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ABSTRACT

Training deep neural models in the presence of corrupted supervisions is chal-
lenging as the corrupted data points may significantly impact the generalization
performance. To alleviate this problem, we present an efficient robust algorithm
that achieves strong guarantees without any assumption on the type of corruption,
and provides a unified framework for both classification and regression problems.
Different from many existing approaches that quantify the quality of individual
data points (e.g., loss values) and filter out data points accordingly, the proposed
algorithm focuses on controlling the collective impact of data points on the av-
eraged gradient. Even when a corrupted data point failed to be excluded by the
proposed algorithm, the data point will have very limited impact on the overall
loss, as compared with state-of-the-art filtering data points based on loss values.
Extensive empirical results on multiple benchmark datasets have demonstrated the
robustness of the proposed method under different types of corruptions.

1 INTRODUCTION

Corrupted supervision is a common issue in real-world learning tasks, where the learning targets
are not accurate due to various factors in the data collection process. In deep learning models, such
corruptions are especially severe, whose degree-of-freedom makes them easily memorize corrected
examples and susceptible to overfitting (Zhang et al., 2016).

There are extensive efforts to achieve robustness against corrupted supervisions. A natural approach
to deal with corrupted supervision in deep neural networks (DNNs) is to reduce the model exposure
to corrupted data points during training. By detecting and filtering (or re-weighting) the possible
corrupted samples, the learning is expected to deliver a model that is similar to the one trained on
clean data (without corruption) (Kumar et al., 2010; Han et al., 2018; Zheng et al., 2020). There are
different criteria designed to identify the corrupted data points in training. For example, Kumar et al.
(2010); Han et al. (2018); Jiang et al. (2018) leveraged the loss function values of data points; Zheng
et al. (2020) tapped prediction uncertainty for filtering data; Malach & Shalev-Shwartz (2017) used
the disagreement between two deep networks; Reed et al. (2014) utilized the prediction consistency
of neighboring iterations. The success of these methods highly depends on the effectiveness of the
detection criteria in correctly identifying the corrupted data points. Since the corrupted labels remain
unknown throughout the learning, such “unsupervised” detection approaches may not be effective,
either lack theoretical guarantees of robustness (Han et al., 2018; Reed et al., 2014; Malach &
Shalev-Shwartz, 2017; Li et al., 2017) or provide guarantees under assumptions of the availability
of prior knowledge about the type of corruption (Zheng et al., 2020; Shah et al., 2020; Patrini et al.,
2017; Yi & Wu, 2019). Besides, another limitation of many existing approaches is that, they are
exclusively designed for classification problems (e.g., Malach & Shalev-Shwartz (2017); Reed et al.
(2014); Menon et al. (2019); Zheng et al. (2020)) and are not straightforward to extend to solve
regression problems.

To tackle these challenges, this paper presents a unified optimization framework with robustness
guarantees without any assumptions on how supervisions are corrupted, and is applicable to both
classification and regression problems. Instead of developing an accurate criterion for detection cor-
rupted samples, we adopt a novel perspective and focus on limiting the collective impact of corrupted
samples during the learning process through robust mean estimation of gradients. Specifically, if our
estimated average gradient is close to the gradient from the clean data during the learning iterations,
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then the final model will be close to the model trained on clean data. As such, a corrupted data point
can still be used during the training when it does not considerably alter the averaged gradient. This
observation has remarkably impact on our algorithm design: instead of explicitly quantifying (and
identifying) individual corrupted data points, which is a hard problem in itself, we are now dealing
with an easier task, i.e., eliminating training data points that significantly distort the mean gradient
estimation. One immediate consequence of this design is that, even when a corrupted data point
failed to be excluded by the proposed algorithm, the data point is likely to have very limited impact
on the overall loss, as compared with state-of-the-art filtering data points based on loss values. We
perform experiments on both regression and classification with corrupted supervision on multiple
benchmark datasets. The results show that the proposed method outperforms state-of-the-art.

2 BACKGROUND

Learning from corrupted data (Huber, 1992) has attracted considerable attention in the machine
learning community (Natarajan et al., 2013). Many recent studies have investigated robustness of
classification tasks with noisy labels. For example, Kumar et al. (2010) proposed a self-paced learn-
ing (SPL) approach, which assigns higher weights to examples with smaller loss. A similar idea
was used in curriculum learning (Bengio et al., 2009), in which the model learns easy samples first
before learning harder ones. Alternative methods inspired by SPL include learning the data weights
(Jiang et al., 2018) and collaborative learning (Han et al., 2018; Yu et al., 2019). Label correction
(Patrini et al., 2017; Li et al., 2017; Yi & Wu, 2019) is another approach, which revises original
labels in data with a goal to recover clean labels from corrupt ones. However, since we do not have
access to which data points are corrupted, it is hard to get provable guarantees for label correction
without strong assumptions regarding the corruption type.

Accurate estimation of gradients is a key step for successful optimization. The relationship between
gradient estimation and its final convergence has been widely studied in the optimization commu-
nity. Since computing an approximated (and potentially biased) gradient is often more efficient than
computing the exact gradient, many studies used approximated gradients to optimize their models
and showed that they suffer from the biased estimation problem if there is no assumptions on the
gradient estimation (d’Aspremont, 2008; Schmidt et al., 2011; Bernstein et al., 2018; Hu et al., 2020;
Ajalloeian & Stich, 2020).

A closely related topic is robust estimation of the mean. Given corrupted data, robust mean estima-
tion aims at generating an estimated mean µ̂ such that the difference between the estimated mean
on corrupted data and the mean of clean data ‖µ̂− µ‖2 is minimized. It was showed that median or
trimmed-mean are the optimal statistics for mean estimation in one-dimensional data (Huber, 1992).
However, robustness in high dimension is quite challenging since applying the coordinate-wise op-
timal robust estimator would lead to an error factor O(

√
d) that scales with the data dimension.

Although some classical work, such as Tukey median (Tukey, 1975), successfully designed algo-
rithms to get rid of the O(

√
d) error, the algorithms themselves are not polynomial-time algorithm.

More recently, Diakonikolas et al. (2016); Lai et al. (2016) successfully designed polynomial-time
algorithms with dimension-free error bounds. The results have been widely applied to improve
algorithmic efficiency in various scenarios (Dong et al., 2019; Cheng et al., 2020).

Robust optimization aims to optimize the model given corrupted data. Many previous studies im-
prove the robustness of the optimization in different problem settings. However, most of them either
study linear regression and its variantes(Bhatia et al., 2015; 2017; Shen & Sanghavi, 2019) or study
the convex optimization (Prasad et al., 2018). Thus, those results cannot be directly generalized
to deep neural networks. Diakonikolas et al. (2019) is a very generalized non-convex optimization
method with the agnostic corruption guarantee. However, the space complexity of the algorithm is
high, thus cannot be applied to deep neural networks given current hardware limitations.

3 METHODOLOGY

Before introducing our algorithm, we first discuss the corrupted supervision. To characterize agnos-
tic corruptions, we make use of an adversary that tries to corrupt the supervision of a clean data.
There is no limitation on how the adversary corrupts the supervision, which can either be randomly
permuting the target, or in a way that maximizes the negative impact (i.e., lower performance).
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Firstly, the adversary can choose up to ε fraction of the clean target Dy ∈ Rn×q and change the
selected row of Dy to arbitrary valid numbers, generating Dε

y ∈ Rn×q . Then, the adversary returns
the corrupted dataset Dx, Dε

y to our learning algorithmA. In this process, the only constraint on the
adversary is the ε fraction, and the adversary has full knowledge of the data, and even the learning
algorithm A. A natural question to ask is: Given a data set with ε-fraction corrupted supervision
Dx ∈ Rn×p, Dε

y , and a learning objective φ : Rp × Rq × Rd → R parameterized by θ, can we
output parameters θ ∈ Rd such that ‖∇θφ(θ;Dx,Dy)‖ is minimized.

When ε = 0, we have Dε
y = Dy and learning is done on the clean data. The stochastic gradient

descent could converge to a stationary point, where ‖∇θφ(θ;Dx,Dy)‖ = 0. However, when the
supervision is corrupted as above, this is not the case any more, due to the error in θ impacted
by the corrupted data. We thus want an efficient algorithm to find a model θ that minimizes
‖∇θφ(θ;Dx,Dy)‖. A robust model θ should have a small value of ‖∇θφ(θ;Dx,Dy)‖, and we
hypothesize that a smaller ‖∇θφ(θ;Dx,Dy)‖ has better generalization.

3.1 STOCHASTIC GRADIENT DESCENT WITH BIASED GRADIENT

A direct consequence of corrupted supervision is biased gradient estimation. In this section, we will
first analyze how such biased gradient estimation affects the robustness of learning. The classical
analysis of stochastic gradient descent (SGD) requires access to the stochastic gradient oracle, which
is an unbiased estimation of the true gradient. However, corrupted supervision leads to corrupted
gradients, and it is thus difficult to get unbiased gradient estimation without assumptions of how the
gradients are corrupted. We start the analysis by the following informal theorem (without elaborated
discussions of assumptions) of how biased gradient affects the final convergence of SGD. Its formal
version is provided in Theorem 4, Appendix.

Theorem 1 (Convergence of Biased SGD (Informal)) Under mild assumptions, denote ζ to be the
maximum `2 norm of the difference between clean minibatch gradient and corrupted minibatch gra-
dient ‖g− g̃‖ ≤ ζ, then by using biased gradient estimation, SGD converges to the ζ-approximated
stationary points: E‖∇φ(θt)‖2 = O(ζ2).
Remark 1 In the corrupted supervision setting, let the gradient estimated by corrupted data Dε
be ĝ, the gradient estimated by clean data D be g. Assume ‖g̃ − g‖ ≤ ζ, it follows that when
using corrupted dataset in SGD, it converges to the ζ-approximated stationary point of the objective
defined by the clean data. Note the difference between above theorem and typical convergence
theorem is that we are using a biased gradient estimation.

According to Theorem 1 and the remark, a robust estimation of the gradient g is the key to ensure
a robust model (converge to the clean solution). We also assume the loss function has the form of
L(y, ŷ), where many commonly used loss functions fall in this category.

3.2 ROBUST GRADIENT ESTIMATION FOR GENERAL DATA CORRUPTION

We first introduce Algo. 2 for general corruption (i.e. corruption on both features and/or supervi-
sions). The algorithm excludes the data points with large gradient norms, and uses the empirical
mean of the remaining to update gradients. In Thm. 2 we give its robustness property.

Algorithm 1: Robust Mean Estimation for Corrupted Gradient
input: gradient matrix G ∈ m× d, corruption rate ε
return estimated mean µ̂ ∈ Rd ;
1. For each row zi in G, calculate the l2 norm ‖zi‖
2. Choose the ε-fraction rows with large ‖zi‖
3. Remove those selected rows, and return the empirical mean of the rest points as µ̂.

Assumption 1 (Individual L-smooth loss) For every individual loss function φi, there exists con-
stant L > 0, such that for a clean sample i, we have |φi(x) − φi(y)| ≤ L|x − y| for any x,y.

Theorem 2 (Robust Gradient Estimation For Data Corruption) Let G̃ ∈ Rm×d be a corrupted
gradient matrix, and G ∈ Rm×d be the clean gradient matrix. Let µ be the empirical mean function,
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Algorithm 2: (PRL(G)) Provable Robust Learning for General Corrupted Data
input: Label corrupted dataset Dx,D

ε
y , learning rate γt;

return model parameter θ;
for t = 1 to maxiter do

Randomly sample a minibatch M from Dx,D
ε
y

Calculate the individual gradient G̃ for M
Apply Algorithm 1 on G̃ to get robust gradient estimation µ̂
Update model θt+1 = θt − γtµ̂

end

we have that the output of Algo. 1 µ̂ of G̃ satisfies ‖µ(G) − µ̂‖ = O(ε
√
d). Moreover, if Asm. 1

holds, we further have ‖µ(G)− µ̂‖ = O(εL).

Combining with the aforementioned convergence analysis of biased SGD, we get the following:

Corollary 1 (Robust Optimization For Corrupted Data) Given assumptions used in Thm. 1, and
Asm. 1, applying Algo. 1 to any ε-fraction corrupted data, we get mint∈[T ] E‖∇φ(xt)‖ = O(εL)
with large enough T . If Asm. 1 does not hold, then we get mint∈[T ] E‖∇φ(xt)‖ = O(ε

√
d) with

large enough T .

The robustness guarantee states that even training on generally corrupted data (corrupted supervision
is a special case), Algo. 2 guarantee that the gradient norm on remaining data cannot be too large.
Since Thm. 2 gives a dimension-free error bound when Asm. 1 holds, Corollary 1 also gives the
dimension-free robustness guarantee with Asm. 1. We defer the detailed discussion ofO(εL) to later
sections. Although the error bound O(εL) sounds good, we note that it still has several drawbacks:

First, the dimension-free error bound means the error does not grow with increasing dimensions, and
is critical when working with neural networks, due to the extremely large gradient dimension (i.e.,
#parameters of neural network). Thm. 2 gives the dimension-free error bound only when Asm. 1
holds, which is quite strong. In addition, even when Asm. 1 holds, L can be large, leading to a large
gradient estimation error. Existing work (Diakonikolas et al., 2019) already acheives the dimension-
freeO(

√
ε) guarantee with general corruptions, which is a much more better theoretical results than

above theorem. However, in practice, we found that the gradient norms of deep neural networks for
individual data points are usually not very large, even at the beginning of the training. This can be
partially due to the network structure. Further discussion on this issue is beyond the scope of this
paper, but the theoretical bound above states that the robustness should depend on the number of
parameters for the general models.

Another concern of Alg. 2 is the efficiency. It requires computing individual gradients. Although
there are some advanced approaches to get the individual gradient, e.g., (Goodfellow, 2015), it is still
relatively slow as compared to commonly used back-propagation. Moreover, these methods are usu-
ally not compatible with popular components such as batch normalization (BN) since the individual
gradients are not independent inside BN, using of which will lose the benefits from parallelization.

3.3 ROBUST GRADIENT ESTIMATION FOR ONE DIMENSIONAL CORRUPTED SUPERVISION

In this section, we show that the above robustness bound can be improved if we assume the corrup-
tion only comes from supervision. Also, by fully exploiting the gradient structure of the corrupted
supervision, our algorithm can be much more efficient and meanwhile compatible with batch nor-
malization. We use the one dimensional supervision setting (binary classification or single-target
regression) to illustrate this intuition and extend it more general settings in the next section. Con-
sider a high-dimensional supervised learning problem with X ∈ Rn×p and y ∈ Rn. The goal is
to learn a function f parameterized by θ ∈ Rd minimizing the following loss minθ

∑n
i=1 φi =

minθ
∑n
i=1 L(yi, f(xi, θ)). The gradient for a data point i is ∇θφi = ∂li

∂fi

∂fi
∂θ = αigi.

One key observation is that: when only supervision is corrupted, then the corruption contributes
only to the term αi =

∂li
∂fi

, which is a scalar in the one-dimensional setting. In other words, given
the clean gradient of ith point, gi ∈ Rd, the corrupted supervision can only perturbs the the length
of the gradient vector, changing the gradient from αigi to δigi, where δi =

∂lεi
∂fi

. When αi and δi are
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known, then we can easily eliminate the impact from corrupted supervision. But this is not the case
since we have have only the possibly corrupted target ŷi as opposed to the ground truth yi.

On the other hand, the fact that corrupted supervision scales the clean gradient can be used to reshape
the robust optimization problem. Recall that in every iteration, we update our model by θ+ =
θ− γµ(G), where µ denotes the empirical mean function and G = [∇θφT1 , . . . ,∇θφTm] ∈ Rm×d is
the gradient matrix with mini-batch size m. We then have the following:

Problem 1 (Robust Gradient Estimation for Corrupted Supervision - One Dimensional Case)
Given a clean gradient matrix G ∈ Rm×d, an ε-corrupted matrix G̃ with at most ε-fraction rows are
corrupted from αigi to δigi, design an algorithmA : Rm×d → Rd that minimizes ‖µ(G)−A(G̃)‖.

Note that when ‖δi‖ is large, the corrupted gradient will have large effect on the empirical mean,
and vice versa. This motivates us to develop an algorithm that filters out data points by the loss layer
gradient ‖ ∂li∂fi

‖. If the norm of the loss layer gradient of a data point is large (in one-dimensional
case, this gradient reduces to a scalar and the norm becomes its absolute value), we exclude the data
point when computing the empirical mean of gradients for this iteration. Note that this algorithm is
applicable to both regression and classification problems. Especially, when using the mean squared
error (MSE) loss for regression, its gradient norm is exactly the loss itself, and the algorithm reduces
to self-paced learning Kumar et al. (2010). We summarize the procedure in Alg. 3 and extend it to
the more general multi-dimension case in the next section.

Algorithm 3: (PRL(L)) Efficient Provable Robust Learning for Corrupted Supervision
input: dataset Dx,D

ε
y with corrupted supervision, learning rate γt;

return model parameter θ;
for t = 1 to maxiter do

Randomly sample a minibatch M from Dx,D
ε
y

Compute the predicted label Ŷ from M
Calculate the gradient norm for the loss layer, (i.e. ‖ŷ − y‖ for mean square error or cross entropy)

for each data point in M
Remove the top τ -fraction data from M according to ‖ŷ − y‖
Return the empirical mean of the remaining M as the robust mean estimation µ̂
Update model θt+1 = θt − γtµ̂

end

3.4 EXTENSION TO MULTI-DIMENSIONAL CORRUPTED SUPERVISION

To extend our algorithm and analysis to multi-dimensional case, let q to be the supervision dimen-
sion, the gradient for each data point is ∇θφi = ∂li

∂fi

∂fi
∂θ , where ∂li

∂fi
∈ Rq is the gradient of loss

respect to model outputs, and ∂fi
∂θ ∈ Rq×d is the gradient of model outputs respect to model parame-

ters. Similarly, when the supervision is corrupted, the corruption comes from the term ∂li
∂fi

, which is

a vector. Let δi =
∂lεi
∂fi
∈ Rq , αi = ∂li

∂fi
∈ Rq , Wi =

∂fi
∂θ ∈ Rq×d, m be the minibatch size. Denote

the clean gradient matrix G ∈ Rm×d, where the ith row of gradient matrix gi = αiWi. Now the
multi-dimensional robust gradient estimation problem is defined by:

Problem 2 (Robust Gradient Estimation for Corrupted Supervision - Multi-Dimensional Case)
Given a clean gradient matrix G, an ε-corrupted matrix G̃ with at most ε-fraction rows are cor-
rupted from αiWi to δiWi, design an algorithmA : Rm×d → Rd that minimizes ‖µ(G)−A(G̃)‖.

We start our analysis by investigating the effects of the filtering-base algorithm, i.e. use the empirical
mean gradient of (1 − ε)-fraction subset to estimate the empirical mean gradient of clean gradient
matrix. We have the following for a randomized filtering-based algorithm(proof in Appendix):

Lemma 1 (Gradient Estimation Error for Random Dropping ε-fraction Data) Let G̃ ∈ Rm×d
be a corrupted matrix generated as in Problem 2, and G ∈ Rm×d be the original clean gradient
matrix. Suppose arbitrary (1− ε)-fraction rows are selected from G̃ to form the matrix N ∈ Rn×d.
Let µ be the empirical mean function. Assume the clean gradient before loss layer has bounded
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operator norm, i.e., ‖W‖op ≤ C, the maximum clean gradient in loss layer maxi∈G ‖αi‖ = k, the
maximum corrupted gradient in loss layer maxi∈N ‖δi‖ = v, then we have:

‖µ(G)− µ(N)‖ ≤ Ck 3ε− 4ε2

1− ε
+ Cv

ε

1− ε
.

We see that v is the only term that is related to the corrupted supervision. If v is large, then the
bound is not safe since the right-hand side can be arbitrarily large (i.e. an adversary can change the
label in a way such that v is extremely large). Thus controlling the magnitude of v provides a way
to effectively reduce the bound. For example, if we manage to control v ≤ k, then the bound is safe.
This can be achieved by sorting the gradient norms at the loss layer, and then discarding the largest
ε-fraction data points. We thus have the following result.

Theorem 3 (Robust Gradient Estimation For Supervision Corruption) Let G̃ be a corrupted
matrix generated in Problem 2, q be the label dimension, µ be the empirical mean of clean matrix G.
Assume the maximum clean gradient before loss layer has bounded operator norm: ‖W‖op ≤ C,
then the output of gradient estimation in Algo 3 µ̂ satisfies ‖µ− µ̂‖ = O(ε√q) ≈ O(ε).

Compare Thm. 2 and Thm. 3, we see that when the corruption only comes from supervision, the
dependence on d is reduced to q, where in most deep learning cases we have d � n. Applying
Thm 1 directly shows that our algorithm is also robust in multi-label settings.

3.5 COMPARISON WITH DIAKONIKOLAS ET AL. (2019) AND OTHER METHODS

SEVER (Diakonikolas et al., 2019) showed promising state-of-the-art theoretical results in general
corruptions, which achievesO(

√
ε) dimension-free guarantee for general corruptions. Compared to

Diakonikolas et al. (2019), we have two contributions: a). By assuming the corruption comes from
the label (we admit that this is quite strong compared to the general corruption setting), we could
get a better error rate. b). Our algorithm can be scaled to deep neural networks while Diakonikolas
et al. (2019) cannot. We think this is a contribution considering the DNN based models are currently
state-of-the-art methods for noisy label learning problems (at least in empirical performance).

Although Diakonikolas et al. (2019) achieves very nice theoretical results, unfortunately, it can-
not be applied to DNN with the current best hardware configuration. Diakonikolas et al. (2019)
uses dimension-free robust mean estimation breakthroughs to design the learning algorithm, while
we notice that most robust mean estimation relies on filtering out data by computing the score of
projection to the maximum singular vector. For example, in Diakonikolas et al. (2019), it requires
performing SVD on n×d individual gradient matrix, where n is the sample size and d is the number
of parameters. This method works well for small datasets and small models since both n and d is
small enough for current memory limitation. However, for deep neural networks, this matrix size is
far beyond current GPU memory capability. That could be the potential reason why in Diakonikolas
et al. (2019), only ridge regression and SVM results for small data are shown (we are not saying
that they should provide DNN results). In our experiment, our n is 60000 and d is in the magnitude
of millions (network parameters). It is impractical to store 60000 copies of neural networks in a
single GPU card. In contrast, in our algorithm, we do not need to store the full gradient matrix. By
only considering the loss-layer gradient norm, we can easily extend our algorithm to DNN, and we
showed that this simple strategy works well in both theory and challenging empirical tasks.

We notice that there are some linear (Bhatia et al., 2015; 2017) or convex method (Prasad et al.,
2018) achieves the better robustness guarantee. However, most of them cannot be directly applied
to deep neural networks.

4 RELATIONSHIP TO SELF-PACED LEARNING (SPL)

SPL looks very similar to our method at first glance. Instead of keeping data point with small
gradient norm, SPL tries to keep data with small loss. The gradient norm and loss function can
be tied by the famous Polyak-Łojasiewicz (PL) condition. The PL condition assumes there exists
some constant s > 0 such that 1

2‖∇φ(x)‖
2 ≥ s (φ(x)− φ∗) , ∀x holds. As we can see, when

the neural network is highly over-parameterized, the φ∗ can be assumed to be equal across different
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samples since neural networks can achieve 0 training loss (Zhang et al., 2016). By sorting the
error φ(xi) for every data point, SPL actually is sorting the lower bound of the gradient norm if
the PL condition holds. However, the ranking of gradient norm and the ranking loss can be very
different since there is no guarantee that the gradient norm is monotonically increasing with the
loss value. We provide illustration of why SPL is not robust from geometric perspective in the
appendix. Here we show even for simple square loss, the monotonic relationship is easy to break.
One easy counter-example is φ(x1, x2) = 0.5x21 + 50x22. Take two points (1000, 1) and (495, -
49.5), we will find the monotonic relationship does not hold for these two points. Nocedal et al.
(2002) showed that the monotonic relationship holds for square loss (i.e.φ(x) = 1

2 (x−x∗)TQ(x−
x∗) ) if the condition number of Q is smaller than 3 + 2

√
2, which is a quite strong assumption

especially when x is in high-dimension. If we consider the more general type of loss function (i.e.
neural network), the assumptions on condition number should only be stronger, thus breaking the
monotonic relationship. Thus, although SPL sorts the lower bound of the gradient norm under mild
assumptions, our algorithm is significantly different from the proposed SPL and its variations.

Now, we discuss the relationship between SPL and algorithm 3 under supervision corruptions. SPL
has the same form as algorithm 3 when we are using mean square error to perform regression tasks
since the loss layer gradient norm is equal to loss itself. However, in classification, algorithm 3 is
different from the SPL. In order to better understand the algorithm, we further analyze the difference
between SPL and our algorithm for cross-entropy loss.

For cross entropy, denote the output logit as o, we have H(yi, fi) = −〈yi, log(softmax(oi))〉 =

−〈yi, log(fi)〉. The gradient norm of cross entropy w.r.t. oi is:
∂Hi

∂oi
= yi− softmax(oi) = fi−yi.

Thus, the gradient of loss layer is the MSE between yi and fi. Next, we investigate when MSE and
Cross Entropy gives non-monotonic relationship. For the sake of simplification, we only study the
sufficient condition of the non-monotonic relationship, which is showed in lemma 2.

Lemma 2 Let y ∈ Rq , where yk = 1,yi = 0 for i 6= k, and α, β are two q dimensional vector
in probability simplex. Without loss of generality, suppose α has smaller cross entropy loss αk ≥
βk, then the sufficient condition for ‖α − y‖ ≥ ‖β − y‖ is Vari 6=k({αi}) − Vari 6=k({βi}) ≥

q
(q−1)2 ((αk − βk)(2− αk − βk))

As αk ≥ βk, the right term is non-negative. In conclusion, when MSE generates a differ-
ent result from cross-entropy, the variance of the probability of the non-true class of the dis-
carded data point is larger. Suppose we have a ground-truth vector y = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
and we have two predictions α = [0.08, 0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08] and
β = [0.1, 0.3, 0.34, 0.05, 0.05, 0.1, 0.03, 0.03, 0, 0]. The prediction α have a smaller mse loss while
prediction β have a smaller cross-entropy loss. It is intuitive that β is more likely to be noisy data
since it has two peak on the prediction (i.e. 0.3, 0.34). However, since cross entropy loss only con-
siders one dimension, it cannot detect such situation. Compared to the cross-entropy, the gradient
(mse loss) considers all dimension, and thus will consider the overall prediction distributions.

5 COMBINING WITH CO-TEACHING STYLE TRAINING

Motivated by co-teaching (Han et al., 2018), which is one of currently state-of-the-art deep meth-
ods for learning under noisy label, we propose Co-PRL(L), which has the same framework of co-
teaching but uses the loss-layer gradient to select the data. The full algorithm is shown in algorithm
4 in the appendix. The meaning of all hyper-parameters in algorithm 4 are all the same as in the
original Han et al. (2018). Compared with algorithm 3, except sampling data according to the loss
layer gradient norm, the Co-PRL(L) has two other modules. The first is we gradually increase the
amount of the data to be dropped. The second is that two networks will exchange the selected data
to update their own parameters.

6 EXPERIMENT

In this section, we perform experiments on benchmark regression and classification dataset. The
code is available in supplementary materials of submission. We compare PRL(G)(Algo. 2), PRL(L)
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(Algo. 3), and Co-PRL(L) (Algo. 4) to the following baselines. Standard: standard training with-
out filtering data (mse for regression, cross entropy for classification); Normclip: standard training
with norm clipping; Huber: standard training with huber loss (regression only); Decouple: decou-
pling network, update two networks by using their disagreement (Malach & Shalev-Shwartz, 2017)
(classification only); Bootstrap: It uses a weighted combination of predicted and original labels
as the correct labels, and then perform back propagation (Reed et al., 2014) (classification only);
Min-sgd: choosing the smallest loss sample in minibatch to update model (Shah et al., 2020); SPL:
self-paced learning, dropping the data with large losses (same as PRL(L) in regression setting with
MSE loss); Ignormclip: clipping individual gradient then average them to update model (regression
only); Co-teaching: collaboratively train a pair of SPL model and exchange selected data to another
model(Han et al., 2018) (classification only); It is hard to design experiments for agnostic corrupted
supervision and we tried our best to include different types of supervision noise. The supervision
corruption settings are as follows: linadv: the corrupted supervision is generated by random wrong
linear relationship of features (regression); signflip: the supervision sign is flipped (regression);
uninoise: random sampling from uniform distribution as corrupted supervision (regression); mix-
ture: mixture of above types of corruptions (regression); pairflip: shuffle the coordinates (i.e. eyes
to mouth in celebA or cat to dog in CIFAR) (regression and classification); symmetric: randomly
assign wrong class label (classification). For classification, we use classification accuracy as the
evaluation metric, and R-square is used to evaluate regression experiments. Due to the limit of the
space, we only show the average evaluation score on testing data for the last 10 epochs. The whole
training curves are attached in the appendix. All experiments are repeated 5 times for regression ex-
periments and 3 times for classification experiments.Main hyperparameters are showed in appendix.

6.1 REGRESSION EXPERIMENT

We use CelebA data to perform regression tasks. CelebA dataset has 162770 training images, 19867
validation images, 19962 test images. The target variable is ten-dimensional coordinates of the
left eye, right eye, nose, left mouth, and right mouth. Given the human face image, the goal is to
predict 10 face landmark coordinates in the image. We tried adding different types of noise on the
landmark coordinates. We preprocess the CelebA data as following: we use three-layer CNN to
train 162770 training images to predict clean coordinates (we use 19867 validation images to do the
early stopping). Then, we use well-trained network to extract the 512-dimensional feature on testing
sets. Thus, our final data to perform experiment has feature sets X ∈ R19962×512, and the target
variable Y ∈ R19962×10. We further split the data to the training and testing set, where training
sets contain 80% of the data. Then, we manually add linadv, signflip, uninoise, pairflip, mixture
types of supervision noise on the target variable on training data. The corruption rate for all types
of corruption is varied from 0.1 to 0.4. We use 3-layer fully connect networks in experiments. The
results of averaged last 10 epoch r-square are in table 1.

6.2 CLASSIFICATION EXPERIMENT

We perform experiments on CIFAR10, and CIFAR100 to illustrate the effectiveness of our algorithm
in classification setting. We use the 9-layer Convolutional Neural Network, which is the same as
Han et al. (2018). Since most baselines include batch normalization, it is difficult to get individual
gradient efficiently, we will drop the ignormclip and PRL baselines. In the appendix, we attached the
results if both co-teaching and Co-PRL(L) drops batch normalization module. We will see that co-
teaching cannot maintain robustness while our method still has robustness. The reason is discussed
in the appendix. We consider pairflip and symmetric supervision corruptions in experiments. Also,
to compare with the current state of the art method, for symmetric noise, we use corruption rate
which beyond 0.5. Although our theoretical analysis assumes the noise rate is small than 0.5, when
the noise type is not adversary (i.e. symmetric), we empirically show that our method can also
deal with such type of noise. Results on CIFAR10, CIFAR100 are in Table 2. As we can see, no
matter using one network (PRL vs SPL) or two networks (Co-PRL(L) vs Co-teaching), our method
performs significantly better. Since in real-world problems, it is hard to know that the ground-truth
corruption rate, we also perform the sensitivity analysis in classification tasks to show the effect of
overestimating and underestimating ε. The results are in Table 3. More discussion about sensitivity
analysis can be found in appendix.
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Corruption Standard Normclip Huber Min-sgd Ignormclip PRL(G) PRL(L) Co-PRL(L)
linadv: 10 -2.33±0.84 -2.22±0.74 0.868±0.01 0.103±0.03 0.68±0.07 0.876±0.01 0.876±0.01 0.876±0.01
linadv: 20 -8.65±2.1 -8.55±2.2 0.817±0.015 0.120±0.02 0.367±0.28 0.871±0.01 0.869±0.01 0.869±0.01
linadv: 30 -18.529±4.04 -19.185±4.31 0.592±0.07 0.146±0.03 -0.944±0.51 0.865±0.01 0.861±0.01 0.860±0.01
linadv: 40 -32.22±6.32 -32.75±7.07 -2.529±1.22 0.180±0.01 -1.60± 0.80 0.857± 0.01 0.847±0.02 0.847±0.02
signflip: 10 0.800±0.02 0.798±0.03 0.857±0.01 0.110±0.04 0.846±0.01 0.877±0.01 0.878±0.01 0.879±0.01
signflip: 20 0.641±0.05 0.638±0.04 0.786±0.02 0.105±0.07 0.82±0.02 0.875±0.01 0.875±0.01 0.877±0.01
signflip: 30 0.422±0.04 0.421±0.04 0.629±0.03 0.124±0.05 0.795±0.02 0.871±0.01 0.873±0.01 0.875±0.01
signflip: 40 0.193±0.043 0.190±0.04 0.379±0.05 -0.028±0.25 0.759±0.01 0.872±0.01 0.872±0.01 0.871±0.01
uninoise: 10 0.845±0.01 0.844±0.01 0.875±0.01 0.103±0.03 0.859±0.01 0.879±0.01 0.881±0.01 0.881±0.01
uninoise: 20 0.798±0.02 0.795±0.02 0.865±0.01 0.120±0.02 0.844±0.01 0.878±0.01 0.880±0.01 0.880±0.01
uninoise: 30 0.728±0.02 0.725±0.02 0.847±0.01 0.146±0.03 0.831±0.01 0.878±0.01 0.879±0.01 0.879±0.01
uninoise: 40 0.656±0.02 0.654±0.02 0.825±0.01 0.180±0.01 0.821±0.01 0.876± 0.01 0.878±0.01 0.878±0.01
pairflip: 10 0.852±0.02 0.851±0.02 0.870±0.01 0.110±0.04 0.867±0.01 0.877±0.01 0.876±0.01 0.878±0.01
pairflip: 20 0.784±0.03 0.783±0.03 0.841±0.02 0.120±0.03 0.849±0.01 0.874±0.01 0.873±0.01 0.874±0.01
pairflip: 30 0.688±0.04 0.686±0.04 0.770±0.02 0.133±0.02 0.828±0.01 0.870±0.01 0.872±0.01 0.873±0.01
pairflip: 40 0.556±0.06 0.553±0.06 0.642±0.06 0.134±0.03 0.810±0.02 0.863±0.01 0.870±0.01 0.870±0.01
mixture: 10 -0.212±0.6 -0.010±0.48 0.873±0.01 0.101±0.03 0.861±0.01 0.878±0.01 0.880±0.01 0.880±0.01
mixture: 20 -0.404±0.68 -0.463±0.67 0.855±0.01 0.119±0.03 0.855±0.01 0.877±0.01 0.878±0.01 0.879±0.01
mixture: 30 -0.716±0.57 -0.824±0.39 0.823±0.01 0.148±0.02 0.847±0.01 0.875±0.01 0.877±0.01 0.878±0.01
mixture: 40 -3.130±1.51 -2.69±0.84 0.763±0.01 0.175±0.02 0.835±0.01 0.872±0.01 0.875±0.01 0.876±0.01

Table 1: CelebA Results. The numbers are r-square on clean testing data, and the standard deviation
is from last ten epochs and 5 random seeds.

Corruption Standard Normclip Bootstrap Decouple Min-sgd SPL PRL(L) Co-teaching Co-PRL(L)
CF10-sym-30 63.22± 0.18 62.41± 0.06 63.67± 0.24 70.73± 0.51 13.31± 2.24 77.77± 0.34 79.40± 0.19 79.90± 0.13 80.05± 0.12
CF10-sym-50 44.63± 0.18 43.99± 0.28 46.13± 0.18 57.48± 1.98 13.33± 2.85 72.22± 0.15 74.17± 0.15 74.25± 0.41 75.43± 0.09
CF10-sym-70 24.12± 0.09 24.17± 0.37 25.13± 0.39 40.11± 4.62 9.08± 0.94 56.19± 0.33 58.36± 0.62 58.41± 0.33 60.26± 0.42
CF10-pf-25 68.34± 0.30 67.92± 0.43 68.71± 0.32 75.59± 0.35 10.45± 0.60 75.79± 0.44 80.54± 0.07 80.18± 0.21 81.51± 0.13
CF10-pf-35 58.68± 0.28 58.27± 0.18 58.19± 0.12 66.38± 0.44 12.29± 1.92 70.40± 0.27 77.61± 0.35 77.97± 0.03 79.01± 0.14
CF10-pf-45 48.05± 0.25 48.03± 0.54 47.84± 0.32 51.54± 0.81 10.94± 1.28 58.95± 0.59 71.42± 0.24 72.43± 0.31 73.78± 0.17
CF100-sym-30 32.83± 0.39 32.10± 0.64 34.47± 0.22 32.95± 0.44 2.94± 0.61 44.37± 0.44 46.40± 0.18 45.02± 0.29 47.51± 0.47
CF100-sym-50 20.47± 0.44 19.73± 0.29 21.59± 0.44 21.02± 0.36 2.35± 0.45 37.89± 0.16 38.38± 0.65 38.79± 0.33 40.64± 0.11
CF100-sym-70 9.93± 0.07 9.93± 0.23 10.59± 0.17 12.55± 0.46 2.32± 0.24 24.10± 0.44 25.38± 0.56 24.94± 0.53 27.27± 0.01
CF100-pf-25 40.37± 0.55 39.34± 0.35 40.22± 0.37 39.43± 0.27 2.62± 0.26 40.48± 0.72 47.57± 0.37 42.97± 0.10 48.06± 0.26
CF100-pf-35 34.07± 0.19 32.88± 0.10 34.53± 0.23 33.14± 0.07 2.30± 0.07 34.17± 0.46 43.32± 0.16 36.69± 0.23 44.08± 0.33
CF100-pf-45 27.66± 0.50 27.35± 0.61 27.56± 0.23 26.83± 0.41 2.55± 0.52 27.55± 0.66 33.31± 0.10 29.71± 0.20 34.43± 0.05

Table 2: Classification Results on CIFAR10 and CIFAR100 for symmetric and pairflip label cor-
ruption. The numbers are classification accuracy on clean testing data, and the standard deviation is
from last ten epochs and 3 random seeds.

Data ε− 0.1 ε− 0.05 ε ε + 0.05 ε + 0.1
CF10-Pair-45% 65.07±0.83 70.07±0.67 73.78±0.17 77.56±0.55 79.36±0.43
CF10-Sym-50% 69.21±0.35 72.53±0.45 75.43± 0.09 77.65±0.27 78.10±0.31
CF10-Sym-70% 53.88±0.64 58.49±0.97 60.26± 0.42 60.89±0.43 54.91±0.68
CF100-Pair-45% 32.60±0.45 34.17±0.40 34.43± 0.05 36.87±0.41 38.34±0.78
CF100-Sym-50% 37.74±0.41 39.72±0.36 40.64± 0.11 43.02±0.36 43.92±0.61
CF100-Sym-70% 24.40±0.47 25.50±0.45 27.27± 0.10 27.80±0.50 28.20±0.97

Table 3: sensitivity analysis for estimated ε
7 CONCLUSION

In this paper, we proposed efficient algorithm to defense against agnostic supervision corruptions.
Both theoratical and empirical analysis showed the effectiveness of our algorithm. There are two
remaining questions in this paper which deserves study in future. The first one is whether we can
further improve O(ε) error bound or show that O(ε) is tight. The second one is to utilize more
properties of neural networks, such as the sparse gradient, to see whether it is possible to get better
algorithms.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Ahmad Ajalloeian and Sebastian U Stich. Analysis of sgd with biased gradient estimators. arXiv
preprint arXiv:2008.00051, 2020.
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A APPENDIX

A.1 CO-IGFILTER ALGORITHM

See algorithm 4.
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Algorithm 4: Co-PRL(L)
input: initialize wf and wg , learning rate η, fixed τ , epoch Tk and Tmax, iterations Nmax
return model parameter wf and wg;
for T = 1, 2, ..., Tmax do

for N = 1, ..., Nmax do
random sample a minibatch M from Dx,D

ε
y (noisy dataset)

get the predicted label Ŷf and Ŷg from M by wf . wg
calculate the individual loss lf = L(Y, Ŷf ), lg = L(Y, Ŷg)

calculate the gradient norm of loss layer scoref = ‖ ∂lf
∂ŷf
‖, scoreg = ‖ ∂lg

∂ŷg
‖.

sample R(T )% small-loss-layer-gradient-norm instances by scoref and scoreg to get Nf , Ng

update wf = wf − η∇wfL(Nf , wf ), wg = wg − η∇wgL(Ng, wg) (selected dataset)
update model xt+1 = xt − γtµ̂

end

Update R(T ) = 1−min

{
T

Tk
τ, τ

}
end

(a) When gradient filtering method failed to pick
out right corrupted data, the remaining corrupted
data is relatively smooth, thus has limited impact
on overall loss surface.

(b) When loss filtering method failed to pick out
right corrupted data, the remaining corrupted data
could be extremely sharp, thus has large impact
on overall loss surface.

Figure 1: Geometric illustration of the difference between loss filtering and gradient norm filtering.
A.2 FURTHER ILLUSTRATION OF THE DIFFERENCE BETWEEN SPL AND PRL(G)

In this section, we will further illustrate the difference between SPL and PRL(G). In order to have
a more intuitive understanding of our algorithm, we could look at the Figure 1a and 1b. Since we
are in the agnostic label corruption setting, it is difficult to filtering out the correct corrupted data.
We showed two situations when loss filtering failed and gradient filtering failed. As we could see
that when loss filtering method failed, the remaining corrupted data could have large impact on the
overall loss surface while when gradient filtering method failed, the remaining corrupted data only
have limited impact on the overall loss surface, thus gaining robustness.

A.3 NETWORKS AND HYPERPARAMETERS

The hyperparameters are in Table 4. For Classification, we use the same hyperparameters in Han
et al. (2018). For CelebA, we use 3-layer fully connected network with 256 hidden nodes in hidden
layer and leakly-relu as activation function. We also attached our code in supplementary materials.

Data\HyperParameter BatchSize Learning Rate Optimizer Momentum
CF-10 128 0.001 Adam 0.9
CF-100 128 0.001 Adam 0.9
CelebA 512 0.0003 Adam 0.9

Table 4: Main Hyperparmeters
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(a) ε = 0.1 linadv noise (b) ε = 0.2 linadv noise (c) ε = 0.3 linadv noise (d) ε = 0.4 linadv noise

(e) ε = 0.1 signflip noise (f) ε = 0.2 signflip noise (g) ε = 0.3 signflip noise (h) ε = 0.4 signflip noise

(i) ε = 0.1 uninoise noise (j) ε = 0.2 uninoise noise (k) ε = 0.3 uninoise noise (l) ε = 0.4 uninoise noise

(m) ε = 0.1 mixture noise (n) ε = 0.2 mixture noise (o) ε = 0.3 mixture noise (p) ε = 0.4 mixture noise

(q) ε = 0.1 pairflip noise (r) ε = 0.2 pairflip noise (s) ε = 0.3 pairflip noise (t) ε = 0.4 pairflip noise

Figure 2: CelebA Testing Curve During Training. X axis represents the epoch number, Y axis
represents the testing r-square. In some experiment, there is no cure for Standard and NormClip
since they gave negative r-square, which will effect the plotting scale. The shadow represents the
confidence interval, which is calculated across 5 random seed. As we see, PRL(G), PRL(L), and
Co-PRL(L) are robust against different types of corruptions.
A.4 REGRESSION R2 ON TESTING DATA CURVE

The curve for CelebA data is showed in Figure 2.

A.5 CLASSIFICATION CURVE

The classification curve is in Figure 3

A.6 SENSITIVITY ANALYSIS

Since in real-world problems, it is hard to know that the ground-truth corruption rate, we perform
the sensitivity analysis in classification tasks to show the effect of ε. The results are in Table 5. As
we could see, the performance is stable if we overestimate the corruption rate, this is because only
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(a) CF10 with ε = 0.3 symmetric
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(b) CF10 with ε = 0.5 symmetric
noise

0 10 20 30 40 50
epoch

10

20

30

40

50

60

te
st

_a
cc

1

method
Standard
SPL
Decouple
Co-teaching
PRL(L)
Co-PRL(L)
Norm-clip
Bootstrapping
Min-SGD

(c) CF10 with ε = 0.7 symmetric
noise
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(d) CF10 with ε = 0.25 pairflip
noise

0 10 20 30 40 50
epoch

10

20

30

40

50

60

70

80

te
st

_a
cc

1

method
Standard
SPL
Decouple
Co-teaching
PRL(L)
Co-PRL(L)
Norm-clip
Bootstrapping
Min-SGD

(e) CF10 with ε = 0.35 pairflip
noise
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(f) CF10 with ε = 0.45 pairflip
noise
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(g) CF100 with ε = 0.3 symmet-
ric noise
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(h) CF100 with ε = 0.5 symmet-
ric noise
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(i) CF100 with ε = 0.7 symmet-
ric noise
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(j) CF100 with ε = 0.25 pairflip
noise
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(k) CF100 with ε = 0.35 pairflip
noise
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(l) CF100 with ε = 0.45 pairflip
noise

Figure 3: CIFAR10 and CIFAR100 Testing Curve During Training. X axis represents the epoch
number, Y axis represents the testing accuracy. The shadow represents the confidence interval,
which is calculated across 3 random seed. As we see, IGFilter(L), and Co-IGFilter(L) are robust
against different types of corruptions.

when we overestimate the ε, we could guarantee that the gradient norm of the remaining set is small.
However, when we underestimate the corruption rate, in the worst case, there is no guarantee that
the gradient norm of the remaining set is small. By using the empirical mean, even one large bad
individual gradient would ruin the gradient estimation, and according to the convergence analysis of
biased gradient descent, the final solution could be very bad in terms of clean data. That explains
why to underestimate the corruption rate gives bad results. Also, from Table 5, we could see that
using the ground truth corruption rate will lead to small uncertainty.

A.7 EMPIRICAL RESULTS ON RUNNING TIME

As we claimed in paper, the algorithm 2 is not efficient. In here we attached the execution time
for one epoch for three different methods: Standard, PRL(G), PRL(L). For fair comparison, we
replace all batch normalization module to group normalization for this comparison, since it is hard
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Data ε− 0.1 ε− 0.05 ε ε + 0.05 ε + 0.1
CF10-Pair-45% 65.07±0.83 70.07±0.67 73.78±0.17 77.56±0.55 79.36±0.43
CF10-Sym-50% 69.21±0.35 72.53±0.45 75.43± 0.09 77.65±0.27 78.10±0.31
CF10-Sym-70% 53.88±0.64 58.49±0.97 60.26± 0.42 60.89±0.43 54.91±0.68
CF100-Pair-45% 32.60±0.45 34.17±0.40 34.43± 0.05 36.87±0.41 38.34±0.78
CF100-Sym-50% 37.74±0.41 39.72±0.36 40.64± 0.11 43.02±0.36 43.92±0.61
CF100-Sym-70% 24.40±0.47 25.50±0.45 27.27± 0.10 27.80±0.50 28.20±0.97

Table 5: sensitivity analysis for estimated ε

Method Standard (Lower Bound) PRL(G) PRL(L)
CF10-Pair-45% 37.03s 145.55s 54.80s

Table 6: Execution Time of Single Epoch in CIFAR-10 Data
to calculate individual gradient when using batch normalization. For PRL(G), we use opacus libarary
(https://opacus.ai/) to calculate the individual gradient.

The results are showed in Table 6

A.8 PROOF OF CONVERGENCE OF BIASED SGD

We gave the proof of the theorem of how biased gradient affect the final convergence of SGD. We
introduce several assumptions and definition first:

Assumption 2 (L-smoothness) The function φ: Rd → R is differentiable and there exists a con-
stant L > 0 such that for all θ1, θ2 ∈ Rd, we have φ(θ2) ≤ φ(θ1)+〈∇φ(θ1), θ2−θ1〉+ L

2 ‖θ2−θ1‖
2

Definition 1 (Biased gradient oracle) A map g : Rd × D → Rd, such that g(θ, ξ) = ∇φ(θ) +
b(θ, ξ) + n(θ, ξ) for a bias b : Rd → Rd and zero-mean noise n : Rd × D → Rd, that is
Eξn(θ, ξ) = 0.

Compared to standard stochastic gradient oracle, the above definition introduces the bias term b. In
noisy-label settings, the b is generated by the data with corrupted labels.

Assumption 3 (σ-Bounded noise) There exists constants σ > 0, such that Eξ‖n(θ, ξ)‖2 ≤
σ, ∀θ ∈ Rd

Assumption 4 (ζ-Bounded bias) There exists constants ζ > 0, such that for any ξ, we have
‖b(θ, ξ)‖2 ≤ ζ2, ∀θ ∈ Rd

For simplicity, assume the learning rate is constant γ, then in every iteration, the biased SGD per-
forms update θt+1 ← θt − γtg(θt, ξ). Then the following theorem showed the gradient norm
convergence with biased SGD.

Theorem 4 (Convergence of Biased SGD(formal)) Under assumptions 2, 3, 4, define F =

φ(θ0)− φ∗and step size γ = min

{
1

L
, (

√
LF

σT
)

}
, denote the desired accuracy as k, then

T = O
(
1

k
+
σ2

k2

)
iterations are sufficient to obtain mint∈[T ] E‖∇φ(θt)‖2 = O(k + ζ2).

Remark 2 Let k = ζ2, T = O
(

1
ζ2 + σ2

ζ4

)
iterations is sufficient to get mint∈[T ] E‖∇φ(θt)‖2 =

O(ζ2), and performing more iterations does not improve the accuracy in terms of convergence.

Since this is a standard results, similar results are showed in Bernstein et al. (2018); Devolder et al.
(2014); Hu et al. (2020); Ajalloeian & Stich (2020). we provide the proof here.
Proof: by L-smooth, we have:

φ(θ2) ≤ φ(θ1) + 〈∇φ(θ1), θ2 − θ1〉+
L

2
‖θ2 − θ1‖2
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by using γ ≤ 1

L
, we have

Eφ (θ1t+1) ≤ φ (θ1t)− γ 〈∇φ (θ1t) ,Egt〉+
γ2L

2

(
E ‖gt − Egt‖2 + E ‖Egt‖2

)
= φ (θ1t)− γ 〈∇φ (θ1t) ,∇φ (θ1t) + bt〉+

γ2L

2

(
E ‖nt‖2 + E ‖∇φ (θ1t) + bt‖2

)
≤ φ (θ1t) +

γ

2

(
−2 〈∇φ (θ1t) ,∇φ (θ1t) + bt〉+ ‖∇φ (θ1t) + bt‖2

)
+
γ2L

2
E ‖nt‖2

= φ (θ1t) +
γ

2

(
−‖∇φ (θ1t)‖

2
+ ‖bt‖2

)
+
γ2L

2
E ‖nt‖2

Since we have ‖bt‖2 ≤ ζ2, ‖nt‖2 ≤ σ2, by plug in the learning rate constraint, we have

Eφ (θ1t+1) ≤ φ (θ1t)−
γ

2
‖∇φ (θ1t)‖

2
+
γ

2
ζ2 +

γ2L

2
σ2

Eφ (θ1t+1)− φ (θ1t) ≤ −
γ

2
‖∇φ (θ1t)‖

2
+
γ

2
ζ2 +

γ2L

2
σ2

Then, removing the gradient norm to left hand side, and sum it across different iterations, we could
get

1

2T

T−1∑
t=0

E‖φ (θ1t) ‖ ≤
F

Tγ
+
ζ2

2
+
γLσ2

2

Take the minimum respect to t and substitute the learning rate condition will directly get the results.

A.9 PROOF OF THEOREM 2

Denote G̃ to be the set of corrupted minibatch, G to be the set of original clean minibatch and
we have |G| = |G̃| = m. Let N to be the set of remaining data and according to our algorithm,
the remaining data has the size |N| = n = (1 − ε)m. Define A to be the set of individual clean
gradient, which is not discarded by algorithm 1. B to be the set of individual corrupted gradient,
which is not discarded. According to our definition, we have N = A ∪ B. AD to be the set of
individual good gradient, which is discarded, AR to be the set of individual good gradient, which
is replaced by corrupted data. We have G = A∪AD∪AR. BD is the set of individual corrupted
gradient, which is discarded by our algorithm. Denote the good gradient to be gi = αiWi, and the
bad gradient to be g̃i, according to our assumption, we have ‖g̃i‖ ≤ L.

Now, we have the l2 norm error:

‖µ(G)− µ(N)‖ = ‖ 1
m

m∑
i∈G

gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

m∑
i=1

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

n

m
gi +

1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

1

n

∑
i∈B

g̃i‖

≤ ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi‖+ ‖

1

n

∑
i∈B

g̃i‖

≤ ‖
∑
A

m− n
nm

gi +
∑
AD

1

m
gi +

∑
AR

1

m
gi‖+

∑
B

1

n
‖g̃i‖

≤
∑
A

‖m− n
nm

gi‖+
∑
AD

‖ 1
m
gi‖+

∑
AR

‖ 1
m
gi‖+

∑
B

1

n
‖g̃i‖
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By using the filtering algorithm, we could guarantee that ‖g̃i‖ ≤ L. Let |A| = x, we have |B| =
n− x = (1− ε)m− x, |AR| = m− n = εm, |AD| = m− |A| − |AR| = m− x− (m− n) =
n− x = (1− ε)m− x. Thus, we have:

‖µ(G)− µ(N)‖ ≤ xm− n
nm

L+ (n− x) 1
m
L+ (m− n) 1

m
L+ (n− x) 1

n
L

≤ x(m− n
nm

− 1

m
)L+ n

1

m
L+ (m− n) 1

m
L+ (n− x) 1

n
L

=
1

m
(
2ε− 1

1− ε
)xL+ L+ L− 1

n
xL

= xL(
2ε− 2

n
) + 2L

To minimize the upper bound, we need x to be as small as possible since 2ε− 2 < 1. According to
our problem setting, we have x = n−mε ≤ (1− 2ε)m, substitute back we have:

‖µ(G)− µ(N)‖ ≤ (1− 2ε)Lm(
2ε− 2

n
) + 2L

=
1− 2ε

1− ε
2L+ 2L

= 4L− ε

1− ε
2L

Since ε < 0.5, we use tylor expansion on
ε

1− ε
, by ignoring the high-order terms, we have

‖µ(G)− µ(N)‖ = O(εL)

Note, if the Lipschitz continuous assumption does not hold, then L should be dimension dependent.

A.10 PROOF OF RANDOMIZED FILTERING ALGORITHM

Lemma 3 (Gradient Estimation Error for Randomized Filtering) Given a corrupted matrix
G̃ ∈ Rm×d generated in problem 2. Let G ∈ Rm×d be the original clean gradient matrix. Suppose
we are arbitrary select n = (1− ε)m rows from G̃ to get remaining set N ∈ Rn×d. Let µ to be the
empirical mean function, assume the clean gradient before loss layer has bounded operator norm:
‖W‖op ≤ C, the maximum clean gradient in loss layer maxi ‖αi‖ = k, the maximum corrupted
gradient in loss layer maxi ‖δi‖ = v, assume ε < 0.5, then we have:

‖µ(G)− µ(N)‖ ≤ Ck 3ε− 4ε2

1− ε
+ Cv

ε

1− ε

A.10.1 PROOF OF LEMMA 3

Denote G̃ to be the set of corrupted minibatch, G to be the set of original clean minibatch and
we have |G| = |G̃| = m. Let N to be the set of remaining data and according to our algorithm,
the remaining data has the size |N| = n = (1 − ε)m. Define A to be the set of individual clean
gradient, which is not discarded by algorithm 3. B to be the set of individual corrupted gradient,
which is not discarded. According to our definition, we have N = A ∪ B. AD to be the set of
individual good gradient, which is discarded, AR to be the set of individual good gradient, which
is replaced by corrupted data. We have G = A∪AD∪AR. BD is the set of individual corrupted
gradient, which is discarded by our algorithm. Denote the good gradient to be gi = αiWi, and the
bad gradient to be g̃i = δiWi, according to our assumption, we have ‖Wi‖op ≤ C.
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Now, we have the l2 norm error:

‖µ(G)− µ(N)‖ = ‖ 1
m

m∑
i∈G

gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

m∑
i=1

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

n

m
gi +

1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

1

n

∑
i∈B

g̃i‖

≤ ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi‖+ ‖

1

n

∑
i∈B

g̃i‖ (1)

Let |A| = x, we have |B| = n−x = (1−ε)m−x, |AR| = m−n = εm, |AD| = m−|A|−|AR| =
m− x− (m− n) = n− x = (1− ε)m− x. Thus, we have:

‖µ(G)− µ(N)‖ ≤ ‖
∑
A

m− n
nm

gi +
∑
AD

1

m
gi +

∑
AR

1

m
gi‖+

∑
B

1

n
‖g̃i‖

≤
∑
A

‖m− n
nm

gi‖+
∑
AD

‖ 1
m
gi‖+

∑
AR

‖ 1
m
gi‖+

∑
B

1

n
‖g̃i‖

For individual gradient, according to the label corruption gradient definition in problem 2, assum-
ing the ‖W‖op ≤ C, we have ‖gi‖ ≤ ‖αi‖‖Wi‖op ≤ C‖αi‖. Also, denote maxi ‖αi‖ = k,
maxi ‖δi‖ = v, we have ‖gi‖ ≤ Ck, ‖g̃i‖ ≤ Cv.

‖µ(G)− µ(N)‖ ≤ Cxm− n
nm

k + C(n− x) 1
m
k + C(m− n) 1

m
k + C(n− x) 1

n
v

Note the above upper bound holds for any x, thus, we would like to get the minimum of the upper
bound respect to x. Rearrange the term, we have

‖µ(G)− µ(N)‖ ≤ Cx(m− n
nm

− 1

m
)k + Cn

1

m
k + C(m− n) 1

m
k + C(n− x) 1

n
v

= C
1

m
(
2ε− 1

1− ε
)xk + Ck + Cv − 1

n
Cxv

= Cx

(
k(2ε− 1)

m(1− ε)
− v

n

)
+ Ck + Cv

= Cx

(
k(2ε− 1)− v
m(1− ε)

)
+ Ck + Cv

Since when ε < 0.5,
k(2ε− 1)− v
m(1− ε)

< 0, we knew that x should be as small as possible to continue

the bound. According to our algorithm, we knew n −mε = m(1 − ε) −mε = (1 − 2ε)m ≤ x ≤
n = (1− ε)m. Then, substitute x = (1− 2ε)m, we have

‖µ(G)− µ(N)‖ ≤ Ck(1− 2ε)
2ε− 1

1− ε
+ Ck + Cv − Cv 1− 2ε

1− ε

= Ck
3ε− 4ε2

1− ε
+ Cv

ε

1− ε
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A.11 PROOF OF THEOREM 3

According to algorithm3, we could guarantee that v ≤ k, then, we will have:

‖µ(G)− µ(N)‖ ≤ Ck 3ε− 4ε2

1− ε
+ Cv

ε

1− ε

≤ Ck 4ε− 4ε2

1− ε
= 4εCk

= O(ε√q)(C is constant, k is the norm of q-dimensional vector)

A.12 COMPARISON BETWEEN SORTING LOSS LAYER GRADIENT NORM AND SORTING THE
LOSS VALUE

Assume we have a d class label y ∈ Rd, where yk = 1, yi = 0, i 6= k. We have two prediction
p ∈ Rd, q ∈ Rd.

Assume we have a d class label y ∈ Rd, where yk = 1, yi = 0, i 6= k. With little abuse of notation,
suppose we have two prediction p ∈ Rd, q ∈ Rd. Without loss of generality, we could assume that
p1 has smaller cross entropy loss, which indicates pk ≥ qk

For MSE, assume we have opposite result

‖p− y‖2 ≥ ‖q− y‖2

⇒
∑
i 6=k

p2i + (1− pk)2 ≥
∑
i6=k

q2i + (1− qk)2 (2)

For each pi, i 6= k, We have

V ar(pi) = E(p2i )− E(pi)
2 =

1

d− 1

∑
i 6=k

p2i −
1

(d− 1)2
(1− pk)2 (3)

Then ∑
i 6=k

p2i + (1− pk)2 ≥
∑
i 6=k

q2i + (1− qk)2

⇒V ari 6=k(pi) +
d

(d− 1)2
(1− pk)2 ≥ V ari 6=k(qi) +

d

(d− 1)2
(1− qk)2

⇒V ari 6=k(pi)− V ari 6=k(qi) ≥
d

(d− 1)2
(
(1− qk)2 − (1− pk)2

)
⇒V ari 6=k(pi)− V ari 6=k(qi) ≥

d

(d− 1)2
((pk − qk)(2− pk − qk))

(4)

19


	Introduction
	Background
	Methodology
	Stochastic Gradient Descent with Biased Gradient
	Robust Gradient Estimation for General Data Corruption
	Robust Gradient Estimation for One Dimensional Corrupted Supervision
	Extension to Multi-Dimensional Corrupted Supervision
	Comparison with diakonikolas2019sever and Other Methods

	Relationship to Self-Paced Learning (SPL)
	Combining With Co-teaching Style Training
	Experiment
	Regression Experiment
	Classification Experiment

	Conclusion
	Appendix
	Co-IGFilter Algorithm
	Further Illustration of the difference between SPL and PRL(G)
	Networks and Hyperparameters
	Regression R2 on Testing Data Curve
	Classification Curve
	Sensitivity Analysis
	Empirical Results on Running Time
	Proof of Convergence of Biased SGD
	Proof of Theorem 2
	Proof of Randomized Filtering Algorithm
	Proof of lemma 3

	Proof of theorem 3
	Comparison between sorting loss layer gradient norm and sorting the loss value


