
Shoring Up the Foundations: Fusing Model Embeddings and Weak Supervision

Mayee F. Chen∗1 Daniel Y. Fu*1 Dyah Adila2 Michael Zhang1 Frederic Sala2 Kayvon Fatahalian1

Christopher Ré1

1Department of Computer Science , Stanford University, Stanford, CA, USA
2Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Foundation models offer an exciting new paradigm
for constructing models with out-of-the-box em-
beddings and a few labeled examples. However,
it is not clear how to best apply foundation mod-
els without labeled data. A potential approach is
to fuse foundation models with weak supervision
frameworks, which use weak label sources—pre-
trained models, heuristics, crowd-workers—to con-
struct pseudolabels. The challenge is building a
combination that best exploits the signal available
in both foundation models and weak sources. We
propose LIGER, a combination that uses founda-
tion model embeddings to improve two crucial
elements of existing weak supervision techniques.
First, we produce finer estimates of weak source
quality by partitioning the embedding space and
learning per-part source accuracies. Second, we im-
prove source coverage by extending source votes
in embedding space. Despite the black-box nature
of foundation models, we prove results characteriz-
ing how our approach improves performance and
show that lift scales with the smoothness of label
distributions in embedding space. On six bench-
mark NLP and video tasks, LIGER outperforms
vanilla weak supervision by 14.1 points, weakly-
supervised kNN and adapters by 11.8 points, and
kNN and adapters supervised by traditional hand
labels by 7.2 points.

1 INTRODUCTION

Foundation models—large pretrained models such as GPT-
3, BERT, CLIP, and DALL-E [Brown et al., 2020, Devlin
et al., 2019, Radford et al., 2021, Ramesh et al., 2021]—

*Equal Contribution. A preliminary version of the results in
this paper can be found at https://arxiv.org/abs/2006.15168.

offer powerful representations that can be used in a broad
array of settings [Bommasani et al., 2021]. These models
have achieved state-of-the-art performance on many tasks.
However, it remains unclear how to best apply foundation
models in situations where users lack access to any labeled
data but do have some weak signals. These are the cases
where another class of techniques—weak supervision [Rat-
ner et al., 2018, Fu et al., 2020]—shines.

The broad success of foundation models (FMs) suggests
that fusing them with weak supervision may offer substan-
tial benefits. Intuitively, the signals present in both can be
used to replace large amounts of hand-labeled data in super-
vised learning. These signals are complementary. Founda-
tion models are trained on huge amounts of data and thus
offer powerful general-purpose embeddings. Weak super-
vision frameworks rely on multiple weak sources of signal
that can be synthesized into pseudolabels for downstream
training. These weak sources typically express specialized
domain expertise. The fusion may enable each component
to be improved: FM embeddings can be used without la-
beled data, while weak sources may be extended to be more
general-purpose.

Our goal is to combine these complementary signals to ad-
dress two challenges in existing approaches to weak super-
vision. The first challenge is performing fine-grained estima-
tion of source quality. Current weak supervision approaches
typically coarsely model source quality by assuming error
distributions are uniform over unlabeled points [Ratner et al.,
2019, Fu et al., 2020], but source quality may vary across
points in actuality. The second challenge is producing votes
on points where sources abstain. Weak sources often ab-
stain, so that current approaches suffer from low coverage
and have many points lacking any signal. We seek to exploit
the powerful embeddings from FMs—and the geometry
induced by them—to address these challenges.

We propose LIGER, a new weak supervision approach based
on the notion of local quality of weak sources in the FM
embedding space (named after a well-known fusion of pow-
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Figure 1: LIGER fuses embeddings from foundation models (left) with weak supervision (middle) by exploiting local
smoothness of the representations (right). LIGER uses the embeddings to a) produce more accurate local estimates of weak
source quality (right, top), and b) to locally extend weak sources, improving their coverage (right, bottom).

erful animals). We introduce an efficient algorithm that par-
titions the embedding space and learns per-part local source
accuracies. LIGER also extends weak sources into nearby
regions of the embedding space that they previously ab-
stained on, improving coverage. Despite the fact that FMs
are typically black-box, our localized approach exploits a
simple measurable notion of their signal: the smoothness of
the label distribution in the embedding space. When the dis-
tribution of label values does not vary significantly over an
embedding region, local source accuracies can be estimated
well, and local source extensions maintain their accuracy.
We introduce generalization error bounds that individually
characterize the impact of partitioning and extending. These
error bounds scale in the embedding smoothness and in-
volve a bias-variance tradeoff in the number of partitions
and the radii that specify extensions, suggesting that care-
ful incorporation of the FM’s signal into our approach is
necessary.

We evaluate LIGER on six benchmark NLP and video weak
supervision tasks, fusing weak sources with GPT-3 embed-
dings [Brown et al., 2020, Neelakantan et al., 2022] for the
NLP tasks, and with image embeddings from CLIP [Radford
et al., 2021] for the video tasks. We compare LIGER against
using FMs or weak supervision on their own, as well as base-
line techniques for fusing them together. First, LIGER out-
performs two strong baselines for traditional supervision of
FMs, kNN and adapters [Houlsby et al., 2019], by 7.2 points,
and outperforms traditional weak supervision by 14.1 points.
Next, LIGER outperforms kNN or adapter-based fusions of
weak supervision and FMs by 11.8 points. We find that lift
scales with embedding smoothness—confirming our theoret-
ical findings. We measure the smoothness of CLIP embed-
dings against BiT-M [Kolesnikov et al., 2020], ResNet-101

embeddings pretrained on ImageNet [Russakovsky et al.,
2015], and raw pixels on a video task. We find that CLIP em-
beddings are smoothest and result in the best performance.
Similarly, we find that using the right prompt for GPT-3 has
a strong effect on smoothness and performance on a relation
extraction task.

In summary, we contribute:

• LIGER, a new approach for fusing foundation models with
weak supervision by exploiting local smoothness of labels
and weak sources in embedding space.

• Finite-sample generalization error bounds of our algo-
rithm that scale in this smoothness.

• Evaluation of LIGER on six benchmark NLP and video
weak supervision tasks, where LIGER outperforms simple
fusions of foundation models and weak supervison, as
well as either on its own.

2 BACKGROUND

We describe the problem setting for weak supervision (Sec-
tion 2.1). We introduce two general challenges in weak
supervision that our approach using foundation model em-
beddings can mitigate. We then propose a model and explain
its two stages—source quality estimation and pseudolabel
inference (Section 2.2). We provide a brief background on
the estimation technique from Fu et al. [2020], on top of
which we build our approach.



2.1 PROBLEM SETUP

Our goal is to predict label y ∈ Y = {−1,+1} from dat-
apoints x ∈ X . If we had access to pairs (x, y), we could
train a supervised model. However, we do not have access
to any samples of y; instead, we observe m weak sources
λ = {λ1, . . . , λm}, each voting or abstaining on each point
x via a probabilistic labeling function λj : X → Y ∪ {0}
for all j ∈ [m]. We refer to λj(x) = 0 as an abstain, which
occurs when a source is uncertain or not applicable on a
point.

We also have access to FM embeddings. These embeddings
are the outputs of a mapping f : X → Z from input space
to an embedding space Z equipped with metric ρ : Z ×
Z → R+. This mapping is fixed and obtained from an
off-the-shelf model. Overall, we have an unlabeled dataset
D = {xi}ni=1 of n i.i.d. points, as well as access to m weak
sources and the embedding map f .

Given an input x and λ(x), we aim to learn a label model
that predicts y by estimating P̂r(y|λ, x) (we drop the x
in λ(x) when obvious). The goal of the label model is to
combine sources based on their individual accuracies (i.e.
λi’s rate of agreement with y) by upweighting high-quality
sources and downweighting low-quality ones. The resulting
pseudolabels given by P̂r(y|λ, x) can be used to train a
downstream supervised end model or used just directly as
predictions. The latter case is often ideal, since users need
not train an additional model. We focus on this setting.

Two Challenges and Opportunities. Next, we describe
two challenges common to weak supervision techniques.
Fusing weak supervision with FM embeddings presents
opportunities to mitigate these challenges.

• Coarse Accuracy Modeling. The most common as-
sumption in weak supervision is to model P̂r(y|λ, x) as
P̂r(y|λ). That is, conditioned on the weak sources, the
true label is viewed as independent of the features, so only
one set of accuracies is learned over the data. Remov-
ing this assumption is desirable, since the feature space
may have information about the task not captured fully
by weak sources. However, naively attempting to model
per-point accuracies leads to noisy estimation.

• Low Coverage. Weak sources frequently abstain, leading
to low coverage—a situation where much of the dataset
has no votes. A simple mitigation is to extend votes from
nearby non-abstaining points, but this is risky if the notion
of distance is not well-aligned with the label distribution.

An intuitive way to tackle these two challenges is to operate
locally. Suppose the source votes and the true label satisfy
some level of smoothness such that within some local region
of the feature space, they have a low probability of changing
values. We can then model accuracies specific to such local
regions and can extend source votes to points they abstain
on within the regions. However, raw image and text features

may lack signal and not offer sufficient smoothness to permit
operating locally. By acting on the embedding space, the
desired smoothness property is improved (see Figure 2).
We can thus obtain finer-grained accuracy estimation and
improved coverage by using FM embeddings to model local
accuracies and extend locally.

Next, we make these notions concrete by presenting the
explicit model for Pr(y,λ|x).

2.2 LABEL MODEL

We model Pr(y,λ|x) as a probabilistic graphical model.
Our use of this model has two steps. First, in training, we
must estimate the accuracy parameters of Pr(y,λ|x) with-
out access to y. Then, at inference, we compute P̂r(y|λ, x).

Let the graphical model be based on G = (V,E), where
V = y ∪ λ and E consists of edges from y to each λj

(see Figure 1 middle). For simplicity, we assume there are
no dependencies between the weak sources, although the
dependencies can be learned [Varma et al., 2019] and han-
dled by our choice of base estimator from [Fu et al., 2020].
Therefore, our approach can be extended to that case as well.
We model the data distribution as

Pr(y,λ|x) = 1

Z
exp

(
θy(x)y︸ ︷︷ ︸

Class Balance

+

m∑
i=1

θi(x)λiy︸ ︷︷ ︸
Source Accuracy

+

m∑
i=1

θi,0(x)1 {λi = 0}︸ ︷︷ ︸
Abstain Rate

)
(1)

with partition function Z and a set of canonical parame-
ters per x, Θ(x) = {θy(x), θi(x), θi,0(x) ∀i ∈ [m]}. An
important property above is that λi ⊥⊥ λj |y, x ∀i, j ∈ [m].

The model concretely portrays the two challenges in weak
supervision. First, canonical parameters Θ(x) that are a
function of the input can capture varying accuracy across
the data. This is less strict than prior formulations that model
the marginal Pr(y,λ) with one set of canonical parameters
without considering input data. However, estimating Θ(x)
is challenging; parametric approaches require certain as-
sumptions on the function Θ as well as the distribution
of x in order to recover the ground truth labels, but these
assumptions (e.g., Gaussian x) are often not realistic. Stan-
dard nonparametric approaches have a high computational
complexity and rely on smoothness of the input space X .
Second, when λi(x) = 0, the weak source provides no in-
formation on x at inference and is thus typically ignored on
that point in previous approaches. This is reflected in the
graphical model by Lemma 2 in Appendix C.1, by which
Pr(y|λi = 0,λ\λi, x) = Pr(y|λ\λi, x). In fact, the weak
sources provide no direct signal on x when λ(x) = 0⃗.

Pseudolabel Inference. To perform inference, we com-
pute P̂r(y|λ, x) for some x ∈ X . This is done via Bayes’



rule and the conditional independence of weak sources:
Pr(y|λ, x) =

∏m
i=1 Pr(λi|y, x) Pr(y|x)/Pr(λ|x). The

latent parameter of interest in this decomposition is
Pr(λi|y, x), which corresponds to the accuracy of λi.

Source Parameter Estimation. Previous approaches have
considered how to estimate Pr(λi|y) in a model of
Pr(λ, y) via the triplet method [Fu et al., 2020], us-
ing conditional independence properties. For our set-
ting, (1) tells us that λiy ⊥⊥ λjy|λi ∧ λj ̸=
0, x for any i ̸= j (Lemma 3 in Appendix C.1).
As a result, E [λiy|λi ̸= 0, x] × E [λjy|λj ̸= 0, x] =
E
[
λiλjy

2|λi ∧ λj ̸= 0, x
]

= E [λiλj |λi ∧ λj ̸= 0, x],
which consists of observable variables. Define ai(x) =
E [λiy|λi ̸= 0, x] as the accuracy of λi on x. If we intro-
duce a third λk, we can generate a system of equations over
ai(x), aj(x), ak(x) in terms of the conditional expected
products of pairs of λi, λj , λk. As a result,

|ai(x)| := (2)√∣∣∣∣E [λiλj |λi ∧ λj ̸= 0, x]E [λiλk|λi ∧ λk ̸= 0, x]

E [λjλk|λj ∧ λk ̸= 0, x]

∣∣∣∣,
and likewise for âj(x), âk(x). More details are in Ap-
pendix C.2. (1) allows us to write Pr(λi|y, x) =
1+sgn(λiy)ai(x)

2 × Pr(λi ̸= 0|x) (Lemmas 2 and 4), so the
desired probability estimate is just a linear transformation
of ai(x) scaled by λi’s coverage.

3 FUSION ALGORITHM

We are ready to present LIGER, our approach to fusing foun-
dation model embeddings and weak supervision. We explain
the two components: first, how to compute conditional esti-
mates of the label model parameters over local regions of
the partitioned embedding space for finer-grained accuracy
estimation; second, how to extend weak sources via a kNN-
like augmentation in the embedding space, improving their
coverage and hence the signal available at inference. The
full approach is shown in Algorithm 1.

Local Parameter Estimation Our first task is to compute
the label model’s local parameters. Based on (2), the quan-
tities to estimate are of the form E [λiλj |λi ∧ λj ̸= 0, x],
Pr(λi ̸= 0|x), Pr(λ|x), Pr(y|x). These conditional statis-
tics can be estimated using nonparametric approaches such
as the Nadaraya-Watson estimator, but they require O(n)
computations per point at inference.

Instead of estimating parameters per point, we partition the
embedding space and compute per-part statistics. Intuitively,
this choice exploits smoothness. If label distributions are
smooth, i.e., they do not vary greatly within a local region,
it is sufficient to estimate per-point statistics using a part
given that parts are not too large. Controlling the size of the

Algorithm 1 LIGER

Input: Dataset D = {xi}ni=1, weak sources λ, embed-
ding mapping f and metric ρ, threshold radii r1, . . . rm,
partition C and class balances Pr(y|Cj) for j ∈ [s].
Returns: Label model P̂r(y|λ̄, x).
for λi ∈ λ do

Construct extended source λ̄i using ri, f, ρ as in (3).
end for
for Cj ∈ C do

for λ̄i ∈ λ̄ do
Compute accuracy âi(Cj) using Algorithm 2 on λ̄i

over Cj , and compute coverage P̂r(λ̄i ̸= 0|Cj) on
D.
Set P̂r(λ̄i|y, Cj) equal to 1+sgn(λ̄iy)âi(Cj)

2 P̂r(λ̄i ̸=
0|Cj) for λ̄i ∈ {−1, 1}, P̂r(λ̄i = 0|Cj) otherwise.

end for
Compute P̂r(λ̄|Cj) on D.

end for
return For test point x ∈ X , compute P̂r(y|λ̄, x) =

P̂r(y|λ̄, C(x)) =
∏m

i=1 P̂r(λ̄i|y,C(x)) Pr(y|C(x))

P̂r(λ̄|C(x))
.

partition is thus important in determining how well we can
approximate per-point statistics.

Concretely, partition Z into s subsets C = {C1, . . . , Cs} of
equal size n′ = n

s (we use K-means clustering with K = s
in practice). Denote C(x) as the subset f(x) belongs to. In-
stead of estimating statistics and performing inference con-
ditioned on x, we condition on C(x), producing s sets of pa-
rameters overall. We estimate E [λiλj |λi ∧ λj ̸= 0, C(x)],
yielding a local accuracy estimate âi(C(x)) formalized in
Algorithm 2, as well as Pr(λi ̸= 0|C(x)), Pr(λ|C(x)),
Pr(y|C(x)). Then, we use P̂r(y|λ, x) = P̂r(y|λ, C(x))
as our label model prediction on x. These estimates
are done over the subsets; for instance, Pr(λ|C(x)) ≈
1
n′

∑
x′∈C(x) 1 {λ(x′)=λ}. We assume that class balance

on subsets, Pr(y|C(x)), are known. There are also several
techniques that can be used to estimate these [Ratner et al.,
2019], or they can be treated as hyperparameters.

Weak Source Extension Next, we improve the model
of P̂r(y|λ, x) by increasing source coverage. Let λ̄i be an
extended labeling function with corresponding threshold
radius ri > 0 for i ∈ [m]. The extension works as follows.
For any x, let NN(x) = argminx′∈D:λi(x)̸=0 ρ(f(x), f(x

′))
be the nearest neighbor of x in embedding space from D
such that λi has coverage on it. λ̄i uses nearest neighbors to
weakly label points within ri of λi’s support on D. Formally,

λ̄i(x) :=


λi(x) λi(x) ̸= 0

λi(NN(x)) ρ(f(x), f(NN(x))) ≤ ri

0 o.w.
. (3)



We can view λ̄i as an augmentation on λi using D and f .
We thus perform parameter estimation and inference using
λ̄ instead of λ, namely learning Pr(y|λ̄, C(x)).

There are two advantages to using extended sources. First,
extended sources improve sampling error, since expressions
like E [λiλj |λi ∧ λj ̸= 0, x] are estimated over more data
in D. Second, λ̄i provides signal at inference on points
that λi previously abstains on. However, the quality of this
signal greatly depends on ri. If λi is overextended and the
embedding space is not sufficiently smooth, points far away
from λi’s support may receive incorrect extended source
votes, suggesting that careful choice of ri is needed.

Our approach combines the two components discussed—
partitioning the embedding space and extending sources—to
output predictions P̂r(y|λ̄, C(x)) as in Algorithm 1. Note
that our approach builds on the algorithm from Fu et al.
[2020], but partitioning and extending can also be done on
top of other weak supervision algorithms that model things
differently.

4 THEORETICAL ANALYSIS

Now we turn to analyzing Algorithm 1. Our goal is to un-
derstand how performance depends on the key parameters:
fineness of the partition C, radii ri of the extensions used to
improve coverage, and smoothness of the embedding space.

We begin with a result on the generalization error of the
label model P̂r(y|λ, x), which relies on the number of parti-
tions s to control the granularity of the estimated parameters
(Theorem 1). Then, we discuss the improvement from using
λ̄ instead of λ. We first bound the local accuracy of an ex-
tended source in a region it previously abstains (Lemma 1),
and then we show that as long as this local accuracy is better
than random, we can further reduce the generalization er-
ror (Theorem 2). The former result presents a bias-variance
tradeoff depending on s, while the latter has a tradeoff de-
pendent on the threshold radius ri. In both cases, s and ri
must be carefully set based on the signal in the FM embed-
dings, namely the smoothness of label distributions in the
FM embedding space, in order to optimize performance.
We provide proofs in Appendix D, synthetic experiments
supporting our findings in Appendix F.3, and smoothness
measurements on real data in Section 5.2 and Appendix F.2.

Define the generalization error of the label model using
weak sources λ as the expected cross-entropy loss, L(λ) =
ED,x,y,λ[− log P̂r(y|λ, x)].

4.1 LABEL MODEL GENERALIZATION ERROR

We bound the generalization error L(λ) of the label model
using the unextended, initial weak sources. The key quantity
in this analysis is embedding smoothness:

Definition 1 (Lipschitzness). The distributions Pr(y|x) and
Pr(λi|y, x) are Lipschitz-smooth on the metric space (Z, ρ)
with constants Ky,Kλ,Kλ,0 > 0 if for all i ∈ [m],

|Pr(y = 1|x)− Pr(y = 1|x′)| ≤ Kyρ(f(x), f(x
′)),

|Pr(λi = 1|y, λi ̸= 0, x)− Pr(λi = 1|y, λi ̸= 0, x′)|
≤ Kλρ(f(x), f(x

′)),

|Pr(λi ̸= 0|x)− Pr(λi ̸= 0|x′)| ≤ Kλ,0ρ(f(x), f(x
′)),

We refer to these three properties as label, source, and cov-
erage Lipschitzness, respectively.

In words, if the constants Ky,Kλ,Kλ,0 are small, the class
balance of y and the way each source votes (or doesn’t) do
not vary significantly over a local region of the embedding
space.

We define some additional quantities. Set α =

maxi Ex

[
1
pij

∣∣ pij ̸= 0
]
, where pij = Pr(λi ̸= 0|f(x) ∈

Cj) is the coverage of λi on Cj , to be the largest
average inverse source coverage over the subsets. α
corresponds to how often sources abstain. Assume
that ai(Cj) > 0 for all λi and Cj , meaning that the
average source accuracy on a subset is better than ran-
dom. Then, define amax = maxi,j ai(Cj), and bmin =

min
i,j,k

{E [λiλk|λi ∧ λk ̸= 0, Cj ] , Ê [λiλk|λi ∧ λk ̸= 0, Cj ]}
as the minimum rate of agreement between sources over
subsets, where Ê denotes the empirical estimate on D.
Define dCj

= maxf(x),f(x′)∈Cj
ρ(f(x), f(x′)) as the

diameter of Cj and dC = Ex

[
dC(x)

]
as its average.

Theorem 1. Suppose that data x, y,λ follows the model
in (1) and Pr(y|x) and Pr(λi|y, x) for each λi are
Lipschitz-smooth. The generalization error of the label
model P̂r(y|λ, x) in Algorithm 1 when ri = 0 ∀i can be de-
composed into L(λ)=Bias+Variance+Irreducible Error+
o(1/n), where

Bias ≤ 2dC(Ky +mKλ +mKλ,0),

Variance ≤ ms

n

(
3α(1− b2min)

8b2min(1− a2max)

( 1

b4min

+
2

b2min

)
+ 1

)
,

Irreducible Error = H(y|λ, x),

where H(y|λ, x) denotes conditional entropy.

We discuss each term of this bound.

• The bias comes from the partition C, since conditional
statistics on C(x) are not equivalent to those on x. When
the embedding space is smooth with small Ky,Kλ,Kλ,0,
the bias is low. Note that making the subset diameter
dC → 0 makes the bias go to zero.

• The variance comes from sampling error in Algorithm 2
and P̂r(λi ̸= 0|Cj). This quantity scales in O(sα/n) and
also depends on accuracy and agreement among weak
sources.



• The irreducible error depends on quality of λ. If knowl-
edge of λ significantly reduces uncertainty in y, i.e., the
sources contain lots of signal, this quantity is low. On the
other hand, H(y|λ, x) is maximized when λ ⊥⊥ y|x, i.e.
there is no signal about y in λ.

Our result reveals a bias-variance tradeoff dependent on
the number of parts s. As s increases, subset diameter dC
tends to decrease, resulting in lower bias because the subset
parameters estimated will be closer in true value to those
conditional on x. The variance increases in s because there
are fewer points per subset for estimation. The s = 1 case,
which incurs a large bias, is algorithmically equivalent to
the approach in Fu et al. [2020]. Such approaches thus suffer
from model misspecification in our setting—and likely in
most practical cases—as they assume uniform quality per
source.

4.2 IMPROVEMENT FROM EXTENSIONS

Suppose that x, y, λ̄ follows (1). When we use λ̄ rather than
λ (i.e. ri ̸= 0), there are several changes to the decomposi-
tion in Theorem 1:

• The bias is now bounded by 2dCKy + 2m(dC +
2maxi ri)(Kλ + Kλ,0) (see Lemma 8 in Appendix D).
We must consider when NN(x) is not in C(x), essentially
resulting in a wider subset diameter.

• The variance is still O(1/n), but multiplicative factors
change. For instance, α decreases due to improved cover-
age, thus decreasing the variance.

• The irreducible error is now H(y|λ̄, x).

We analyze H(y|λ̄, x) in this section. λ̄i provides more
signal than λi at inference on points where λi(x) = 0, but
the signal about y’s value may be incorrect. Extending λi

using too large of ri could yield incorrect source votes,
resulting in lower accuracy of the extended weak source.

We first present a result on how ri controls the extended
source’s accuracy. Define ai = E [λiy|λi ̸= 0] as the aver-
age accuracy of λi, and āi(ri) = E

[
λ̄iy|λ̄i ̸= 0, λi = 0

]
as

λ̄i’s average accuracy on the extended region. We also need
a notion of smoothness of y between the original support
and the extended region. We define a local notion of prob-
abilistic Lipschitzness (PL), originally introduced in Urner
and Ben-David [2013].

Definition 2 (Probabilistic Lipschitzness). Define Pλi
=

Prx,y(·|λi ̸= 0) to be the distribution of (x, y) over the
support of λi, and let Pλi,x be its marginal distribution on x.
Then Pλi is M -probabilistically Lipschitz for an increasing
function M : R+ → [0, 1] if for any r > 0,

Pr
x,y∼Pλi

(∃(x′, y′) ∈ X\supp(Pλi,x)× Y :

ρ(f(x), f(x′)) ≤ r, y′ ̸= y) ≤ M(r).

We refer to this property as local label PL.

In words, the probability that there is a point outside of the
support of λi but within r of (x, y) ∼ Pλi

with a different
label from y is bounded by an increasing function of r.
We also define βi = E[λiy|λi ̸= 0,∃(x′, y′) : λi(x

′) =
0, ρ(f(x), f(x′)) ≤ ri, y

′ = y] as λi’s accuracy over a
region close to where λi is extended and y changes value.

With this definition, we show that:

Lemma 1. Suppose Pλi
is M -probabilistically Lipschitz.

The average accuracy of λ̄i on the extended region is at
least āi(ri) ≥ ai − (1 + βi)M(ri).

Our result provides local accuracy guarantees on λ̄i as a
function of the original λi’s accuracy, the probabilistic Lips-
chitzness of the embedding space, and the ri the user sets.
Extending a source with higher original accuracy will yield
stronger accuracy guarantees in the extended region. On the
other hand, if M(ri) is too large due to improper ri or lack
of smoothness, the true label is more likely to change value,
and hence accuracy in the extended region worsens.

Now we can use our result on āi(ri) to analyze the
improvement in irreducible error. We extend just one
weak source λi by ri and keep λ−i := λ\λi unex-
tended. Define pi = Pr(λ̄i ̸= 0, λi = 0) as the propor-
tion of the region where λ̄i is extended and p(λ−i) =
Ey′,λ−i,λ̄i ̸=0,λi=0 [Pr(y = y′|λ−i, x)] as the label model’s
probability of outputting the correct label in the extension
region when only using λ−i.

Theorem 2. Suppose that data follows the model in (1). The
irreducible error decreases by at least the following amount
when using λ̄i rather than λi in Algorithm 1:

H(y|λ, x)−H(y|λ̄, x) ≥ 2pi(1− p(λ−i))
2 · āi(ri)2.

Lift increases with probability mass pi on the extended
region since more of the data is impacted by λ̄i. Lift is
not as significant if p(λ−i) is large because the other weak
sources already are providing sufficient signal for y. Most
importantly, lift scales with how far āi(ri) is from 0 (random
voting). This highlights a tradeoff in ri: as ri increases, pi
increases but the lower bound on āi(ri) from Lemma 1
decreases. This shows that threshold radii must be selected
carefully; if the embedding space has strong probabilistic
Lipschitzness (i.e. small M ) or the original weak source
has high accuracy, then the source can be extended further
while providing lift. However, overextension of the source
can yield low local accuracy and thus less lift.

Our results demonstrate that s and ri control the label
model’s performance, and setting these terms depends on
how smooth label distributions are in the embedding space.



5 EXPERIMENTS

This section evaluates the following claims about LIGER:

• Performance (Section 5.1): LIGER outperforms vanilla
weak supervision, as well as baseline approaches for using
foundation models directly, either with traditional weak
supervision or hand supervision.

• Smoothness (Section 5.2): Lift is correlated with the
smoothness of the label distribution in the representation
space. We measure smoothness and performance of CLIP
against three other embedding methods on a video task,
and measure three prompting strategies for GPT-3 on a
relation extraction task.

• Ablations (Section 5.3): Both components of LIGER—
partitioning the representation space and extending label-
ing function votes—are important for performance.

Datasets We evaluate LIGER on six benchmark NLP
and video tasks used to evaluate previous weak supervi-
sion methods [Fu et al., 2020, Zhang et al., 2021]. In NLP,
Spam identifies spam YouTube comments [Alberto et al.,
2015]; Weather identifies the sentiment of weather-related
tweets [Cro]; and Spouse identifies spouse relationships in
newspaper articles [Corney et al., 2016]. In video, Com-
mercial identifies commercial segments in TV news [Hong
et al., 2021, Fu et al., 2019]; Tennis identifies rallies in ten-
nis segments; and Basketball identifies basketball videos in
a subset of ActivityNet [Caba Heilbron et al., 2015]. Each
dataset consists of a large unlabeled training set, a smaller
hand-labeled development set (train/dev split sizes from
187/50 points to 64,130/9,479 points), and a held-out test
set. We use the unlabeled training set to train label models
and use the development set for a) training of traditional
supervision baselines, and b) hyperparameter tuning of the
label models, including s and ri.

Pre-trained embeddings For the NLP datasets, we use
pre-trained GPT-3 [Brown et al., 2020] embeddings from
OpenAI’s Ada model. For Spam and Weather, we simply
embed the text directly. For Spouse, we add a prompt “Are
[person 1] and [person 2] spouses?” after the end of the
sentence. We discuss further prompting strategies in Sec-
tion 5.2. For video datasets, we use image embeddings from
CLIP [Radford et al., 2021] over individual frames of the
videos.

5.1 PERFORMANCE

We compare LIGER against baseline approaches for fusing
foundation models with weak supervision, as well as against
using either on their own. We split our evaluation into two
parts: methods that only have access to weak sources, and
methods that additionally have access to the dev set.

Weak Sources Only We compare the performance of
LIGER against vanilla weak supervision’s label model
(WS-LM) [Fu et al., 2020], as well as two end models,
weakly-supervised kNN (WS-kNN), and weakly-supervised
adapters (WS-Adapter). In the latter two methods, we use
the predictions from WS-LM to generate pseudolabels for
the train set and use the FM embeddings as input data (since
we do not access the full FM) to the kNN and adapter ap-
proaches. We consider an adapter that is a linear layer on the
FM embeddings. We also provide results on 3-layer MLP
adapters in Appendix F.

Table 1 (left) shows the results, as well as statistics on the
additive change in coverage (% of the dataset that sources
vote on) between LIGER and WS-LM. LIGER outperforms
WS-LM and has better coverage (33.2 points on average).
LIGER also outperforms both of the baseline approaches for
fusing foundation models with weak supervision, WS-kNN
and WS-Adapter.

Weak Sources and Dev Labels Next, we compare per-
formance against methods that have access to a small hand-
labeled dev set. We compare against two baselines: kNN and
Adapter, both trained over the dev set labels. For our method
LIGER-Adapter, we train an adapter over LIGER labels on
the train set, as well as the dev labels. In some cases, LIGER
labels are too noisy to provide good signal on the train set;
in this case, our solution automatically downsamples the
pseudolabels on the train set. We also provide the original
LIGER prediction as input to the adapter. See Appendix E
for the details.

Table 1 (right) shows the results. LIGER-Adapter outper-
forms Adapter and kNN. On the datasets where LIGER
labels are very accurate, we see additional lift from the
adapters because we have more points to train on. When
the labels are not very accurate, our downsampling prevents
the noisy labels from harming adapter performance. In one
case, learning an adapter over the embeddings is very hard
(Spouse). Here, providing the LIGER prediction as input is
critical for performance.

5.2 EMBEDDING SMOOTHNESS

We measure how smoothness of the embedding space affects
the performance of LIGER. First, we compare embeddings
from CLIP against BiT-M embeddings [Kolesnikov et al.,
2020], a ResNet-101 pretrained on ImageNet [Russakovsky
et al., 2015], and raw pixels. Second, we vary the GPT-3
prompting strategy for Spouse and compare against two al-
ternative methods that result in a less smooth representation.
We report label Lipschitzness—the smoothness of embed-
dings with respect to ground-truth labels—in this section.
See Appendix F.2 for additional measures of Lipschitzness.

Figure 2 (left) shows the performance of CLIP, BiT-M,



Weak Sources Only

Task WS-kNN WS-Adapter WS-LM LIGER ∆Coverage
N

L
P Spam 72.8 92.3 83.6 95.0 +45.5

Weather 62.0 86.0 78.0 98.0 +90.2
Spouse 16.9 17.1 47.0 52.2 +12.1

V
id

eo Basketball 33.3 48.9 27.9 69.6 +8.3
Commercial 84.7 92.8 88.4 93.5 +18.8
Tennis 83.0 83.8 82.0 83.3 +32.5

Dev Labels Available

kNN Adapter LIGER-Adapter

91.2 94.4 95.4
92.0 90.0 96.8
21.6 15.7 49.6

64.4 79.3 79.5
92.0 93.0 93.2
73.2 83.1 84.0

Table 1: Left: LIGER performance compared to baselines that only have access to weak labels, as well as the change in
coverage from traditional weak supervision. Right: LIGER-Adapter performance compared to baselines that have access to
dev labels. Scores are F1 except for Spam and Weather (accuracy); best score in bold in each setting.
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Raw pixel 19.3
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Figure 2: Left: LIGER performance and smoothness measurements of CLIP, BiT-M, ResNet-101, and raw pixels as
embeddings for Basketball. Right: LIGER performance and smoothness measurements of no prompting, prompting at
beginning, and prompting at end in GPT-3 for Spouse.

ResNet-101, and raw pixels as embeddings for LIGER, as
well as measures of Lipschitzness for each method (lower
is smoother). CLIP embeddings are smoother than the other
methods—which matches their performance when used in
LIGER.

Comparing Prompting Strategies Next, we examine the
impact of prompting strategies for Spouse. Spouse is a rela-
tion extraction dataset, where the task is to predict whether
two entities in a sentence are married. Since there may be
multiple entities in a sentence, Spouse contains multiple
duplicate sentences in the dataset, with different labels. To
alleviate this problem, we introduce a prompt “Are [per-
son 1] and [person 2] spouses?” after the end of the sen-
tence, where “[person 1/2]” are replaced by the names of the
first/second entity in the sentence. We compare this prompt-
ing strategy against two others: appending the same prompt
to the beginning of the sentence, and leaving the original
sentence as-is, without any prompting.

Figure 2 (right) shows the performance and smoothness of
each of these prompting methods. Adding the prompt to
the end of the sentence results in the best performance and
smoothest embeddings. Both methods perform better than
leaving the sentence alone (the flat line is a result of multiple
sentences with different labels having the same embedding).

Task LIGER (s) -Part -Ext (s) -Part, -Ext

Spam 95.0 (2) 94.0 92.0 (7) 83.6
Weather 98.0 (3) 96.0 94.0 (5) 78.0
Spouse 52.2 (6) 50.0 49.3 (5) 47.0

Basketball 69.6 (2) 69.6 21.9 (2) 27.9
Commercial 93.5 (3) 92.3 91.4 (5) 88.4
Tennis 83.3 (1) 83.3 81.3 (2) 82.0

Table 2: Ablations of LIGER, removing partitions (-Part),
extensions (-Ext), and both. Best s values inside parentheses.

5.3 ABLATIONS

We report ablations on each component of LIGER. Table 2
removes the partioning component and the extensions com-
ponent. Partitioning improves performance on four tasks,
and extensions improves performance on all tasks (13.1
points of lift on average from partitioning, 3.8 points from
extensions). Combining both additionally offers the best
performance on four tasks.

6 RELATED WORK

We present an abbreviated related work here. See Ap-
pendix A for an extended treatment.

Weak supervision frameworks typically model source ac-
curacies to generate weak labels and then fine-tune an end
model for generalization [Ratner et al., 2018, Bach et al.,



2019, Khetan et al., 2018, Sheng et al., 2020, Fu et al.,
2020, Zhan et al., 2019, Safranchik et al., 2020, Boecking
and Dubrawski, 2019]. One framework models the end-to-
end process all at once [Cachay et al., 2021], but requires
training the end model at the same time—which is computa-
tionally expensive with large foundation models. Our work
removes the fine-tuning step completely.

Our work is similar to transfer learning techniques, which
adapt pretrained models for downstream tasks [Kolesnikov
et al., 2020, Devlin et al., 2018]. Foundation models offer
new requirements for transfer learning setting: when it is im-
possible to fine-tune the original models [Bommasani et al.,
2021]. We build on approaches such as prompting [Lester
et al., 2021, Brown et al., 2020], embedding search [Nee-
lakantan et al., 2022], and adapters [Houlsby et al., 2019,
Alain and Bengio, 2016].

7 CONCLUSION

We present LIGER, a system for fusing foundation mod-
els and weak supervision. We use embeddings to produce
finer-grained estimates of weak source accuracies and im-
prove weak source coverage. We prove a series of results
on how the performance of this approach scales with the
smoothness of the embeddings, and demonstrate LIGER on
six benchmark NLP and video weak supervision datasets.
We hope our work will encourage further work in combining
foundation models and weak supervision and in utilizing
the signal from foundation models to help with other tasks.
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