EQUIVARIANT GRAPH SELF-ATTENTION TRANS FORMER FOR LEARNING HIGHER-ORDER INTERAC TIONS IN 3D MOLECULAR STRUCTURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite their considerable success in multiple fields, studying 3D molecular structures of varying sizes presents a significant challenge in machine learning, particularly in drug discovery, as existing methods often struggle to accurately capture complex geometric relationships and tend to be less effective at generalizing across diverse molecular environments. To address these limitations, we propose a novel Equivariant Graph Self-Attention Transformer, namely EG-SAT, which effectively leverages both geometric and relational features of molecular data while maintaining equivariance under Euclidean transformations. This approach enables the model to capture molecular geometry through higher-order representations, enhancing its ability to understand intricate spatial relationships and atomic interactions. By effectively modeling the radial and angular distributions of neighboring atoms within a specified cutoff distance using Atom-Centered Symmetry Functions (ACSFs), EG-SAT leads to a more nuanced and comprehensive understanding of molecular interactions. We validate our model on the QM9 and MD17 datasets, demonstrating that EG-SAT achieves state-of-the-art performance in predicting most quantum mechanical properties, thus showcasing its effectiveness and robustness in this domain.

028 029

031

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027

1 INTRODUCTION

Geometric deep learning has gained prominence as a powerful approach that leverages the inherent symmetries of specific learning tasks by embedding geometric priors (Satorras et al., 2021; Bronstein et al., 2021; Chmiela et al., 2018). By embedding these priors, models are endowed with a significant inductive bias, which narrows the scope of learnable functions and leads to enhanced performance. Classic examples include Convolutional Neural Networks (CNNs) (LeCun et al., 1995), which are designed to maintain in each layer equivariance to translations, and Graph Neural Networks (GNNs) (Kipf & Welling, 2016), which are inherently invariant to node permutations. These models, by exploiting symmetry groups, have been instrumental across a range of applications.

040 Among these, GNNs have seen extensive success in modeling molecular structures, from small 041 molecules for quantum chemistry predictions (Gilmer et al., 2017; Schütt et al., 2017) to larger 042 macromolecular structures like proteins (Ingraham et al., 2019; Fout et al., 2017). Their effectiveness 043 lies in their ability to represent molecules as graphs, where atoms are treated as nodes and the edges 044 are defined by either chemical bonds or spatial proximity. GNNs commonly capture molecular geometry using rotationally invariant features such as pairwise distances to model local interactions. However, while this approach has been widely adopted, it lacks the ability to encode directional 046 information, which is critical for fully capturing the spatial arrangement and interactions between 047 atoms. 048

To address these shortcomings, the inclusion of more comprehensive geometric features is necessary.
GNNs (Kipf & Welling, 2016; Hou et al., 2020) excel at representing atomic systems due to their natural fit with 3D graph representations, where atoms are defined by their Cartesian coordinates.
Incorporating 3D molecular data, including bond lengths and angles, is crucial for improving model performance (Schütt et al., 2017; Chen et al., 2019; Gasteiger et al., 2020b). However, purely rotationally invariant representations can blur distinctions between different structures, causing the

Figure 1: A high-level overview of the EG-SAT model architecture. We subtly account for the chemical composition of the environment by incorporating element-specific attention mechanisms based on Radial AACSFs and Angular AACSFs, as shows in Figure 2. We derive the final result for the radial attention mechanism, denoted as $\mathbf{h}_{i,rad}^{(t+1)}$. In the same way, we calculate the outcome for the angular attention, $\mathbf{h}_{i,ang}^{(t+1)}$. Finally, we combine these two results to form the final node representation, $\mathbf{h}_{i}^{(t+1)}$.

086 087 088

081

082

084

085

000

model to treat distinct atomic configurations as identical (Miller et al., 2020; Schütt et al., 2021).
 When only pairwise distances are used as edge features, critical information such as bond angles can
 be lost, especially for properties that are angle-dependent, like optical absorption (Hsu et al., 2022).
 Even when angular information is included to address triplet interactions, there are still challenges in
 distinguishing molecular chains with equivalent bond angles as the structure rotates, altering dihedral
 angles.

Equivariant neural networks offer a promising solution to this problem by capturing the inherent 096 symmetries in molecular data (Weiler et al., 2018). These networks, particularly those based on irreducible representations (irreps) (Batzner et al., 2022; Thomas et al., 2018; Musaelian et al., 098 2023), employ spherical harmonics to generate higher-order representations that account for these 099 symmetries, resulting in improved accuracy in predicting molecular properties. Recent advancements in this area have integrated attention mechanisms to further enhance performance (Fuchs et al., 100 2020; Liao & Smidt, 2023). However, irreps come with the downside of high computational costs, 101 especially when dealing with higher-order transformations. In contrast, more efficient equivariant 102 vector representations that operate directly in 3D Cartesian space have shown to achieve comparable 103 state-of-the-art performance across various tasks with significantly lower computational overhead 104 (Schütt et al., 2021; Thölke & De Fabritiis, 2022a). 105

To overcome the limitations of distance-based representations and improve scalability, it is essential
 to integrate angular information, which encodes bond angles and spatial relationships between atoms,
 offering critical directional cues. By incorporating such geometric features into GNN architectures,

models can better capture the local geometry of molecules, leading to enhanced predictive performance (Gasteiger et al., 2020b). However, GNNs must also be able to handle larger molecular structures with thousands of atoms and process their 3D geometry in a manner that is independent of orientation and position. Enforcing equivariance under transformations corresponding to specific symmetry groups ensures that the model can consistently analyze molecular data across different orientations (Bronstein et al., 2021; Battaglia et al., 2018), bridging the gap between local interactions and global structural consistency.

115 Despite these advances, scaling models that incorporate geometric information remains computa-116 tionally demanding, particularly when dealing with large molecular systems and a diverse range of 117 chemical species. One common method for capturing geometric features is through Atom-Centered 118 Symmetry Functions (ACSFs), which encode radial and angular distributions around each atom. However, ACSFs face scalability issues, as the number of symmetry functions grows rapidly with 119 the number of chemical elements in a molecule, resulting in large descriptor vectors and increased 120 computational costs in high-throughput settings, such as molecular dynamics simulations (Gastegger 121 et al., 2018). 122

Figure 2: (a) Radial AACSFs adjusts contributions from atom pairs based on their distances and
features, while the gating mechanism provides flexibility and the Gaussian radial decay emphasizes
interactions with nearby atoms; (b) Angular AACSFs assigns varying importance to angular features,
while the gating mechanism manages information flow among atom triplets.

In this paper, we propose a novel approach that enhances traditional ACSFs by incorporating attention
 mechanisms. Our method integrates both angular and radial information while addressing the
 scalability challenges associated with ACSFs. This approach maintains computational efficiency
 while improving predictive performance in GNNs for molecular applications. We rigorously validate
 our model on benchmark datasets, demonstrating that it significantly enhances the understanding of
 molecular structures and shows promise for applications in drug discovery and material science.

148 149

150

151

152

153

154

156

157

141

The main contributins of this work are follows:

- We introduce a new class of Attention-based Atom-Centered Symmetry Functions (AACSFs), which maintain roto-translational invariance while improving on traditional ACSFs by incorporating element-specific attention mechanisms.
- We develop a novel Equivariant Graph Self-Attention Transformer (EG-SAT), which is theoretically analyzed to ensure it respects the necessary symmetry properties of 3D molecular structures.
- Our model addresses scalability issues of ACSFs by using attention-based mechanisms, allowing efficient representation of diverse chemical elements without exponentially increasing the number of symmetry functions.
- We propose a new gating mechanism that modulates the contributions of atomic pairs and triplets, while the attention mechanism dynamically adjusts the weighting of angular features. This enables the model to capture intricate geometric relationships between atoms more effectively.

162 2 BACKGROUND

In this section, we formalize the underlying geometric graph representation and introduce key concepts related to symmetry, equivariance, and the atom-centered symmetry functions (ACSFs) that play a vital role in molecular graph neural networks.

Let $G = (V, E, \mathbf{A}, \mathbf{H}, \vec{\mathbf{F}}, \vec{\mathbf{X}})$ be an undirected geometric graph, where V is a set of nodes, $E \subseteq V \times V$ is the set of edges. The matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ defines the adjacency relationships between nodes, $\mathbf{H} \in \mathbb{R}^{n \times z}$ represents scalar node features, $\vec{\mathbf{F}} \in \mathbb{R}^{n \times d}$ is the matrix of geometric features, and $\vec{\mathbf{X}} \in \mathbb{R}^{n \times 3}$ contains the spatial coordinates of the nodes.

172 173

174

175

176

177

178

179

180 181

182

183

185

186 187

188 189

190

191

192

193 194

196

197

201

208

164

165

166

167

2.1 Symmetry and Group Representations

A critical aspect of geometric graphs is their symmetry properties. These are captured by the group of symmetries Π , which preserves the structural relationships in the graph. Formally, an n-dimensional representation of a group Π is a mapping $\rho : \Pi \to \mathbb{R}^{n \times n}$, where each group element $\pi \in \Pi$ is associated with an invertible matrix $\rho(\pi)$. This mapping satisfies the condition $\rho(\pi\omega) = \rho(\pi)\rho(\omega)$ for all $\pi, \omega \in \Pi$. When $\rho(\pi)$ is orthogonal for all $\pi \in \Pi$, the representation is called orthogonal.

Group representations enable us to define two key properties:

- Invariance: A function $f : X \to Y$ is Π -invariant if $f(\rho(\pi)x) = f(x)$ for all $\pi \in \Pi$, meaning the output remains unchanged under the group action.
- Equivariance: A function f : X → Y is Π-equivariant if f(ρ(π)x) = ρ(π)f(x) for all π ∈ Π, meaning the group action on the input results in a corresponding transformation of the output.
- 2.2 GROUP ACTIONS ON GEOMETRIC GRAPHS

In geometric graphs, symmetry operations can transform the geometric attributes of the nodes and edges as follows:

- **Permutations**: Given a permutation matrix \mathbf{P}_{σ} , a permutation of the graph is defined by $\mathbf{P}_{\sigma}\mathcal{G} = (\mathbf{P}_{\sigma}\mathbf{A}\mathbf{P}_{\sigma}^{T}, \mathbf{P}_{\sigma}\mathbf{H}, \mathbf{P}_{\sigma}\vec{\mathbf{F}}, \mathbf{P}_{\sigma}\vec{\mathbf{X}}).$
- Orthogonal Transformations: Let $\mathbf{Q} \in \Pi$ be an orthogonal transformation that acts on the geometric features and coordinates as $\mathbf{Q}\vec{\mathbf{F}}$ and $\mathbf{Q}\vec{\mathbf{X}}$, respectively.
- Translations: For a translation vector $\vec{t} \in \mathbf{T}$, the node coordinates are translated as $\vec{x}_i + \vec{t}$ for all nodes *i*.

These transformations capture the symmetries in the geometric structure of the graph, allowing models to exploit equivariance in learning representations.

202 2.3 EQUIVARIANCE IN 3D SPACE

In the context of 3D molecular graphs, the relevant symmetry group is the Euclidean group SE(3), which includes rotations and translations. This group can be mathematically represented through its action on points in three-dimensional space. For any 3D orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{3\times 3}$ and a translation vector $\mathbf{\vec{z}} \in \mathbb{R}^3$, the group action $\rho(.)$ on $\pi \in SE(3)$ is defined as:

$$\rho(\pi)\vec{\mathbf{x}} = \mathbf{Q}\vec{\mathbf{x}} + \vec{\mathbf{z}},\tag{1}$$

where $\vec{x} \in \mathbb{R}^3$ represents the 3D coordinate vector. This formulation captures transformations induced by rotations, reflections, and translations, establishing a foundational understanding of how molecular structures can be manipulated in 3D space. Within this context, the subgroup SO(3) specifically represents the rotational symmetries, isolating the behavior of molecular graphs under rotation alone. To further clarify the structure of these groups, we consider the orthogonal group O(3), which includes

all 3D orthogonal matrices. It is defined as: $O(3) = \{ \mathbf{Q} \in \mathbb{R}^{3 \times 3} | \mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}, det(\mathbf{Q}) = \pm 1 \}$. This group encompasses both rotations and reflections, highlighting the full range of orthogonal 216 transformations in three dimensions. Notably, the special orthogonal group SO(3) is a subset of O(3)217 that is restricted to those orthogonal matrices with a determinant of +1. This restriction is crucial, as 218 it ensures that the transformations in SO(3) represent pure rotations, which are particularly relevant 219 in the context of molecular configurations where orientation is a key factor. 220

2.4 ATOM-CENTERED SYMMETRY FUNCTIONS (ACSFs) 222

221

226

232

233

234

235 236

241

242 243

244 245

246 247

223 ACSFs (Gastegger et al., 2018) are an essential tool for capturing the local geometric environment 224 of atoms in molecular systems. They are designed to ensure invariance to symmetries in atomic arrangements, providing a mathematically rigorous representation of the molecular structure. 225

The radial ACSF encodes the distribution of neighboring atoms around a central atom *i* as follows:

$$m_{\mathcal{N}(i)}^{rad} = \sum_{j \neq i}^{N} exp(-\eta * (r_{ij} - \mu)^2) * f_c(r_{ij}),$$
(2)

where $N = |\mathcal{N}(i)|$ is the number of neighboring atoms, r_{ij} is the distance between atoms i and j, η and μ are parameters controlling the width and center of the Gaussian. The cutoff function $f_c(\cdot)$ ensures that only significant neighbors are considered.

Similarly, the angular ACSF captures the angular relationships between atoms:

$$m_{\mathcal{N}(i)}^{ang} = 2^{1-\zeta} \sum_{j\neq i}^{N} \sum_{k\neq i,j}^{N} (1 + \lambda \cos(\theta_{ijk}))^{\zeta} e^{-\eta * (r_{ij} - \mu)^2} e^{-\eta * (r_{ik} - \mu)^2} e^{-\eta * (r_{jk} - \mu)^2} * f_c(r_{ij}) * f_c(r_{ik}) * f_c(r_{ik}),$$
(3)

where θ_{ijk} is the angle formed by atoms *i*, *j*, and *k*, and λ adjusts the peak of the angular term. The parameter ζ controls the width of the angular distribution.

GEOMETRICALLY EQUIVARIANT GNNs 3

3.1 INVARIANT GEOMETRIC GNNs

Recent advancements in geometric graph models have introduced novel methods to achieve equivari-248 ance, with many focusing on scalarization rather than relying solely on group representation theory. 249 In scalarization, geometric vectors are first transformed into invariant scalar quantities, which are 250 then passed through multiple layers of multilayer perceptrons (MLPs). These scalars control the 251 magnitude of the original vectors, which are subsequently reintroduced in their original directions 252 to ensure equivariance. This method was pioneered in models like SchNet (Schütt et al., 2018) and 253 DimeNet (Gasteiger et al., 2020b), though they applied it in a purely invariant manner. Building on 254 these models, SphereNet (Liu et al., 2022) extended scalarized message passing by incorporating 255 angular and torsional information, enabling the model to differentiate molecular chirality while maintaining overall invariance. Similarly, Radial Field (Köhler et al., 2020) introduced an equivariant 256 version of this scalarization approach, although it focused exclusively on geometric vectors without 257 considering node features. 258

259 Despite the relative simplicity of scalarization techniques, their effectiveness has been theoretically 260 supported. Villar et al. (Villar et al., 2021) demonstrated that methods based on inner products could 261 universally achieve equivariance. Expanding upon this foundation, GemNet (Klicpera et al., 2021) integrated richer geometric information, such as dihedral angles, into the message-passing framework, 262 advancing the principles initially laid out by DimeNet. The key idea remains: multiplying an invariant 263 scalar by an equivariant vector still results in an equivariant vector. 264

265 Several additional approaches to equivariant message passing have emerged, following these scalar-266 ization principles. For example, PaiNN (Schütt et al., 2021) and the Equivariant Transformer (Thölke 267 & De Fabritiis, 2022a) enhance the invariant SchNet by using radial basis functions to project interatomic distances. These methods iteratively update both vector and scalar features during the 268 message-passing process. GVPGNN (Jing et al., 2020), on the other hand, offers a stronger theoretical 269 framework for achieving universal equivariance in message passing.

When constructing invariant geometric GNNs, there are two principal approaches for incorporating geometric invariance: distance-based invariant GNNs and many-body-based invariant GNNs. These approaches differ in how they encode geometric information, offering distinct strategies to capture molecular structures and interactions.

Distance-based invariant GNNs: Invariant geometric GNN layers aggregate scalar values from local neighborhoods by transforming geometric information into scalar quantities (Schütt et al., 2018). These scalar features are then updated from layer t to t + 1 using trainable AGGREGATE and COMBINE functions, which operate as follows:

$$\mathbf{m}_{ij}^{(t)} = \sum_{j \in \mathcal{N}(i)} f_{\theta_1}(\mathbf{h}_j^{(t)}, ||\vec{\mathbf{x}}_{ij}||)$$

$$\mathbf{h}_i^{(t+1)} = \text{COMBINE}(\mathbf{h}_i^{(t)}, \mathbf{m}_{ij}^{(t)}),$$
(4)

where $\mathbf{h}_i \in \mathbb{R}^z$ denote the scalar feature vector of node *i*, and $\vec{\mathbf{x}}_{ij} \in \mathbb{R}^d$ represents the relative positional vector: $||\vec{\mathbf{x}}_{ij}|| = ||\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j||$, where $\vec{\mathbf{x}}_i \in \mathbb{R}^d$ denotes the 3D coordinate vector of node *i*.

Distances and many-body-based invariant GNNs: To overcome the limitations in geometric expressiveness posed by distance-based message passing, recent invariant GNN models (Shuaibi et al., 2021; Wang & Zhang, 2022; Wang et al., 2022) emphasize the inclusion of scalar quantities derived from higher-order interactions, extending beyond pairwise connections (such as triplets of atoms).

293

295 296

297 298

299

279

281

282

286

287

288

289

$$\mathbf{m}_{ij}^{(t)} = \sum_{j \in \mathcal{N}(i)} f_{\theta_1} \left(\mathbf{h}_i^{(t)}, \mathbf{h}_j^{(t)}, d_{ij}, \sum_{k \in \mathcal{N}(j) \setminus \{i\}} f_{\theta_2} \left(\mathbf{h}_j^{(t)}, \mathbf{h}_k^{(t)}, d_{ij}, \angle ijk \right) \right)$$

$$\mathbf{h}_i^{(t+1)} = \text{COMBINE}(\mathbf{h}_i^{(t)}, \mathbf{m}_{ij}^{(t)}),$$
(5)

where $d_{ij} = ||\vec{\mathbf{x}}_{ij}||$ represents the distance between atoms *i* and *j*, and bond angles $\angle ijk = \angle (\vec{\mathbf{x}}_{ij}, \vec{\mathbf{x}}_{ik})$ are defined for atom triplets (i.e., 3-body order interactions).

3.2 IRREDUCIBLE REPRESENTATIONS

Equivariant neural networks are designed to process geometric tensors, such as type-L vectors, to
maintain equivariance (Thomas et al., 2018; Miller et al., 2020; Batzner et al., 2022; Brandstetter
et al., 2022; Thölke & De Fabritiis, 2022b). A key technique employed is the use of geometric
functions derived from spherical harmonics and irreducible representations (irreps), that networks
behave equivariantly in 3D Euclidean space.

305 Different approaches within this framework vary in how they implement equivariant operations, particularly in their message-passing mechanisms. Both TFN (Thomas et al., 2018) and NequIP 306 (Batzner et al., 2022) use linear message-passing strategies, where equivariant message updates 307 are achieved through convolutional layers. NequIP further enhances the equivariant architecture 308 by introducing gating mechanisms that modulate the messages in a structured manner, improving 309 model performance. In contrast, SEGNN (Brandstetter et al., 2022) deviates by employing non-310 linear message-passing mechanisms on irreducible representations, incorporating a similar gating 311 mechanism, but extending beyond linear messages to achieve more expressive power. Another 312 prominent architecture, the SE(3)-Transformer (Fuchs et al., 2020), builds on the dot-product attention 313 mechanism, applying it to type-L vectors in an equivariant manner. Subsequent models (Thölke & 314 De Fabritiis, 2022b; Le et al., 2022a) refined these Transformers, tailoring them specifically to work 315 with type-0 and type-1 vectors while maintaining the attention-based framework.

316 Central to these architectures is the ability to update higher-order spherical tensor features in an 317 equivariant manner (Thomas et al., 2018; Batatia et al., 2022; Fuchs et al., 2020; Brandstetter et al., 318 2021). For instance, TFN layers(Thomas et al., 2018) use higher order spherical tensors as node 319 features $\tilde{\mathbf{h}}_i \in \mathbb{R}^{2l+1 \times z}$, where *l* represents the order of the tensor $l = 0, \dots l = L$. The first and 320 second orders represent the scalar features $\mathbf{h}_i \in \mathbb{R}^z$ and vector features $\vec{\mathbf{f}}_i \in \mathbb{R}^z$, respectively. The 321 higher order tensors $\tilde{\mathbf{h}}_i$ are updated through Clebsch-Gordan tensor products (Coope, 1970) \otimes_{cq}^{w} of 322 local neighborhood features $\hat{\mathbf{h}}_j$ for all $j \in N(i)$ with higher order spherical harmonic expansion 323 of displacement $Y^{(l)}(\tilde{\mathbf{x}}_{ij}) \in \mathbb{R}^{2l+1}$, where $Y^{(l)}$ represents the higher order spherical harmonic

representations and $\tilde{\mathbf{x}}_{ij} = \frac{\vec{\mathbf{x}}_{ij}}{||\vec{\mathbf{x}}_{ij}||}$ represents the relative displacement. The message passing scheme is defined as below:

327

328

330 331

332

333

334

335

336

where $w = \psi_{rbf}(\mathbf{h}_i, ||\vec{\mathbf{x}}_{ij}||)$ is the tensor product weight and ψ_{rbf} is the learned radial basis function.

$$\begin{split} \mathbf{m}_{ij}^{(t)} &= \sum_{j \in N(i)} \mathbf{Y}^{(l)}(\tilde{\mathbf{x}}_{ij}) \otimes_{cg}^{w} \tilde{\mathbf{h}}_{j}^{(t)} \\ \tilde{\mathbf{h}}_{i}^{(t+1)} &= \mathrm{Combine}(\tilde{\mathbf{h}}_{i}^{(t)}, \mathbf{m}_{ij}^{(t)}), \end{split}$$

(6)

This combination of irreducible representations, spherical harmonics, and tensor products provides a robust framework for building equivariant GNNs capable of maintaining geometric consistency across varying transformations, offering expressive models that perform well on tasks requiring 3D rotational and translational invariance.

337 338 3.3 Self-Attention Tranformers

In a self-attention module (Vaswani, 2017), each node with associated features is mapped into a query
and a set of key-value pairs to produce an output. The output is calculated as a weighted sum of the
values, where the weights are based on the similarity between the query and the corresponding key.
These modules are relatively easy to implement and offer significant design flexibility (Baek et al.,
2021; Jumper et al., 2021), which has led to their broad application across various domains, including
language modeling (Vaswani, 2017; Devlin, 2018) and graph-based tasks (Dwivedi & Bresson, 2020;
Veličković et al., 2018).

Recently, SE(3)- and E(3)-equivariant self-attention modules have been introduced. In (Fuchs et al., 2020), constructs SE(3)-equivariant query, key, and value representations using irreducible representations. In E(3)-equivariant models, the L2-norm of the 3D coordinate vector differences between nodes is frequently used as an invariant feature. Some methods generate queries, keys, and values from scalar features and combine the query-key similarity with invariant features through addition (Maziarka et al., 2020) or multiplication (Morehead et al., 2022; Le et al., 2022b). These operations enhance the model's ability to handle geometric transformations effectively.

Additionally, some models adopt a more generalized self-attention approach by calculating attention weights directly from both scalar features and invariant properties. This technique, as seen in works such as (Satorras et al., 2021; Köhler et al., 2020; Schütt et al., 2017), provides greater flexibility in capturing complex interactions between nodes, leading to improved performance in graph-based tasks. By leveraging both scalar and invariant features in the attention mechanism, these models can more effectively encode the geometric and topological structure of the data, resulting in more powerful representations.

360

361 362 4 EQUIVARIANT GRAPH SELF-ATTENTION TRANSFORMER (EG-SAT)

We introduce a new class of Atom-Centered Symmetry Functions (ACSFs) (Schutt et al., 2018), referred to as Attention-based Atom-Centered Symmetry Functions (AACSFs), which maintain roto-translational invariance. In addition, we propose a novel Equivariant Graph Self-Attention Transformer (EG-SAT). We provide a theoretical analysis of how EG-SAT can be designed to achieve equivariance, ensuring that it respects the necessary symmetry properties for accurate modeling of 3D molecular structures. This design enables EG-SAT to effectively capture higher-order interactions and complex spatial relationships among atoms while preserving the model's ability to generalize across different molecular environments.

370 371

372

4.1 ATTENTION-BASED ATOM-CENTERED SYMMETRY FUNCTIONS

The primary limitations of Atom-Centered Symmetry Functions (ACSFs) become evident when dealing with molecules that exhibit diverse chemical elements. First, ACSFs do not scale efficiently with element diversity; they require an increasing number of radial and angular functions to represent all possible element pairs and triples. As the number of elements in a system increases, the number of necessary symmetry functions grows exponentially, complicating the descriptor vector size (Gastegger et al., 2018). This leads to a significant rise in computational overhead for both model training and the transformation of Cartesian coordinates. Consequently, the computational demands become particularly burdensome for applications such as high-throughput screening and molecular dynamics simulations. As a result, ACSFs are less practical for systems with complex chemical compositions due to their poor scalability and high computational costs.

To address these shortcomings of traditional ACSFs, we propose a novel modification to this type of descriptor. Instead of employing distinct functions for each combination of elements, we incorporate the chemical composition of the environment in a more implicit manner. This is achieved by integrating element-dependent attention functions into the radial and angular distribution equations (Eq: 2 and 3), which allows for a more efficient representation. Specifically, the radial attention-based ACSFs are defined as:

$$\mathbf{m}_{\mathcal{N}(i),rad}^{(t)} = \sum_{j \neq i}^{N} g_{\phi}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}) * a_{\theta}(\mathbf{h}_{i}^{(t)}, d_{ij}, e_{ij}) * \sigma(exp(-\eta * (d_{ij} - \mu)^{2})) * f_{c}(\mathbf{h}_{j}^{(t)}), \quad (7)$$

390 391 392

393 394

395

402

389

where $g_{\phi}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}) = \text{Sigmoid}(\text{GRU}_{\tilde{\theta}}(\text{Concat}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)})))$ is a gating function and $a_{\theta}(\mathbf{h}_{i}^{(t)}, d_{ij}, e_{ij}) = \text{Softmax}(Q * K^{T})$ is an attention function. Here, $Q = \mathbf{h}_{i}^{(t)}W_{Q}$ and $K = \text{Concat}(e_{ij}, d_{ij})W_{k}$, and σ is the Softplus activation function. The pairwise distance $d_{ij} = ||\vec{\mathbf{x}}_{i} - \vec{\mathbf{x}}_{j}||^{2}$, where $\vec{\mathbf{x}}_{i}$ and $\vec{\mathbf{x}}_{j}$ are the 3D coordinates of atom i and j, respectively.

The radial attention-based ACSF function offers a more expressive and flexible approach to modeling the radial relationships between atoms compared to traditional methods. By integrating attention mechanisms, this function dynamically weights the contributions of different atom pairs based on their distances and atomic features. Additionally, the gating mechanism enhances flexibility by modulating the influence of each atom pair, while the Gaussian radial decay ensures that interactions are focused on relevant neighboring atoms based on spatial proximity.

Building on this foundation, we further define the angular attention-based ACSFs as:

$$\mathbf{m}_{\mathcal{N}(i),ang}^{(t)} = \gamma * \sum_{j \neq i}^{N} \sum_{k \neq i,j}^{N} g_{\phi}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{h}_{k}^{(t)}) * a_{\theta}(\mathbf{h}_{i}^{(t)}, d_{ij}, d_{ik}, d_{jk}, \beta_{ijk}) * (1 + \lambda cos(\beta_{ijk}))^{\zeta} * \sigma\left(e^{-\eta * (d_{ij} - \mu)^{2}} * f_{c}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)})\right) * \sigma\left(e^{-\eta * (d_{ik} - \mu)^{2}} * f_{c}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{k}^{(t)})\right) * \sigma\left(e^{-\eta * (d_{jk} - \mu)^{2}} * f_{c}(\mathbf{h}_{j}^{(t)}, \mathbf{h}_{k}^{(t)})\right) * \sigma\left(e^{-\eta * (d_{jk} - \mu)^{2}} * f_{c}(\mathbf{h}_{j}^{(t)}, \mathbf{h}_{k}^{(t)})\right),$$
(8)

410 411

where $g_{\phi}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{h}_{k}^{(t)}) = \text{Sigmoid}(\text{GRU}_{\tilde{\theta}}(\text{Concat}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}, \mathbf{h}_{k}^{(t)})))$ is a gating function and 412 413 $a_{\theta}(\mathbf{h}_{i}, d_{ij}, d_{ik}, d_{jk}, \cos(\beta_{ijk})) = \operatorname{Softmax}(Q * K^{T})$ is an attention function. Here, $Q = \mathbf{h}_{i}^{(t)} W_{Q}$ and 414 $K = \text{Concat}(d_{ij}, d_{ik}, d_{jk}, \cos(\beta_{ijk}))W_k$, and σ is the Softplus activation function. The $\gamma, \lambda, \zeta, \eta$ 415 and μ control various aspects of the model's behavior: γ scales the overall contribution of the attention 416 mechanism, λ adjusts the weight of the cosine angular term, ζ modulates the influence of angular 417 features, η controls the width of the radial basis function, and μ shifts the center of the distance-based 418 Gaussian. We use $f_c(\mathbf{h}_i^{(t)}, \mathbf{h}_i^{(t)})$ to represent the feature difference between neighboring atoms, where 419 $f_c(\mathbf{h}_i^{(t)}, \mathbf{h}_j^{(t)}) = \mathbf{h}_i^{(t)} - \mathbf{h}_j^{(t)}$. This difference measures how the features of neighboring atoms change as the message-passing process progresses through the layers. 420 421

The key novelty of angular attention-based ACSFs approach lies in the combination of attention and gating mechanisms within the angular-based ACSFs. The attention mechanism dynamically weights the relative importance of angular features, while the gating mechanism regulates the flow of information across different atom triplets. This dual integration makes our model highly flexible and capable of capturing nuanced geometric relationships between atoms-an advancement that traditional ACSF methods are unable to achieve.

Finally, we compute the final radial attention-based outcome, $\mathbf{h}_{i,rad}^{(t+1)} = \text{MLP}((1+\epsilon)\mathbf{h}_{i}^{(t)} + \mathbf{m}_{\mathcal{N}(i),rad}^{(t)})$. Similarly, we can compute the angular attention-based outcome, $\mathbf{h}_{i,ang}^{(t+1)} = \text{MLP}((1+\epsilon)\mathbf{h}_{i}^{(t)} + \mathbf{m}_{\mathcal{N}(i),ang}^{(t)})$. Then, we concatenate these two outcomes, $\mathbf{h}_{i}^{(t+1)} = \text{Concat}(\mathbf{h}_{i,rad}^{(t+1)}, \mathbf{h}_{i,ang}^{(t+1)})$ to compute the final representation.

400													
432	Property	α	$\Delta \epsilon$	ϵ_{HOMO}	ϵ_{LUMO}	μ	C_v	G	Η	R^2	U	U_0	ZPVE
433	SchNet*	0.235	63	41	34	0.033	0.033	14	14	0.073	19	14	1.70
434	Cormorant	0.085	61	34	38	0.038	0.026	20	21	0.961	21	22	2.03
435	DimeNet*	0.047	35	28	20	0.029	0.025	9	8	0.331	8	8	1.29
400	NMP*	0.092	69	43	38	0.030	0.040	19	17	0.180	20	20	1.50
436	TFN	0.223	58	40	38	0.064	0.101	-	-	-	-	-	-
437	LieConv	0.084	49	30	25	0.032	0.038	22	24	0.800	19	19	2.28
438	L1Net*	0.088	68	46	35	0.043	0.031	14	14	0.354	14	13	1.56
100	SEGNN	0.060	42	24	21	0.023	0.031	15	16	0.660	13	15	1.62
439	EGNN	0.071	48	29	25	0.029	0.031	12	12	0.106	12	11	1.55
440	SE(3)-Transformer	0.142	53	35	33	0.051	0.054	-	-	-	-	-	-
441	EG-SAT	0.042	33	22	21	0.020	0.023	15	16	0.280	6	6	1.50

Table 1: Mean absolute error (MAE) for 12 quantum chemical properties on the QM9 dataset. Models marked with an asterisk (*) use a different training/validation/testing data split. All results are sourced from their respective original papers.

Complexity Analysis: EG-SAT is efficient in terms of computation, with both its time and memory requirements growing linearly with the number of edges in the graph. The time complexity is O(t(anzm + aem)) and the space complexity is O(e), where a indicates the number of attention heads, e is the number of edges, n is the number of nodes, t is the number of layers, and z and m represent the dimensions of the input and output feature vectors, respectively.

Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our EG-SAT transformer on the QM9 (Gilmer et al., 2017; Wu et al., 2018) and MD17 (Chmiela et al., 2017) datasets for quantum molecular property prediction tasks.

5.1 QM9

442

443

444

445 446

447

448

449

450

451 452

453 454

455 456

457

458

459 460

461

462 The QM9 dataset consists of more than 130,000 small organic molecules with quantum chemical 463 properties calculated using Density Functional Theory (DFT). The molecules contain up to nine heavy 464 atoms, including elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and fluorine 465 (F). This dataset is widely used for training and evaluating machine learning models in molecular 466 property prediction tasks. In our study, we utilized a more complex data partitioning scheme, where 467 100,000 molecules were allocated for training, 18,000 for validation, and 13,000 for testing, following the setup used by Cormorant (Anderson et al., 2019). During training, the model optimizes the mean 468 absolute error (MAE) between the predicted outputs and the true molecular property labels. 469

Baselines: We compare our method against ten baseline approaches: SchNet (Schütt et al., 2017),
Cormorant (Anderson et al., 2019), DimeNet Gasteiger et al. (2020a), NMP (Gilmer et al., 2017), TFN (Thomas et al., 2018), LieConv (Finzi et al., 2020), L1Net (Miller et al., 2020), SEGNN (Brandstetter et al., 2021), EGNN (Satorras et al., 2021), and SE(3)-Transformer(Fuchs et al., 2020).

Experimental setup for QM9: We employ the Adam optimizer (Kingma, 2014). Our model is trained for 500 epochs using a learning rate of 0.001, batchsize 64, $\alpha = 1$, $\mu = 0.01$, $\zeta = 2$, $\eta = 1$, and $\lambda = 0.5$. We select the optimal weight decay from {0.0001, 0.0002, ..., 0.0009} and hidden units from {64, 128, 256, 512}. For dropout rate, the best values for each property on QM9 are chosen from {0.1, 0.2, ..., 0.6}.

480 5.2 MD17

481

The MD17 dataset contains molecular dynamics simulations of small organic molecules, including atomic trajectories computed using DFT. We utilize MD17 to assess the performance of EG-SAT in predicting molecular forces, a key requirement for molecular dynamics tasks. With a training set comprising 1,000 samples, the remaining data is set aside for testing the model's accuracy in predicting energies and forces. The model outputs scalar energy (E), and the forces are derived

	Molecule	Aspirin	Ethanol	Malonaldehyde	Naphthalene	Salicylic acid	Toluene	Uracil
 SchNet	energy forces	0.37 1.35	0.08 0.39	0.13 0.66	0.16 0.58	0.20 0.85	0.12 0.57	0.14 0.56
DimeNet	energy forces	0.204 0.499	0.064 0.230	0.104 0.383	0.122 0.215	0.134 0.374	0.102 0.216	0.115 0.301
 PaiNN	energy forces	0.159 0.371	0.063 0.230	0.091 0.319	0.117 0.151	0.114 0.221	0.098 0.203	0.104 0.105
 NequIP	energy forces	0.348	0.208	0.337	0.096	0.238	0.101	0.172
PhysNet	energy forces	0.230 0.605	0.059 0.160	0.094 0.219	0.142 0.310	0.126 0.337	0.100 0.191	0.108 0.218
 sGDML	energy forces	0.19 0.68	0.07 0.33	0.10 0.41	0.12 0.11	0.12 0.28	0.10 0.14	0.11 0.24
NewtonNet	energy forces	0.168 0.348	0.078 0.264	0.096 0.323	0.118 0.084	0.115 0.197	0.094 0.088	0.107 0.149
 FCHL19	energy forces	0.182 0.478	0.054 0.136	0.081 0.245	0.117 0.151	0.114 0.221	0.098 0.203	0.104 0.105
 EG-SAT	energy forces	0.150 0.200	0.040 0.120	0.080 0.200	0.100 0.080	0.130 0.220	0.100 0.200	0.100 0.101

Table 2: Mean absolute error (MAE) metrics for energies (kcal/mol) and forces (kcal/mol/Å) on the MD17 dataset. All results are derived from the original publications.

by differentiating this energy with respect to atomic positions, $F_i = -\partial E/\partial r_i$. During training, the model simultaneously minimizes the energy and force loss, weighted by factors of 1 and 100, respectively.

Baselines: We compare our method against eight baseline approaches: SchNet (Schütt et al., 2017),
DimeNet (Gasteiger et al., 2020a), PaiNN (Schütt et al., 2021), NequIP (Batzner et al., 2022), PhysNet
(Unke & Meuwly, 2019), sGDML (Chmiela et al., 2019), NewtonNet (Haghighatlari et al., 2022),
and FCHL19 (Christensen et al., 2020).

Experimental setup for MD17: We use the Adam optimizer (Kingma, 2014). Our model is trained for 200 epochs using a learning rate of 0.0001, batchsize 1, $\alpha = 1$, $\mu = 0.001$, $\zeta = 2$, $\eta = 1$, and $\lambda = 0.8$. We select the optimal weight decay from {0.0001, 0.0002, ..., 0.0009} and hidden units from {64, 128, 256, 512}. For dropout rate, the best values for each dataset on MD17 are chosen from {0.1, 0.2, ..., 0.6}.

518 519

520

502

504 505

6 CONCLUSION

521 In conclusion, our work introduces a novel framework for modeling 3D molecular structures with 522 improved scalability, accuracy, and geometric representation. By developing Attention-based Atom-523 Centered Symmetry Functions (AACSFs) and the Equivariant Graph Self-Attention Transformer 524 (EG-SAT), we provide a robust solution to the limitations of traditional methods. The integration 525 of element-specific attention mechanisms and gating functions allows EG-SAT to capture higher-526 order atomic interactions and intricate spatial relationships more effectively than existing models. Our approach addresses the scalability issues associated with ACSFs, offering an efficient way to 527 handle diverse chemical elements while preserving the necessary symmetry properties for molecular 528 modeling. Validation on the QM9 and MD17 datasets demonstrates the better performance of EG-529 SAT, making it a valuable tool for applications in quantum chemistry and drug discovery. This work 530 paves the way for more accurate and scalable models in the study of molecular interactions and 531 quantum mechanical properties. 532

533 534 REFERENCES

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural networks. *Advances in neural information processing systems*, 32, 2019.

 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
 Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and interactions using a three-track neural network. *Science*, 373(6557):871–876, 2021.

540	Ilves Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csánvi, Mace: Higher
541	order aquivariant massage passing neural networks for fast and accurate force fields. Advances in
	order equivariant message passing neural networks for fast and accurate force neros. Advances in
542	<i>Neural Information Processing Systems</i> , 35:11423–11436, 2022.
543	

- Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. *arXiv preprint arXiv:1806.01261*, 2018.
- Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
 Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for
 data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):2453, 2022.
- Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric and physical quantities improve e(3) equivariant message passing. In *International Conference on Learning Representations*, 2021.
- Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric
 and physical quantities improve e (3) equivariant message passing. In *International Conference on Learning Representations*, 2022.
- Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.
- 561 Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal
 562 machine learning framework for molecules and crystals. *Chemistry of Materials*, 31(9):3564–3572,
 563 2019.
- Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields. *Science advances*, 3(5):e1603015, 2017.
- Stefan Chmiela, Huziel E Sauceda, Klaus-Robert Müller, and Alexandre Tkatchenko. Towards exact molecular dynamics simulations with machine-learned force fields. *Nature communications*, 9(1): 3887, 2018.
- 571
 572
 573
 574
 Stefan Chmiela, Huziel E Sauceda, Igor Poltavsky, Klaus-Robert Müller, and Alexandre Tkatchenko. sgdml: Constructing accurate and data efficient molecular force fields using machine learning. *Computer Physics Communications*, 240:38–45, 2019.
- Anders S Christensen, Lars A Bratholm, Felix A Faber, and O Anatole von Lilienfeld. Fchl revisited:
 Faster and more accurate quantum machine learning. *The Journal of chemical physics*, 152(4), 2020.
- JAR Coope. Irreducible cartesian tensors. iii. clebsch-gordan reduction. *Journal of Mathematical Physics*, 11(5):1591–1612, 1970.
- Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint arXiv:1810.04805, 2018.
- Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 arXiv preprint arXiv:2012.09699, 2020.
- Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In *International Conference on Machine Learning*, pp. 3165–3176. PMLR, 2020.
- Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph convolutional networks. *Advances in neural information processing systems*, 30, 2017.
- Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d rototranslation equivariant attention networks. *Advances in neural information processing systems*, 33: 1970–1981, 2020.

594 595 596	Michael Gastegger, Ludwig Schwiedrzik, Marius Bittermann, Florian Berzsenyi, and Philipp Mar- quetand. wacsf—weighted atom-centered symmetry functions as descriptors in machine learning potentials. <i>The Journal of chemical physics</i> , 148(24), 2018.
597 598 599	Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs. <i>arXiv preprint arXiv:2003.03123</i> , 2020a.
600 601	Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs. In <i>International Conference on Learning Representations</i> , 2020b.
602 603 604 605	Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In <i>International conference on machine learning</i> , pp. 1263–1272. PMLR, 2017.
606 607 608 609	Mojtaba Haghighatlari, Jie Li, Xingyi Guan, Oufan Zhang, Akshaya Das, Christopher J Stein, Farnaz Heidar-Zadeh, Meili Liu, Martin Head-Gordon, Luke Bertels, et al. Newtonnet: a newtonian message passing network for deep learning of interatomic potentials and forces. <i>Digital Discovery</i> , 1(3):333–343, 2022.
610 611 612 613	Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang Yang. Measuring and improving the use of graph information in graph neural networks. In <i>International Conference on Learning Representations</i> , 2020.
614 615 616 617	Tim Hsu, Tuan Anh Pham, Nathan Keilbart, Stephen Weitzner, James Chapman, Penghao Xiao, S Roger Qiu, Xiao Chen, and Brandon C Wood. Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy. <i>npj Computational Materials</i> , 8(1):151, 2022.
618 619	John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph- based protein design. <i>Advances in neural information processing systems</i> , 32, 2019.
620 621 622 623	Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror. Learning from protein structure with geometric vector perceptrons. In <i>International Conference on Learning Representations</i> , 2020.
624 625 626	John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. <i>nature</i> , 596(7873):583–589, 2021.
627 628 629	Diederik P Kingma. Adam: A method for stochastic optimization. International Conference on Learning Representations, 2014.
630 631	Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations, 2016.
632 633 634 635	Johannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural networks for molecules. In <i>Proceedings of the 35th International Conference on Neural</i> <i>Information Processing Systems</i> , pp. 6790–6802, 2021.
636 637 638	Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for symmetric densities. In <i>International conference on machine learning</i> , pp. 5361–5370. PMLR, 2020.
639 640 641	Tuan Le, Frank Noé, and Djork-Arné Clevert. Equivariant graph attention networks for molecular property prediction. <i>arXiv preprint arXiv:2202.09891</i> , 2022a.
642 643	Tuan Le, Frank Noe, and Djork-Arné Clevert. Representation learning on biomolecular structures using equivariant graph attention. In <i>Learning on Graphs Conference</i> , pp. 30–1. PMLR, 2022b.
644 645 646	Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. <i>The handbook of brain theory and neural networks</i> , 3361(10):1995, 1995.
647	Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs. In <i>The Eleventh International Conference on Learning Representations</i> , 2023.

648 Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical 649 message passing for 3d molecular graphs. In International Conference on Learning Representations 650 (ICLR), 2022. 651 Lukasz Maziarka, Tomasz Danel, Slawomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanislaw 652 Jastrzkebski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020. 653 654 Benjamin Kurt Miller, Mario Geiger, Tess E Smidt, and Frank Noé. Relevance of rotationally 655 equivariant convolutions for predicting molecular properties. arXiv preprint arXiv:2008.08461, 656 2020. 657 Alex Morehead, Chen Chen, and Jianlin Cheng. Geometric transformers for protein interface contact 658 prediction. In International Conference on Learning Representations, 2022. 659 Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai 661 Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic 662 dynamics. Nature Communications, 14(1):579, 2023. 663 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. 664 In International conference on machine learning, pp. 9323–9332. PMLR, 2021. 665 666 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre 667 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in neural information processing systems, 30, 2017. 668 669 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction 670 of tensorial properties and molecular spectra. In International Conference on Machine Learning, 671 pp. 9377-9388. PMLR, 2021. 672 Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller. 673 Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics, 674 148(24), 2018. 675 676 KT Schutt, Pan Kessel, Michael Gastegger, KA Nicoli, Alexandre Tkatchenko, and K-R Muller. 677 Schnetpack: A deep learning toolbox for atomistic systems. Journal of chemical theory and 678 computation, 15(1):448-455, 2018. 679 Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary Ulissi, 680 and C Lawrence Zitnick. Rotation invariant graph neural networks using spin convolutions. arXiv 681 preprint arXiv:2106.09575, 2021. 682 683 Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network 684 based molecular potentials. arXiv preprint arXiv:2202.02541, 2022a. 685 Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular 686 potentials. In International Conference on Learning Representations, 2022b. 687 688 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. 689 Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018. 690 691 Oliver T Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces, dipole 692 moments, and partial charges. Journal of chemical theory and computation, 15(6):3678-3693, 693 2019. 694 A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. 696 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua 697 Bengio. Graph attention networks. In International Conference on Learning Representations, 2018. 699 Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are 700 universal: Equivariant machine learning, structured like classical physics. Advances in Neural

Information Processing Systems, 34:28848–28863, 2021.

- Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and efficient message passing for 3d molecular graphs. *Advances in Neural Information Processing Systems*, 35:650–664, 2022.
- Xiyuan Wang and Muhan Zhang. Graph neural network with local frame for molecular potential energy surface. In *Learning on Graphs Conference*, pp. 19–1. PMLR, 2022.
- Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d steerable cnns: Learning rotationally equivariant features in volumetric data. *Advances in Neural Information Processing Systems*, 31, 2018.
 - Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. *Chemical science*, 9(2):513–530, 2018.

714 715 716

717 718

719 720

721

722

723

732

733

734 735

736 737

711

712

713

A APPENDIX

Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

Proof. Let $\vec{z} \in \mathbb{R}^3$ be a translation vector, $\mathbf{Q} \in \mathbb{R}^{3 \times 3}$ be an orthogonal matrix. We will consider the feature vector $\mathbf{h}_i^{(t)}$, which is already invariant under the Euclidean group SE(3).

Translation Equivariance: Assume the input 3D coordinates are transformed by a translation vector \vec{z} : $\vec{x}'_i = \vec{x}_i + \vec{z}$ and $\vec{x}'_j = \vec{x}_j + \vec{z}$. Then, the pairwise distance transforms as follows: $d'_{ij} = ||\vec{x}'_i - \vec{x}'_j||^2 = ||(\vec{x}_i + \vec{z}) - (\vec{x}_j + \vec{z})||^2 = ||\vec{x}_i - \vec{x}_j||^2 = d_{ij}$. Thus, d_{ij} remains unchanged under translation, leading to:

$$\mathbf{m}_{\mathcal{N}(i),rad}^{(t)'} = \sum_{j \neq i}^{N} g_{\phi}(\mathbf{h}_{i}^{(t)}, \mathbf{h}_{j}^{(t)}) * a_{\theta}(\mathbf{h}_{i}^{(t)}, d_{ij}, e_{ij}) * \sigma(exp(-\eta * (d_{ij} - \mu)^{2})) * f_{c}(\mathbf{h}_{j}^{(t)}) = \mathbf{m}_{\mathcal{N}(i),rad}^{(t)}$$

Rotation Equivariance: Now, assume a rotation is applied using an orthogonal matrix \mathbf{Q} : $\vec{\mathbf{x}}'_i = \mathbf{Q}\vec{\mathbf{x}}_i$ and $\vec{\mathbf{x}}'_j = \mathbf{Q}\vec{\mathbf{x}}_j$. Then, the distances transform as: $d'_{ij} = ||\mathbf{Q}\vec{\mathbf{x}}_i - \mathbf{Q}\vec{\mathbf{x}}_j||^2 = ||\mathbf{Q}(\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j)||^2 =$ $||\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j||^2 = d_{ij}$. The outputs g_{ϕ} and a_{θ} are also invariant under such transformations, as their formulations do not depend on the absolute positions of the nodes. Hence, we have shown that:

$$\mathbf{m}_{\mathcal{N}(i),rad}^{(t)'} = \mathbf{m}_{\mathcal{N}(i),rad}^{(t)}$$

Thus, Radial AACSFs is SE(3)-equivariant.

Similarly, we can prove the SE(3)-equivariance for the angular AACSFs. Under the same translation **z**: $d'_{ij} = d_{ij}, d'_{ik} = d_{ik}, d'_{jk} = d_{jk}$. The angle β_{ijk} between vectors remains unchanged since $cos(\beta'_{ijk}) = cos(\beta_{ijk})$. Thus, we can show $\mathbf{m}_{\mathcal{N}(i),ang}^{(t)'} = \mathbf{m}_{\mathcal{N}(i),ang}^{(t)}$. Applying the same rotation **Q**: $\vec{\mathbf{x}}'_i = \mathbf{Q}\vec{\mathbf{x}}_i, \vec{\mathbf{x}}'_j = \mathbf{Q}\vec{\mathbf{x}}_j$. The distances transform as previously shown, and the angular relationships are preserved under rotation. Hence, the equations remain invariant.

The output of EG-SAT depends on the radial and angular attension-based ACSFs: $\mathbf{h}_{i}^{(t+1)} =$ Concat $(\mathbf{h}_{i,rad}^{(t+1)}, \mathbf{h}_{i,ang}^{(t+1)})$. Thus, we can conclude that EG-SAT is also E(n)-equivariant. Therefore, both the radial and angular ACSFs are equivariant under SE(3)-transformations, concluding the proof.

- 751
- 752
- 75
- 754
- 755