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ABSTRACT

Despite their considerable success in multiple fields, studying 3D molecular struc-
tures of varying sizes presents a significant challenge in machine learning, particu-
larly in drug discovery, as existing methods often struggle to accurately capture
complex geometric relationships and tend to be less effective at generalizing across
diverse molecular environments. To address these limitations, we propose a novel
Equivariant Graph Self-Attention Transformer, namely EG-SAT, which effectively
leverages both geometric and relational features of molecular data while maintain-
ing equivariance under Euclidean transformations. This approach enables the model
to capture molecular geometry through higher-order representations, enhancing its
ability to understand intricate spatial relationships and atomic interactions. By ef-
fectively modeling the radial and angular distributions of neighboring atoms within
a specified cutoff distance using Atom-Centered Symmetry Functions (ACSFs),
EG-SAT leads to a more nuanced and comprehensive understanding of molecular
interactions. We validate our model on the QM9 and MD17 datasets, demonstrating
that EG-SAT achieves state-of-the-art performance in predicting most quantum
mechanical properties, thus showcasing its effectiveness and robustness in this
domain.

1 INTRODUCTION

Geometric deep learning has gained prominence as a powerful approach that leverages the inherent
symmetrles of specific learning tasks by embedding geometric priors ( ;

, ). By embedding these priors, models are endowed w1th a significant
1nduct1ve b1as which narrows the scope of learnable functions and leads to enhanced performance.
Classic examples include Convolutional Neural Networks (CNNs) ( , ), which are
designed to maintain in each layer equivariance to translations, and Graph Neural Networks (GNNs)
( s ), which are inherently invariant to node permutations. These models, by
exploiting symmetry groups, have been instrumental across a range of applications.

Among these, GNNs have seen extensive success in modeling molecular structures, from small
molecules for quantum chemistry predictions ( , ; , ) to larger
macromolecular structures like proteins ( ; s ). Their effectiveness
lies in their ability to represent molecules as graphs, Where atoms are treated as nodes and the edges
are defined by either chemical bonds or spatial proximity. GNNs commonly capture molecular
geometry using rotationally invariant features such as pairwise distances to model local interactions.
However, while this approach has been widely adopted, it lacks the ability to encode directional
information, which is critical for fully capturing the spatial arrangement and interactions between
atoms.

To address these shortcomlngs the inclusion of more comprehensive geometric features is necessary.
GNNss ( , ) excel at representing atomic systems due to their
natural fit with 3D graph representatlons where atoms are defined by their Cartesian coordinates.
Incorporating 3D molecular data, 1nclud1ng bond lengths and angles, is crucial for improving model
performance ( , , ). However, purely
rotationally invariant representatlons can blur dlstlnctlons between different structures, causing the
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Figure 1: A high-level overview of the EG-SAT model architecture. We subtly account for the
chemical composition of the environment by incorporating element-specific attention mechanisms
based on Radial AACSFs and Angular AACSFs, as shows in Figure 2. We derive the final result for

the radial attention mechanism, denoted as hz( :r b . In the same way, we calculate the outcome for the
NGy

angular attention, h; .. .

D)

Finally, we combine these two results to form the final node representation,

model to treat distinct atomic configurations as identical ( ; ).
When only pairwise distances are used as edge features, critical mformat1on such as bond angles can
be lost, especially for properties that are angle-dependent, like optical absorption ( ).
Even when angular information is included to address triplet interactions, there are still Challenges in
distinguishing molecular chains with equivalent bond angles as the structure rotates, altering dihedral
angles.

Equivariant neural networks offer a promising solution to this problem by capturing the inherent
symmetries in molecular data ( s ). These networks, particularly those based on
irreducible representations (irreps) ( s

), employ spherical harmonics to generate hlgher-order representauons that account for these
symmetries, resulting in improved accuracy in predicting molecular properties. Recent advancements
in this area have integrated attention mechanisms to further enhance performance ( ,

; , ). However, irreps come with the downside of high computational costs,
espec1ally when dealing with higher-order transformations. In contrast, more efficient equivariant
vector representations that operate directly in 3D Cartesian space have shown to achieve comparable
state-of-the-art performance across various tasks with significantly lower computational overhead

( , ; , ).

To overcome the limitations of distance-based representations and improve scalability, it is essential
to integrate angular information, which encodes bond angles and spatial relationships between atoms,
offering critical directional cues. By incorporating such geometric features into GNN architectures,
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models can better capture the local geometry of molecules, leading to enhanced predictive perfor-
mance ( s ). However, GNNs must also be able to handle larger molecular
structures with thousands of atoms and process their 3D geometry in a manner that is independent
of orientation and position. Enforcing equivariance under transformations corresponding to specific
symmetry groups ensures that the model can consistently analyze molecular data across different
orientations ( , ; , ), bridging the gap between local interactions
and global structural consistency.

Despite these advances, scaling models that incorporate geometric information remains computa-
tionally demanding, particularly when dealing with large molecular systems and a diverse range of
chemical species. One common method for capturing geometric features is through Atom-Centered
Symmetry Functions (ACSFs), which encode radial and angular distributions around each atom.
However, ACSFs face scalability issues, as the number of symmetry functions grows rapidly with
the number of chemical elements in a molecule, resulting in large descriptor vectors and increased
computational costs in high-throughput settings, such as molecular dynamics simulations (
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Figure 2: (a) Radial AACSFs adjusts contributions from atom pairs based on their distances and
features, while the gating mechanism provides flexibility and the Gaussian radial decay emphasizes
interactions with nearby atoms; (b) Angular AACSFs assigns varying importance to angular features,
while the gating mechanism manages information flow among atom triplets.

In this paper, we propose a novel approach that enhances traditional ACSFs by incorporating attention
mechanisms. Our method integrates both angular and radial information while addressing the
scalability challenges associated with ACSFs. This approach maintains computational efficiency
while improving predictive performance in GNNs for molecular applications. We rigorously validate
our model on benchmark datasets, demonstrating that it significantly enhances the understanding of
molecular structures and shows promise for applications in drug discovery and material science.

The main contributins of this work are follows:

* We introduce a new class of Attention-based Atom-Centered Symmetry Functions
(AACSFs), which maintain roto-translational invariance while improving on traditional
ACSFs by incorporating element-specific attention mechanisms.

* We develop a novel Equivariant Graph Self-Attention Transformer (EG-SAT), which is theo-
retically analyzed to ensure it respects the necessary symmetry properties of 3D molecular
structures.

* Our model addresses scalability issues of ACSFs by using attention-based mechanisms,
allowing efficient representation of diverse chemical elements without exponentially increas-
ing the number of symmetry functions.

* We propose a new gating mechanism that modulates the contributions of atomic pairs and
triplets, while the attention mechanism dynamically adjusts the weighting of angular features.
This enables the model to capture intricate geometric relationships between atoms more
effectively.
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2 BACKGROUND

In this section, we formalize the underlying geometric graph representation and introduce key
concepts related to symmetry, equivariance, and the atom-centered symmetry functions (ACSFs) that
play a vital role in molecular graph neural networks.

LetG = (V,E,AH, F, )2) be an undirected geometric graph, where V isa set of nodes, E C V x V'
is the set of edges. The matrix A € R"™*™ defines the adjacency relationships between nodes,

H € R™*# represents scalar node features, F € R"*9 is the matrix of geometric features, and
X € R™*3 contains the spatial coordinates of the nodes.

2.1 SYMMETRY AND GROUP REPRESENTATIONS

A critical aspect of geometric graphs is their symmetry properties. These are captured by the group of
symmetries 11, which preserves the structural relationships in the graph. Formally, an n-dimensional
representation of a group II is a mapping p : II — R"™*", where each group element = € II is
associated with an invertible matrix p(7). This mapping satisfies the condition p(7w) = p(7)p(w)
for all m,w € II. When p(7) is orthogonal for all = € TI, the representation is called orthogonal.

Group representations enable us to define two key properties:

* Invariance: A function f : X — Y is I-invariant if f(p(7)z) = f(z) for all 7 € II,
meaning the output remains unchanged under the group action.

* Equivariance: A function f : X — Y is II-equivariant if f(p(7)z) = p(7)f(x) for all
m € II, meaning the group action on the input results in a corresponding transformation of
the output.

2.2  GROUP ACTIONS ON GEOMETRIC GRAPHS

In geometric graphs, symmetry operations can transform the geometric attributes of the nodes and
edges as follows:

* Permutations: Given a permutation matrix P,,, a permutation of the graph is defined by
P.G = (P,APL P H,P,F,P,X).

* Orthogonal Transformations: Let Q € II be an orthogonal transformation that acts on the
geometric features and coordinates as Qﬁ and Q)Z, respectively.

« Translations: For a translation vector t € T, the node coordinates are translated as X; + t
for all nodes <.

These transformations capture the symmetries in the geometric structure of the graph, allowing
models to exploit equivariance in learning representations.

2.3  EQUIVARIANCE IN 3D SPACE

In the context of 3D molecular graphs, the relevant symmetry group is the Euclidean group SE(3),
which includes rotations and translations. This group can be mathematically represented through
its action on points in three-dimensional space. For any 3D orthogonal matrix Q € R3*? and a
translation vector Z € IR3, the group action p(.) on 7 € SE(3) is defined as:

p(m)% = QX+, (1)

where X € R? represents the 3D coordinate vector. This formulation captures transformations induced
by rotations, reflections, and translations, establishing a foundational understanding of how molecular
structures can be manipulated in 3D space. Within this context, the subgroup SO(3) specifically
represents the rotational symmetries, isolating the behavior of molecular graphs under rotation alone.

To further clarify the structure of these groups, we consider the orthogonal group O(3), which includes
all 3D orthogonal matrices. It is defined as: O(3) = {Q € R**3|Q7Q = QQ” =1, det(Q) = +1}.
This group encompasses both rotations and reflections, highlighting the full range of orthogonal



Under review as a conference paper at ICLR 2025

transformations in three dimensions. Notably, the special orthogonal group SO(3) is a subset of O(3)
that is restricted to those orthogonal matrices with a determinant of +1. This restriction is crucial, as
it ensures that the transformations in SO(3) represent pure rotations, which are particularly relevant
in the context of molecular configurations where orientation is a key factor.

2.4 ATOM-CENTERED SYMMETRY FUNCTIONS (ACSFS)

ACSFs ( , ) are an essential tool for capturing the local geometric environment
of atoms in molecular systems. They are designed to ensure invariance to symmetries in atomic
arrangements, providing a mathematically rigorous representation of the molecular structure.

The radial ACSF encodes the distribution of neighboring atoms around a central atom ¢ as follows:

N
miey = Y exp(—n (rij — 1)) * fo(rij), @

J#
where N = |N/(4)] is the number of neighboring atoms, r;; is the distance between atoms ¢ and j,

n and p are parameters controlling the width and center of the Gaussian. The cutoff function f.(-)
ensures that only significant neighbors are considered.

Similarly, the angular ACSF captures the angular relationships between atoms:

N N
— —*n‘—z—*m,.—z—*rv—z
mf\?é) — 9l cz Z(1+/\COS(9ijk))<@ nx(rig—p)° g=mx(rik—p)" g=mx(rjx—p) 3
G4 ki,

* fe(rig) * fe(rin) * fe(rin),

where 0, is the angle formed by atoms ¢, j, and k, and X adjusts the peak of the angular term. The
parameter ¢ controls the width of the angular distribution.

3 GEOMETRICALLY EQUIVARIANT GNNS

3.1 INVARIANT GEOMETRIC GNNS

Recent advancements in geometric graph models have introduced novel methods to achieve equivari-
ance, with many focusing on scalarization rather than relying solely on group representation theory.
In scalarization, geometric vectors are first transformed into invariant scalar quantities, which are
then passed through multiple layers of multilayer perceptrons (MLPs). These scalars control the
magnitude of the original vectors, which are subsequently reintroduced in their original directions
to ensure equivariance. This method was pioneered in models like SchNet ( , ) and
DimeNet ( , ), though they applied it in a purely invariant manner. Building on
these models, SphereNet ( , ) extended scalarized message passing by incorporating
angular and torsional information, enabling the model to differentiate molecular chirality while
maintaining overall invariance. Similarly, Radial Field ( , ) introduced an equivariant
version of this scalarization approach, although it focused exclusively on geometric vectors without
considering node features.

Despite the relative simplicity of scalarization techniques, their effectiveness has been theoretically
supported. Villar et al. ( , ) demonstrated that methods based on inner products could
universally achieve equivariance. Expanding upon this foundation, GemNet ( , )
integrated richer geometric information, such as dihedral angles, into the message-passing framework,
advancing the principles initially laid out by DimeNet. The key idea remains: multiplying an invariant
scalar by an equivariant vector still results in an equivariant vector.

Several additional approaches to equivariant message passing have emerged, following these scalar-
ization principles. For example, PaiNN ( , ) and the Equivariant Transformer (

, ) enhance the invariant SchNet by using radial basis functions to project in-
teratomic distances. These methods iteratively update both vector and scalar features during the
message-passing process. GVPGNN ( , ), on the other hand, offers a stronger theoretical
framework for achieving universal equivariance in message passing.
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When constructing invariant geometric GNNs, there are two principal approaches for incorporating
geometric invariance: distance-based invariant GNNs and many-body-based invariant GNNs. These
approaches differ in how they encode geometric information, offering distinct strategies to capture
molecular structures and interactions.

Distance-based invariant GNNs: Invariant geometric GNN layers aggregate scalar values from
local neighborhoods by transforming geometric information into scalar quantities (

). These scalar features are then updated from layer ¢ to £ 4 1 using trainable AGGREGATE and
COMBINE functions, which operate as follows:

m = 3 fo, 0, 1551
FEN() “4)

(t+1) _ ) ()
h; = CoMBINE(h; ", m;/),
where h; € R? denote the scalar feature vector of node 7, and iij e R4 represents the relative
positional vector: |[X;;|| = ||X; — X;||, where X; € R? denotes the 3D coordinate vector of node .

Distances and many-body-based invariant GNNs: To overcome the limitations in geometric
expressweness posed by distance- based message passing, recent invariant GNN models (

, ) emphasme the inclusion of scalar quantities
denved from higher-order 1nteract10ns extending beyond pairwise connections (such as triplets of

atoms).
Z f91 (h(t i dij) Z f@z (hgt)a h](:)a dlj) 42]]{;))
JEN()) keN (5)\{i} Q)
h{*" = comBvE(h{”, m "),
where d;; = ||X;;|| represents the distance between atoms ¢ and j, and bond angles Zijk =

Z(X;;,X;1,) are defined for atom triplets (i.e., 3-body order interactions).

3.2 IRREDUCIBLE REPRESENTATIONS

Equivariant neural networks are designed to process geometric tensors, such as type-L vectors, to
maintain equlvarlance ( , ; ;

, ) A key technlque employed is the use of geometric
functlons der1ved from spherical harmonics and irreducible representations (irreps), that networks
behave equivariantly in 3D Euclidean space.

Different approaches within this framework vary in how they implement equivariant operations,
particularly in their message-passing mechanisms. Both TEN ( , ) and NequlP
( , ) use linear message-passing strategies, where equivariant message updates
are achieved through convolutional layers. NequlP further enhances the equivariant architecture
by introducing gating mechanisms that modulate the messages in a structured manner, improving
model performance. In contrast, SEGNN ( , ) deviates by employing non-
linear message-passing mechanisms on irreducible representations, incorporating a similar gating
mechanism, but extending beyond linear messages to achieve more expressive power. Another
prominent architecture, the SE(3)-Transformer ( , ), builds on the dot-product attention
mechanism, applylng it to type-L vectors in an equivariant manner. Subsequent models (

, ) refined these Transformers, tailoring them specifically to work
with type-0 and type 1 vectors while maintaining the attention-based framework.

Central to these architectures is the ability to update hlgher—order spherical tensor features in an
equivariant manner ( ;

). For instance, TFN layers( , ) use higher order spherical tensors as node
features hl € R2+1xz where [ represents the order of the tensor [ = 0,...] = L. The first and
second orders represent the scalar features h; € R* and vector features f, € R?, respectively. The
higher order tensors h; are updated through Clebsch-Gordan tensor products ( , ) ®gy of
local neighborhood features hj for all j € N(4) with higher order spherical harmonic expansion
of displacement Y(l)(iij) € R+ where YV represents the higher order spherical harmonic
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representations and X;; = ”;—J” represents the relative displacement. The message passing scheme is
¥
defined as below:

~ —)
mx) = Z Y(l) (Xij) ®cg hj
JEN(D) (6)

(®)

A — COMBINE(h; m(t))7

h,
where w = ¢, ¢(h;, ||X;;]|) is the tensor product weight and v, 5 is the learned radial basis function.

This combination of irreducible representations, spherical harmonics, and tensor products provides
a robust framework for building equivariant GNNs capable of maintaining geometric consistency
across varying transformations, offering expressive models that perform well on tasks requiring 3D
rotational and translational invariance.

3.3 SELF-ATTENTION TRANFORMERS

In a self-attention module ( , ), each node with associated features is mapped into a query

and a set of key-value pairs to produce an output. The output is calculated as a weighted sum of the

values, where the weights are based on the similarity between the query and the corresponding key.

These modules are relatively easy to implement and offer significant design flexibility ( ,

, ), which has led to their broad application across various domains, including

language modeling ( s ; s ) and graph-based tasks ( s ;
; )

Recently, SE(3)- and E(3)-equivariant self-attention modules have been introduced. In (

, ), constructs SE(3)-equivariant query, key, and value representations using irreducible
representations. In E(3)-equivariant models, the L2-norm of the 3D coordinate vector differences
between nodes is frequently used as an invariant feature. Some methods generate queries, keys, and
values from scalar features and combine the query-key similarity with invariant features through
addition ( s ) or multiplication ( s s ). These
operations enhance the model’s ability to handle geometric transformatlons effectlvely

Additionally, some models adopt a more generalized self-attention approach by calculating attention
weights directly from both scalar features and invariant properties. This technique, as seen in works
such as ( , ), provides greater flexibility
in capturing complex mteractlons between nodes leadmg to improved performance in graph-based
tasks. By leveraging both scalar and invariant features in the attention mechanism, these models
can more effectively encode the geometric and topological structure of the data, resulting in more
powerful representations.

4 EQUIVARIANT GRAPH SELF-ATTENTION TRANSFORMER (EG-SAT)

We introduce a new class of Atom-Centered Symmetry Functions (ACSFs) ( R ),
referred to as Attention-based Atom-Centered Symmetry Functions (AACSFs), which maintain
roto-translational invariance. In addition, we propose a novel Equivariant Graph Self-Attention
Transformer (EG-SAT). We provide a theoretical analysis of how EG-SAT can be designed to achieve
equivariance, ensuring that it respects the necessary symmetry properties for accurate modeling of
3D molecular structures. This design enables EG-SAT to effectively capture higher-order interactions
and complex spatial relationships among atoms while preserving the model’s ability to generalize
across different molecular environments.

4.1 ATTENTION-BASED ATOM-CENTERED SYMMETRY FUNCTIONS

The primary limitations of Atom-Centered Symmetry Functions (ACSFs) become evident when
dealing with molecules that exhibit diverse chemical elements. First, ACSFs do not scale efficiently
with element diversity; they require an increasing number of radial and angular functions to represent
all possible element pairs and triples. As the number of elements in a system increases, the number of
necessary symmetry functions grows exponentially, complicating the descriptor vector size (

, ). This leads to a significant rise in computational overhead for both model training and
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the transformation of Cartesian coordinates. Consequently, the computational demands become
particularly burdensome for applications such as high-throughput screening and molecular dynamics
simulations. As a result, ACSFs are less practical for systems with complex chemical compositions
due to their poor scalability and high computational costs.

To address these shortcomings of traditional ACSFs, we propose a novel modification to this type of
descriptor. Instead of employing distinct functions for each combination of elements, we incorporate
the chemical composition of the environment in a more implicit manner. This is achieved by
integrating element-dependent attention functions into the radial and angular distribution equations
(Eq: 2 and 3), which allows for a more efficient representation. Specifically, the radial attention-based
ACSFs are defined as:

M) ad = Zg¢ b 0{") x ag ("), dij, e17) * o(eap(—n * (dij — 1)) = fo(m),  (7)
JFi
where g¢(h£t), h; )) = Sigmoid(GRUg(Concat(hE ) h gt)))) is a gating function and
ag(hl(.t),dij,e”) = Softmax(Q * KT) is an attention function. Here, Q = hl(.t)WQ and K =
Concat(e;, d;; )Wk, and o is the Softplus activation function. The pairwise distance d;; = ||X; —X;||?,
where X; and X; are the 3D coordinates of atom ¢ and j, respectively.

The radial attention-based ACSF function offers a more expressive and flexible approach to modeling
the radial relationships between atoms compared to traditional methods. By integrating attention
mechanisms, this function dynamically weights the contributions of different atom pairs based on
their distances and atomic features. Additionally, the gating mechanism enhances flexibility by
modulating the influence of each atom pair, while the Gaussian radial decay ensures that interactions
are focused on relevant neighboring atoms based on spatial proximity.

Building on this foundation, we further define the angular attention-based ACSFs as:

m(Atf) (i)ang = V¥ Z Z g6 (0" 1S 0 s a0, dij, dik, dj, Biji) * (1 + Acos(Bigr))
i ki

o (e s £ b 00 ) s (7m0 s f 00 m) ) ¢

U(efn*(dﬂ-,fm? « fc(h?),hg))),
®)

where gqﬁ(h(‘t),h;t),h](:)) = Sigmoid(GRUé(Concat(h(t) h!" h(t)))) is a gating function and

1 ) 7 )
ap(hy, dij, dit, djx, cos(Bijr)) = Softmax(Q* KT) is an attention function. Here, Q = hgt)WQ and
K Concat(du7 dik, dji, cos(Biji)) Wi, and o is the Softplus activation function. The v, A, {, 7
and . control various aspects of the model’s behavior: v scales the overall contribution of the attention
mechanism, A adjusts the weight of the cosine angular term, ¢ modulates the influence of angular
features, 1) controls the width of the radial basis function, and w shifts the center of the distance-based
INORNO)

7 0
fe(h; () h(t)) hgt) — hgt). This difference measures how the features of neighboring atoms change
as the message—passing process progresses through the layers.

Gaussian. We use f.(h ) to represent the feature difference between neighboring atoms, where

The key novelty of angular attention-based ACSFs approach lies in the combination of attention
and gating mechanisms within the angular-based ACSFs. The attention mechanism dynamically
weights the relative importance of angular features, while the gating mechanism regulates the flow of
information across different atom triplets. This dual integration makes our model highly flexible and
capable of capturing nuanced geometric relationships between atoms-an advancement that traditional
ACSF methods are unable to achieve.

Finally, we compute the final radial attention-based outcome, Wit — MLP((1 +e)h(t) +m§\f[)( ) ra 2)-

i,rad ~
Similarly, we can compute the angular attention-based outcome, hft:nl) = MLP((1 + e)h( )+
mj(\t,)( 3 anq) Then, we concatenate these two outcomes, hgtﬂ) = Concat(h(tﬂ) h(tH)) to compute

i,rad’ " i,ang
the final representation.



Under review as a conference paper at ICLR 2025

Property o Ae EHOMO ELUMO W C,,, G H R2 U UO ZPVE
SchNet* 0.235 63 41 34 0.033 0033 14 14 0.073 19 14 1.70
Cormorant 0.085 61 34 38 0.038 0.026 20 21 0961 21 22 203
DimeNet* 0.047 35 28 20 0.029 0.025 9 8 0331 8 8 1.29
NMP#* 0.092 69 43 38 0.030 0.040 19 17 0.180 20 20 1.50
TEN 0.223 58 40 38 0.064 0.101 - - - - - -
LieConv 0.084 49 30 25 0.032 0.038 22 24 0.800 19 19 2.28
L1Net* 0.088 68 46 35 0.043 0.031 14 14 0354 14 13 1.56
SEGNN 0.060 42 24 21 0.023 0.031 15 16 0.660 13 15 1.62
EGNN 0.071 48 29 25 0.029 0.031 12 12 0.106 12 11 1.55
SE(3)-Transformer 0.142 53 35 33 0.051 0.054 - - - - - -
EG-SAT 0.042 33 22 21 0.020 0.023 15 16 0.280 6 6 1.50

Table 1: Mean absolute error (MAE) for 12 quantum chemical properties on the QM9 dataset. Models
marked with an asterisk (*) use a different training/validation/testing data split. All results are sourced
from their respective original papers.

Complexity Analysis: EG-SAT is efficient in terms of computation, with both its time and memory
requirements growing linearly with the number of edges in the graph. The time complexity is
O(t(anzm + aem)) and the space complexity is O(e), where a indicates the number of attention
heads, e is the number of edges, n is the number of nodes, ¢ is the number of layers, and z and m
represent the dimensions of the input and output feature vectors, respectively.

Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our EG-SAT transformer on the QM9 ( s
; , ) and MD17 ( , ) datasets for quantum molecular property
prediction tasks.

5.1 QM9

The QM9 dataset consists of more than 130,000 small organic molecules with quantum chemical
properties calculated using Density Functional Theory (DFT). The molecules contain up to nine heavy
atoms, including elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and fluorine
(F). This dataset is widely used for training and evaluating machine learning models in molecular
property prediction tasks. In our study, we utilized a more complex data partitioning scheme, where
100,000 molecules were allocated for training, 18,000 for validation, and 13,000 for testing, following
the setup used by Cormorant ( , ). During training, the model optimizes the mean
absolute error (MAE) between the predicted outputs and the true molecular property labels.

Baselines: We compare our method against ten baseline approaches: SchNet ( , ),
Cormorant ( , ), DimeNet ( ), NMP ( , ), TEN
( , ), LieConv ( , ), L1Net ( , ), SEGNN (

R ), EGNN ( R ), and SE(3)-Transformer( s ).
Experimental setup for QM9: We employ the Adam optimizer ( , ). Our model is

trained for 500 epochs using a learning rate of 0.001, batchsize 64, « =1, u =0.01,{ =2,n=1,
and A = 0.5. We select the optimal weight decay from {0.0001, 0.0002, . ..,0.0009} and hidden
units from {64, 128,256,512}. For dropout rate, the best values for each property on QM9 are
chosen from {0.1,0.2, ...,0.6}.

5.2 MD17

The MD17 dataset contains molecular dynamics simulations of small organic molecules, including
atomic trajectories computed using DFT. We utilize MD17 to assess the performance of EG-SAT
in predicting molecular forces, a key requirement for molecular dynamics tasks. With a training
set comprising 1,000 samples, the remaining data is set aside for testing the model’s accuracy in
predicting energies and forces. The model outputs scalar energy (E), and the forces are derived
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Molecule Aspirin  Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

SehN energy 0.37 0.08 0.13 0.16 0.20 0.12 0.14
chNet forces 135 0.39 0.66 0.58 0.85 0.57 0.56
DimeN energy 0204 0.064 0.104 0.122 0.134 0.102  0.115
imeNet forces 0.499  0.230 0.383 0.215 0.374 0216  0.301
PaiNN energy 0.159  0.063 0.091 0.117 0.114 0.098  0.104
a forces 0371 0230 0319 0.151 0.221 0203  0.105
energy - - - - - - -
NequlP forces 0348  0.208 0.337 0.096 0.238 0.101  0.172
PhvsNet energy 0230 0.059 0.094 0.142 0.126 0.100  0.108
Y forces 0.605  0.160 0.219 0.310 0.337 0.191 0218
energy 0.19 0.07 0.10 0.12 0.12 0.10 0.11
sGDML forces 068 033 0.41 0.11 0.28 014 024
N N energy 0.168  0.078 0.096 0.118 0.115 0.004  0.107
ewtonNet forces 0348  0.264 0.323 0.084 0.197 0.088  0.149
FCHLIO energy 0.182  0.054 0.081 0.117 0.114 0.098  0.104
forces 0478  0.136 0.245 0.151 0.221 0.203  0.105
EG-SAT energy 0.150  0.040 0.030 0.100 0.130 0.100 _ 0.100
- forces 0.200  0.120 0.200 0.080 0.220 0.200  0.101

Table 2: Mean absolute error (MAE) metrics for energies (kcal/mol) and forces (kcal/mol/A) on the
MD17 dataset. All results are derived from the original publications.

by differentiating this energy with respect to atomic positions, F; = —9F/0r;.During training,
the model simultaneously minimizes the energy and force loss, weighted by factors of 1 and 100,
respectively.

Baselines: We compare our method against eight baseline approaches: SchNet ( , ),
DimeNet ( , ), PaiNN ( s ), NequlP ( , ), PhysNet
( . ), sSGDML ( R ), NewtonNet ( s ),
and FCHL19 ( , ).

Experimental setup for MD17: We use the Adam optimizer ( , ). Our model is trained

for 200 epochs using a learning rate of 0.0001, batchsize 1, « = 1, p = 0.001, { = 2, n = 1, and
A = 0.8. We select the optimal weight decay from {0.0001, 0.0002, . .., 0.0009} and hidden units
from {64,128, 256, 512}. For dropout rate, the best values for each dataset on MD17 are chosen
from {0.1,0.2, ...,0.6}.

6 CONCLUSION

In conclusion, our work introduces a novel framework for modeling 3D molecular structures with
improved scalability, accuracy, and geometric representation. By developing Attention-based Atom-
Centered Symmetry Functions (AACSFs) and the Equivariant Graph Self-Attention Transformer
(EG-SAT), we provide a robust solution to the limitations of traditional methods. The integration
of element-specific attention mechanisms and gating functions allows EG-SAT to capture higher-
order atomic interactions and intricate spatial relationships more effectively than existing models.
Our approach addresses the scalability issues associated with ACSFs, offering an efficient way to
handle diverse chemical elements while preserving the necessary symmetry properties for molecular
modeling. Validation on the QM9 and MD17 datasets demonstrates the better performance of EG-
SAT, making it a valuable tool for applications in quantum chemistry and drug discovery. This work
paves the way for more accurate and scalable models in the study of molecular interactions and
quantum mechanical properties.
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A APPENDIX
Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

Proof. LetZ € R? be a translation vector, Q € R3*3 be an orthogonal matrix. We will consider the

t)

feature vector h(» , which is already invariant under the Euclidean group SE(3).

Translatlon Equivariance: Assume the input 3D coordinates are transformed by a translation
vector Z: x = X; +Z and x = i'j + Z. Then, the pairwise distance transforms as follows:

d; = %, — xjH2 = ||(X; + z) — (Xj + Z)||> = ||X; — Xj||* = di;. Thus, d;; remains unchanged
under translation, leading to:

N
m(0 0= gs ) sag (0 dij. o) x o (exp(—n (dij — 1))« fo0)) =mQ

i
Rotatlon Equivariance: Now, assume a rotation is applied using an orthogonal matrix Q: X; = QX;
and X xj = QX;. Then, the distances transform as: dij = [|Qx; — Qx;||? = ||Q(X; — )H2 =

||X; — X;||* = d;;. The outputs g4 and ay are also invariant under such transformations, as their
formulations do not depend on the absolute positions of the nodes. Hence, we have shown that:

) m®
mN( Yrad N(i),'r'ad

Thus, Radial AACSFs is SE(3)-equivariant.

Similarly, we can prove the SE(3)-equivariance for the angular AACSFs. Under the same translation
z d;j = dij,d;k = dik,d;k = d;i. The angle 3;;;, between vectors remains unchanged since
cos( /ﬂ;J e ccts( Bijk)- Tlllus, we can show mﬁ\t[)(i)ﬂng = /(\t/)(z) ang’ Applying the same rotation
Q: X; = Qx;, X;, = QXi, X; = QX;. The distances transform as previously shown, and the angular
relationships are preserved under rotation. Hence, the equations remain invariant.

The output of EG-SAT depends on the radial and angular attenstion-based ACSFs: hgtﬂ) =
Concat(hgt;’;ld)7 hft(j'nl ; ). Thus, we can conclude that EG-SAT is also E(n)-equivariant. Therefore,
both the radial and angular ACSFs are equivariant under SE(3)-transformations, concluding the
proof. O
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