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ABSTRACT

Al-generated images have reached a quality level at which humans are incapable
of reliably distinguishing them from real images. To counteract the inherent risk
of fraud and disinformation, the detection of Al-generated images is a pressing
challenge and an active research topic. While many of the presented methods
claim to achieve high detection accuracy, they are usually evaluated under ideal-
ized conditions. In particular, the adversarial robustness is often neglected, po-
tentially due to a lack of awareness or the substantial effort required to conduct a
comprehensive robustness analysis. In this work, we tackle this problem by pro-
viding a simpler means to assess the robustness of Al-generated image detectors.
We present RAID (Robust evaluation of Al-generated image Detectors), a bench-
mark dataset of 72k diverse and highly transferable adversarial examples. The
proposed dataset is created by running attacks against an ensemble of seven state-
of-the-art detectors and images generated by four different text-to-image models.
Extensive experiments show that our methodology generates adversarial images
that transfer with a high success rate to unseen detectors, which can be used to
quickly provide an approximate yet still reliable estimate of a detector’s adver-
sarial robustness. Our findings indicate that current state-of-the-art Al-generated
image detectors can be easily deceived by adversarial examples, highlighting the
critical need for the development of more robust methods.

1 INTRODUCTION

In recent years, generative artificial intelligence has evolved from a mere research topic to a vast
collection of commonly available tools. While the inception of large language models, most notably
ChatGPT, has been most transformative for our everyday life, the evolution of generative image
modeling has drastically shifted our understanding of visual media. This development was initiated
by the discovery of diffusion models (Sohl-Dickstein et al., 2015}, which utilize an iterative noising
and denoising process (Ho et al.,|2020)) to learn the distribution of natural images. Later work (Rom-
bach et al.l 2022) improved this process by performing the generation process in the compressed
latent space of a pre-trained variational autoencoder (Kingma & Welling| [2014) that essentially re-
duces computational overhead and preserves semantic information while discarding high-frequency
noise, in addition to introducing flexible conditional generation with the use of cross-attention lay-
ers. This rapid development, while improving computer vision tasks such as image upsampling (Wu
et al.| [2024) and dataset augmentation (Azizi et al.l 2023)), poses a considerable risk of nefarious
misuse leading to the spread of misinformation, privacy violation, and identity theft (Yang et al.,
2024; |Ricker et al., 2024a)). This underscores the urgent need for detection methods that generalize
and keep up with the ever-evolving image generation technology while maintaining robustness to
adversarial attempts to evade detection.

To mitigate the harmful consequences of Al-generated images (AIGIs), a variety of detection ap-
proaches have been proposed in the literature (Wang et al., [2020; (Guo et al. 2022} [Marra et al.,
2019; |Ojha et al., 2023} |Chen et al., 2024a; Baraldi et al., 2024; [Wang et al.| [2023)). Based on the
reported results of near perfect accuracy, it seems the problem of detecting AIGIs is already solved.
However, evaluations are typically conducted within an idealized lab setting that does not consider
real-world risks. One major factor is the effect of common processing operations, such as resizing
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Figure 1: Adversarial attack on the commercially available detector provided by sightengine. Suc-
cessful evasion is shown by adding adversarial noise computed on the detector by|Corvi et al.| (2023).
We perform an extended evaluation on commercial detectors in Appendix [C]

or compression, which have already been shown to have drastic effects on the performance of AIGI

detectors (Gragnaniello et all, 202} Xu et al., 2024} [Cocchi et al., 2023).

An important factor, which the majority of existing work has neglected, is the adversarial robustness
of detectors. Take, for instance Figure[T] a synthetic image generated and spread across social media
outlets (Oremus et al.} 2023) that, despite being quickly debunked as fake, still had an impact on the
stock market. We can detect such an image as being Al-generated with an off-the-shelf detector,
but when we modify the image using carefully designed adversarial perturbations, it can evade the
detection of said detector and others, with the effectiveness increasing for those that share a simi-
lar architecture (Mavali et al.l 2024). The adversarial robustness is often not investigated in works
proposing synthetic image detectors, partially due to the significant effort required to generate ad-
versarial examples. Due to many attack algorithms and hyperparameters and the required technical
knowledge, conducting a comprehensive robustness analysis is not straightforward.

Existing work (Mavali et al.| [2024) unveils this failure to show robustness in white-box scenarios
where the malicious actor has access to the architecture and training parameters of the detector, and
also in black-box scenarios where the attacker’s knowledge is limited. However, we note that the
attacks used for the evaluation remain restricted in using techniques that increase their success and
transferability. In this work, we extend this concept to bridge this evaluation gap by providing a
standard and effective means to assess the adversarial robustness of AIGI detectors. In particular,
we propose RAID (Robust evaluation of Al-generated image Detectors), a large-scale benchmark
dataset of diverse and transferable adversarial examples created using an ensemble of state-of-the-
art detectors that employ different architectures. As we experimentally demonstrate, testing the
detection performance on RAID provides a solid estimate of the adversarial robustness of a detector.
Our benchmark on seven recently proposed detectors shows that the current landscape of AIGI
detection is not yet expansive nor reliable for widespread adoption in the real world, without properly
ensuring adversarial robustness to evasion attacks.

Contributions. In summary, we make the following contributions:

* We create RAID, the first benchmark dataset of transferable adversarial synthetic images,
constructed using highly transferable attacks, to standardize testing the adversarial robust-
ness of state-of-the-art synthetic image detectors.

* We conduct a large-scale study showing that adversarial perturbations transfer across sev-
eral state-of-the-art synthetic image detectors.

* We show that the transferability of adversarial perturbations increases when we using an
ensemble adversarial attack, with comparable results to a white-box attack.

2 THE RAID BENCHMARK

This section describes how we constructed our datset of transferable adversarial examples. An
overview of how we created RAID is given in Figure[2]

2.1 SOURCE DATASET

RAID is built upon the D? dataset (Baraldi et al., 2024). In total, D? consists of 11.5M images. It is
constructed from 2.3M real images taken from the LAION-400M (Schuhmann et al.} 202T) dataset.
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Figure 2: A diagram of the three experimental pipelines used in the paper for generating the RAID
dataset. Left: We keep the top three performing detectors intact while we re-train the rest. Middle:
We generate adversarial examples from adversarial attacks on an ensemble of detectors. Right: We
evaluate the baseline detectors on the RAID images.

Using the corresponding caption as prompts, synthetic images are generated from four open-source
text-to-image models: Stable Diffusion v1.4 (Rombach et al., 2022), Stable Diffusion v2.1 (Rom-
bach et al.,[2022), Stable Diffusion XL (Podell et al.,[2023), and DeepFloyd IF (at Stability AI| 2023|).
For details on data selection and prompt engineering, we refer to the original publication (Baraldi
et al.; 2024). It should be noted that each generated image is post-processed such that the image
format and compression strength match that of the real distribution present in the corresponding real
image. This not only reduces the risk of unwanted biases between real and generated images but
also makes the dataset significantly more challenging for the detection task.

We built our dataset using D? in two phases. First, to re-train the detectors used to compute the
adversarial examples, we take the training subset of D3 comprising 2,311,429 real and 9,245,716
generated images. As we show in Section [3.2] re-training helps to ensure a sufficient detection per-
formance on the original images and, subsequently, the generation of effective adversarial examples.
Second, we use the same procedure as in (Baraldi et al.,[2024])) to construct the actual RAID dataset to
generate synthetic images based on 4,800 new real images. For each of the resulting 24,000 images
(i.e., the real images and the synthetic images from four generators), we create matching adversarial
examples using the attack presented in Section[2.2]for each e. Thus, our proposed benchmark dataset
consists of 72,000 adversarial examples — 24,000 adversarial examples for each attack parameter €
(%, %, and %) — in addition to original images, for a total of 96,000 images.
2.2 CRAFTING ADVERSARIAL PERTURBATIONS

Adversarial Examples Optimization. Given an input € [0,1]? and a victim model with pa-
rameters 6, adversarial examples (Biggio et al., 2013} |Szegedy et al., [2014) can be crafted with
evasion attacks, which aim to solve the following optimization problem to compute the adversarial
perturbation § € R%:
arg min L(z +6,6) , (1)
8:[[8| 0 <e
where e is the applied bound on the perturbation size, and L is a loss function encoding the attacker’s
objective (i.e., a misclassification).

The above optimization problem is commonly solved with gradient-based techniques, which require
access to the model’s parameters and gradients. Despite this approach working well in this white-
box setting, it is often not possible to get full access to the model’s internals. Nevertheless, it has
been shown that the adversarial examples produced against a model can still be effective on different
models, although this phenomenon, called transferability, is weaker across different model archi-
tectures. To increase transferability, previous works proposed to simultaneously attack an ensemble
of models (Liu et al.,|2017; |Dong et al., 2018). We thus leverage an ensemble attack by extending
Eq.[T]to a set of M/ models:

arg min L(x 4+ 9,01,05,...,0,) . @)

8:]16]| 0o <e

Among several possible choices, we define the loss function as:

M
1
L:(w+6a01792’"'79M):M E CE(lem(x)7yt) ) (3)
m=1
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where C'E is the cross-entropy loss, and /g, is the output logit of the m-th model and y; is the target
class — i.e., the output label desired by the attacker.

Detection Ensemble. The key requirement for our benchmark is that the adversarial examples are
transferable (i.e., they are effective against unseen detectors). To achieve high transferability, we
use an ensemble of a diverse set of seven different detectors:

Wang et al.[(2020) In this seminal work, the authors show that a ResNet-50 (He et al.,|2016)) trained
on real and generated images from ProGAN (Karras et al.l 2018)) is sufficient to successfully
detect images from a variety of other GANs. During training, extensive data augmentation is
used to account for different image processing and increase generalization.

Corvi et al.[(2023) This architecture is adapted from (Gragnaniello et al.| 2021) and is a modi-
fication of the detector by |Wang et al.| (2020). It uses the same backbone, but avoids down-
sampling in the first layer to preserve high-frequency features and uses stronger augmentation.

QOjha et al.| (2023) Unlike previous work, this detector uses a pre-trained vision foundation model
(CLIP (Radford et al., |2021))) as a feature extractor to avoid overfitting on a particular class of
generated images and, thus, improve generalization. To obtain a final classification, a single
linear layer is added and trained on top of the 768-dimensional feature vector.

Koutlis & Papadopoulos|(2024) This approach is similar to that presented by |Ojha et al.[ (2023),
but additionally uses intermediate encoder-blocks of CLIP. The resulting features are weighted
using a learnable projection network, followed by a classification head.

Cavia et al.| (2024) Instead of classifying the entire image at once, this detector operates on 9 x 9
patches. The architecture is based on ResNet-50 (He et al.,[2016) but uses 1 x 1 convolutions
to limit the receptive field. The scores of all patches are combined using average pooling.

Chen et al.|(2024a) This approach is a training paradigm that can increase the generalizability of
AIGI detectors, by leveraging diffusion models to reconstruct semantically similar images
containing detectable artifacts. The authors provide pre-trained detectors based on two back-
bones, ConvNeXt (Liu et al.| [2022) and CLIP (Radford et al.,[2021).

As we show in Section [3.2] the published version of most detectors does not perform well on the
original images in our dataset. We hypothesize that this may be attributed to the applied post-
processing and the specific test images, which differ greatly from the training data of the various
detectors. Since creating adversarial examples based on detectors that are already ineffective against
clean samples reduces the impact of the work, we re-train detectors on the training subset described
in Section [2.1] following the original authors’ training instructions.

3 EXPERIMENTAL ANALYSIS

In this section, we evaluate how well RAID can be used to estimate the adversarial robustness of
AIGI detectors. To this end, we initially test the performance on unperturbed images and conduct
classical white-box attacks on each detector, demonstrating their susceptibility to evasion attacks.
We subsequently analyze the transferability of white-box attacks and compare them to our ensemble
attack, showing the effectiveness of RAID.

3.1 EXPERIMENTAL SETUP

Detectors. In addition to the seven detectors described in Section we use four additional de-
tectors whose architecture is a pre-trained visual backbone with a linear layer added on top. During
training, a binary cross entropy loss is considered to discern between real and fake images. All
model weights are frozen except for the linear layer trained using the D? train set. In particular, we
use two different versions of DINO (Caron et al., 2021} Darcet et al.,|2024) to highlight the behavior
of self-supervised models. At the same time, to explore the impact of model size, we also consider
a ViT-Tiny. We follow the transformation pipeline introduced by [Ojha et al.| (2023) for training and
evaluation. This setup enables a consistent comparison across different architectures and training
paradigms applied to deepfake detection. Finally, we adapt the CoDE model (Baraldi et al., [2024)
for this analysis. Specifically, we used the feature extractor trained with a contrastive loss tailored
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for deepfake detection and trained a linear classification layer on top. In this case, we follow the
transformation strategy described in the original CoDE implementation.

Dataset. As noted in Section 2.2 we use the images of the D? test data set and the adversarial images
generated by the adversarial attacks. We run the evaluations for our experiments on 1k clean images
and lk adversarial images. All images are center-cropped to ensure consistent input dimensions
for efficient batch processing, before applying the detector-specific pre-processing and evaluation.
Moreover, in the creation of the RAID dataset, following the approach used for the D* dataset, only
images labeled as safe in the LAION metadata were considered as real images. This ensured that
the generated images also adhere to this safeguard. To this end, samples depicting NSFW images
has been excluded.

Experimental Environment. During the re-training phase of the different detectors, 4 A100 GPUs
are used in a distributed data parallel setup. Each experiment runs for a maximum of 18 hours until
convergence is reached. In contrast, the ensemble attack is conducted using a single A100 GPU,
which takes a total of 8 hours. The evaluation script is lightweight and takes less than 1 hour for
each detector in a non-distributed setting.

Attack Setting. The attack optimization is performed with the Projected Gradient Descent (PGD)
adversarial attack (Madry et al., 2018 a well-established iterative approach to generate adversarial
examples. We employ PGD with 10 iterations and a step size of 0.05, and select three perturbation

L _ 16 _ 32
budgets for the attacks: ¢ = €= 5gx, and € = SoE

255°

Evaluation Metrics. The performance of considered detectors is evaluated in terms of Fl-score,
accuracy, and AUROC. In particular, the F1-score measures the harmonic mean of the precision and
true positive rate, which provides a metric capable of reliably computing the model performance in
the presence of unbalanced class distributions. Accuracy is the ratio of correctly predicted samples
over the total number of samples. It can be misleading in unbalanced datasets as it does not consider
class distributions. We take the classification threshold equal to 0.5, as was done for all the detectors
considered. Finally, AUROC summarizes the ROC curve, which plots the true positive rate against
the false positive rate, by correctly measuring the capability of the model to identify samples across
all classification thresholds. An AUROC of 1 corresponds to a perfect classifier with a 0 false
positive rate across all thresholds, and an AUROC of 0.5 corresponds to a random chance classifier.

3.2 EXPERIMENTAL RESULTS

Initial Evaluation. Prior to evaluating the adversarial robustness of the considered detectors, we
first evaluate their performance on the D? test set. The initial performance evaluation of the detectors
with the provided weights in Ta-
ble E] shows mixed results, particu-
larly regarding F1-score and accu-
racy measures. For instance, Cavia

Table 1: Evaluation of each model on a subset of the clean D?
test set (1,000 samples).  refers to detectors trained on D3.

et al.| (2024) and Wang et al.{(2020) F1 Acc AUROC
show very low Fl-score of 0.20 and  (Cavia et al.|(2024) (Ca24) 020 0.07 045
0.21, along with an AUROC of 0.45  [Corvi et al.|(2023) (Co23) 0.75 0.81 091
and 0.46, respectively. Addition-  |Ojha et al.|(2023) (023) 033 029  0.68
al]y, OJha et al_ (2023) Shares a Sim- Wang et al. (2020) (WZO) 0.21 0.02 0.46
ilar trend with Fl-score equal t0  [Cavia et al.|(2024)" (Ca24") 055 063 084
0.33, while other detectors perform  |Chen et al.|(2024a) (CLIP) (Ch24C) 0.81 0.89 0.73
reasonably well. We hypothesize Chen et al. (2024ajy (ConvNext) (Ch24CN) 0.86 0.91 0.94
that the poor adaptability of the first ~ |Corvi et al.|(2023)" (C023") 098 099 099
three detectors is due to the data Koutlis & Papadopoulos|(2024) (K24) 0.74 0.81 0.88
drift between the D3 test set and the Ojha et al.|(2023)" (023") 0.92 0.95 0.95

datasets used to training them, in [Wang et al. [{2020}" (W20') 099 099 099

addition to the post-processing ap-
plied to the images, especially the compression of images when using lossy formats.

'See Appendix@for a discussion of this choice and additional results with alternative attacks.

’The results for € = % perturbation are reported in Appendix
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Table 2: White-box and black-box adversarial robustness evaluation (F1-score/AUROC) on PGD
with e = 16/255 perturbation. Adversarial attacks are ran against the model in each row and evaluated
on models in each column. T refers to detectors trained on the D training set. Final row N — model
refers to ensemble attacks targeting all models, excluding the evaluated against model. Bold values
corresponding to white-box evaluation in single detector attacks.

Ca24" Ch24C Ch24CN Co23" K24 0237 w20°
Ca24" 0.00/0.50  0.90/0.63  0.90/0.85 0.92/0.91  0.85/0.65 0.78/0.80  0.80/0.83
Ch24C 0.60/0.56  0.00/0.50  0.28/0.58  0.87/0.87  0.07/0.51  0.23/0.56  0.76/0.81
Ch24CN 0.69/0.54  0.86/0.61  0.29/0.48 0.87/0.88  0.85/0.59  0.79/0.80  0.75/0.80
Co23" 0.74/0.48  0.86/0.64  0.48/0.64  0.00/0.50 0.78/0.60  0.67/0.73  0.05/0.51
K24 0.55/0.56  0.31/0.51  0.30/0.59  0.83/0.85  0.00/0.50 0.41/0.62  0.80/0.83
023" 0.59/0.58  0.46/0.52  0.41/0.63  0.84/0.85 0.31/0.54  0.00/0.50  0.74/0.79
w207 0.70/0.54  0.88/0.66  0.25/0.56  0.09/0.52  0.84/0.68  0.69/0.75  0.00/0.50

N—model 0.66/0.43  0.34/0.51  0.20/0.56  0.53/0.67  0.08/0.51  0.18/0.54  0.40/0.62

Table 3: White-box and black-box adversarial robustness evaluation (F1-score/AUROC) on PGD
with e = 32/255 perturbation. Adversarial attacks are ran against the model in each row and evaluated
on models in each column. { refers to detectors trained on the D? training set. Final row N — model
refers to ensemble attacks targeting all models, excluding the evaluated against model. Bold values
corresponding to white-box evaluation in single detector attacks.

Ca24" Ch24C Ch24CN Co23" K24 023F w207
Ca24" 0.00/0.50 0.87/0.61  0.82/0.81  0.93/0.89  0.84/0.69  0.80/0.80  0.69/0.76
Ch24C 0.12/0.49  0.00/0.50  0.03/0.51  0.86/0.87  0.00/0.50  0.06/0.51  0.61/0.72
Ch24CN 0.33/0.50  0.79/0.61  0.25/0.51 0.81/0.83  0.79/0.69  0.76/0.76  0.58/0.70
Co23" 0.67/0.48  0.76/0.59  0.17/0.53  0.00/0.50  0.65/0.60  0.69/0.73  0.03/0.51
K24 0.23/0.54  0.20/0.51  0.13/0.53  0.87/0.87  0.00/0.50  0.36/0.60  0.74/0.79
0237 0.13/0.51  0.19/0.51  0.10/0.52  0.85/0.86  0.08/0.51  0.00/0.50  0.63/0.73
w207 0.59/0.49  0.82/0.60  0.06/0.50  0.04/0.51  0.68/0.6  0.67/0.72  0.00/0.50

N—model 0.28/0.33  0.08/0.49 0.01/0.50  0.32/0.59  0.01/0.50  0.06/0.52  0.17/0.54

In our work, we focus on robustness to adversarial attacks, and as such, we re-train on the D? training
set the top four detectors that perform the worst: (Cavia et al.| (2024), Corvi et al.| (2023)), Ojha et al.
(2023), and [Wang et al.| (2020). We retain the same weights for the rest of the detectors (Koutlis
& Papadopoulos|(2024), |Chen et al.| (2024a) (ConvNext), and |Chen et al.| (2024a)) (CLIP)), both for
the acceptable performance and to ensure the generalization of attacks without the induced risk of a
dataset-bias if all detectors are trained on the D? dataset. After re-training, we note an improvement
across metrics for the four detectors, except for|Cavia et al.[(2024) 1 which shows limited gains.

Adversarial Robustness Evaluation. We evaluate the adversarial robustness of the seven detectors,
using the PGD attach with two perturbation budgets (i.e., € = % and e = %). Results are reported
in Table [2| and Table |3} respectively. First, we assess the adversarial robustness of detectors in a
white-box setting where each detector is attacked using adversarial perturbations crafted against it.
This scenario represents the worst-case scenario in which the attacker has full knowledge of the
target detector’s architecture and parameters. The results for both ¢ = % and € = % reveal a
general lack of adversarial robustness. In particular, looking at Table[2] the F1-score drops to 0 for
all detectors except for |(Chen et al.| (2024a) (ConvNeXt), which exhibits inherent robustness with
F1-score equal to 0.29. This tendency is carried over to the results in Table [3| where we report the
attack against the detectors with € = % as even under such large adversarial perturbations, the
F1-score (0.25) does not drop to O similarly to the rest of the detectors. However, we underline
that the drop in performance is still steep, from the initial F1-score of 0.87 on the clean examples
reported in Table[I] Additionally, an evaluation of the AUROC reveals similar results.

Furthermore, we investigate the transferability of adversarial examples, referring to whether adver-
sarial perturbations designed to fool one detector can also fool the others. Many adversarial ex-
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Table 4: Evaluation of our attack methodology on AIGIs from additional generators. For each de-
tector, we report F1-score, accuracy, and AUROC averaged over images from 10 generative models.

Metric Perturbation Ca24" Ch24C Ch24CN  Co23" K24 0237 w20'
Clean 041 091 086 095 096 074 091

Flscore 8/255 018 021 0.13 008 017 045 004
16/255 000  0.00 015 000 001 005 000

32/255 000  0.00 025 000 000 000 000

Clean 032 084 092 091 093 062 085

Accurac 8/255 018  0.19 015 013 017 034 011
Y 16/255 009  0.09 015 009 010 011 009

321255 0.09  0.09 021 009 009 009 009

Clean 058  0.60 085 092 082 074 091

8/255 053 054 052 052 054 056 051

AUROC 16/255 050  0.50 044 050 050 051 050
32/255 001 001 050 001 00l 001 00l

amples generated for one detector do indeed reduce the performance substantially among the other
detectors. For example, when we look at adversarial examples generated for |Koutlis & Papadopou-
los| (2024) in Table [2] an AUROC performance drop can be seen across the following detectors:
Cavia et al.| (2024) to 0.56 (from 0.84), (Chen et al.| (2024a) (CLIP) to 0.51 (from 0.73), |Chen et al.
(2024a) (ConvNext) to 0.59 (from 0.94), and |Ojha et al.| (2023) to 0.5 (from 0.95). The other two
detectors |Corvi et al.|(2023) and |Wang et al.|(2020) seem resilient, although this trend continues for
perturbations generated for other detectors.

Next, we evaluate the transferability of ensemble attacks, in a leave-one-out manner, in which the
assessed detector is excluded from the attacked ensemble. This ensemble approach, described in
Section[2.2] significantly boosts transferability. It allows us to evaluate the detector’s performance in
a transferable black-box scenario where access to the targeted detector architecture or parameters is
unavailable. Therefore, the attack (in a white-box manner) is done against an ensemble of detectors
to increase its effectiveness further. We find that the ensemble attacks can drop the performance to
metrics similar to a white-box attack. For example, looking at Table E] (last row), we note that even
for the two detectors |Corvi et al.| (2023)) and |Wang et al.| (2020) that showed a decent robustness to
perturbations generated for other detectors, the AUROC metric drops to 0.67 and 0.62 respectively
(from 0.99 and 0.99), and the F1-score metric drops to 0.53 and 0.40 (from 0.98 and 0.99). This drop
in performance is further highlighted in the last row of Table 3] where we use a higher perturbation
budget in which the AUROC metric drops to 0.59 and 0.54 for the two detectors, respectively.

These results motivate the creation of our RAID dataset, which is composed of adversarial examples
crafted using attacks on an ensemble of state-of-the-art detectors. Our benchmark dataset enables a
fast and standardized evaluation of new detectors against strong transferable perturbations, facilitat-
ing the assessment of their robustness to adversarial attacks.

Generalizability to AIGIs from Other Generators. To demonstrate the adaptability of our method
and broaden the evaluation scope, we apply our attack methodology to a set of 10 state-of-the-art
text-to-image models (including SD3 (Esser et al.,2024), Kandinsky 2.1, Kandinsky 2.2, Kandinsky
3 (Razzhigaev et al.|, [2023), aMUSEd (Patil et al.l 2024), PixArt-a (Chen et al.| [2023b)), SD-XL-
Turbo (Podell et al.,|2023)), SAG (Hong et al., [2023)), unCLIP (Ramesh et al., [2022), and FLUX.1-
dev (Labs| [2024)). The selected models span a diverse range of architectures to test the gener-
alizability of our approach under different conditions. We generate synthetic counterparts for the
4,800 real images included in our benchmark and apply our ensemble attack to create adversarial
examples with varying perturbation budgets. In Table ] we report Fl-score, Accuracy, and AU-
ROC, averaged over all 10 generators. While most detectors achieve decent results on clean images,
their performance is drastically reduced on perturbed images. These results confirm the performance
trends observed in Table[2and Table[3] further demonstrating that our proposed approach is effective
across multiple generator families and thus extends its applicability.

RAID Benchmark: Tensors vs. Images. Finally, we construct the RAID dataset as shown in
Figure by running the adversarial attack on the ensemble of detectors using the entire D? dataset.
We generate adversarial examples and save them as PNG images, avoiding the use of lossy formats
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Table 5: Adversarial robustness evaluation of the four trained baseline classifiers. All detectors are
trained on the D? training set. RAID refers to the dataset of the generated adversarial examples
saved as raw tensors, while RAID Img refers to the released dataset of adversarial images.

DINOv2 DINOv2-Reg ViT-T ViT-T CoDE
Dataset Perturbation F1 Acc AUROC F1 Acc AUROC F1 Acc AUROC F1 Acc AUROC
D? Clean 0.89 0.83 0.81 088 0.82 082 0.89 084 0.80 0.95 092 0.88
RAID 8/255 0.71 063 0.73 0.69 0.62 0.73 081 073 0.77 0.81 0.74 0.81
RAID 16/255 0.61 055 0.70 0.62 0.55 070 0.76 0.68 0.75 0.83 0.76 0.79
RAID 32/255 046 044 0.64 051 047 066 071 063 073 0.84 077 0.75

RAID Img 8/255 0.72 0.64 0.73 0.68 0.61 072 0.81 0.73 0.76 0.78 0.70  0.77
RAID Img  16/255 0.61 055 0.70 059 053 069 0.78 0.70 074 0.80 0.72 0.76
RAID Img  32/255 046 044 0.64 051 047 066 0.71 0.64 073 0.84 0.77 0.76

(e.g., JPEG). The reason for this is that we only consider the worst-case adversarial scenario in
which no post-processing operations are done, which could reduce the transferability of the attack.
While the previous evaluation provides a good assessment of RAID, as only one detector is missing
from the ensemble, we perform one additional evaluation on the full RAID dataset, to ensure that
the effectiveness of the adversarial perturbations is not reduced with their quantization when we
save them as images. We use four additional baseline detectors detailed in Section[3.1]tested against
the adversarial examples saved as tensors with float values, and the adversarial images. We find no
significant drop in effectiveness except for a few fluctuations as reported in Table 5] We release our
benchmark with a total of 96,000 images: 24,000 adversarial examples for each attack parameter e

considering 5=, 5 and 2=, in addition to the original images.

4 RELATED WORK

Generative Image Modeling. Learning to generate new samples from a high-dimensional data
distribution, such as natural images, is not trivial. Several approaches, such as autoregressive mod-
els (van den Oord et al.l 2016bza), VAEs (Kingma & Welling| 2014} Rezende et al., 2014)), and
GANs (Goodfellow et al., 2014} |Zhu et al.,[2017;|Choi et al., [2018; |[Karras et al., 2018} 20195 2020;
2021), have been proposed. While it has been shown that DMs (Sohl-Dickstein et al., 2015; [Ho
et al.,|2020; |[Dhariwal & Nicholl [2021) can surpass GANs with respect to quality, the costly iterative
denoising process prevented the generation of high-resolution images. As a remedy, LDMs (Rom-
bach et al.| [2022) perform the diffusion and denoising process in the latent space of a pre-trained
VAE (Kingma & Welling| 2014)). Moreover, with the addition of cross-attention layers based on U-
Net (Ronneberger et al., 2015), the generation can be controlled by textual prompts (Nichol et al.,
2022 Ramesh et al.l 2022; Saharia et al., 2022). Recent models have significantly advanced the
resolution of generated images (up to 4k) (Chen et al.,|2024bj Zhang et al., [2025), improved prompt
following, and human preference (Esser et al., 2024} Xie et al.| 2024).

AIGI Detection Methods. Most early approaches for detecint AIGIs exploit visible flaws like
differently colored irises (Matern et al., [2019) or irregular pupil shapes (Guo et all |[2022). Since
such imperfections are becoming less likely, several methods rely on imperceptible artifacts instead.
Such features include model-specific fingerprints (Marra et al.l 2019; |Yu et al., 2019) or unnatural
frequency patterns (Frank et al.|[2020; Durall et al.,2020; Dzanic et al.,[2020). Instead of using hand-
crafted features, Wang et al.| (2020) demonstrate that training a ResNet-50 (He et al.,|2016) on real
and generated images from ProGAN (Karras et al.l 2018), paired with strong data augmentation,
suffices to detect images generated by several other GANs. Subsequent works propose improved
model architectures (Gragnaniello et al., [2021) or learning paradigms (Cozzolino et al., [202 1} [Man-
delli et al.,|2022; |Chen et al.,2024a), with a particular focus on generalization (Chai et al.,|2020; Liu
et al., 2024). A promising direction is the use of foundation models as feature extractors to avoid
overfitting on images generated by a single class of models (Ojha et al.,[2023};|Cozzolino et al.,2024;
Koutlis & Papadopoulos| [2024). Recently, some works explore unique characteristics of DMs for
detection, like frequency artifacts (Ricker et al., 2024bj; (Corvi et al.| [2023)) or features obtained by
inverting the diffusion process (Wang et al.,2023; Ricker et al., [2024c} |Cazenavette et al., 2024).
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Datasets for Evaluating the Robustness of AIGI Detectors. To the best of our knowledge, we
are the first to propose a dataset for evaluating the adversarial robustness of AIGI detectors. How-
ever, several datasets exist to test their generalizability and robustness to common image degrada-
tions. Genlmage (Zhu et al} 2023) is a large-scale dataset comprising 1.35 million generated images
based on ImageNet (Russakovsky et al., 2015). WildFake (Hong & Zhang, 2024) features images
generated by GANs, DMs, and other generative models, which are partly sourced from platforms
such as Civitai to cover a broad range of content and styles. |Yan et al.| (2025)) also collect images
from popular image-sharing websites. However, their Chameleon dataset features images that were
misclassified by human annotators, making them particularly challenging. Furthermore, Deepfake-
Eval-2024 (Chandra et al., |2025) contains deepfake videos, audio, and images that circulated on
social media and deepfake detection platforms in 2024.

Adversarial Robustness of AIGI Detectors. The vulnerability of deepfake detectors to adversarial
examples was first explored by |Carlini & Farid| (2020). They demonstrate that by adding visually
imperceptible perturbations to an image, the AUC of a forensic classifier can be reduced from 0.95
down to 0.0005 in the white-box and 0.22 in the black-box setting. Subsequent work explores the
applicability of attacks in practical scenarios (Neekhara et al., 2021} [Hussain et al., 2021} Mavali
et al., 2024) as well as possible defenses (Gandhi & Jain, 2020). De Rosa et al.| (2024) study the
robustness of CLIP-based detectors, finding that adversarial examples computed for CNN-based
classifiers are not easily transferable and vice versa. Besides the addition of adversarial noise, it has
been shown that deepfake detectors can also be attacked by applying natural degradations (e.g., local
brightness changes) (Hou et al.|[2023)) or by removing generator-specific artifacts (Dong et al.| |2022;
Wesselkamp et al., [2022). Other attacks leverage image generators themselves to perform semantic
adversarial attacks, which adversarially manipulate a particular attribute of an image (Meng et al.,
2024) that can even be controlled through a text prompt (Liu et al.| 2023; |/Abdullah et al.| [2024).

5 DISCUSSION

Adversarial robustness should always be evaluated when proposing new AIGI detection methods, as
in current state-of-the-art detectors, it is vastly neglected in favor of an evaluation against naturally
occurring post-processing operations, such as resizing, cropping, blurring, JPEG compression or
noise. While the robustness to these operations is indeed important, introducing a malicious actor
that utilizes carefully crafted adversarial noise can lead to the evasion of detection by most methods,
as highlighted in our work. Nonetheless, the lack of a standard benchmark that serves as a compara-
bility reference for detectors contributes further to this lack of evaluation against adversarial attacks
in AIGI detection. As such, we introduce RAID to address this gap in the current literature and pro-
vide a more comprehensive solution for evaluating generative models. However, it is important to
acknowledge that our method is not without its limitations. One key challenge is that RAID requires
frequent updates to stay relevant as new generative models emerge, and these models would need
to be incorporated into our proposed ensemble attacks for continued effectiveness. This dynamic
nature of generative models demands a proactive approach to maintain the robustness of RAID over
time. Additionally, our perturbations are not designed to be robust to post-processing operations,
which should be considered in future work. Finally, due to the inherent restrictions of input sizes of
the architecture of some detectors, when considering attacks on ensemble models, we are restricted
to the center region of the image to be perturbed.

6 CONCLUSION

We introduce RAID, the first benchmark dataset of transferable adversarial examples for robustness
evaluation of AIGI detection. We employ an ensemble attack that demonstrates strong transferabil-
ity against seven diverse detectors and cover images generated from four text-to-image generative
models. Our results further highlight the existing gap in current evaluations of state-of-the-art de-
tectors, as more often than not, they are tested on naturally occurring post-processing as images are
disseminated and shared, but remain highly vulnerable to adversarial attacks. RAID addresses this
gap by providing a simple and reliable benchmark for adversarial robustness evaluation, ensuring
that detection models can be tested under more realistic and challenging adversarial conditions.
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ETHICS STATEMENT

Research on the adversarial robustness of classifiers always poses a dual-use risk. Our proposed
attack methodology could be misused by an adversary to craft AIGIs that bypass detectors. However,
our work does not introduce any new attack methodologies that were not previously available to
adversaries. Therefore, we argue that our benchmark dataset primarily benefits defenders, enabling
developers to evaluate and improve the robustness of their models.

REFERENCES

Sifat Muhammad Abdullah, Aravind Cheruvu, Shravya Kanchi, Taejoong Chung, Peng Gao, Mur-
tuza Jadliwala, and Bimal Viswanath. An Analysis of Recent Advances in Deepfake Image De-
tection in an Evolving Threat Landscape. In SP, 2024.

DeepFloyd Lab at StabilityAl. DeepFloyd IF: a novel state-of-the-art open-source text-to-
image model with a high degree of photorealism and language understanding. https://
huggingface.co/DeepFloyd/IF-I-XL-v1.0,2023.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284-293. PMLR, 2018.

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
Synthetic data from diffusion models improves imagenet classification.  arXiv preprint
arXiv:2304.08466, 2023.

Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, and
Rita Cucchiara. Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local
Similarities. In ECCV, 2024.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. §rndié, P. Laskov, G. Giacinto, and F. Roli. Machine
Learning and Knowledge Discovery in Databases. Springer, 2013.

Nicholas Carlini and Hany Farid. Evading Deepfake-Image Detectors with White- and Black-Box
Attacks. In CVPRW, 2020.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, lan Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Bar Cavia, Eliahu Horwitz, Tal Reiss, and Yedid Hoshen. Real-Time Deepfake Detection in the
Real-World. arXiv preprint arXiv:2406.09398, 2024.

George Cazenavette, Avneesh Sud, Thomas Leung, and Ben Usman. Fakelnversion: Learning to
detect images from unseen text-to-image models by inverting Stable Diffusion. In CVPR, 2024.

Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images detectable?
Understanding properties that generalize. In ECCV, 2020.

Nuria Alina Chandra, Ryan Murtfeldt, Lin Qiu, Arnab Karmakar, Hannah Lee, Emmanuel Tanumi-
hardja, Kevin Farhat, Ben Caffee, Sejin Paik, Changyeon Lee, Jongwook Choi, Aerin Kim, and
Oren Etzioni. Deepfake-eval-2024: A multi-modal in-the-wild benchmark of deepfakes circulated
in 2024. arXiv preprint arXiv:2503.02857, 2025.

Baoying Chen, Jishen Zeng, Jianquan Yang, and Rui Yang. DRCT: Diffusion reconstruction con-
trastive training towards universal detection of diffusion generated images. In /CML, 2024a.

Huanran Chen, Yichi Zhang, Yinpeng Dong, Xiao Yang, Hang Su, and Jun Zhu. Rethinking model
ensemble in transfer-based adversarial attacks. In /CML, 2023a.

10


https://huggingface.co/DeepFloyd/IF-I-XL-v1.0
https://huggingface.co/DeepFloyd/IF-I-XL-v1.0

Under review as a conference paper at ICLR 2026

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-a: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023b.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. PIXART-3: Weak-to-strong training of diffusion transformer
for 4K text-to-image generation. In ECCV, 2024b.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
GAN: Unified generative adversarial networks for multi-domain image-to-image translation. In
CVPR, 2018.

Federico Cocchi, Lorenzo Baraldi, Samuele Poppi, Marcella Cornia, Lorenzo Baraldi, and Rita Cuc-
chiara. Unveiling the impact of image transformations on deepfake detection: An experimental
analysis. In ICIAP, 2023.

Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, and Luisa Ver-
doliva. On the detection of synthetic images generated by diffusion models. In ICASSP, 2023.

Davide Cozzolino, Diego Gragnaniello, Giovanni Poggi, and Luisa Verdoliva. Towards universal
GAN image detection. In VCIP, 2021.

Davide Cozzolino, Giovanni Poggi, Riccardo Corvi, Matthias NieBner, and Luisa Verdoliva. Raising
the Bar of Al-generated Image Detection with CLIP. In CVPRW, 2024.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In /CML, 2020.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In ICLR, 2024.

Vincenzo De Rosa, Fabrizio Guillaro, Giovanni Poggi, Davide Cozzolino, and Luisa Verdoliva.
Exploring the adversarial robustness of CLIP for Al-generated image detection. In WIF'S, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
NeurlPS, 2021.

Chengdong Dong, Ajay Kumar, and Eryun Liu. Think twice before detecting GAN-generated fake
images from their spectral domain imprints. In CVPR, 2022.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In CVPR, 2018.

Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: CNN based genera-
tive deep neural networks are failing to reproduce spectral distributions. In CVPR, 2020.

Tarik Dzanic, Karan Shah, and Freddie Witherden. Fourier Spectrum Discrepancies in Deep Net-
work Generated Images. In NeurIPS, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis.
In ICML, 2024.

Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa, and Thorsten
Holz. Leveraging Frequency Analysis for Deep Fake Image Recognition. In /ICML, 2020.

Apurva Gandhi and Shomik Jain. Adversarial Perturbations Fool Deepfake Detectors. In IJCNN,
2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

D. Gragnaniello, D. Cozzolino, F. Marra, G. Poggi, and L. Verdoliva. Are GAN generated images
easy to detect? A critical analysis of the state-of-the-art. In ICME, 2021.

11



Under review as a conference paper at ICLR 2026

Hui Guo, Shu Hu, Xin Wang, Ming-Ching Chang, and Siwei Lyu. Eyes Tell All: Irregular Pupil
Shapes Reveal GAN-generated Faces. In ICASSP, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurlIPS,
2020.

Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving Sample Quality of
Diffusion Models Using Self-Attention Guidance. In ICCV, 2023.

Yan Hong and Jianfu Zhang. WildFake: A large-scale challenging dataset for Al-generated images
detection. arXiv preprint arXiv:2402.11843, 2024.

Yang Hou, Qing Guo, Yihao Huang, Xiaofei Xie, Lei Ma, and Jianjun Zhao. Evading DeepFake
Detectors via Adversarial Statistical Consistency. In CVPR, 2023.

Shehzeen Hussain, Paarth Neekhara, Malhar Jere, Farinaz Koushanfar, and Julian McAuley. Ad-
versarial deepfakes: Evaluating vulnerability of deepfake detectors to adversarial examples. In
WACV, 2021.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In /CLR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative
Adversarial Networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of StyleGAN. In CVPR, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Hiarkonen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-Free Generative Adversarial Networks. In NeurIPS, 2021.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.

Christos Koutlis and Symeon Papadopoulos. Leveraging representations from intermediate encoder-
blocks for synthetic image detection. In ECCV, 2024.

Black Forest Labs. FLUX. https://github.com/black—-forest—labs/flux, 2024.

Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Jingdong Wang, and Yao Zhao. Forgery-
Aware Adaptive Transformer for Generalizable Synthetic Image Detection. In CVPR, 2024.

Jiang Liu, Chen Wei, Yuxiang Guo, Heng Yu, Alan Yuille, Soheil Feizi, Chun Pong Lau, and Rama
Chellappa. Instruct2Attack: Language-Guided Semantic Adversarial Attacks. arXiv preprint
arXiv:2311.15551, 2023.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into Transferable Adversarial
Examples and Black-box Attacks. In ICLR, 2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A ConvNet for the 2020s. In CVPR, 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In /CLR, 2018.

Sara Mandelli, Nicold Bonettini, Paolo Bestagini, and Stefano Tubaro. Detecting GAN-generated
images by orthogonal training of multiple CNNs. In ICIP, 2022.

Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. Do GANs leave artifi-
cial fingerprints? In MIPR, 2019.

Falko Matern, Christian Riess, and Marc Stamminger. Exploiting Visual Artifacts to Expose Deep-
fakes and Face Manipulations. In WACVW, 2019.

12


https://github.com/black-forest-labs/flux

Under review as a conference paper at ICLR 2026

Sina Mavali, Jonas Ricker, David Pape, Yash Sharma, Asja Fischer, and Lea Schonherr. Fake It Until
You Break It: On the Adversarial Robustness of Al-generated Image Detectors. arXiv preprint
arXiv:2410.01574, 2024.

Xiangtao Meng, Li Wang, Shanqing Guo, Lei Ju, and Qingchuan Zhao. AVA: Inconspicuous at-
tribute variation-based adversarial attack bypassing DeepFake detection. In SP, 2024.

Paarth Neekhara, Brian Dolhansky, Joanna Bitton, and Cristian Canton Ferrer. Adversarial threats
to DeepFake detection: A practical perspective. In CVPRW, 2021.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models. In ICML, 2022.

Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
across generative models. In CVPR, 2023.

Will Oremus, Drew Harwell, and Teo Armus. A fake image of an explosion at the Pentagon caused
a stir online, 2023. URL https://www.washingtonpost.com/technology/2023/
05/22/pentagon-explosion—ai-image—hoax/. The Washington Post.

Suraj Patil, William Berman, Robin Rombach, and Patrick von Platen. aMUSEd: An Open MUSE
Reproduction. arXiv preprint arXiv:2401.01808, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models from Natural Language Supervision. In ICML,
2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandin-
sky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion. arXiv preprint
arXiv:2310.03502, 2023.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. In ICML, 2014.

Jonas Ricker, Dennis Assenmacher, Thorsten Holz, Asja Fischer, and Erwin Quiring. Al-generated
faces in the real world: A large-scale case study of Twitter profile images. In RAID, 2024a.

Jonas Ricker, Simon Damm, Thorsten Holz, and Asja Fischer. Towards the Detection of Diffusion
Model Deepfakes. In VISIGRAPP, 2024b.

Jonas Ricker, Denis Lukovnikov, and Asja Fischer. AEROBLADE: Training-free detection of latent
diffusion images using autoencoder reconstruction error. In CVPR, 2024c.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In MICCAI, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211-252, 2015.

13


https://www.washingtonpost.com/technology/2023/05/22/pentagon-explosion-ai-image-hoax/
https://www.washingtonpost.com/technology/2023/05/22/pentagon-explosion-ai-image-hoax/

Under review as a conference paper at ICLR 2026

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In NeurIPS, 2022.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: Open dataset
of CLIP-filtered 400 million image-text pairs. In Adv. Neural Inform. Process. Syst. Workshops,
2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In /CLR, 2014.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu, Oriol Vinyals, and
Alex Graves. Conditional image generation with PixelCNN decoders. In NeurIPS, 2016a.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks.
In ICML, 2016b.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. CNN-
Generated Images Are Surprisingly Easy to Spot... for Now. In CVPR, 2020.

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
Hougqiang Li. DIRE for diffusion-generated image detection. In /ICCV, 2023.

Vera Wesselkamp, Konrad Rieck, Daniel Arp, and Erwin Quiring. Misleading Deep-Fake Detection
with GAN Fingerprints. In IEEE Deep Learning and Security Workshop (DLS), 2022.

Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network
for real-world image super-resolution. In NeurIPS, 2024.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: Efficient high-resolution image synthesis with
linear diffusion transformers. arXiv preprint arXiv:2410.10629, 2024.

Huiyu Xu, Yaopeng Wang, Zhibo Wang, Zhongjie Ba, Wenxin Liu, Lu Jin, Haigin Weng, Tao
Wei, and Kui Ren. ProFake: Detecting deepfakes in the wild against quality degradation with
progressive quality-adaptive learning. In CCS, 2024.

Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
check for Al-generated image detection. In /CLR, 2025.

Kai-Cheng Yang, Danishjeet Singh, and Filippo Menczer. Characteristics and prevalence of fake
social media profiles with Al-generated faces. arXiv preprint arXiv:2401.02627, 2024.

Ning Yu, Larry S. Davis, and Mario Fritz. Attributing fake images to GANSs: Learning and analyzing
GAN fingerprints. In ICCV, 2019.

Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, and Di Huang. Diffusion-4K: Ultra-High-
Resolution Image Synthesis with Latent Diffusion Models. In CVPR, 2025.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks. In ICCV, 2017.

Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin

Hu, Jie Hu, and Yunhe Wang. Genlmage: A million-scale benchmark for detecting Al-generated
image. In NeurIPS, 2023.

14



Under review as a conference paper at ICLR 2026

A  OTHER ADVERSARIAL ATTACKS: DISCUSSION AND RESULTS

To complement our PGD-based ensemble attack, we conduct additional experiments comparing
PGD with two widely used alternatives: APGD (Croce & Hein,[2020) and CWA (Chen et al.,2023a).
The comparison is carried out on a subset of 1,000 images with perturbation budget ¢ = 32/255,
and results, evaluated in terms of F1-score and AUROC, are reported in Table 6]

In particular, APGD is the only component of the AutoAttack suite that can be extended to an
ensemble by averaging per-model cross-entropy losses. However, our results indicate that this adap-
tation is ineffective in the transfer setting. The attack is designed for single-model optimization
and, when applied to multiple models simultaneously, its internal heuristics (e.g., adaptive step-size,
frequent restarts) are destabilized by conflicting gradient signals. As a result, APGD yields sig-
nificantly higher F1-score and AUROC values than PGD, indicating weaker adversarial examples.
CWA, on the other hand, is explicitly designed for transferability and reports performance closer to
PGD across detectors. Nevertheless, our ensemble PGD is the only method that consistently drives
detector performance down toward chance level, especially in terms of AUROC (i.e., often close to
0.50) and F1-score (i.e., often close to 0.20). This demonstrates that our attack is both effective and
stable when optimized against a diverse set of detectors.

As shown, while CWA provides a competitive baseline for transfer-based attacks, our ensemble-
targeted PGD achieves the most reliable reduction of robustness across models. This supports our
choice of PGD as the basis for RAID, where the goal is to release a pre-computed set of transferable
adversarial examples that are both practical and sufficiently strong to serve as a benchmark.

B ADDITIONAL ADVERSARIAL ROBUSTNESS EVALUATIONS

Sensitivity to Image Transformations. In our experiments, the attack aims to provide an approx-
imate estimation of the adversarial robustness in worst-case settings. For this reason, we do not
consider optimizing the adversarial perturbation to make it robust against any transformations. Nev-
ertheless, this could be achieved by introducing data augmentations during the attack optimization
and leveraging the Expectation Over Transformation (EOT) algorithm (Athalye et al., |2018)), al-
though we expect that optimizing against transformations would decrease the adversarial example
transferability on other never-before-seen detectors. Likely, in real scenarios, an attacker would
perform a stronger, yet more costly, attack tailored to the target detector that may resist image trans-
formations better. In this context, our dataset can quickly and costless provide valuable insights: if
a model is not robust with respect to it, it will almost certainly be vulnerable to more realistic threat
models (Carlini et al., [2019).

Nonetheless, to provide additional insights, we evaluate the models on a subset of 1,000 samples
from our dataset with e = 32/255 by applying several transformations before classifying the images.
The results in Table[7]show that, while reduced with respect to when no transformations are applied,
the attack still shows a considerable effectiveness in fooling the detectors.

Results using ¢ = 8/255 Perturbation. For completeness, we also evaluate the detectors under a
smaller perturbation budget of ¢ = 8/255. This setting is commonly used in white-box evaluations
but is less relevant in the transfer-based scenario, where larger perturbations (e.g., € = 16/255 or
€ = 32/255) are typically required to achieve effective cross-model fooling. The results reported
in Table [8| confirm this intuition. In the white-box case, where the attack directly targets a single
detector, performance drops markedly, with F1-scores approaching zero and AUROC close to 0.50.

Table 6: Comparison with other attacks at ¢ = 32/255.

Metric Attack Ca24"  Ch24C Ch24CN  Co23" K24 0237 w20'
PGD (Ours) 0.28 0.08 0.01 032 001 006 0.17

Fl-score APGD 0.43 0.92 0.41 074 080 090 0.93
CWA 0.07 0.40 0.17 023 034 000 0.19

PGD (Ours) 0.33 0.49 0.50 059 050 052 054

AUROC APGD 0.40 0.80 0.63 079 082 090 0.93
CWA 0.32 0.25 0.50 034 031 005 025
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Table 7: Performance metrics under different transformations. Results are reported in the N — model
setting, using PGD with € = 32/255.

Metric Setting Ca24" Ch24C Ch24CN Co23" K24 023" w20'
No transform 028  0.08 0.01 032 001 006 0.17
Resize 64 x 64 035  0.86 0.35 040 0.10 0.01 045
Fl-score Random Crop 64x64 049  0.87 0.02 0.60 001 001 0.61
Random Flip 025 021 0.01 032 025 005 0.13
JPEG Compression 0.03  0.18 0.03 0.18 0.10 0.09 0.11
No transform 024 022 0.20 034 022 020 027
Resize 64 x 64 034 077 0.35 040 024 020 0.42
Accuracy Random Crop 64x64  0.40 0.78 0.20 0.53 020 020 0.54
Random Flip 022 027 0.20 035 031 022 025
JPEG Compression 0.17 0.26 0.20 027 024 023 025
No transform 033 049 0.50 0.59 050 052 0.54
Resize 64 x 64 053 0.6 0.56 0.61 052 050 061
AUROC  Random Crop 64x64 047  0.52 0.50 0.65 050 049 0.65
Random Flip 032 0.49 0.50 058 056 051 053

JPEG Compression 0.41 0.51 0.50 054 052 051 053

Table 8: White-box and black-box adversarial robustness evaluation (F1-score/AUROC) on PGD
with e = 8/255 perturbation. Adversarial attacks are ran against the model in each row and evaluated
on models in each column. 1 refers to detectors trained on the D3 training set. Final row N — model
refers to ensemble attacks targeting all models, excluding the evaluated against model. Bold values
corresponding to white-box evaluation in single detector attacks.

Ca24" Ch24C Ch24CN Co23" K24 0237 w20°
Ca24' 0.00/0.50  0.89/0.59  0.90/0.87  0.91/0.91  0.88/0.59  0.78/0.80  0.87/0.88
Ch24C 0.64/0.59  0.71/0.50  0.70/0.75  0.86/0.87  0.50/0.60  0.48/0.64  0.83/0.86
Ch24CN 0.71/0.56  0.89/0.62  0.62/0.55 0.91/0.91  0.87/0.53  0.74/0.77  0.85/0.87
Co23" 0.71/0.50  0.89/0.64  0.81/0.80  0.00/0.50  0.86/0.56  0.67/0.74  0.30/0.58
K24 0.63/0.60  0.57/0.55  0.62/0.72  0.85/0.87  0.09/0.51  0.44/0.62  0.84/0.86
023" 0.65/0.61  0.76/0.58  0.77/0.79  0.84/0.86  0.64/0.59  0.00/0.50  0.82/0.85
w207 0.70/0.56  0.90/0.62  0.69/0.73  0.27/0.57 0.87/0.59  0.67/0.74  0.00/0.50

N— model 0.68/0.49  0.74/0.59  0.63/0.70  0.59/0.71  0.57/0.61  0.45/0.63  0.49/0.66

In contrast, in the black-box transfer setting, detectors maintain relatively high robustness, with
substantially higher F1-score and AUROC values compared to the results reported in Table [2[ and
Table[3]for e = 16/255 and € = 32/255, respectively.

Variance Across Test Splits. We provide additional details regarding the variability of our exper-
imental results due to different test splits. As such, we conducted the main experiments using five
random seeds. The PGD attack is used with 10 steps, step size equal to 0.05, and ¢ = 16/255. We
report means and standard deviations in Table [0] and Table [I0] respectively for Fl-score and AU-
ROC values. A similar trend can be observed where the ensemble attacks are a good estimate for
the adversarial robustness of the AIGI detectors.
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Table 9: White-box and black-box adversarial robustness evaluation (mean of the F1 scores across
five random seeds =+ standard deviation).

Ca24" Ch24C Ch24CN Co237 K24 023" w207

Ca24’ 0.00+£0.00 0.87+0.0 0.84+0.01 0.86+0.0 0.81£0.02 0.71£0.02 0.66+0.02
Ch24C 0.54+0.01 0.00£0.00 0.24+0.02 0.75+0.01 0.08£0.01 0.23+0.03 0.56+0.01
Ch24CN  0.61£0.01 0.83+0.01 0.26+0.02 0.73£0.01 0.81+£0.01 0.73+0.01 0.56+0.01

Co23" 0.70+0.00 0.82+£0.00 0.44+£0.01 0.00+0.00 0.75+0.02 0.63£0.02 0.02+0.01
K24 0.49+0.02 0.23+£0.03 0.26+0.02 0.71£0.01 0.07£0.02 0.35+0.02 0.60+0.02
0237 0.51£0.02 0.38+0.02 0.35+£0.02 0.73£0.01 0.29£0.03 0.00£0.00 0.55+0.01
w20° 0.64+£0.01 0.84+0.01 0.21£0.02 0.08+£0.01 0.79£0.01 0.63+0.01 0.00-£0.00

N—model 0.61£0.01 0.30£0.02 0.19£0.03 0.47£0.02 0.09£0.01 0.21£0.03 0.3+0.02

Table 10: White-box and black-box adversarial robustness evaluation (mean of the AUROC scores
across five random seeds + standard deviation).

Ca24" Ch24C Ch24CN Co23f K24 023f w20°

Ca24’ 0.50+£ 0.00 0.62+0.02 0.81+0.01 0.85+0.00 0.69+0.02 0.75£0.01 0.75£0.01
Ch24C 0.53£0.01  0.50+0.00 0.57+0.01 0.79£0.01 0.52+0.00 0.56+0.01 0.7040.00
Ch24CN  0.51£0.02 0.62+0.02 0.49+0.01 0.78+0.00 0.61+0.02 0.74£0.01 0.70£0.01

Co23" 0.48+£0.02 0.62+0.02 0.61+0.01 0.50+0.00 0.63+0.01 0.7+0.01  0.514+0.00
K24 0.53£0.01 0.51+0.01 0.57£0.00 0.774£0.00 0.51£0.01 0.59+0.01 0.72+0.01
0237 0.53+0.01 0.53+0.01 0.60£0.01 0.78+0.00 0.55+0.02 0.50+0.00 0.69£0.01
w207 0.51+0.01 0.65+0.01 0.53£0.01 0.52+0.00 0.66+0.01 0.71£0.01 0.50=+0.00

N—model 042+£0.02 0.53£0.01 0.55£0.01 0.65£0.01 0.52£0.01 0.55£0.01 0.59£0.01

Table 11: Performance on commercial deepfake detectors. We report mean detector scores on AIGIs,
with adversarial variants evaluated on RAID examples. Metrics on real images are also included.

Detector Score Score (Real) Adversarial Score Acc Acc (Real) Adversarial Acc
Sightengine 0.65 0.99 0.01 0.66 1.00 0.00
HIVE 0.59 0.99 0.45 0.60 1.00 0.44

C EVALUATION ON COMMERCIAL DETECTORS

We use two commercial AIGI detectors provided by Sightengin and HIVEE] to evaluate RAID in
real-world settings. We report the results set of 50 real images and 50 pairs of clean and adversarial
images in Table While these results are preliminary due to the dataset size, they still suggest
that RAID retains effectiveness when assessing the adversarial robustness of detectors deployed
in commercial detection APIs. We compute the Accuracy with a 0.5 threshold on the confidence
score reported by the detectors. We also provide a few examples of the detection scores returned by
commercial detectors on randomly selected images in Figure [3]and Figure[d]

D LLM USAGE

In this paper, LLMs were used only for minor writing polish. They did not contribute to the design
of experiments, the analysis of results, or the generation of scientific content.

*https://dashboard.sightengine.com/ai-image-detection
*nttps://hivemoderation.com/ai-generated-content—detection
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Al-gen: 90%

Al-gen: 46% Al-gen: 1% Al-gen: 2% Al-gen: 1%

Figure 3: Detection scores returned by Sightengin detector on a subset of clean and adversarial Al-
generated images. Higher scores indicate higher confidence that the image is Al-generated.

Al-gen: 97.7% Al-gen: 93.4% Al-gen: 94.5% Al-gen: 9%

Figure 4: Detection scores returned by HIVE Moderation detector on a subset of clean and adversar-
ial Al-generated images. Higher scores indicate higher confidence that the image is Al-generated.
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