
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EQUIVARIANT GRAPH SELF-ATTENTION TRANS-
FORMER FOR LEARNING HIGHER-ORDER INTERAC-
TIONS IN 3D MOLECULAR STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their considerable success in multiple fields, studying 3D molecular struc-
tures of varying sizes presents a significant challenge in machine learning, particu-
larly in drug discovery, as existing methods often struggle to accurately capture
complex geometric relationships and tend to be less effective at generalizing across
diverse molecular environments. To address these limitations, we propose a novel
Equivariant Graph Self-Attention Transformer, namely EG-SAT, which effectively
leverages both geometric and relational features of molecular data while maintain-
ing equivariance under Euclidean transformations. This approach enables the model
to capture molecular geometry through higher-order representations, enhancing its
ability to understand intricate spatial relationships and atomic interactions. By ef-
fectively modeling the radial and angular distributions of neighboring atoms within
a specified cutoff distance using Atom-Centered Symmetry Functions (ACSFs),
EG-SAT leads to a more nuanced and comprehensive understanding of molecular
interactions. We validate our model on the QM9 and MD17 datasets, demonstrating
that EG-SAT achieves state-of-the-art performance in predicting most quantum
mechanical properties, thus showcasing its effectiveness and robustness in this
domain.

1 INTRODUCTION

Geometric deep learning has gained prominence as a powerful approach that leverages the inherent
symmetries of specific learning tasks by embedding geometric priors (Satorras et al., 2021; Bronstein
et al., 2021; Chmiela et al., 2018). By embedding these priors, models are endowed with a significant
inductive bias, which narrows the scope of learnable functions and leads to enhanced performance.
Classic examples include Convolutional Neural Networks (CNNs) (LeCun et al., 1995), which are
designed to maintain in each layer equivariance to translations, and Graph Neural Networks (GNNs)
(Kipf & Welling, 2016), which are inherently invariant to node permutations. These models, by
exploiting symmetry groups, have been instrumental across a range of applications.

Among these, GNNs have seen extensive success in modeling molecular structures, from small
molecules for quantum chemistry predictions (Gilmer et al., 2017; Schütt et al., 2017) to larger
macromolecular structures like proteins (Ingraham et al., 2019; Fout et al., 2017). Their effectiveness
lies in their ability to represent molecules as graphs, where atoms are treated as nodes and the edges
are defined by either chemical bonds or spatial proximity. GNNs commonly capture molecular
geometry using rotationally invariant features such as pairwise distances to model local interactions.
However, while this approach has been widely adopted, it lacks the ability to encode directional
information, which is critical for fully capturing the spatial arrangement and interactions between
atoms.

To address these shortcomings, the inclusion of more comprehensive geometric features is necessary.
GNNs (Kipf & Welling, 2016; Hou et al., 2020) excel at representing atomic systems due to their
natural fit with 3D graph representations, where atoms are defined by their Cartesian coordinates.
Incorporating 3D molecular data, including bond lengths and angles, is crucial for improving model
performance (Schütt et al., 2017; Chen et al., 2019; Gasteiger et al., 2020b). However, purely
rotationally invariant representations can blur distinctions between different structures, causing the
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Figure 1: A high-level overview of the EG-SAT model architecture. We subtly account for the
chemical composition of the environment by incorporating element-specific attention mechanisms
based on Radial AACSFs and Angular AACSFs, as shows in Figure 2. We derive the final result for
the radial attention mechanism, denoted as h(t+1)

i,rad . In the same way, we calculate the outcome for the

angular attention, h(t+1)
i,ang . Finally, we combine these two results to form the final node representation,

h(t+1)
i .

model to treat distinct atomic configurations as identical (Miller et al., 2020; Schütt et al., 2021).
When only pairwise distances are used as edge features, critical information such as bond angles can
be lost, especially for properties that are angle-dependent, like optical absorption (Hsu et al., 2022).
Even when angular information is included to address triplet interactions, there are still challenges in
distinguishing molecular chains with equivalent bond angles as the structure rotates, altering dihedral
angles.

Equivariant neural networks offer a promising solution to this problem by capturing the inherent
symmetries in molecular data (Weiler et al., 2018). These networks, particularly those based on
irreducible representations (irreps) (Batzner et al., 2022; Thomas et al., 2018; Musaelian et al.,
2023), employ spherical harmonics to generate higher-order representations that account for these
symmetries, resulting in improved accuracy in predicting molecular properties. Recent advancements
in this area have integrated attention mechanisms to further enhance performance (Fuchs et al.,
2020; Liao & Smidt, 2023). However, irreps come with the downside of high computational costs,
especially when dealing with higher-order transformations. In contrast, more efficient equivariant
vector representations that operate directly in 3D Cartesian space have shown to achieve comparable
state-of-the-art performance across various tasks with significantly lower computational overhead
(Schütt et al., 2021; Thölke & De Fabritiis, 2022a).

To overcome the limitations of distance-based representations and improve scalability, it is essential
to integrate angular information, which encodes bond angles and spatial relationships between atoms,
offering critical directional cues. By incorporating such geometric features into GNN architectures,
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models can better capture the local geometry of molecules, leading to enhanced predictive perfor-
mance (Gasteiger et al., 2020b). However, GNNs must also be able to handle larger molecular
structures with thousands of atoms and process their 3D geometry in a manner that is independent
of orientation and position. Enforcing equivariance under transformations corresponding to specific
symmetry groups ensures that the model can consistently analyze molecular data across different
orientations (Bronstein et al., 2021; Battaglia et al., 2018), bridging the gap between local interactions
and global structural consistency.

Despite these advances, scaling models that incorporate geometric information remains computa-
tionally demanding, particularly when dealing with large molecular systems and a diverse range of
chemical species. One common method for capturing geometric features is through Atom-Centered
Symmetry Functions (ACSFs), which encode radial and angular distributions around each atom.
However, ACSFs face scalability issues, as the number of symmetry functions grows rapidly with
the number of chemical elements in a molecule, resulting in large descriptor vectors and increased
computational costs in high-throughput settings, such as molecular dynamics simulations (Gastegger
et al., 2018).
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Figure 2: (a) Radial AACSFs adjusts contributions from atom pairs based on their distances and
features, while the gating mechanism provides flexibility and the Gaussian radial decay emphasizes
interactions with nearby atoms; (b) Angular AACSFs assigns varying importance to angular features,
while the gating mechanism manages information flow among atom triplets.

In this paper, we propose a novel approach that enhances traditional ACSFs by incorporating attention
mechanisms. Our method integrates both angular and radial information while addressing the
scalability challenges associated with ACSFs. This approach maintains computational efficiency
while improving predictive performance in GNNs for molecular applications. We rigorously validate
our model on benchmark datasets, demonstrating that it significantly enhances the understanding of
molecular structures and shows promise for applications in drug discovery and material science.

The main contributins of this work are follows:

• We introduce a new class of Attention-based Atom-Centered Symmetry Functions
(AACSFs), which maintain roto-translational invariance while improving on traditional
ACSFs by incorporating element-specific attention mechanisms.

• We develop a novel Equivariant Graph Self-Attention Transformer (EG-SAT), which is theo-
retically analyzed to ensure it respects the necessary symmetry properties of 3D molecular
structures.

• Our model addresses scalability issues of ACSFs by using attention-based mechanisms,
allowing efficient representation of diverse chemical elements without exponentially increas-
ing the number of symmetry functions.

• We propose a new gating mechanism that modulates the contributions of atomic pairs and
triplets, while the attention mechanism dynamically adjusts the weighting of angular features.
This enables the model to capture intricate geometric relationships between atoms more
effectively.
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2 BACKGROUND

In this section, we formalize the underlying geometric graph representation and introduce key
concepts related to symmetry, equivariance, and the atom-centered symmetry functions (ACSFs) that
play a vital role in molecular graph neural networks.

Let G = (V,E,A,H, F⃗, X⃗) be an undirected geometric graph, where V is a set of nodes, E ⊆ V ×V
is the set of edges. The matrix A ∈ Rn×n defines the adjacency relationships between nodes,
H ∈ Rn×z represents scalar node features, F⃗ ∈ Rn×d is the matrix of geometric features, and
X⃗ ∈ Rn×3 contains the spatial coordinates of the nodes.

2.1 SYMMETRY AND GROUP REPRESENTATIONS

A critical aspect of geometric graphs is their symmetry properties. These are captured by the group of
symmetries Π, which preserves the structural relationships in the graph. Formally, an n-dimensional
representation of a group Π is a mapping ρ : Π → Rn×n, where each group element π ∈ Π is
associated with an invertible matrix ρ(π). This mapping satisfies the condition ρ(πω) = ρ(π)ρ(ω)
for all π, ω ∈ Π. When ρ(π) is orthogonal for all π ∈ Π, the representation is called orthogonal.

Group representations enable us to define two key properties:

• Invariance: A function f : X → Y is Π-invariant if f(ρ(π)x) = f(x) for all π ∈ Π,
meaning the output remains unchanged under the group action.

• Equivariance: A function f : X → Y is Π-equivariant if f(ρ(π)x) = ρ(π)f(x) for all
π ∈ Π, meaning the group action on the input results in a corresponding transformation of
the output.

2.2 GROUP ACTIONS ON GEOMETRIC GRAPHS

In geometric graphs, symmetry operations can transform the geometric attributes of the nodes and
edges as follows:

• Permutations: Given a permutation matrix Pσ, a permutation of the graph is defined by
PσG = (PσAPT

σ ,PσH,PσF⃗,PσX⃗).
• Orthogonal Transformations: Let Q ∈ Π be an orthogonal transformation that acts on the

geometric features and coordinates as QF⃗ and QX⃗, respectively.

• Translations: For a translation vector t⃗ ∈ T, the node coordinates are translated as x⃗i + t⃗
for all nodes i.

These transformations capture the symmetries in the geometric structure of the graph, allowing
models to exploit equivariance in learning representations.

2.3 EQUIVARIANCE IN 3D SPACE

In the context of 3D molecular graphs, the relevant symmetry group is the Euclidean group SE(3),
which includes rotations and translations. This group can be mathematically represented through
its action on points in three-dimensional space. For any 3D orthogonal matrix Q ∈ R3×3 and a
translation vector z⃗ ∈ R3, the group action ρ(.) on π ∈ SE(3) is defined as:

ρ(π)⃗x = Qx⃗ + z⃗, (1)

where x⃗ ∈ R3 represents the 3D coordinate vector. This formulation captures transformations induced
by rotations, reflections, and translations, establishing a foundational understanding of how molecular
structures can be manipulated in 3D space. Within this context, the subgroup SO(3) specifically
represents the rotational symmetries, isolating the behavior of molecular graphs under rotation alone.

To further clarify the structure of these groups, we consider the orthogonal group O(3), which includes
all 3D orthogonal matrices. It is defined as: O(3) = {Q ∈ R3×3|QT Q = QQT = I, det(Q) = ±1}.
This group encompasses both rotations and reflections, highlighting the full range of orthogonal
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transformations in three dimensions. Notably, the special orthogonal group SO(3) is a subset of O(3)
that is restricted to those orthogonal matrices with a determinant of +1. This restriction is crucial, as
it ensures that the transformations in SO(3) represent pure rotations, which are particularly relevant
in the context of molecular configurations where orientation is a key factor.

2.4 ATOM-CENTERED SYMMETRY FUNCTIONS (ACSFS)

ACSFs (Gastegger et al., 2018) are an essential tool for capturing the local geometric environment
of atoms in molecular systems. They are designed to ensure invariance to symmetries in atomic
arrangements, providing a mathematically rigorous representation of the molecular structure.

The radial ACSF encodes the distribution of neighboring atoms around a central atom i as follows:

mrad
N (i) =

N∑
j ̸=i

exp(−η ∗ (rij − µ)2) ∗ fc(rij), (2)

where N = |N (i)| is the number of neighboring atoms, rij is the distance between atoms i and j,
η and µ are parameters controlling the width and center of the Gaussian. The cutoff function fc(·)
ensures that only significant neighbors are considered.

Similarly, the angular ACSF captures the angular relationships between atoms:

mang
N (i) = 21−ζ

N∑
j ̸=i

N∑
k ̸=i,j

(1 + λcos(θijk))
ζe−η∗(rij−µ)2e−η∗(rik−µ)2e−η∗(rjk−µ)2

∗ fc(rij) ∗ fc(rik) ∗ fc(rjk),

(3)

where θijk is the angle formed by atoms i, j, and k, and λ adjusts the peak of the angular term. The
parameter ζ controls the width of the angular distribution.

3 GEOMETRICALLY EQUIVARIANT GNNS

3.1 INVARIANT GEOMETRIC GNNS

Recent advancements in geometric graph models have introduced novel methods to achieve equivari-
ance, with many focusing on scalarization rather than relying solely on group representation theory.
In scalarization, geometric vectors are first transformed into invariant scalar quantities, which are
then passed through multiple layers of multilayer perceptrons (MLPs). These scalars control the
magnitude of the original vectors, which are subsequently reintroduced in their original directions
to ensure equivariance. This method was pioneered in models like SchNet (Schütt et al., 2018) and
DimeNet (Gasteiger et al., 2020b), though they applied it in a purely invariant manner. Building on
these models, SphereNet (Liu et al., 2022) extended scalarized message passing by incorporating
angular and torsional information, enabling the model to differentiate molecular chirality while
maintaining overall invariance. Similarly, Radial Field (Köhler et al., 2020) introduced an equivariant
version of this scalarization approach, although it focused exclusively on geometric vectors without
considering node features.

Despite the relative simplicity of scalarization techniques, their effectiveness has been theoretically
supported. Villar et al. (Villar et al., 2021) demonstrated that methods based on inner products could
universally achieve equivariance. Expanding upon this foundation, GemNet (Klicpera et al., 2021)
integrated richer geometric information, such as dihedral angles, into the message-passing framework,
advancing the principles initially laid out by DimeNet. The key idea remains: multiplying an invariant
scalar by an equivariant vector still results in an equivariant vector.

Several additional approaches to equivariant message passing have emerged, following these scalar-
ization principles. For example, PaiNN (Schütt et al., 2021) and the Equivariant Transformer (Thölke
& De Fabritiis, 2022a) enhance the invariant SchNet by using radial basis functions to project in-
teratomic distances. These methods iteratively update both vector and scalar features during the
message-passing process. GVPGNN (Jing et al., 2020), on the other hand, offers a stronger theoretical
framework for achieving universal equivariance in message passing.
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When constructing invariant geometric GNNs, there are two principal approaches for incorporating
geometric invariance: distance-based invariant GNNs and many-body-based invariant GNNs. These
approaches differ in how they encode geometric information, offering distinct strategies to capture
molecular structures and interactions.

Distance-based invariant GNNs: Invariant geometric GNN layers aggregate scalar values from
local neighborhoods by transforming geometric information into scalar quantities (Schütt et al.,
2018). These scalar features are then updated from layer t to t+ 1 using trainable AGGREGATE and
COMBINE functions, which operate as follows:

m(t)
ij =

∑
j∈N (⟩)

fθ1(h
(t)
j , ||⃗xij ||)

h(t+1)
i = COMBINE(h(t)

i ,m(t)
ij ),

(4)

where hi ∈ Rz denote the scalar feature vector of node i, and x⃗ij ∈ Rd represents the relative
positional vector: ||⃗xij || = ||⃗xi − x⃗j ||, where x⃗i ∈ Rd denotes the 3D coordinate vector of node i.

Distances and many-body-based invariant GNNs: To overcome the limitations in geometric
expressiveness posed by distance-based message passing, recent invariant GNN models (Shuaibi
et al., 2021; Wang & Zhang, 2022; Wang et al., 2022) emphasize the inclusion of scalar quantities
derived from higher-order interactions, extending beyond pairwise connections (such as triplets of
atoms).

m(t)
ij =

∑
j∈N (⟩)

fθ1

(
h(t)
i ,h(t)

j , dij ,
∑

k∈N (j)\{i}

fθ2

(
h(t)
j ,h(t)

k , dij ,∠ijk
))

h(t+1)
i = COMBINE(h(t)

i ,m(t)
ij ),

(5)

where dij = ||⃗xij || represents the distance between atoms i and j, and bond angles ∠ijk =
∠(⃗xij , x⃗ik) are defined for atom triplets (i.e., 3-body order interactions).

3.2 IRREDUCIBLE REPRESENTATIONS

Equivariant neural networks are designed to process geometric tensors, such as type-L vectors, to
maintain equivariance (Thomas et al., 2018; Miller et al., 2020; Batzner et al., 2022; Brandstetter
et al., 2022; Thölke & De Fabritiis, 2022b). A key technique employed is the use of geometric
functions derived from spherical harmonics and irreducible representations (irreps), that networks
behave equivariantly in 3D Euclidean space.

Different approaches within this framework vary in how they implement equivariant operations,
particularly in their message-passing mechanisms. Both TFN (Thomas et al., 2018) and NequIP
(Batzner et al., 2022) use linear message-passing strategies, where equivariant message updates
are achieved through convolutional layers. NequIP further enhances the equivariant architecture
by introducing gating mechanisms that modulate the messages in a structured manner, improving
model performance. In contrast, SEGNN (Brandstetter et al., 2022) deviates by employing non-
linear message-passing mechanisms on irreducible representations, incorporating a similar gating
mechanism, but extending beyond linear messages to achieve more expressive power. Another
prominent architecture, the SE(3)-Transformer (Fuchs et al., 2020), builds on the dot-product attention
mechanism, applying it to type-L vectors in an equivariant manner. Subsequent models (Thölke &
De Fabritiis, 2022b; Le et al., 2022a) refined these Transformers, tailoring them specifically to work
with type-0 and type-1 vectors while maintaining the attention-based framework.

Central to these architectures is the ability to update higher-order spherical tensor features in an
equivariant manner (Thomas et al., 2018; Batatia et al., 2022; Fuchs et al., 2020; Brandstetter et al.,
2021). For instance, TFN layers(Thomas et al., 2018) use higher order spherical tensors as node
features h̃i ∈ R2l+1×z , where l represents the order of the tensor l = 0, . . . l = L. The first and
second orders represent the scalar features hi ∈ Rz and vector features f⃗i ∈ Rz , respectively. The
higher order tensors h̃i are updated through Clebsch-Gordan tensor products (Coope, 1970) ⊗w

cg of
local neighborhood features h̃j for all j ∈ N(i) with higher order spherical harmonic expansion
of displacement Y(l)(x̃ij) ∈ R2l+1, where Y(l) represents the higher order spherical harmonic
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representations and x̃ij =
x⃗ij

||⃗xij || represents the relative displacement. The message passing scheme is
defined as below:

m(t)
ij =

∑
j∈N(i)

Y(l)(x̃ij)⊗w
cg h̃

(t)

j

h̃
(t+1)

i = COMBINE(h̃
(t)

i ,m(t)
ij ),

(6)

where w = ψrbf (hj , ||⃗xij ||) is the tensor product weight and ψrbf is the learned radial basis function.

This combination of irreducible representations, spherical harmonics, and tensor products provides
a robust framework for building equivariant GNNs capable of maintaining geometric consistency
across varying transformations, offering expressive models that perform well on tasks requiring 3D
rotational and translational invariance.

3.3 SELF-ATTENTION TRANFORMERS

In a self-attention module (Vaswani, 2017), each node with associated features is mapped into a query
and a set of key-value pairs to produce an output. The output is calculated as a weighted sum of the
values, where the weights are based on the similarity between the query and the corresponding key.
These modules are relatively easy to implement and offer significant design flexibility (Baek et al.,
2021; Jumper et al., 2021), which has led to their broad application across various domains, including
language modeling (Vaswani, 2017; Devlin, 2018) and graph-based tasks (Dwivedi & Bresson, 2020;
Veličković et al., 2018).

Recently, SE(3)- and E(3)-equivariant self-attention modules have been introduced. In (Fuchs
et al., 2020), constructs SE(3)-equivariant query, key, and value representations using irreducible
representations. In E(3)-equivariant models, the L2-norm of the 3D coordinate vector differences
between nodes is frequently used as an invariant feature. Some methods generate queries, keys, and
values from scalar features and combine the query-key similarity with invariant features through
addition (Maziarka et al., 2020) or multiplication (Morehead et al., 2022; Le et al., 2022b). These
operations enhance the model’s ability to handle geometric transformations effectively.

Additionally, some models adopt a more generalized self-attention approach by calculating attention
weights directly from both scalar features and invariant properties. This technique, as seen in works
such as (Satorras et al., 2021; Köhler et al., 2020; Schütt et al., 2017), provides greater flexibility
in capturing complex interactions between nodes, leading to improved performance in graph-based
tasks. By leveraging both scalar and invariant features in the attention mechanism, these models
can more effectively encode the geometric and topological structure of the data, resulting in more
powerful representations.

4 EQUIVARIANT GRAPH SELF-ATTENTION TRANSFORMER (EG-SAT)

We introduce a new class of Atom-Centered Symmetry Functions (ACSFs) (Schutt et al., 2018),
referred to as Attention-based Atom-Centered Symmetry Functions (AACSFs), which maintain
roto-translational invariance. In addition, we propose a novel Equivariant Graph Self-Attention
Transformer (EG-SAT). We provide a theoretical analysis of how EG-SAT can be designed to achieve
equivariance, ensuring that it respects the necessary symmetry properties for accurate modeling of
3D molecular structures. This design enables EG-SAT to effectively capture higher-order interactions
and complex spatial relationships among atoms while preserving the model’s ability to generalize
across different molecular environments.

4.1 ATTENTION-BASED ATOM-CENTERED SYMMETRY FUNCTIONS

The primary limitations of Atom-Centered Symmetry Functions (ACSFs) become evident when
dealing with molecules that exhibit diverse chemical elements. First, ACSFs do not scale efficiently
with element diversity; they require an increasing number of radial and angular functions to represent
all possible element pairs and triples. As the number of elements in a system increases, the number of
necessary symmetry functions grows exponentially, complicating the descriptor vector size (Gastegger
et al., 2018). This leads to a significant rise in computational overhead for both model training and
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the transformation of Cartesian coordinates. Consequently, the computational demands become
particularly burdensome for applications such as high-throughput screening and molecular dynamics
simulations. As a result, ACSFs are less practical for systems with complex chemical compositions
due to their poor scalability and high computational costs.

To address these shortcomings of traditional ACSFs, we propose a novel modification to this type of
descriptor. Instead of employing distinct functions for each combination of elements, we incorporate
the chemical composition of the environment in a more implicit manner. This is achieved by
integrating element-dependent attention functions into the radial and angular distribution equations
(Eq: 2 and 3), which allows for a more efficient representation. Specifically, the radial attention-based
ACSFs are defined as:

m(t)
N (i),rad =

N∑
j ̸=i

gϕ(h
(t)
i ,h(t)

j ) ∗ aθ(h(t)
i , dij , eij) ∗ σ(exp(−η ∗ (dij − µ)2)) ∗ fc(h(t)

j ), (7)

where gϕ(h
(t)
i ,h(t)

j ) = Sigmoid(GRUθ̃(Concat(h(t)
i ,h(t)

j ))) is a gating function and

aθ(h
(t)
i , dij , eij) = Softmax(Q ∗ KT ) is an attention function. Here, Q = h(t)

i WQ and K =
Concat(eij , dij)Wk, and σ is the Softplus activation function. The pairwise distance dij = ||⃗xi−x⃗j ||2,
where x⃗i and x⃗j are the 3D coordinates of atom i and j, respectively.

The radial attention-based ACSF function offers a more expressive and flexible approach to modeling
the radial relationships between atoms compared to traditional methods. By integrating attention
mechanisms, this function dynamically weights the contributions of different atom pairs based on
their distances and atomic features. Additionally, the gating mechanism enhances flexibility by
modulating the influence of each atom pair, while the Gaussian radial decay ensures that interactions
are focused on relevant neighboring atoms based on spatial proximity.

Building on this foundation, we further define the angular attention-based ACSFs as:

m(t)
N (i),ang = γ ∗

N∑
j ̸=i

N∑
k ̸=i,j

gϕ(h
(t)
i ,h(t)

j ,h(t)
k ) ∗ aθ(h(t)

i , dij , dik, djk, βijk) ∗ (1 + λcos(βijk))
ζ∗

σ
(
e−η∗(dij−µ)2 ∗ fc(h(t)

i ,h(t)
j )

)
∗ σ

(
e−η∗(dik−µ)2 ∗ fc(h(t)

i ,h(t)
k )

)
∗

σ
(
e−η∗(djk−µ)2 ∗ fc(h(t)

j ,h(t)
k )

)
,

(8)

where gϕ(h
(t)
i ,h(t)

j ,h(t)
k ) = Sigmoid(GRUθ̃(Concat(h(t)

i ,h(t)
j ,h(t)

k ))) is a gating function and

aθ(hi, dij , dik, djk, cos(βijk)) = Softmax(Q∗KT ) is an attention function. Here, Q = h(t)
i WQ and

K = Concat(dij , dik, djk, cos(βijk))Wk, and σ is the Softplus activation function. The γ, λ, ζ, η
and µ control various aspects of the model’s behavior: γ scales the overall contribution of the attention
mechanism, λ adjusts the weight of the cosine angular term, ζ modulates the influence of angular
features, η controls the width of the radial basis function, and µ shifts the center of the distance-based
Gaussian. We use fc(h

(t)
i ,h(t)

j ) to represent the feature difference between neighboring atoms, where

fc(h
(t)
i ,h(t)

j ) = h(t)
i − h(t)

j . This difference measures how the features of neighboring atoms change
as the message-passing process progresses through the layers.

The key novelty of angular attention-based ACSFs approach lies in the combination of attention
and gating mechanisms within the angular-based ACSFs. The attention mechanism dynamically
weights the relative importance of angular features, while the gating mechanism regulates the flow of
information across different atom triplets. This dual integration makes our model highly flexible and
capable of capturing nuanced geometric relationships between atoms-an advancement that traditional
ACSF methods are unable to achieve.

Finally, we compute the final radial attention-based outcome, h(t+1)
i,rad = MLP((1+ϵ)h(t)

i +m(t)
N (i),rad).

Similarly, we can compute the angular attention-based outcome, h(t+1)
i,ang = MLP((1 + ϵ)h(t)

i +

m(t)
N (i),ang). Then, we concatenate these two outcomes, h(t+1)

i = Concat(h(t+1)
i,rad ,h

(t+1)
i,ang ) to compute

the final representation.
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Property α ∆ϵ ϵHOMO ϵLUMO µ Cv G H R2 U U0 ZPVE
SchNet* 0.235 63 41 34 0.033 0.033 14 14 0.073 19 14 1.70
Cormorant 0.085 61 34 38 0.038 0.026 20 21 0.961 21 22 2.03
DimeNet* 0.047 35 28 20 0.029 0.025 9 8 0.331 8 8 1.29
NMP* 0.092 69 43 38 0.030 0.040 19 17 0.180 20 20 1.50
TFN 0.223 58 40 38 0.064 0.101 - - - - - -
LieConv 0.084 49 30 25 0.032 0.038 22 24 0.800 19 19 2.28
L1Net* 0.088 68 46 35 0.043 0.031 14 14 0.354 14 13 1.56
SEGNN 0.060 42 24 21 0.023 0.031 15 16 0.660 13 15 1.62
EGNN 0.071 48 29 25 0.029 0.031 12 12 0.106 12 11 1.55
SE(3)-Transformer 0.142 53 35 33 0.051 0.054 - - - - - -
EG-SAT 0.042 33 22 21 0.020 0.023 15 16 0.280 6 6 1.50

Table 1: Mean absolute error (MAE) for 12 quantum chemical properties on the QM9 dataset. Models
marked with an asterisk (*) use a different training/validation/testing data split. All results are sourced
from their respective original papers.

Complexity Analysis: EG-SAT is efficient in terms of computation, with both its time and memory
requirements growing linearly with the number of edges in the graph. The time complexity is
O(t(anzm + aem)) and the space complexity is O(e), where a indicates the number of attention
heads, e is the number of edges, n is the number of nodes, t is the number of layers, and z and m
represent the dimensions of the input and output feature vectors, respectively.

Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our EG-SAT transformer on the QM9 (Gilmer et al.,
2017; Wu et al., 2018) and MD17 (Chmiela et al., 2017) datasets for quantum molecular property
prediction tasks.

5.1 QM9

The QM9 dataset consists of more than 130,000 small organic molecules with quantum chemical
properties calculated using Density Functional Theory (DFT). The molecules contain up to nine heavy
atoms, including elements such as hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and fluorine
(F). This dataset is widely used for training and evaluating machine learning models in molecular
property prediction tasks. In our study, we utilized a more complex data partitioning scheme, where
100,000 molecules were allocated for training, 18,000 for validation, and 13,000 for testing, following
the setup used by Cormorant (Anderson et al., 2019). During training, the model optimizes the mean
absolute error (MAE) between the predicted outputs and the true molecular property labels.

Baselines: We compare our method against ten baseline approaches: SchNet (Schütt et al., 2017),
Cormorant (Anderson et al., 2019), DimeNet Gasteiger et al. (2020a), NMP (Gilmer et al., 2017), TFN
(Thomas et al., 2018), LieConv (Finzi et al., 2020), L1Net (Miller et al., 2020), SEGNN (Brandstetter
et al., 2021), EGNN (Satorras et al., 2021), and SE(3)-Transformer(Fuchs et al., 2020).

Experimental setup for QM9: We employ the Adam optimizer (Kingma, 2014). Our model is
trained for 500 epochs using a learning rate of 0.001, batchsize 64, α = 1, µ = 0.01, ζ = 2, η = 1,
and λ = 0.5. We select the optimal weight decay from {0.0001, 0.0002, . . . , 0.0009} and hidden
units from {64, 128, 256, 512}. For dropout rate, the best values for each property on QM9 are
chosen from {0.1, 0.2, ..., 0.6}.

5.2 MD17

The MD17 dataset contains molecular dynamics simulations of small organic molecules, including
atomic trajectories computed using DFT. We utilize MD17 to assess the performance of EG-SAT
in predicting molecular forces, a key requirement for molecular dynamics tasks. With a training
set comprising 1,000 samples, the remaining data is set aside for testing the model’s accuracy in
predicting energies and forces. The model outputs scalar energy (E), and the forces are derived

9
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Molecule Aspirin Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

SchNet
energy 0.37 0.08 0.13 0.16 0.20 0.12 0.14
forces 1.35 0.39 0.66 0.58 0.85 0.57 0.56

DimeNet
energy 0.204 0.064 0.104 0.122 0.134 0.102 0.115
forces 0.499 0.230 0.383 0.215 0.374 0.216 0.301

PaiNN
energy 0.159 0.063 0.091 0.117 0.114 0.098 0.104
forces 0.371 0.230 0.319 0.151 0.221 0.203 0.105

NequIP energy - - - - - - -
forces 0.348 0.208 0.337 0.096 0.238 0.101 0.172

PhysNet energy 0.230 0.059 0.094 0.142 0.126 0.100 0.108
forces 0.605 0.160 0.219 0.310 0.337 0.191 0.218

sGDML
energy 0.19 0.07 0.10 0.12 0.12 0.10 0.11
forces 0.68 0.33 0.41 0.11 0.28 0.14 0.24

NewtonNet
energy 0.168 0.078 0.096 0.118 0.115 0.094 0.107
forces 0.348 0.264 0.323 0.084 0.197 0.088 0.149

FCHL19
energy 0.182 0.054 0.081 0.117 0.114 0.098 0.104
forces 0.478 0.136 0.245 0.151 0.221 0.203 0.105

EG-SAT
energy 0.150 0.040 0.080 0.100 0.130 0.100 0.100
forces 0.200 0.120 0.200 0.080 0.220 0.200 0.101

Table 2: Mean absolute error (MAE) metrics for energies (kcal/mol) and forces (kcal/mol/Å) on the
MD17 dataset. All results are derived from the original publications.

by differentiating this energy with respect to atomic positions, Fi = −∂E/∂ri.During training,
the model simultaneously minimizes the energy and force loss, weighted by factors of 1 and 100,
respectively.

Baselines: We compare our method against eight baseline approaches: SchNet (Schütt et al., 2017),
DimeNet (Gasteiger et al., 2020a), PaiNN (Schütt et al., 2021), NequIP (Batzner et al., 2022), PhysNet
(Unke & Meuwly, 2019), sGDML (Chmiela et al., 2019), NewtonNet (Haghighatlari et al., 2022),
and FCHL19 (Christensen et al., 2020).

Experimental setup for MD17: We use the Adam optimizer (Kingma, 2014). Our model is trained
for 200 epochs using a learning rate of 0.0001, batchsize 1, α = 1, µ = 0.001, ζ = 2, η = 1, and
λ = 0.8. We select the optimal weight decay from {0.0001, 0.0002, . . . , 0.0009} and hidden units
from {64, 128, 256, 512}. For dropout rate, the best values for each dataset on MD17 are chosen
from {0.1, 0.2, ..., 0.6}.

6 CONCLUSION

In conclusion, our work introduces a novel framework for modeling 3D molecular structures with
improved scalability, accuracy, and geometric representation. By developing Attention-based Atom-
Centered Symmetry Functions (AACSFs) and the Equivariant Graph Self-Attention Transformer
(EG-SAT), we provide a robust solution to the limitations of traditional methods. The integration
of element-specific attention mechanisms and gating functions allows EG-SAT to capture higher-
order atomic interactions and intricate spatial relationships more effectively than existing models.
Our approach addresses the scalability issues associated with ACSFs, offering an efficient way to
handle diverse chemical elements while preserving the necessary symmetry properties for molecular
modeling. Validation on the QM9 and MD17 datasets demonstrates the better performance of EG-
SAT, making it a valuable tool for applications in quantum chemistry and drug discovery. This work
paves the way for more accurate and scalable models in the study of molecular interactions and
quantum mechanical properties.
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal
machine learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572,
2019.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017.

Stefan Chmiela, Huziel E Sauceda, Klaus-Robert Müller, and Alexandre Tkatchenko. Towards exact
molecular dynamics simulations with machine-learned force fields. Nature communications, 9(1):
3887, 2018.

Stefan Chmiela, Huziel E Sauceda, Igor Poltavsky, Klaus-Robert Müller, and Alexandre Tkatchenko.
sgdml: Constructing accurate and data efficient molecular force fields using machine learning.
Computer Physics Communications, 240:38–45, 2019.

Anders S Christensen, Lars A Bratholm, Felix A Faber, and O Anatole von Lilienfeld. Fchl revisited:
Faster and more accurate quantum machine learning. The Journal of chemical physics, 152(4),
2020.

JAR Coope. Irreducible cartesian tensors. iii. clebsch-gordan reduction. Journal of Mathematical
Physics, 11(5):1591–1612, 1970.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International
Conference on Machine Learning, pp. 3165–3176. PMLR, 2020.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970–1981, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Gastegger, Ludwig Schwiedrzik, Marius Bittermann, Florian Berzsenyi, and Philipp Mar-
quetand. wacsf—weighted atom-centered symmetry functions as descriptors in machine learning
potentials. The Journal of chemical physics, 148(24), 2018.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020a.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2020b.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Mojtaba Haghighatlari, Jie Li, Xingyi Guan, Oufan Zhang, Akshaya Das, Christopher J Stein, Farnaz
Heidar-Zadeh, Meili Liu, Martin Head-Gordon, Luke Bertels, et al. Newtonnet: a newtonian
message passing network for deep learning of interatomic potentials and forces. Digital Discovery,
1(3):333–343, 2022.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In
International Conference on Learning Representations, 2020.

Tim Hsu, Tuan Anh Pham, Nathan Keilbart, Stephen Weitzner, James Chapman, Penghao Xiao,
S Roger Qiu, Xiao Chen, and Brandon C Wood. Efficient and interpretable graph network
representation for angle-dependent properties applied to optical spectroscopy. npj Computational
Materials, 8(1):151, 2022.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. Advances in neural information processing systems, 32, 2019.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror.
Learning from protein structure with geometric vector perceptrons. In International Conference on
Learning Representations, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2016.

Johannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. In Proceedings of the 35th International Conference on Neural
Information Processing Systems, pp. 6790–6802, 2021.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
symmetric densities. In International conference on machine learning, pp. 5361–5370. PMLR,
2020.

Tuan Le, Frank Noé, and Djork-Arné Clevert. Equivariant graph attention networks for molecular
property prediction. arXiv preprint arXiv:2202.09891, 2022a.

Tuan Le, Frank Noe, and Djork-Arné Clevert. Representation learning on biomolecular structures
using equivariant graph attention. In Learning on Graphs Conference, pp. 30–1. PMLR, 2022b.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. In The Eleventh International Conference on Learning Representations, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical
message passing for 3d molecular graphs. In International Conference on Learning Representations
(ICLR), 2022.

Lukasz Maziarka, Tomasz Danel, Slawomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanislaw
Jastrzkebski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.

Benjamin Kurt Miller, Mario Geiger, Tess E Smidt, and Frank Noé. Relevance of rotationally
equivariant convolutions for predicting molecular properties. arXiv preprint arXiv:2008.08461,
2020.

Alex Morehead, Chen Chen, and Jianlin Cheng. Geometric transformers for protein interface contact
prediction. In International Conference on Learning Representations, 2022.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pp. 9377–9388. PMLR, 2021.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24), 2018.

KT Schutt, Pan Kessel, Michael Gastegger, KA Nicoli, Alexandre Tkatchenko, and K-R Muller.
Schnetpack: A deep learning toolbox for atomistic systems. Journal of chemical theory and
computation, 15(1):448–455, 2018.

Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary Ulissi,
and C Lawrence Zitnick. Rotation invariant graph neural networks using spin convolutions. arXiv
preprint arXiv:2106.09575, 2021.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022a.

Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular
potentials. In International Conference on Learning Representations, 2022b.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Oliver T Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces, dipole
moments, and partial charges. Journal of chemical theory and computation, 15(6):3678–3693,
2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
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A APPENDIX

Theorem 1. Radial AACSFs, Angular AACSFs, and EG-SAT are all SE(3)-equivariant.

Proof. Let z⃗ ∈ R3 be a translation vector, Q ∈ R3×3 be an orthogonal matrix. We will consider the
feature vector h(t)

i , which is already invariant under the Euclidean group SE(3).

Translation Equivariance: Assume the input 3D coordinates are transformed by a translation
vector z⃗: x⃗

′

i = x⃗i + z⃗ and x⃗
′

j = x⃗j + z⃗. Then, the pairwise distance transforms as follows:

d
′

ij = ||⃗x
′

i − x⃗
′

j ||2 = ||(⃗xi + z⃗) − (⃗xj + z⃗)||2 = ||⃗xi − x⃗j ||2 = dij . Thus, dij remains unchanged
under translation, leading to:

m(t)′

N (i),rad =

N∑
j ̸=i

gϕ(h
(t)
i ,h(t)

j )∗aθ(h(t)
i , dij , eij)∗σ(exp(−η ∗ (dij −µ)2))∗ fc(h(t)

j ) = m(t)
N (i),rad

Rotation Equivariance: Now, assume a rotation is applied using an orthogonal matrix Q: x⃗
′

i = Qx⃗i
and x⃗

′

j = Qx⃗j . Then, the distances transform as: d
′

ij = ||Qx⃗i − Qx⃗j ||2 = ||Q(⃗xi − x⃗j)||2 =

||⃗xi − x⃗j ||2 = dij . The outputs gϕ and aθ are also invariant under such transformations, as their
formulations do not depend on the absolute positions of the nodes. Hence, we have shown that:

m(t)′

N (i),rad = m(t)
N (i),rad

Thus, Radial AACSFs is SE(3)-equivariant.

Similarly, we can prove the SE(3)-equivariance for the angular AACSFs. Under the same translation
z: d

′

ij = dij , d
′

ik = dik, d
′

jk = djk. The angle βijk between vectors remains unchanged since

cos(β′
ijk) = cos(βijk). Thus, we can show m(t)′

N (i),ang = m(t)
N (i),ang. Applying the same rotation

Q: x⃗
′

i = Qx⃗i, x⃗
′

k = Qx⃗k, x⃗
′

j = Qx⃗j . The distances transform as previously shown, and the angular
relationships are preserved under rotation. Hence, the equations remain invariant.

The output of EG-SAT depends on the radial and angular attenstion-based ACSFs: h(t+1)
i =

Concat(h(t+1)
i,rad ,h

(t+1)
i,ang ). Thus, we can conclude that EG-SAT is also E(n)-equivariant. Therefore,

both the radial and angular ACSFs are equivariant under SE(3)-transformations, concluding the
proof.
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