
AFU: Actor-Free critic Updates in off-policy RL for
continuous control

Nicolas Perrin-Gilbert
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR,

F-75005 Paris, France
nicolas.perrin-gilbert@cnrs.fr

Abstract

This paper presents AFU, an off-policy deep RL algorithm addressing in a new
way the challenging “max-Q problem” in Q-learning for continuous action spaces,
with a solution based on regression and conditional gradient scaling. AFU has
an actor but its critic updates are entirely independent from it. As a consequence,
the actor can be chosen freely. In the initial version, AFU-alpha, we employ the
same stochastic actor as in Soft Actor-Critic (SAC), but we then study a simple
failure mode of SAC and show how AFU can be modified to make actor updates
less likely to become trapped in local optima, resulting in a second version of
the algorithm, AFU-beta. Experimental results demonstrate the sample efficiency
of both versions of AFU, marking it as the first model-free off-policy algorithm
competitive with state-of-the-art actor-critic methods while departing from the
actor-critic perspective.

1 Introduction

Q-learning [31] stands as a fundamental algorithm in the realm of model-free RL. As mentioned in
[32], “it provides agents with the capability of learning to act optimally in Markovian domains by
experiencing the consequences of actions, without requiring them to build maps of the domains”. It
is centered around the Bellman optimality equation and leverages dynamic programming to compute
or approximate a function known as the optimal Q-function Q∗. The integration of deep neural
networks to approximate Q-functions and the efficient computation of gradient-based updates has led
to the successful development of the Deep Q-Network (DQN) algorithm [25], catalyzing important
advancements in reinforcement learning. However, Q-learning requires computing the maximum of
the Q-function over the action space, which can be difficult if it is continuous and multi-dimensional.
To circumvent this “max-Q problem”, Q-learning can be combined with an actor-critic perspective,
which involves coupling policy gradient with Q-learning updates to estimate the action-value function.
Although this type of coupling primarily aims to evaluate the actor with a Q-learning critic, its
byproduct is that the actor is trained to generate actions that maximize the Q-function, thereby solving
the max-Q problem indirectly. This approach gave rise to DDPG [21], a seminal actor-critic algorithm
benefiting from the off-policy nature of Q-learning and consequently from a high sample-efficiency.
Yet, in DDPG and its derivatives like TD3 [7], the actor may become trapped in local optima [22].
Other approaches have attempted to face the max-Q problem head-on, like CAQL [28] or Implicit
Q-Learning (IQL, [18]), but the former does not scale well to high-dimensional action spaces, and
requires adaptations such as constraining the action range for complex problems, whereas in the latter,
the expectile loss becomes unbalanced when trying to produce estimates that are very close to the
true maxima, which has so far restricted the application of IQL and similar methods to offline RL.

Overall, in continous state and action spaces, the most successful modern off-policy deep reinforce-
ment learning algorithms are actor-critic algorithms that tend to fail in batch settings, when a large
part of the training data is uncorrelated to the distribution under the current policy [8]. In this sense,
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they are not truly off-policy. On the other end, truly off-policy algorithms adapted from Q-learning
[31], such as Implicit Q-Learning [18], are adapted to offline RL but do not perform well in online
RL. This motivates the quest for a truly off-policy algorithm that is well suited for online RL. In
this paper, we make a step in this direction by proposing a novel way to solve the max-Q problem,
using regression and conditional gradient scaling (see Section 4), resulting in a new algorithm that
adapts Q-learning to continuous action spaces. The algorithm still has an actor to select actions
and produce episodes, but unlike state-of-the-art model-free off-policy algorithms, most of which
are derived from TD3 or SAC [11], its critic updates are entirely independent from the actor. We
call the algorithm AFU for “Actor-Free Updates”. In its first version, AFU-alpha (see Sections 5
and 6), we use a stochastic actor and train it like the actor in SAC. We then study in Section 7 a
simple failure mode of SAC (and AFU-alpha), and show that the value function trained by regression
in AFU can help improve the actor update and make it less prone to local optima, resulting in a
new version of the algorithm, AFU-beta (see Section 8), which does not fail in the same way. Our
experiments show that AFU-alpha and AFU-beta are competitive in sample-efficiency with TD3 and
SAC without being more computationally expensive. To the best of our knowledge, AFU is the first
model-free off-policy RL algorithm that is competitive with the state-of-the-art and truly departs from
the actor-critic perspective.

2 Related Work

In domains where high sample efficiency is crucial, such as robotics, the off-policy nature of RL
algorithms becomes paramount. This allows training on samples obtained from different policies
or older versions of the current policy, facilitating faster learning and compatibility with various
exploration strategies. One way to obtain an off-policy algorithm is to adapt Q-learning, but as
previously mentioned, in continuous action spaces, direct approaches attempting to solve the max-
Q problem of Q-learning have faced limitations. Besides CAQL, which formulates the max-Q
problem as a mixed-integer program, and IQL, which treats Q-functions as state-dependent random
variables and relies on expectile regression to estimate their maxima, we can cite NAF [10] and ICNN
[2], which impose action-convex Q-functions making the max-Q problem tractable, QT-Opt [16],
which uses a stochastic optimizer to tackle non-convex max-Q problems, or approaches based on
a discretization of the action space, such as SMC-learning [20] and SDQN [23]. However, these
methods often struggle with complex, high-dimensional continuous control tasks, either due to a
lack of expressiveness or prohibitive computational costs. Close to IQL, X -QL [9] is an offline RL
algorithm relying on an objective directly estimating the optimal soft-value function in the maximum
entropy RL setting without needing to sample from a policy. A variant of X -QL [9] works in
the online setting, but in this case critic updates depend on actions sampled by the actor for the
Bellman backup. A unique off-policy algorithm, AWR [27], employs regression to train a value
function and a policy but falls short of the sample efficiency achieved by state-of-the-art off-policy
algorithms. Presently, the most successful approaches in model-free off-policy RL for continuous
control are actor-critic algorithms with interwoven actor and critic updates. The first off-policy
actor-critic algorithm was introduced in [6], and the most recent ones are typically based on TD3, an
improvement of DDPG, or on SAC, which relies on an entropy maximization framework that led
to various off-policy algorithms by creating connections between policy gradients and Q-learning
updates (see [26]). Among the algorithms improving upon TD3 and SAC, we can mention TQC [19],
a distributional approach to control the overestimation bias, REDQ [4] or AQE [33] which employ
critic ensembles, DroQ [14] which uses dropout and layer normalization in the critic networks,
and BAC [15] which merges Q-function updates from SAC and IQL. While these ideas could be
incorporated into our proposed algorithm AFU, we leave this for future work and focus on comparing
AFU to SAC and TD3. In contrast to methods building upon SAC and TD3, AFU is structurally
distinct because the critic updates remain unaffected by the actor. Notably, the critic is never trained
with out-of-distribution (OOD) actions, yet AFU achieves a level of sample efficiency competitive
with SAC and TD3. One might object that OOD actions can be beneficial in the online setting,
because they favor exploration. As pointed out in [9], OOD actions in Bellman backups introduce
over-optimism, but online learning allows agents to correct over-optimism by collecting additional
data. Yet, by achieving results comparable in sample-efficiency to TD3 and SAC without OOD
actions, we show that the benefit of Bellman backups with OOD actions in the online setting is in
fact not so obvious. If OOD actions can introduce an over-optimism that then needs to be corrected,
it may be preferable to design online learning methods that do not yield over-optimism in the first
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place, and use other strategies to favor exploration. Furthermore, unlike other direct adaptations of
Q-learning to continuous control, AFU does not fail on the most complex tasks. On the contrary, the
challenging MuJoCo task Humanoid is one of the environments in which AFU performs the best
comparatively to SAC and TD3.

3 Preliminaries

We consider a discounted infinite horizon Markov Decision Problem (MDP)< S,A, T,R, γ >, where
S is a state space,A a continuous action space, T a stochastic transition function,R : S×A→ R a re-
ward function, and 0 ≤ γ < 1 a discount factor. We denote by s′ (resp. st+1) a state obtained after per-
forming an action a (resp. at) in state s (resp. st). Transitions are tuples (s, a, r, s′) with r = R(s, a).
The optimal Q-function Q∗ is defined by: Q∗(s, a) = E [

∑∞
t=0 γ

tR(st, at) | s0 = s, a0 = a, π∗] ,
where the policy used from t = 1 onwards is π∗, which selects actions optimally in every state.
The optimal value function V ∗ verifies V ∗(s) = maxa∈A(Q

∗(s, a)). Let Vφ1 and Vφ2 denote two
function approximators for the value function, and Qψ a function approximator for the Q-function
(the critic). We use feed forward neural networks for all the function approximators. For the value
function, we also consider target networks (see [24]), i.e. parameter vectors φtarget

1 and φtarget
2 updated

with the rule φtarget
i ← τφi + (1− τ)φtarget

i for some target smoothing coefficient 0 < τ < 1. We
wish to train the critic on mini-batches B of transitions (s, a, r, s′) taken from an experience replay
buffer, with the following loss derived from the clipped Double Q-learning loss of TD3 [7]:

LQ(ψ) = Mean
(s,a,r,s′)∈B

[(
Qψ(s, a)− r − γ min

i∈{1,2}
Vφtarget

i
(s′)

)2
]

(1)

The use of two function approximators Vφ1
and Vφ2

aims at avoiding the overestimation bias that
can make Q-learning based approaches diverge (see [13]). In practice, transitions can be terminal,
which requires a simple modification of the loss ignored here for the sake of clarity (γ is set to 0
for terminal transitions). Provided that Vφ1(s) and Vφ2(s) return good estimates of the maximum of
Qψ(s, ·), a maximization usually referred to as the max-Q problem (see [28]), Equation (1) amounts
to the mean squared Bellman error that drives Qψ toward Q∗ [3].

4 A new way to solve the max-Q problem

The main remaining problem is: how to efficiently train Vφ1
and Vφ2

? For the learning to be
successful, Vφ1

and Vφ2
should both converge to precise solutions of the max-Q problem, and the

convergence should be fast, because if changes in Qψ are not tracked promptly, errors such as
overestimation of Q-values could lead to failures.

4.1 Method

We introduce two new function approximators Aξ1 and Aξ2 , for the optimal advantage function
defined byA∗(s, a) = Q∗(s, a)−V ∗(s). For any state-action pair (s, a),A∗(s, a) ≤ 0. Preliminarily,
we assume that outputs of Aξi can only be non-positive. Assuming that Qψ is fixed, training Vφi and
Aξi can be done by minimizing the following regression loss on mini-batches B:

lV,A(φi, ξi) = Mean
(s,a,_,_)∈B

[(
Vφi

(s) +Aξi(s, a)−Qψ(s, a)
)2

]
. (2)

This loss causes the values Vφi
(s) to become upper bounds of Qψ(s, ·), but not tight ones. A natural

next step would be to add a regularization term penalizing large outputs of Vφi
, which results in an

approach very similar to methods based on regression with asymmetric losses such as IQL, SQL, EQL
and X -QL [9]. The issue is that the resulting convergence is either slow (for very small regularization
coefficients) or significantly biased (for larger coefficients). For some problems, finding the right
coefficient is possible, but in general standard regularization does not lead to satisfactory results in
the context of online RL. We propose a different approach based on conditional gradient rescaling,
noticing that when Vφi(s) + Aξi(s, a) is greater than its target Qψ(s, a), by gradient descent both
Vφi

(s) and Aξi(s, a) would decrease by the same amount, and conversely when Vφi
(s) +Aξi(s, a)

is smaller than the target, values would both increase by the same amount. Without regularization, all
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upper bounds of Qψ(s, ·) are equally good values for Vφi(s), but we can asymmetrically modulate
the gradients to put a “downward pressure” on Vφi(s) and make it progressively decrease as Aξi(s, a)
progressively increases. To this end, we apply only a fraction of the gradient descent update on φi
when Vφi

(s) would increase. It can be done by defining, for 0 < ϱ < 1:

Υai (s) = (1− ϱIs,ai )Vφi(s) + ϱIs,ai Vφno_grad
i

(s),

where φno_grad
i is a copy of the parameters φi, and Is,ai =

{
1, if Vφi(s) +Aξi(s, a) < Qψ(s, a).
0, otherwise.

Replacing Vφi
(s) by Υai (s) in (2) yields a new version of the loss:

ΛV,A(φi, ξi) = Mean
(s,a,_,_)∈B

[(
Υai (s) +Aξi(s, a)−Qψ(s, a)

)2
]
. (3)

Remark: the proposed method based on conditional gradient rescaling is similar to an adaptive
regularization scheme in which the weight of the regularization is proportional to the absolute value
of the error, see Appendix B.

So far, we have assumed that Aξi(s, a), typically the output of a neural network, can only be non-
positive. But imposing a strict constraint on the sign of Aξi(s, a) could potentially lead to jittering
gradients, so we instead restrict its sign in a soft way (see Appendix C), resulting in this loss:

Λ′
V,A(φi, ξi) = Mean

(s,a,_,_)∈B

[
Z
(
Υai (s)−Qψ(s, a), Aξi(s, a)

)]
, (4)

with Z(x, y) =
{

(x+ y)2 if x ≥ 0.
x2 + y2 otherwise.

4.2 Experiments

(a) Vφ(s) is trained jointly with Aξ(s, a) by iterating
gradient descent steps on the loss Λ′

V,A(φ, ξ) described
by Equation (4). ϱ ∈ [0.2, 0.7] results in precise approx-
imations of s 7→ maxa∈A(Qψ(s, a)).

(b) Results of the training with the loss from IQL [18]
for 4 different values of the hyperparameter τ . Values
used in actual (offline) RL experiments are not greater
than 0.9.

Figure 1: Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for (s, a) ∈ [−1, 1]2. Our method and IQL both train
Vφ(s) to approximate s 7→ maxa∈A(Qtoy(s, a)), i.e. solve a max-Q problem. Trainings are done
with 3000 gradient descent steps on batches of 256 uniformly randomly drawn values of (s, a).

We empirically compare our method to 3 baselines on a toy problem. We define the function
Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for s ∈ [−1, 1] and a ∈ [−1, 1]. We use a single feedforward
neural network for V (Vφ) and a single feedforward neural network for A (Aξ). Both networks have
two hidden layers of size 256 and ReLU activations in the hidden layers. Our method trains both
Vφ and Aξ, while the 3 baselines IQL, SQL and EQL directly train Vφ. All 3 baselines have been
successfully applied to offline reinforcement learning. IQL is Implicit Q-Learning [18], and SQL and
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EQL are respectively Sparse Q-Learning and Exponential Q-Learning, both introduced in [34]. For a
fixed s, IQL treats Qtoy(s, a) as a random variable (the randomness being determined by the action)
and uses an expectile regression loss to train Vφ(s) to estimate a state conditional upper expectile of
this random variable. The expectile is determined by the parameter 0 < τ < 1, and the closer τ is
to 1, the closer Vφ(s) gets to maxa∈A(Qtoy(s, a)). However, if τ is very close to 1 (e.g. τ = 0.99),
the loss becomes unbalanced, with elements weighted hundreds of times more than others, which
results in instabilities in the context of RL, so in practice the values used in [18] are not greater than
0.9. Figure 1 compares our method to IQL. We observe that, with our method, although ϱ = 0.05
leads to overestimations, a wide range of parameter values (from ϱ = 0.2 to ϱ = 0.7) yield precise
results, while with IQL a precise result is only obtained with a hyperparameter value inapplicable to
RL (τ = 0.99). In Appendix D, the more complete Figure 6 shows a comparison to IQL, SQL and
EQL. The same observation can be made for all 3 baselines: results with hyperparameters that are
suitable to RL are significantly less precise than the ones obtained with our method.

5 Actor-free critic updates and actor training

First, we remove the dependency to Qψ in loss (4) by replacing Qψ(s, a) by the targets used to train
it in (1). We obtain the following loss (for i ∈ {1, 2}):

LV,A(φi, ξi) = Mean
(s,a,r,s′)∈B

[
Z
(
Υai (s)− r − γ min

i∈{1,2}
Vφtarget

i
(s′), Aξi(s, a)

)]
. (5)

With the losses LQ(ψ) (1) and LV,A(φi, ξi) (5), we can train Qψ, Vφi
and Aξi without needing an

actor. Compared to methods derived from DDPG (like TD3), solving directly the max-Q problem
has an advantage over first using an actor to solve the argmax-Q problem, i.e. to approximate
argmaxa∈A(Qψ(s, a)). The reason is that continuous changes in Qψ result in continuous changes of
its state conditioned maxima, while it can result in discontinuous changes of its state conditioned
argmax. So, in an off-policy setting, if the exploration policy discovers better results with very
different actions, the maximum of Qψ(s, a) can be tracked smoothly, while the tracking of the
argmax can be much more difficult, with the potential arising of deceptive value landscapes in which
the actor can get stuck (see [22]). This theoretical advantage, as well as the actor-free Qψ, Vφi and
Aξi updates are all important aspects of our approach. However, since we are interested in online
reinforcement learning, we still need an actor to select actions and produce episodes. To train this
actor, if we would use the same gradient ascent over a 7→ Qψ(s, a) as in DDPG, our global method
would be prone to the same failure modes as DDPG, and most of the advantages of the max-Q based
training of Vφi

would be lost. One thing we can notice is that, since we do not need the actor to
return argmaxa∈A(Qψ(s, a)), we also do not need the actor to be deterministic. To benefit from a
better exploration, we opt for a stochastic actor and follow the approach proposed in SAC [11] with
automatic tuning of the temperature parameter α. It relies on two losses Lπ(θ) and Ltemp(α), and on
a target entropy H̄ (see Appendix E):

Lπ(θ) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
α log(πθ(as|s))−Qψ(s, as)

]
. (6)

Ltemp(α) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
− α log(πθ(as|s))− αH̄

]
. (7)

6 AFU-alpha

We combine the losses LQ (1), LV,A (5), Lπ (6), and Ltemp (7) to devise a new off-policy reinforce-
ment learning algorithm. It has a critic (Qψ) and an actor (πθ), but the critic updates are derived from
our novel adaptation of Q-learning to continuous action spaces (obtained with our new method to
solve the max-Q problem), therefore they are independent from the actor. Hence the name AFU for
the algorithm, for “Actor-Free Updates”. We specifically call it AFU-alpha to contrast it with AFU-
beta introduced in Section 8. AFU-alpha, described in Algorithm 1, alternates between environments
steps that gather experience in a replay buffer and gradient steps that draw batches from the replay
buffer to compute loss gradients and update all parameters of the function approximators. In our
implementation, an iteration consists of a single environment step followed by a single gradient step.
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Algorithm 1 AFU-alpha and AFU-beta

Set 0 < ϱ < 1, 0 < τ < 1, H̄, and learning rates ηQ, ηV,A, ηπ , ηtemp.
Initialize empty replay buffer Rb, and params ψ, φ1 = φtarget

1 , φ2 = φtarget
2 , ξ1, ξ2, α, θ.

for each iteration do
for each environment step do

Sample action a ∼ πθ(·|s).
Perform environment step s, a→ s′, compute r = R(s, a), and insert (s, a, r, s′) in Rb.

end for
for each gradient step do

Draw batch of transitions B from Rb and compute loss gradients on that batch.
ψ ← ψ − ηQ∇ψLQ(ψ)
φi∈{1,2} ← φi − ηV,A∇φi

LV,A(φi, ξi)
ξi∈{1,2} ← ξi − ηV,A∇ξiLV,A(φi, ξi)
φtarget
i∈{1,2} ← τφi + (1− τ)φtarget

i

ζ ← ζ − ηπ∇ζLµ(ζ)
θ ← θ − ηπ∇θLπ(θ) θ ← θ − ηπ∇MODIF

θ Lπ(θ)
α← α− ηtemp∇αLtemp(α)

end for
end for

Experiments We test AFU-alpha on a classical benchmark of 7 MuJoCo [29] tasks from the
Gymnasium library [30]. We compare it to SAC and TD3, and to variants of AFU-alpha in which the
loss LV,A aiming at solving the max-Q problem is replaced by the corresponding loss taken from
IQL, SQL or EQL. The results are shown in Figure 2. For both SAC and AFU-alpha, we use the
same heuristic for the definition of H̄: we set it to −d, where d is the dimension of the action space.
Updates in AFU-alpha, SAC and TD3 use the same value of τ and same learning rates. For each
algorithm, for each value of the hyperparameter (ϱ for AFU-alpha, τ for IQL, α for SQL and EQL),
and for each of the 7 MuJoCo tasks, we perform 10 runs initialized with different random seeds, and
evaluate the performance of the policy every 10,000 steps on 10 rollouts. The first 10,000 steps of
each run use uniformly drawn random actions (and no gradient steps). Learning curves are smoothed
with a moving average window of size 10. The raw score of a run is the last average return, i.e. the
average return over the last 10 evaluations. For each task, we linearly rescale the scores based on two
reference points: (1) the maximum evaluation seen across all algorithms and all runs corresponds to a
score of 100, and (2) the mean episode return across all algorithms and runs corresponds to a score
of 0. Following the recommendations of [1], we compute with the rliable library the performance
profiles for each algorithm across the 7 tasks: Ant-v4, HalfCheetah-v4, Hopper-v4, Humanoid-v4,
InvertedDoublePendulum-v4, Reacher-v4 and Walker2d-v4. The length of the runs is 1 million steps
for InvertedDoublePendulum and Reacher, 3 million steps for Ant, Hopper, Humanoid and Walker2d,
and 5 million steps for HalfCheetah.

In Figure 2a, we see that our proposed method for the max-Q problem yields significantly better
results than the IQL, SQL and EQL baselines. The best results are obtained with ϱ ∈ {0.2, 0.3}.
Figure 2b shows that AFU-alpha is competitive with SAC and TD3.

7 A simple failure mode of SAC

With a deterministic actor trained by stochastic gradient ascent over the Q-function landscape, DDPG,
TD3 and similarly structured deterministic actor-critic algorithms can easily get stuck in local optima
(see [22]). With a stochastic actor and updates based on the Kullback-Leibler (KL) divergence
between output distributions and target distributions of the form exp

(
1
αQ(s, ·)

)
/z(s), algorithms

like SAC are less prone to deadlocks. For instance, in areas where the gradient of the Q-function is
close to zero, exploiting the KL loss results in an increase of the variance of the action distribution,
which eventually helps find larger gradients and escape from the flat region. Yet, the policy networks
used in practice mostly output unimodal action distributions1, and with this restriction even the KL

1This is starting to change, thanks to the influence of recent methods such as diffusion policies (see [5, 12]),
but such expressive and multimodal stochastic policies are still more cumbersome than unimodal policies.
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(a) AFU-alpha works best with ϱ ∈ {0.2, 0.3}. Using the
IQL, SQL and EQL baselines to solve the max-Q problem
results in a clear performance deterioration.
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Figure 2: Experimental evaluation of AFU-alpha on a benchmark of 7 MuJoCo tasks.

loss generates undesirable local optima. We illustrate this with a trivial environment which we call
SFM (for “SAC Failure Mode”). It consists of a single state s0, and unidimensional actions in [−1, 1].
The reward of an action is given by the function:

RSFM (s0, a) =

{
5− 100(a− 0.1)2, if a ≥ −0.6,
0, otherwise.

All transitions are terminal, so all episodes stop after one step. The optimal policy selects a = 0.1
and yields a return of 5. We train SAC on SMF with the same hyperparameters as in our other
experiments. We start by performing 1000 steps with random actions, which helps the critic QSAC
quickly converge toward the optimal Q-function, Q∗, which is simply equal to RSFM . Figure 3
shows QSAC after 20,000 steps. Although QSAC converges toward a very precise approximation of
Q∗, the actor policy converges toward a suboptimal solution, as shown in Figure 4a. If we just modify
SAC by locking the mode of the policy distribution at 0, we can see in Figure 4b that the actor loss
becomes much smaller, even after convergence of the actor entropy, which indicates that the policy of
the default SAC algorithm gets stuck in a local optimum. There are two phases in the failure mode:
at the beginning, when the entropy is relatively large, the asymmetry of RSFM makes the actor shift
toward −1. As seen in Figure 3, QSAC approximates the discontinuity in RSFM with a steep slope,
and when the policy distribution becomes concentrated on the left of this slope, it acts as a barrier
that traps the actor. Later in the training, when the entropy becomes smaller and converges to the
target entropy (−1), it would be much preferable for the mode of the policy to converge back toward
0.1, but the steep slope results in a deceptive gradient in the KL loss that prevents it from happening,
and SAC remains stuck in the local optimum.

8 AFU-beta

With the same actor loss as SAC, AFU-alpha fails similarly on SFM. We propose to improve the
actor loss to make it less likely to get stuck in local optima. The first idea is to train by regression
an estimate of where the mode of the actor should be. If the learning progresses well, Qψ(s, a) >
mini∈{1,2}

(
Vφi

(s)
)

should only be possibly true in the vicinity of the argmax (argmaxa∈A
(
Q(s, a)

)
),

so we use actions a with a Q-value greater than mini∈{1,2}
(
Vφi

(s)
)

as targets. To find such actions
we use both actions in the mini-batches and actions resampled with the actor on those mini-batches.

7



−1.0 −0.6 −0.2 0.1 0.2 0.6 1.0
a

−80

−60

−40

−20

0

20

5

R
S
F
M

(s
0
,a

)

−80

−60

−40

−20

0

20

Q
S
A
C

(s
0
,a

)

RSFM(s0, a)

QSAC(s0, a)
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terminal, RSFM coincides with the optimal Q-function. In blue: the critic (QSAC) obtained after a
training of 20,000 steps with SAC [11].
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Figure 4: Trainings of SAC and AFU-beta in the SFM environment. Plots show results averaged over
10 runs with different random seeds, and shaded areas range from the 25th to the 75th percentile.

Let us consider a mini-batch B of transitions (s, a, r, s′), and actions as resampled with the actor. We
denote byM(B) the set of state-action pairs (s, a•) such that a• = a or a• = as and Qψ(s, a•) >
mini∈{1,2}

(
Vφi

(s)
)
. We introduce a new deterministic function approximator µζ : S → A with

parameters ζ and train it with the following loss:

Lµ(ζ) = Mean
(s,a•)∈M(B)

[(
µζ(s)− a•

)2
]
. (8)

In our implementation, most of the parameters between ζ and θ are shared: we simply modify the
output dimension of πθ to make it also return µζ(s). It does not change the approach in any way, but
when computing the gradient of the loss (8), one must carefully ignore the influence of the parameters
ζ on resampled actions as.

Let us reconsider the actor loss from Equation (6). It balances two terms, the first one
(α log(πθ(as|s))) that maximizes the entropy, and the second one (−Qψ(s, as)) that encourages
πθ to output actions maximizing Qψ(s, ·). In the gradient ∇θLπ(θ), which can be expressed by
making explicit the relationship between sampled actions as and the input noise (see [11]), the second
term results in small modifications of θ that attempt to change the actions as in the direction of
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∇aQψ(s, a), where a is evaluated in as, and which we write by abuse of notation ∇asQψ(s, as).
If ∇asQψ(s, as) points away from the global optimum, it can contribute to the creation of a local
minimum in the actor loss. We want to edit∇asQψ(s, as) in order to avoid deceptive gradients. To
do so, we compute the dot product between∇asQψ(s, as) and µζ(s)− as, which is an estimate of a
direction toward argmaxa∈A

(
Q(s, a)

)
. If the dot product is positive or zero, the gradient does not

point away from µζ(s), so we can keep it unchanged. However, if∇asQψ(s, as) · (µζ(s)− as) < 0,
then we project ∇asQψ(s, as) onto (µζ(s) − as)⊥ to anneal the dot product. We do it only if we
estimate that as is not already in the vicinity of the argmax, i.e. if Qψ(s, as) < mini∈{1,2}

(
Vφi

(s)
)
.

We introduce the following operator:

Gs,as(v) =
{

proj(µζ(s)−as)⊥
(
v
)
, if v · (µζ(s)− as) < 0 and Qψ(s, as) < mini∈{1,2}

(
Vφi

(s)
)
.

v, otherwise.

When computing the gradient∇θLπ(θ), we replace the terms∇asQψ(s, as) (resulting from the chain
rule) by Gs,as

(
∇asQψ(s, as)

)
. It leads to a modified gradient which we denote by∇MODIF

θ Lπ(θ).

Figure 5: The gradient v at as (on the left) points away from µζ(s), which determines the direction
toward the vicinity of the argmax of Qψ(s, ·), so we modify v to get Gs,as

(
v
)

by projecting it on
the hyperplane orthogonal to µζ(s)− as. The gradient v′ at a′s (on the right) points in the direction
(half-space) of µζ(s), so we do not modify it, and Gs,a′s

(
v′
)
= v′.

This process is illustrated in Figure 5. It can be understood as an artificial modification of the
landscape of Qψ(s, ·) so that, outside the region defined by Qψ(s, ·) ≥ mini∈{1,2}

(
Vφi

(s)
)
, its

gradient never points away from µζ(s). µζ(s) has the advantage of being trained by regression, and
its training includes actions coming directly from the replay buffer, not only ones resampled by the
actor. It means that, in a very off-policy setting, if a new peak of Qψ(s, a) appears far from the
actions currently likely to be sampled, the update of µζ(s) can occur first and then guide the update
of πθ by removing all deceptive gradients that would need to be crossed to reach the new peak. More
generally, the use of µζ prevents the actor from being trapped in local optima, as long as the training
of the critic is doing well. Since training the critic is independent from the actor, we believe that
our proposed approach goes one step further in the development of sound foundations for a purely
off-policy reinforcement learning algorithm performing well in continuous action spaces.

We call AFU-beta the updated algorithm. It works like AFU-alpha, with the additional training of µζ
and the replacement of ∇θLπ(θ) by ∇MODIF

θ Lπ(θ), as described in Algorithm 1. Figure 4a shows
that, in the SFM environment, unlike SAC, AFU-beta quickly converges to the optimal solution.

We evaluate AFU-beta on the MuJoCo benchmark in the same way as AFU-alpha and show results in
Figure 7 (Appendix F). Again, AFU-beta is competitive with SAC and TD3. The differences between
AFU-beta and AFU-alpha are not very significant on the MuJoCo benchmark, possibly because
issues with local optima are rarely encountered in these environments. We leave for future work the
search for meaningful and complex environments in which AFU-beta has a notable advantage over
AFU-alpha.

9 Conclusion

We presented AFU, an off-policy RL algorithm with critic updates independent from the actor. At its
core is a novel way to solve the continuous action Q-function maximization (max-Q) problem using
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regression and conditional gradient scaling, which we believe could have applications outside the
field of reinforcement learning.

The first version of AFU (AFU-alpha) has a stochastic actor trained as in SAC [11]. We provide a
simple example of failure mode for SAC, and show how the value function trained in AFU can help
improve the actor loss and make it less prone to local optima, resulting in a second version of AFU
(AFU-beta) which does not exhibit the same failure mode as SAC.

Our experimental results on a classical benchmark show that both versions of AFU are competitive
with SAC and TD3, two state-of-the-art off-policy model-free RL algorithms. As far as we know,
AFU is the first off-policy RL algorithm that is competitive in sample-efficiency with the state-of-the-
art and truly departs from the actor-critic perspective. We believe that it could open up new avenues
for off-policy RL algorithms applied to continuous control problems.
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A Hyperparameters

The following hyperparameters were used in all our experiments.

We did not do any reward scaling.

AFU, SAC & TD3 Hyperparameters

optimizer Adam [17]
actor learning rate 3 · 10−4

critic learning rate 3 · 10−4

temperature learning rate (only AFU & SAC) 3 · 10−4

discount (γ) 0.99
replay buffer size 106

initial steps with random actions 104

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per mini-batch 256
nonlinearity ReLU
target smoothing coefficient (τ ) 0.01
target update interval 1
policy update interval (only TD3) 2
exploration noise standard deviation (only TD3) 0.2
noise clipping (only TD3) 0.5
target entropy (only AFU & SAC) −d (d = action space dimension)
initial temperature (only AFU & SAC) 1
max. actor log std (before tanh) (only AFU & SAC) 2
min. actor log std (before tanh) (only AFU & SAC) −10

B Conditional gradient rescaling seen as adaptive regularization

Let us denote by e(s, a) the error:
e(s, a) = Vφi

(s) +Aξi(s, a)−Qψ(s, a),
and let us assume that this error is negative (otherwise our method simply applies a standard gradient
descent step). We denote by e′(s, a) the following term:

e′(s, a) = (1− ϱ)Vφi(s) + ϱVφno_grad
i

(s) +Aξi(s, a)−Qψ(s, a),
which is equal to e(s, a) in value but has different gradients.

Our method applies a gradient descent step on e′(s, a)2 for both φi and ξi. For ξi, the gradient is the
same as for e(s, a)2 and e′(s, a)2. For φi, the gradients are:

∇φi
e(s, a)2 = 2e(s, a)∇φi

Vφi
(s),

∇φi
e′(s, a)2 = (1− ϱ)2e(s, a)∇φi

Vφi
(s).

Let us define eno_grad(s, a): a “frozen” version of e(s, a) leading to no gradients at all (i.e. relying on
copies of both φi and ξi). Our method is equivalent to the application of a gradient step (for both φi
and ξi) to the following term:

e(s, a)2 − 2ϱeno_gradVφi
(s) = e(s, a)2 + 2ϱ|eno_grad(s, a)|Vφi

(s),

where we see the squared error and a simple regularization term that penalizes large values of Vφi
(s)

(thus putting a “downward pressure” on Vφi
(s)). As a result, the proposed conditional gradient

rescaling method can be understood as an adaptive regularization scheme in which the regularization
weight is proportional to the absolute value of the error. It means that the convergence of Vφi(s)
toward maxa∈A(Qψ(s, a)) is not theoretically guaranteed: if the regression quickly converges to an
exact solution, the gradients vanish and Vφi(s) can remain strictly greater than the true maximum.
However, if a non negligible error remains, the adaptive regularization is effective and Vφi(s)
progressively decreases toward an approximation of the true maximum, which is what we observe in
practice.
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C Constraining the sign of Aξi(s, a) in a soft way

We let Aξi possibly return positive outputs, but we modify the regression loss to have only
non-positive targets for Aξi(s, a). In Equation (3), we call Qψ(s, a) − Υai (s) the target of

Aξi(s, a), as it is the value of Aξi(s, a) minimizing
(
Υai (s) + Aξi(s, a) − Qψ(s, a)

)2

. If
Qψ(s, a)−Υai (s) > 0, the best non-positive target for Aξi(s, a) is 0, in which case the target for

Υai (s)−Qψ(s, a) should also be 0. In this situation, we replace
(
Υai (s) +Aξi(s, a)−Qψ(s, a)

)2

by
(
Υai (s)−Qψ(s, a)

)2

+
(
Aξi(s, a)

)2

. To do so, we introduce Z:

Z(x, y) =

{
(x+ y)2, if x ≥ 0.
x2 + y2, otherwise.

The loss of Equation 3 is updated as follows:

Λ′
V,A(φi, ξi) = Mean

(s,a,_,_)∈B

[
Z
(
Υai (s)−Qψ(s, a), Aξi(s, a)

)]
.

D Experiments on a toy max-Q problem

We empirically compare our method to 3 baselines (IQL, SQL and EQL) on a toy problem. We define
the function Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for s ∈ [−1, 1] and a ∈ [−1, 1]. We use a single
feedforward neural network for V (Vφ) and a single feedforward neural network for A (Aξ). Both
networks have two hidden layers of size 256 and ReLU activations in the hidden layers. Our method
trains both Vφ and Aξ, while the 3 baselines IQL, SQL and EQL directly train Vφ. All 3 baselines
have been successfully applied to offline reinforcement learning.

SQL and EQL are derived in [34] from a general method called Implicit Value Regularization. It relies
on a behavior-regularized MDP with a term that penalizes policies diverging from the underlying
behavior policy of the training dataset. Various f-divergences can be used to measure the difference
between the policy and the behavior policy, resulting in distinct algorithms, including SQL and EQL
which are special cases. They have distinct losses for the training of Vφ(s), both depending on a
parameter α, and in both cases, for α→ 0, Vφ(s) is trained to approximate the maximum operator
over in-support values, i.e. maxa∈A(Qtoy(s, a)). However, similarly to IQL, very small values of α
result in unbalanced losses, so in practice the values leading to the best results on the benchmarks
tested in [34] are α = 0.1, α = 0.5, α = 1 and α = 3 for SQL, and α = 0.5, α = 2.0 and α = 5 for
EQL.

For IQL, SQL and EQL, since unbalanced losses are not an issue on this simple toy problem, we
include parameters leading to a better resolution of the max-Q problem, but that are not representative
of the parameters working well in actual offline RL experiments. We observe that, with our method,
although ϱ = 0.05 leads to overestimations, for a wide range of parameter values (from ϱ = 0.2 to
ϱ = 0.7), we obtain more accurate results than with all the other baselines, even when considering
parameter values that are inapplicable to offline RL. Besides, with our proposed approach, the
different values of ϱ that perform well do not result in unbalanced losses.
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(a) Vφ(s) is trained jointly with Aξ(s, a) by iterating
gradient descent steps on the loss Λ′

V,A(φ, ξ) described
by Equation (4). ϱ ∈ [0.2, 0.7] results in precise approx-
imations of s 7→ maxa∈A(Qψ(s, a)).

(b) Results of the training with the loss from IQL [18]
for 4 different values of the hyperparameter τ . Values
used in actual (offline) RL experiments are not greater
than 0.9.

(c) Results of the training with the loss from SQL [34]
for 4 different values of the hyperparameter α. Values
used in actual (offline) RL experiments are not smaller
than 0.1.

(d) Results of the training with the loss from EQL [34]
for 4 different values of the hyperparameter α. Values
used in actual (offline) RL experiments are not smaller
than 0.5.

Figure 6: Qtoy(s, a) = sin(4s) + 0.7 cos(4a) for s ∈ [−1, 1] and a ∈ [−1, 1]. We com-
pare our method to IQL, SQL and EQL which all train Vφ(s) to approximate the function
s 7→ maxa∈A(Qtoy(s, a)), i.e. solve the max-Q problem. All trainings are done with 3000 gradient
descent steps. At each step, a loss is computed on a batch composed of 256 uniformly randomly
drawn values of s and a.

E SAC-like actor training

Let πθ denote the actor. We follow a common implementation in which its backbone is a feedforward
neural network returning action distributions as state-dependent Gaussians with diagonal covariance
matrices. Since actions are usually constrained between −1 and 1, we apply a tanh transformation to
its outputs. Given a state s, the resulting probability density function is πθ(·|s). The actor πθ can
transform input noise vectors sampled from a fixed distribution into action samples. Again, we train
πθ on mini-batches of transitions. We use the actor to resample an action as for each state s of a
mini-batch B. The actor loss Lπ(θ) is based on the average Kullback-Leibler divergence between the

15



actor’s output distributions and targeted Boltzmann policy distributions. It is defined as follows:

Lπ(θ) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
α log(πθ(as|s))−Qψ(s, as)

]
,

where α is a temperature parameter. As in SAC, we adjust this temperature via gradient descent on a
loss aiming at keeping the average entropy of action distributions close to a target entropy H̄:

Ltemp(α) = Mean
(s,_,_,_)∈B
as∼πθ(·|s)

[
− α log(πθ(as|s))− αH̄

]
.

F Experimental results for AFU-beta
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Figure 7: Experimental evaluation of AFU-beta for ϱ = 0.3 on 7 MuJoCo tasks. We show results with
other values of ϱ (among {0.1, 0.2, 0.4, 0.5}) for tasks in which one of the other values performed
significantly better than 0.3. Results are averaged over 10 runs with different random seeds, and the
shaded areas range from the 25th to the 75th percentile. The performance profile plot at the bottom
right summarizes results and shows that AFU-beta is competitive with SAC and TD3.
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G Learning curves

The plots below show learning curves for AFU-alpha and AFU-beta for all the values of the hyperpa-
rameter ϱ (in {0.1, 0.2, 0.3, 0.4, 0.5}).
All learning curves are averaged over 10 runs with different random seeds, and the shaded areas range
from the 25th to the 75th percentile. For each run, evaluations are done over 10 rollouts every 10,000
steps, and each run is smoothed with a moving average window of size 10. The first 10,000 steps are
always done without gradient steps and with uniformly randomly drawn actions.
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Figure 8: Left: AFU-alpha on Ant-v4. Right: AFU-beta on Ant-v4.

0 1 2 3 4 5
million steps

0

2500

5000

7500

10000

12500

15000

17500

av
er

ag
e

re
tu

rn

HalfCheetah-v4

AFU-alpha (% = 0.1)

AFU-alpha (% = 0.2)

AFU-alpha (% = 0.3)

AFU-alpha (% = 0.4)

AFU-alpha (% = 0.5)

SAC

TD3

0 1 2 3 4 5
million steps

0

2500

5000

7500

10000

12500

15000

17500

av
er

ag
e

re
tu

rn

HalfCheetah-v4

AFU-beta (% = 0.1)

AFU-beta (% = 0.2)

AFU-beta (% = 0.3)

AFU-beta (% = 0.4)

AFU-beta (% = 0.5)

SAC

TD3

Figure 9: Left: AFU-alpha on HalfCheetah-v4. Right: AFU-beta on HalfCheetah-v4.
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Figure 10: Left: AFU-alpha on Hopper-v4. Right: AFU-beta on Hopper-v4.
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Figure 11: Left: AFU-alpha on Humanoid-v4. Right: AFU-beta on Humanoid-v4.
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Figure 12: Left: AFU-alpha on InvertedDoublePendulum-v4. Right: AFU-beta on
InvertedDoublePendulum-v4.
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Figure 13: Left: AFU-alpha on Reacher-v4. Right: AFU-beta on Reacher-v4.
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Figure 14: Left: AFU-alpha on Walker2d-v4. Right: AFU-beta on Walker2d-v4.
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