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Abstract

Dimension reduction for high-dimensional count
data with a large proportion of zeros is an impor-
tant task in various applications. As a large number
of dimension reduction methods rely on the prox-
imity measure, we develop a dissimilarity mea-
sure that is well-suited for small counts based on
the Kullback-Leibler divergence. We compare the
proposed measure with other widely used dissim-
ilarity measures and show that the proposed one
has superior discriminative ability when applied
to high-dimensional count data having an excess
of zeros. Extensive empirical results, on both sim-
ulated and publicly-available real-world datasets
that contain many zeros, demonstrate that the pro-
posed dissimilarity measure can improve a wide
range of dimension reduction methods.

1 INTRODUCTION

High-dimensional count data, especially those with a large
proportion of zeros, are omnipresent in various fields, such
as ecology and genomics [Warton, 2018, Townes et al.,
2019, Svensson, 2020]. Dimension reduction (DR) tech-
niques are used to extract useful information from high-
dimensional count data, by eliminating noisy/uninformative
dimensions of the data. Owing to the mean-variance depen-
dency that is often observed in count data, it is inappropriate
to apply standard DR methods that are optimal under the
normality assumption, such as principal component anal-
ysis (PCA) [Pearson, 1901, Hotelling, 1933, Tipping and
Bishop, 1999] and Gaussian process latent variable model
(GPLVM) [Lawrence, 2005], to the data.

Hence, to perform DR on count data, a number of specific
strategies/methods have been proposed. A common strat-
egy is to first apply a variance-stabilizing transformation
(VST) to the data [Bartlett, 1947, Anscombe, 1948], aim-

ing to make the data more Gaussian-like, and then feed
the transformed data into standard DR approaches. The
transformation function is specifically chosen to remove the
mean-variance dependency. Popular transformation func-
tions include the square root, logarithm, and inverse hy-
perbolic sine functions. Despite the widespread use of the
VSTs, they can only be guaranteed to work well with large
counts [Bartlett, 1947, Anscombe, 1948] and cannot reason-
ably be expected to stabilize the variance of small counts
containing a large faction of zeros [Yu, 2009, Warton, 2018].
Rather than focusing on making count data more normally
distributed, several approaches have been developed to di-
rectly model the original data. With the assumption that
count data follow the exponential family distributions, PCA
variants maximise the likelihood of the observed data to
get the low-dimensional representation [Collins et al., 2002,
Mohamed et al., 2008, Li and Tao, 2013, Smallman et al.,
2020]. By adopting the same distributional assumption, a
robust estimator of the covariance matrix is derived and the
data of reduced dimension are obtained by the eigendecom-
position of this estimator [Liu et al., 2018]. Nonnegative
matrix factorization (NMF) acquires the low-dimensional
representation by factorizing count data matrix into two
nonnegative matrices of low rank [Dhillon and Sra, 2005,
Févotte and Idier, 2011, Cichocki et al., 2011]. Despite the
popularity of NMF and PCA variants, it is unclear whether
they perform well on count data having an excess of zeros.

Unlike the aforementioned works, we focus on developing
measures that can reliably quantify the pairwise dissimilar-
ity for small count data, motivated by the importance of
proximity matrix in common DR frameworks. Specifically,
many DR approaches seek to preserve properties of a prox-
imity matrix of high-dimensional data when reducing the
dimension of the data. Examples of such approaches include
PCA with the Euclidean distance matrix and the Gram ma-
trix [Mardia et al., 1979, Lawrence, 2005], GPLVM with the
Gram matrix [Lawrence, 2005], multidimensional scaling
(MDS) with an input dissimilarity matrix [Torgerson, 1952],
and t-distributed stochastic neighbour embedding (tSNE)
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with the matrix of the Gaussian kernels [Maaten and Hinton,
2008]. Therefore, a proximity measure that properly quanti-
fies the dissimilarity between small-count data points could
benefit a wide range of DR methods.

The two core contributions of this paper can be summarized
as follows. First, we develop two dissimilarity measures for
small count data based on the Kullback-Leibler (KL) diver-
gence [Kullback and Leibler, 1951] and the assumption that
the data follow either Poisson or negative binomial (NB)
distributions. We take both Poisson and NB distributions
into account, as it is common to model count data with these
two types of distributions [Zeileis et al., 2008, Chan and
Vasconcelos, 2009, Lindén and Mäntyniemi, 2011, Townes
et al., 2019, Kim et al., 2020]. Furthermore, to reliably calcu-
late the KL divergence, we propose to use empirical Bayes
estimators to estimate the distributional parameters. Sec-
ondly, we propose an index to evaluate the discriminative
abilities of different dissimilarity measures and show that
the measure developed with the NB assumption has supe-
rior discriminative ability compared with other widely used
dissimilarity measures for high-dimensional small counts,
in terms of their statistical behaviours. Moreover, consistent
with our statistical investigation, the experimental results,
on both real and simulated count data, also demonstrate that
the measure obtained with the NB assumption is superior to
other measures when handling small counts.

The rest of this paper can be summarized as follows. First,
we present standard transformations for count data in Sec-
tion 2.1. We then derive two new dissimilarity measures
with the KL divergence and the empirical Bayes estimators
in Section 2.2. Secondly, we propose an index which eval-
uates the discriminative ability of a dissimilarity measure
(Section 3.1) and compare different dissimilarity measures
according to the proposed index. It is shown that, when
applied to small counts, the Euclidean distance of the trans-
formed data exhibits better discriminative ability than the
original Euclidean distance, although the corresponding
VST is unable to stabilize the variances (Section 3.2). More
importantly, the measure obtained with the NB assumption
is expected to perform the best when used for separating dif-
ferent distributions of small count data (Section 3.3). Lastly,
we present the experimental results of representative DR
methods with different measures on both real and simulated
datasets (Section 4).

2 DISSIMILARITY MEASURES FOR
COUNT DATA

In this section, we first present widely used VSTs for count
data and then derive two new dissimilarity measures with
the KL divergence and the empirical Bayes estimators for
small counts.

2.1 VARIANCE-STABILIZING
TRANSFORMATIONS (VSTS)

A VST is a data transformation that applies to data such that
the variance of the transformed data is independent of their
mean. Most VSTs for count data are developed by assuming
data follow an either Poisson or NB distributions [Bartlett,
1947, Anscombe, 1948]. Let y be the raw counts. The square
root transformation

gr(y) =

√
y +

3

4
(1)

is a popular technique for stabilizing the variance of a
Poisson random variable. For an NB random variable y
which counts the number of successes and has the PMF(
y+r−1

y

)
(1 − p)rpy, where p is the probability of success

and r represents the number of failures, a prevalent transfor-
mation is

gasin(y) = arcsinh

√
y + 3

8

r − 3
4

, (2)

where arcsinh is the inverse hyperbolic sine function. Since
gasin(y) requires an approximate knowledge of r and in
some cases it cannot be estimated well enough, a simpler
logarithm transformation with a pseudocount 1 is preferred
in practice, which is given by

glog(y) = log(y + 1). (3)

As mentioned before, these transformations fail to stabilize
the variance of small counts. Thus, there is no guarantee
that the Euclidean distances of the data transformed from
raw counts by these VSTs perform well on small counts.

2.2 TWO NEW DISSIMILARITY MEASURES
DEVELOPED WITH KL DIVERGENCE

The KL divergence is a statistical measure of how one prob-
ability distribution is different from a second, reference
probability distribution [Kullback and Leibler, 1951]. For
discrete probability distributions P and Q defined on the
same probability space Z, the KL divergence is defined as
DKL(P | Q) =

∑
z∈Z P (z)logP (z)

Q(z) . The KL divergence
for continuous random variables can be defined similarly by
replacing the sum with the integral. For a pair of univariate
normal distributions, P : N (µx, σ

2) and Q : N (µy, σ
2),

we have DKL

[
N (µx, σ

2) | N (µy, σ
2)
]
=

(µx−µy)
2

2σ2 . The
squared Euclidean distance D2

E between two vectors x =
[x1, . . . , xp]

T ,y = [y1, . . . , yp]
T ∈ Rp is equivalent to the

sum of the KL divergence between two univariate normal
distributions across dimensions up to a constant 1

2σ2 and
the mean values of the distributions are estimated by the
maximum likelihood estimators (MLEs). This equivalence



is shown by the following equation:

p∑
i=1

D̂KL

[
N (µix, σ

2) | N (µiy, σ
2)
]
=

p∑
i=1

(µ̂ix − µ̂iy)
2

2σ2

=

p∑
i=1

(xi − yi)
2

2σ2
,

where xi and yi are the MLEs of mean parameters of the
normal distributions on the i-th dimension of x and y, re-
spectively, when there is only one realisation observed for
each distribution.

Stimulated by the equivalence between D2
E and the KL di-

vergence, we propose to quantify the pairwise dissimilarity
for count data with the KL divergence. To calculate the
KL divergence, the distribution type and the corresponding
parameter values are required to be specified. For the dis-
tribution type, we assume the observed data follow either
Poisson or NB distributions, which are commonly used for
modelling count data. Regarding the parameter estimation,
a straightforward estimator is the MLE. However, the use of
MLE incurs a numerical problem in practice. To clarify this
problem, we first derive two dissimilarity measures with the
MLEs for Poisson and NB distributions, respectively. Sup-
pose xi and yi follow Pois(λix) and Pois(λiy), respectively.
The respective MLEs of λix and λiy are xi and yi. The KL
divergence between x and y with these MLEs is thus

p∑
i=1

D̂KL [Pois(λix) | Pois(λiy)] =

p∑
i=1

[yi − xi

+ xi log
xi

yi

]
.

(4)

Analogously, we suppose xi and yi follow NB(r, pix) and
NB(r, piy), respectively, with known r. Note that there
are multiple definitions of the NB distribution and we
use the following ones: the PMF of NB(r, pix) for xi is(
xi+r−1

xi

)
(1− pix)

rpxi
ix and similarly for NB(r, piy), where

pix and piy are the probabilities of success, r represents
the number of failures, and xi and yi count the numbers of
successes. The respective MLEs of pix and piy are xi

xi+r and
yi

yi+r . The KL divergence between x and y with the MLEs
is given by

p∑
i=1

D̂KL [NB(r, pix) | NB(r, piy)]

=

p∑
i=1

rlog
yi + r

xi + r
+ xilog

xi(yi + r)

yi(xi + r)
.

(5)

The dissimilarity measures presented in Equation (4) and
Equation (5) both involve the logarithm terms, and thus
zeros in count data would result in the numerical problem.
Further, since the MLEs are close to the true values of pa-
rameters only if the number of observations is sufficiently

large, the MLE calculated from one observation respec-
tively are unreliable, so are D̂KL [Pois(λix) | Pois(λiy)]

and D̂KL [NB(r, pix) | NB(r, piy)].

To address these issues, we propose to use the empirical
Bayes estimators rather than the MLEs. The conjugate pri-
ors of Poisson and NB distributions are employed for es-
timating the parameters (λix, λiy, pix, piy). In addition,
the hyperparameters of these priors are learned from data
themselves, sidestepping the difficulty of specifying proper
priors to some degree. Concretely, we specify a Gamma
prior distribution G(mi, 1), where the shape parameter mi

is the mean value of the i-th dimension across all data points
and the other parameter is the scale parameter, for the Pois-
son means (λix, λiy). For the probability parameters of NB
distributions (pix, piy), we specify a Beta prior distribu-
tion B(mi, r) for them. Note that the mean value can be
thought of an additional observation. With the priors, we
obtain the posterior distribution of λix is G(mi+xi,

1
2 ) and

that of λiy is G(mi + yi,
1
2 ). The posterior means, which

are mi+xi

2 and mi+yi

2 , respectively, are used as the esti-
mated distributional parameters. Analogously, we obtain
the posterior mean mi+xi

mi+xi+2r from the posterior distribu-
tion B(mi+xi, 2r) and mi+yi

mi+yi+2r from B(mi+yi, 2r), as
the estimated distributional parameters for NB distributions.
Now we obtain the KL divergence between x and y with
the Bayes estimators (posterior means):

D̂Bayes
KL [Pois(λix) | Pois(λiy)]

=
1

2

p∑
i=1

yi − xi + (xi +mi) log
xi +mi

yi +mi
,

D̂Bayes
KL [NB(r, pix) | NB(r, piy)]

=

p∑
i=1

[
rlog

yi +mi + 2r

xi +mi + 2r

+
xi +mi

2
log

(xi +mi)(yi +mi + 2r)

(yi +mi)(xi +mi + 2r)

]
.

(6)

The logarithm terms in Equation (6) are well defined for
mi > 0, which is easily satisfied in practice as only mean-
ingless features in the form of all zeros have mi = 0. Owing
to the asymmetry of the KL divergence, we propose to use

D2
P = D̂Bayes

KL [Pois(λix) | Pois(λiy)]

+ D̂Bayes
KL [Pois(λiy) | Pois(λix)]

D2
NB = D̂Bayes

KL [NB(r, pix) | NB(r, piy)]

+ D̂Bayes
KL [NB(r, piy) | NB(r, pix)]

(7)

to measure the pairwise dissimilarity for count data. Table 1
lists the dissimilarity measures that we take into account
in this paper. Note that for DP and DNB we ignore their
multiplicative constant 1

2 for conciseness.



Table 1: Dissimilarity measures and their equations.

Measure Equation

DE(x,y)
[∑p

i=1(xi − yi)
2
] 1

2

Dr(x,y)
[∑p

i=1(gr(xi)− gr(yi))
2
] 1

2

Dasin(x,y)
[∑p

i=1(gasin(xi)− gasin(yi))
2
] 1

2

Dlog(x,y)
[∑p

i=1(glog(xi)− glog(yi))
2
] 1

2

DP (x,y) [
∑p

i=1(log(xi +mi)− log(yi +mi))(xi − yi)]
1
2

DNB(x,y)
[∑p

i=1

(
log xi+mi

xi+mi+2r − log yi+mi

yi+mi+2r

)
(xi − yi)

] 1
2

3 COMPARISON OF DISSIMILARITY
MEASURES FOR HIGH-DIMENSIONAL
SMALL COUNTS

In this section, we compare different measures listed in Ta-
ble 1, according to their abilities to distinguish distributions
that tend to produce small counts. First, we propose an index
to quantify the discriminative abilities of different dissim-
ilarity measures. Then, based on the proposed index, we
investigate and compare the statistical behaviours of differ-
ent measures when the dimension is high and the count data
consist of many zeros.

3.1 EVALUATION INDEX

The main practical goal of DR is to eliminate noisy or un-
informative dimensions of high-dimensional data and as-
sist downstream classification/clustering algorithms in un-
covering meaningful classes/clusters in the data. Different
classes/clusters of count data can be characterized by dif-
ferent distributions, and thus a dissimilarity measure that
distinguishes these distributions well could benefit the down-
stream analysis of the data when integrated into standard
DR approaches. In this subsection, we propose an index to
evaluate how well a dissimilarity measure separates those
data points generated from different distributions and groups
those from the same distribution. The definition of the pro-
posed index is given in Definition 1.

Definition 1 Suppose there are two count data distribu-
tions, denoted by Fx and Fy, respectively. Let SX =
{x1, . . . ,xnx

} be the set of samples generated from Fx

and SY =
{
y1, . . . ,yny

}
the set of samples from Fy. For

a given dissimilarity measure D(·, ·), the proposed index
R (Fx, Fy) is defined as∑

x∈SX ,y∈SY

D2(x,y)/(nxny)∑
xi,xj∈Sx,xi ̸=xj

D2(xj ,xi)
(nx−1)nx

+
∑

yi,yj∈Sy,yi ̸=yj

D2(yj ,yi)
(ny−1)ny

. (8)

Note that here we consider only two distributions for sim-
plicity, and to facilitate the following analysis we use the

squared dissimilarity function. In the following, the sub-
script ∗ of R∗ (Fx, Fy) will be that of the corresponding
dissimilarity measure. The mathematical objectives of many
DR approaches are to preserve the global or local proximity
of high-dimensional data, and the proposed index suits them
in that R (Fx, Fy) assesses simultaneously the variation
between data points from the same distribution (local prox-
imity) and the separation between data points from different
distributions (global proximity). R (Fx, Fy) > 1 implies
that using the corresponding dissimilarity measure D(·, ·)
makes the separation between Fx and Fy greater than the
within-distribution variation. By construction, a higher value
of R (Fx, Fy) would tend to indicate more powerful and
robust discriminative ability of the corresponding measure
in the presence of noisy dimensions, which possibly reduce
the between-distribution separation and increase the within-
distribution variation.

Before we dive into the comparison of measures us-
ing R (Fx, Fy), the statistical behaviour of R (Fx, Fy) in
the high-dimensional space should be clarified. Propo-
sition 1 presents the behaviour of R (Fx, Fy) for the
dissimilarity functions in a generic form: D2(x,y) =∑p

i=1 D
2(xi, yi) =

∑p
i=1 [f(xi)− f(yi)] [g(xi)− g(yi)],

which covers all the measures presented in Table 1. Propo-
sition 1 shows that R (Fx, Fy) moves toward a constant as
dimension p grows, irrespective of the number of samples
from distributions. The covariance of two increasing func-
tions (f ,g) of a random variable is positive [Schmidt, 2003],
and thus the constant which R (Fx, Fy) converges to would
be greater than 1

2 iff [Ef(x)− Ef(y)] [Eg(x)− Eg(y)] >
0, which is readily satisfied in practice. The convergence still
holds under some mild conditions, such as with dependent
dimensions and non-identical distributions.

Proposition 1 Suppose points in SX ∪ SY are indepen-
dent, and each coordinate of x, y in SX and SY are inde-
pendently drawn from 1-dimensional non-degenerate data
distributions Fx and Fy, respectively. For D2(x,y) =∑p

i=1 D
2(xi, yi) =

∑p
i=1 [f(xi)− f(yi)] [g(xi)− g(yi)]

with xi ∼ Fx, yi ∼ Fy, where f(·) and g(·) are
predetermined functions, if E[D2(x, y)], E[D2(x, x̃)] and
E[D2(y, ỹ)] exist for independent samples x̃, x ∼ Fx,
ỹ, y ∼ Fy , we have

RD (Fx, Fy)
prob→ 1

2
+

1

2

[Ef(x)− Ef(y)] [Eg(x)− Eg(y)]

Cov (f(x), g(x)) + Cov (f(y), g(y))
,

where
prob→ denotes the convergence in probability as the

dimension p goes to infinity.

3.2 COMPARE THE EUCLIDEAN DISTANCES
W/O VSTS

In the following, we compare DE of original data with the
Euclidean distances of the transformed data, according to



their behaviours when dealing with small counts in the high-
dimensional space; that is, we compare them in terms of
the respective constants that their R (Fx, Fy)’s converge
to as the dimension diverges to infinity. We first examine
the discriminative ability of DE when count data are small.
Corollary 1 provides the sufficient and necessary condition
for RE (Fx, Fy)

p→ cE > 1. This condition suggests that
for any pairs of Poisson distributions that generate small
counts with mean values less than 1, we obtain cE < 1;
that is, DE cannot distinguish the two distributions well.
Therefore, DE is expected to perform poorly when han-
dling small counts. An example showing DE is unable to
distinguish two Poisson distributions with different patterns
of small counts is provided in Section S.2 of Supplementary
Material.

Corollary 1 With the same assumptions and notation as
those in Proposition 1, for D(·, ·) = DE(·, ·), we have

1. RE (Fx, Fy)
prob→ cE ≥ 1

2 for some constant cE . The
equality holds iff E(x) = E(y) for x ∼ Fx, y ∼ Fy .

2. cE > 1 iff [E(x)−E(y)]2 > Var (x)+Var (y).

We then investigate the behaviours of R (Fx, Fy)’s of the Eu-
clidean distances based on VSTs when either Fx or Fy gen-
erates small counts. Without loss of generality, we assume
Fx produces small counts and Fy is an arbitrary distribution.
Suppose there is a VST characterized by an increasing trans-
formation function g(·), such that g(y) ≥ 0 for y ≥ 0. Note
that g(·) covers gr(y), gasin(y), and glog(y). Let DE of the
data transformed from raw counts by g(·) be Dg and the
corresponding index Rg (Fx, Fy). Corollary 2 provides the
difference between cg and cE when the proportion of zeros
of each data point in SX moves toward 1. It shows that, as
µx approaches 0, Dg is better suited for distinguishing data
points than DE iff [g(0)−Eg(y)]2

Var[g(y)] − E2(y)
Var(y) > 0.

Corollary 2 Suppose that x and y are non-negative random
variables. Let the expectation of Fx be µx. With the same
assumptions and notation as those in Proposition 1, we have

lim
µx→0

(cg − cE) =
1

2

[
[g(0)− Eg(y)]

2

Var [g(y)]
− E2 (y)

Var (y)

]
,

where cg and cE are the constants that Rg (Fx, Fy) and
RE (Fx, Fy) approach, respectively, as the dimension p goes
to infinity.

To illustrate the advantages of applying VSTs to small
counts, we obtain values of lim

µx→0
cg = 1

2 + 1
2
[g(0)−Eg(y)]2

Var[g(y)]

for Poisson distributions Fy’s with different mean values
and transformation functions by numerical computation.
Figure 1 supplies the numerical results and shows that gr,
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Figure 1: cg for different Poisson distributions and different
transforms.

glog, and gasin always result in a cg that is no less than cE .
In particular, it is observed from Figure 1(a) that cg’s exceed
1 when the Poisson mean is higher than 0.8, indicating that
the corresponding measures distinguish better between data
points with large proportions of zeros compared with DE .
Note that we assign a large value to r in cgasin (r = 1000)
since an arbitrary NB(r, p) approximates a Poisson distribu-
tion when r approaches infinity. The above analysis suggests
that, although the VSTs are unable to stabilize the variances
of small count data, they improve the discriminative abil-
ity over DE . Proofs of Proposition 1 and Corollary 2 are
provided in Section S.1 of Supplementary Material.

3.3 COMPARE THE TWO PROPOSED MEASURES
WITH OTHER DISSIMILARITY MEASURES

In the following, we will compare the proposed measures
(DP ,DNB) with the other dissimilarity measures in terms
of the proposed index R (Fx, Fy) computed in the high-
dimensional space. Note that the estimate R̂(Fx, Fy) would
be close enough to the constant that R(Fx, Fy) approaches
as long as the dimension is high enough. Take a pair of distri-
butions (Fx, Fy) and a pair of measures (DNB , DE) for ex-
ample, we believe DNB is superior to DE for distinguishing
between Fx and Fy if R̂NB(Fx, Fy) > R̂E(Fx, Fy). Fur-
ther, to thoroughly evaluate their discriminative abilities for
a specific distribution type, we compare their performances
in terms of the fraction that R̂NB(Fx, Fy) > R̂E(Fx, Fy)
for different configurations of parameters. The fraction
greater than 0.5 suggests DNB is better suited for dis-
tinguishing this distribution type than DE and vice versa.
The distributions types (Fx, Fy) taken into account are the
broadly used Poisson and NB distributions. Fx and Fy are
of the same distribution type but with different parame-
ter configurations. It is worth mentioning that RP (Fx, Fy)
and RNB(Fx, Fy) are the same when data are Poisson-
distributed, because DNB approaches DP when the dis-
persion parameter r goes to infinity. We thus exclude DNB

from the comparison for Poisson-distributed data. More



Table 2: Fraction that R̂(Fx, Fy) of a measure is greater
than that of another measure for Poisson distributions. The
value in entry (i, j) represents the fraction that R̂ of the
measure on the i-th row is greater than that of the measure
on the j-th column. Top two measures are shown in bold.

Measures DE Dr Dasin Dlog DP Ave
DE - 0.060 0.060 0.060 0.040 0.055
Dr 0.940 - 0.010 0.080 0.080 0.295
Dasin 0.940 0.940 - 0.010 0.010 0.520
Dlog 0.940 0.900 0.900 - 0.520 0.815
DP 0.960 0.920 0.900 0.480 - 0.815

Table 3: Fraction that R̂(Fx, Fy) of a measure is greater
than that of another measure for NB distributions.

Measures DE Dr Dasin Dlog DP DNB Ave
DE - 0.240 0.280 0.242 0.056 0.050 0.174
Dr 0.760 - 0.534 0.498 0.058 0.054 0.381
Dasin 0.720 0.466 - 0.352 0.106 0.052 0.339
Dlog 0.758 0.502 0.648 - 0.112 0.056 0.415
DP 0.944 0.942 0.894 0.888 - 0.070 0.748
DNB 0.950 0.946 0.948 0.944 0.930 - 0.944

details on the simulations and the calculation of different
measures are presented in Section S.3 of Supplementary
Material.

After simulations, we get R̂(Fx, Fy)’s for a wide scope of
parameter configurations and different distribution types. As
mentioned before, the measures are compared in terms of
R̂(Fx, Fy)’s. Table 2 and Table 3 supply the comparisons
of the measures when data follow Poisson and NB distribu-
tions, respectively. For small count data following Poisson
distributions, DP /DNB performs as well as Dlog. Further-
more, DNB is superior to the other measures when count
data are negative-binomially distributed. DE , as anticipated,
performs much worse than the other measures. The simula-
tion results show that DNB is better than the other measures
when distinguishing Poisson and NB distributions, and thus
we expect that DNB outperforms the others when integrated
into standard DR methods.

Although it is shown that DNB is superior to the other mea-
sures and DP is the second-best measure, we find that the
calculation of mi affects their discriminative performance.
Specifically, if the value of mi is closer to the average of the
expected values of the two distributions (Fx, Fy), DP and
DNB would have a better discriminative ability. We reason
that the mean of the expected values can be regarded as a
typical value informative to the parameter estimation when
used in the priors and thus is beneficial for the calculation
of the KL divergence.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results of rep-
resentative DR methods with different dissimilarity mea-

Table 4: Real scRNA-seq datasets used in this paper.

Dataset #clusters #cells #genes prop of zeros
sc-CEL-seq2 [Tian et al., 2019] 3 274 22060 0.678
sc-CEL-seq2-5cl-p1 [Tian et al., 2019] 5 297 15564 0.608
sc-CEL-seq2-5cl-p2 [Tian et al., 2019] 5 307 14078 0.598
sc-CEL-seq2-5cl-p3 [Tian et al., 2019] 5 305 13426 0.643
Zheng8eq [Zheng et al., 2017] 8 3994 13301 0.957

Table 5: Simulated scRNA-seq datasets used in this paper.

Dataset #clusters #cells #genes prop of zeros corresponding real dataset
sim-Zheng8eq 8 3994 13770 0.969 Zheng8eq [Zheng et al., 2017]
sim-manno-vm 5 1977 19416 0.899 manno-ESCs [La Manno et al., 2016]
sim-manno-ESCs 5 1715 19459 0.834 manno-ventral-midbrain [La Manno et al., 2016]

sures on both real and simulated high-dimensional count
datasets with large fractions of zeros. In addition, we com-
pare the generalised PCAs (GPCAs) [Collins et al., 2002]
and NMF [Dhillon and Sra, 2005] with the proposed mea-
sure DNB in Section S.6 of Supplementary Material.

4.1 DATASETS

The high-dimensional count data considered in this paper
is the single cell RNA sequencing (scRNA-seq) data with
unique molecular identifiers (UMI). scRNA-seq data offer a
unique opportunity to investigate the stochastic heterogene-
ity of complex issues at a near-genome-wide scale [Saliba
et al., 2014, Shapiro et al., 2013, Kolodziejczyk et al., 2015].
scRNA-seq data with UMI are often modelled by NB or
Poisson distributions [Townes et al., 2019, Kim et al., 2020,
Svensson, 2020] and exhibit large proportions of zero counts.
We run experiments on both real and simulated scRNA-seq
datasets. These datasets contain large proportions of zeros,
ranging from 0.6 to 0.97. The characteristics of the real
scRNA-seq datasets used in this paper are summarized in
Table 4. Cluster labels provided by the real scRNA-seq
datasets correspond to different cell types: labels for the
datasets obtained from Tian et al. [2019] are assigned in
terms of cancer cell lines and those for the Zheng8eq dataset
based on the types of purified peripheral blood mononu-
clear cells. All the cluster labels reported in these datasets
are defined independently of gene expression profiles and
can be used as the ground-truth labels. We simulate three
additional scRNA-seq datasets by using the R’s Splatter
package [Zappia et al., 2017] with most of the parameters
learned from real datasets except for differential expression
factors, which determine the difference between groups of
cells and the number of clusters. The information of the
simulated datasets and the corresponding real datasets used
for simulations are summarized in Table 5.

4.2 EVALUATION

Representative DR methods. We compare different mea-
sures with three representative DR methods: PCA, GPLVM,
and tSNE. GPLVM and PCA seek to retain the global struc-
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Figure 2: Visualization of the sim-manno-vm dataset ob-
tained by GPLVMs with different measures. Different clus-
ters are shown in different colours.
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Figure 3: Visualization of the sc-CEL-seq2-5cl-p1 dataset
obtained by PCA with different measures.

ture of data by preserving the pairwise proximity for all
pairs of data points, while tSNE predominantly preserves the
local structure with the pairwise proximity amongst neigh-
bouring data points. Therefore, DR results presented by
PCA/GPLVM and tSNE, respectively, are complementary.
The proposed measures and DE’s of the data transformed
by the VSTs are compared based on their performance when
integrated into the DR approaches. Note that r in DNB and
Dasin is set to the common NB dispersion parameter esti-
mated by the R’s edgeR package [Robinson et al., 2009].
As we treat mean values of features as pseudo observations
when deriving the proposed measures, we replace each value
x in the data matrix with x+m

2 , where m is the mean value
of the corresponding feature column, when estimating r.

Visualization. As visualization is an important application
of DR, we evaluate the DR methods with different dissimi-
larity measures by visually inspecting their DR results in a
two-dimensional (2D) space. A good visualization should
exhibit well-separated groups of data.

Clustering. Apart from visualization in a 2D space, DR
techniques can also be used for improving clustering of high-
dimensional data in real-world applications. For instance,
high-dimensional scRNA-seq data are often projected into a
low-dimensional space whose dimension could be greater
than 2, and clustering methods, such as k-means and hierar-
chical clustering, are performed on the dimension-reduced
data to improve clustering [Sun et al., 2019, Petegrosso
et al., 2020]. Furthermore, it has been shown that applying
k-means clustering in a PCA subspace can significantly im-
prove clustering accuracy [Ding and He, 2004]. As cluster-
ing is an important downstream task to DR, we also evaluate
the DR approaches with different measures based on the
clustering performance in the dimension-reduced space.

The k-means algorithm [MacQueen, 1967, Lloyd, 1982] is
used for inferring the cluster labels of data in the space of
reduced dimension. The number of clusters in the k-means
algorithm is set to be the ground truth. The clustering per-
formance is assessed in terms of the adjusted rand index
(ARI) [Hubert and Arabie, 1985] between the cluster labels
from the original publication/simulation and the inferred
ones. The higher the ARI, the better the performance. Nor-
mally, tSNE and GPLVM map high-dimensional data to a
2D space, and thus we consider only 2D projections when
evaluating their clustering performance. Since the results of
the tSNE algorithm could be variable, we replicate the pro-
cedure, of first performing tSNE and then applying k-means,
for 10 times on the datasets for a more reliable comparison.
More experimental details are provided in Section S.4 of
Supplementary Material.

4.3 VISUALIZATION

In this subsection, we examine whether the application of
DNB can produce better visualization.

First, we visualize the dimension-reduced data obtained
by GPLVMs with different measures in Figure 2 and Fig-
ures S2-S8 of Supplementary Material. It is observed that
GPLVMs with DNB , Dr, Dasin, and Dlog perform equally
well on most datasets except for the sim-manno-ESCs and
sim-manno-vm datasets. For the sim-manno-ESCs dataset
(Figure S8 of Supplementary Material), GPLVMs with DP

and DNB display well-grouped data in the 2D space while
those with the other measures fail to do so. Furthermore,
only the GPLVM with DNB can distinguish different groups
of data points on the sim-manno-vm dataset (Figure 2).

Secondly, we compare the visualization results obtained
by tSNE with different measures in Figures S9-S16 of
Supplementary Material. The tSNE algorithms with DNB ,
Dr, Dasin, and Dlog produce well-distinguished groups of
data on most datasets except for the Zheng8eq dataset (Fig-
ure S13), the sim-manno-ESCs dataset (Figure S15) and the
sim-manno-vm dataset (Figure S16), where all the measures
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Figure 4: ARI of k-means with GPLVMs and different dissimilarity measures on the following datasets: (a) sc-CEL-
seq2-5cl-p1, (b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g)
sim-manno-ESCs, and (h) sim-manno-vm.
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Figure 5: ARI of k-means with tSNE and different dissimilarity measures on the following datasets: (a) sc-CEL-seq2-5cl-p1,
(b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g) sim-manno-ESCs,
and (h) sim-manno-vm.

fail to recognize the groups of data.

Thirdly, by comparing PCA results with different measures
in the 2D space (Figure 3 and Figures S17-S23 of Sup-
plementary Material), we find that the PCA algorithms
with DNB , Dasin, Dlog produce more distinguished groups
of data on the sc-CEL-seq2-5cl-p1 dataset (Figure 3) and
the sc-CEL-seq2-5cl-p2 dataset (Figure S17). For the sc-
CEL-seq2-5cl-p3 dataset (Figure S18), the PCA with Dlog

presents three distinguished groups while those with the
other measures display only two groups. The PCA with
DNB and Dasin can separate the groups in the sc-CEL-seq2
dataset (Figure S19). The PCA algorithms with the proposed
measures and VSTs perform equally well on the Zheng8eq
dataset (Figure S20) and the sim-Zheng8eq dataset (Fig-
ure S21). For the sim-manno-ESCs dataset (Figure S22),
the applications of Dr, DP , and DNB lead to more dis-
tinguished groups in the data. Furthermore, it is observed
in Figure S23 that only the PCA with DNB can separate
groups of data to some degree on the sim-manno-vm dataset
while those with the other measures fail to do so.

It is found that the GPLVM/PCA with DNB often presents
distinguished groups of data in the 2D space while the tSNE
with DNB fails to do so on some datasets. This difference
may be due to the characteristics of the DR methods, but not
the dissimilarity measures themselves. As mentioned before,
GPLVM/PCA aims to preserve the global structure of data
and tSNE predominantly preserves the local structure. Thus,
tSNE may fail to preserve the global structure (inter-cluster
proximity) due to its preference for the local proximity. In
such cases, visualizing clusters with tSNE would not work
well. Although Kobak and Berens [2019] suggest using
informative initialization or multi-scale similarities to im-
prove the preservation of the global structure, but we find
that these strategies do not result in better-distinguished clus-
ters in the 2D space for the Zheng8eq, sim-manno-ESCs
and sim-manno-vm datasets.

To sum up, the GPLVM and PCA with DNB can produce
better visualization results than those with the other mea-
sures, while the tSNE with DNB may not distinguish clus-
ters well due to its preference for the local structure of data.
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Figure 6: ARI of k-means with PCA and different dissimilarity measures on the following datasets: (a) sc-CEL-seq2-5cl-p1,
(b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g) sim-manno-ESCs,
and (h) sim-manno-vm.

4.4 CLUSTERING RESULTS

In the following, we compare different measures in terms
of their clustering performance in the dimension-reduced
spaces. The k-means clustering results with GPLVMs and
different dissimilarity measures are shown in Figure 4. It
is observed that the GPLVM with DNB performs consis-
tently well on most datasets except the sc-CEL-seq2-5cl-p2.
Furthermore, the GPLVM with DNB obtains much higher
values than the other measures based on VSTs on the sim-
manno-ESCs dataset and the sim-manno-vm dataset. To sum
up, DNB outperforms the other measures when integrated
into GPLVM.

Figure 5 presents the k-means clustering results with tSNE
and different measures. The tSNE with DNB performs com-
parably well on some datasets except for the Zheng8eq,
sim-manno-ESCs, and sim-manno-vm datasets. The clus-
tering performance of the tSNE with DNB are consistent
with its visualization results. As we discussed before, its
relatively weak performance on the Zheng8eq, sim-manno-
ESCs, and sim-manno-vm datasets may be due to the tSNE’s
preference for the preservation of the local structure of data.
Furthermore, the clustering performance of tSNE suggests
that clustering on the outputs of DR techniques must be
done with caution. DR approaches, such as non-linear tSNE,
could be unsuccessful to preserve clusters and thus adversely
affect the cluster analysis.

It is observed in Figure 6, DNB is superior to the other
measures when combined with PCA, irrespective of the
number of dimensions, on most datasets except for the sc-
CEL-seq2-5cl-p3, Zheng8eq, and sim-Zheng8eq datasets.
On these three datasets, DNB outperforms most measures

when the dimension is greater than five.

In summary, consistent with the visualization results, the
clustering performance obtained by the representative
GPLVM/PCA with DNB are superior to those with the
other measures.

5 CONCLUSION

This paper investigates how to perform DR for high-
dimensional small count data. We propose a dissimilarity
measure DNB that is well-suited for count data with many
zeros. The statistical behaviours of different dissimilarity
measures when the dimension is high enough are inves-
tigated in terms of a proposed index. It is found that the
proposed measure DNB is superior to the other measures in
the sense that it distinguishes data points from different dis-
tributions better. Consistent with the statistical comparison,
the experimental results demonstrate that DNB enhances a
variety of standard DR approaches.
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