
Permutation Invariant Strategy Using Transformer Encoders for Table
Understanding

Sarthak Dash, Sugato Bagchi,
Nandana Mihindukulasooriya, Alfio Gliozzo

IBM Research AI, Thomas J. Watson Research Center
Yorktown Heights, NY

Abstract

Representing text in tables is essential for many
business intelligence tasks such as semantic
retrieval, data exploration and visualization,
and question answering. Existing methods
that leverage pretrained Transformer encoders
range from a simple construction of pseudo-
sentences by concatenating text across rows or
columns to complex parameter-intensive mod-
els that encode table structure and require addi-
tional pretraining. In this work, we introduce
a novel encoding strategy for Transformer en-
coders that preserves the critical property of
permutation invariance across rows or columns.
Unlike existing state-of-the-art methods for Ta-
ble Understanding, our proposed approach does
not require any additional pretraining and still
substantially outperforms existing methods in
almost all instances. We demonstrate the ef-
fectiveness of our proposed approach on three
table interpretation tasks: column type anno-
tation, relation extraction, and entity linking
through extensive experiments on existing tab-
ular datasets.

1 Introduction

Representation learning of natural language text
within relational databases, spreadsheets, and other
structured content has received particular inter-
est in recent times due to the advances made in
Transformer-based language models (Devlin et al.,
2019; Lan et al., 2020; Raffel et al., 2020). There is
a growing need for developing automated systems
to generate insights and make decisions with infor-
mation in these sources. Along with quantitative
data, these sources also have textual content that
play a crucial role in tasks such as retrieval from
data catalogs (Zhang and Balog, 2018), question an-
swering (Glass et al., 2021; Yin et al., 2020; Herzig
et al., 2020), and automating business intelligence
tasks (Sallam and Idoine, 2019).

The availability of large pretrained language
models using Transformers has enabled researchers

Name Party Riding

Brad Cathers Yukon Lake Laberge
Nils Clarke Liberal Riverdale North

Yvonne Clarke Yukon Porter Creek Centre
Sandy Silver Liberal Klondike

Jeremy Harper Liberal Mayo-Tatchun

Table 1: An example partial table from Wikipedia hav-
ing pageTitle YUKON LEGISLATIVE ASSEMBLY, and
sectionTile CURRENT MEMBERS.

to encode text within relational tables in many ways.
In one approach, existing works (Glass et al., 2021;
Yin et al., 2020) on Question Answering over Rela-
tional Tables build a pseudo-sentence by concate-
nating row/column entries, for example,

[S1] Name: Brad Cathers | Nils Clarke | ... |
Jeremy Harper
[S2] Name : Brad Cathers | Party : Yukon | Rid-
ing: Lake Laberge

which corresponds to the first column and the
first row respectively in Table 1. Here, the tokens
| and : act as delimiters. Such pseudo-sentences
are then processed through a Transformer encoder
model, and the [CLS] vector at the final layer is
treated as its representation (Devlin et al., 2019).
While such a strategy provides valuable context-
based information, it is sensitive to the ordering of
the cell values used in the encoding process.

Consider the pseudo-sentence [S3] which is built
by randomly shuffling the values in [S1],

[S3] Name : Nils Clarke | ... | Jeremy Harper |
Brad Cathers

If we follow above strategy, the final representa-
tion for [S1] and [S3] will be different. This would
be sub optimal, since it would be at odds with the
tabular structure where rows and columns may be
shuffled without losing semantic meaning.

Another approach used to encode text within a
relational table is introduced by Deng et al. (2020).

Here, the authors employ table metadata and the
row-column structure to constrain self-attention
only over structurally related elements. For ex-
ample, the mention Brad Cathers in Table 1 can
only attend to entries within the same row/column
and to the table metadata such as headers and cap-
tions. Such constraints introduce additional table
pretraining objectives for representation learning,
which comes with a relatively high up-front compu-
tational cost. These constraints and representation
are also inflexible to the explicit consideration of
structural relationships across rows/columns, such
as relations between column-pairs or hierarchies
between rows/columns that may need to be lever-
aged in some end tasks.

In this paper, we propose a permutation invariant
position encoding strategy that we call PI Strategy,
which can be used with existing Transformer-based
language models. The PI Strategy uses the pseudo-
sentence construction approach while allowing the
model to be insensitive to the ordering of cells
within a row or column. We evaluate our approach
on three relational table interpretation tasks: col-
umn type annotation, column relation linking, and
cell entity linking. Compared to existing state-of-
the-art approaches, we show that:

• Our approach is less parameter intensive.

• Our approach can also adapt the pseudo-
sentence representation to the requirements
of the downstream tasks.

• Our approach without any pretraining outper-
forms existing state-of-the-art approaches on
almost all instances.

2 Related Work

The task of modeling set-input problems, i.e., data
instances that behave as a set rather than a sequence,
using neural networks has been slowly gaining trac-
tion. Recent works such as Edwards and Storkey
(2017); Zaheer et al. (2017) propose a three step
strategy. First, each set element is encoded indepen-
dently to a fixed-size embedding. The second step
comprises of a commutative pooling operation, and
finally, the pooled embedding is processed through
a non-linear layer. Because each set element is pro-
cessed independently, information regarding possi-
ble interactions between the set elements has to be
necessarily discarded (Lee et al., 2019).

Vinyals et al. (2016) handle set inputs by pool-
ing them via a weighted average operation with

weights computed via an attention mechanism.
Yang et al. (2020) employ a similar strategy for
multi-view 3D reconstruction, where a dot-product
attention operator is used for weighted average
pooling. Ilse et al. (2018) use attention-based
weighted sum-pooling for multiple-instance learn-
ing. Santoro et al. (2017) propose the relational
network, an architecture that sum-pools all pair-
wise interactions between set elements, but not
the higher order interactions. Compared to these
approaches, ours uses multi-head attention for ag-
gregation. Also, our approach uses stacks of self-
attention modules within the Transformer encoder,
enabling us to model higher-order interactions be-
tween textual instances in a table row/column.

Lee et al. (2019) introduce Set transformer, a
novel Transformer architecture, wherein the en-
coder module does not contain positional embed-
ding and drop-out features. Such an approach is
not apt for encoding rows/columns within a table
because the ordering of individual tokens within a
particular cell value must still be encoded.

In the area of the representation learning strate-
gies on tables, recent works such as TAPAS (Herzig
et al., 2020), and TaBERT (Yin et al., 2020) en-
code the natural language question, query table pair
jointly, and employ a transformer encoder model
to assist in semantic parsing or question answer-
ing (QA) over tables. TAPAS proposes multiple
additional embeddings to encode the entire tabular
structure. However, none of these embeddings is
designed to encode permutation invariance. For
example, the position embeddings in TAPAS are
monotonically increasing from left to right, thereby
encoding a sense of ordering across the cell men-
tions. Moreover, the Row ID and the Column ID
embeddings within TAPAS impart a sense of order-
ing across the rows and columns. Another table
encoding model MATE (Eisenschlos et al., 2021)
is still vulnerable to row and column perturbations.

On the other hand, understanding relational ta-
bles by mapping them to entities, types, and rela-
tions in a semantically rich knowledge base (KB)
is a well-studied problem (Zhang and Balog, 2020;
Ritze et al., 2015). The main table interpretation
tasks involve table cell linking, column type annota-
tion, and relation extraction between column pairs.
Recent works such as TCN (Wang et al., 2021) and
DODUO (Suhara et al., 2021) employ multi-task
training objective for jointly learning column types
and relation labels. TABBIE (Iida et al., 2021) uses

Figure 1: A graphical representation of our Permutation Invariant position encoding strategy. Given a query column
with a header we first construct a pseudo sentence, and then tokenize it. While standard Transformer-based language
models such as BERT, ALBERT, GPT2, etc. assign position ids from left-to-right (Default Approach), our approach
assigns them in a piece-wise monotonically increasing manner.

two transformers, one to encode rows and the other
to encode columns, and employs a corrupt cell de-
tection objective function for pretraining. TABBIE
was pretrained using eight v100 GPUs for a week.

TURL (Deng et al., 2020) introduces a structure-
aware Transformer that employs a pretraining/fine-
tuning strategy for the table understanding tasks. In
contrast, our approach does not require additional
pretraining. Therefore it saves upon the computa-
tional overhead associated with pretraining. Fur-
thermore, we also show that our method performs
better compared to TURL on the table interpreta-
tion tasks. Currently, TURL is the published state-
of-the-art on the three table interpretation tasks and
TCN (Wang et al., 2021) improves on TURL for
a subset of tasks with data on both column type
annotation and relation extraction.

3 Permutation Invariance

In this section, we first describe our permutation-
invariant position encoding strategy, and then ex-
plain how it ensures permutation invariance. Figure
1 illustrates a graphical representation of our en-
coding strategy for a given query column. Current
approaches (Devlin et al., 2019; Lan et al., 2020;
Brown et al., 2020) use absolute position IDs from
left-to-right as indicated by the “Default Approach".
In contrast, we propose an alternative strategy for
assigning position IDs that work as follows,

• We introduce two special tokens [d] and
[|]. As shown in Figure 1, the [|] token
acts as a delimiter between the cell values in
a column, whereas the [d] separates the col-
umn header from the column values. Both
[d] and [|] are initialized at random, and

their representations are learned during train-
ing.

• Starting from a position ID of zero for the
[CLS] token, we increment by one till we
reach the [d] token. This assigns position
IDs zero through two for this example.

• If the position ID assigned to the [d] token is
n, then for all tokenized cell values, we start
assigning position IDs from n + 1 onwards,
in a left-to-right manner.

• In this example, the cell values lake laberge
(four tokens) gets position IDs of three to six,
whereas Riverdale North and Porter Creek
Centre (three tokens each) gets position IDs
of three to five. The cell value Klondike with
two tokens gets position ID of three and four.

• If m is the max value of position ID assigned
after all cells are processed, then all the [|]
tokens get a position ID of m+ 1, i.e., seven
for this example.

• Finally, the [SEP] token gets a position ID
of m+ 2, i.e. a value of eight in this example.

Once we build the position IDs for a given
pseudo-sentence ψ according to our strategy, we
use it to encode ψ via a Transformer-based lan-
guage model. A Transformer based language
model typically consists of the encoder module of a
transformer, which generally takes in the following
as inputs, a) Sub-word embeddings for each sub–
word within the tokenized sentence, b) Token type
embeddings for each subword token, and c) Po-
sition Embeddings for each subword token. The

position embeddings are responsible for assigning
an ordering to the sequence of sub-word tokens
since a transformer encoder module is unaware of
a token’s position. This ordering influences the
context of the subword token. These three em-
beddings are added for each sub-word token in ψ,
the transformer encoder then processes the result-
ing embedding sequence. Following the strategy
used by Devlin et al. (2019) to fine-tune on GLUE
benchmark, we consider the [CLS] vector as the
aggregated representation of the query column.

For a given column c, let ψ1 and ψ2 denote two
pseudo sentences due to two independent orderings
of cell values. Under our encoding strategy, we
observe that the vector corresponding to any token
t (in either ψ1 or ψ2) attends1 over the same set of
other token vectors regardless of cell ordering. At
each layer of the transformer encoder, both ψ1 and
ψ2 generate the same set of intermediate vectors,
just with a different ordering. Moreover, the first
vector in either ordering corresponds to the [CLS]
token and is equal for both ψ1 and ψ2. Therefore,
the [CLS] vector at the final layer, which we refer
to as our column representation, remains the same
for ψ1 and ψ2, thereby yielding a permutation in-
variant encoding. Our encoding strategy ensures
that all the cell values are positionally equidistant to
the [CLS] token and expected to have comparable
impact on its encoding.

Consider the example column in Figure 1. This
column contains four cell values yielding twenty-
four permutations in total. For each permuta-
tion, we computed its column representation as
described above. Finally, we calculated the vari-
ance of all possible l2 distances between any two
column representations. The variance measure for
our proposed permutation invariant position encod-
ing strategy was 1.5e-12, whereas, for the default
approach, this value was 0.41. This indicates that
our proposed approach yields embeddings that are
invariant to the ordering of the cell-values.

4 Tasks

We first define the table interpretation tasks and
then describe our approach using the PI Strategy.

4.1 Column Type Annotation

The column type annotation task is defined as,

1We use a scaled dot product attention operator, which
given a key-value pair (k, V) is invariant to the ordering of
vectors in V .

Definition 1. Given a table T and a set of semantic
types L, the column type annotation task refers to
the task of annotating a column c ∈ T with a type
label l ∈ L so that all entities in c have the type l.
Note that a column can have multiple type labels.

Column type annotation is a crucial task for Ta-
ble understanding and can provide vital informa-
tion in many downstream tasks, such as Question
Answering over Tables, Knowledge Discovery, etc.
Earlier works (Mulwad et al., 2010; Ritze et al.,
2015; Zhang, 2017) often coupled this task together
with entity linking. The entities within a column
were first linked to a KB, and then a majority voting
strategy was employed on the types of the linked
entities. Recently, Chen et al. (2019a,b); Hulsebos
et al. (2019); Deng et al. (2020) have studied this
task based on only the available information in a
given table without doing entity linking first. In
this work, we adopt a similar setting and compare
against Deng et al. (2020), which is the current
state of the art on this task.

Our Approach. Given a column c, for example,
let’s say the second column in Table 1, we encode
it via the PI Strategy to obtain column vector h.
The probability of predicting the class label l is,

P (l) = Sigmoid(hWl + bl) (1)

We use a binary cross-entropy loss function for
training.

4.2 Relation Extraction
The relation extraction task is defined as follows,
Definition 2. Given a table T and a set of relations
R in a KB, for a subject-object column pair in T ,
the goal is to annotate it with r ∈ R, so that r
holds between all the entity pairs.

Similar to the Column Type Annotation task,
existing approaches Mulwad et al. (2010); Ritze
et al. (2015); Zhang (2017) perform entity linking
first, followed by a KB lookup to obtain the list
of applicable relations. These approaches rely on
the entity linking performance and assume that the
KB in question is complete, i.e., all relations be-
tween entity pairs are present in the KB. Such an
assumption may not be true in general. Therefore,
following Deng et al. (2020), the goal is to clas-
sify a given subject-object column pair into one or
more relations, without explicitly linking table cell
mentions to entities. This is important as it allows
an user to extract new knowledge from web tables
for knowledge base population tasks.

Our Approach. To predict the relation label(s)
for a given column pair p, q (let’s say columns one
and two in Table 1), we first concatenate the two
columns to obtain a pseudo-column z, i.e. the i-th
cell value of column z is the concatentation (sepa-
rated by a special delimiter token [:]) of the i-th
cell values of columns p and q.

We employ two different strategies to build a
model for this task, based on whether we are using
entity mentions only or using extra metadata too
(See Table 2 below). For the case of entity men-
tions only, we encode the column z based on our
PI Strategy to obtain an unique representation h
for the column pair. Additionally, if we are using
extra metadata too, then we encode columns p, q
and z separately using the PI Strategy to obtain
representations hp,hq,hz, and concatenate them
to obtain the final representation h.

The goal of the concatenation step is to ensure
that as long as the cells in columns p, q are shuffled
in tandem, the overall column pair representation
remains the same. Finally, for predicting the class
labels, we follow the same expression as in equa-
tion 1, and also employ binary cross-entropy loss
function for training.

4.3 Zero shot Column Type Annotation

To further test the effectiveness of PI Strategy in
generating meaningful column representations, we
construct a Zero-shot column type annotation task.

To predict the type(s) for a given column in the
zero-shot setting, we employ a Siamese network
architecture, by using two separate transformer en-
coders. Each training instance consists of a (table
column, list of type labels pair), i.e., I = (c,Yc)
where c is a particular column, and Yc is a list of
type labels associated with c. We encode column
c using the PI Strategy and the first transformer
encoder. Concurrently, we encode the true type
label y ∈ Yc using the PI Strategy and the second
transformer encoder to obtain the label representa-
tion hy. Finally, we calculate the positive score s+

as the dot product between hc and hy.
The negative type labels are sampled at random,

and a similar process is used to calculate the neg-
ative score s−. We use both s+ and s−, together
with a binary cross-entropy loss for training.

4.4 Entity Linking

The entity linking task is defined as follows,

Definition 3. Given a table T and a knowledge

base K, entity linking aims to assign each potential
mention of cells in T to its referent entity e ∈ K.

Entity linking is usually addressed in a two-step
approach: a) Candidate generation, and b) Entity
disambiguation. The Candidate generation module
proposes a set of potential candidates, whereas the
Entity disambiguation module is a re-ranking step
that selects the best candidate entity matching the
cell mention for a given table.

Recent methods for table entity linking include
T2K (Ritze et al., 2015) that uses an iterative match-
ing approach, combining schema and entity match-
ing; Hybrid II (Efthymiou et al., 2017) that com-
bines a lookup and entity embedding method. Fol-
lowing Deng et al. (2020), we use the same Wiki-
data lookup service for candidate generation and
focus only on the disambiguation step.

Our approach. Entity disambiguation is a match-
ing problem that requires us to match a given table
cell mention to a particular entity within a candi-
date set of entities. We employ a bi-encoder archi-
tecture to rank the candidate set of entities for a
query mention. Given a cell mention m within a
table Tm, we extract the corresponding row Rm,
which consists of a set of column header, cell-value
pairs representing different attributes of m.

Consider the mention Lake Laberge in the first
row of Table 1 as an example. We extract out this
row and build the following pseudo-sentence:

Yukon Legislative Assembly Current Members
[m] [s] Riding [:] Lake Laberge [e] [d] Name [:]
Brad Cathers [|] Party [:] Yukon

For this task, we introduce another special de-
limiter token [m] that separates the metadata in-
formation2 from the rest of the pseudo sentence. In
this case, the page title, section title, and the table
caption (See Table 1) constitute the metadata infor-
mation. Moreover, following Soares et al. (2019),
we introduce two additional special tokens [s]
and [e] that surround the query mention. The
rest of pseudo-sentence after [d] consists of the
remaining entries within Rm.

This pseudo-sentence is then encoded according
to our proposed PI Strategy where entries after [d]
are permutationally invariant. This generates the
representation hm, which is the output vector at
the final layer, corresponding to the [s] token.

On the other hand, following Deng et al. (2020),
for each candidate entity e ∈ K, we use its name

2We concatenate the metadata together, which forms the
beginning of our pseudo sentence.

N , description D, and a set of type labels T . We
concatenate N,D together with the labels T , to
obtain the pseudo-sentence, which is then encoded
using PI Strategy to obtain a representation he for
the candidate entity e.

Given the mention vector hm and the candidate
entity vector he, we employ a similar training strat-
egy as the zero-shot column type annotation task.

5 Evaluation

To be comparable to TURL, we implement our
PI Strategy using a TinyBERT (Jiao et al., 2020)
model. For comparing our approach against exist-
ing state-of-the-art methods, we use the datasets
released by Deng et al. (2020). This paper intro-
duces three datasets, one each for Column Type
Annotation (CT), Relation Extraction (RE), and
Entity Linking (EL) tasks. We refer to them as
WT-TURL-{CT,RE,EL} respectively in this work.

For the Column Type Annotation task, we use
two additional small scale datasets, namely, T2D3

and Efthymiou. We follow the same experimental
setting as introduced in Chen et al. (2019b). For
this task, the type labels belong to Freebase for the
WT-TURL-CT dataset and DBPedia for the T2D
and Efthymiou datasets.

For the zero-shot Column Type Annotation (zs-
CT) Task, we rearranged the WT-TURL-CT dataset
into a new dataset called the zs-WT-TURL-CT
dataset. We ensure that individual columns within
the train, valid, and test folds do not overlap within
this new dataset. For evaluation, we use the trained
model to generate a ranked list Lc of type labels
for a given column qc and evaluate based on the
Mean Reciprocal Rank (MRR) and Hits@1 scoring
metrics. As qc can have more than one true label,
we use the best-ranked label for evaluation.

For the WT-TURL-EL dataset, we use the
same set of candidates as used by Deng et al.
(2020)4. This dataset only contains instances with
the ground truth label within the candidate list.
Therefore, we focus on Entity Disambiguation only
and use MRR and Hits@1 metrics for evaluation.
Additionally, for the T2D dataset (Lehmberg et al.,
2016), we do not train a separate model. Rather we
use our model trained on the WT-TURL-EL dataset
and apply it to T2D’s test set.

Moreover, following Deng et al. (2020), we use

3https://github.com/
alan-turing-institute/SemAIDA

4https://github.com/sunlab-osu/TURL

two different experimental settings, i.e., a) Using
Entity Mentions Only, and b) Using Extra metadata.
Table 2 illustrates a comparison of different data
artifacts used by both TURL and our approach, in
either of the experimental settings.

The dataset statistics are available in Table 15
of the Appendix. Also, we will release the zs-WT-
TURL-CT dataset once the anonymity period ends.

Table Artifact
Only Entity Mentions Extra metadata

TURL Ours TURL Ours

Page Title ✖ ✖ ✔ ✖

Section Title ✖ ✖ ✔ ✖

Table Caption ✖ ✖ ✔ ✖

Column Header ✖ ✖ ✔ ✔

Linked Entity Info ✖ ✖ ✔ ✔

Table 2: A comparison of Table artifacts used by TURL
and our approach on the three table interpretation tasks.
See Table 1 for an example.

5.1 Results: Column Type Annotation

Table 3 shows the results on the Column Type an-
notation task for the WT-TURL-CT dataset. The
first entry illustrates the performance of Sherlock
(Hulsebos et al., 2019), a model that uses 1588
features describing statistical properties, character
distributions, word embeddings and paragraph vec-
tors of the cell mentions in a column. TURL (Deng
et al., 2020) uses a structure-aware Transformer en-
coder model, and a pretraining/finetuning strategy
to attain the current state of the art for this task.

Approach Macro F1 Micro F1

Sherlock (Only Entity Mentions) - 0.785
TURL (Only Entity Mentions) 0.628 0.889
Ours (Only Entity Mentions) 0.716 0.903

TURL (Extra metadata) 0.805 0.948
Ours (Extra metadata) 0.832 0.948

Table 3: Results for the Column Type Annotation (CT)
task on the WT-TURL-CT dataset. Both TURL and our
approach run over a pretrained TinyBERT model.

The third row and the fifth row in Table 3 illus-
trates the performance of our approach on this task,
which is an original contribution of this work. Our
approach substantially outperforms TURL on the
Macro F1, under both the settings, i.e., “Only En-
tity Mentions" and “Extra metadata". In contrast,
for Micro F1, our approach generates a statisti-
cally significant gain of 1.4% (p-value < 1e-3 us-
ing McNemar’s test) under the former setting, and

https://github.com/alan-turing-institute/SemAIDA
https://github.com/alan-turing-institute/SemAIDA
https://github.com/sunlab-osu/TURL

achieves similar performance on the latter setting.
Next, we compare our approach to the TCN

model as introduced by Wang et al. (2021). This
model learns unique representation for tables by
aggregating information from both a single table
and across different tables. Moreover, it employs a
supervised multi-task training objective for jointly
learning column types and relations between col-
umn pairs. In comparison, our approach does not
use a multi-task training objective, and is column-
centric, i.e., encodes the query column only for
learning the column types.

TCN is evaluated on the intersection of the WT-
TURL-CT and the WT-TURL-RE datasets, i.e.,
columns present in both these datasets are only con-
sidered. The intersection yields a smaller dataset
having 55,318 tables with 201 type labels and 121
relation labels. Table 4 illustrates the results.

Approach F1-weighted

TaBERT (Yin et al., 2020) 0.895
TURL (Deng et al., 2020) 0.906
TCN (Wang et al., 2021) 0.933
BERT-Base+PI 0.944

Table 4: Comparison of weighted F1 values on an in-
tersection of the WT-TURL-CT and the WT-TURL-RE
dataset. The results from the first two rows are taken
from Wang et al. (2021).

Table 5 illustrates a comparison of Accuracy
on T2D and Efthymiou datasets. Following Chen
et al. (2019b), we train a single model using 70%
of the T2D dataset and then score separately on
both T2D and Efthymiou datasets. We observe that
our approach achieves the new state-of-the-art on
T2D, whereas on Efthymiou, it is almost similar in
performance (lags behind by 0.7%) to TURL. On
the other hand, when evaluated on entity mentions
only, our approach greatly improves over TURL.

Approach T2D Efthymiou

HNN+P2Vec (Chen et al., 2019b) 0.966 0.650
TURL + table metadata 0.962 0.746
Ours (entity mentions + col headers) 0.985 0.739

TURL (entity mentions only) 0.940 0.516
Ours (entity mentions only) 0.962 0.584

Table 5: Accuracy results on T2D and Efthymiou, fol-
lowing the setting in Chen et al. (2019b). Both the
approaches run over a pretrained TinyBERT model.

5.2 Results: Zero shot Column Type
Annotation

Table 6 shows the results on Zero shot Column
Type Annotation task when the choice of both the
Transformer encoder models is either a) TinyBERT
(Jiao et al., 2020), or b) BERT-Base (Devlin et al.,
2019). In either case, we observe that using our PI
Strategy yields a substantially higher performance,
compared to without it.

TinyBERT BERT-Base

With PI Without PI With PI Without PI

MRR 0.604 0.506 0.674 0.535
Hits@1 0.402 0.310 0.487 0.346

Table 6: Results on the Zero-shot Column Type Anno-
tation (zs-CT) task. All approaches here use only the
entity mentions and column headers.

5.3 Results: Relation Extraction

Table 7 shows the results on the Relation Extraction
task for the WT-TURL-RE dataset. The first block
of two rows compares the performance of TURL
with our approach when only entity mentions from
a given column pair are used. In comparison, the
second block illustrates relative performance when
extra metadata information is also used.

Approach Macro F1 Micro F1

TURL (Only Entity Mentions) 0.813 0.905
Ours (Only Entity Mentions) 0.845 0.914

TURL (Extra metadata) 0.914 0.949
Ours (Extra metadata) 0.906 0.941

Table 7: Results on the supervised Relation extraction
(RE) task. Both the approaches run over a pretrained
TinyBERT model.

We observe that when using entity mentions only,
our approach improves over TURL by 3.2% on the
Macro F1, whereas using additional table metadata
results in an almost similar Macro F1 by both meth-
ods. The Micro F1 remains practically identical in
either case, i.e., ±1% between both approaches.

Following Table 2, we notice that, unlike TURL,
our approach does not use Page Title, Section Tile,
nor Table Caption while operating under the “Extra
metadata" setting, yet achieves comparable perfor-
mances to TURL. How do we incorporate this addi-
tional contextual information within our approach
is something that we leave as future work.

5.4 Results: Entity Linking

Table 8 shows the results on the Entity Linking
task for the WT-TURL-EL and the T2D dataset,
wherein the final row illustrates the performance of
our approach.

Method
WT-TURL-EL T2D

MRR Hits@1 MRR Hits@1

Wikidata (Lookup) 0.842 0.785 0.931 0.894
TURL 0.901 0.852 0.899 0.848
Ours 0.949 0.918 0.949 0.917

Table 8: Results on the Entity Linking (EL) task. Since,
we use different scoring metrics, we re-evaluate TURL
based on the above benchmark datasets.

Note that the Wikidata lookup baseline achieves
a higher score than TURL on the T2D dataset,
which is in line with the findings reported by Deng
et al. (2020). Nevertheless, our approach substan-
tially outperforms over both Wikidata lookup as
well as TURL, on both the datasets.

We observe that running this experiment without
our Permutation Invariant (PI) strategy yields simi-
lar performance compared to using the PI strategy.
We encode the cell values across a row, unlike the
CT and RE tasks. Each row within the WT-TURL-
EL dataset has roughly three textual cell values on
average, as opposed to hundreds for the CT and RE
tasks. We believe that due to this small number of
values to encode, we cannot maximize the efficacy
of the PI strategy for this task compared to CT and
RE tasks. Thus we conclude that the PI Strategy
does not provide gains over the default approach
when the number of permutation invariant cells
being encoded is small.

6 Analysis: Encoding the entire Table

In this section, we compare our column-centric
approach against DODUO (Suhara et al., 2021)
on the CT task. The DODUO model encodes the
entire table and implements a multi-task learning
objective for jointly learning column types and re-
lations between column pairs. Table 9 illustrates
the comparison results.

The DOSOLO model encodes the entire table,
whereas the DOSOLO† model encodes the query
column only. In comparison, our approach is
column-centric, i.e., it does not encode the entire
table. Moreover, unlike DODUO, the last three
rows in Table 9 are finetuned only on the CT Task.

Approach Encode
full Table

Multi-task
Learning

Micro F1

DODUO ✔ ✔ 0.925
DOSOLO ✔ ✖ 0.914
DOSOLO† ✖ ✖ 0.825
Our Approach ✖ ✖ 0.920

Table 9: Comparison with existing approaches that en-
code the entire Table (on the CT Task). All the experi-
ments use entity mentions only as illustrated in Table 2,
and fine-tune over a BERT-Base model.

We observe that our approach substantially
outperforms DOSOLO†, wherein both these ap-
proaches are evaluated under similar experimental
settings. Moreover, our method performs slightly
below DODUO, even though the latter encodes the
entire table as additional context information and
performs multi-task learning. These results demon-
strate the effectiveness of our approach and open
up the possibility of employing a multi-task learn-
ing strategy within our method, which we leave as
future work.

7 Analysis: Ablation Tests

Table 10 illustrates the ablation experiments per-
formed on the supervised CT and RE tasks respec-
tively. The first row in the top block corresponds to
using the PI Strategy for the Position IDs. Replac-
ing PI Strategy with the default approach (Section
3) yields the second row. In the third row, we donot
use any Position IDs akin to the SetTransformer
model (Lee et al., 2019), whereas the fourth row
uses a constant Position ID of zero throughout.

The results indicate that removing the Position
ID parameter altogether performs the same as the
default approach. We expected it to be the case,
since there is no notion of an ordering between
cell-values across a single column. Nevertheless,
using our proposed permutation invariant strategy
results in the best overall performance.

We also ran additional experiments wherein we
created five random permutations of the test set cor-
responding to the supervised CT task. Within each
newly created test set, the cell values within each
column were randomly permuted and then scored
against both trained default TinyBERT and Tiny-
BERT+PI models. Compared to a constant macro
f1 score of 0.832 for each of the five tries by the
TinyBERT+PI model, the default TinyBERT model
had a macro f1 score of 0.81 with a standard devi-

Approach (using Extra metadata) Macro F1

TinyBERT+PI strategy for Position IDs 0.832
TinyBERT (Default approach) 0.812
TinyBERT+No Position ID 0.811
TinyBERT+Constant Position IDs 0.816

TinyBERT (Default Approach) 0.807
TinyBERT+PI strategy for Position IDs 0.845

Table 10: Ablation tests on the CT task (top block)
and RE task (bottom block) when evaluated on the WT-
TURL-CT and WT-TURL-RE datasets respectively.

ation of 8e-4. These results further reinforce our
hypothesis that the performance gains are indeed
due to PI.

For the default approach to mirror the PI results,
one needs to augment the training dataset with addi-
tional shuffled training instances. Such a strategy is
not optimal as it increases the runtime complexity
for training. In comparison, the PI approach learns
a consistent model regardless of the ordering of the
cells within a column, thereby demonstrating its
efficacy.

The experimental settings, hyper-parameters for
our experiments, error analysis, and additional ab-
lation experiments are described in the Appendix.

8 Conclusion

This paper introduces a Permutation Invariant po-
sition encoding strategy for transformer-based lan-
guage models that can encode a set of textual in-
stances independent of its ordering. We argued that
such a strategy generates meaningful representa-
tions for the rows/columns in a relational table. We
show that our proposed method is flexible enough
to apply to many downstream tasks. Unlike exist-
ing state-of-the-art approaches on table interpreta-
tion tasks, our method yields models that do not
require additional pretraining yet achieve a new
state-of-the-art on almost all the benchmarks.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.

2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and
Charles Sutton. 2019a. Colnet: Embedding the se-
mantics of web tables for column type prediction.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 29–36. AAAI
Press.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and
Charles Sutton. 2019b. Learning semantic annota-
tions for tabular data. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019, pages 2088–2094. ijcai.org.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2020. TURL: table understanding through repre-
sentation learning. Proc. VLDB Endow., 14(3):307–
319.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186. Association for Compu-
tational Linguistics.

Harrison Edwards and Amos J. Storkey. 2017. Towards
a neural statistician. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Vasilis Efthymiou, Oktie Hassanzadeh, Mariano
Rodriguez-Muro, and Vassilis Christophides. 2017.
Matching web tables with knowledge base entities:
From entity lookups to entity embeddings. In The
Semantic Web - ISWC 2017 - 16th International Se-
mantic Web Conference, Vienna, Austria, October
21-25, 2017, Proceedings, Part I, volume 10587 of
Lecture Notes in Computer Science, pages 260–277.
Springer.

Julian Eisenschlos, Maharshi Gor, Thomas Müller, and
William W. Cohen. 2021. MATE: multi-view atten-
tion for table transformer efficiency. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 7606–7619. Association for
Computational Linguistics.

Michael R. Glass, Mustafa Canim, Alfio Gliozzo, Sa-
neem A. Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharadwaj,
and Nicolas Rodolfo Fauceglia. 2021. Capturing row
and column semantics in transformer based question
answering over tables. In Proceedings of the 2021

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1609/aaai.v33i01.330129
https://doi.org/10.1609/aaai.v33i01.330129
https://doi.org/10.24963/ijcai.2019/289
https://doi.org/10.24963/ijcai.2019/289
https://doi.org/10.5555/3430915.3442430
https://doi.org/10.5555/3430915.3442430
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=HJDBUF5le
https://doi.org/10.1007/978-3-319-68288-4_16
https://doi.org/10.1007/978-3-319-68288-4_16
https://aclanthology.org/2021.emnlp-main.600
https://aclanthology.org/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 1212–1224. Association for
Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
4320–4333. Association for Computational Linguis-
tics.

Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker,
Emanuel Zgraggen, Arvind Satyanarayan, Tim
Kraska, Çagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A deep learning approach to seman-
tic data type detection. CoRR, abs/1905.10688.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 3446–3456. Association for Computa-
tional Linguistics.

Maximilian Ilse, Jakub M. Tomczak, and Max Welling.
2018. Attention-based deep multiple instance learn-
ing. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Re-
search, pages 2132–2141. PMLR.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 4163–4174. Association for Com-
putational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In Proceed-
ings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 3744–3753. PMLR.

Oliver Lehmberg, Dominique Ritze, Robert Meusel,
and Christian Bizer. 2016. A large public corpus

of web tables containing time and context metadata.
In Proceedings of the 25th International Conference
on World Wide Web, WWW 2016, Montreal, Canada,
April 11-15, 2016, Companion Volume, pages 75–76.
ACM.

Varish Mulwad, Tim Finin, Zareen Syed, and Anupam
Joshi. 2010. Using linked data to interpret tables. In
Proceedings of the First International Workshop on
Consuming Linked Data, Shanghai, China, Novem-
ber 8, 2010, volume 665 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Dominique Ritze, Oliver Lehmberg, and Christian Bizer.
2015. Matching HTML tables to dbpedia. In Pro-
ceedings of the 5th International Conference on Web
Intelligence, Mining and Semantics, WIMS 2015, Lar-
naca, Cyprus, July 13-15, 2015, pages 10:1–10:6.
ACM.

Rita Sallam and Carlie Idoine. 2019. Augmented ana-
lytics is the future of analytics. Gartner.

Adam Santoro, David Raposo, David G. T. Barrett,
Mateusz Malinowski, Razvan Pascanu, Peter W.
Battaglia, and Tim Lillicrap. 2017. A simple neu-
ral network module for relational reasoning. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4967–4976.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 2895–2905. Association for Computa-
tional Linguistics.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,
Çağatay Demiralp, Chen Chen, and Wang-Chiew Tan.
2021. Annotating columns with pre-trained language
models. arXiv preprint arXiv:2104.01785.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binx-
uan Huang, Xin Luna Dong, and Meng Jiang. 2021.
TCN: table convolutional network for web table inter-
pretation. In WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
pages 4020–4032. ACM / IW3C2.

https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
http://arxiv.org/abs/1905.10688
http://arxiv.org/abs/1905.10688
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
http://proceedings.mlr.press/v80/ilse18a.html
http://proceedings.mlr.press/v80/ilse18a.html
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v97/lee19d.html
https://doi.org/10.1145/2872518.2889386
https://doi.org/10.1145/2872518.2889386
http://ceur-ws.org/Vol-665/MulwadEtAl_COLD2010.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/2797115.2797118
https://www.gartner.com/document/code/444837
https://www.gartner.com/document/code/444837
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://doi.org/10.18653/v1/p19-1279
https://doi.org/10.18653/v1/p19-1279
http://arxiv.org/abs/1511.06391
https://doi.org/10.1145/3442381.3450090
https://doi.org/10.1145/3442381.3450090

Bo Yang, Sen Wang, Andrew Markham, and Niki
Trigoni. 2020. Robust attentional aggregation of deep
feature sets for multi-view 3d reconstruction. Int. J.
Comput. Vis., 128(1):53–73.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 8413–8426. Association for
Computational Linguistics.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabás Póczos, Ruslan Salakhutdinov, and Alexan-
der J. Smola. 2017. Deep sets. In Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages
3391–3401.

Shuo Zhang and Krisztian Balog. 2018. Ad hoc table
retrieval using semantic similarity. In Proceedings of
the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1553–1562. ACM.

Shuo Zhang and Krisztian Balog. 2020. Web table
extraction, retrieval, and augmentation: A survey.
ACM Trans. Intell. Syst. Technol., 11(2):13:1–13:35.

Ziqi Zhang. 2017. Effective and efficient semantic ta-
ble interpretation using tableminer+. Semantic Web,
8(6):921–957.

A Appendix

A.1 Hyperparameters

This section enumerates the experimental details
and the hyperparameters used in all of our exper-
iments. For all the methods, we do a grid search
over the hyper-parameter space using the validation
set, and report the test set results corresponding to
the best performing settings. For choosing a thresh-
old value to compute the Macro/Micro F1 metrics,
we employ a search space of [0.05, 1.0] with a step
size of 0.05. For the learning rate, we performed a
grid search over the following values {2e-5, 3e-5,
5e-5}.

For the WT-TURL dataset, the supervised CTA
task uses a learning rate of 2e-5. In contrast, the
supervised RE task uses a value of 5e-5. These
tasks use a single CPU and a GPU, a batch size
of 32, are evaluated for a max of 40 epochs, and
have early stopping criteria of 5 epochs. The CTA
task on T2D and Efthymiou datasets follow the
same experimental configuration as the WT-TURL
dataset, except that it runs for a max of 100 epochs
and has early stopping criteria of 20 epochs.

Similarly, the zero-shot CTA (zs-CTA) and the
Entity linking tasks also follow the same experi-
mental configuration as the CTA task, except for
the following. The transformer models for this task
use a max tokenizer length of 128. The zs-CTA task
on TinyBERT/BERT-Base uses eight/sixteen x86
CPUs for concurrent data loading, whereas the En-
tity linking task uses eight x86 CPUs for the same
purpose. Moreover, the zs-CTA/Entity linking task
on TinyBERT uses a single GPU for training (with
a batch size of 32), whereas on BERT-Base, it uses
four GPUs with a combined batch size of 24 for
faster training.

We used PyTorch v1.8.1+cu102 for running our
experiments, using Intel x86 CPU and Nvidia v100
GPU machines. All of our experiments used a
random seed of 73.

A.2 Comparison of Model sizes
Table 11 illustrates a comparison of model sizes
in terms of the number of trainable parameters of
TURL against our proposed approach.

Approach
Additional
Pretraining

Finetuning

CT RE EL

TURL 303 M 14.6 M 14.6 M 14.9 M
Ours N/A 14.4 M 14.4 M 28.7 M

Table 11: Comparing the model sizes in terms of number
of trainable parameters (M stands for millions).

The TURL method uses a pretrained TinyBERT
model. It performs a pretraining step, to begin with,
wherein it learns a total of 303 million parameters5.
Out of these, 289 million are kept fixed during
finetuning. In comparison, we do not perform ad-
ditional pretraining for our approach. Moreover,
our approach requires roughly 200K less trainable
parameters for fine-tuning on the CT and RE tasks.
For the EL task, we employ a siamese network ar-
chitecture, therefore our approach uses roughly 2x
trainable parameters compared to TURL. However,
the overall number of model parameters, involving
both pre-training and fine-tuning, required by our
approach is one order of magnitude less.

A.3 Using Larger Transformer Encoder
Models

Our PI Strategy also yields a performance im-
provement when evaluated against BERT-Base and

5Used PyTorch’s numel method on trained models avail-
able at https://github.com/sunlab-osu/TURL

https://doi.org/10.1007/s11263-019-01217-w
https://doi.org/10.1007/s11263-019-01217-w
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3372117
https://doi.org/10.1145/3372117
https://doi.org/10.3233/SW-160242
https://doi.org/10.3233/SW-160242
https://github.com/sunlab-osu/TURL

BERT-Large models (Table 12).

Approach TinyBERT BERT-Base BERT-Large

Default 0.812 0.823 0.832
With PI 0.832 0.836 0.833
Params 14M 109M 335M
Time/Epoch 2.5K 18K 69K

Table 12: Ablation tests on the supervised CT task show-
ing Macro F1 when evaluated on the WT-TURL-CT
dataset. Training using BERT-Large is done for three
epochs only. All experiments use Extra metadata as
illustrated in Table 2 and are done using one v100 GPU.
Furthermore, the Time/Epoch row is rounded off to the
nearest thousands and is measured in seconds.

As we move from TinyBERT to BERT-Base to
BERT-Large, we observe that the number of train-
able parameters increases by an overall factor of
24x (comparing TinyBERT to BERT-Large). This
increase in the model size is why we believe that
the performance improvement due to the PI strategy
decreases from 2% (for TinyBERT) to 0.1% (for
BERT-Large). Or, in other words, BERT-Large has
too many parameters that the learner can finetune,
which effectively offsets any gain in performance
obtained due to the PI strategy. On the other hand,
training BERT-Large is quite cumbersome, i.e., it
takes at least one order of magnitude longer to
train compared to TinyBERT and is computation-
ally (and environmentally) expensive.

Since TinyBERT is smaller in size, faster in in-
ference, and competitive in performance compared
to BERT-Base, a higher performance improvement
due to the usage of PI Strategy is highly significant
in the context of building and deploying practical
systems on real-world use cases.

A.4 Error Analysis

In this section, we perform error analysis for the
Column Type Annotation and the Relation Extrac-
tion tasks. The goal is to identify the type labels
that are most difficult to predict using our approach.
Note that, for this analysis, we use PI Strategy over
a TinyBERT model. In addition, we also use col-
umn headers and canonical labels corresponding
to the linked entity associated with the table cell
mention. We selected the top five type labels sorted
by the sum of the false positives and false negatives
on the test set. Table 13 illustrates these results.

The fine grained types such as sports.pro_athlete
and government.politician in Table 13 have a

Type label Test counts False neg False pos

sports.pro_athlete 1688 129 319
organization.organization 2122 121 156
location.citytown 562 89 138
location.location 3245 80 50
government.politician 495 73 52

Table 13: False negative/positive type predictions on the
WT-TURL-CT dataset.

classification error rate of 26.5% and 25.3% re-
spectively, whereas coarse-grained types such as
people.person have a 2.5% error rate. Further-
more, out of 138 false positives for the label loca-
tion.citytown, 135 of them have location.location
as a true label. On the other hand, all 89 test in-
stances that get marked as False negatives (for lo-
cation.citytown) have location.location as one of
the ground truth labels, and we can identify 74 of
them correctly. Table 14 illustrates the result of a
similar analysis on the Relation Extraction task.

If we generalize these observations, we can con-
clude that our approach a) Makes lot more errors
on fine-grained type labels as opposed to coarse–
grained labels, and b) Confuses often between la-
bels that are semantically related. This behavior
is expected since it is difficult for any model to
resolve these issues based only on tabular data,
i.e., without additional table contextual informa-
tion. As mentioned before, we leave the strategy of
inculcating contextual information into our learn-
ing approach for future work.

Relation Label False Neg False Pos

award.award_nominated_work.award_nominations-award.award_nomination.award_nominee 37 29
award.award_winning_work.awards_won-award.award_honor.award_winner 23 19
film.film.written_by 16 10

Table 14: False negative/positive relation predictions on the WT-TURL-RE dataset. Out of 37 counts of false
negatives for the first relation label, our approach predicts film.film.directed_by (23 counts), film.film.starring-
film.performance.actor (7 counts), and film.film.written_by (7 counts). Similarly, out of 23 counts of false neg-
atives for the second relation label, our approach predicts award.award_nominated_work.award_nominations-
award.award_nomination.award_nominee (12 counts) and film.film.written_by (5 counts). For all of these relation
labels, the corresponding test instances contained two columns, one containing names of people, and the other
containing names of movies, songs, albums, etc. Since, our approach does not use table context information,
resolving these label confusions seems difficult.

Task Name Dataset Train Dev Test Target Labels

CT Task
WT-TURL-CT 628,254 13,391 13,025 255
T2D 250 - 133 37
Efthymiou 250 - 620 37

zs-CT Task zs-WT-TURL-CT 409,125 (190) 106,756 (24) 29,259 (25) -
RE Task WT-TURL-RE 62,954 2,175 2,072 121

EL Task
WT-TURL-EL 1,264,217 76,720 225,777 -
T2D - - 21,270 -

Table 15: Dataset statistics for the Column Type Annotation (CT), Zero-Shot Column Type Annotation (zs-CT),
Relation Extraction (RE), and Entity Linking (EL) Tasks. For the zs-CT task, the number within the brackets (for
the train/dev/test folds) indicates the number of class labels available for that fold. For the EL task, we have a total
of roughly 5 million candidate entities due to Wikidata lookup across all the instances.

