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Abstract
This paper strives for image editing via generative
models. Flow Matching is an emerging generative
modeling technique that offers the advantage of
simple and efficient training. Simultaneously, a
new transformer-based U-ViT has recently been
proposed to replace the commonly used UNet for
better scalability and performance in generative
modeling. Hence, Flow Matching with a trans-
former backbone offers the potential for scalable
and high-quality generative modeling, but their
latent structure and editing ability are as of yet un-
known. Hence, we adopt this setting and explore
how to edit images through latent space manip-
ulation. We introduce an editing space, we call
u-space, that can be manipulated in a controllable,
accumulative, and composable manner. Addition-
ally, we propose a tailored sampling solution to
enable sampling with the more efficient adaptive
step-size ODE solvers. Lastly, we put forth a
straightforward yet powerful method for achiev-
ing fine-grained and nuanced editing using text
prompts. Our framework is simple and efficient,
all while being highly effective at editing images
while preserving the essence of the original con-
tent. We will provide our source code.

1. Introduction
The amazing realism demonstrated by large-scale text-to-
image generative models (Rombach et al., 2022; Saharia
et al., 2022; Ramesh et al., 2021; 2022) has garnered sig-
nificant attention in the research community and beyond,
leading to the development of various applications catering
to non-expert users. For image editing, such models can
be directly used in zero-shot fashion (Meng et al., 2021),
enabling users to manipulate images without specific train-
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ing on editing tasks (Bansal et al., 2023). The progress
made in diffusion models (Ramesh et al., 2022; Saharia
et al., 2022) has played a significant role in driving these
advancements, prompting further investigations into the un-
derstanding of the learned latent space and its potential use
for image editing tasks. While current works perform latent
space editing on the original latent diffusion model setting
and architecture (Kwon et al., 2023; Haas et al., 2023),
not much is known about the structure of the latent space
in the most recent advances in the field, specifically Flow
Matching (Lipman et al., 2023; Liu et al., 2022; Neklyu-
dov et al., 2022) and improved transformer backbones (Bao
et al., 2023).

Flow Matching (Lipman et al., 2023) has positioned Con-
tinuous Normalizing Flow (CNF) as a strong contender
to diffusion models for image synthesis. Flow Matching
allows for simulation-free training of CNFs and offers im-
proved efficiency compared to standard diffusion training
and sampling techniques. Flow Matching has been quickly
integrated in the field, with applications in image genera-
tion (Lipman et al., 2023), video prediction (Davtyan et al.,
2022), point cloud generation (Wu et al., 2022), and man-
ifold data (Chen & Lipman, 2023). Orthogonally, recent
works have proposed enhancements to the traditional UNet
architecture (Ronneberger et al., 2015) used in diffusion
models, with the transformer-based U-ViT (Bao et al., 2023)
demonstrating superior scaling performance. Since Flow
Matching and U-ViT provide two new pieces of the puzzle
towards better generative learning, a natural next step is
to discover how images can be manipulated and edited via
those techniques.

As a foundation for editing in transformer-based Flow
Matching, we seek to uncover whether such an approach
has semantic directions that can be manipulated. We take
inspiration from investigations in GANs (Shen et al., 2020b;
Song et al., 2023) and diffusion models (Kwon et al., 2023;
Jeong et al., 2023; Haas et al., 2023), which have revealed
there exists a latent space in such networks with semantic
directions that can be adjusted and composed. We inves-
tigate whether transformer-based Flow Matching also in-
duces a semantic space, that allows us to perform editing
in a controllable, accumulative, and composable manner.
Furthermore, to fix the misalignment between the forward
and backward process in Flow Matching, we propose se-
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mantic direction interpolating during the sampling process
to reach a more exact and adaptive control over the semantic
generation. To make latent space editing viable in practice,
manipulation should be done at the input or prompt level.
While early work generates new images from scratch based
on updated prompts (Rombach et al., 2022; Ramesh et al.,
2022), prompt-to-prompt (Hertz et al., 2022) allows for
editing images locally while keeping the unedited part simi-
lar. Prompt-to-prompt is however specifically designed to
work with the cross-attention of U-Net (Ronneberger et al.,
2015). We show that local prompt editing becomes simple
and intuitive in U-ViT (Bao et al., 2023). Latent space edit-
ing becomes as easy as replacing, removing, or appending
prompts. Given an initial prompt and generated image, we
can simply reweight tokens (e.g. enlarge beard, remove
the dog, shrink tree), allowing us to locally manipulate im-
ages in an invasion-free and user-friendly manner while
enabling us to make use of the more powerful transformer
architecture.

2. Background: Flow Matching
In Flow Matching, we are given a set of samples from an
unknown data distribution q(x). The goal is to learn a
flow that pushes the simple prior density p0(x)=N (x | 0, 1)
towards a complicated distribution p1(x)≈q(x) along the
probability path pt(x). Formally, this is denoted using the
push-forward operation as pt=[ϕt]∗p0. The time-dependent
flow can be constructed via a vector field vt(x) : [0, 1] ×
Rd → Rd that defines the flow via the neural ordinary
differential equation (ODE):

ϕ̇t(x) = vt(ϕt(x)), ϕ0(x) = x0. (1)

Given a predefined probability density path pt(x) and the
corresponding vector field wt(x), one can parameterize
vt(x) with a neural network with parameter θ and solve

min
θ

Et,pt(x)∥vt(x; θ)−wt(x)∥2. (2)

However, directly optimizing this is infeasible, because
we do not have access to wt(x) in closed form. Instead,
Lipman et al. (Lipman et al., 2023) propose to use the con-
ditional vector field wt(x |x1) as the target, which corre-
sponds to the conditional flow pt(x |x1). Importantly, they
show that this new conditional Flow Matching objective

min
θ

Et,pt(x |x1),q(x1)∥vt(x; θ)−wt(x |x1)∥2, (3)

has the same gradients as Equation (2). By defining the
conditional probability path as a linear interpolation between
p0 and p1, all intermediate distributions are Gaussians of the
form pt(x |x1)=N (x | tx1, 1− (1−σmin)t), where σmin >
0 is a small amount of noise around the sample x1. The

corresponding target vector field is:

wt(x |x1) =
x1 − (1− σmin)x

1− (1− σmin)
, (4)

Lipman et al. (Lipman et al., 2023) show that learning
straight paths improves the training and sampling efficiency
compared to diffusion paths. It allows to generate sam-
ples by first sampling x0 ∼ N (x | 0, 1) and then solving
Equation (1) using an off-the-shelf numerical ODE solver.
Similarly, we can invert a data point to get its corresponding
latent noise by solving the ODE in the other direction.

3. Latent Space Editing in Flow Matching
Transformer architecture. Our goal is to facilitate easy-
to-use and powerful image editing within the framework of
Flow Matching. Transformer architectures not only show
promise in enhancing image generation capabilities (Bao
et al., 2023; Peebles & Xie, 2022), but they also provide
a straightforward editing approach by adjusting the tokens
of user prompts. In light of this, we propose a general ar-
chitecture for transformer-based Flow Matching, which is
outlined in Figure 1. To efficiently generate high-resolution
images we use a pretrained autoencoder to compress images
x̃ into representations x=E(x̃) of lower spatial resolution.
While keeping the encoder and decoder parameters fixed,
we train a U-ViT (Bao et al., 2023) using the Flow Matching
objective in Equation (2). To generate new images, we first
generate a sample x using the CNF and then map it back into
the image space using the decoder x̃=D(x). In the context
of a transformer-based Flow Matching framework, a crucial
step to enable image editing through a semantic latent space
is to identify a suitable latent space that exhibits semantic
properties suitable for manipulation. While a straightfor-
ward approach might involve using the middle layer, similar
to U-Nets, we have discovered that this approach does not
yield a robust semantic latent space. Moreover, it can result
in changes that are completely unrelated to the source im-
age or produce images of poor visual quality. We attribute
this discrepancy to the absence of a spatial compression in
the vision transformer structure, in contrast to the conven-
tional U-Net architecture (Ronneberger et al., 2015). We
have found, by experiment, that the most effective space for
semantic manipulation lies at the beginning of the U-ViT
architecture. To distinguish it from the bottleneck layer,
commonly referred to as the h-space in the U-Net (Kwon
et al., 2023), we designate this space as u-space.

Semantic direction manipulation in u-space. In order to
enable image editing through simple vector additions in the
latent space we need to identify the directions in the vector
space that correspond to semantically meaningful edits. We
adopt a supervised approach to obtain interpretable semantic
directions by contrasting two datasets: one dataset {xk+

i }i
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Figure 1. Latent Flow Matching for image editing. Starting from the original image, we extract the latent feature x from the frozen
encoder. Then, Flow Matching is applied in latent space to transfer the trajectory between the latent feature and standard Gaussian noise
by integration on the vector field. An editing operation can be triggered in u-space and Prompt by your own desire. The edited feature
will be fed back to the decoder to generate the final edited image.

consisting of images that possess the desired attribute k, and
the other dataset {xk−

j }j consisting of images without the
desired attribute. Examples of attributes include age, gender,
or smile. Importantly, we do not require any paired data, and
the images in the two datasets can differ in other arbitrary
ways. We compute a semantic direction skt as follows:

skt =
1

n

n∑
i=1,j=1

(
u(xk+

i,t )− u(xk−
j,t )

)
, (5)

where u(·) maps to the semantic latent space, t corresponds
to the time variable in Equation (1), and i and j index the
different images in the datasets.

We can collect semantic directions sk from both real and
generated images. In the former case, we gather the latent
representations for different time steps through the forward
process of the ODE. In the latter case, we utilize the back-
ward process. In this work we focus on semantic directions
acquired from real images. For generated images, we can
identify the presence of specific attributes using an off-the-
shelf attribute classifier (Shen et al., 2020b).

After collecting the sets of semantic directions, we can
proceed to manipulate the sampling (backward) process by
editing the u-space. This can be achieved through:

ũ(xt, k, w) = u(xt) + w · skt , (6)

where w is the semantic guidance strength. Image editing
can be implemented in u-space by replacing u(xt) with
ũ(xt, k, w) during the forward pass of the neural network.
Additionally, we need to determine the appropriate time step
t for performing the injection. Initially, one might consider
injecting the guidance signal at every time step when the
ODE solver calls the neural network. However, we have
observed that this approach can result in a degradation of
the visual quality of the sampled image. To address this

issue, we limit the modification to time steps 0 < t < tedit.
By focusing the injection on early integration steps, we can
improve the visual quality while still achieving effective
edits. The hyperparameter tedit can be tuned to find the
right balance between the consistency of the edits and the
quality of the resulting image. For a fixed step ODE solver
this can be written as:

xti−1
=

{
ODE(xti , ũ(xti , k, w)) if 0 < ti < tedit

ODE(xti ,uti) else
(7)

where ti = i
N and i ∈ 0, ....N − 1, N is the integration

number for the ODE solver.

Semantic direction interpolation for adaptive step ODE.
Existing methods for editing images using semantic latent
directions are limited to fixed step-size ODE solvers. This
is because an adaptive step-size ODE solver requires neural
network evaluations at arbitrary time steps t, while the se-
mantic directions skt were only gathered at fixed intervals.
This misalignment problem between the time steps keeps
previous methods from making use of the more efficient
adaptive step-size solvers. To address this problem, we
propose an interpolation-based method to handle the mis-
alignment between the two sequences of time steps. We
first gather the semantic directions using a fixed step-size
ODE solver, which only needs to be done once. During
the editing process, when the neural network is called for
a new time step t, we interpolate between the two closest
semantic directions in time. Then we compute the semantic
directions during the editing process as:

skt = sk⌊t⌋ + (sk⌈t⌉ − sk⌊t⌋)× (t− ⌊t⌋), (8)

where ⌊t⌋, ⌈t⌉ denotes the floor and ceiling values in the
grid [ 0

N , 1
N ,..,1]. As long as the total number of steps N

is large enough, we can assume that the interpolation of
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Algorithm 1 Semantic direction manipulation in u-space.
Input: parameter of pretrained network θ, fix step ODE
solver ODEf with step N, adaptive ODE solver ODEa,
target attribute k.
Output: An edited image x1

x0 ∼ N (0, I) a unit Gaussian random variable
m = 0
for i = 1, 2, . . . ,M do

for j = N,N − 1, . . . , 1 do
ui
tj−1

,xtj−1 = ODEf (xtj ; θ);where tj = j
N

end for
end for
for j = N,N − 1, . . . , 0 do

Calculate sktj by Equation (5)
end for
while tm ≤ 1 do

if 0 < t < tedit then
Interpolate semantic direction skt by Equation (8)
xtm+1

, tm+1 = ODEa(xtm ,utm + w · sktm , tm; θ)
else
xtm+1 , tm+1 = ODEa(xtm ,utm , tm; θ)

end if
end while
Return x1

the semantic direction can be as accurate as possible. In
Algorithm 3, we provide the overall pipeline for semantic
direction manipulation in u-space with adaptive step-size
ODE solvers.

Steering by text-conditioned prompts. In the preced-
ing segment of this section, we focused on image editing
through the concept of feature steering, achieved by incor-
porating semantic offsets in a semantic latent space. Next,
we will delve into the realm of text-conditioned generation
in Flow Matching, where we aim to explore the potential for
users to directly edit images by augmenting text prompts.

First, we revisit the text-conditioned U-ViT architec-
ture (Bao et al., 2023). The architecture follows the standard
Transformer encoder architecture with additional skip con-
nections similar to a U-Net. The encoded image is patchified
into tokens ϕ(x), which are then concatenated along the set
dimension with the tokens from the text prompt ψ(P) and
the embedding of the time step T .

In every attention layer the tokens [ϕ(x), ψ(P), T ] are
projected to a query matrix Q = ℓQ([ϕ(x), ψ(P), T ]), a
key matrix K = ℓK([ϕ(x), ψ(P), T ]), and a value matrix
V = ℓV ([ϕ(x), ψ(P), T ]), via learned linear projections
ℓQ, ℓK , ℓV . The attention map is computed as

M = Softmax
(
QKT

√
d

)
, (9)

where d is the latent projection dimension of the keys and
queries.

In the U-ViT architecture, each attention operation involves
interactions between image tokens and the text prompt,
which distinguishes it from the U-Net approach where
such interactions are restricted to cross-attention layers only.
Cross-attention forces every image token to attend to some
token in the text prompt even when nothing in the text is
relevant to that part of the image. Consequently, modi-
fications to the text prompt can lead to significant image
changes that go beyond the intended editing scope. Prompt-
to-prompt (Hertz et al., 2022) addresses this issue by aug-
menting the attention map to retain a similar layout as in the
unmodified case. However, this necessitates additional com-
putation and storage of attention maps for the unmodified
text prompt version. On the other hand, in self-attention,
image tokens have the flexibility to choose whether or not
to attend to any text token. This limits the impact of modi-
fications made to the text tokens, especially when they are
irrelevant to a specific image patch. Motivated by this obser-
vation, we explore a simpler form of local prompt editing.

In certain scenarios, there is a need for more precise and
nuanced editing, such as modifying the magnitude of target
concepts, adjusting colors, hairstyles, and so on, instead of
making drastic changes like replacing, removing, or adding
entire objects. One straightforward approach is to directly
scale the representation of the corresponding token. How-
ever, this assumes that the tokens occupy a semantically
interpretable space, which may not always hold true. To ad-
dress this issue, we propose a simpler approach that makes
weaker assumptions: scaling the attention value between
the modified prompt tokens and image patches. For scaling
a specific prompt, we first identify the target token IDs, de-
noted as j∗. We then apply the following scaling operation:

(M l
t)i,j :=

{
c · (M l

t)i,j if j ∈ j∗and i-th is token from image
(M l

t)i,j otherwise.

Here, the parameter c allows for fine-grained and intuitive
editing by weakening or strengthening specific parts of the
text prompt. The index l denotes the layer of the U-ViT
model. In practice, applying this reweighting in every block
of the U-ViT architecture yields the best results. We de-
fer related analysis in Appendix. Similar to editing in the
semantic latent space, we find that it is advantageous to
limit the modifications to time steps 0 < t < tedit. In our
experiments, we observe that this much simpler method can
perform a multitude of different editing operations while
preserving most of the source image.
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K = 5 K = 100K = 10 K = 20 K = 30 K = 50

Guidance  every K steps
in 100 steps

Guidance before K steps
In 100 steps

K = 20 K = 1K = 10 K = 5 K = 3 K = 2

Figure 2. The location ablation of the guidance injection when editing male. Early time step injection is best, injection during full time
step will lead to over-constraining. The first row is signal injection before the first 5, 10, 20, 30, 50, and 100 steps of the backward ODE
process. The second row is guidance injection evenly throughout 100 steps.

4. Experiments
Experimental details. For the encoder and decoder archi-
tecture, we use convolutional VAEs (Kingma & Welling,
2014) with pretrained weights following (Rombach et al.,
2022). For the experiments on semantic manipulation in
the u-space, we mainly use the 256× 256 CelebA-HQ (Xia
et al., 2021) dataset. To reduce the training time, we fine-
tune the U-ViT based on pretrained weights (Bao et al.,
2023). We list all the hyperparameters in the supplemen-
tary. For tedit, we found tedit=0.5 works reasonably well.
For the guidance strength w in Equation (7), we obvserve
that w ∈ (−2, 2) generally provides sufficient flexibility
while still producing reasonable results. If not mentioned
otherwise, we use the adaptive ODE solver dopri5.

For prompt-based editing, we conduct the experiments on
the MultiModal-CelebA-HQ (Xia et al., 2021) and MS
COCO (Lin et al., 2014) datasets, with image resolution
256× 256. Both datasets are composed of text-image pairs
for training. Typically, there are 5 to 10 captions per image
in COCO and MultiModal-CelebA-HQ. Here too, we fine-
tune starting from pretrained weights. For the reweighting
parameter c in self-attention, we set c ∈ (−10, 10). For edit-
ing real images, we choose the images from the validation
set of MS COCO.

Semantic direction manipulation in u-space. In Figure
2, we investigate the optimal time interval to inject the
guidance signal from the semantic direction. Using a fixed
step-size ODE solver for a total of 100 steps, we explore
signal injection during the first 5, 10, 20, 30, 50, and 100
sampling steps. We observe that injecting the signal for too
few steps, for example for 5 or 10 steps, fails to perform the

intended edits. Further extending the signal injection period
to the first 30 or 50 steps, we find that the semantic direction
can be manipulated more noticeably with the same guidance
strength. However, if we extend the signal injection until
the end it fails to retain anything from the original image.

To further validate whether steerability is related to the time
step number, we conducted a controlled experiment in which
we injected the guidance signal evenly throughout 100 steps,
specifically at every (20, 10, 5, 3, 2, 1) time step. We find
that splitting the injection step into those parts did not easily
achieve semantic manipulation, even if we manipulated
every 5th step into 100, which significantly indicates the
importance of the early timestep involvement. We refer the
reader to the progressive visualization in Appendix for more
information.

Furthermore, in Figure 3, we demonstrate attribute editing
on real and sampled images. Our method can achieve vari-
ous manipulations, such as adding a smile or changing the
gender to male. This not only indicates the effectiveness
of the u-space but also demonstrates the flexibility of our
method on both real and sampled images.

In the end, we validate the compositional ability of these
semantic directions in Figure 4. We progressively apply the
semantic injections one after another. We use the euler
solver with 100 steps for the forward process, and dopri5
solver for the backward process. By gradually adding the
attributes of smile, young, and male, we demonstrate that
the sampling process in u-space can be manipulated in an
accumulative and composable manner.
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Figure 3. Attribute editing on real images and sampled images.

+Smile 
+Young 
+Male

+Smile 
+Young 

+Smile 

+Smile
+Black hair 
+Mustache

+Smile
+Black hair 

+Smile 

Figure 4. Compose multiple attributes sequentially. We gradually enforce three different semantic directions on a single reference
image. The semantic direction of the three attributes is simply averaged by scale w = 2.

Figure 5. Relative error comparison between adaptive and
euler ODE solvers with different time steps.

Semantic direction interpolation error analysis. In this
study, we investigate the amount of error that may be in-
troduced using semantic direction interpolation. We ex-
amine two factors: the number of time steps (N ) and
different ODE solvers, including dopri5, bosh3, and
adaptive heun. We compare the relative edit error to
the editing performed by the euler solver with N = 100,
using guidance strength w = 1 for the male attribute. Ad-
ditionally, we compare our results to a baseline of nearest
neighbor seeking in the grid of [0, 1

N ,
2
N ..., 1] for the se-

mantic direction. In Figure 5, we observe that larger time
steps (N ) lead to smaller errors. The relative error is gen-
erally at the same level across all three solvers. However,
too small of a time step, such as N = 10, can result in a
drastically sizeable relative error. This indicates that using
a too-small time step number(large step size) will lead to
inaccurate integration for both methods. However, when
the time step is large enough, the integration will be more
stable and accurate.

Text-to-image editing. We first demonstrate the accumu-
lation ability of our local-prompt method. In Figure 6, we
demonstrate that by appending prompts sequentially based
on the initial prompt, the sampled image retains its identity
while gaining attributes that align well with the newly added
prompts. To the best of our knowledge, a similar experiment
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The man has brown hair, He has a mustache, he is smiling, he has bushy eyebrows, he has pale skin.

She has brown hair, she is young,  she has mouth slightly open, she has a pointy nose, she has rosy cheeks.

Figure 6. Appending new prompts sequentially. We can inject semantic meaning directly into the subject while keeping it almost
unchanged. To do so, we start by sampling the first image based on the initial prompt. Then, we append the remaining prompts one by
one.

She has white(⤴) hair 

A man with a wavy
hair, he has a beard(❌)

A man with a wavy
hair, he has(❌) a beard

This person is young and has wavy hair(⤵), bushy eyebrows

This person has wavy(long ✍) hair, 
rosy cheeks, high cheekbones.

Figure 7. Prompt reweighting, removing, replacing in MM-CelebA-HQ dataset. Our method can gradually scale the target prompt,
remove the target prompt, and be robust to noise during prompt removal.

A stop sign(⤵) is sitting on the side 
of a rural road. A dog(⤵) that is in the air with a frisbee.

A large pile(⤵) of oranges lying next 
to some apples.

People walking(⤵) under a large clock 
and people sitting under a large umbralle

Stuffed(⤴) teddy bear strapped into 
child safety seat.

A train(⤴) coming out of a bridge 
next to a  river.

Figure 8. Prompt reweighting on the real images of MS COCO dataset by weighting down (left) and weighting up (right). Best viewed
in color.
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has not been conducted in prompt-to-prompt (Hertz et al.,
2022). This suggests that our method can inject semantic
meaning by altering raw prompts and that this injected se-
mantic concept can be accumulated without compromising
the identity.

Secondly, we investigate the effects of prompt replacement
and removal, as depicted in Figure 7. Notably, we observe
that concepts such as wavy and beard can undergo substan-
tial alterations or even be entirely removed from the result-
ing image. Intriguingly, when less informative prompts like
he has are removed, we find that the sampled image remains
unchanged, thereby demonstrating the robustness of our
method.

Lastly, we explore prompt reweighting. Specifically, we
perform prompt reweighting on sampled images from MM-
CelebA-HQ, as shown in Figure 7. By reweighting the
attributes of white and hair, we can modify them effectively
without altering the identity. In the top right row of Fig-
ure 7, we demonstrate a progressive and smooth evolution
by changing the reweighting scale w from 2 to −10. The
smooth change indicates a well-aligned embedding between
text and image space. To explore the reweighting ability in
a more complex dataset, we conduct experiments on MS
COCO, shown in Figure 8. We used a pretrained latent
flow-matching model on MS COCO and were able to easily
invert the image from x1 to latent x0. We progressively
conduct attention map editing as we revert the latent back
from x0 to x1. As shown in the figure, we were able to add
or remove concepts as we scaled up and down the related
prompts.

5. Related Work
There has been a significant body of research dedicated to
exploring the latent space of generative adversarial networks
(GANs) (Bau et al., 2018; Shen et al., 2020b;a), which has
provided valuable insights into enabling semantic editing of
images through vector arithmetic in the latent space. Recent
efforts have extended these explorations to diffusion models.
Some recent works have extended similar explorations to
diffusion models. Kwon et al. (Kwon et al., 2023) have
made an interesting discovery, identifying the bottleneck of
the UNet denoising model as a suitable space for semantic
image manipulation in diffusion models. The discovery led
to further exploration of the so-called h-space, resulting in
supervised and unsupervised methods for discovering global
semantic directions (Park et al., 2023; Haas et al., 2023),
image-specific semantic directions (Haas et al., 2023), and
style-aware semantic directions (Jeong et al., 2023), In a
different approach, Huberman-Spiegelglas et al. (Huberman-
Spiegelglas et al., 2023) propose an alternative latent noise
space that deviates from the traditional Gaussian distribu-
tion. This non-Gaussian noise space exhibits improved

amenability to semantic image editing. Our method dif-
fers in multiple aspects. In contrast to the aforementioned
works, our method diverges in several key aspects. Firstly,
we explore the semantic space of the U-ViT model (Bao
et al., 2023) instead of the UNet. The U-ViT model has
demonstrated favorable scaling behavior, but its dissimilar-
ities from the UNet raise uncertainties and challenges in
applying previous semantic editing methods that primarily
rely on the spatially reduced latent representation at the
bottleneck of the UNet. Secondly, our focus lies on the gen-
eral continuous normalizing flow (CNF) setting, allowing
the utilization of generic ODE solvers that include adaptive
step-size techniques. In contrast, previous editing methods
were limited to fixed step-size solvers, rendering them in-
compatible with the efficiency benefits of adaptive step-size
solvers.

Specialized for text-to-image diffusion models, prompt-
to-prompt (Hertz et al., 2022) leverages text-conditioned
diffusion models for image editing by directly modifying
the associated text prompt to achieve the desired semantic
changes. The null-text inversion method (Mokady et al.,
2022) extends this technique to real images by improving
the inversion performance in the text-conditional setting.
DiffusionClip (Kim et al., 2022) proposes to fine-tune a ded-
icated model for every type of editing, while DiffFit (Xie
et al., 2023) enhances the efficiency of this by only fine-
tuning a small subset of parameters. It is important to note
that these methods are primarily designed for UNet architec-
tures, where text conditioning is incorporated through cross-
attention mechanisms. In contrast, our exploration, focuses
on U-ViT (Bao et al., 2023) architectures, revealing that the
conclusions drawn from UNets may not necessarily apply
to other architectural choices, such as U-ViTs. Furthermore,
their method requires recasting the diffusion model as an
ODE during inference, while Flow Matching enables direct
learning of the ODE that we use during editing.

6. Conclusion
In this paper, we explore the problem of image editing under
the regime of Flow Matching with a transformer backbone.
We discovered the u-space in this setting, which allows for
editing in a controllable, accumulative, and composable
manner. Furthermore, we make the editing method agnostic
to the ODE solvers’ choice of step size. To this end, we
leverage the full-attention design in ViT and propose a sim-
ple and effective local-prompt method for augmenting the
importance of specific parts of the prompt. As a result, this
method can replace, remove, add, and scale the designated
semantic concept. In future work, we plan to perform in-
depth dissections to determine whether these conclusions
hold true for other generative models.
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The man has brown hair, He has a mustache, he is smiling, he has bushy eyebrows, he has pale skin.

He is smiling , He has a mustache, The man has brown hair, he has bushy eyebrows, he has pale skin.

He has pale skin, he has bushy eyebrows, he is smiling, he has a mustache, the man has brown hair. 

Figure 9. More sequential editing result by shuffling the order of the prompts. The same set of semantic manipulations can be
composed in different orders.

A. Supplementary Files
A.1. Extra main results

We further explore sequential editing in Figure 9. We shuffle the order of the prompts and find that the generated faces align
with the corresponding prompt irrespective of the specific order. Interestingly, the final editing results (last column) are
almost identical, indicating that the semantic edits can be composed through different prompt orders without altering the
image layout.

A.2. Hyperparameters choices and details

We perform experiments on three datasets and document our hyperparameter choices in Appendix A.2. For sampling, we
utilize the torchdiffeq (Chen et al., 2018) library with atol=rtol=1e-5.

We generate the initial image with a fixed seed and a given initial prompt. Then we concatenate additional captions to the
prompt one by one and sequentially edit the image. Currently, we only support editing for images that have a caption. We
leave the editing of images without captions to future work.

A.3. More related works

Cross-attention in generative models. Cross-attention is broadly applied in generative model to incorporate the guidance
signal e.g., text (Rombach et al., 2022; Saharia et al., 2022), bounding box (Hu et al., 2023), segmentation mask (Rombach
et al., 2022). Prompt-to-Prompt (Hertz et al., 2022) explores the cross-attention between the text and visual modalities to
achieve controllable generation. Instead of fine-tuning based on CLIP difference in DiffusionClip (Kim et al., 2022), (Zhang
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Dataset CelebA 256×256 MM-CelebA-HQ 256×256 MS-COCO 256×256

Latent shape 32×32×4 32×32×4 32×32×4
U-ViT type U-ViT-L/2 U-ViT-L/2 U-ViT-L/2
depth 20 20 20
embedding dim 1024 1024 1024
num of head 16 16 16

Batch size 256 256 512
Training iterations 100K 100K 200k
GPU 4 × A5000 4 × A5000 4 × A5000

Optimizer Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4

σmin 1e-4 1e-4 1e-4

Table 1. Hyperparameter Settings of three datasets.

et al., 2023) utilize QKV attention Re-steering to achieve concept negation directly on pre-trained models. (Xie et al.,
2023) only fine-tune attention’s bias weight to conduct parameter-efficient fine-tuning to achieve transferability on other
datasets. (Jabri et al., 2022) utilize cross-attention to exchange information between latent tokens and image tokens. On the
side hand, ViT (Dosovitskiy et al., 2021) has been applied as a surrogate of UNet (Ronneberger et al., 2015) in diffusion
models, e.g., U-ViT (Bao et al., 2023), DiT (Peebles & Xie, 2022), GenViT (Yang et al., 2022),RIN (Jabri et al., 2022). We
focus on the exploration of the U-ViT structure in flow matching, and the U-ViT composed of full attention blocks has not
been explored before.

A.4. Visual comparison between different ODE solvers for the semantic direction interpolation

In Figure 10, we invert the original image by solving the ODE in the forward direction using an euler solver for 100 steps.
Then, we change the gender attribute by manipulating the latent noise with a weight of w = 1. Afterwards, we compare
different ODE adaptive step-size solvers with the fixed step-size euler solver. We observe that the adaptive step size
solvers (dopri5, bosh3, adaptive heun) achieve visually very similar results when compared to the more expensive
euler method.

A.5. PCA in u-space

In detail, we perform PCA on 10,000 samples with shape 4× 32× 32 in u-space. The two-dimensional features u(xi,t)
from the U-ViT are flattened into one dimensional vectors before applying PCA. We show some sample augmentations along
the first four principal components in Figure 11. We observe that for different samples there is a difference in the type of
semantic manipulation that occurs. We hypothesize that the lack of spatial compression in U-ViT leads to this phenomenon,
where a linear augmentation along the principle components can augment multiple different semantic aspects of the image.

A.6. Semantic editing in other blocks of U-ViT

We ablate the effectiveness of the intermediate layer for semantic manipulation. The tensor shape is [T, C], where T = 257
and C = 1024. We find that the tensor is too large to calculate the semantic direction, which can lead to unstable results. In
total, the overall dimensions are 64 times larger than u-space (e.g. 257× 1024 ≈ 64× (4× 32× 32)).

Based on the above analysis, we choose to perform semantic editing at the beginning of U-ViT, before the patchifying and
attention blocks.

A.7. Attention map visualization in Local-Prompt

We visualize the attention map token by token and normalize the image value by image. We illustrate the attention map
of different blocks in Figure 13 and the attention map of different time steps in Figure 12. We find that early timesteps
demonstrate attention maps that clearly outline specific parts of the face in comparison to later time steps. This observation
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dopri5

euler

adaptive_heun bosh3

origin image 

Figure 10. The editing visualization by semantic direction interpolation. The default ODE solver is euler with 100 time steps. We
can find that interpolation indeed leads to visual similar manipulation.

aligns well with the conclusion presented in the main paper. In particular, at earlier stages during the sampling process, the
transformer requires the text prompt to specify the to-be-generated content of the image. At later steps the self-attention can
attend to other regions in the image instead of the text prompt. Secondly, we observe that the highest activation is achieved
in block 0 and that the most discriminative blocks are block 4 and block 8.

A.8. Prompt rescaling in every block

As we saw in Figure 13, we observe that different blocks exhibit different magnitudes for the attention values. This highlights
the significance of the magnitude of the attention and motivates us to perform attention-rescaling for the whole block.

A.9. Exploration in early time steps

By visualizing the progressive sampling procedure, we explore how incorporating the augmentation at different timesteps
during sampling affects the editing process. Our results show that incorporating the augmentations in the early timesteps
works well, while evenly splitting the same number of manipulation operations throughout the entire period is not effective
in manipulating the achieving the desired editing. Additionally, we investigate the effect of increasing the weight value
w and find that this can disturb the final sample quality and discard the content of the source image. These findings are
presented in Figure 15. Our study provides insights into effective techniques for semantic manipulation and highlights the
importance of early timestep guidance in this process.

A.10. More visualization

We add a noise prompt to the MS COCO dataset and find that it did not significantly alter the layout, as shown in Figure 16.

We visualize the samples with the same latent noise and prompt during the training process in Figure 14.
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1th Component

2th Component

3th Component

4th Component

Figure 11. Semantic direction from the top 4 components of PCA. We generate manipulated samples of two identical images by
adjusting the guidance strength range to [-2, -1.5, -1, -0.5, 0, +0.5, +1, +1.5, +2]. These manipulated samples demonstrate that the
directions found by PCA do not yield consistent semantic manipulations.
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The man is smiling  and has pointy nose.

Timestep 10/100

Timestep 30/100

Timestep 50/100

Timestep 70/100

Timestep 90/100

Figure 12. Attention map of different timestep of 3th-Block in U-VIT.
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The man is smiling  and has pointy nose.

Block 0

Block 4

Block 8

Block 12

Block 16

Figure 13. Attention map of different blocks of 10th step in 100 timesteps in U-ViT.
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This person wears heavy makeup. She has wavy hair, black hair, oval face, arched eyebrows, and 
bangs. She is smiling, and young.This smiling person has arched eyebrows, bangs, and wavy hair.

This smiling person has arched eyebrows, bangs, and wavy hair.

Figure 14. Training samples with the same latent noise and same prompt. The first row contains examples of image generation, while
the second and third rows contain examples of text-conditioned image generation. Best viewed in color.

A.11. Failure case

If the scaling factor s during self-attention is too large, it can lead to over-constraining. This is demonstrated in Figure 17.
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Before K=5

Before K=10

Before K=20

Before K=30

Before K=50

Before K=100

Average K=50

Average K=30

Average K=20, scale x 2

Average K=20, scale x 4

Average K=20, scale x 8

Figure 15. Early timestep has semantic editing ability. The default scale w is [0.5, 1, 1.5, 2, 2.5]. The edited attribute is male.
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Figure 16. Adding noise prompts does not significantly change the layout. However, please note that the content may be slightly
altered due to the marginal semantic relationship between noise prompts and visual tokens.

The man has wavy(⤴) hair. 

Figure 17. Too large values for the self-attention rescaling will lead to over-constraining. The wavy attribute can cause the generated
image to be female if the scaling factor is too large, e.g., s = 25.


