
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

STRATEGIC FILTERING FOR CONTENT MODERATION:
FREE SPEECH OR FREE OF DISTORTION?

Anonymous authors
Paper under double-blind review

ABSTRACT

User-generated content (UGC) on social media platforms is vulnerable to incitements and
manipulations, necessitating effective regulations. To address these challenges, those plat-
forms often deploy automated content moderators tasked with evaluating the harmful-
ness of UGC and filtering out content that violates established guidelines. However, such
moderation inevitably gives rise to strategic responses from users, who strive to express
themselves within the confines of guidelines. Such phenomena call for a careful balance
between: 1. ensuring freedom of speech — by minimizing the restriction of expression;
and 2. reducing social distortion — measured by the total amount of content manipula-
tion. We tackle the problem of optimizing this balance through the lens of mechanism
design, aiming at optimizing the trade-off between minimizing social distortion and max-
imizing free speech. Although determining the optimal trade-off is NP-hard, we propose
practical methods to approximate the optimal solution. Additionally, we provide general-
ization guarantees determining the amount of finite offline data required to approximate
the optimal moderator effectively.

1 INTRODUCTION

The Internet has fostered a global ecosystem of social interaction, where social media plays a central role.
People use platforms to connect with others, engage with news content, share information, and entertain
themselves. Yet, the nature of online content and interactions has increasingly raised concerns among poli-
cymakers. Social media can be weaponized to advance extremist causes or disseminate misinformation and
fake news. For example, social bots were used to manipulate public discourse during the 2016 U.S. presi-
dential election (Bessi & Ferrara, 2016; Boichak et al., 2018). Another growing concern is cyberbullying,
which disproportionately targets public figures and targeted groups (O’Regan & Theil, 2020; West, 2014;
MICHAEL, 2024). In response to these issues, several European governments have introduced regulations
aimed at curbing fake news and hate speech on social platforms (Cauffman & Goanta, 2021). These incidents
highlight the need for robust content moderation mechanisms—policies or algorithmic tools implemented by
platforms to limit abuse, promote healthy discourse, and enhance user experience (Roberts, 2018; Barocas
& Selbst, 2016). However, while content moderation is crucial for managing platform integrity, it also raises
significant concerns regarding censorship and freedom of expression (Shaughnessy et al., 2024; Bollinger
& Stone, 2022; Brannon, 2019; Young, 2022). Overly restrictive moderation may inadvertently suppress le-
gitimate content and discourage diversity of expression. In this work, we investigate how to algorithmically
balance the competing goals of mitigating harmful content and preserving free speech.

A further complication arises from users’ strategic responses to public moderation policies. It is widely
observed that users actively engage with harmful social trends—not only to gain visibility, but also to evade
platform enforcement by subtly modifying their content. For instance, users often manipulate hashtags or
obscure key terms to disguise the true nature of their posts (Gerrard, 2018). Inspired by recent work in
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strategic machine learning (Hardt et al., 2016), we model the interaction between platform moderators and
users as a Stackelberg game, explicitly characterizing users’ strategic behavior in response to moderation
when engaging with harmful trends. The platform’s objective is to design content moderation mechanisms
that minimize engagement with such trends while accounting for potential strategic manipulations, and to
do so in a way that avoids unnecessary content removal and respects individual rights to free expression.

Our work is related to the growing line of research on strategic ML that studies learning from data provided
by strategic agents (Dalvi et al., 2004; Dekel et al., 2008; Brückner & Scheffer, 2011). Hardt et al. (2016)
introduced the problem of strategic classification as a game between a mechanism designer that deploys
a classifier and an agent that best responds to the classifier by modifying their features at a cost. Follow-
up work studied different variations of this model, in a PAC-learning setting (Sundaram et al., 2023), online
learning (Dong et al., 2018; Chen et al., 2020; Ahmadi et al., 2021), incentivizing agents to take improvement
actions rather than gaming actions (Kleinberg & Raghavan, 2020; Haghtalab et al., 2020; Alon et al., 2020;
Ahmadi et al., 2022), causal learning (Bechavod et al., 2021; Perdomo et al., 2020), fairness (Hu et al.,
2019), etc.

1.1 OUR RESULTS AND CONTRIBUTIONS:

User agency modeling. We propose a behavioral model that captures the agency of social media users
engaging with social trends to gain visibility while staying within moderation boundaries, enabling platform
designers to frame the optimal moderation as a mechanism design problem.

Optimizing the trade-off. We reduce the mechanism design problem of balancing the goals of curbing
harmful trends and protecting free speech to a constrained optimization formulation with offline data. We
then propose an effective approximation method to compute the optimal content moderator and validate its
effectiveness through experiments on synthetic environments.

Statistical and computational hardness results. We provide two key theoretical results: (1) a sample com-
plexity bound (Theorem 1) showing that solving the problem using a polynomial number of offline samples
leads to good generalization performance across a broad class of moderation functions (Proposition 3); and
(2) a computational hardness result establishing that even for the simple linear function class, finding the
optimal content moderator is NP-hard (Theorem 2). This inherent computational complexity motivates our
approximation-based approach.

Conceptual contribution. Beyond technical results, our work offers a key insight for welfare-driven plat-
form designers: the best practice for mitigating harmful social trends is not to simply suppress associated
content, but to define a moderation criterion with a carefully chosen threshold such that a large fraction of
content lies near its decision boundary. We formalize this intuition, fully characterize the computational
challenges, and propose practical approximation methods to address them.

2 PROBLEM SETTING

Let X ⊂ Rd denote the feature space of each user’s generated content (UGC). Throughout the paper we
assume that X is convex and compact. Our problem formulation is built upon the interplay between a set of
of n users on a social media platform and an automated content moderator M, as shown in the following.

User representation: A user indexed by i is represented by a tuple ui = (xi, ci), where xi ∈ X is the
feature vector of ui’s generated content representing her original intention of expression and ci denotes the
manipulation cost. We consider the case where the user wants to tweak the original message xi to zi to
better align with a global ongoing social trend e, at a marginal cost ci.
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Content moderator: The role of a content moderator M is to regulate published content, ensuring it adheres
to platform guidelines. Without loss of generality, M can be regarded as an indicator function I[f(x;w) ≤
0], where 0 indicates that the content is flagged as problematic and should be moderated, while 1 indicates it
is benign. For simplicity, we define the content moderator as the function f(x;w) : Rd → R, parameterized
by w, and refer to the set x ∈ X : f(x;w) ≤ 0 as the benign region associated with f . The output of f
can be interpreted as a harmfulness score for each content. In this work, we will focus on moderators f that
induce convex benign regions.

User’s strategic response: With the components outlined above, we can formulate a utility function to
capture the potential strategic behavior of a user and predict her response when facing a moderator f(·;w),
given her profile u = (x, c). 1 The following Eq. (1) characterizes the user’s utility when modifying her
published content from x to z:

u(z; (x, c), e, f) = I[f(z) ≤ 0] · z⊤e− c∥z − x∥2, (1)
where the first term reflects the gain by aligning with trend e while not being moderated by f , and the second
terms measures the manipulation cost. The following proposition 1 characterizes the property of the best
response z∗ that maximizes Eq. (1).
Proposition 1. Denote the best response of user u = (x, c) against a convex content moderator f(z;w) by

z∗ = ∆(x, c; e, f) = argmax
z∈X

u(z; (x, c), e, f), (2)

and let z′ = x+ e
2c . Then z∗ always exists and has the following characterizations:

1. if f (z′) ≤ 0, z∗ = z′.

2. if f (z′) > 0 and f(x) ≤ 0, z∗ = Pf (z
′), where Pf (x) denotes the ℓ2 projection of x on to the

hyperplane {x ∈ Rd : f(x) = 0}.

3. if f (z′) > 0 and f(x) > 0, z∗ = x or Pf (z
′), depending on the location of x.

f +

− x z∗

e
2c

f +

− x
z∗

z′
e
2c f+

−

x(= z∗) z′
e
2c

Figure 1: Illustration of best response z∗. Left: if z′ = x + e
2c is benign, z∗ = z′. Middle: if x is benign

but z′ is problematic, x moves to the projection of z′ on f . Right: if x is already problematic, z∗ = x, or
the projection of z′ on f , depending on which one yields a higher utility.

Proposition 1 reveals a two-level response pattern. In the first level, each content x tends to shift towards an
idealized location z′ = x+ e

2c , manipulating its features in the trending direction e by an amount determined
by the cost. Such z′ is also the user’s preferred manipulation result in the absence of any moderation. The
second level can be viewed as a self-correction process starting from z′: if z′ is accepted by the moderator
f , it becomes the user’s final response; however, if z′ is flagged as problematic by f , the user would adjust
it to the closest point on f ’s decision boundary, ensuring minimal alteration while still complying with the
platform’s guidelines. The proof of Proposition 1 is deferred to Appendix B. Proposition 1 highlights the

1Our utility model connects to previous works, e.g., if we replace the term z⊤e with a user-dependent preference
parameter r, our model reduces to the agent utility proposed in (Sundaram et al., 2023).
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role of content moderation in reducing distortions introduced by the trending direction e, which may deviate
from users’ true expressive intent, represented by x. For UGC near the moderation boundary, moderation
can mitigate distortion by incentivizing users to align their content with platform guidelines. Thus, the
platform can intuitively reduce overall social distortion by encouraging more UGC to move closer to this
boundary. However, this strategy comes with a trade-off: the risk of filtering out certain UGC, potentially
infringing on users’ freedom of expression. This presents a key challenge for the platform—how to balance
reducing social distortion with preserving free speech. In the following section, we formalize this problem
and explore its complexity and possible solutions.

3 THE SOCIAL DISTORTION, FREEDOM OF SPEECH, AND THEIR TRADE-OFF

In this section, we formally introduce the concept of social distortion and explain how content moderation
reduces social distortion but at the potential cost of infringing on freedom of speech. From Proposition 1,
we observe two major effects of deploying f : first, it discourages users from excessively following social
trend e, which is beneficial; second, it may flag some UGC as harmful, potentially leading to user churn.
The first effect can be quantified by the displacement of users who were initially on the benign side. The
second effect can be assessed by the proportion of UGC remaining on the platform, serving as an index for
freedom of speech. The following Definition 1 formally introduces the concept of social distortion (SD):
Definition 1. The social distortion (SD) of moderator f induced on a user (x, c) is defined as

D(f ; (x, c), e) =

{
∥x−∆(x, c; e, f)∥22, if f(x) ≤ 0,

0, otherwise.
(3)

The social distortion function D defined in Eq. (3) quantifies the manipulation effort of x, which measures
how much the user’s strategic adaptation diverges from her true expressive intent. Importantly, our definition
of social distortion applies only to UGC whose original representation x is not filtered by f . This is because
the strategic behavior of users with f(x) > 0 does not contribute to the distortion negatively: as Proposition
1 suggests, users with f(x) > 0 are either filtered out—meaning their content is not distorted—or they
adjust x to align with platform guidelines, which is considered a beneficial manipulation and thus should
not be counted as distortion. Following Definition 1, an immediate observation is that for any user (x, c),
deploying f does not increase social distortion relative to an unmoderated environment, as substantiated by
the following Proposition 2.
Proposition 2. Let ⊥ denote a trivial moderator that marks all x ∈ X as benign. It holds that

D(f ; (x, c), e) ≤ D(⊥; (x, c), e), (4)
and the inequality holds strictly if and only if f(x) ≤ 0 < f(x+ e

2c ).

Proposition 2 illustrates a nontrivial moderator can always reduce a user’s distortion in her expression, as it
requires adjusting x to stay closer to the boundary of f compared to the response x+ e

2c induced by a trivial
moderator. Based on this, we propose a natural optimization objective that evaluates the expected social
distortion mitigated by f across a population of users:
Definition 2. The social Distortion Mitigation (DM) induced by a moderator f over a user u = (x, c) is
the difference between the average social distortion induced by a trivial moderator ⊥ and f on u, i.e.,

h(f ; e,x, c) = D(⊥; (x, c), e) · I[f(x) ≤ 0]−D(f ; (x, c), e), (5)
and the total social distortion mitigation induced by f on a population of users U = {u = (xi, ci)}ni=1 is
thus defined as

DM(f ;U) =
∑
u∈U

h(f, u), (6)

where ∆(x, c; f, e) is defined in Eq. (2).
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Given a class of candidate moderator functions F = {f} and a user distribution U , the problem of optimiz-
ing expected social distortion over U can be formulated as finding an f ∈ F that maximizes DM(f ;U).
However, there is no guarantee on how much freedom of speech the optimal moderator f will sacrifice—that
is, how many users may need to be filtered out. The trivial moderator f =⊥, which does not filter out any
users, cannot mitigate any social distortion. This suggests that any moderator aiming to reduce a reasonable
amount of social distortion must inevitably sacrifice some degree of freedom of speech.

To illustrate this trade-off, consider the toy model in Figure 2, where x is uniform distributed in a unit ball
centered at the origin, and the social trend is e = (1, 0). Clearly, any reasonable moderator f that maximizes
DM would have a decision boundary perpendicular to e, as this direction maximizes the deterrent effect of f
on users’ strategic responses. For each moderator f of the form x = θ, θ ∈ [−1, 1], we can plot the induced
social distortion mitigation and a freedom of speech preservation index, which is the fraction of content
still allowed on the platform, as shown in the right panel of Figure 2. As f moves from the left margin of
X to the right margin, the social distortion mitigation exhibits an inverted U-shape, while the freedom of
speech index consistently increases. This illustrates the trade-off between the two measures. The tension
arises because the maximum social distortion mitigation is intuitively achieved when f is positioned where
the content distribution is most concentrated, whereas freedom of speech preservation pushes the optimal f
toward the margins of the distribution, making it difficult to achieve a doubly optimal moderator. As we

e

f +

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
location of optimal f

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Social distortion mitigation
Fraction of remaining content (%)

0

20

40

60

80

100
Trade-off between Social Distortion and Freedom of Speech

Figure 2: An illustration of the trade-off between social distortion and freedom of speech in a toy model.
Left: The original UGC distribution is uniformly random within a unit ball in R2, with a social trend e =
(1, 0). Right: The optimal function f under varying freedom of speech constraints and the resulting induced
social distortion.
can learn from the toy example, the key challenge is determining how to strike a balance between the social
distortion and freedom of speech objectives, for any possible distribution U . A straightforward approach
to is to introduce a hard constraint to the social distortion minimization (or DM maximization) problem,
ensuring that at most a certain fraction of users are filtered out had they manipulated their content as much
as they wished. More specifically, if a user x would like to follow a social trend e and move to the location
x+ e

2c , but by doing so their content gets filtered out, then their freedom of speech is violated. This leads to
the following formalized problem:

find argmaxf∈F
{
E(x,c)∼U [h(f ;x, c)]

}
subject to E(x,c)∼U [I[f(x+ e

2c ) > 0]] ≤ θ.
(7)

In reality, the platform usually only has access to an offline dataset U = {u = (xi, ci)}ni=1 sampled from
some distribution U . Therefore, a practical way to estimate the solution of OP (7) is to solve the following
empirical social distortion optimization problem. During training, we assume that we have access to un-
manipulated examples. We can retrieve a set of clean examples by removing part of the content that violates
the guidelines, e.g. misinformation.
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find argmaxf∈F

{∑
(xi,ci)∈S [h(f ;x, c)]

}
subject to

∑n
i=1[I[f(xi +

e
2c ) > 0]] ≤ K.

(8)

In the following discussion, we will first examine how well the empirical solution to OP (8) approximates
the solution to OP (7) using tools from standard statistical learning theory. We will then explore the compu-
tational aspects of solving OP (8).

4 LEARNABILITY OF GENERAL CONTENT MODERATORS

In this section we establish generalization guarantees for OP (7) – how many samples we need from the true
distribution D to solve OP (8) to approximate the solution of OP (7). Theorem 1 shows sample complexity
results in terms of the Vapnik–Chervonenkis dimension (VCDim) of the hypothesis moderator function class
F and Pseudo-Dimension (PDim) of its corresponding distortion mitigation function class HF .

Theorem 1. For any moderator function class F = {f : Rd → {0, 1}} and its induced DM function class
HF = {h(f)|f ∈ F} defined by Eq. (5), and any distribution U on X × C, a training sample U of size

O
(

1
ε2

(
H2(PDim(HF ) + ln(1/δ)) + VCDim(F)

))
is sufficient to ensure that with probability at least

1 − δ, for every f ∈ F , the distortion mitigation of f on U and U and the fraction of filtered points on U
and U each differ by at most ε.

Intuitively, Pseudo-dimension is a generalization of VC-dimension to real-valued function classes, captur-
ing the capacity of a hypothesis class to fit continuous outputs rather than binary labels. Similar to VC-
dimension, which measures the complexity of a class in terms of shattering points in binary classification,
pseudo-dimension evaluates the ability of a function class to fit arbitrary real values over a set of points. The
formal definition of Pseudo-dimension can be found in Appendix C.

Theorem 1 provides a general yet abstract characterization of the sample complexity required to approximate
the solution to OP (7). More concretely, it suggests that problem (7) is statistically learnable if we focus on
moderator function classes F with a finite VC-dimension and ensure that the corresponding class H has a
finite Pseudo-Dimension. Fortunately, many natural function classes F satisfy these conditions, as shown in
the following Proposition 3.

Proposition 3. There exists function classes F such that VCDim(F) and PDim(HF ) are both bounded,
such as linear functions, piece-wise linear functions and kernel-based non-linear functions.

Theorem 1, together with Proposition 3, demonstrates that finding the optimal linear moderator over an
offline dataset for Eq. (8) is statistically efficient for many natural and practical function classes, including
those discussed in Proposition 3. The linear class is arguably one of the simplest and most effective tools
for moderation, capable of representing linear scoring rules that aggregate UGC scores based on relevant
features. When combined with feature transformation mappings, linear models can represent techniques
like dimensionality reduction followed by linear scoring. Many transformation techniques, such as invertible
autoencoders, satisfy the invertibility requirement, ensuring statistical learnability. Additionally, piecewise
linear function classes correspond to scenarios where multiple scoring rules are applied simultaneously.
However, for such classes, the VCDim and PDim grow exponentially with the number of linear functions.
Nevertheless, if the number of functions m remains small, sample-efficient learning is still achievable.

Proof of Theorem 1 (Appendix D) first applies standard learning theory for real-valued functions (Pollard,
1984) to establish a generalization bound for OP (8) without the freedom of speech constraint, relying on
the PDim of HF . Then, a union bound is used to account for the additional constraint, which depends on
the VCDim of F . The proof of Proposition 3 involves a detailed analysis of the closed-form best response
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mapping for a user facing linear moderators. The core of the proof leverages the Sauer-Shelah Lemma
(Sauer, 1972; Shelah, 1972) to establish an upper bound on the PDim for a composition of two function
classes. Next, we study the computational complexity of empirically identifying a moderator that optimizes
social distortion subject to freedom of speech constraints.

5 COMPUTATIONAL TRACTABILITY OF OPTIMAL LINEAR MODERATORS

We discuss the computational complexity of OP (8) in this section. To illustrate the idea, we focus on the
class of linear moderator functions (i.e., F = {f(x) = w⊤x+b|w ∈ Rd, b ∈ R}) as it yields a closed-form
objective function, which makes the problem more tractable. And in order to also derive a closed-form for
the constraint, we use the true feature x to filter content, but not the manipulated feature. Such an easier
version of OP (8) is formulated by the following Lemma 1. And perhaps surprisingly, we show that this
problem is NP-hard.
Lemma 1. When F = {f(x) = w⊤x+ b|w ∈ Rd, b ∈ R} is the linear function class, OP (8) is equivalent
to the following constrained optimization problem:

find argminw,b

{∑
{i∈I}

[
(w⊤xi + b)2 −

(
w⊤e
2ci

)2]}
subject to

∑n
i=1 I

[
w⊤

(
xi +

e
2ci

)
+ b ≤ 0

]
≥ n−K,

−1 ≤ wj ≤ 1, 1 ≤ j ≤ d.

(9)

where the index set I = {i ∈ [n] : −w⊤e
2ci

< w⊤xi + b ≤ 0}.

Since OP (9) involves the strict constraint −w⊤e
2ci

< w⊤xi+ b, we follow a standard practice by introducing
a slack variable ϵ > 0 and consider a relaxed problem, replacing the strict constraint with a non-strict one:
ϵ−w⊤e

2ci
≤ w⊤xi+b. A natural question that follows is whether we can efficiently solve this relaxed version

of OP (9). However, despite the nice quadratic form of the objective function in OP (9), the combinatorial
nature of the constraint and the indefiniteness of the quadratic objective make the problem challenging to
solve. In fact, the next Theorem 2 shows that any ϵ-relaxation of OP (9) is NP-hard.
Theorem 2. For any given input ϵ > 0, n,K ∈ N+ and offline dataset X = {(xi, ci)}ni=1, finding the
optimal solution to the ϵ-relaxation of OP (9) (by replacing the index set I with Iϵ = {i ∈ [n] : ϵ− w⊤e

2ci
<

w⊤xi + b ≤ 0}) is NP-hard with respect to (n,K, 1/ϵ).

Theorem 2 demonstrates that minimizing social distortion under a hard constraint—limiting the number of
users whose content can be filtered—is computationally intractable. This complexity arises because finding
a linear moderator f that minimizes social distortion is analogous to finding a hyperplane that maximizes
the number of points near its boundary, as the amount of social distortion for each content x only increases
as x approaches the boundary of f . With the additional constraint, the problem becomes a combinatorial
geometric challenge: given a set of n points, find a hyperplane that maximizes the number of points lying
on it while ensuring that at least K points remain on each side of the hyperplane. This turns out to be
hard. The formal proof, provided in Appendix E.2, contains two core reductions. First, we reduce OP
(9) from a combinatorial optimization problem called Maximum Feasible Linear Subsystems (MAX-FLS)
with mandatory constraints, and then we show that the problem of MAX-FLS with mandatory constraints is
NP-hard by showing a reduction from the Exact 3-Set Cover problem, which is known to be NP-hard.

5.1 A HEURISTIC METHOD FOR FINDING APPROXIMATED SOLUTIONS

Since minimizing the social distortion with a hard freedom of speech constraint is NP-hard even for linear
function class, we resort to an approximation approach for solving this problem. Still focusing on linear

7
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moderators, a straightforward method for tackling the hard constraint is using penalty functions (Han &
Mangasarian, 1979; Nocedal & Wright, 1999). That is, for any (xi, ci) that violates the moderator, we
introduce a penalty function Pi(w, b) in the objective, as formulated in the following OP:

argmin
w,b

{∑
i∈I

[
(w⊤xi + b)2 −

(
w⊤e

2ci

)2
]
+ λP (w, b)

}
(10)

s.t. − 1 ≤ wj ≤ 1, 1 ≤ j ≤ d.

Let g(w, b;U, e) =
[
w⊤

(
xi +

e
2ci

)
+ b > 0

]
+
, where the notation [yi]+ denotes the vector

[max(0, yi)]
n
i=1. The hard constraint in OP (9) can thus be expressed as ∥g(w, b;U, e)∥0 ≤ K, where ∥ · ∥0

represents the ℓ0-norm. A natural choice for the penalty in OP (10) is then P (w, b) = ∥g(w, b;U, e)∥0.
However, in machine learning and optimization, it is common practice to replace the ℓ0 penalty with ℓ1- or
ℓ2-based penalties, often referred to as convex relaxations, to improve numerical stability. We will use the
ℓ2-based penalty in our experiments.

Finding the optimal penalty strength λ: To balance the social distortion objective and the freedom of
speech penalty term, selecting an appropriate parameter λ > 0 is crucial. A value of λ that is too small may
fail to yield a solution satisfying the constraint, whereas a sufficiently large λ can enforce the constraint but
may lead to an excessively large objective value (i.e., a too small DM). Intuitively, there exists an optimal
choice of λ that strikes this balance. The following proposition demonstrates the existence of such a λ and
outlines how the platform can determine it.
Proposition 4. Let (w1, b1), (w2, b2) be any solution of OP (10) by choosing λ = λ1 and λ = λ2 (λ1 >
λ2 ≥ 0). Then we have P (w1, b1) ≤ P (w2, b2), DM(w1, b1) ≤ DM(w2, b2).

Proposition 4 enables the platform to employ a binary search-based approach to determine a proper λ for
any given constraint ∥g(w, b)∥0 ≤ K. First, the platform can start with λmax = sup(w,b){DM(w, b)} ∼
O(n3), as any λ > λmax would enforce the equivalent constraint ∥g(w, b)∥0 = 0. Then, the platform
performs a binary search in interval [λleft, λright] = [0, λmax]. At each iteration, it solves OP (10) with λ =
λleft+λright

2 and obtains (w∗, b∗). According to Proposition 4, if P (w∗, b∗) > K, the platform excludes the
lower half of the range [λleft, λright] in the next round; otherwise, it searches in the upper half. This procedure
allows the platform to identify the optimal λ within precision δ by solving at mostO(3 log2(n)+log2(1/δ))
instances of OP (10). The proof of Proposition 4 is straightforward and is provided in Appendix E.3.

Efficient heuristic with smooth surrogate loss: Next we discuss for a particular chosen λ, how to efficiently
obtain an solution of OP (10). Let ai = w⊤e

2ci
, yi = w⊤xi + b + ai, we can re-formulate OP (10) as the

following cleaner form

find argminw,b

{∑
1≤i≤n l(w, b;xi, ci, e)

}
subject to l(w, b;xi, ci, e) = max {0, yi} · (yi − 2ai) + λPi(w, b)

−1 ≤ wj ≤ 1, 1 ≤ j ≤ d.

(11)

The objective function in OP (11) can be understood as the aggregation of the social good loss l induced
by each user i, consisting of two components. The first part, max {0, yi} · (yi − 2ai), measures the social
distortion incurred by the linear moderator (w, b), and the second part reflects the calibrated infringement on
freedom of speech: the larger penalty term Pi is, the farther user i’s content is from the decision boundary
on the positive side of f , making it more likely that user i’s content x will be filtered.

The structure of OP (11) resembles the empirical loss minimization problem commonly seen in standard
machine learning problems, and we can employ a stochastic gradient descent approach to tackle it, given

8
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any specific penalty functions and trade-off parameter λ. To ensure the social good loss l is differentiable so
that we can apply gradient-based approach, we need to further introduce a surrogate loss l̃ to smooth the non-
differentiable point at yi = 0 of max {0, yi} · (yi − 2ai) while selecting a differentiable penalty function.
The detail of this treatment is similar to (Levanon & Rosenfeld, 2021) and is outlined in the optimization
solver setup in the next section. In the following experiments, we apply this approach to solve (11) using a
synthetic dataset and report the approximate optimal linear moderator for different trade-off parameters λ.

Experiment Result: We use a synthetic dataset and perform experiments of our heuristic optimization
method. The details of the dataset and the setup of optimizers can be found in Appendix F.1. A 2-
dimensional visualization in Figure 3 illustrates the optimal linear moderators for both a small λ (λ = 0.1)
and a larger value (λ = 10.0). Each user’s original content feature x is represented by a blue dot, while its
strategic response to the moderator is shown in red. The social trend is e = (1, 0). As the figure shows, a
larger λ shifts the moderator boundary toward the margin of the content distribution, as desired. This results
in fewer pieces of content being filtered, while still achieving a reasonable degree of social distortion miti-
gation. When λ is small, the computed optimal moderator minimizes social distortion but at the expense of
infringing on more users’ freedom of speech. The right panel displays both the social distortion mitigation
(i.e., the negative of the optimal objective value of OP (11)) and a freedom of speech preservation index,
measured by the fraction of content that remains on the platform under the regulation of the computed mod-
erators with varying λ. As shown, the freedom of speech index increases as λ grows, while social distortion
mitigation follows an inverted U-shape. This suggests a trade-off between these two objectives, similar to
the one observed in the toy model 2. Our result indicates our proposed optimization technique can effec-
tively approximate a solution, thus allowing the platform to flexibly balance social distortion and freedom
of speech despite of the computational challenge.
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Figure 3: Left: the constructed quasi-convex single point surrogate loss function. Middle: the compupted
moderator obtained under λ = 0.1 and 10.0. Arrows represent users’ strategic manipulations against the
optimal linear moderator. Right: social distortion mitigation (blue) and the fraction of remaining content on
the platform (yellow) incurred by the computed moderator obtained under different λ ∈ [0.1, 100]. Error
bars obtained from results with 20 independently generated dataset. Error bars are 1σ region based on results
from 20 independently generated datasets.

6 CONCLUSION

We addressed the challenge of designing content moderators that reduce engagement with harmful social
trends while preserving freedom of speech. By modeling the problem as a constrained optimization, we in-
troduced the concept of social distortion and provided generalization guarantees based on the VC-dimension
and Pseudo-dimension of the filter function class. While we established the computational hardness of find-
ing optimal linear filters, we provide an empirically efficient approximation approach that enables the plat-
form to achieve any desirable trade-offs. Our findings highlight the need for efficient algorithms and further
exploration of more flexible filtering mechanisms.
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Appendix to Strategic Filtering for Content Moderation: Free Speech
or Free of Distortion?

A ADDITIONAL RELATED WORK

Welfare-oriented learning. The key novelty of our work is a shift from mere predictive performance to
welfare-oriented optimization in strategic learning, aligning with a recent call by Rosenfeld & Xu (2025).
The goal of standard strategic classification tasks is to preserve accuracy despite agents’ manipulations while
in our setting accuracy is not well-defined as there is no ground-truth labels for UGC. What we advocate is
that the platform should directly optimize a welfare objective that captures the externalities of moderation
decisions targeting harmful social trends. Our work also connects with a broader literature that examines the
societal impacts of strategic classification. For example, Milli et al. (2019) highlights how counter-strategic
defenses increase social burden, Kleinberg & Raghavan (2020) explores how classifiers can steer gaming
behavior toward socially beneficial efforts, and Yao et al. (2024b;a) studies how recommender systems can
improve user welfare in the presence of strategic content creators. We extend this perspective to a new and
timely domain — balancing social distortion and freedom of speech in content moderation.

Content moderation in social media platforms. To detect abusive content, platforms use a mix of human
moderators and automated algorithms. While early moderation relied heavily on human review (Klonick,
2017), most platforms now employ automated filters to handle overtly inappropriate content (Gillespie,
2018), with humans in the loop to address limitations such as poor generalization to out-of-distribution cases.
In this work, we assume the harmful trend is known, e.g., election misinformation, and focus on designing
mechanisms that discourage user engagement with such trends while preserving freedom of speech.

B PROOF OF PROPOSITION 1

Proof. Let D = {z : f(z;w) ≤ 0}. According to the definition of convex moderator, D is a convex set in
Rd.

If x ∈ D, under the formulation of Eq. (1), each user’s best response is the solution to the following convex
optimization problem (OP)

find z∗ = argminz{−z⊤e+ c∥z − x∥22}
subject to z ∈ D. (12)

Observe that the objective function

−z⊤e+ c∥z − x∥22 = c
∥∥∥z −

(
x+

e

2c

)∥∥∥2
2
− e⊤e

4c
,

OP (12) is thus equivalent to

find z∗ = argminz

{∥∥z −
(
x+ e

2c

)∥∥2
2

}
subject to z ∈ D.

(13)

Let z′ = x + e
2c . If z′ is feasible, i.e., f(z′) ≤ 0, we have z∗ = z′. Otherwise, by definition z∗ is the ℓ2

projection of z′ on to the decision boundary of f .

If x /∈ D, staying at x yield 0 utility for u. As a result, z∗ = Pf (z
′) only when z′ yields a negative

objective value in OP (12). Otherwise, z∗ = x.

13
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C DEFINITION OF PSEUDO-DIMENSION

Definition 3. (Pollard’s Pseudo-Dimension) A class F of real-valued functions P -shatters a set of points
X = {x1, x2, · · · , xn} if there exists a set of thresholds γ1, γ2, · · · , γn such that for every subset T ⊆ X ,
there exists a function fT ∈ F such that fT (xi) ≥ γi if and only if xi ∈ T . In other words, all 2n
possible above/below patterns are achievable for targets γ1, · · · , γn. The pseudo-dimension of F , denoted
by PDim(F), is the size of the largest set of points that it P -shatters.

D OMITTED PROOFS IN SECTION 4

D.1 PROOF OF PROPOSITION 3

In this section we present the proof of Proposition 3, which upper bounds the PDim of the distortion miti-
gation (DM) function class HF given some example moderator function class F . Specifically, we will show
that

1. When F = {f(x) = I[w⊤x+ b ≤ 0]|(w, b) ∈ Rd+1} is the linear class, we have

VCDim(F) ≤ d+ 1, PDim(HF ) ≤ Õ(d2), (14)

where Õ is the big O notation omitting the log terms.

2. When F is a piece-wise linear function class with each instance constitutes m linear functions, i.e.,
F = {f(x) = I[w⊤

1 x+ b1 ≤ 0] ∨ · · · ∨ I[w⊤
mx+ bm ≤ 0]|(wi, bi) ∈ Rd+1, 1 ≤ i ≤ m}, we have

VCDim(F) ≤ Õ(d · 3m), PDim(HF ) ≤ Õ(dm+1 · 32
m

). (15)

3. When F is the linear class defined on some feature transformation mapping ϕ, i.e., F = {f(x) =
I[w⊤ϕ(x) + b ≤ 0]|(w, b) ∈ Rd+1}, as long as ϕ is invertible and order-preserving, it also holds that

VCDim(F) ≤ d+ 1, PDim(HF ) ≤ Õ(d2). (16)

Proof. In this proof we derive Pseudo-dimension upper bounds for the three cases listed.

Case-1: When F = {f(x) = I[w⊤x+ b ≤ 0]|(w, b) ∈ Rd+1} is the linear functions class, we can without
loss of generality let ∥w∥2 = 1 since a simultaneous rescaling of w, b does not change the nature of the
moderator function and its induced strategic responses. Next, we derive the DM class HF as follows. First
of all, plugging in the expression of f into the result of Proposition 1, we obtain a user (x, c)’s best response
as the following:

1. if w⊤ ·
(
x+ e

2c

)
+ b ≤ 0, z∗ = x+ e

2c .

2. if w⊤ ·
(
x+ e

2c

)
+b > 0 and w⊤x+b ≤ 0, z∗ = Pf (x+ e

2c ) which has the following closed-form
expression

z∗ = x+
e

2c
−

w⊤(x+ e
2c )w

w⊤w
− bw

w⊤w

= x+
e

2c
−w⊤(x+

e

2c
)w − bw. (17)
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By Definition 1 and 2, we can compute each function h ∈ HF as

h(f, e;x, c) =D(⊥; (x, c), e)−D(f ; (x, c), e)

=I[w⊤x+ b ≤ 0] · I
[
w⊤x+ b > −w⊤e

2c

]
·
(∥∥∥ e

2c

∥∥∥2
2
−
∥∥∥ e

2c
−w⊤(x+

e

2c
)w − bw

∥∥∥2
2

)
=I[w⊤x+ b ≤ 0] · I

[
w⊤x+ b > −w⊤e

2c

]
·

[
−(w⊤x+ b)2 +

(
w⊤e

2c

)2
]
. (18)

For the ease of notation, let’s define x̃ = (x, 1
2c ) ∈ Rd+1 be the extended feature vector for any user data

(x, c). By the definition of Pseudo-dimension, for any function class F = {f(x̃;w, b)|w, b}, the PDim(F)
can be reduced to the VC dimension of the epigraph of F , i.e.,

PDim(F) = V Cdim({h(x̃, y) = sgn(f(x̃)− y)|f ∈ F , y ∈ [−1, 1]}). (19)

Let’s define the following three function classes

H1(d) =

{
h1(x, c;w, b) = −(w⊤x+ b)2 +

(w⊤e)2

4c2

∣∣∣(x, c) ∈ Rd+1, (w, b) ∈ Rd+1

}
=
{
h1(x̃;w, b) = −(w⊤x̃1:d + b)2 + (w⊤e)2x̃2d+1

∣∣∣x̃ ∈ Rd+1, (w, b) ∈ Rd+1
}
,

H2(d) =
{
h2(x, c;w, b) = I

[
w⊤

(
x+

e

2c

)
+ b ≥ 0

] ∣∣∣(x, c) ∈ Rd+1, (w, b) ∈ Rd+1
}

=
{
h2(x̃;w, b) = I

[
w⊤x̃1:d + (w⊤e)x̃d+1 + b ≥ 0

] ∣∣∣x̃ ∈ Rd+1, (w, b) ∈ Rd+1
}
,

H3(d) =
{
h3(x;w, b) = I

[
w⊤x+ b ≤ 0

] ∣∣x ∈ Rd, (w, b) ∈ Rd+1
}
,

where x1:d denotes the vector that contains the first d-dimension of x.

Since h(w, b; x̃) = h1 ∗ h2 ∗ h3(x̃;w, b), the Pseudo-dimension of HF can be upper bounded by the
following

PDim(HF ) ≤ V Cdim

({
h(x̃, y) = sgn

(
3∏

i=1

hi(x̃)− y

)∣∣∣∣∣hi ∈ Hi, y ∈ [−1, 1], 1 ≤ i ≤ 3

})
, (20)

where the inequality holds because

{
sgn (h1 ∗ h2 ∗ h3(x̃;w, b)− y) |(w, b) ∈ Rd+1

}
⊆

{
sgn

(
3∏

i=1

hi(x̃)− y

)∣∣∣∣∣hi ∈ Hi, 1 ≤ i ≤ 3

}
.

For any function classes F ,G, define F ⊗ G = {f ∗ g|f ∈ F , g ∈ G}. Then Eq. (20) suggests that in
order to upper bound PDim(HF ), it suffices to upper bound PDim(H1 ⊗H2 ⊗H3). Thanks to Lemma
2 which establishes the PDim of the product of two function classes, this can be done by upper bounding
PDim(H1), PDim(H2), PDim(H3) separately. In the following we derive the PDim for each function
class Hi, i = 1, 2, 3 and then use Lemma 2 to conclude the proof.

Deriving PDim(H3): First of all, since the Pseudo-Dimension for a binary value function class is ex-
actly the VC dimension of the corresponding real-valued function class inside the indicator function, we
immediately obtain

PDim(H3) ≤ d+ 1, (21)
which is the VC dimension for a d dimensional linear function class.
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Deriving PDim(H2): For H2, it holds that

H2(d) =
{
h2(x̃;w, b) = I

[
w⊤x̃1:d + (w⊤e)x̃d+1 + b ≥ 0

] ∣∣∣x̃ ∈ Rd+1, (w, b) ∈ Rd+1
}

⊂
{
h2(x̃;w, wd+1, b) = I

[
w⊤x̃1:d + wd+1x̃d+1 + b ≥ 0

] ∣∣∣x̃ ∈ Rd+1, (w, wd+1, b) ∈ Rd+2
}
(22)

=
{
h2(x̃; w̃, b) = I

[
w̃⊤x̃+ b ≥ 0

] ∣∣∣x̃ ∈ Rd+1, (w̃, b) ∈ Rd+2
}
,

where the subset relationship (22) holds because we relax the parameter w⊤e correlated with w to an
additional independent parameter wd+1 ∈ R. This implies that H2(d) is a subclass of indicator functions
induced by the d + 1 dimensional linear class. As a result, the Pseudo-Dimension of H2 must be upper
bounded by d+ 2.

Deriving PDim(H1): To derive PDim(H1), we first apply the same trick to relax w⊤e to an independent
parameter wd+1:

H1(d) =
{
h1(x̃;w, b) = (w⊤x̃1:d + b)2 − (w⊤e)2x̃2d+1

∣∣∣x̃ ∈ Rd+1, (w, b) ∈ Rd+1
}

⊂
{
h1(x̃; w̃, b) = (w⊤x̃1:d + b)2 − w2

d+1x̃
2
d+1

∣∣∣x̃ ∈ Rd+1, (w̃, b) ∈ Rd+2
}
≜ H̃1(d), (23)

where w̃ = (w, wd+1). Note that each instance in H̃1(d) can be rewritten as

h1(x̃; w̃, b) =

d+1∑
i=1

d+1∑
j=1

ψij(w̃, b)ϕij(x̃) + ψ0(w̃, b)ϕ0(x̃), (24)

where

ψij = wiwj , ϕij = xixj , 1 ≤ i, j ≤ d,

ψd+1,j = bwj , ψi,d+1 = bwi, ϕd+1,j = xj , ϕi,d+1 = xi, 1 ≤ i, j ≤ d,

ψd+1,d+1 = b2, ϕd+1,d+1 = 1, ψ0 = −w2
d+1, ϕ0 = x̃2d+1.

Let ϕ(x̃) = (ϕij(x̃), ϕ0(x̃))1≤i≤d+1,1≤j≤d+1,i+j<2d+2 ∈ R(d+1)2 . Consider the linear class L(d+1)2 =

{l(x;w, b) =
∑(d+1)2

i=1 wixi + b|(w, b) ∈ R(d+1)2+1}. Then for any Xm = (x1, · · · ,xm), y ∈ [−1, 1],
the label patterns of (sgn(h1(xi) − y))mi=1 that f1 can achieve on Xm can also be achieved by L(d+1)2 on
(ϕ(x1), · · · , ϕ(xm)). Therefore, by definition we have

PDim(H1) = V Cdim({h(x, y) = sgn(h1(x)− y)|h1 ∈ H̃1(d), y ∈ [−1, 1]})
≤ V Cdim({h(x, y) = sgn(l(x)− y)|l ∈ L(d+1)2 , y ∈ [−1, 1]})
= PDim

(
L(d+1)2

)
≤ (d+ 1)2 + 1, (25)

where inequality (25) holds by Theorem 11.6 (The Pseudo-Dimension of linear class) from Anthony et al.
(1999).

Finally, from Lemma 2 we conclude that

PDim(H1 ⊗H2) < 3(1 + logPDim(H1) + logPDim(H2))(PDim(H1) + PDim(H2))

< 3(1 + 3 log(d+ 2))(d+ 2)(d+ 3) < 12(d+ 3)2 log(d+ 2),
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and therefore

PDim(HF ) ≤ PDim(H1 ⊗H2 ⊗H3)

< 3(1 + logPDim(H1 ⊗H2) + logPDim(H3))(PDim(H1 ⊗H2) + PDim(H3))

= 3(1 + log(12(d+ 3)2 log(d+ 2)) + log(d+ 1))(12(d+ 3)2 log(d+ 2) + d+ 1)

< 3(1 + 6 log(d+ 3))(13(d+ 3)2 log(d+ 3))

< 273(d+ 3)2 log2(d+ 3).

Case-2: When F is a piece-wise linear function class with each instance constitutes m linear functions, i.e.,

F = {f(x) = I[w⊤
1 x+ b1 ≤ 0] ∨ · · · ∨ I[w⊤

mx+ bm ≤ 0|(wi, bi) ∈ Rd+1, 1 ≤ i ≤ m},

We first upper bound the VC-dimension of F . If we take F ,F ′ to be binary function classes in (32) from
Lemma 2, the Pdim of F coincides with the VCDim of F . Hence, for the composition of m linear functions
with each VCDim bounded by d+ 1, the VCDim of the new function is bounded by

Õ(3(3(3(d+ d) + d) + d) + ...) ≤ Õ(3m ·md) ≤ Õ(d · 3m),

where Õ denotes the big O notation omitting the log terms.

By Definition 1 and 2, we can compute each function h ∈ HF as

h(f, e;x, c)

=D(⊥; (x, c), e)−D(f ; (x, c), e)

=

m∏
i=1

I[w⊤
i xi ≤ 0] ·

(∥∥∥ e

2c

∥∥∥2
2
−min

{
min

1≤i≤m

{
I
[
w⊤

i x+ bi > −w⊤
i e

2c

]
·
∥∥∥P(i)

(
x+

e

2c

)
− x

∥∥∥2
2

}
,

min
1≤i,j≤m

{
I
[
w⊤

i x+ bi > −w⊤
i e

2c

]
· I

[
w⊤

j x+ bj > −
w⊤

j e

2c

]
·
∥∥∥P(i,j)

(
x+

e

2c

)
− x

∥∥∥2
2

}
, (26)

min
1≤i,j,k≤m

 ∏
t∈{i,j,k}

I
[
w⊤

t x+ bt > −w⊤
t e

2c

]
·
∥∥∥P(i,j,k)

(
x+

e

2c

)
− x

∥∥∥2
2

 , · · ·

})
, (27)

where operator P(i,j) denotes the L2-projection onto the intersection of hyperplanes li : w⊤
i x+ bi ≤ 0 and

lj : w
⊤
j x+ bj ≤ 0, and P(i,j,k) denotes the L2-projection onto the intersection of hyperplanes li, lj , lk, and

so on. This is because there are in total 2m possibilities in terms of the location of x+ e
2c ’s L2 projection to

the convex region denoted by f(x) = 1, as Pf (x+ e
2c ) can be on each hyperplane li, or on the intersections

of any two li, lj , or on the intersections of any three li, lj , lk, and so on.

Note that each P(r)
f (i.e., the projection onto the intersection of r hyperplanes) has a closed-form which

is a rational function with polynomial at most r. As a result, the Pseudo-dimension of the function
class containing all functions like

∥∥P(r)
(
x+ e

2c

)
− x

∥∥2
2

is at most O((rd)r), since rd is the num-
ber of parameters each function has. Apply Eq. (31) in Lemma 2, we know the Pdim of the class
I
[
w⊤

t x+ bt > −w⊤
t e
2c

]
·
∥∥P(r)

(
x+ e

2c

)
− x

∥∥2
2

is at most Õ(3(d + (rd)r)). Continue to apply Eq. (32),

we can upper bound the min of at most Cr
m functions with a Pdim of each at most Õ(3(d + (rd)r)) as

3C
r
m · Cr

m · Õ(3(d + (rd)r)), and the Pdim upper bound for the min of (m + 1) functions with a Pdim of

17
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each at most 3C
r
m · Cr

m · Õ(3(d+ (rd)r)), 1 ≤ r ≤ m is

Pdim(HF ) ≤ O(d · 3m) · Õ

(
3m

m∑
r=0

3C
r
m · Cr

m · Õ(3(d+ (rd)r))

)
≤ Õ(d · 3m) · Õ(32

m

) · Õ((dm)m) ≤ Õ(dm+1 · 32
m

).

Case-3: When F = {f(x) = I[w⊤ϕ(x) + b ≤ 0]|(w, b) ∈ Rd+1} is the linear functions class with some
feature transformation mapping ϕ, the best response of (x, c) is the solution of the following OP

find z∗ = argminz

{∥∥z −
(
x+ e

2c

)∥∥2
2

}
subject to w⊤ϕ(z) + b ≤ 0.

(28)

Since ϕ is invertible, it is equivalent to

find z∗ = argminz

{∥∥ϕ−1(y)− ϕ−1
(
ϕ
((
x+ e

2c

)))∥∥2
2

}
subject to w⊤y + b ≤ 0.

(29)

And also because ϕ preserves the order of pair-wise L2 distance of any set of points, the solution of OP (29)
is equivalent to the solution of

find z∗ = argminz

{∥∥y − ϕ
((
x+ e

2c

))∥∥2
2

}
subject to w⊤y + b ≤ 0.

(30)

As a result, we can compute z∗ the same way as in Case-1 and the VCDim, PDim upper bounds in Case-1
still applies.

D.2 LEMMAS USED IN THE PROOF OF PROPOSITION 3 AND THEIR PROOFS

Lemma 2. For any class of real valued functions F ,F ′ ⊆ {f : Rd → [−1, 1]} and binary valued functions
G ⊆ {g : Rd → {0, 1}}, define F ⊗ G = {h(x) = f(x) × g(x)|f ∈ F , g ∈ G}, and F ⊖ F ′ = {h(x) =
min{f(x), f ′(x)}|f ∈ F , f ′ ∈ F ′}. Then, it holds that

PDim(F ⊗ G) < 3(1 + log dFdG)(dF + dG), (31)

PDim(F ⊖ F ′) < 3(1 + log dFdF ′)(dF + dF ′), (32)

where dF = PDim(F), dF ′ = PDim(F ′), dG = PDim(G).

Proof. By definition, PDim(F) can be reduced to the VC dimension of the epigraph of F , i.e.,

PDim(F) = V Cdim({h(x, y) = sgn(f(x)− y)|f ∈ F , y ∈ [−1, 1]}). (33)

Let X = Rd × [−1, 1], consider an arbitrary set of points Xm = {(xi, yi) ∈ X}mi=1 with cardinality m and
any binary hypothesis class H ⊆ {h : X → {0, 1}}. Define the maximum shattering number

Π(m,H) = max
Xm∈Xm

{Card{(h(x1, y1), · · · , h(xm, ym)) ∈ {0, 1}m|h ∈ H}}

as the total number of label patterns that H can possibly achieve on X . Next we upper bound the Π(m, {f ∗
g|f ∈ F , g ∈ G}). For any fixed Xm = {(xi, yi) ∈ X}mi=1 ∈ Xm, we claim that the binary variable
sgn(f(xi)g(xi)− yi) is determined by three binary variables sgn(f(xi)− yi) and g(xi). This is because:

18
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1. when yi ≥ 0, f(xi)g(xi) ≥ yi holds if and only if f(xi) ≥ yi and g(xi) = 1.

2. when yi < 0, f(xi)g(xi) ≥ yi holds if and only if f(xi) ≥ yi and g(xi) = 1, or g(xi) = 0.

Therefore, any possible label pattern (sgn(f(x1)g(x1) − y1), · · · , sgn(f(xm)g(xm) − ym)) ∈
{0, 1}m is completely determined by the label patterns (sgn(f(x1) − y1), · · · , sgn(f(xm) − ym)) and
(g(x1), · · · , g(xm)). As a result, it holds that

Card{(sgn(f(x1)g(x1)− y1), · · · , sgn(f(xm)g(xm)− ym))|f ∈ F , g ∈ G}
≤Card{(sgn(f(x1)− y1), · · · , sgn(f(xm)− ym))|f ∈ F} × Card{(g(x1), · · · , g(xm))|g ∈ G},

which implies
Π(m,F ⊗ G) ≤ Π(m,F)×Π(m,G). (34)

Using the same argument, we can similarly show that

Π(m,F ⊖ F ′) ≤ Π(m,F)×Π(m,F ′). (35)

Therefore, to show Eq. (31) and (32), it suffices to show Eq. (31) starting from Eq. (34). According to
Sauer–Shelah Lemma (Sauer, 1972; Shelah, 1972), we have

Π(m,F) ≤
V C(F)∑
i=0

(
m

i

)
≤ max{m+ 1,mdF }, (36)

where V C(F) denotes the VC dimension of class {sgn(f(x) − y)|f ∈ F}, which is also the Pseudo
dimension of F (i.e., dF ). And the second inequality of Eq. (36) holds because

1. when d ≥ 3, we have(
d

m

)d d∑
i=0

(
m

i

)
≤

d∑
i=0

(
d

m

)i(
m

i

)
≤

m∑
i=0

(
d

m

)i(
m

i

)
=

(
1 +

d

m

)m

≤ ed,

and therefore
∑d

i=0

(
m
i

)
≤
(
em
d

)d
< md.

2. when d = 2, we have
d∑

i=0

(
m

i

)
= 1 +m+

m(m− 1)

2
≤ m2,∀m ≥ 2.

3. when d = 1, we have
∑d

i=0

(
m
i

)
= 1 +m.

From Eq. (34) we know F ⊗ G has bounded Pseudo dimension. Suppose PDim(F ⊗ G) = d, then by
definition, there exists a set Y with cardinality d such that Π(d,F ⊗ G) = 2d. Therefore, from Eq (36) and
(34) we have when d ≥ 2,

2d = Π(d,F ⊗ G) ≤ Π(d,F)×Π(d,G) ≤ max{d+ 1, ddF } ·max{d+ 1, ddG}. (37)

For simplicity of notations we denote d1 = dF , d2 = dG and without loss of generality assume d1 ≥ d2.
To complete our proof we need the following auxiliary technical Lemma 3, whose proof can be found in
Appendix.

Lemma 3. For any a ≥ 2 and m > 1.59a
ln 2 (ln a− ln ln 2), it holds that 2m > ma.
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Now we are ready to prove our claim. Consider the following situations:

1. if d1 ≥ 2, d2 ≥ 2, from Eq (37) we obtain

2d ≤ dd1+d2 .

However, from Lemma 3 we know that when d > 1.59
ln 2 (d1+d2)(ln(d1+d2)−ln ln 2), 2d > dd1+d2

always holds. Hence, in this case we conclude d ≤ 1.59
ln 2 (d1 + d2)(ln(d1 + d2) − ln ln 2) <

2.3(d1 + d2)(ln(d1 + d2) + 0.37).

2. if d1 ≥ 2, d2 = 1, from Eq (37) we obtain

2d ≤ (d+ 1)dd1 < dd1+2.

From Lemma 3 we know that when d > 1.59
ln 2 (d1 + 2)(ln(d1 + 2) − ln ln 2), 2d > dd1+2 always

holds. Hence, in this case we conclude d ≤ 1.59
ln 2 (d1+2)(ln(d1+2)−ln ln 2) < 2.3(d1+2)(ln(d1+

2) + 0.37).

3. if d1 = d2 = 1, from Eq (37) we obtain

2d ≤ (d+ 1)2.

Since 2m > (m + 1)2 holds for any m ≥ 6, we conclude that d ≤ 5 < 1.59
ln 2 (2 + 2)(ln(2 + 2) −

ln ln 2).

Combining the three cases, we conclude that

PDim(F ⊗ G) < 2.3(max{2, d1}+max{2, d2})(log(max{2, d1}+max{2, d2}) + 0.37)

< 3(1 + log d1d2)(d1 + d2)

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Classic results from learning theory Pollard (1984) show the following generalization
guarantees: Suppose [0, H] is the range of functions in hypothesis class H. For any δ ∈ (0, 1), and any
distribution D over X , with probability 1 − δ over the draw of S ∼ Dn, for all functions h ∈ H, the
difference between the average value of h over S and its expected value gets bounded as follows:∣∣∣∣∣ 1n∑

x∈S
h(x)− E

y∼D
[h(y)]

∣∣∣∣∣ = O

(
H

√
1

n

(
PDim(H) + ln

(
1

δ

)))

Substituting H with the class of social distortion mitigation functions HF = {h(f ;x, c)|f ∈ F} induced
by some moderator function class F = f gives:∣∣∣∣∣∣ 1n

∑
(xi,ci)∈S

h(f ;xi, ci)− E(x,c)∼X×C [h(f ;x, c)]

∣∣∣∣∣∣ = O

(
H

√
1

n

(
PDim(HF ) + ln

(
1

δ

)))

Therefore, for a training set S of size O
(

H2

ε2 [PDim(HF ) + ln(1/δ)]
)

, the empirical average social distor-
tion and the average social distortion on the distribution are within an additive factor of ε.
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Next, we show for any class F , distribution D over X ×C, if a large enough training set S is drawn from D,
then with high probability, every f ∈ F , filters out approximately the same fraction of examples from the
training set and the underlying distribution D had these examples manipulated to their ideal location(z′). In
order to prove this, we use uniform convergence guarantees.

Let X ′ = {x+ e
2c | x ∈ X , c ∈ C} and Y = {0} and consider the joint distribution D′ on X ′×Y . A hypothe-

sis f ∈ F incurs a mistake on an example (x+ e
2c , y) if it labels it as positive or equivalently if it filters it out.

By uniform convergence guarantees, given a training sample S′ of size O
(

1
ε2 [V CDim(F) + log(1/δ)]

)
,

with probability at least 1 − δ for every f ∈ F , |errD′(f) − errS′(f)| ≤ ε. This is equivalent to saying the
fraction of points filtered out by f from D′ and S′ are within an additive factor of ε.

Here, F is the class of moderator functions, and HF is the class of social distortion mitigation functions
induced by F . Now, given a training set S of size O( 1

ε2 [H
2(PDim(HF )+ln(1/δ))+V CDim(F)]), by an

application of union bound, for every f ∈ F , the probability that the average social distortion of f on S and
D differ by more than ε or the fraction of filtered points differ by more than ε is at most 2δ. This completes
the proof.

E OMITTED PROOFS IN SECTION 5

E.1 PROOF OF LEMMA 1

Proof. Plugin the expression of x∗ = ∆(x, c; e, f) given by Proposition 1 and note that ∆(xi, ci; e,⊥) =
xi +

e
2ci

, we get a closed form of DM(f ;X ) as shown below:

DM((w, b);X ) =

n∑
i=1

{D(⊥; (xi, ci), e)−D(w, b; (xi, ci), e)}

=
∑

i∈I0(w,b)

∥∥∥∥ e

2ci

∥∥∥∥2
2

−
∑

i∈I1(w,b)

∥∥∥∥ e

2ci

∥∥∥∥2
2

−
∑

i∈I2(w,b)

∥∥∥∥ e

2ci
− w⊤(e+ 2cixi)w

2ciw⊤w
− bw

w⊤w

∥∥∥∥2
2

=
1

4

∑
i∈I0

1

c2i
− 1

4

∑
i∈I1

1

c2i
−
∑
i∈I2

{
1

4c2i
+

1

w⊤w

[
(w⊤xi + b)2 −

(
w⊤e

2ci

)2
]}

=
∑
i∈I2

1

w⊤w

[
−(w⊤xi + b)2 +

(
w⊤e

2ci

)2
]
. (38)

Here the set I0 = {i ∈ [n] : w⊤xi + b ≤ 0} contains the indices of all users who are marked as non-
problematic and I1 = {i ∈ [n] : w⊤ ·

(
xi +

e
2ci

)
+ b ≤ 0} ∩ I0, I2 = {i ∈ [n] : w⊤ ·

(
xi +

e
2ci

)
+ b >

0} ∩ I0.

Since a re-scaling of the vector (w, b) does not change the value of the RHS of Eq. (38), we may without
loss of generality assume ∥w∥2 = 1 and the DM function becomes

DM((w, b);X ) =
∑
i∈I2

[
−(w⊤xi + b)2 +

(
w⊤e

2ci

)2
]
. (39)

Next, we argue that maximizing Eq. (39) under the constraint ∥w∥2 = 1 is equivalent to maximizing it
under the constraint ∥w∥∞ = 1. This is because, for any solution (w∗, b∗) that yields the optimal value of
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Eq. (39) with ∥w∗∥2 = 1, re-scaling (tw∗, tb∗) such that ∥tw∗∥∞ = 1 would also yield the largest value
of the RHS of Eq. (38). And on the other hand, any solution (w∗, b∗) that yields the optimal value of Eq.
(39) with ∥w∗∥∞ = 1, we can also re-scale it such that ∥w∗∥2 = 1. This suggests that we can equivalently
consider the objective function given in Eq. (39) and replacing the original constraint ∥w∗∥2 = 1 with
∥w∗∥∞ = 1.

E.2 PROOF OF THEOREM 2

The ϵ-relaxed version of OP (9) is given by the following:

find argminw,b

{∑
i:ϵ−w⊤e

2ci
≤w⊤xi+b≤0

[
(w⊤xi + b)2 −

(
w⊤e
2ci

)2]}
subject to

∑n
i=1 I

[
w⊤

(
xi +

e
2ci

)
+ b ≤ 0

]
≥ n−K,

−1 ≤ wj ≤ 1, 1 ≤ j ≤ d.

(40)

Proof. For arbitrary n points y1, · · · ,yn ∈ Rd and K < n, construct an OP (40) instance by letting
e = (0, · · · , 0, 1), c1 = · · · = c2n = 1

2ϵ > 0, and

xi =

{
(yi,1, · · · , yi,d, 0), 1 ≤ i ≤ n,

(0, · · · , 0, 0), n+ 1 ≤ i ≤ 2n.

Then solving OP (40) is equivalent to

find argmaxw,b

{∑
{1≤i≤2n:ϵ(1−w⊤e)≤w⊤xi+b≤0}

[
−(w⊤xi + b)2 + ϵ2

(
w⊤e

)2]}
subject to

∑2n
i=1 I

[
w⊤ (xi) + b ≤ −ϵw⊤e

]
≥ 2n−K,

−1 ≤ wj ≤ 1,∀1 ≤ j ≤ d+ 1,
w ̸= 0.

(41)

We argue that that the optimal w∗ for OP (41) must satisfy w∗
d+1 = 1, because for any w with wd+1 < 1, we

have ϵ(1−w⊤e) > 0 and thus the set {1 ≤ i ≤ 2n : ϵ(1−w⊤e) ≤ w⊤xi + b ≤ 0} is empty. This means
that the objective value of OP (41) is zero. However, any w, b with wd+1 = 1 such that w⊤xi + b = 0 for
some i yields an objective value ϵ2 > 0. As a result, the optimal w∗ that maximize the objective of OP (41)
must satisfy w∗

d+1 = 1. Therefore, we can without loss of generality let w⊤e = 1 and then solving OP (41)
is equivalent to

find argmaxw,b

{∑
{1≤i≤2n:w⊤xi+b=0}

[
ϵ2
]}

subject to
∑2n

i=1 I[w⊤xi + b ≤ −ϵ] ≥ 2n−K,
−1 ≤ wj ≤ 1,∀1 ≤ j ≤ d+ 1,
w ̸= 0.

(42)

Let w̃ = (w1, · · · , wd) be the first d dimensions of w, then solving OP (42) is equivalent to solving the
following

find argmaxw̃,b

{
n · I[b = 0] +

∑
{1≤i≤n} I

[
w̃⊤yi + b = 0

]}
subject to

∑n
i=1 I[w̃⊤yi + b ≤ −ϵ] ≥ n−K,

−1 ≤ w̃j ≤ 1,∀1 ≤ j ≤ d,
w̃ ̸= 0.

(43)

We argue that the optimal solution of OP (43) must satisfy b∗ = 0. This is because when b = 0, any w̃
that satisfies w̃⊤yi + b = 0 for some i yields an objective value at least n + 1. However, if b ̸= 0, any w̃
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in the feasible region would yield an objective value at most n. As a result, solving OP (43) is equivalent to
solving the following

find argmaxw

{∑
{1≤i≤n} I

[
w⊤yi = 0

]}
subject to

∑n
i=1 I[w⊤yi ≤ −ϵ] ≥ n−K,

−1 ≤ wj ≤ 1,∀1 ≤ j ≤ d,
w ̸= 0.

(44)

Next, we show that optimizing Equation (44) is an NP-hard problem by showing the following decision
problem that we call ε-maximum feasible linear subsystem (MAX-FLS) with mandatory constraints is NP-
hard. Given ε > 0 and a system of linear equations, with a mandatory set of constraints Ax = b1 where
b1 = [0, 0, · · · , 0] and an optional set of constraints Ax ≤ b2 where b2 = [−ε, · · · ,−ε], and A is of size
d × n and integers 1 ≤ p ≤ d and 0 ≤ q ≤ d, does there exist a solution x ∈ Rn satisfying at least p
optional constraints while violating at most q mandatory constraints? Our proof is inspired by Amaldi &
Kann (1995) that showed MAX-FLS is NP-hard, and we show that even when adding a set of mandatory
constraints, it remains NP-hard.

In order to prove NP-hardness, we show a polynomial-time reduction from the known NP-complete Exact
3-Sets Cover that is defined as follows. Given a set S with |S| = 3n elements and a collection C =
{C1, · · · , Cm} of subsets Cj ⊆ S with |Cj | = 3 for 1 ≤ j ≤ m, does C contain an exact cover, i.e. C ′ ⊆ C
such that each element si of S belongs to exactly one element of C ′?

Let (S,C) be an arbitrary instance of Exact 3-Sets Cover. We will construct a particular instance of ε-MAX-
FLS with mandatory constraints denoted by (A, b, p, q, ε) such that there exists an Exact 3-Sets Cover if and
only if the answer to the ε-MAX-FLS with mandatory constraints instance is affirmative.

We construct an instance of ε-MAX-FLS with mandatory constraints as follows. There exists one variable
xj for each subset Cj ∈ C, 1 ≤ j ≤ m. Equations (45) to (47) are optional and Equations (48) to (50) are
mandatory constraints. Equation (45) are coverage constraints to make sure each element in S is covered.
Constant ai,j is equal to 1 if si ∈ Cj and is equal to 0 otherwise.

|C|∑
j=1

ai,jxj − xm+1 = 0 ∀1 ≤ i ≤ 3n (45)

xj − xm+1 = 0 ∀1 ≤ j ≤ m (46)
xj = 0 ∀1 ≤ j ≤ m (47)
|C|∑
j=1

ai,jxj − xm+1 ≤ −ε ∀1 ≤ i ≤ 3n (48)

xj − xm+1 ≤ −ε ∀1 ≤ j ≤ m (49)
xj ≤ −ε ∀1 ≤ j ≤ m (50)

We set p = 3n+m and q = 2n+ 2m. Now, in any solution x, we must have xm+1 ̸= 0, since xm+1 = 0
implies that xj = 0 for all 1 ≤ j ≤ m in order to have at least 3n + m optional constraints satisfied.
However, if all x variables are set as 0, then none of the mandatory constraints would be satisfied which is a
contradiction.

Now, given any exact cover C ′ ⊆ C of (S,C), the vector x defined by:

xj =

{
−ε if Cj ∈ C ′ or j = m+ 1

0 otherwise
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satisfies all equations of type Equation (45) and exactly m of Equations (46) and (47). Therefore, x satisfies
3n + m optional constraints in total. However, all constraints of type Equation (48) are violated. When
xj = −ε, the mandatory constraint xj ≤ −ε is satisfied, and xj − xm+1 ≤ −ε is violated. However, when
xj = 0, both constraints xj − xm+1 ≤ −ε, xj ≤ −ε are violated. Since |C ′| = n, the total number of
mandatory constraints violated equals 3n+ 2m− n = 2n+ 2m.

Conversely, suppose that we have a solution x that satisfies at least 3n+m optional constraints and violates
at most 2n + 2m mandatory constraints. By construction, since x satisfies 3n + m optional constraints,
it satisfies all constraints of type Equation (45) and exactly m constraints among Equations (46) and (47)
(recall that we are interested in non-trivial solutions, therefore xm+1 ̸= 0). This implies each xj is either
equal to xm+1 or 0. Now, consider the subset C ′ ⊆ C defined by Cj ∈ C ′ if and only if xj = xm+1. This
gives an exact cover of (S,C).

Finally, we can conclude that given solution x that satisfies at least 3n+m optional constraints and violates
at most 2n + 2m mandatory constraints, the subset C ′ ⊆ C defined by Cj ∈ C ′ if and only if xj = xm+1

is an exact cover of (S,C).

E.3 PROOF OF PROPOSITION 4

Proof. OP (10) is equivalent to the following problem

find argminw,b{−DM(w, b) + λP (w, b)}. (51)

And according to the definitions we have

(w1, b1) = argmin
w,b

{−DM(w, b) + λ1P (w, b)}, (52)

(w2, b2) = argmin
w,b

{−DM(w, b) + λ2P (w, b)}. (53)

As a result,

−DM(w2, b2) + λ2P (w2, b2) ≤−DM(w1, b1) + λ2P (w1, b1)

=−DM(w1, b1) + λ1P (w1, b1) + (λ2 − λ1)P (w1, b1)

≤−DM(w2, b2) + λ1P (w2, b2) + (λ2 − λ1)P (w1, b1) (54)

Rearranging terms in Eq. (54) we have (λ2−λ1)(P (w2, b2)−P (w1, b1)) ≤ 0, which implies P (w1, b1) ≤
P (w2, b2).

Now we prove DM(w1, b1) ≤ DM(w2, b2). First of all, when λ2 = 0, we have (w2, b2) =
argmaxw,bDM(w, b) and therefore DM(w1, b1) ≤ DM(w2, b2) must hold. When λ2 > 0, it also
holds that

λ1
λ2

(−DM(w2, b2) + λ2P (w2, b2)) ≤
λ1
λ2

(−DM(w1, b1) + λ2P (w1, b1))

=−DM(w1, b1) + λ1P (w1, b1)−
λ1 − λ2
λ2

DM(w1, b1)

≤−DM(w2, b2) + λ1P (w2, b2)−
λ1 − λ2
λ2

DM(w1, b1) (55)

Rearranging terms in Eq. (55) we have (λ1 − λ2)(DM(w1, b1) − DM(w2, b2)) ≤ 0, which implies
DM(w1, b1) ≤ DM(w2, b2).
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F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL DETAILS OF EXPERIMENT

Synthetic data generation: We generate synthetic dataset from mixed Gaussian distribution in Rd to mimic
the distribution of x. Specifically, we first sample k centers ci from N (0, Id) and then for each ci generate
m = n/k samples from N (ci, σ

2
i Id), where σi is sampled uniformly at random from [0.3, 0.5]. Without loss

of generality we set e as the unit vector (1, 0, · · · , 0), and sample ci independently from uniform distribution
U [0.5, 1.5]. In the experiments we choose d = 5, n = 500, k = 5, and additional result under different data
scales can be found in Appendix F.

Optimization solver setup: we solve OP (11) by setting the ℓ2 penalty P (w, b) = ∥g(w, b;U, e)∥2, i.e.,
Pi(w, b) = I[yi > 0] · y2i , where ai = w⊤e

2ci
, yi = w⊤xi + b + ai as defined in the constraints of OP (11).

The reason we choose such a form is because the resultant social good loss function l can preserve continuity
and first-order differentiable property, paving the way for gradient-based method. Additional details about
the optimizer setup can be found in Appendix F.1.

We solve OP (11) by setting the ℓ2 penalty P (w, b) = ∥g(w, b;U, e)∥2, i.e., Pi(w, b) = I[yi > 0] · y2i ,
where ai = w⊤e

2ci
, yi = w⊤xi+b+ai as defined in the constraints of OP (11). The reason we choose such a

form is because the resultant social good loss function l can preserve continuity and first-order differentiable
property, paving the way for gradient-based method. To further differentiate l at yi = 0, we apply spline
interpolation at yi = 0.1 to round the corner at yi = 0 while ensuring that l → 0 as yi → −∞. The surrogate
loss function l for each user (xi, ci) after such regularizations compared with the true loss l is illustrated
in the leftmost panel of Figure 3, and we can observe that the minimum of l is achieved when yi = ai,
i.e., when the original feature x is on the decision boundary of filter f . In addition, for a larger penalty λ,
moving across the boundary (i.e., yi moving to the right side of ai) would incur a larger and more rapidly
increasing loss. The objective is thus the sum of these surrogate losses at all points (xi, ci). To account for
the boundary constraint −1 ≤ wi ≤ 1, we employ the standard projected gradient descent.

The surrogate loss l̃(y, a; ϵ) for a single point (x, c) we use in the experiment is given by the following
explicit form:

l̃(y, a; ϵ, λ) =


(1−ϵ2)2a3

2ϵy−4a(1−ϵ)+3a(1−ϵ)2 , y < (1− ϵ)a,

y2 − 2ay, (1− ϵ)a ≤ y ≤ a,

λ(y − a)2 − a2, y > a,

(56)

where y = w⊤x + b + a, a = w⊤e
2c , as shown in Figure 4. In our experiments we choose ϵ = 0.9 and use

different λ ranging from 0.1 to 100.

Then we use projected gradient descent (PGD) to solve the following OP 57 with the exact gradient of l̃
w.r.t. w and b. The learning rate of PGD is set to 0.1 and the maximum iteration steps is set to 2000.

find argminw,b

{∑
1≤i≤n l̃(yi, ai)

}
subject to yi = w⊤xi + b+ ai, 1 ≤ i ≤ n,

ai =
w⊤e
2ci

, 1 ≤ i ≤ n,
−1 ≤ wi ≤ 1, 1 ≤ i ≤ n.

(57)
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Figure 4: The constructed quasi-convex single point surrogate loss function with different smoothing pa-
rameter ϵ and soft freedom of speech penalty strength λ. In this illustration we set a = 0.5.

F.2 ADDITIONAL RESULT UNDER DIFFERENT DIMENSION d

We also plot the trade-offs achieved by the computed optimal linear moderators across different dimensions
d, with the results shown in Figure 5. As the figure illustrates, higher dimensions introduce more noise into
the results, but the same underlying insights remain observable.
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Figure 5: Social distortion mitigation (blue) and the fraction of remaining content on the platform (yellow)
incurred by the computed moderator obtained under different λ ∈ [0.1, 100]. Left: d = 2, Right: d = 10.
Error bars are 1σ region based on results from 20 independently generated datasets.
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