce ZeRO-Offload to efficiently train large 158

models by offloading model states from GPU to 159

CPU memory, complementing our software-based 160

efficiency improvements through context minimiza- 161

tion. 162

3 Methodology 163

Finding appropriate context reduction methods for 164

accurate classification was crucial to our work. The 165

first sentence often captures significant information 166

in various classification tasks (news, sentiment, 167

topic, email), as shown in Appendix A Table 6. 168

While our findings indicate that the first sentence 169

yields surprisingly accurate results, it alone is insuf- 170

ficient for comprehensive classification. Therefore, 171

we incorporated linguistic, semantic, positional, 172

and statistical features to reduce input context, se- 173

lectively capturing essential information without 174

processing entire articles. 175

Positional Features: Positional features analyze 176

sentence placement within the text, leveraging con- 177

text provided by the First Sentence (ϕ1), Second 178

Sentence (ϕ2), or Last Sentence (ϕn). 179

Syntactic Features: Syntactic features, such as 180

nouns (n), verbs (v), adverbs (av), and adjectives 181

(ad), capture the grammatical structure, sentiment, 182

and tone of the text. These features enhance clas- 183

sification by identifying emotional and contextual 184
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cues.185

Semantic Features: Semantic features, including186

Named Entities (ne) and Proper Nouns (pn), facili-187

tate domain-specific understanding by identifying188

specialized terms and context. This ensures precise189

categorization by leveraging contextual richness.190

Statistical Features: Statistical features, such as191

TF-IDF scores (tf ) and RAKE keywords (rk), cap-192

ture key terms based on their significance and co-193

occurrence patterns. These features optimize text194

analysis while remaining computationally efficient.195

3.1 Context Minimization196

To condense large articles into meaningful197

contexts, we systematically combined lin-198

guistic features informed by theme-rheme199

structure analysis and conducted exper-200

iments on six benchmark datasets: D ∈201

{AGNews,Enron, IMDB,BBC, 20 NewsGroups,202

CMLA11}. The features were grouped into 4203

categories based on their functional linguistic roles:204

Positional Elements: P = {ϕ1, ϕ2, ϕn} (capturing205

thematic orientation and resolution), Syntactic206

Components: S = {n, v, av, ad} (representing207

thematic actors and rhematic processes), Semantic208

Attributes: E = {ne, pn} (anchoring domain-209

specific thematic content), Statistical Measures:210

T = {tf , rk} (complementing linguistic features211

with distributional significance). Together, these212

subsets form the complete feature set F , defined213

as: F = P ∪ S ∪ E ∪ T .214

Our feature selection process is informed by theme-215

rheme progression patterns from functional linguis-216

tics, as detailed in Section 3.2, ensuring a theoreti-217

cally grounded approach to constructing meaning-218

ful feature combinations.219

For a given dataset Dk ∈ D, we iteratively con-220

struct new datasets by systematically selecting221

features from the feature set F . Initially, a new222

dataset Dk,new1 is built by extracting a single fea-223

ture f1 ∈ F , prioritizing thematically prominent224

elements:225

Dk,new1 = {f1}, f1 ∈ F .226

The newly constructed dataset Dk,new1 is then227

trained and evaluated with model MBERT to es-228

tablish an initial performance metric νBERT
k,new1

. Since229

no prior results were available, this served as the230

starting point for comparison for the rest of the231

features in the feature set F . Subsequently, addi-232

tional features fi ∈ F are introduced to Dk,new1233

to construct new low-context dataset Dk,new2 , fol-234

lowing thematic-rhematic progression principles.235

Similarly, for each new feature combination, the 236

model is trained and evaluated: 237

Dk,newj
= Dk,newj−1

∪{fi}, where j = 2, 3, . . . 238

239νBERT
k,newj

= Ψ(MBERT,Dk,newj
) 240

Here, Ψ(·, ·) represents the evaluation function that 241

computes the performance of model MBERT on 242

dataset Dk,newj
. If the evaluation metric νBERT

k,newj
243

improved compared to νBERT
k,newj−1

, the number of to- 244

kens associated with the newly added feature was 245

incrementally increased by ∆n = 5 to enhance 246

thematic coverage. This increment was determined 247

through our theme-rheme analysis, which showed 248

that expanding high-prevalence thematic features 249

(e.g., ne, pn, n) by 5 additional tokens typically 250

increased thematic coverage by 8–12% while main- 251

taining minimal context. The number of tokens 252

in linguistic features are taken based on the most 253

frequent occurrences in the context, aligning with 254

thematic prominence patterns identified in our lin- 255

guistic analysis. 256

If no improvement was observed, the feature com- 257

bination was adjusted by introducing features from 258

other subsets (P,S, E , T ) within F , following the 259

theme-rheme progression principles where we bal- 260

ance thematic elements with complementary rhe- 261

matic components. This iterative process ensured 262

systematic exploration of feature combinations to 263

identify those yielding optimal performance while 264

maintaining thematic coherence. The iteration con- 265

tinued until no further improvement was observed 266

or a predefined limit (35 evaluated combinations) 267

was reached for each dataset Dk ∈ D, as this limit 268

was chosen to balance computational efficiency 269

and resource constraints while ensuring sufficient 270

exploration of the feature space for meaningful 271

insights. The final set of evaluated combinations 272

is represented as: CkBERT ⊆ F . From these com- 273

binations, the top 5 performing reduced context 274

datasets Dktop-5 are identified based on CkBERT , with 275

all top configurations demonstrating high thematic 276

coverage (79–85%) despite minimal token usage. 277

Finally, 6 prominent NLU models are 278

used to trained and evaluated to establish 279

the understanding affectivness of reduced 280

contexts trained on Dktop-5 where Mmodel ∈ 281

{DistilBERT, RoBERTa,ALBERT,XLNet,XLM-R, ELECTRA}. 282

We evaluate these models Mm ∈ Mmodel on these 283

reduced datasets. The performance metric νMm
k,j is 284

computed as follows: 285

νMm
k,j = Ψ(Mm,Dk,j),

∀Dk,j∈Dktop-5
∀Mm∈Mmodel

286
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This formulation ensures that our performance eval-287

uation is both structured and consistent across dif-288

ferent models and data, while maintaining the lin-289

guistic integrity of our theoretically-motivated fea-290

ture selection approach.291

3.2 Information Structure Grounding292

Our feature selection methodology is grounded in293

theme-rheme structure from functional linguistics294

(Halliday and Matthiessen, 2014). Using spaCy’s295

dependency parser with custom theme-rheme anno-296

tation, we analyzed a 10% stratified sample of each297

dataset Dk ∈ D, identifying clause constituents298

and their thematic prominence. Themes (ϕ1) es-299

tablish discourse topics, while rhemes (pn, ϕn)300

provide complementary information. Configura-301

tions combining ϕ1 with pn or ϕn outperformed302

others by capturing the full thematic arc. Analy-303

sis showed ϕ1 with 82–90% thematic prevalence,304

followed by ϕn (61–77%) and ϕ2 (41–58%). Se-305

mantic features like proper nouns (pn) had 65–78%306

thematic association, named entities (ne) 55–70%,307

and nouns (n) 60–74%, while verbs (v), adjec-308

tives (ad), and adverbs (av) dominated rhematic309

space (71–86%). TF-IDF (tf ) and RAKE key-310

words (rk) showed weak thematic alignment (32–311

45%), limiting their SHAP analysis contribution312

(Lundberg and Lee, 2017). Our 35 feature com-313

binations, designed to maximize thematic cover-314

age (83.7% across datasets) while minimizing to-315

ken count, were guided by this linguistic analysis.316

Theme-rheme prevalence correlated strongly with317

SHAP values, validating our approach and explain-318

ing performance patterns in Section 4.7.319

3.3 Training Setup320

We utilized MBERT and Mmodel, implemented in321

PyTorch2 via Hugging Face Transformers3 for re-322

producibility and scalability. Default tokenizers323

were used, with stratified sampling splitting data324

into training (80%), validation (10%), and test325

(10%) sets to ensure balanced class representation.326

Text preprocessing employed Python’s parallel ex-327

ecution across CPU cores, with sequence lengths328

of 512 tokens for full-context and 64 tokens for329

low-context experiments, the latter empirically de-330

termined through 5 configurations on AGNews test-331

ing 32, 64, and 128 tokens with BERT’s tokenizer332

and validated with ALBERT’s tokenizer as the333

smallest model in the baseline. Future researchers334

2https://pytorch.org/
3https://huggingface.co/

with high CPU scores can utilize all available CPU 335

cores for faster data preprocessing. Training used 336

cross-entropy loss, AdamW optimizer (learning 337

rate 2 × 10−5), linear decay scheduler, 5 epochs, 338

and batch size of 32, selecting the model with low- 339

est validation loss and reporting median results 340

from 5 runs with different random seeds per model- 341

dataset-context combination. 342

4 Experiments and Results 343

In this section, we first describe our datasets and 344

experimental setup, followed by the results of our 345

experiments and an analysis of their implications. 346

Dataset #Train #Dev #Test #Label Avg Len
AGNEWS 102,080 12,760 12,760 4 37.84
BBC 1,780 222 223 5 390.3
ENRON 26,676 3,334 3,335 2 306.77
IMDB 40,000 5,000 5,000 2 231.16
20NEWS 15,077 1,884 1,885 20 181.67
CMLA11 88,000 11,000 11,000 11 716.64

Table 1: Statistical Summary of Datasets Used in Our
Experiments: Sample Distribution, Label Counts, and
Average Word Count.

4.1 Datasets 347

We evaluated five public text classification bench- 348

mark datasets and CMLA11, with statistics in Table 349

1, varying in article length and nature to test context 350

minimization across diverse challenges. Instead 351

of default splits, we merged data and created 80- 352

10-10 train-validation-test splits. AGNews (Zhang 353

et al., 2015) (127,600 samples, 4 categories, 37.84- 354

word average) offers a compact news classification 355

testbed. BBC (Greene and Cunningham, 2006) 356

(2,225 samples, 5 categories, 390.3-word average) 357

provides structured news articles. ENRON (Klimt 358

and Yang, 2004) (33,345 samples, binary, 306.77- 359

word average) tests spam email classification with 360

noisy data. IMDB (Maas et al., 2011) (50,000 361

reviews, binary, 231.16-word average) evaluates 362

sentiment analysis on variable-length reviews. 20 363

NewsGroups (Lang, 1995) (18,846 samples, 20 top- 364

ics, 181.67-word average) presents diverse topical 365

classification. 366

CMLA114, our custom dataset, includes 367

110,000 curated long articles from 26 diverse 368

sources (newspapers, blogs, magazines) across 369

11 categories, averaging 716.64 tokens, de- 370

signed to test models on varied American and 371

4Upon acceptance, we will publicly release the dataset.
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Dataset Context Macro F1 ∆ F1 GPU (MB) ∆ GPU Train (s) ∆ Train Infer (s) ∆ Infer

AGNews

Full Length 0.9421 ±0.0005 - 9099.69 ±0.77 - 7458.14 ±0.30 - 58.53 ±0.95 -
ϕ1+ϕn 0.9414 ±0.0006 -0.0007 2806.52±0.63 -69.158% 1359.76 ±0.46 -81.77% 10.35 ±0.005 -82.32%
ϕ1+ϕn+10pn+5n 0.9408 ±0.0029 -0.0013 2851.25 ±1.32 -68.666% 1340.97 ±0.36 -82.02% 10.17 ±0.012 -82.63%
ϕ1+ϕn+10rk 0.9407 ±0.0004 -0.0014 2896.72 ±2.70 -68.167% 1343.95 ±0.03 -81.98% 10.17 ±0.000 -82.62%
ϕ1+ϕn+10tf 0.9402 ±0.0004 -0.0019 2896.43 ±1.18 -68.170% 1341.75 ±0.17 -82.01% 10.17 ±0.005 -82.62%
ϕ1+ϕn+10pn+5v 0.9399 ±0.0010 -0.0022 2896.49 ±1.53 -68.169% 1340.70 ±0.07 -82.02% 10.18 ±0.014 -82.61%

BBC

Full Length 0.9888 ±0.0067 - 11588.46 ±1.02 - 186.59 ±0.61 - 1.47 ±0.001 -
20rk 0.9888 ±0.0022 0 2875.49 ±1.88 -75.187% 25.42 ±0.09 -86.38% 0.18 ±0.001 -87.67%
ϕ1+15n 0.9865 ±0.0045 -0.0023 2910.14 ±1.48 -74.888% 25.26 ±0.00 -86.46% 0.18 ±0.003 -87.6%
15rk 0.9865 ±0.0032 -0.0023 2875.60 ±2.89 -75.186% 25.17 ±0.01 -86.51% 0.18 ±0.000 -87.75%
ϕ1+10rk 0.9865 ±0.0090 -0.0023 2910.49 ±1.16 -74.885% 25.29 ±0.01 -86.45% 0.18 ±0.001 -87.67%
ϕ1+ϕn+10pn+5v 0.9843 ±0.0022 -0.0045 2920.37 ±2.85 -74.799% 23.69 ±0.01 -87.30% 0.19 ±0.004 -87.20%

ENRON

Full Length 0.9957 ±0.0008 - 11441.45 ±1.78 - 2808.19 ±1.88 - 22.64 ±0.005 -
ϕ1+ϕn+10tf 0.9921 ±0.0002 -0.0036 2920.37 ±2.28 -74.476% 375.68 ±0.29 -86.62% 2.68 ±0.003 -88.14%
ϕ1+15pn+5n 0.9918 ±0.0008 -0.0039 2875.13 ±1.06 -74.871% 353.76 ±0.03 -87.4% 2.72 ±0.001 -87.98%
ϕ1+10pn+10n 0.9916 ±0.0006 -0.0041 2920.49 ±1.65 -74.475% 350.30 ±0.04 -87.53% 2.67 ±0.001 -88.2%
ϕ1+10rk 0.9912 ±0.0006 -0.0045 2860.69 ±0.68 -74.997% 355.98 ±0.17 -87.32% 2.72 ±0.001 -87.99%
ϕ1+ϕn+10pn+5n 0.9911 ±0.0012 -0.0046 2920.24 ±1.04 -74.477% 377.22 ±0.63 -86.57% 2.74 ±0.029 -87.91%

IMDB

Full Length 0.9358 ±0.0020 - 11409.26 ±1.45 - 4171.13 ±1.69 - 33.46 ±0.009 -
ϕ1+ϕn+10ad+5av 0.8938 ±0.0028 -0.042 2920.73 ±0.63 -74.400% 531.1 ±0.28 -87.27% 4.05 ±0.003 -87.89%
ϕ1+ϕn+15ad+10av 0.8936 ±0.0032 -0.0422 2934.43 ±2.21 -74.280% 525.79 ±0.01 -87.39% 3.99 ±0.002 -88.08%
ϕ1+ϕn+10ad 0.8932 ±0.0044 -0.0426 2920.37 ±2.38 -74.404% 530.78 ±0.21 -87.27% 4.03 ±0.001 -87.94%
ϕ1+ϕn+10ad+5n 0.8931 ±0.0057 -0.0427 2920.58 ±1.02 -74.402% 530.47 ±0.15 -87.28% 4.07 ±0.046 -87.84%
ϕ1+ϕn+15ad 0.8929 ±0.0023 -0.0429 2924.69 ±1.13 -74.366% 524.87 ±0.13 -87.42% 3.99 ±0.000 -88.07%

20News

Full Length 0.7731 ±0.0025 - 11441.92 ±0.58 - 2124.75 ±0.41 - 12.26 ±0.002 -
ϕ1+10pn+10n 0.7559 ±0.0044 -0.0172 2928.46 ±1.63 -74.406% 268.98 ±0.03 -87.34% 1.48 ±0.001 -87.97%
20tf 0.7472 ±0.0027 -0.0259 2896.95 ±0.51 -74.681% 270.65 ±0.03 -87.26% 1.54 ±0.043 -87.46%
ϕ1+10tf 0.7472 ±0.0031 -0.0259 2925.58 ±0.75 -74.431% 271.74 ±0.00 -87.21% 1.50 ±0.003 -87.78%
10pn+10n+10ad 0.7448 ±0.0025 -0.0283 2896.69 ±2.55 -74.684% 267.27 ±0.12 -87.42% 1.47 ±0.001 -88.01%
ϕ1+ϕn+10tf 0.7445 ±0.0027 -0.0286 2932.98 ±1.46 -74.366% 268.66 ±0.11 -87.36% 1.47 ±0.001 -88.02%

CMLA11

Full Length 0.9449 ±0.0003 - 11410.96 ±2.01 - 9418.53 ±0.37 - 74.74 ±0.025 -
ϕ1+ϕn+10pn+5n 0.9251 ±0.0025 -0.0198 2851.36 ±2.77 -75.012% 1177.71 ±0.51 -87.5% 8.96 ±0.009 -88.01%
ϕ1+15pn+5n 0.9239 ±0.0006 -0.021 2896.86 ±1.38 -74.613% 1163.33 ±0.42 -87.65% 8.81 ±0.003 -88.21%
ϕ1+15pn+5v 0.9236 ±0.0015 -0.0213 2896.37 ±2.45 -74.618% 1165.31 ±0.07 -87.63% 8.86 ±0.000 -88.15%
ϕ1+ϕn+10tf 0.9225 ±0.0025 -0.0224 2931.78 ±1.55 -74.307% 1176.68 ±1.13 -87.51% 8.95 ±0.012 -88.02%
ϕ1+20pn 0.9222 ±0.0003 -0.0227 2896.46 ±1.71 -74.617% 1163.03 ±0.22 -87.65% 8.80 ±0.011 -88.22%

Table 2: Performance and resource utilization of top 5 context combinations ranked by Macro F1 scores across
datasets (full results in Tables 8-13, Appendix A). Results show median values from 5 runs with random seeds using
BERT-base model. Evaluation examines model effectiveness and computational efficiency with reduced contextual
input.

British English texts and provide a balanced372

text classification benchmark. Articles were373

scraped using BeautifulSoup5, with plain text374

extracted, outliers removed, and annotations375

derived directly from URLs, simplifying the376

process. Let U = {u1, u2, . . . , un} be the set of377

scraped URLs, and A = {a1, a2, . . . , an} be the378

corresponding articles. For each URL ui, a textual379

label L(ui) is extracted, which is then mapped380

to a numerical value N(L(ui)). Suppose ui =381

https://www.abc.com/sports/hdv5oaxsbp,382

then L(ui) = sports and N(L(ui)) = 5.383

The dataset is represented as: D =384

{(ai, N(L(ui)), L(ui)) | i ∈ {1, 2, . . . , n}}385

5https://pypi.org/project/beautifulsoup4/

4.2 Experimental Setup 386

Each model was trained on one of 5 NVIDIA GTX 387

3090 GPUs (24GB each) in parallel, powered by 388

an Intel Core i9-12900K CPU with 64GB of RAM. 389

For a comprehensive evaluation, we measured mul- 390

tiple performance metrics, including F1 (macro), 391

GPU memory usage, training time, and inference 392

time. All reported results represent the median of 393

5 runs, with standard deviations (σ) also recorded. 394

4.3 Results 395

Table 2 shows minimal performance drops (0%– 396

1.98% for five datasets, 4.2% for IMDB) when com- 397

paring BERT’s full-length to top reduced-context 398

configurations, with significant computational sav- 399

ings. For AGNews, ϕ1+ϕn achieves a macro 400
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Dataset Context BERT DistilBERT RoBERTa ALBERT XLNet XLM-R ELECTRA score

AGNews

Full Length 0.9421 0.9395 0.9469 0.9369 0.9451 0.9567 0.9440 0.9445
ϕ1+ϕn 0.9414 0.9378 0.9444 0.9343 0.9406 0.9491 0.9404 0.9411
ϕ1+ϕn+10pn+5n 0.9408 0.9381 0.9459 0.9336 0.9433 0.9523 0.9406 0.9421
ϕ1+ϕn+10rk 0.9407 0.9369 0.9462 0.9373 0.9417 0.9520 0.9393 0.942
ϕ1+ϕn+10tf 0.9402 0.9389 0.9451 0.9337 0.9422 0.9498 0.9390 0.9413
ϕ1+ϕn+10pn+5v 0.9399 0.9353 0.9453 0.9341 0.9420 0.9395 0.9402 0.9395

BBC

Full Length 0.9888 0.9823 0.9911 0.9890 0.9821 0.9821 0.9910 0.9866
20rk 0.9888 0.9801 0.9783 0.9689 0.9664 0.9529 0.9776 0.9733
ϕ1+15n 0.9865 0.9442 0.9322 0.9397 0.9417 0.9372 0.9462 0.9468
15rk 0.9865 0.9801 0.9736 0.9733 0.9596 0.9594 0.9709 0.9719
ϕ1+10rk 0.9865 0.9823 0.9723 -0.9756 0.9743 0.9614 0.9821 0.9764
ϕ1+ϕn+10pn+5v 0.9843 0.9804 0.9750 0.9756 0.9760 0.9664 0.9818 0.9771

ENRON

Full Length 0.9957 0.9925 0.9967 0.9896 0.9970 0.9955 0.9964 0.9948
ϕ1+ϕn+10tf 0.9921 0.9881 0.9915 0.9854 0.9883 0.9879 0.9925 0.9894
ϕ1+15pn+5n 0.9918 0.9856 0.9882 0.9860 0.9883 0.9889 0.9918 0.9887
ϕ1+10pn+10n 0.9916 0.9883 0.9892 0.9874 0.9891 0.9895 0.9921 0.9896
ϕ1+10rk 0.9912 0.9862 0.9912 0.9845 0.9889 0.9882 0.9922 0.9889
ϕ1+ϕn+10pn+5n 0.9911 0.9871 0.9897 0.9859 0.9888 0.9886 0.9921 0.989

IMDB

Full Length 0.9358 0.9337 0.9592 0.9296 0.9584 0.9456 0.9607 0.9461
ϕ1+ϕn+10ad+5av 0.8938 0.8732 0.8961 0.8709 0.8976 0.8680 0.9159 0.8879
ϕ1+ϕn+15ad+10av 0.8936 0.8765 0.9014 0.8739 0.9081 0.8740 0.9164 0.8920
ϕ1+ϕn+10ad 0.8932 0.8716 0.8908 0.8698 0.8976 0.8675 0.9007 0.8845
ϕ1+ϕn+10ad+5n 0.8931 0.8727 0.8972 0.8727 0.8948 0.6839 0.9137 0.8612
ϕ1+ϕn+15ad 0.8929 0.8760 0.9056 0.8751 0.8958 0.8735 0.9167 0.8908

20News

Full Length 0.7731 0.7532 0.7591 0.7185 0.7844 0.7566 0.7454 0.7558
ϕ1+10pn+10n 0.7559 0.7333 0.7190 0.6629 0.7131 0.7062 0.7155 0.7151
20tf 0.7472 0.7202 0.6910 0.6637 0.7000 0.6841 0.6839 0.6986
ϕ1+10tf 0.7472 0.7260 0.7081 0.6738 0.7057 0.7011 0.6967 0.7084
10pn+10n+10ad 0.7448 0.7235 0.6932 0.6757 0.7076 0.6833 0.7076 0.7051
ϕ1+ϕn+10tf 0.7445 0.7211 0.7048 0.6686 0.7106 0.6920 0.6994 0.7059

CMLA11

Full Length 0.9449 0.9516 0.9622 0.9325 0.9587 0.9557 0.9567 0.9518
ϕ1+ϕn+10pn+5n 0.9251 0.9254 0.9389 0.9143 0.9234 0.9177 0.9305 0.9250
ϕ1+15pn+5n 0.9239 0.9291 0.9258 0.9151 0.9174 0.9149 0.9233 0.9214
ϕ1+15pn+5v 0.9236 0.9285 0.9238 0.9137 0.9161 0.9139 0.9275 0.9210
ϕ1+ϕn+10tf 0.9225 0.9253 0.9274 0.9076 0.9215 0.9172 0.9224 0.9206
ϕ1+20pn 0.9222 0.9262 0.9215 0.9105 0.9149 0.9147 0.9315 0.9202

Score 0.9166 0.9075 0.9102 0.8944 0.9089 0.8963 0.9115

Table 3: Macro F1 scores (median of 5 runs with different random seeds; standard deviations omitted due to page
width constraints) across different models on all datasets. The best 5 performing contexts by the BERT-base model
are selected for comparison to assess model performance in low-context training.

F1 of 0.9414 (-0.0007), reducing GPU memory401

by 69.158% and training time by 81.77%. On402

BBC, 20rk maintains a macro F1 of 0.9888, cut-403

ting GPU memory by 75.19% and training time404

by 86.38%. For ENRON, ϕ1+ϕn+10tf yields a405

macro F1 of 0.9921 (-0.0036), saving 74.476%406

GPU memory and 86.62% training time. IMDB’s407

ϕ1+ϕn+10ad+5av achieves a macro F1 of 0.8938,408

reducing GPU memory by 74.400% and train-409

ing time by 87.27%, with adjectives outperform-410

ing other features. On 20News, ϕ1+10pn+10n411

scores a macro F1 of 0.7559 (-0.0172), saving412

74.406% GPU memory and 87.34% training time.413

For CMLA11, ϕ1+ϕn+10pn+5n achieves a macro414

F1 of 0.9251, with 75.012% GPU memory and415

87.5% training time reductions. Inference time416

decreases by 82.32%–88.22% across datasets. Ex- 417

tending to six NLU models (Table 3), BERT leads 418

with a macro F1 of 0.9166, followed by ELEC- 419

TRA (0.9115) and RoBERTa (0.9102). Reduced- 420

context configurations often match or exceed full- 421

length performance, e.g., ALBERT on AGNews 422

with ϕ1+ϕn+10rk. Optimal configurations include 423

ϕ1+ϕn+10pn+5n for AGNews and CMLA11, 424

ϕ1+ϕn+10pn+5v for BBC, ϕ1+10pn+10n for EN- 425

RON and 20News, and ϕ1+ϕn+15ad+10av for 426

IMDB, showing that combining first/last sentences 427

with syntactic (nouns, pronouns) or semantic (ad- 428

jectives, verbs) features preserves performance 429

while reducing input complexity. 430

Our analysis presents our context minimization 431

techniques, which not only reduce computational 432

6



Dataset Full Size (MB) Reduced Size (MB) ∆ Size (%)
AGNews 30.89 27.43 -11.20%
BBC 4.82 0.65 -86.51%
ENRON 47.60 6.69 -85.95%
IMDB 65.91 12.36 -81.25%
20News 16.10 3.56 -77.89%
CMLA11 459.00 33.85 -92.63%

Table 4: Dataset size comparison: full-length articles vs.
averaged minimized-context datasets.

resources, training, and inference time without433

compromising model performance but also con-434

tribute to data compression, achieving an average435

file size reduction of 72.57% across six diverse436

datasets, as detailed in Table 4. The most dra-437

matic reduction is observed in the CMLA11 dataset,438

where the data size is compressed by 92.63%, de-439

creasing from 459.00 MB to 33.85 MB. Similarly,440

other datasets show impressive size reductions:441

BBC (86.51% reduction), ENRON (85.95% re-442

duction), and IMDB (81.25% reduction). Even443

the smallest reduction, observed in the AGNews444

dataset, still represents an 11.20% decrease in data445

size.446

4.4 Evaluation with LLM447

Even though the sole objective of this work is for448

resource-constrained environments and language449

understanding models, rather than generation, we450

expanded our evaluation to include zero-shot test-451

ing with Gemma-7B-IT (8.54B parameters, 725452

times larger than ALBERT and 78 times larger453

than BERT). This was done to assess the effec-454

tiveness of the context minimization techniques455

in LLMs demonstrated in Table 7 in Appendix A.456

Notably, despite using a zero-shot setting, several457

reduced context configurations outperformed full-458

length inputs on multiple datasets. For BBC, our459

context-minimized approaches achieved substan-460

tial improvements of up to +32.29% accuracy us-461

ing just first sentences and 15 nouns. Similarly,462

for 20News, configurations using syntactic and se-463

mantic features delivered accuracy gains of up to464

+2.62%. The ENRON dataset showed consistent465

improvements across multiple configurations, with466

accuracy increases of up to +1.90%. On the other467

hand, the results also show how even a 725 times468

smaller finetuned model (e.g., ALBERT) can sig-469

nificantly outperform LLMs in zero-shot settings in470

environments where fine-tuning such large LLMs471

is not computationally feasible. Moreover, fitting472

and prompting even a moderate-sized LLM like473

Gemma-7B-IT on a single 24GB GPU was diffi- 474

cult without strictly limiting batch size, response 475

max limit, using half precision, and enabling gradi- 476

ent checkpointing, with 1237 seconds on average 477

prompting time for each configuration on 10% of 478

the data. 479

4.5 Ablation Study 480

To quantify feature subset contributions in our con- 481

text configurations, we conducted a hierarchical ab- 482

lation study across datasets (Dk ∈ D) with feature 483

set (F = P∪S∪E ∪T ), focusing on BERT-base’s 484

best-performing setups from Table 2 for consis- 485

tent comparison. We sequentially removed sub- 486

sets, evaluating Macro F1 over 5 runs. Positional 487

features (P , particularly ϕ1) were most impactful 488

(e.g., AGNews: ∆ F1 = -0.0512, CMLA11: ∆ F1 489

= -0.0466), followed by semantic (E) features in 490

20News (∆ F1 = -0.0577) and adjectives (10ad) in 491

IMDB (∆ F1 = -0.0250, 71–86% rhematic). Com- 492

bining P + E yielded 79–85% thematic coverage 493

(e.g., 20News: ∆ F1 = -0.2107). Statistical fea- 494

tures (T , e.g., TF-IDF, RAKE) contributed mini- 495

mally (e.g., ENRON: ∆ F1 = -0.0054), suggesting 496

redundancy. These findings, with SHAP values 497

detailed in Section 4.7, confirm that P and S syner- 498

gize for thematic and sentiment tasks, E enhances 499

domain-specific classification, and T ’s limited im- 500

pact highlights the primacy of linguistic features 501

for robust text classification with reduced compu- 502

tational overhead. Full results are in Table 5 in 503

Appendix A. 504

4.6 Statistical Significance Analysis 505

To assess performance differences, we conducted 506

paired t-tests with Bonferroni correction, compar- 507

ing Macro F1 scores between full-context and low- 508

context configurations across 5 runs with distinct 509

random seeds, following established recommenda- 510

tions (Dacrema et al., 2019; Cunha et al., 2021). We 511

tested H0 : µfull = µlow against H1 : µfull ̸= µlow, 512

with α = 0.05 adjusted to α′ = 0.00143 for 513

m = 35 comparisons per dataset. Cohen’s d quan- 514

tified effect sizes: negligible (|d| < 0.2), small 515

(0.2 ≤ |d| < 0.5), medium (0.5 ≤ |d| < 0.8), or 516

large (|d| ≥ 0.8). For AGNews, ENRON, IMDB, 517

20News, and CMLA11, differences were signifi- 518

cant (p < 0.00143) with small to medium effect 519

sizes (|d| ∈ [0.2, 0.8]), reflecting minimal practi- 520

cal impact, as shown by the ∆ F1 values in Ta- 521

ble 2. For BBC, differences were non-significant 522

(p > 0.00143) with negligible effect sizes (|d| < 523
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0.2), indicating low-context configurations perform524

comparably to full-length baselines while signifi-525

cantly reducing GPU memory usage, training time,526

and inference time, validating their suitability for527

resource-constrained settings.528

4.7 Interpretability Analysis529

We applied SHAP analysis on BERT-base across all530

low-context configurations for AGNews, BBC, EN-531

RON, IMDB, 20News, and CMLA11 to quantify532

feature contributions. Overall, positional ϕ1 (first533

sentence) dominates (mean SHAP: 0.24±0.03),534

leveraging contextual richness and aligning with535

linguistic theme-rheme theory, followed by se-536

mantic pn (proper nouns, 0.17±0.02) for domain-537

specific terms, and syntactic n (nouns, 0.10±0.01).538

Statistical features tf (TF-IDF) and rk (RAKE539

keywords) contribute least (SHAP<0.08), often540

yielding lower performance. In AGNews, ϕ1541

(0.26±0.02) and pn (0.18±0.02) lead, while tf542

and rk (SHAP<0.07) underperform. BBC shows543

rk (0.20±0.03) and ϕ1 (0.19±0.02) dominance,544

with tf (SHAP<0.06) least impactful. ENRON545

highlights ϕ1 (0.25±0.03) and pn (0.16±0.02),546

with tf and ne (SHAP<0.08) contributing mini-547

mally. IMDB emphasizes syntactic ad (adjectives,548

0.20±0.02) for sentiment and ϕ1 (0.18±0.02),549

while tf and ne (SHAP<0.07) are least signif-550

icant. 20News favors pn (0.18±0.02) and n551

(0.12±0.01), with tf and rk (SHAP<0.09) under-552

performing. CMLA11 underscores pn (0.19±0.02)553

and ϕ1 (0.22±0.03), with tf and rk (SHAP<0.08)554

least effective. These trends align with perfor-555

mance patterns in the Results section, where ϕ1-556

and pn-centric configurations excel, while tf -heavy557

setups lag. Collectively, ϕ1 and pn drive robust558

low-context performance across datasets, justify-559

ing their prioritization in feature selection, while560

minimal contributions from tf and rk suggest lim-561

ited utility for generalizable text classification.562

4.8 Discussion563

Our findings show that optimized reduced-context564

configurations maintain strong classification per-565

formance with minimal degradation (1.39–3.10%566

average across models) compared to full-length in-567

puts, while achieving 69–75% GPU memory reduc-568

tion, 81–87% training time savings, and 82–88%569

faster inference. First sentences (ϕ1), last sentences570

(ϕn), and proper nouns (pn) capture sufficient se-571

mantic information for most tasks, with SHAP val-572

ues of 0.24±0.03, 0.17±0.02, and 0.10±0.01, re-573

spectively. Adjectives excel in IMDB sentiment 574

analysis, while statistical features (TF-IDF, RAKE) 575

contribute least (SHAP<0.08). Longer articles, like 576

CMLA11 (92.63% reduction), benefit more from 577

context minimization than shorter ones like AG- 578

News (11.20% reduction). These results establish 579

our context minimization approach as a practical 580

solution for resource-efficient text classification 581

without significant performance trade-offs, while 582

our identified feature patterns across task categories 583

provide transferable insights that substantially re- 584

duce the exploration space for future implemen- 585

tations, providing a principled foundation for effi- 586

cient context selection. 587

5 Conclusion 588

This paper presents a systematic approach to con- 589

text minimization for efficient text classification 590

through strategic combinations of linguistic fea- 591

tures. Our evaluation across six datasets and seven 592

NLU models demonstrates that reduced-context 593

configurations maintain competitive performance 594

while enhancing efficiency. The method signifi- 595

cantly reduces dataset sizes while preserving accu- 596

racy, making it valuable for resource-constrained 597

environments. Future work should explore apply- 598

ing this approach to tasks such as natural language 599

inference, question answering, and text generation 600

to enable more efficient language model deploy- 601

ment. 602

Limitations 603

A key limitation of our study is that we restricted 604

our evaluation to 35 linguistically motivated fea- 605

ture combinations per dataset, due to practical con- 606

straints, despite a larger possible space. Future 607

researchers with greater resources could explore 608

all possible combinations, potentially identifying 609

alternative low-context configurations that yield 610

higher accuracy, which would be particularly ben- 611

eficial for those working in resource-limited envi- 612

ronments. 613

Ethical Considerations 614

To ensure transparency and reproducibility, we will 615

release our CMLA11 dataset and code upon ac- 616

ceptance. Model results may vary due to factors 617

such as initialization, sampling order, and hardware. 618

Trade-offs should be carefully assessed across ap- 619

plications, especially in sensitive domains where 620

misclassification can have serious consequences. 621
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Dataset Configuration Macro F1 ∆ F1 GPU (MB) ∆ GPU Train (s) ∆ Train p-value

AGNews
ϕ1 + ϕn (Baseline) 0.9414 ± 0.0006 - 2806.52 ± 0.63 - 1359.76 ± 0.46 - -
w/o P (ϕ1) 0.8902 ± 0.0020 -0.0512 2700.12 ± 0.82 -3.78% 1290.45 ± 0.53 -5.08% <0.001
w/o P (ϕn) 0.9285 ± 0.0013 -0.0129 2702.88 ± 0.80 -3.69% 1295.67 ± 0.50 -4.71% <0.001

BBC
20rk (Baseline) 0.9888 ± 0.0022 - 2875.49 ± 1.88 - 25.42 ± 0.09 - -
w/o 10rk (10rk) 0.9303 ± 0.0030 -0.0585 2800.33 ± 1.93 -2.61% 23.88 ± 0.12 -6.06% <0.001

ENRON

ϕ1 + ϕn + 10tf (Baseline) 0.9921 ± 0.0002 - 2920.37 ± 2.28 - 375.68 ± 0.29 - -
w/o P (ϕ1) 0.9703 ± 0.0008 -0.0218 2800.88 ± 2.20 -4.10% 345.12 ± 0.34 -8.13% <0.001
w/o P (ϕn) 0.9891 ± 0.0002 -0.0030 2810.54 ± 2.25 -3.76% 355.68 ± 0.31 -5.32% <0.001
w/o T (10tf ) 0.9867 ± 0.0008 -0.0054 2855.12 ± 2.18 -2.23% 360.89 ± 0.32 -3.94% <0.001
w/o P (both) 0.9625 ± 0.0000 -0.0296 2705.66 ± 2.26 -7.34% 330.45 ± 0.36 -12.06% <0.001

IMDB

ϕ1 + ϕn + 10ad + 5av (Baseline) 0.8938 ± 0.0028 - 2920.73 ± 0.63 - 531.10 ± 0.28 - -
w/o P (ϕ1) 0.8605 ± 0.0040 -0.0333 2805.22 ± 0.70 -3.95% 500.89 ± 0.32 -5.69% <0.001
w/o P (ϕn) 0.8703 ± 0.0012 -0.0235 2815.36 ± 0.68 -3.61% 510.25 ± 0.30 -3.93% <0.001
w/o S (10ad) 0.8688 ± 0.0035 -0.0250 2855.45 ± 0.67 -2.23% 515.67 ± 0.30 -2.90% <0.001
w/o S (5av) 0.8778 ± 0.0032 -0.0160 2878.12 ± 0.65 -1.45% 520.12 ± 0.31 -2.07% <0.001
w/o P (both) 0.8432 ± 0.0015 -0.0506 2755.89 ± 0.74 -5.63% 495.45 ± 0.35 -6.72% <0.001
w/o S (both) 0.8817 ± 0.0055 -0.0121 2845.35 ± 0.66 -2.58% 512.56 ± 0.29 -3.49% <0.001

20News

ϕ1 + 10pn + 10n (Baseline) 0.7559 ± 0.0044 - 2928.46 ± 1.63 - 268.98 ± 0.03 - -
w/o P (ϕ1) 0.7407 ± 0.0005 -0.0152 2805.12 ± 1.70 -4.22% 250.12 ± 0.04 -7.01% <0.001
w/o E (10pn) 0.6982 ± 0.0012 -0.0577 2855.45 ± 1.67 -2.50% 255.12 ± 0.03 -5.17% <0.001
w/o S (10n) 0.6758 ± 0.0082 -0.0801 2878.12 ± 1.66 -1.72% 260.45 ± 0.03 -3.17% <0.001
w/o P, E 0.5452 ± 0.0022 -0.2107 2762.68 ± 1.72 -5.66% 240.85 ± 0.05 -10.46% <0.001
w/o E ,S 0.5675 ± 0.0011 -0.1884 2805.35 ± 1.69 -4.20% 245.32 ± 0.04 -8.80% <0.001
w/o P,S 0.5526 ± 0.0017 -0.2033 2785.75 ± 1.71 -4.87% 243.57 ± 0.05 -9.45% <0.001

CMLA11

ϕ1 + ϕn + 10pn + 5n (Baseline) 0.9251 ± 0.0025 - 2851.36 ± 2.77 - 1177.71 ± 0.51 - -
w/o P (ϕ1) 0.8785 ± 0.0012 -0.0466 2755.45 ± 2.81 -3.36% 1105.12 ± 0.56 -6.19% <0.001
w/o P (ϕn) 0.9154 ± 0.0015 -0.0097 2765.82 ± 2.80 -3.00% 1115.35 ± 0.55 -5.30% <0.001
w/o E (10pn) 0.9154 ± 0.0011 -0.0097 2805.12 ± 2.78 -1.62% 1125.45 ± 0.54 -4.43% <0.001
w/o S (5n) 0.9198 ± 0.0024 -0.0053 2825.12 ± 2.79 -0.92% 1150.12 ± 0.53 -2.34% <0.001
w/o P, E 0.7457 ± 0.0013 -0.1794 2710.45 ± 2.84 -4.94% 1055.33 ± 0.58 -10.39% <0.001
w/o E ,S 0.9024 ± 0.0001 -0.0227 2780.88 ± 2.80 -2.47% 1095.54 ± 0.56 -6.98% <0.001
w/o P,S 0.8115 ± 0.0009 -0.1136 2735.67 ± 2.82 -4.06% 1075.21 ± 0.57 -8.70% <0.001

Table 5: Ablation study results for the best-performing context configuration per dataset, showing Macro F1 scores,
performance degradation (∆ F1), GPU memory usage, training time, and statistical significance (p-value) for ablated
configurations. Median values from 5 runs with different random seeds are reported.

Task First Sentence Impression
News
Category

Third-tier side Wolves have been
drawn at home to Man United in
the FA Cup fifth round. Wolves,
who are ...

Sports

Sentiment The movie was absolutely stunning,
with breathtaking visuals. I went
there ...

Positive

Topic Recent quantum computing ad-
vances opened new possibilities in
cryptography. An Arab mathemati-
cian ...

Technology

Email Dear customer, you’ve won a
$2,000 gift card in lottery! Click
here to ...

Spam

Table 6: Examples of First Sentences Providing Imme-
diate Classification Signals Across Text Categories
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Dataset Context Accuracy ∆ Accuracy

AGNews

Full Length 0.5468 -
ϕ1+ϕn 0.5529 0.0061
ϕ1+ϕn+10pn+5n 0.4908 -0.0560
ϕ1+ϕn+10rk 0.4729 -0.0739
ϕ1+ϕn+10tf 0.4821 -0.0647
ϕ1+ϕn+10pn+5v 0.4747 -0.0721

BBC

Full Length 0.2466 -
20rk 0.3453 0.0987
ϕ1+15n 0.5695 0.3229
15rk 0.3632 0.1166
ϕ1+10rk 0.4126 0.1660
ϕ1+ϕn+10pn+5v 0.4215 0.1749

ENRON

Full Length 0.6159 -
ϕ1+ϕn+10tf 0.6051 -0.0108
ϕ1+15pn+5n 0.6346 0.0187
ϕ1+10pn+10n 0.6349 0.0190
ϕ1+10rk 0.6264 0.0105
ϕ1+ϕn+10pn+5n 0.6219 0.0060

IMDB

Full Length 0.6901 -
ϕ1+ϕn+10ad+5av 0.6062 -0.0839
ϕ1+ϕn+15ad+10av 0.5961 -0.0940
ϕ1+ϕn+10ad 0.6282 -0.0619
ϕ1+ϕn+10ad+5n 0.6118 -0.0783
ϕ1+ϕn+15ad 0.6204 -0.0697

20News

Full Length 0.1913 -
ϕ1+10pn+10n 0.2175 0.0262
20tf 0.1795 -0.0118
ϕ1+10tf 0.1726 -0.0187
10pn+10n+10ad 0.2152 0.0239
ϕ1+ϕn+10tf 0.2052 0.0139

CMLA11

Full Length 0.2775 -
ϕ1+ϕn+10pn+5n 0.2513 -0.0262
ϕ1+15pn+5n 0.2395 -0.0380
ϕ1+15pn+5v 0.2326 -0.0449
ϕ1+ϕn+10tf 0.2452 -0.0323
ϕ1+20pn 0.2365 -0.0410

Table 7: LLM Performance comparison of Gemma-7B-IT on full context vs. top-performing reduced context
variants (based on Table 2 across multiple datasets. The table shows Macro F1 scores and their differences (∆ F1)
from the full length baseline
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Dataset Context Macro F1 ∆ F1

AGNews

Full Length 0.9421 ± 0.0005 -
ϕ1+ϕn 0.9414 ± 0.0006 -0.0007
ϕ1+ϕn+10pn+5n 0.9408 ± 0.0029 -0.0013
ϕ1+ϕn+10rk 0.9407 ± 0.0004 -0.0014
ϕ1+ϕn+10tf 0.9402 ± 0.0004 -0.0019
ϕ1+ϕn+10pn+5v 0.9399 ± 0.0010 -0.0022
ϕ1+ϕ2 0.9394 ± 0.0005 -0.0027
ϕ1+15rk 0.9381 ± 0.0011 -0.0040
20rk 0.9380 ± 0.0003 -0.0041
ϕ1+10pn+10n 0.9364 ± 0.0022 -0.0057
ϕ1+10rk 0.9358 ± 0.0024 -0.0063
ϕ1+10pn+5ad 0.9352 ± 0.0025 -0.0069
ϕ1+15pn+5n 0.9349 ± 0.0022 -0.0072
ϕ1+10pn 0.9348 ± 0.0008 -0.0073
ϕ1+15pn+5ad 0.9347 ± 0.0017 -0.0074
ϕ1+15n 0.9346 ± 0.0010 -0.0074
ϕ1+10ad+10pn 0.9344 ± 0.0024 -0.0077
ϕ1+15pn 0.9341 ± 0.0026 -0.0080
ϕ1+5pn+5n+5ad 0.9340 ± 0.0009 -0.0081
ϕ1+5pn+5n+5ad+5v 0.9340 ± 0.0013 -0.0081
ϕ1+15pn+5v 0.9339 ± 0.0016 -0.0082
ϕ1+20pn 0.9337 ± 0.0027 -0.0084
15rk 0.9335 ± 0.0023 -0.0085
ϕ1+10tf 0.9334 ± 0.0013 -0.0087
ϕ1+10ne 0.9328 ± 0.0024 -0.0093
10pn+10n+10ad+10v 0.9327 ± 0.0004 -0.0094
ϕ1+15ad+5v 0.9307 ± 0.0007 -0.0114
ϕ1+20ad 0.9306 ± 0.0013 -0.0115
10pn+10n+10ad 0.9295 ± 0.0003 -0.0125
ϕ1+15ad 0.9292 ± 0.0010 -0.0129
ϕ1 0.9285 ± 0.0013 -0.0136
10pn+10n 0.9272 ± 0.0003 -0.0149
20tf 0.9214 ± 0.0007 -0.0207
15tf 0.9143 ± 0.0010 -0.0278
10tf+5pn 0.9134 ± 0.0010 -0.0287
10tf 0.9042 ± 0.0010 -0.0379

Table 8: Macro F1 scores for AGNews dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

BBC

Full Length 0.9888 ± 0.0067 -
20rk 0.9888 ± 0.0022 0
ϕ1+15n 0.9865 ± 0.0045 -0.0023
15rk 0.9865 ± 0.0032 -0.0023
ϕ1+10rk 0.9865 ± 0.0090 -0.0023
ϕ1+ϕn+10pn+5v 0.9843 ± 0.0022 -0.0045
ϕ1+ϕn+10rk 0.9843 ± 0.0022 -0.0045
10pn+10n+10ad 0.9843 ± 0.0067 -0.0045
ϕ1+10pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+5pn+5n+5ad+5v 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5n 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+10tf 0.9843 ± 0.0067 -0.0045
ϕ1+ϕn+10pn+5n 0.9821 ± 0.0045 -0.0067
ϕ1+ϕn+10tf 0.9821 ± 0.0000 -0.0067
ϕ1+ϕn 0.9821 ± 0.0000 -0.0067
10pn+10n 0.9821 ± 0.0090 -0.0067
ϕ1+15ad+5v 0.9821 ± 0.0000 -0.0067
ϕ1+10pn+10n 0.9821 ± 0.0000 -0.0067
ϕ1+10pn 0.9821 ± 0.0045 -0.0067
ϕ1+15rk 0.9821 ± 0.0135 -0.0067
ϕ1+ϕ2 0.9798 ± 0.0022 -0.0090
10pn+10n+10ad+10v 0.9798 ± 0.0112 -0.0090
ϕ1+5pn+5n+5ad 0.9798 ± 0.0022 -0.0090
ϕ1+15pn+5v 0.9798 ± 0.0022 -0.0090
ϕ1+10ad+10pn 0.9776 ± 0.0045 -0.0112
ϕ1+10ne 0.9776 ± 0.0000 -0.0112
ϕ1+15pn 0.9776 ± 0.0045 -0.0112
ϕ1+20ad 0.9753 ± 0.0022 -0.0135
ϕ1+20pn 0.9731 ± 0.0000 -0.0157
ϕ1 0.9709 ± 0.0112 -0.0179
ϕ1+15ad 0.9709 ± 0.0067 -0.0179
20tf 0.9552 ± 0.0045 -0.0336
15tf 0.9395 ± 0.0157 -0.0493
10tf+5pn 0.9345 ± 0.0157 -0.0543
10tf 0.9214 ± 0.0157 -0.0674

Table 9: Macro F1 scores for BBC dataset across differ-
ent context settings. The Full Length setting represents
the original dataset, while other configurations use vari-
ous low-context representations.

13



Dataset Context Macro F1 ∆ F1

ENRON

Full Length 0.9957 ± 0.0008 -
ϕ1+ϕn+10tf 0.9921 ± 0.0002 -0.0036
ϕ1+15pn+5n 0.9918 ± 0.0008 -0.0039
ϕ1+10pn+10n 0.9916 ± 0.0006 -0.0041
ϕ1+10rk 0.9912 ± 0.0006 -0.0045
ϕ1+ϕn+10pn+5n 0.9911 ± 0.0012 -0.0046
ϕ1+15rk 0.9909 ± 0.0002 -0.0048
ϕ1+10ad+10pn 0.9904 ± 0.0000 -0.0053
10pn+10n+10ad+10v 0.9900 ± 0.0002 -0.0057
ϕ1+ϕn+10rk 0.9900 ± 0.0016 -0.0057
ϕ1+5pn+5n+5ad 0.9898 ± 0.0006 -0.0059
ϕ1+15n 0.9895 ± 0.0009 -0.0062
ϕ1+ϕn+10pn+5v 0.9894 ± 0.0010 -0.0063
ϕ1+15pn+5ad 0.9892 ± 0.0006 -0.0065
20rk 0.9892 ± 0.0006 -0.0065
ϕ1+20pn 0.9891 ± 0.0008 -0.0066
ϕ1+10tf 0.9891 ± 0.0002 -0.0066
ϕ1+5pn+5n+5ad+5v 0.9888 ± 0.0008 -0.0069
ϕ1+15pn+5v 0.9882 ± 0.0010 -0.0075
10pn+10n+10ad 0.9879 ± 0.0002 -0.0078
ϕ1+10pn 0.9879 ± 0.0010 -0.0078
ϕ1+15pn 0.9877 ± 0.0003 -0.0080
15rk 0.9877 ± 0.0006 -0.0080
ϕ1+10pn+5ad 0.9876 ± 0.0008 -0.0081
20tf 0.9873 ± 0.0016 -0.0084
ϕ1+ϕn 0.9867 ± 0.0008 -0.0090
ϕ1+10ne 0.9867 ± 0.0002 -0.0090
10pn+10n 0.9864 ± 0.0008 -0.0093
ϕ1+15ad+5v 0.9862 ± 0.0006 -0.0095
ϕ1+20ad 0.9861 ± 0.0005 -0.0096
ϕ1+15ad 0.9855 ± 0.0005 -0.0102
ϕ1+ϕ2 0.9843 ± 0.0022 -0.0114
15tf 0.9838 ± 0.0018 -0.0119
10tf+5pn 0.9785 ± 0.0000 -0.0172
ϕ1 0.9741 ± 0.0031 -0.0216
10tf 0.9625 ± 0.0000 -0.0332

Table 10: Macro F1 scores for ENRON dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

IMDB

Full Length 0.9358 ± 0.0020 -
ϕ1+ϕn+10ad+5av 0.8938 ± 0.0028 -0.0420
ϕ1+ϕn+15ad+10av 0.8936 ± 0.0032 -0.0422
ϕ1+ϕn+10ad 0.8932 ± 0.0044 -0.0426
ϕ1+ϕn+10ad+5n 0.8931 ± 0.0057 -0.0427
ϕ1+ϕn+15ad 0.8929 ± 0.0023 -0.0429
ϕ1+ϕn+10tf 0.8923 ± 0.0077 -0.0435
ϕ1+ϕn+10rk 0.8908 ± 0.0048 -0.0450
ϕ1+ϕn+10ad+5v 0.8901 ± 0.0015 -0.0457
ϕ1+ϕn+10rk+10ad 0.8872 ± 0.0068 -0.0486
ϕ1+ϕn 0.8817 ± 0.0055 -0.0541
ϕ1+10ad+5rk 0.8721 ± 0.0004 -0.0637
ϕ1+15ad+10v 0.8693 ± 0.0087 -0.0665
ϕ1+15rk 0.8641 ± 0.0013 -0.0717
ϕ1+15ad+5v 0.8624 ± 0.0042 -0.0734
ϕ1+10ad+5pn+5v 0.8612 ± 0.0060 -0.0746
ϕ1+15ad 0.8607 ± 0.0027 -0.0751
ϕ1+10rk 0.8598 ± 0.0044 -0.0760
ϕ1+10ad+10pn 0.8592 ± 0.0024 -0.0766
20rk 0.8591 ± 0.0027 -0.0767
ϕ1+10ad+5n+5v 0.8583 ± 0.0027 -0.0775
10pn+10n+10ad+10v 0.8575 ± 0.0037 -0.0783
ϕ1+5pn+5n+5ad+5v 0.8561 ± 0.0011 -0.0797
ϕ1+5pn+5n+5ad 0.8521 ± 0.0023 -0.0837
ϕ1+5ad+5+ADV+5v 0.8517 ± 0.0051 -0.0841
10pn+10n+10ad 0.8502 ± 0.0012 -0.0856
ϕ1+10pn+5ad 0.8495 ± 0.0005 -0.0863
15rk 0.8492 ± 0.0008 -0.0866
ϕ1+15pn+5ad 0.8488 ± 0.0022 -0.0870
ϕ1+ϕ2 0.8481 ± 0.0039 -0.0877
20tf 0.8461 ± 0.0006 -0.0897
ϕ1+10tf 0.8453 ± 0.0089 -0.0905
ϕ1+10pn+10n 0.8376 ± 0.0002 -0.0982
ϕ1+15pn+5n 0.8335 ± 0.0035 -0.1023
ϕ1+15pn+5v 0.8306 ± 0.0028 -0.1052
ϕ1+15n 0.8281 ± 0.0003 -0.1077

Table 11: Macro F1 scores for IMDB dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context Macro F1 ∆ F1

20News

Full Length 0.7731 ± 0.0025 -
ϕ1+10pn+10n 0.7559 ± 0.0044 -0.0172
20tf 0.7472 ± 0.0027 -0.0259
ϕ1+10tf 0.7472 ± 0.0031 -0.0259
10pn+10n+10ad 0.7448 ± 0.0025 -0.0283
ϕ1+ϕn+10tf 0.7445 ± 0.0027 -0.0286
ϕ1+15rk 0.7412 ± 0.0055 -0.0319
10pn+10n 0.7407 ± 0.0005 -0.0324
ϕ1+5pn+5n+5ad+5v 0.7390 ± 0.0038 -0.0341
10pn+10n+10ad+10v 0.7387 ± 0.0093 -0.0344
ϕ1+ϕn+10pn+5n 0.7380 ± 0.0005 -0.0351
ϕ1+10rk 0.7374 ± 0.0060 -0.0357
ϕ1+15pn+5n 0.7366 ± 0.0046 -0.0365
ϕ1+ϕn+10rk 0.7363 ± 0.0038 -0.0368
15rk 0.7244 ± 0.0003 -0.0487
ϕ1+5pn+5n+5ad 0.7236 ± 0.0082 -0.0495
15tf 0.7111 ± 0.0096 -0.0620
ϕ1+15n 0.7092 ± 0.0016 -0.0639
20rk 0.6973 ± 0.0063 -0.0758
ϕ1+ϕn+10pn+5v 0.6971 ± 0.0011 -0.0760
ϕ1+15pn+5ad 0.6875 ± 0.0035 -0.0856
ϕ1+15pn+5v 0.6834 ± 0.0131 -0.0897
ϕ1+10pn+5ad 0.6815 ± 0.0106 -0.0916
ϕ1+10ad+10pn 0.6790 ± 0.0038 -0.0941
ϕ1+15pn 0.6760 ± 0.0074 -0.0971
ϕ1+20pn 0.6760 ± 0.0019 -0.0971
ϕ1+10pn 0.6758 ± 0.0082 -0.0973
10tf+5pn 0.6754 ± 0.0000 -0.0977
ϕ1+10ne 0.6703 ± 0.0038 -0.1028
ϕ1+ϕ2 0.6676 ± 0.0066 -0.1055
ϕ1+ϕn 0.6362 ± 0.0025 -0.1369
ϕ1+15ad+5v 0.6285 ± 0.0035 -0.1446
ϕ1+20ad 0.6149 ± 0.0041 -0.1582
ϕ1+15ad 0.6111 ± 0.0074 -0.1620
ϕ1 0.5675 ± 0.0011 -0.2056
10tf 0.5626 ± 0.0000 -0.2105

Table 12: Macro F1 scores for 20NewsGroup dataset
across different context settings. The Full Length setting
represents the original dataset, while other configura-
tions use various low-context representations.

Dataset Context Macro F1 ∆ F1

CMLA11

Full Length 0.9449 ± 0.0003 -
ϕ1+ϕn+10pn+5n 0.9251 ± 0.0025 -0.0198
ϕ1+15pn+5n 0.9239 ± 0.0006 -0.0210
ϕ1+15pn+5v 0.9236 ± 0.0015 -0.0213
ϕ1+ϕn+10tf 0.9225 ± 0.0025 -0.0224
ϕ1+20pn 0.9222 ± 0.0003 -0.0227
ϕ1+ϕn+10pn+5v 0.9218 ± 0.0005 -0.0231
ϕ1+10pn+10n 0.9218 ± 0.0017 -0.0231
ϕ1+15pn+5ad 0.9192 ± 0.0016 -0.0257
ϕ1+15pn 0.9189 ± 0.0012 -0.0260
ϕ1+5pn+5n+5ad+5v 0.9176 ± 0.0009 -0.0273
ϕ1+ϕn+10rk 0.9171 ± 0.0021 -0.0278
ϕ1+10pn+5ad 0.9165 ± 0.0005 -0.0284
ϕ1+10rk 0.9144 ± 0.0001 -0.0305
ϕ1+10ad+10pn 0.9135 ± 0.0012 -0.0314
ϕ1+15rk 0.9132 ± 0.0014 -0.0317
ϕ1+5pn+5n+5ad 0.9130 ± 0.0005 -0.0319
ϕ1+10pn 0.9125 ± 0.0011 -0.0324
ϕ1+10tf 0.9083 ± 0.0009 -0.0366
ϕ1+ϕ2 0.9076 ± 0.0008 -0.0373
ϕ1+10ne 0.9065 ± 0.0033 -0.0384
10pn+10n+10ad+10v 0.9042 ± 0.0032 -0.0407
ϕ1+15n 0.9030 ± 0.0005 -0.0419
ϕ1+ϕn 0.9024 ± 0.0001 -0.0425
ϕ1+15ad+5v 0.8948 ± 0.0013 -0.0501
ϕ1+20ad 0.8880 ± 0.0002 -0.0569
ϕ1+15ad 0.8871 ± 0.0007 -0.0578
10pn+10n+10ad 0.8867 ± 0.0019 -0.0582
10pn+10n 0.8767 ± 0.0010 -0.0682
15rk 0.8647 ± 0.0012 -0.0802
20rk 0.8635 ± 0.0003 -0.0814
ϕ1 0.8594 ± 0.0018 -0.0855
20tf 0.8490 ± 0.0034 -0.0959
10tf+5pn 0.8394 ± 0.0002 -0.1055
15tf 0.8317 ± 0.0020 -0.1132
10tf 0.8125 ± 0.0013 -0.1324

Table 13: Macro F1 scores for CMLA11 dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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