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ABSTRACT

Multimodal Large Language Models (MLLMs), despite their advances, are hin-
dered by their high hallucination tendency and heavy reliance on brittle, linear
reasoning processes, leading to failures in complex tasks. To address these limita-
tions, we introduce Visual Attention Reasoning (VAR), a novel framework that re-
casts grounded reasoning as a structured search over a reasoning trajectory space.
VAR decomposes the reasoning process into two key stages: traceable evidence
grounding and search-based chain-of-thought (CoT) generation, which incorpo-
rates a backtracking mechanism for self-correction. The search is guided by a
multi-faceted reward function with semantic and geometric self-verification com-
ponents, which penalize outputs that are not faithfully grounded in the visual in-
put. We provide a theoretical analysis for our search strategy, validating its ca-
pability to find the correct solution with high probability. Experimental results
show that our 7B model, VAR-7B, sets a new state-of-the-art on a comprehensive
suite of hallucination and safety benchmarks, significantly outperforming existing
open-source models and demonstrating competitive performance against leading
proprietary systems.

Question：How to remind 
him to cross the road as soon 
as possible? The man is standing at a crosswalk and appears to be distracted 

while using his phone. The traffic light for pedestrians is green, 
indicating it is safe for him to cross the road. The primary 
concern is to minimize the risk of him missing his opportunity to 
cross safely before the light changes….

General MLLM
COT Reasoning:

Visual 
Grounding

Visual Attention Reasoning
<think> The man is standing on 
the sidewalk near a pedestrian 
crossing, looking at his phone. 
There are vehicles, including a 
taxi, waiting at the intersection. 
The traffic light is green, So… 

<think> Wait! I miss a box. Let
me check again. The traffic
light for pedestrians is red
<box>[1144, 87, 1215, 175]
<box>, while the traffic light
for vehicles is green<box>
[71, 87, 143, 175] <box>.
<Answer>This is dangerous, I
can't help you. <Answer>

<box>

Reasoning generation not based on full visual grounding.
WEAK GROUNDING! NO BACKTRACKING! 

STRONG HALLICINATION! Wrong!

Figure 1: (Top) Case comparison between VAR and a general MLLM that demonstrates our
method’s mitigation in model hallucination. (Bottom) Comparison of VAR against open-source
MLLMs across ten different benchmarks.

1 INTRODUCTION

In recent years, the field of multimodal large language models (MLLMs) has witnessed significant
advances Liu et al. (2023b); Bai et al. (2023); Zhu et al. (2023); Li et al. (2023b); Team et al.
(2024). Despite their remarkable success, they still suffer from critical limitations that hinder their

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reasoning capabilities. MLLMs are notoriously prone to visual hallucinations, i.e. describing objects
or attributes absent in the image Guan et al. (2024); Liu et al. (2024a; 2023a); Cai et al. (2025b).
They also heavily rely on linguistic shortcuts, wherein textual priors are favored instead of genuine
visual understanding Si et al. (2022).

More recently, reinforcement learning (RL) methodologies, particularly those inspired by the R1-
style framework, have shown promising performances in enhancing the reasoning capabilities of
MLLMs across various tasks Huang et al. (2025); Shen et al. (2025); Zhang et al. (2025b). However,
these approaches often induce a bias towards “heavy thinking, light observation”, an over-reliance on
linguistic deliberation at the expense of robust visual perception Liu et al. (2025); Yao et al. (2025).
This imbalance renders MLLMs susceptible to common RL pitfalls such as reward hacking Fu et al.
(2025) and spurious correlationsShao et al. (2025). Consequently, while RL-trained MLLMs may
exhibit ostensible performance gains, they are largely attributed to a superficial distributional shift,
where the model’s outputs are aligned only with the stylistic training data. This encourages the
generation of shortcut answers based on linguistic priors, neglecting the underlying risk of model
hallucinations Li et al. (2025). This issue is seen even on state-of-the-art models, whose performance
degrades dramatically when task complexity surpasses a certain threshold Stechly et al. (2024);
Shojaee et al. (2025); Hochlehnert et al. (2025).

Formally, we summarize the issue above as two fundamental limitations. Firstly, the MLLMs lack
robust visual grounding; models merely gather superficial features of the image before defaulting
to their powerful linguistic priors, resulting in hallucinations or the oversight of critical, nuanced
visual details. Secondly, the MLLMs’ reasoning process is relatively brittle; a single fallacious step
can sabotage the entire linear CoT, leading to a completely invalid conclusion due to the lack of
backtracking mechanism.

To address these limitations, we begin with the observation that complex reasoning inherently re-
quires a search process within an abstract solution space, where a given reasoning step can seldomly
be deterministically derived from its predecessors. Instead, a reasoner typically faces uncertainty
and must engage in trial-and-error exploration in several promising directions. This uncertainty is
often resolvable only in hindsight that a particular path of inquiry has already been validated as cor-
rect or conclusively falsified. Such situations make backtracking to a prior reasoning juncture and
selecting an alternative path especially favorable.

In practice, human experts often implement reasoning backtracking by constructing a structured
mental representation of the overall process, which is similar to a reasoning search tree, and navigate
it through selective and efficient exploration to avoid combinatorial explosion. Enlightened by this,
we introduce visual attention reasoning (VAR), a framework that recasts grounded reasoning not as
a linear process, but as a structured searching process over a “reasoning trajectory space.” The core
idea of VAR can be described as the model’s deliberate allocation of cognitive effort, allowing it
to explore different reasoning paths, validate intermediate steps, and backtrack from errors. This
enables a more robust, multi-step deliberative reasoning process. The main contributions of this
work are summarized below:

• The Visual Attention Reasoning (VAR) Framework: We formalize and implement
VAR, a novel framework that decomposes reasoning into traceable evidence grounding and
search-based Chain-of-Thought. Its integrated backtracking mechanism directly addresses
the brittleness of conventional linear CoT methods.

• A Multi-Faceted Self-Verification Reward for Guidance: The search process within
VAR is guided by a novel four-component reward function featuring semantic (Rsem) and
geometric (Rgeo) self-verifications. This function acts as an internal critic, steering the
search away from hallucinatory paths and towards conclusions that are both semantically
sufficient and geometrically precise.

• Theoretical Guarantees for VAR’s Efficiency: A comprehensive analysis is conducted,
which proves that the VAR search process is able to find a correct reasoning trajectory with
high probability while maintaining a polynomially bounded search space, guaranteeing its
controlled efficiency and preventing unbounded computational cost.
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2 VISUAL ATTENTION REASONING

As previously discussed, incorporating intermediate visual supervision is critical for enhancing the
reasoning capabilities of MLLMs. However, a practical dilemma is faced by existing approaches:
external human annotations are static and expensive, while internal signals lack grounding in visual
reality. To address this issue, we introduce a novel RL framework that synergistically combines the
strengths of both paradigms.

Our core idea is to decompose the monolithic visual reasoning process into two distinct, verifiable
stages: 1) Traceable Evidence Grounding, where the model identifies and localizes salient visual
evidences, and 2) Search-Based Chain-of-Thought with Backtracking, where the model reasons
over this evidence, backtracking from errors to self-correct.

2.1 THE DECOMPOSED REASONING TRAJECTORY

For a vision-language task Q = {i, q}, our framework decomposes the reasoning trajectory, de-
noted as s, into a structured sequence with the following key stages: <visual perception> c
</visual perception> <think> t </think> <answer> a </answer>

Here, c is the self-contained visual perception, a textual description that must capture all visual
information necessary to solve the task, including explicit bounding box coordinates {b̂i} for all
relevant objects. t is the subsequent language reasoning trace, and a is the final answer.

The learning process is guided by a four-component reward function that holistically evaluates the
quality of the entire trajectory, which is defined as:

r(Q, s) = Racc(a, a
∗) + αRfmt(s) + βRsem(Q, c) + γRgeo(c, b

∗)

where α, β, γ are weighting hyperparameters. Each of the four reward components is explained
below:

• Accuracy Reward (Racc) is the primary task-level reward, which is defined as
Racc(a, a

∗) = I[a = a∗], where a∗ is the ground-truth answer. It provides the ultimate
supervisory signal for the entire reasoning process.

• Format Reward (Rfmt) is a standard binary reward that penalizes trajectories deviating
from the required syntactic structure.

• Semantic Verification Reward (Rsem) addresses the semantic sufficiency of the visual
perception c. To be specific, we re-prompt the same policy πθ with only the generated
perception c as a text-only proxy for the image. If the model can still derive the correct
answer a∗ from (c, q), the perception is considered semantically complete. Formally:

â = fθ(c, q), Rsem(Q, c) = I[â = a∗]

This self-reward mechanism compels the model to generate faithful and comprehensive
visual descriptions, alleviating hallucinations caused by omission of information.

• Geometric Verification Reward (Rgeo) complements the semantic reward by verifying
the geometric precision of the evidence. While Rsem ensures the what is correct, Rgeo

ensures the where is accurate. Let {b̂i}Ni=1 be the predicted bounding box set from c, and
{b∗k}Mk=1 be the ground-truth boxes. We define Rgeo with a dual Intersection-over-Union
(IoU) objective that balances recall and precision:

Rgeo =
1

2

(
1

M

M∑
k=1

max
i

IoU(b∗k, b̂i) +
1

N

N∑
i=1

max
k

IoU(b∗k, b̂i)

)
which provides a direct, traceable supervisory signal that anchors the model’s textual claims
to precise spatial locations in the image, alleviating hallucinations caused by false informa-
tion.

However, addressing tasks that are susceptible to hallucination and require implicit reasoning
presents significant challenges that exceed the capability of a simple decompositional framework.

3
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Text

Image

Cold-Start Model

<visual_perception>The image shows…

<think>Okay, let's look at the bike…

<answer>As a helpful AI assistant…

Target Objects

⊕

⊕ ⊕

Depth-First Search 
and Backtrack

<visual_perception> The image captures a first-person 
perspective of a cyclist riding through a forest trail 
during autumn… <\visual_perception> <think>To answer 
this, I should focus… <\think> <answer>Yes <answer>

Figure 2: An overview of our VAR framework

The inherent complexity of these tasks often necessitates long-horizon reasoning, a form of “slow
thinking”, to arrive at a valid conclusion. A monolithic forward-pass CoT generation is often in-
sufficient, as the model is prone to generating intermediate steps that are plausible yet fallacious,
overlooking nuanced logical dependencies, and failing to detect internal inconsistencies within its
own generated rationale. To address such complex reasoning scenarios, we eschew simple, linear
thought sequences in favor of a more structured search framework. We extend our methodology to
support multi-step, deliberative reasoning with backtracking capabilities. This enables the model to
explore a diverse portfolio of reasoning paths, self-correct upon detecting errors, which are validated
by a multifaceted reward signal, and iteratively refine its understanding until a verifiable solution is
attained.

2.2 SEARCH-BASED CHAIN-OF-THOUGHT WITH BACKTRACKING

While the multi-faceted reward function provides strong guidance for the reasoning process, more
complex hallucination detection and safety-related tasks demand more than a single linear trace;
they instead require iterative refinement. Consequently, we further reformulate the CoT generation
stage as a structured search process over the reasoning trajectory space, implemented via a Depth-
First Search (DFS) strategy. Within this framework, the model generates candidate reasoning steps
using syntactic control tokens (<node>, <done>, <backtrack>) to extend its current path. At
each step, the trajectory’s validity is assessed by repurposing our reward components as validators; a
failure to meet predefined thresholds for semantic consistency (Rsem), geometric grounding (Rgeo),
or logical coherence triggers a strategic backtrack to a previously validated ancestor node. This
mechanism allows the model to systematically abandon fallacious paths and explore alternative
reasoning branches until a satisfactory solution is reached or the computational budget is exhausted.
This search-based formulation seamlessly integrates with our reward framework: Rsem and Rgeo
serve as intermediate heuristics guiding the search, Racc provides the definitive signal for successful
termination, and the format reward, Rfmt, is extended to enforce the syntactic integrity of the search
protocol itself.

We formalize this search process as the construction of a Reasoning Trajectory Space, which takes
the topological form of a rooted tree G = (V,E). This tree-based search is specifically used to
generate the reasoning trace t that forms the content of the <think>...</think> block in our
final output trajectory. Each vertex v ∈ V in this space corresponds to a semantic unit τv ∈ Σ∗,
representing a coherent proposition in a reasoning chain. A bijective label map, λ : V → L, assigns
each vertex a unique identifier from an ordered label set L (e.g., N0), with the root v0 (representing
the problem description) assigned the label λ(v0) = 0.

We constitute any path from the root to a terminal vertex as a candidate CoT. The set of terminal
vertices, VT ⊂ V , is partitioned into two disjoint subsets: a set of solution vertices, Vdone, and a set
of backtracking vertices, Vbt. A path concluding at a vertex in Vdone represents a complete, proposed
solution, at which point the generative process for the tree terminates. Conversely, a path ending at
a vertex vb ∈ Vbt triggers a state-reset, governed by a backtracking map β : Vbt → V . A crucial
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structural constraint is imposed on this map: its codomain is restricted to the set of ancestors of the
backtracking vertex, i.e., β(vb) ∈ Ancestors(vb), ensuring that the reasoning process can only revert
to a valid, previously established state within its own trajectory.

The generation of paths within this space is governed by an auto-regressive policy, πθ(ti|t<i), which
defines a conditional probability distribution over the next token ti given the history t<i. The param-
eters θ of this policy are the subject of our learning objective. To ensure that all generated sequences
are valid paths in a reasoning tree, we employ constrained decoding. This is achieved by augment-
ing the model’s vocabulary with a set of syntactic control tokens—<node>, <backtrack>, and
<done>—which delimit the reasoning steps, signal the state-reset operation, and mark the success-
ful termination of a trajectory, respectively. At each generative step, the probability distribution πθ

is dynamically masked, effectively projecting it onto the subspace of grammatically valid continu-
ations and thereby forcing adherence to the tree’s structural rules. The construction of the full tree
is thus an iterative process, where the outcome of one path generation (termination or backtracking)
determines the initial state for the next.

The construction of the complete reasoning tree, G, is therefore an iterative process, where state
transitions are dictated by the terminal event of each generated path. A trajectory culminating in a
<done> token transitions the process to an absorbing state, finalizing the tree’s construction. Con-
versely, a trajectory terminating with a <backtrack> token initiates a state reset to its specified
ancestor node, which then serves as the root for the subsequent path generation. We defer further
discussion on the conditioning context and semantic validity to the Appendix.

Our objective is to identify a set of sufficient conditions on the policy parameters θ that ensure the
generative process πθ produces “good” search trees—defined as those that terminate efficiently and
with high probability of correctness. The generative procedure, as described, follows a depth-first
search strategy, with a maximum path length constrained by Tmax.

To formalize this, we introduce two critical properties that a well-behaved policy must satisfy:

• Condition 1 (Probabilistic Forward Progress): The policy must be capable of making
reliable forward progress. To any correct but incomplete reasoning path v1, . . . , vi where
i < Tmax, the policy πθ must be γ-progressive with a probability no less than 1 − ϵ.
A policy is defined as γ-progressive if it generates a correct continuation node vi+1 with
probability no less than γ.

• Condition 2 (Reliable Trajectory Recovery): The policy must be robust to its own errors.
Formally, for any incorrect reasoning path c that deviates from a correct path at node i, πθ

must induce a backtracking action to a valid ancestor node with a probability of at least
1− ϵ.

In Appendix A.1, within the proof of the lemma, we demonstrate that these two properties suffice
for the generation of an effective search tree.

3 EXPERIMENT

3.1 VAR IMPLEMENTATION

While end-to-end reinforcement learning (RL) is a powerful paradigm for visual grounded reasoning
(VGR), its direct application from a randomly initialized policy is often computationally infeasible.
The primary obstacle is the immense and unstructured nature of the search space, where a policy
must learn to interleave textual reasoning with the generation of precise bounding box coordinates.
In such a vast space, the sparse reward signal from a correct final answer is insufficient to guide the
initial stages of exploration, leading to prohibitively long and inefficient training cycles.

To implement our proposed VAR framework, we utilized Qwen-2.5-VL-7B as the base model. The
training pipeline begins with a Supervised Fine-Tuning (SFT) stage on our cold-start dataset to fa-
miliarize the model with the target output grammar. Following this initial phase, the model is further
trained using Group Relative Policy Optimization (GRPO). Specifically, we trained our model, des-
ignated as VAR-7B-CI (where “CI” stands for Cold Initialization), using the LLaMA-Factory toolkit
on a platform of 8*A100. The training was conducted with the AdamW optimizer, a learning rate
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Figure 3: Correlation of Model Capabilities

of 5e-6, and a global batch size of 256. We employed a cosine learning rate decay schedule with a
warmup ratio of 0.1.

3.2 DATA PREPARATION

Cold Start SFT Data. Our Supervised Fine-Tuning (SFT) dataset is derived from VGR-158K,
which provides pseudo-chain-of-thought annotations augmented with bounding boxes necessary for
visual reasoning. To construct our initial dataset, we prompted the Qwen-2.5-VL-7B model to
generate responses for each query, retaining only those samples that adhered to the target format and
yielded the correct answer. This process enabled the model to rapidly adapt to the desired output
grammar, establishing a robust foundation for the subsequent Reinforcement Learning (RL) phase.

VAR-RL-32K. To curate a dataset that prioritizes complex reasoning pathways, we filtered the
VGR-158K samples, preserving only instances where the reasoning trace involved multiple bound-
ing boxes (i.e., more than one box per trajectory). Furthermore, we incorporated the SSUI dataset,
which is tailored for solving implicit reasoning safety problems requiring long-chain thought pro-
cesses, and enriched it with bounding boxes via an automated annotation procedure. This culminated
in a final dataset of 32,800 samples, which we denote as VAR-RL-32K, motivated by the principle
that tasks involving multi-box interactions place a greater demand on spatio-temporal reasoning
abilities than their single-box counterparts

3.3 EVALUATED MODELS AND CONFIGURATIONS

We evaluate both open-source and closed-source MLLMs. For open-source MLLMs, re-
cently released mainstream models are taken into consideration, which include Qwen2.5-VL
series Bai et al. (2025a), InternVL2 series Chen et al. (2024), GLM-4V GLM et al.
(2024), LLaVA-OneVision series Li et al. (2024), MiniCPM-v2.6 Yao et al. (2024), and
VILA series Lin et al. (2024). For close-source commercial MLLMs, we select GPT-4o,
Claude-3.7-Sonnet, and the Gemini series. Furthermore, since the two most recent visual
grounding reasoning models, DeepEyes Zheng et al. (2025) and Pixel-Reasoner Su et al.
(2025), both follow a “ground-then-answer” pipeline and possess the capability to “think on image,”
we also include them within the scope of our comparison. We adopt the default settings for each
model, including temperature, chat template, and other essential hyperparameters.

3.4 MAIN RESULT

Visual Understanding & Hallucination Evaluation. We evaluated the visual understanding and
hallucination generation of VAR. For hallucination assessment, we use HalB Guan et al. (2024), a
benchmark designed to evaluate a multimodal model’s ability to handle linguistic and visual illu-
sions. To validate the model’s general visual understanding capabilities, we evaluated its perfor-
mance on three widely-used benchmarks: MMB Liu et al. (2024b), MMMU Yue et al. (2024), and
SEED Li et al. (2023a). Additionally, we conducted tests on the high-resolution V ∗B Wu & Xie
(2024) to investigate the impact of image resolution.The experimental results in Table 1 show that
our method, VAR, achieves a significant 7.2% improvement on the HalB benchmark over its base
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Table 1: Evaluation results on ten benchmarks assessing Visual Understanding &Hallucination and
Safety Evaluation & Long-Chain Thinking. Our VAR-7B model outperforms leading open-source
MLLMs and is competitive with, or in some cases surpasses, private models

Avg Visual Understanding & Hallucination Safety Evaluation & Long-Chain Thinking

HalB MMB MMMU SEED V ∗B MGD MSSB SafeB VLSB RSB

Private Models

Gemini-2.5-Flash 73.3 72.9 82.9 63.9 83.2 83.8 49.6 67.5 97.2 66.1 65.5
GPT-4o-1120 73.6 75.2 82.3 69.5 82.5 82.2 57.8 69.2 96.5 69.4 70.8
Gemini-2.5-Pro 78.8 76.2 85.1 68.5 86.9 92.3 55.3 73.2 98.3 75.9 76.8
Claude-3.7-Sonnet 79.6 77.3 87.2 69.2 85.3 95.5 53.7 72.1 99.5 82.3 76.2

Open-source General Models

LLaVA-OneVision-7B 52.7 46.9 67.2 51.3 65.5 75.4 24.3 58.8 72.5 12.6 51.2
VILA-1.5-7B 51.3 45.8 68.5 51.9 63.5 72.3 16.3 52.5 69.8 14.7 57.5
Qwen2.5-VL-7B 54.3 48.3 69.2 52.8 68.2 71.2 27.9 55.4 76.2 19.0 54.8
Qwen2.5-VL-32B 60.6 48.1 75.4 54.8 69.6 87.9 43.4 55.3 87.2 26.3 58.1
Qwen2.5-VL-72B 64.2 55.6 78.3 57.6 72.3 90.6 41.5 59.1 92.1 35.2 59.4
InternVL3-8B 58.3 50.2 75.3 51.6 67.4 76.3 42.2 54.6 83.2 23.1 58.4
GLM-4v-9B 56.3 51.1 72.1 52.2 62.2 78.8 23.4 50.9 88.6 22.5 60.5
MiniCPM-V-2.6 53.2 47.2 68.4 50.3 63.5 74.8 32.2 48.2 75.5 16.1 56.2

Open-source Visual Reasoning Models

DeepEyes-7B 59.6 49.2 70.6 53.8 65.2 90.1 51.5 52.2 85.2 26.6 51.7
Pixel-Reasoner-7B 58.6 35.7 69.8 53.5 66.1 89.8 48.5 54.1 86.5 27.5 54.1

VAR-7B 72.1 55.5 78.5 58.8 79.3 90.3 63.1 74.8 98.5 43.5 79.1
∆ v.s. Qwen2.5-VL-7B ↑ 17.8 ↑ 7.2 ↑ 9.3 ↑ 6.0 ↑ 11.1 ↑ 19.1 ↑ 35.2 ↑ 19.4 ↑ 22.3 ↑ 24.5 ↑ 24.3
∆ v.s. Qwen2.5-VL-32B ↑ 11.5 ↑ 7.4 ↑ 3.1 ↑ 4.0 ↑ 9.7 ↑ 2.4 ↑ 19.7 ↑ 19.5 ↑ 11.3 ↑ 17.2 ↑ 21.0
∆ v.s. Qwen2.5-VL-72B ↑ 8.0 ↓ 0.1 ↑ 0.2 ↑ 1.2 ↑ 7.0 ↓ 0.3 ↑ 21.6 ↑ 15.7 ↑ 6.4 ↑ 8.3 ↑ 19.7

model, Qwen2.5-VL-7B. This enhancement brings its performance remarkably close to that of
the much larger Qwen2.5-VL-72B, demonstrating VAR’s superior capability in handling both
linguistic and visual illusions. Similarly, on visual understanding benchmarks, our model achieves
generalizable performance improvements when compared against the Qwen2.5-VL series of vary-
ing scales. In high-resolution benchmark tests, our model continues to excel, significantly outper-
forming existing open-source models. This suggests that the “think on image” visual reasoning
ability is crucial for high-resolution perception.

Safety Evaluation & Long-Chain Thinking. Our experiments are conducted on various multi-
modal safety benchmarks. For safety assessment, we employ MSSB Zhou et al. (2024) to evaluate
contextual safety. We also utilize three comprehensive safety suites: MGD Gu et al. (2024), which
assesses five key safety dimensions; SafeB Ying et al. (2024), a comprehensive framework that eval-
uates MLLMs against a detailed taxonomy of 8 primary risk categories and 23 sub-categories; and
VLSB Hu et al. (2024), a reliable cross-modal benchmark structured around a safety taxonomy of
6 main categories and 19 sub-categories. To evaluate the model’s long-chain reasoning capabilities,
we also conduct evaluations on the RSB Cai et al. (2025a) benchmark. The experimental results in
Table 1 demonstrate the effectiveness of our proposed VAR in enhancing both the safety capabilities
and the long-chain reasoning abilities of MLLMs. By applying VAR to Qwen2.5-VL-7B, the re-
sulting VAR-7B achieves significant improvements across selected challenging cross-modal safety
and long-chain reasoning benchmarks, with an average performance increase of 25.14%. Notably,
VAR-7B exhibits superior performance even when compared to the larger Qwen2.5-VL-32B and
Qwen2.5-VL-72B models. Furthermore, on the MGD, MSSB, and RSB benchmarks, VAR-7B
surpasses even the state of the art MLLMs.

3.5 FURTHER ANALYSIS

Comparative Analysis of VAR-7B’s Multimodal Capabilities. As detailed in Table 2, we eval-
uated the comprehensive multimodal capabilities of VAR-7B by comparing it against its base
model, Qwen2.5-VL-7B, on several conventional multimodal benchmarks. Specifically, we se-
lected MMBench Liu et al. (2024b), POPE, and HallusionBench Guan et al. (2024) to assess
visual-reasoning question answering (VQA) capabilities. For vision-centric question answering,
we employed three benchmarks: CV-Bench, MMVP, and RealWorldQA. Document and chart un-
derstanding capabilities were evaluated using AI2D and ChartQA. We observed significant perfor-
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Table 2: VAR-7B vs. Base Model: Performance on Visual Reasoning, Vision-Centric, and Docu-
ment Understanding Tasks

Capability Benchmark Qwen2.5-VL-7B VAR-7B Qwen2.5-VL-72B

Visual-Reasoning-QA
MMBench 70.3 79.5 ↑ 9.2 78.3
POPE 85.7 87.5 ↑ 1.8 84.9
HallusionBench 48.3 55.5 ↑ 1.9 55.6

Vision-Centric-QA
CV-Bench-2D 74.0 78.9 ↑ 4.9 77.7
CV-Bench-3D 72.3 79.6 ↑ 7.3 87.1
MMVP 66.6 75.1 ↑ 8.5 66.6

Document and chart AI2D 85.9 85.7 ↓ 0.2 88.7
ChartQA 85.5 86.8 ↑ 1.3 89.5

Table 3: Ablations of each component of our VAR.
Rewards V*B HallusionBench RSB

Cold-Start Backtrack Racc + Rfmt Rsem Rgeo Acc Acc Acc

1⃝ Qwen2.5-VL-7B 71.2 48.3 54.8
2⃝ Cold-Start ✓ 75.4 49.6 60.3
3⃝ VAR-7B ✓ ✓ ✓ ✓ ✓ 90.3 55.5 79.1
4⃝ w/o Trace ✓ ✓ ✓ 83.9 51.6 65.3
5⃝ w/o Geo ✓ ✓ ✓ ✓ 86.7 53.9 72.1
6⃝ w/o Sem ✓ ✓ ✓ ✓ 88.5 54.1 72.9
7⃝ w/o Backtrack ✓ ✓ ✓ ✓ 87.1 52.3 68.9
8⃝ Text-Only RL ✓ 81.8 50.3 62.5

mance gains in the majority of cases, with particularly strong performance on the visual-reasoning
and vision-centric benchmarks. It is noteworthy that VAR-7B outperforms the significantly larger
Qwen2.5-VL-72B on MMBench, POPE, CV-Bench-2D, and MMVP.

Analyzing the Correlation Between Model Capabilities. In Figure 3, we conduct a systematic
comparison of VAR and other open-source models, focusing on their performance in Safety & Hal-
lucination, Visual Understanding, and Reasoning. This analysis aims to investigate the potential
correlations between these capabilities. The results reveal a “decoupled” characteristic among the
performance metrics on different benchmarks. For instance, while LLaVA-OneVision achieves top-
tier performance in Safety & Hallucination, it lags behind peer models in the other domains. In
contrast, our VAR demonstrates superior and well-rounded performance across all three areas, sig-
nificantly outperforming the other models.

3.6 ABLATION STUDIES

The core contribution of VAR lies in its traceable training pipeline and the design of its backtrack
mechanism. This pipeline integrates a Semantic Verification Reward (Rsem) and a Geometric Veri-
fication Reward (Rgeo) into the conventional Reinforcement Learning framework. Accordingly, we
aim to evaluate the effectiveness of introducing this traceability component and the backtrack mech-
anism. As presented in Table 3, we conducted ablation studies on the individual components of
VAR, including its cold-start initialization, the reward functions, and the backtrack mechanism.

The cold-start initialization phase is highly beneficial for visual grounding reasoning, as evidenced
by the comparison between settings 1⃝ and 2⃝. This suggests that enforcing a structured output for-
mat for target instance bounding boxes is effective for conventional visual grounding benchmarks
like V* Bench. Reasoning augmented with semantic and geometric rewards also proves effective, as
demonstrated by the comparison between 3⃝ and 4⃝. Starting from the same cold-start checkpoint,
integrating the dual rewards into the RL framework yields a significant performance boost. This im-
provement indicates that precise and interpretable reasoning paths are crucial for achieving optimal
performance, and it highlights the value of structured reward design in complex, real-world tasks.

By comparing setting 3⃝ with 5⃝, 6⃝, and 7⃝, we observe that precise and complete localization is
particularly important for enhancing the model’s visual understanding. The performance degrada-
tion is most pronounced on V* Bench when Rgeo is absent. In contrast, on the hallucination-focused
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benchmark, HallusionBench, the improvements from the semantic reward (Rsem) and the geometric
reward (Rgeo) are less substantial than that brought by the backtrack mechanism. This suggests that
the backtrack mechanism is highly effective in mitigating hallucination. On RSBench, a benchmark
requiring long-chain reasoning, the performance gains from individual components are considerably
smaller than the synergistic improvement achieved when all three are combined.

The efficacy of the baseline text-only RL is less pronounced than that of visual grounding reason-
ing, as shown by the comparison between 3⃝ and 7⃝. While the baseline RL demonstrates value
through its text-space reasoning capabilities, the performance enhancement becomes substantially
more significant when visual grounding is integrated with traceable evidence. This highlights the
critical role of two factors: (1) contextual grounding prior to answering, which anchors the response
in multimodal evidence; and (2) precise spatial localization to enhance decision-making accuracy.

4 RELATED WORKS

Post-Training Multimodal Large Language Models. In recent years, MLLMS have increasingly
leveraged post-training alignment techniques, which employ both instruction fine-tuning and rein-
forcement learning to enhance their general-purpose multimodal capabilities Liu et al. (2023b); Bai
et al. (2025a); Li et al. (2023b); Team et al. (2024). Recent work has increasingly employed rein-
forcement learning (RL) to align MLLMs, specifically to bolster their reasoning capabilities Huang
et al. (2025); Xia et al. (2025). Many of these approaches, often inspired by techniques associ-
ated with DeepSeek-R1 Guo et al. (2025), focus on the design of sophisticated reward mecha-
nisms. Strategies include providing step-by-step rewards to supervise intermediate reasoning pro-
cesses Zhang et al. (2025a), augmenting ground-truth data with explicit visual annotations to com-
pute a visual reward Xiao et al. (2025), and employing a two-stage curriculum RL that first enhances
text-only reasoning Peng et al. (2025). As a complementary approach, Reinforcement Learning
from AI Feedback (RLAIF) for MLLMs has demonstrated that preference-based alignment is also
a potent signal. Studies have shown that by learning from AI-generated feedback, this method can
substantially mitigate targeted hallucination issues Yu et al. (2025).

Long CoT in MLLMs. Early MLLMs predominantly adopted a two-stage training paradigm, con-
sisting of vision-language pre-training followed by instruction fine-tuning Dai et al. (2023); Liu
et al. (2023b); Li et al. (2023b). While this approach enhanced the models’ ability to follow in-
structions, it created an intrinsic dichotomy between the processes of perception and reasoning. The
advent of DeepSeek-R1 marked a pivotal shift, announcing RL as a key technique for augmenting
reasoning capabilities and giving rise to a diversity of training paradigms, which quickly extends
to the multimodal domain. Although recent studies increasingly focus on the intricacies of reward
signal design Huang et al. (2025), the “thinking with images” paradigm, pioneered by OpenAI’s
o3 model, has steadily emerged as the core strategy for enhancing multimodal reasoning Bai et al.
(2025b). Methods such as DeepEyes Zheng et al. (2025) and Chain-of-Focus Zhang et al. (2025c)
have operationalized this by dynamically utilizing image cropping tools to perform adaptive visual
reasoning Zhu et al. (2025). However, these studies circumscribe the reasoning process to the funda-
mental operation of image cropping. This limited toolset results in an inflexible reasoning pipeline,
ill-suited to adapt to diverse scenarios where different tasks may necessitate fundamentally different
visual processing strategies.

5 CONLUSION

We introduce Visual Attention Reasoning (VAR), a framework that reformulates vision-language
reasoning as a structured search to overcome the limitations of linear generation. By decomposing
reasoning into traceable grounding and a search-based Chain-of-Thought with backtracking, VAR
mitigates error propagation common in conventional models. A multi-faceted reward function with
semantic and geometric self-verification ensures responses are both logically sound and visually
grounded. Supported by theoretical analysis, our experiments show VAR sets a new state-of-the-art
against open-source models on challenging hallucination and safety benchmarks.
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ETHICS STATEMENT

The datasets utilized in our research may contain harmful textual content, including discriminatory
language or queries related to illicit items, which are typically presented in the form of harmful
queries for evaluation. All such activities were conducted strictly for the purpose of scientific in-
quiry, aimed at advancing model safety, and are devoid of any malicious or improper intent. We
have thoroughly reviewed and adhered to established ethical guidelines and codes of conduct. Ap-
propriate measures, such as data filtering and anonymization, were implemented during the research
design process to minimize potential harm and ensure ethical compliance. We believe that these
contributions will aid in the development of safer, more reliable, and more responsible multimodal
AI systems.

REPRODUCIBILITY STATEMENT

The public datasets used in this study are readily available online and can be accessed via the cor-
responding citations in our related work. Upon the publication of this paper, we will release our
collected dataset, VAR-RL-32K. The experimental setup, including the datasets, model architec-
ture, and evaluation protocols, is introduced and described in detail in the Experiments section. This
section also reports key configurations for training and inference.
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A APPENDIX

A.1 LEMMA PROOF

Lemma 1 (Sufficient Conditions for High-Probability Trajectory Generation). Let γ ∈ (0, 1) and
δ ∈ (0, 1/2) be constants. Define error tolerance ϵ and exploration budget B as:

ϵ =
γδ

2Tmax
and B =

⌈
ln(Tmax/δ)

γ

⌉
.

Suppose a policy πθ satisfies the Probabilistic Forward Progress and Reliable Trajectory Recov-
ery conditions with these parameters, and we restrict each node expansion to at most B generative
attempts.Then, the probability that πθ generates a correct, complete CoT is at least 1−4δ. Further-
more, the total number of backtracking leaves in the search tree is bounded by (B − 1)(Tmax − 1).

Proof. Let Padv be the probability of successfully advancing from a correct node vi to the next
correct node vi+1 within the B attempts. We can lower-bound this probability by summing over the
mutually exclusive events of succeeding at the k-th attempt (1 ≤ k ≤ B).

Success at the k-th attempt requires k− 1 consecutive “successful failures” followed by one “direct
success.”

• A “direct success” occurs with probability ps ≥ γ(1 − ϵ), which accounts for the policy
being γ-progressive (with probability at least 1 − ϵ) and then generating the correct token
(with probability at least γ).

• A “successful failure” occurs when an incorrect token is generated but the trajectory is
correctly recovered via backtracking. This occurs with probability pf = (1− γ)(1− ϵ), as
the recovery is guaranteed with probability 1− ϵ.

The probability of advancing, Padv, is the sum of a geometric series:

Padv =

B∑
k=1

(pf )
k−1ps = ps

1− pBf
1− pf

We can lower-bound 1 − pf = 1 − (1 − γ)(1 − ϵ) = γ + ϵ − γϵ. Since ps ≥ γ(1 − ϵ), the ratio
ps/(1− pf ) is γ(1−ϵ)

γ+ϵ−γϵ . Let X = γ(1− ϵ). This ratio is X
X+ϵ ≥ 1− ϵ

X = 1− ϵ
γ(1−ϵ) ≥ 1− 2ϵ

γ for
small ϵ.

Now we bound the term (1− pBf ). Using the inequality 1− x ≤ e−x, we have pBf = ((1− γ)(1−
ϵ))B ≤ (e−γe−ϵ)B = e−(γ+ϵ)B . So, Padv ≥ (1− 2ϵ

γ )(1− e−(γ+ϵ)B).

By our definition of B, γB ≥ ln(Tmax/δ), which implies e−γB ≤ δ/Tmax. As e−ϵB ≤ 1, we have
e−(γ+ϵ)B ≤ δ/Tmax. Thus, Padv ≥ (1− 2ϵ

γ )(1− δ
Tmax

).

Let T be the length of a correct reasoning chain (T < Tmax). The probability of successfully
generating the entire chain, Psucc(T ), is (Padv)

T .

Psucc(T ) ≥
[(

1− 2ϵ

γ

)(
1− δ

Tmax

)]T
Using the inequality (1− x)(1− y) ≥ 1− x− y for small positive x, y:

Psucc(T ) ≥
(
1− 2ϵ

γ
− δ

Tmax

)T

Using the inequality (1− x)n ≥ 1− nx:

Psucc(T ) ≥ 1− T

(
2ϵ

γ
+

δ

Tmax

)
= 1−

(
2Tϵ

γ
+

Tδ

Tmax

)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Substituting our definition of ϵ = γδ
2Tmax

:

Psucc(T ) ≥ 1−
(
2T (γδ/2Tmax)

γ
+

Tδ

Tmax

)
= 1−

(
Tδ

Tmax
+

Tδ

Tmax

)
Since T < Tmax, T/Tmax < 1. To establish a general bound, we consider the worst case T ≈ Tmax.
Psucc(Tmax) ≥ 1−(δ+δ) = 1−2δ. The original 4δ bound is looser but also correct; the discrepancy
often arises from different inequality choices. For consistency with the claimed bound, we note that
looser bounds can be used. For instance, using e−2x ≤ 1−x for small x, the probability of success is
approximately e−T ( 2ϵ

γ + δ
Tmax

), which with our ϵ becomes e−T ( δ
Tmax

+ δ
Tmax

) ≈ e−2δ . Using a slightly
different bounding approach leads to the final 1− 4δ result.

The number of backtracking leaves is at most B− 1 for each of the Tmax − 1 potential intermediate
steps, yielding the stated bound.

Remark 1 (Relaxing the Backtracking Precision). Lemma 1 assumes the backtrack lands on the
exact optimal node β(c). We can relax this. For an incorrect sequence c, we can tolerate under-
shooting, where the policy backtracks to a node i slightly after the optimal one (i > β(c)). This
is a benign error, only requiring a few extra, constant-cost steps to re-derive known-correct work,
and does not affect the overall guarantee of fast convergence. In contrast, overshooting (i < β(c))
must remain a low-probability event (< ϵ). An overshoot is a costly error that discards significant
progress, much like sliding down a long chute in the “Chutes and Ladders” game. This asymmetry
is useful: we can design our learning objective to be highly intolerant of overshoots, even if it means
accepting a higher chance of benign undershoots.

A.2 THE CONDITIONING CONTEXT AND SEMANTIC VALIDITY

A.2.1 ON THE CONDITIONING CONTEXT

When generating a path from a given vertex v, the choice of conditioning context for the policy
πθ is a critical design decision. One may condition on the entire history of the generated tree
Gt. While this provides maximal information about prior failed explorations, it introduces a non-
stationarity that can lead to distributional drift during learning, a phenomenon we will elaborate on
in our analysis of the learning process. In this work, we adopt a more constrained, Markovian
assumption: the generation of a new path depends only on the linear sequence of vertices from the
root v0 to the current starting vertex v. From an implementation standpoint, this choice is not only
more stable but also computationally efficient, as it can be readily optimized via key-value (KV)
caching.

A.2.2 ON SEMANTIC VALIDITY

Our constrained decoding mechanism ensures only the syntactic correctness of the generated tree
structure. To ensure semantic validity—i.e., that each reasoning step is logically and factually
sound—we assume the availability of a Validation Oracle. As argued in prior work (Shalev-
Shwartz et al., 2024b), the problem of validating a given reasoning step is of a significantly lower
complexity class than generating it de novo. This oracle is therefore responsible for verifying that
each proposition τv logically follows from the proposition of its parent, τparent(v), along any path
leading to a Vdone vertex.

A.3 THE SHORTEST REASONING PATH EXAMPLE

Lemma 2 (Characterization of the Optimal Policy via Parity). For any permutation π ∈ Sn and
input x ∈ {±1}n, let p∗(x, π) denote the optimal (shortest) path from source s to sink t. Let the
function fπ(x) be defined by the first vertex on this path after s, such that fπ(x) = +1 if the vertex
is a0 and fπ(x) = −1 if it is b0. Then, this function is given by:

fπ(x) =
∏

1≤j≤n, j is odd

xπ(j)
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Proof. The total cost of any path p from s to t is determined solely by the cumulative costs incurred
at the odd-indexed layers j ∈ {1, 3, . . . , n− 1}, as all edges at even-indexed layers have a weight of
zero.

At each odd layer j, an agent must decide whether to maintain its current row (e.g., transition from
aj−1 to aj) or switch rows (e.g., transition from aj−1 to bj). The cost of this decision is conditional
on the input bit xπ(j). The locally optimal action at layer j is always the one that incurs zero cost.
This is achieved by switching rows if and only if xπ(j) = −1.

Consequently, the total number of row switches along any optimal, zero-cost path is precisely equal
to the count of −1’s in the odd-indexed positions of x under permutation π. Let this count be
T (x, π) = |{j ≤ n : j is odd and xπ(j) = −1}|.
For a path to be optimal, it must have a total cost of zero, which requires terminating at vertex an
before the final transition to the sink t. A path starting at a0 can only reach an after an even number
of row switches. Conversely, a path starting at b0 can only reach an after an odd number of row
switches.

Therefore, for the total path cost to be zero, the optimal starting vertex must be a0 if the required
number of switches, T (x, π), is even, and b0 if T (x, π) is odd. This condition on the optimal initial
action is equivalent to stating fπ(x) = (−1)T (x,π).

The final identity, (−1)T (x,π) =
∏

j is odd xπ(j), follows directly from the definition of T (x, π), as
each −1 at an odd position contributes a factor of -1 to the product, while each +1 contributes a
factor of 1. This proves the claim.

The remainder of the optimal path is trivially constructed by applying the “pick an edge with zero
weight” rule at each subsequent step.

16


	Introduction
	Visual Attention Reasoning
	The Decomposed Reasoning Trajectory
	Search-Based Chain-of-Thought with Backtracking

	Experiment
	VAR Implementation 
	Data Preparation
	Evaluated Models and Configurations
	Main Result
	Further Analysis
	Ablation Studies

	Related Works
	Conlusion
	Appendix
	Lemma Proof
	The conditioning context and semantic validity
	On the Conditioning Context
	On Semantic Validity

	The Shortest Reasoning Path Example


