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ABSTRACT

Outlier detection (OD) is a crucial machine learning task with key applications
in various sectors such as security, finance, and healthcare. Preserving data pri-
vacy has been increasingly important for OD due to the sensitivity of the data
involved. While federated learning (FL) offers the potential to protect data pri-
vacy, it is not yet available for most classical OD algorithms, such as those based
on distance and density estimation. To address this, we introduce FEDOD, the first
FL-based system designed for general OD algorithms. FEDOD effectively over-
comes the privacy and efficiency challenges inherent in classical OD algorithms
by automatically decomposing these algorithms into a set of basic operators and
approximating their behaviors using neural networks. Given the inherent compat-
ibility of neural networks with FL, the approximated OD algorithms also become
capable of privacy-preserving learning without data exchange. With this design,
FEDOD supports over 20 popular classical OD algorithms and is readily extend-
able to other fields like classification and clustering. Evaluation on more than
30 benchmark and synthetic datasets demonstrates FEDOD’s accuracy and effi-
cacy over state-of-the-art baselines—compared to existing OD systems, FEDOD
achieves up to 11× reduction in errors and 10× improvement in performance.

1 INTRODUCTION

Outlier detection (OD) is an important class of machine learning (ML) algorithms that identify
observations or data points deviating from the expected behavior or patterns in a dataset Zhao et al.
(2019), with numerous applications in security Khan et al. (2007), finance Lee et al. (2020), and
healthcare Gupta et al. (2021). Among these applications, one key consideration is preserving data
privacy, especially in scenarios where sensitive data is involved. For instance, OD has been used to
identify rare diseases (as outliers) in patients, while cross-hospital data sharing is often prohibited
due to regulatory reasons Pfitzner et al. (2021). This constraint restricts the analysis of an OD
algorithm to data available in a single hospital, thereby constraining its performance.

To preserve user privacy while maintaining high predictive performance, federated learning
(FL) Konečnỳ et al. (2016) enables a new ML training paradigm, where an ML model is trained
locally on a decentralized network of agents (e.g., hospitals in our motivating example). Instead of
directly sending training data to a centralized server, each agent trains a model locally using private
training samples. Once the local training process is completed, agents synchronize local gradients
to update the model for future training. The process is repeated until achieving the desired accuracy.

FL has been widely deployed in distributed DNN training Konečnỳ et al. (2016) and ensemble
learning Smith et al. (2017). For instance, neural networks (NN; also known as “deep” methods)
can conveniently learn in a distributed manner using batches, necessitating only model parameter
updates without the need for data exchange Goodfellow et al. (2016). This contrasts with non-neural-
network-based (also known as “classical”) ML algorithms such as k nearest neighbors (kNN) and
clustering Wu et al. (2008), which are thus not directly compatible with FL.

While neural-network-based OD algorithms can directly leverage FL paradigms by performing neu-
ral network computation using local samples Preuveneers et al. (2018); Li et al. (2020a); Gupta et al.
(2021); Nguyen et al. (2019); Pei et al. (2022); Astillo et al. (2022), most classical OD algorithms,
such as kNN OD Angiulli & Pizzuti (2002) and local outlier factor (LOF) Breunig et al. (2000),
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Figure 1: Demo. of dependency challenges
in classical OD. Top: kNN OD needs to
compute pairwise distances (by cdist)
of a sample to all other samples (on both
Agent 1 and Agent 2) and then find the
top k neighbors (by topk). Note that
cross-agent distance calculation is infeasi-
ble with privacy constraints (denoted in red
arrows). Bottom: FEDOD uses NN to ap-
proximate cdist operator to predict pair-
wise distances, where the NN is updated
w.r.t. the local data on Agents 1, 2, and so
on. No cross-agent dist. calc. is needed.

involve global inter-sample data dependencies (i.e., computing the nearest neighbors of a sample re-
quires accessing all other samples), and face unique challenges when training in a federated fashion.

Challenge 1: data dependency. Most classical OD algorithms have both (1) inter-sample data
dependency, where the estimation of a sample depends on other samples , and (2) inter-feature data
dependency1, where all features contribute to the estimation of outlier scores Zhao et al. (2023). For
example, kNN computes the k-th nearest neighbor of a sample as its outlier score, as shown in Fig.
1, where a larger distance indicates that the sample is far from others and thus likely to be an outlier.
We need all other samples across agents to calculate and compare a sample’s k-th nearest neighbor.
This communication is not feasible under the FL assumptions where data reside on different agents,
and cross-agent data sharing is strictly prohibited. In this example, the samples on Agent 1 do not
have access to the samples on Agent 2 since the cross-agent distance calculation is infeasible; this
prevents existing FL systems from supporting kNN for OD.

Challenge 2: computational cost. Classical OD algorithms involve high training and inference
cost, which introduces additional difficulty under the FL setting due to the limited computational
power of each agent—which is often an edge device. Given n training samples and nt inference
samples, Appx. Table A1 shows the computational complexity for many classical OD algorithms,
most of which involves a complexity higher than O(n · nt). High computational complexity for
inference impedes the use of classical OD algorithms in most time-critical FL applications, such as
real-time credit card fraud detection Boniol et al. (2021); Jiang et al. (2022; 2023).

Our approach. To address these challenges, this paper presents federated learning based outlier
detection (FEDOD)2 that can support diverse classical OD algorithms for privacy-preserving and
scalable learning. Fig. 2 shows an overview of FEDOD’s approach. First, we analyze a diverse
group of classical OD algorithms, including distance-, density-, and tree-based algorithms, and de-
compose them into a small set of basic OD operators (see Fig. 2 (left) and §3). For each OD
operator, we design a neural network approximation to iteratively learn the behavior of the OD op-
erator from local data without inter-sample data dependency (see Fig. 2 (middle) and §4.1). By
combining these neural networks, FEDOD approximates classical OD algorithms and leverages ex-
isting FL paradigms for privacy-preserving learning (see Fig. 2 (right) and §4.2). An example of our
approach is provided in Fig. 1 bottom, where we show that FEDOD can support classical kNN OD
by approximating distance calculation using a neural network to predict pair-wise distances other
than calculating them. Note that the neural network here is trained only with regard to the local
samples, without the need to access cross-agent samples. Our key contributions are:

• The first FL system for diverse OD algorithms. FEDOD supports more than 20 popular classical
OD algorithms for privacy-preserving learning and can be easily extended to more.

• Model decomposition and neural approximation. FEDOD decomposes OD algorithms into ba-
sic operators and approximates them with neural networks with specialized local updating strate-
gies, including k-nearest neighbors and clustering.

• Effectiveness and scalability. Extensive experiments on more than 30 datasets show that FEDOD
outperforms the baseline with up to 11× error reduction and 10× speed up.

1In this work, we focus on horizontal FL where all agents have the same set of features and only introduce
inter-feature dependency for completeness.

2Code is available at anonymous Google Drive: https://tinyurl.com/fedod2023
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Figure 2: FEDOD overview (§2): decomposes an OD method into shared basic operators (left; §3),
which are approximated by neural nets (middle; §4.1) for privacy-preserving training (right; §4.2).

2 FEDERATED OUTLIER DETECTION

2.1 PROBLEM DEFINITION

A key object of federated outlier detection is to improve the predictive performance of OD algo-
rithms by leveraging samples across agents while preserving data privacy of each agent. Consider a
horizontal FL system that supports m OD models M = {M1, ...,Mm}. It can train an OD model
M ∈ M using a distributed dataset located on K agents, where each agent k ∈ 1, . . . ,K possesses
a private dataset Xk ∈ Rnk×d without ground truth labels. Collectively, X is the aggregated dataset
across all agents, where each row corresponds to an individual training sample and each column
represents a feature of the sample, with a total of d unified features across all agents. The FL sys-
tem outputs the outlier scores, denoted as O := M(X) ∈ Rn, which provides anomaly scores for
samples across all local agents and infer on the test samples Otest = M(Xtest). The key difference
between FL-based OD and general OD lies in designing privacy-preserving techniques that allow
agents to train the OD model M collectively across all agents without data sharing, where general
OD algorithms require access to all samples.

2.2 FEDOD’S OVERVIEW

To address the aforementioned challenges in data privacy and inference efficiency, a key idea behind
FEDOD is to decompose a diversity of classical OD algorithms into a set of basic OD operators and
use a neural network to approximate each operator. By doing so, existing FL frameworks designed
for neural networks become available for classical OD algorithms through neural approximation.
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Figure 3: Example of building complex OD al-
gorithms ABOD and LOF by shared basic opera-
tors, e.g., kNN. Each operator is approximated by
a neural network (on two sides), which is trained
sequentially as shown in the computational graph.

Figure 2 provides an overview of FEDOD.
Firstly, an OD algorithm is decomposed into
low-level OD operators (§3), each of which is
then converted into a neural network (§4.1). Fi-
nally, these neural networks are trained by FE-
DOD in a federated fashion, using specialized
local update strategies (§4.2). Thus, combining
these neural approximations by concatenating
their network architectures emulates the out-
puts of the OD algorithm.

In addition to the kNN example in Fig. 1,
Fig. 3 shows two additional examples for train-
ing ABOD and LOF in FEDOD. Specific, each
complex OD algorithm is decomposed as a se-
quence of basic operators (e.g., ABOD is de-
composed into kNN followed by cosine similarity), where each operator is approximated
by a neural network in FEDOD. As illustrated in the figure, we use a combination of neural net-
works to approximate an OD algorithm; the output of one neural network becomes the input of the
subsequent neural network—thus, these networks are trained together in an end-to-end fashion.

3 MODEL DECOMPOSITION

Overview. Real-world applications often require diverse OD algorithms based on the data char-
acteristics Zhao et al. (2021; 2022); Ma et al. (2023). To support a wide range of OD algorithms
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Figure 4: With model decomposition, more than 20 OD algorithms are decomposed into 4 convex
operators (§3.1), 6 non-convex operators (§3.2), and 7 simple operators (§3.3). This decomposition
reduces the implementation and optimization effort, and makes adding new OD operators easy.

under FL, we adapt and extend existing work on the OD decomposition model Zhao et al. (2023).
The key idea is to decompose complex OD algorithms into low-level recurring operators, which are
shared across diverse OD algorithms (see left of Fig. 2). For instance, the OD algorithms ABOD and
LOF share a basic operator kNN to identify the k-th nearest neighbors (see Fig. 3). By identifying
these recurring operators for FEDOD, we gain two benefits: (1) since each neural approximator is
compatible with FL, combining them can yield FL-enabled OD algorithms, and (2) it reduces design
and optimization effort—each basic operator’s neural approximator only needs to be designed once.

Operator categories. After reviewing a diverse set of OD algorithms, we categorize basic OD
operators into two groups: convex operators (§3.1) and non-convex operators (§3.2), depending on
whether the underlying operator has a convex optimization objective. For an operator with a convex
objective, its neural approximation (§4) uses a gradient-based optimization to achieve better conver-
gence properties (e.g., fewer training epochs). In contrast, non-convex OD operators require more
specialized design and pose additional challenges for convergence. Additionally, certain simple op-
erators do not require any approximation (§3.3). Figure 4 illustrates the OD algorithms supported
in the current implementation of FEDOD and the corresponding basic operators by category. Note
that operators are independent, and FEDOD can be easily extended to support new OD operators.

3.1 CONVEX OD OPERATORS

An operator convex if, for every pair of points within its domain, the operator applied to the weighted
average of the points is less than or equal to the weighted average of the operator applied to the
points Boyd & Vandenberghe (2004). Convex OD operators offer many desirable properties. An
important one is that any local minimum of a convex function is also a global minimum, which
greatly simplifies the search for a global optimal. Thus, using a gradient-based optimization in a
neural network can generally approximate convex operators well via gradient-based optimizations
Snyman et al. (2005) and takes less training time. Fig. 4 and Appx. B.1 left discuss a few commonly
used convex operators by classical OD algorithms with additional ones including support vector
machine (SVM) Tibshirani (1996) and Lasso Cortes & Vapnik (1995).

3.2 NON-CONVEX OD OPERATORS

A non-convex operator is one that does not satisfy the convex condition. Handling non-convex op-
erators in optimization is challenging because they often have multiple local minima, and standard
gradient-based optimization methods may get stuck in these local minima rather than finding the
global minimum, leading to more complexity of neural approximation with gradient-based opti-
mization Boyd & Vandenberghe (2004). Fig. 4 (middle) and Appx. B.2 shows some key operators
supported in FEDOD in addition to cosine similarity calculation, and density estimation.

3.3 SIMPLE OD OPERATORS

Not all operators necessitate a (neural) approximation. Certain operators do not involve computation
and/or optimization, and can thus be directly executed federated. This category includes most sorting
and ranking operators. For instance, the kNN operator comprises two primary steps: (1) computing
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the pairwise distances among samples, and (2) identifying the top k distances per sample. The first
step involves computation and should be approximated by a neural network, while the second step,
which is about finding the top k values, can be directly applied to the output of the first step, without
the need for any approximation. Figure 4 (right) summarizes the simple operators in FEDOD.

4 OD APPROXIMATION

4.1 NEURAL NETWORK CONVERTER

As existing FL frameworks are designed for neural networks Li et al. (2020a), we propose converting
basic OD operators (see §3) each into a neural network. This conversion is theoretically feasible
since a neural network is a “universal approximator” Hornik et al. (1989). The choice of neural
network approximations, such as architectures, can be flexible, provided that the model capacity is
sufficient — the neural networks are adequately complex for approximation (see §5.4.1). Under this
criterion, fully-connected multi-layer perceptrons (MLP) Rumelhart et al. (1986) serve as the default
choice in FEDOD. We have also explored more recent architectures like Transformers Vaswani et al.
(2017) (see §5.4.2). FEDOD’s neural network converter (NNC) translates basic OD operators in Fig.
4 into neural networks, as depicted in the middle of Fig. 2. Notably, this is the first proposal for
neural approximations of general classical OD algorithms such as kNN and clustering. With the OD
model decomposition and the NNC, a variety of classical OD algorithms can be decomposed into
and approximated by neural networks, which can then be trained in existing FL systems.

4.2 TRAINING METHODOLOGY

Local ground truth. Even after OD operators are converted to neural networks, training them on
each local agent without data sharing requires special considerations. As depicted on the right of
Fig. 2, FEDOD’s goal is to train a central model f(·), i.e., the neural network generated from NNC
as an approximation of the underlying OD operator.

To update f(·), we can average local gradients using the data on each agent, i.e., ∇f(X1), ∇f(X2),
a technique known as Federated Averaging (FedAvg)3 in Eq. (2) McMahan et al. (2017). However,
local gradients are not directly computable due to global data dependencies (i.e., the global ground
truth of k-th nearest neighbors is unavailable).

In FEDOD, we introduce a set of novel local-update strategies for each neural OD operator. The
key is to design a loss function that allows each neural OD operator to update the model with respect
to the local data only, to approximate the global ground truth.

Clustering example. The goal of k-means clustering is to partition n samples across all agents into
clusters defined by sample similarity. As described in §3.2, the sample similarity can be measured
by pairwise Euclidean distances —samples in the same cluster should be close. For an n × d input
matrix, all n samples are needed for the Euclidean distance calculation (i.e., cdist). However,
in the FL setting, the i-th agent can only access private data Xi ∈ Rnk×d and the local distance
of Di = cdist(Xi,Xi). We cannot access the global sample similarity across all agents by only
looking at a partition of data on a local agent.

Suppose we use a neural network to approximate k-Means without considering privacy preservation,
the model may minimize the discrepancy between the predicted cluster assignment and the ground
truth cluster assignment (unavailable in our settings). Differently, FEDOD performs local updates
without accessing the global ground truth of cluster assignments, as shown in Algorithm 1. The key
is to design a loss function solely based on the local data.

First, we initialize the central model f(·) with parameters w and pre-compute the local pairwise
distances for all K agents, i.e., Dk = cdist(Xk,Xk) (lines 1-4). Second, for the k-th agent, let
ĉ = fk(Xk) denote the predicted cluster labels for the local data by the current model. Given
there are nk samples on the k-th agent, our loss defined in Eq. 1 aims to minimize the intra-cluster
distance and maximize the inter-cluster distance for each local sample given the predicted cluster
labels by f(·) (lines 5-10). Note this only uses the data on the k-th agent.

3Other FL frameworks can also be applied; we use FedAvg as an example.
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Algorithm 1 Neural approximation of k-Means clustering

Input: Central neural model f(·) with weights w and objective function L, K local agents where
the k-th agent with private data Xk ∈ Rnk×d in the same d-dimension feature space; local
neural network models {f1, . . . , fK}; training budget T

Output: The trained neural model f(·) across local agents

1: Initialize the central model f(·)
2: for each local agent k = 1 to K do
3: Compute pairwise local distance matrix Dk = cdist(Xk,Xk)
4: end for

5: for t = 1 to T do
6: for each local agent k = 1 to K do
7: Get current central model weights wt and initialize the local model fk to it
8: Predict the cluster labels on the local data ĉ = fk(Xk)

9: Compute local loss Lk = (ĉ,Dk) and gradient ∇w
(t)
k to minimize the intra-cluster and

maximize the inter-cluster distance given the predicted cluster labels by Eq. (1)
10: end for
11: Update the central model w(t+1) by FedAvg in Eq. (2)
12: end for

L(ĉ,Dk)) =

nk∑
i=1

∑
j ̸=i

(−
∑
ĉi=ĉj

Di,j

min. intra dist.

+
∑
ĉi ̸=ĉj

Di,j

max. inter dist.

) (1)

At t-th iteration, FEDOD iterates over all the agents to aggregate the local gradients w(t)
1 , . . . ,w

(t)
K

(line 11).; one straightforward way is to use FedAvg as shown in Eq. (2).

w(t+1) := w(t) +
1

n

K∑
k=1

nk · ∇w
(t)
k (2)

In this way, we could update the central model without accessing any global samples as well as
ground truth labels. We design a local loss function For each supported operator in FEDOD.

4.3 ADVANTAGES OF FEDOD

Anytime inference. An anytime algorithm can return a valid solution even if it is not fully com-
plete Cutkosky (2019), which is particularly useful in real-time OD applications. These algorithms
typically present a trade-off between computational resources, like time or memory, and the quality
of the solution; for example, longer training time results in better accuracy. Neural networks are
naturally anytime algorithms due to their iterative training nature—we can make predictions at any
time during the training process. In contrast, most classical OD algorithms (see Table A1) cannot
make predictions until the training is fully complete, limiting their applicability in time-critical ap-
plications. However, FEDOD’s neural approximation techniques convert classical OD algorithms to
anytime algorithms, thus enhancing their flexibility.

Fast inference and optimization techniques. Existing OD algorithms often have high inference
cost due to distance calculation and/or density estimation. By employing neural approximation in
FEDOD, the inference time can be largely reduced to a single forward pass with the data. Thus,
for large datasets with high feature dimensions, FEDOD offers shorter inference time. Additionally,
any neural network optimization techniques, such as parallelization Schneider et al. (2021); Wang
et al. (2023), quantization Zhao et al. (2023), also apply to shallow OD algorithms via FEDOD. See
§5.3 for a detailed comparison of inference times.

Generality and extensibility. Thanks to the generality of basic operators in FEDOD, it can be easily
extended to support ML algorithms beyond OD, such like classification. Moreover, integrating
new operators into FEDOD is straightforward, requiring just two simple steps. First, we need to
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understand the general properties of the operator to be added, including its convexity, inputs, and
outputs. Second, we need to design a local loss function that can be computed solely based on the
local data, as described in §4.2. Our experience of developing FEDOD shows that it generally takes
a few hours to add a new OD operator and its neural approximation.

5 EXPERIMENTS

Our experiments aim to answer the following questions: (i) How does the detection performance of
FEDOD compare to baselines, both with and without privacy preservation? (§5.2) (ii) How efficient
and scalable is FEDOD when handling larger datasets? (§5.3) (iii) How do the designs in FEDOD
impact its effectiveness? (§5.4)

5.1 EXPERIMENT SETUP

Datasets. Appx Table C2 displays over 21 real-world OD datasets used in this study, primarily
sourced from two popular repositories, i.e., DAMI Campos et al. (2016) and ODDS Rayana (2016).
These datasets have been widely employed in OD research Tran et al. (2020); Schmidl et al. (2022);
Han et al. (2022); Zhao et al. (2023).

OD algorithms and operators. We include five diverse OD algorithms to show the effectiveness of
FEDOD: (1) Distance-based kNN for OD Ramaswamy et al. (2000); (2) Density-based local outlier
factor (LOF) Breunig et al. (2000); (3) Linear PCA for OD Shyu et al. (2003); (4) Clustering-based
OD method (CBLOF) He et al. (2003); and (5) Tree-based isolation forest (iForest) Liu et al. (2008).

Implementation and environment. FEDOD is implemented on top of PyTorch Paszke et al. (2019),
where most algorithms only depend on 2-3 operators with low complexity. All the experiments are
performed on an Amazon EC2 p3.2xlarge cluster with an Intel Xeon CPU, 61GB DRAM, and an
NVIDIA Tesla V100 GPU with 16GB RAM.

Baselines. As the first work for privacy-preserving OD with shallow methods, FEDOD is compared
with (1) ground truth where the access to all samples is assumed (no privacy preservation at all); we
use PyOD Zhao et al. (2019) to get the results and (2) direct results where we train K individual
models (one per local dataset) and concatenate the results (data privacy is preserved).

Evaluation metrics. Enabled by model approximation, FEDOD’s goal is to achieve similar per-
formance as the ground truth baseline while preserving privacy. With that in mind, we measure the
performance difference4 to the ground truth—the smaller the difference, the better the method.

5.2 END-TO-END COMPARISONS

Appx. Table C3 illustrates that FEDOD achieves performance close to the ground truth and sur-
passes the direct baseline across all five OD algorithms with differing characteristics. Specifically,
FEDOD displays less than 5% ROC-AUC difference from the ground truth across all five OD al-
gorithms (1.79%, 3.93%, 2.05%, 1.96%, and 4.70% for kNN, LOF, PCA, CBLOF, and iForest,
respectively), whereas the direct method shows up to a 19% performance difference. It is worth
noting that FEDOD is 11 times better than direct on kNN on average (1.79% vs. 18.92%).

Convex operators seem to exhibit smaller approximation differences. As discussed in §3.1, PCA
(Table C3c) presents relatively minor performance differences (2.05%) and variations (2.44%). This
can be attributed to the favorable convergence properties of convex operators, whereas non-convex
operators like LOF (Table C3b, 3.93% ± 4.17%) and iForest (Table C3e, 4.70%± 4.72%) may
present much larger differences and variations (which are less desirable).

5.3 SCALABLITY OF FEDOD

We evaluate the scalability of FEDOD across datasets of varying sizes (ranging from 5,000 to
320,000 samples with 1,000 features), thereby simulating scenarios of OD on high-dimensional,
large datasets. Fig. 5 illustrates the inference time of FEDOD (in black) and direct baseline (in red).

4We use the area under the Receiver Operating Characteristic curve (ROC) as the performance; this can be
substituted with any other measure of interest.
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Figure 5: Scalability plot of algorithms in FEDOD, where it scales well with increasing samples.

FEDOD exhibits superior efficiency compared to direct across all datasets, particularly larger ones.
For example, FEDOD achieves a 10× speed-up over the direct method on the CBLOF and iForest
datasets. One of the primary reasons for this improvement is that the direct method needs to invoke
multiple models for inference, while FEDOD relies solely on a single central model. Moreover,
FEDOD only requires a single pass of the neural network, which is significantly more economical
than the direct method, which relies on distance and/or density estimation.

FEDOD demonstrates robust scalability with larger datasets. As shown in Fig. 5, the inference time
scales linearly about the number of inference samples. This is attributed to the fact that the network
parameters are fixed—the inference time is determined solely by the number of inference samples.

5.4 ABLATION STUDIES AND ADDITIONAL ANALYSIS

5.4.1 EFFECT OF MODEL CAPACITY

We assess model capacity by modifying the number of hidden neurons (x-axis) and the number of
layers (y-axis) in the neural approximation of kNN, and compare their performance variance with
the ground truth in Fig. 6. The results indicate that FEDOD’s performance is fairly insensitive to
the neural model capacity, provided it is adequately large, with all variations remaining under 3%.
Thus, we employ 64 hidden neurons and 2 layers across all experiments. Utilizing a comparatively
small model curbs both training and inference costs. Also note that the basic operators are generally
simple, and thus small neural network could be more cost-effective.

64 128 256
hidden neurons

2
3

4
nu

m
be

r o
f l

ay
er

s

0.0179 0.0116 0.0148

0.027 0.0194 0.0184

0.0286 0.0168 0.0259

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

Figure 6: Ablation studies on model capacity (i.e., size of neural
networks) of approximation: (x-axis) the number of hidden neu-
rons and (y-axis) the number of layers. We show the avg. perfor-
mance diff. (smaller the better) across all datasets on kNN (Table
C3a); FEDOD is insensitive model capacity with small differences
with varying sizes of neural networks.

5.4.2 THE CHOICE OF BACKBONE IN FEDOD

We evaluate the performance of using a simple MLP versus the more recent transformers Vaswani
et al. (2017) as the backbone of the neural approximator in §4. Transformers, capable of capturing
attention between both data points and features, have demonstrated strong performance in recent
ADBench studies Han et al. (2022). This might help us establish a relationship that correlates input
directly to output, based not only on feature combinations but also on other data points. Here we
utilize a transformer model with two self-attention heads and a stacking depth of two.

Appx. Table C3f presents the performance of kNN using both MLP (Table C3a) and transformers
(Table C3f). We observe that MLP outperforms transformers in 14 out of 21 datasets, while the
average performances are comparable (1.79% vs. 2.77%). Note that both are superior to the direct
baselines (18.92%). One reason for the lower performance of transformers might be their complexity
and sensitivity to hyperparameters Chen et al. (2020). This affirms the choice of MLP as the default
backbone for FEDOD, given its simplicity, speed, and robustness.

6 LIMITATIONS AND FUTURE DIRECTIONS

Automated network conversion. At present, the conversion of operators in FEDOD is carried
out manually, a process that could be further automated using meta-learning Vanschoren (2018).
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For instance, we could train multiple neural approximators on existing datasets to evaluate their
performance. When presented with a new dataset, we identify the most similar historical dataset and
transfer the optimal neural configurations Zhao et al. (2021) in a zero-shot manner. Also, network
parameters from similar historical datasets could be transferred Scott et al. (2018), thus reducing the
training cost.

Inference optimization. On top of the already efficient inference, FEDOD may further leverage
acceleration techniques for neural networks, including quantization Hubara et al. (2017), distributed
and multi-GPU learning Jia et al. (2017), etc. However, it is worth noting that further acceleration
may be at the cost of larger performance differences.

7 RELATED WORK

Federated learning for OD. OD is a crucial task in a variety of applications such as credit card
fraud detection Zhong et al. (2020), cybersecurity Mothukuri et al. (2021), healthcare Gupta et al.
(2021), and environmental anomaly detection Chandola et al. (2009). In many circumstances, due
to privacy constraints or regulatory requirements, data cannot be shared, rendering traditional OD
methods untenable. There exists a huge need for privacy-preserving OD methods that can operate
without sharing data, thereby preventing potential misuse of sensitive info Sater & Hamza (2021).

Federated learning (FL), as a leading privacy-preserving framework, has been applied to various
deep OD algorithms. These algorithms employ different neural architectures, including recurrent
neural networks (RNN) Nguyen et al. (2019); Mothukuri et al. (2021), autoencoders Pei et al. (2022),
LSTM Sater & Hamza (2021), and CNN Astillo et al. (2022). There are OD applications in diverse
domains such as healthcare Gupta et al. (2021); Astillo et al. (2022), internet of things (IoT) Nguyen
et al. (2019); Mothukuri et al. (2021), network security Pei et al. (2022), and smart buildings Sater
& Hamza (2021). Most of these works primarily focus on horizontal FL, where different agents
(e.g., mobile devices or workstations) hold a partition of samples from the same feature space. FL
for deep OD typically follows the following procedures Sater & Hamza (2021). Initially, a global
neural network OD model is initialized. Then, local datasets are utilized to update the model param-
eters through local training using techniques such as stochastic gradient descent (SGD). Finally, the
updated model parameters from each device are aggregated to update the global model for OD, such
as Federated Averaging (FedAvg) McMahan et al. (2017).

However, most classical OD algorithms cannot leverage existing FL frameworks due to inter-sample
data dependency as we elaborate in the introduction. Table A1 summarizes a diverse group of
classical OD algorithms, many of which lack a straightforward FL solution due to data dependency.
Hence, FEDOD is designed to address this gap while accelerating inference.

Neural approximation for OD. Neural networks are widely recognized for their remarkable func-
tion approximation capabilities Goodfellow et al. (2016). This is predominantly due to their ability
to model complex, high-dimensional, and nonlinear relationships inherent in data. The Universal
Approximation Theorem provides theoretical support to this notion by asserting that a feedforward
network with a single hidden layer containing a finite number of neurons can approximate con-
tinuous functions under specific conditions Hornik et al. (1989). Also, deep neural networks can
represent complex functions more compactly. This allows them to model complex patterns in data,
making them useful in various applications such as language translation and autonomous driving
LeCun et al. (2015). In FEDOD, we employ neural networks to approximate OD operators for the
dual purposes of preserving privacy and accelerating inference.

8 CONCLUSION

We introduce FEDOD, a novel system designed to overcome challenges associated with privacy
preservation and efficiency in outlier detection applications. FEDOD enables popular federated
learning paradigm and extends its benefits to over 20 shallow (non-neural-network) OD algorithms.
The key steps include decomposing OD algorithms into shared operators for neural approximation,
after which federated learning becomes compatible with the operators. Through extensive experi-
ments on more than 30 datasets and 5 diverse detection algorithms, we demonstrate that FEDOD can
efficiently approximate OD algorithms while ensuring privacy. Future work can extend FEDOD’s
support to more other ML tasks and optimize it by neural network acceleration techniques.
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