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Abstract

We revisit random projection trees in the context
of probabilistic circuits. We show how a recur-
sive partitioning scheme for inducing oblique kd-
trees from data using random projections can be
adapted to produce reasonably accurate probabilis-
tic circuits in a fraction of the time used by typical
structure learning algorithms.

1 INTRODUCTION

Probabilistic circuits unify several frameworks for tractable
probabilistic modeling such as low-treewidth graphical mod-
els [Bach and Jordan, 2001} |[Liu et al., [2011} [Elidan and
Gould, [2009], sum-product networks [Poon and Domingos|,
2011, probabilistic sentential decision diagrams [Kisa et al.,
2014]] and cutset networks [Rahman et al.,[2014].

State-of-the-art algorithms for learning probabilistic cir-
cuits from data can be categorized into two different ap-
proaches. The first approach, exemplified by LearnSPN
[Gens and Domingos}, [2013]], grows a probabilistic circuit
in a top-down fashion by recursively splitting data instances
into similar clusters and partitioning variables into approx-
imately independent sets. The second approach, exempli-
fied by LearnPSDD [Liang et al., 2017]], performs a greedy
search that optimizes some score measure (typically, a pe-
nalized log-likelihood) by iteratively performing local trans-
formations of the circuit (e.g. splitting and merging nodes).
Although both approaches produce accurate probabilistic
models, with LearnPSDD exhibiting superior overall per-
formance in benchmark experiments, they take significant
computational resources (time and memory). The situation
is aggravated by the fact that achieving top quality mod-
els usually requires grid-search for hyperparameter tuning,
gradient-based parameter learning and the use of mixtures
of circuits by bagging. And while some recent work has
shown that such a cost can be decreased at a small or even

no loss in accuracy [Mei et al., 2018} Jaini et al., 2018]
Di Mauro et al., 2017 Dang et al.,[2020], the computational
costs of learning algorithms discourage the use of proba-
bilistic circuits to exploring massive datasets of very high
dimension.

Recently, (Correia et al.|[2020] showed that (ensembles of)
decision trees learned for prediction tasks can be easily
extended into full probabilistic models represented as prob-
abilistic circuits. Besides equipping (ensembles of) decision
trees with more principled approaches to handling missing
data and diagnosing outliers, the connection of decision
trees and probabilistic circuits suggests an interesting al-
ternative to learning the latter using the efficient inductive
algorithms available for the former [Correia et al., 2020,
Ram and Gray}, 2011} [Khosravi et al., 2020].

Typical algorithms for inducing decision trees from data
consist in recursively partitioning the data into axis-aligned
cells, that is, they split the data according to the value of a
single variable at a time. Freund et al.|[2008] noted that such
an approach cannot ensure that the resulting partitioning of
the input space approximates the intrinsic dimensionality
of the data (roughly understood as a manifold of low di-
mension). In constrast, they provide a simple strategy for
space partitioning that consists in recursively partitioning
the space according to a random separating hyperplane. The
result approximates a random projection of the data and has
the following theoretical guarantee [Freund et al., [2008]:

If the data has intrinsic dimension d, then with
constant probability the part of the data at level
d or higher of the tree has average diameter less
than half of that of the data.

Accordingly, the depth of the tree needs only to grow pro-
portionally to the intrinsic dimension and not to the number
of variables. In addition to that and to other theoretical in-
surances [Dhesi and Kar, [2010], the recursive partitioning
scheme proposed is extremely fast, taking linearithmic time
in the dataset size (no. of instances and no. of variables).
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In this work, we revisit random projection trees in the
context of probabilistic circuits. More specifically, we de-
velop different approaches for learning probabilistic circuits
using recursive partitioning by random projections. Our
approaches differ in how random projections and ensem-
bles are combined. Experiments with benchmark datasets
for density estimation show that our proposed approaches
are competitive with state-of-the-art algorithms (LearnSPN,
LearnPSDD, Strudel), while requiring a fraction of the learn-
ing times of the competitors.

2 RANDOM PROJECTION TREES

kd-trees [Bentley, |1979] are data structures that enable effi-
cient similarity search and other operations by representing
data as a hierarchy of partitions represented as a tree. They
are typically obtained from data via axis-aligned binary re-
cursive partitioning as follows. Givenarule r : X — {0, 1},
a dataset S is splitinto S1 = {z € X : r(z) = 0} and
So = {z € X : r(z) = 1}, and the process repeats until
|S] is sufficiently small. Typically, the rule r selects the
variable with the largest variance (or some other measure
of spread) in S and separates instances according to the
median value of that variable in S. The process is similar to
the induction of decision trees, except that in this case the
rules discriminate against a target variable [Breiman, 2001].

The statistical properties of estimates obtained from the in-
stances at the leaves of a kd-tree depend on the rate at which
the diameter of the partitions are reduced once we move
down the tree. For a space of dimension n, a kd-tree induced
by the process described might require n levels to halve the
diameter of the original data [Dasgupta and Freund, [2008]].
This is true even for datasets of low intrinsic dimension. The
latter is variously defined, and different definitions lead to
different theoretical properties. A common surrogate metric
is the doubling dimension of a dataset S C R", given by the
smallest integer d such that the intersection of S and any
ball of radius 7 centered at = € S can be covered by at most
22 balls of radius r/2 [Dhesi and Kar, 2010].

Algorithm 1 SPLITSID

Input Dataset S C R"
QOutput A partition 51,53 of S
1: Let m be the number of examples in S
2: Sample a random unit direction w
3: Sorta=w-xforz e Sst.ag <agy < - <ay
4: fori=1,...,m—1do
S H1 = %23:1 @i, M2 = ml_i Z;‘n:i—i-l @i
6
7
8
9

cr =20 (ag — m)? + 3070 (0 — po)?
: Find 4 that minimizes ¢; and set 6 = (a; + a;41)/2
S {reSiw-z <0}
: return (51,5 \ S1)

Algorithm 2 SPLITMAX

Input Dataset S C R™ and constant r
Output A partition S1,.S; of S
1: Sample a random unit direction w
2: Pick any x € S and let y be x’s farthest point in .S
3: Sample ¢  uniformly in [—c¢,¢], where
c=r-dist(z,y)/v/n
4: S1+—{zxeS:w-x<median({z-w:z € S})+ 4}
5: return (51,5 \ S1)

SPLITMAX SPLITSID

r
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Figure 1: Example of space partitioning by RPTrees grown
using different split rules but the same random directions.

Random Projection Trees (RPTrees) are a special type of
kd-trees that split along a random direction of the space.
Two such splitting rules are given by Algorithms|[I]and 2]
where in the latter dist refers to the Euclidean distance. The
intuition behind either rule is to generate a random hyper-
plane (unit direction) and then find a threshold projection
value that roughly divides dataset .S into two approximately

equally sized subsets. [Algorithm T|attempts at finding such

a threshold by minimizing the average squared interpoint
distance (SID), while[Algorithm 2|uses a random noise pro-
portional to the average diameter of S. As discussed by
Dasgupta and Freund| [2008]] and by [Freund et al.| [2008]],
either optimizing or randomizing the threshold leads to bet-
ter separation of the data than simply selecting the median
point. shows an example of space partitioning in-
duced by 2-level RPTrees using each of the rules with the
same direction vectors w. Note that the rules produce quite
different splits despite using the same random directions.

Unlike standard kd-trees, RPTrees ensure that, for a data
with doubling dimension d, at most d levels are necessary
to half the diameter of the data, irrespective of its dimen-
sion. This leads to improved statistical properties that are
connected to that notion of low intrinsic dimensionality
[Dasgupta and Freund, |2008|, Dhesi and Kar, |[2010].

3 PROBABILISTIC CIRCUITS

A probabilistic circuit is either (i) a tractable distribution
P(X) with scope X (i.e., a distribution that admits efficient
marginalization of any subset Y C X of its variables), (ii)



a convex combination ) . \; P;(X), A; > 0,> ", \; =1, of
probabilistic circuits P;(X) with identical scope X, or (iii)
a product [ [, P;(X;) of probabilistic circuits with disjoint
scopes X;;.

Probabilistic circuits are more commonly represented as
rooted acyclic directed graphs with sum (+) and product
(x) inner nodes, and distribution leaves [[Gens and Domin+{
gos, [2013] |Dang et al.|[2020]. The arcs from sum nodes are
weighted by non-negative values. The key feature of prob-
abilistic circuits is that marginal probabilities can be com-
puted in linear time in the size of any probabilistic circuit
(plus the time to marginalize leaves). For leaf distributions
in the exponential family, they also allow for the parameters
to be efficiently learned by Expectation-Maximization or
other gradient-based approaches [Peharz et al.| 2016, [Zhao
et al., 2016, |Desana and Schnorr, [2016]).

Generative trees [[Correia et al.,[2020|] are probabilistic cir-
cuits obtained from decision tree classifiers as follows. Each
decision node (split) of the decision tree is transformed into
a sum node whose weights are given by the proportion of
instances in the respective partitioning, and leaves of the de-
cision trees are associated to distributions learned from the
corresponding subsets, and truncated so that their support is
the space defined by the splits from the root of the decision
tree up to the corresponding leaf. While in principle any
distribution is valid for the leaves, the authors experiment
either with simple fully factorized distributions, or with
probabilistic circuits learned by standard algorithms such as
LearnSPN [Gens and Domingos| [2013]]. A generative forest
is obtained simply as a mixture of generative trees (which in
the context of probabilistic circuits simply means adding a
top root node whose children are generative decision trees).

4 STRUCTURE LEARNING BY
RANDOM PROJECTIONS

In their work, |Correia et al. [2020] focus on decision trees
induced by axis-aligned splits. Here, we investigate the use
of oblique decision trees obtained by random projections
to learning probabilistic circuits. Unlike Generative Forests,
we do not constrain the support of the distribution at a leaf
by the corresponding space partition. Instead, we learn dis-
tributions from the entire training dataset with full support,
which leads to more efficient learning and inference. In this
sense, our approach is more similar to LearnSPN, except
that we replace clustering by random projections and do not
run (costly) independence tests, and differs from other uses
of decision trees with density estimators at the leaves (e.g.
[Smyth et al.| [1995])).

In a nutshell, our approach constructs a probabilistic cir-
cuit in a top-down fashion by recursively partitioning data
through random projections and mapping splits to sum
nodes. The recursion stops when data size falls below some

pre-specified threshold, at which point a multivariate distri-
bution is learned. We present two variants of that procedure.
The first variant, called LEARNRP-S, is akin to generative
forests, and learns a mixture of independent tree-shaped
circuits obtained from recursively splitting the data by ran-
dom projections. Pseudo-code describes the
procedure in greater detail. The algorithm returns a mix-
tures of k probabilistic circuits learned from recursively
splitting the dataset using either SPLITMAX or SPLITSID
(only one such rule is used for building the entire circuit).
To improve the quality of the random projections, we gen-
erate ¢ splits and keep only the best according to average
diameter criterion. A template subcircuit is learned once the
respective dataset S is sufficiently small. For simplicity, in
this paper we only consider two such templates: one where
a fully factorized distribution is learned at the leaves, that is,
LEARNDISTRIBUTION(S) returns a product of univariate
distributions (e.g., Gaussian or Bernoulli distributions); and
the other where a RAT-SPN [Peharz et al.l 2019] is used as
a multivariate leaf distribution.

Algorithm 3 LEARNRP-S

Input Dataset S C R”, no. of trials ¢, no. of trees k
Output A probabilistic circuit
1: if it is the first recursion then
2 return 3©_| LLEARNRP-S(S, 1, k)
3: else
4 Sample ¢ splits by some criteria, and select the split
(51,52) that minimizes the average diameter of .S
5 if |:S1| is small then
6: P, <+ LEARNDISTRIBUTION(.S)
7: else P, + LEARNRP-S(S1,t, k)
8
9

if | S2| is small then
: P, <~ LEARNDISTRIBUTION(.S2)
10: else P, < LEARNRP-S(Sy, ¢, k)
11: Set A < |S1]/15]
12: return A\ - Py + (1 — \) - P

The second variant, LEARNRP, instead alternates between
levels of mixtures and random projection splits. The pro-
cedure is described in the pseudo-code in As
shown, at each recursion the procedure creates k£ compo-
nents C}, each obtained by selecting the best split (57, .52)
out of ¢ candidate splits (obtained with some fixed split rule)
then either learning a distribution for the respective part or
recurring.

illustrates the process for both variants: (a) shows
the initial mixture of projections represented by the top root
node, and a fully factorized distribution represented in the
leftmost sub-circuit. In (b), a sum node representing a mix-
ture of k recursive calls of LEARNRP-S is shown. In (c),
a probabilistic circuit generated by LEARNRP alternates
between sum nodes with & children, representing fine mix-
tures, and sum nodes with 2 children representing random



Algorithm 4 LEARNRP

Input Dataset S C R", no. of trials ¢, no. of mixtures k
Output A probabilistic circuit
1: fori=1,...,kdo
2: Sample ¢ splits by some criteria, and select the split
(51, S2) that minimizes the average diameter of .S
if |.S1| is small then
P, < LEARNDISTRIBUTION(SY)
else P; + LEARNRP(Sy,t, k)

3
4
5
6: if |.S2| is small then
7.
8
9

P, < LEARNDISTRIBUTION(S3)
else P, «+ LEARNRP(Sa,t, k)
: Set A + |S1]/|S]
10: Compute C; <~ \- Py + (1 = )\) - P
11: return 35, 1C;

projection splits. As the examples suggest, either variant
produces a tree-shaped probabilistic circuit containing only
sum nodes and distribution leaves (which in turn can be rep-
resented as more probabilistic circuits containing product
nodes).

Since SPLITMAX and SPLITSID take time O(m log m) and
O(m), respectively, where m is the number of examples in
the dataset, both variants are extremely fast and scale for
very large datasets of very high dimension. In fact, as we
later show in [Section 5} LEARNRP takes a fraction of the
time competitors take to learn.

The accuracy of the learned circuits can be improved by fine-
tuning the parameters to the entire dataset, using standard
parameter learning algorithms for probabilistic circuits.

S EXPERIMENTS

We evaluate the performance of learning probabilistic cir-
cuits via random projections with respect to average held-out
log-likelihood and running time on both synthetic datasets
and realistic benchmark datasets. The former allows us to
better investigate the differences among the several choices
of split functions and hyperparameters; the latter allows
to compare performance against state-of-the-art techniques
with published results.

By combining procedures LEARNRP or LEARNRPS and
the split rules SPLITMAX or SPLITSID, we obtain four
different learning algorithms, denoted as RPRULE and
RPRULES in the following, for RULE € {MaAX, SID}.
These use a fully factorized circuit as leaf, while RPRULED
and RPRULESD, with their respective rules, indicate that
a dense random circuit (RAT-SPN) is used as leaves in-
stead. After obtaining a probabilistic circuit, we fine-tune
the parameters (weights and mean and variance for Gaus-
sian leaves, if any) either by (standard batch) EM or by an

online version that updates parameters using minibatches
as:

Ori1 < ne - Orm + (1 —n1)0 (D

where gy is the standard EM update using a minibatch
dataset, and 7, is the learning rate. In the experiments we use
exponential decayed learning rates 1; = (10)*, with 7 vary-
ing in [0.9,0.99]. In our experiments with medium-sized
datasets, the online version showed improved generalization
performance and increased numerical accuracy, while being
much faster (in terms of overall runtime). We thus used only
the online variant for the larger benchmark datasets.

The algorithms were implemented in the Julia language, and
the source code is available at https://github.com/
RenatoGeh/RPCircuits. jl. The experiments were
carried out on a single computer with a 12-core Intel i7 3.7
GHz processor and 64GB RAM.

5.1 SYNTHETIC DATASETS

We first show experiments with an intricate two-dimensional
dataset, which allow us to visualize the estimated models.
The 2-moons dataset is a commonly used sampling proce-
dure consisting of two intertwining “half-moon” structures.
For our experiments, we generated 1,000 points, of which
600 were kept for training, 100 for validation and 300 as
test set. We further added some complexity to the data by
adding a Gaussian noise of 0.1.

We used ¢ = 5 for the number of candidate splits to be
selected at each projection, k£ = 3 for the number of pro-
jections per mixture for the LEARNRP variant and & = 30
for the simpler one-mixture LEARNRP-S approach. We ran
EM, both online and batch, for 100 iterations with a mini-
batch of 100 for the former. We set » = 1 for the MAX
splits. Throughout all experiments, we considered the data
to be small (and thus learn a fully factorized distribution
over them) if they contained 30 instances or fewer.

Table [T] compares the held-out average log-likelihood of
the different random projection learning strategies on the
2-moons dataset, for different configurations of the mini-
mum variance at the Gaussian distributions (which acts as
a regularizer) and different uses of parameter learning (the
standard batch EM and an online version of EM that uses
minibatches). In the table, a fixed minimum variance cor-
responds to the case where the parameters of the Gaussian
leaves are not updated during parameter learning. Note how
lowering the constraint on variance improves log-likelihood
on this set for all approaches. Interestingly, LEARNRP does
a good job at learning the leaves by itself, sometimes show-
ing better performance compared to EM when learning
leaves. Figures [3] and [4] depict the Gaussian distributions
(in red) and the overall densities of each configuration for
the LEARNRP variant. The plots suggests that lowering
variance increases chances of overfitting. For each value of
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Figure 2: Example of probabilistic circuits learned by LEARNRP and LEARNRP-S. The dotted and dashed boxes represent
fragments learned by random projection splits, while the remaining sum nodes are obtained by repetitions to induce mixtures.
In (a), the fully grown circuit on the left is a result of both partition splits being sufficiently small. (b) LEARNRP-S recursively
learns sum nodes by binary splits. (c) LEARNRP alternates between binary splits and k-ary sum nodes representing mixtures.
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Figure 3: Gaussian components and densities of batch EM
learned circuits on the 2-moons dataset.

EM 02> [ RPMaxS RPMax RPSIDS RPSID
fixed -1.083 -1.139 -1.106  -1.074

Batch 0.10 -1.616 -1.616 -1.616  -1.616
0.05 -1.387 -1.388 -1.387  -1.385

0.01 -1.034 -1.041 -1.035  -1.032

fixed -1.089 -1.119 -1.080  -1.108

Online 0.10 -1.623 -1.627 -1.624  -1.637
0.05 -1.416 -1.402 -1.408  -1.412

0.01 -1.139 -1.080 -1.114  -1.105

Table 1: Average log-likelihood for the 2-moons dataset
for different choices of minimum Gaussian variance 2.

minimum variance and EM version, the different approaches
achieve comparable performance, with no clear winner. Re-
sults also show that online EM learns slightly less accurate
models for this simple domain.

We also evaluate our approaches on a synthetic dataset gener-
ated by the following sampling strategy proposed by
[2008]]. To generate an n-dimension point x, sample
p ~ [0, 1] uniformly at random, then sample each coordi-
nate ; ~ N (p, 1).[Figure 5|shows such a generated dataset
for n = 3.[Table 2| shows a comparison between the ran-
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Figure 4: Gaussian components and densities of online EM
learned circuits on the 2-moons dataset.

Figure 5' Example of synthetic dataset generated as in

fond el [2008].

dom projection approaches and LEARNSPN for n = 1OE|
LEARNSPN’s behavior is notably unusual, and we are un-
sure as to why it behaves so poorly. A possible explanation
could be due to an overfitting of the Gaussian distributions
at the leaves, as we found that LEARNSPN’s clustering
approach often reduced sub-datasets to size 1. We use the
same parameters as the 2-moons dataset, but with only
30 iterations for EM. Note how online EM outperforms the
batch version and seems to prevent overfitting.

"We use the python implementation of LearnSPN available at
https://gitlab.com/pgm-usp/pyspn.
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EM 02> [ RPMaxS RPMax RPSIDS RPSID | LearnSPN
fixed -14.483  -14.609  -14.469  -14.702 -213.100

Batch 0.10 -21.726  -25.712  -21.694  -25.519 -25.621
0.05 -27.308  -41.701 -27.022  -41.613 -44.335

0.01 -33.114  -117.338  -34.061 -142.422 -213.100

fixed -14.468  -14.588  -14.498  -14.660 -213.331

Online 0.10 -15.353  -15.284  -15.614  -14.972 -14.716
0.05 -14.943  -14.892  -15.090 -15.472 -14.776

0.01 -15.855  -14.831  -14.872  -15.017 -14.740

Table 2: Average log-likelihood for the dataset generated as
in [Freund et al.|[2008]] with n = 10.

5.2 BENCHMARK DATASETS

We further evaluate the performance of LEARNRP in the
discrete domain, more specifically under binary variables.
We show results for the well-known 20 datasets benchmark
for density estimation [Lowd and Davis}, 2010, [Van Haaren
and Davis| 2012] [

For these 20 benchmark datasets, we set ¢t = 10, k = 2 for
LEARNRP and k£ = 3 for LEARNRP-S, ran for 100 EM
iterations with minibatches of 500 for the online version,
and set » = 1 for MAX.

In Table [3] we compare average log-likelihood values of
our approaches against reported results for state-of-the-art
methods: LEARNSPN [Gens and Domingos, 2013, EXPC
[Mauro et al., 2021]], STRUDEL and LEARNPSDD [Dang
et al.| [2020]. For the last two, we report the best values from
mixtures learned through a combination of both EM and bag-
ging; and for EXPC, only best values for non-deterministic
structure decomposable ensembles are considered. Despite
never beating competitors, our approaches fair reasonably
well considering their simplicity.

Table[]shows the size of the probabilistic circuits learned by
the different approaches. Here we show single model sizes
for STRUDEL, LEARNPSDD and EXPC, since node counts
for mixtures and ensembles are left unreported in the origi-
nal texts. Similarly, since there is no information on circuit
size for the original results for LEARNSPN, we ran the algo-
rithm on the previously mentioned Python implementation
and reported their circuit size.

Comparatively, we see that RPSIDS often generates the
smallest circuits among all methods, followed by RPMAXS.
The other approaches using random projections often pro-
duce circuits larger than LEARNSPN, STRUDEL, EXPC
and LEARNPSDD, especially when using RAT-SPNs as
leaves. The repeated values of sizes for the random projec-
tion approaches are due to a hard limit on the maximum
depth of the RPTREE, as well as to the requirement of a
minimum number of instances at the leaves. Comparing
the difference in size between the single mixture (S) and
multiple mixtures with the difference in accuracy (held-out

2Available at https://github.com/UCLA-StarAl/
Density-Estimation-Datasets

log-likelihood) in Table 3| we see that the single mixture
versions achieve near the same performance of their multi-
ple mixture counterparts with considerably smaller circuit
complexity.

The run-times of each algorithm are given in Table[5] These
times measure only the structure learning part and do not
contain the parameter tuning, which for our methods is the
most time consuming part. This is because parameter tuning
is a common stage for all methods, and is very affected
by better implementation (CPU parallelization, GPU usage,
etc). As expected, circuits learned by random projections
(hence with little optimization) are up to 3 orders of mag-
nitude faster. For both STRUDEL and LEARNPSDD, since
we do not know exactly which parameters were used for
the best models reported in |[Dang et al.| [2020], we show
the time taken using 1000 iterations and with no parame-
ter learning. For our approaches, as well as STRUDEL and
LEARNPSDD, we measured results run on the Julia pro-
gramming language. For LEARNSPN, we measured time
on a Rust implementation’|

6 CONCLUSION

We revisited random projection tress in the context of prob-
abilistic circuits. We showed how a simple and fast scheme
previously proposed to generate an oblique recursive par-
titioning of a dataset by means of random projections can
be used to learn accurate probabilistic circuits. Experiments
with benchmark datasets showed that our approach is com-
petitive with state-of-the-art learners while taking a fraction
of the time.

This work is certainly preliminary, and can be extended in
several ways. We have only used fully factorized or dense
randomized circuits distributions at the leaves of the learned
circuits, which certainly decreases their expressivity. There
are several simple alternatives such as learning Chow-Liu
Trees [[Chow and Liul [1968]] or using standard algorithms
for learning probabilistic circuits. While either approaches
increase the representation power, they also introduce addi-
tional complexity.

Another interesting avenue to explore are the theoretical
guarantees of random projection trees. Can we use those
results to prove lower bounds on the sample complexity
of circuits generated by the proposed approaches? Can we
prove other desirable statistical properties?

Arguably, the empirical analysis carried out here is lacking.
We have yet to investigate accuracy in our approaches in
more diverse settings involving continuous variables and
specific domains (e.g. images). Finally, we might evaluate
the approaches on end tasks (expected prediction, imputa-
tion, outlier detection) or with respect to different metrics

*https://gitlab.com/marcheing/spn-rs
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Dataset #Var. #Train. | RPMaxSD RPMaxD RPSIDSD RPSIDD | RPMaxS RPMax RPSIDS RPSID | LSPN Strudel LPSDD EXPC
ACCIDENTS 111 12758 -36.77 -36.67 -36.96 -36.47 -37.41 -37.48 -37.16  -37.39 | -30.03 -28.73  |-30.16] -31.02
AD 1556 2461 -36.58 -36.19 -36.14 -35.88 -33.40 -32.83 23442 -35.55 | |-19.73| -16.38 -31.78  -15.50
AUDIO 100 15000 -40.25 -40.25 |-40.20| -40.20 -40.29 -40.25 -40.28  -40.23 | -40.50  -41.50 -39.94  -4091
BBC 1058 1670 -253.15  |-251.71| -252.48 -252.65 -254.71  -254.57  -254.774  -254.99 | -250.68 -254.41 -253.19 -248.34
NETFLIX 100 15000 -57.20 -57.21 -57.22 -56.89 -57.53 -57.40 -5745  -57.44 | |-57.02] -58.69 -55.71  -57.58
BOOK 500 8700 -34.84 -34.92 -34.87 -34.82 [-34.75| -34.85 -34.74  -34.66 | -35.88  -34.99 -3497  -3475
20-NEWSGRP 910 11293 -154.20 -154.58 |-153.91] -153.51 -155.39  -155.41 -155.59  -156.08 | -155.92 -154.47 -155.97 -153.75
REUTERS-52 889 6532 -87.01 -86.70 -86.79 -86.56 -87.58 -87.23 -86.33  -87.28 | -85.06 [-86.22 -89.61 -84.70
WEBKB 839 2803 -157.49 -157.66 |-157.06] -157.07 -158.46 -158.72  -158.07 -157.94 | -158.20 -155.33 -161.09 -153.67
DNA 180 1600 -97.89 -96.86 -97.28 -97.64 -97.45 -97.17 -97.47  -96.68 | -82.52  -86.22 -88.01 |-86.61|
JESTER 100 9000 |-53.05] -52.99 -53.09 -53.05 -53.21 -53.24 -53.13  -53.06 | -75.98  -55.03 -51.29 -5343
KDD 65 180092 -2.17 -2.18 -2.17 -2.18 -2.16 -2.16 -2.16 -2.17 -2.18 -2.13 -2.11 [-2.15]
KOSAREK 190 33375 -11.11 -11.14 -11.14 -11.15 -11.06 -11.07 -11.02  -11.08 | -10.98  -10.68 -10.52  |-10.77|
MSNBC 17 291326 -6.24 -6.24 -6.25 -6.32 -6.18 -6.18 -6.20 -6.28 [-6.11] -6.04 -6.04 -6.18
MSWEB 294 29441 -10.51 -10.55 -10.53 -10.59 -10.25 -10.26 -1025  -10.29 | -10.25 -9.71 -9.89  [-9.93|
NLTCS 16 16181 -6.02 -6.02 -6.03 -6.05 |-6.01] -6.01 -6.01 -6.01 -6.11 -6.06 -5.99 -6.05
PLANTS 69 17412 -13.94 -14.06 -14.00 -13.96 -14.07 -13.86 -14.02  -13.94 | -1297  -1298 |-13.02 -14.19
PUMSB-STAR 163 12262 -33.53 -34.23 -33.55 -32.73 -34.35 -34.24 -3453  -33.92 | -24.78 -24.12 -26.12 |-26.06|
EACHMOVIE 500 4524 -53.03 [-52.93| -52.94 -52.96 -53.03 -53.28 -52.88  -53.15 | -5248  -53.67 -58.01 -54.82
RETAIL 135 22041 -11.02 -11.00 -11.01 -11.03 [-10.93] -10.93 -10.94  -1093 | -11.04  -10.81 -10.72  -10.94

Table 3: Dataset characteristics and average held-out log-likelihood on the bechmark datasets. Boldface entries indicate best
results, underline means second best and an entry in | - | indicates third place. LSPN and LPSDD stand for LEARNSPN and
LEARNPSDD, respectively.

Dataset RPMaxSD RPMaxD RPSIDSD RPSIDD | RPMaxS RPMax RPSIDS RPSID | LSPN Strudel LPSDD EXPC
ACCIDENTS 22173 44145 22173 44145 5644 7473 5644 7473 | 32708 75363 8418 11921
AD 210023 416955 210023 416955 77894 102843 77894 102843 | 40901 13152 12238 22093
AUDIO 20743 41307 20743 41307 5094 6747 5094 6747 | 50130 55675 18208 29317
BBC 145283 288471 145283 288471 52994 69975 52994 69975 | 39389 29532 12335 14578
NETFLIX 20743 41307 20743 41307 5094 6747 5094 6747 | 36286 27173 10997 39868
BOOK 72743 144507 72743 144507 25094 33147 25094 33147 | 51493 54839 10978 13678
20-NEWSGRP 126043 250287 126043 250287 45594 60207 45594 60207 58749 15793 65881
REUTERS-52 123313 244869 123313 244869 44544 58821 44544 58821 | 155191 36343 10410 36440
WEBKB 116813 231969 116813 231969 42044 55521 42044 55521 | 223847 25406 11033 17122
DNA 31143 61947 31143 61947 9094 12027 9094 12027 12180 17507 3068 2616
JESTER 20743 41307 20743 41307 5094 6747 5094 6747 | 25076 27713 11322 20273
KDD 16063 32019 15565 17069 3294 4371 1908 4371 8755 6572 2915 13040
KOSAREK 32443 64527 32443 64527 9594 12687 9594 12687 19512 37583 7173 20938
MSNBC 8033 16053 8033 16053 944 1269 944 1269 | 11606 20795 5465 4887
MSWEB 45963 91359 45963 91359 14794 19551 14794 19551 10743 2347 6581 12135
NLTCS 7775 15539 7291 15539 894 1203 876 1203 1855 4373 1304 4401
PLANTS 16713 33309 16713 33309 3544 4701 3544 4701 36596 119194 11583 13960
PUMSB-STAR 28933 57561 28933 57561 8244 10905 8244 10905 | 26206 108876 8298 8866
EACHMOVIE 72743 144507 72743 144507 25094 33147 25094 33147 | 54184 123996 20648 21369
RETAIL 25293 50337 25293 50337 6844 9057 6844 9057 2158 3979 2989 6651

Table 4: Circuit size (in number of nodes) for each learning algorithm.

Dataset RPMaxSD RPMaxD RPSIDSD RPSIDD | RPMaxS RPMax RPSIDS RPSID | LSPN Strudel LPSDD
NLTCS 3s 2s 5s 3s 3s 2s 6s 3s 7m 3m 6m
PLANTS 8s 4s 12s 7s 7s 4s 12s 7s 50m 41m 26m
AUDIO 9s 4s 14s 8s 8s 4s 14s 8s 2h 33m 51m
JESTER Ss 3s 9s 5s 4s 3s 9s 5s 52m 24m 37m
NETFLIX 8s 4s 15s 8s 7Ts 4s 14s 8s 1h 14m 33m
ACCIDENTS 7s 4s 13s 7s 7s 4s 13s 7s 47m 20m 41m
BOOK 12s 6s 18s 10s 9s 6s 17s 10s >3h 8m 1.3h
DNA 1s 1s 3s 2s 2s 1s 2s Is >3h >3h >3h

Table 5: Run-times for each learning algorithm.



(e.g. marginal probability). In spite of such shortcomings,
we hope that the already interesting results obtained encour-
age further research on the topic.
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