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Abstract

Self-supervised representation learning is a powerful paradigm that leverages the
relationship between semantically similar data, such as augmentations, extracts
of an image or sound clip, or multiple views/modalities. Recent methods, e.g.
SimCLR, CLIP and DINO, have made significant strides, yielding representations
that achieve state-of-the-art results on multiple downstream tasks. Though often in-
tuitive, a comprehensive theoretical understanding of their underlying mechanisms
or what they learn eludes. Meanwhile, generative approaches, such as variational
autoencoders (VAEs), fit a specific latent variable model and have principled appeal,
but lag significantly in terms of performance. We present a theoretical analysis
of self-supervised discriminative methods and a graphical model that reflects the
assumptions they implicitly make and unifies these methods. We show that fitting
this model under an ELBO objective improves representations over previous VAE
methods on several common benchmarks, narrowing the gap to discriminative
methods, and can also preserve information lost by discriminative approaches. This
work brings new theoretical insight to modern machine learning practice.

1 Introduction

Self-supervised learning (SSL) has become a prominent approach to unsupervised representation
learning. Under this paradigm, a model is trained on an auxiliary task without annotated labels
and representations of the data are learned in the process. Recently, contrastive SSL has achieved
remarkable performance, exemplified by SimCLR (3), SWaV (2) and CLIP (18). However, the
success of contrastive SSL predominantly relies on heuristic strategies and intuitive but ad hoc design
choices. A theoretical mechanism underlying their impressive performance remains unclear, limiting
confidence in their reliability, restricting their interpretability and inhibiting their improvement.

To address these challenges, we consider the relationship between discriminative and generative
representation learning and how an encoder, that maps data samples to representations, corresponds to
the posterior distribution of a generative model, which it effectively reverses. We consider the implicit
latent structure learned by several discriminative self-supervised algorithms, including the widely
used InfoNCE loss function adopted by numerous other SSL models (e.g. 3; 18). We show that these
methods reflect a common hierarchical latent variable model, but do not fit its posterior due to their
discriminative nature. Instead, representations of semantically related data “collapse” together, losing
the (typically stylistic) information that distinguishes them, despite its potential use in downstream
tasks. By prioritising some properties of the data over others, this effectively pre-supposes the set
of downstream tasks and limits the generality of representations. We propose SimVAE, a generative
alternative that explicitly models the latent structure implied by discriminative methods (Figure 2),
introducing the implicit latent structure of SimCLR (3) into the variational auto-encoder (VAE) (13).
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Figure 1: Qualitative assessment of representation information: images reconstructed from represen-
tations learned by unsupervised learning (VAE), generative SSL (our SimVAE) and discriminative
SSL (SimCLR, VicReg). Datasets: MNIST (l), Fashion MNIST (r), original images in left columns.

Figure 2: Graphical
model for SSL; J re-
lated samples;

Generative methods are inherently more challenging than their discriminative
counterparts, and we should not necessarily expect to bridge the performance
gap in one step. Encouragingly, SimVAE is competitive with, or outperforms,
several discriminative methods on simple datasets, but is less competitive on
more complex datasets, suggesting the need for further research. Importantly,
SimVAE significantly outperforms (>10% on some metrics) previous VAE-
based generative methods, narrowing the gap to discriminative SSL.

2 Background and Related Work

InfoNCE (17) extends the Word2Vec (16) approach to other domains where
pairs (x, x′) can be extracted “close by” or at random (e.g. image patches
or sound clips). The InfoNCE loss for a data sample x, positive sample x+

and L negative samples X−= {x−
l }Ll=1 is given by:

L(x, x+, X−) = − log
exp{sim(z, z+)}

exp{sim(z, z+)}+
∑

x′∈X− exp{sim(z, z′)}
, (1)

where z is the representation of x and sim(·, ·) is a similarity function, e.g.
dot product. A similar loss is proposed by (20). Many works use the InfoNCE loss, e.g. using
synthetic augmentations (3) or other modalities (18) of x as x+; taking representations from different
encoder layers (11); or propose alternatives to negative sampling, e.g. MoCo (8), VicReg (1).

3 Representation Learning

Representations learning approaches are either discriminative or generative, with many recent self-
supervised approaches being the former. Discriminative approaches tend to train the encoder under
a loss function that induces geometric properties in the representation space that are intuitively
desirable, e.g. for representations of related data samples to be “close” relative to random samples.
A generative model p(x) =

∫
z
p(x|z)p(z) can be interpreted as sampling a latent variable z∼p(z)

that defines the underlying characteristics of a data point; then sampling x∼ p(x|z) to produce a
manifestation of those properties. The posterior p(z|x) effectively reverses the generative process to
infer a distribution over z and thus the underlying semantic properties of x, reflecting uncertainty and
providing a semantically meaningful representation of x.

In fact, the generative and discriminative paradigms are two sides of the same coin since any
encoder f defines a posterior delta distribution p(z|x) = δz−f(x) (with zero uncertainty); and for
any z∈Z , a distribution p(x|z) is implicitly defined by the probabilities of samples mapping to it
{x∈X | f(x)=z}. Generative approaches are more challenging but offer a principled, interpretable
basis for representation learning, an uncertainty estimate over representations (i.e. the posterior), the
ability to generate synthetic data, and insight into the information captured by representations from
their regenerations.

We investigate the latent structure imposed by several discriminative methods, including InfoNCE
(17), which underpins other methods such as SimCLR and CLIP. We posit a latent variable model
(figure 2) to describe the latent structure those methods implicitly induce and propose a principled
approach to learning it under an ELBO objective.
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3.1 Discriminative Self-Supervised Learning

Instance Discrimination (ID) (5; 23) trains a classifier using the sample index i∈ [1, N ] as a “label”
for each sample and its augmentations (if any). The softmax cross-entropy loss can be viewed from a
latent perspective (VC, §2) for the latent variable model i → z → x (cf Figure 2):

log p(i|xj
i ) ≥

∫
z

qϕ(z|xj
i ) log p(i|z) (2)

where j indexes an augmentation (inc. identity). By maximising Equation 2, representations of each
“class” collapse together rather than fit any meaningful posterior giving style-invariant representations.

Deep Clustering (DC) (2) repeatedly identifies a large number of clusters in the latent space (by
K-means) and uses temporary cluster assignments as pseudo-labels for discriminative training similar
to ID. This induces similar latent structure as ID, and representations of each cluster collapse together.

InfoNCE-based Contrastive Learning approximates the softmax of ID, reducing mem-
ory/computational cost: (1) Under softmax cross entropy loss all representations of a class y converge
to class parameter wy . In expectation, z⊤z′, for stochastically sampled z′ of the same class, approxi-
mates z⊤wy , without the need to store wy . (2) The softmax denominator is sampled, meaning optimal
representations now satisfy sim(z, z′) = PMI(x, x′) + c(x) (17). However, using bounded cosine
similarity sim(z, z′)= z⊤z′

|z||z′| ∈ [−1, 1] restricts that equality. Optimal representations are the same for
related samples and maximally dispersed otherwise, comparable to those learned by softmax.

Summary: these different discriminative SSL methods correspond to a common hierarchical latent
variable model (Figure 2). Being discriminative, they do not reflect a meaningful posterior, instead
representations of semantically related data collapse together losing information that differentiates
them (e.g. style), that downstream tasks may require. By preserving “class” at the expense of other
information, contrastive methods may over-fit representation learning to style-agnostic tasks.

3.2 Generative Self-Supervised Learning (SimVAE)

Towards avoiding the pitfalls of discriminative approaches, we propose SimVAE, a generative approach
to learn representations under the latent variable model posited from discriminative methods (Figure 2).
Let x={xj}, z={zj} with j ∈ [1, J ]. The ELBO for J semantically related samples is given by:

log p(x) ≥
∑
j

∫
zj

q(zj |xj) log p(xj |zj)
q(zj |xj) +

∫
z

q(z|x)
∫
y

q(y|z)
[∑

j

log p(zj |y)
q(y|zj) + log p(y)

]
(3)

where q(z|x) ≈
∏

j q(z
j |xj). Note, we can choose any J to process multiple related samples.

4 Results

We focus on image cropping and color jitter (for natural images only) (3) to construct related samples.
We perform standard evaluation of the learned representations (see appendix A.4 for details). Table 1
reports downstream supervised classification (using linear, MLP, KNN probes) and unsupervised
(GMM) clustering accuracy across SSL methods and datasets. SimVAE is comparable to or out-
performs disciminative and generative baselines on simple datasets, and significantly outperforms
all VAE methods on natural images, including the self-supervised CRVAE. While a significant gap
remains between SimVAE and disciminative methods on natural images, we significantly reduce the
deficit compared to previous VAE-based methods.

LP-CA MP-CA

Random 52.9 ± 0.4 51.2 ± 0.1

SimCLR 65.3 ± 0.1 65.7 ± 1.2

VicReg 62.7 ± 0.3 63.8 ± 0.5

VAE 75.4 ± 0.4 67.4 ± 0.4

SimVAE 80.9 ± 0.5 75.1 ± 0.3

Table 2: Celeb-A hair color CA. Mean
accuracy and std error (3 random seeds)

Diversity of Encoded Information Figure 1 shows im-
age reconstructions, using decoders trained post-hoc for
discriminatively learned representations. This illustrates
that style information (e.g., position and scale) is lost by
discriminative SSL but preserved by generative methods.
We quantitatively evaluate the ability to predict Celeb-A
attributes, beyond gender classification shared in table 1,
given that some relate to the augmentation strategy, e.g.
hair color prediction requires color information. Table 2
shows that SimVAE outperforms other generative and
all discriminative methods when style information is
needed.
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LP-CA MP-CA KNN-CA GMM-CA

Fashion

Random 51.2 ± 0.6 49.8 ± 0.8 66.5 ± 0.4 48.6 ± 0.2

D
SimCLR 77.4 ± 0.2 79.0 ± 0.1 79.3 ± 0.1 63.6 ± 2.2

VicReg 70.7 ± 0.9 72.6 ± 0.6 76.0 ± 0.2 57.7 ± 0.8

MoCo 65.0 ± 1.3 71.2 ± 0.1 76.9 ± 0.2 56.6 ± 1.1

G

VAE 77.0 ± 0.5 80.2 ± 0.3 83.7 ± 0.2 57.9 ± 0.8

β-VAE (β = 1.2) 77.2 ± 0.1 79.7 ± 0.2 83.5 ± 0.4 57.5 ± 0.2

CR-VAE 77.7 ± 0.4 80.1 ± 0.1 84.0 ± 0.2 67.5 ± 1.2

SimVAE 78.6 ± 0.0 81.1 ± 0.1 84.0 ± 0.0 69.9 ± 0.0

Celeb-A

Random 64.4 ± 0.9 65.3 ± 1.0 62.0 ± 0.9 59.2 ± 0.3

D SimCLR 94.2 ± 0.2 92.7 ± 0.4 92.0 ± 0.3 71.6 ± 0.6

VicReg 94.3 ± 0.3 94.7 ± 0.1 92.7 ± 0.4 53.9 ± 0.2

G

VAE 81.5 ± 1.0 87.7 ± 0.5 79.6 ± 0.7 58.8 ± 0.2

β-VAE (β = 1.2) 81.9 ± 0.2 86.7 ± 0.4 79.8 ± 0.1 59.5 ± 0.6

CR-VAE 81.6 ± 0.3 87.7 ± 0.4 79.6 ± 0.6 58.9 ± 0.4

SimVAE 87.1 ± 0.3 91.6 ± 0.4 85.2 ± 0.1 58.4 ± 0.6

CIFAR10

Random 15.7 ± 0.9 16.3 ± 0.4 13.1 ± 0.6 28.2 ± 0.2

D
SimCLR 65.2 ± 0.2 67.8 ± 0.2 65.2 ± 0.2 49.8 ± 2.8

VicReg 68.8 ± 0.2 69.6 ± 0.2 68.2 ± 0.4 54.3 ± 0.7

MoCo 53.3 ± 1.3 56.4 ± 1.6 54.0 ± 2.0 35.0 ± 2.8

G

VAE 24.7 ± 0.4 30.3 ± 0.4 25.6 ± 0.5 23.4 ± 0.7

β-VAE (β = 1.2) 24.4 ± 0.4 29.8 ± 0.2 25.1 ± 0.4 23.8 ± 0.4

CR-VAE 24.7 ± 0.4 30.4 ± 0.1 25.4 ± 0.4 23.9 ± 0.8

SimVAE 36.4 ± 0.0 45.5 ± 0.2 42.8 ± 0.0 34.7 ± 0.5

Table 1: Top-1% self-supervised CA (↑) for FashionMNIST, CIFAR10, and Celeb-A (i.e., gender
classification) using a linear probe (LP), MLP probe (MP), k-Nearest Neighbors (KNN), and Gaussian
Mixture Model (GMM) classification methods; Scores report the average and standard error across
three random seeds; Bold numbers highlight the best scores with-in each method sub-group namely
generative, G , and discriminative methods, D .

5 Discussion

We introduce the SimVAE training objective, based on the ELBO for a graphical model that embodies
the assumptions implicit in several discriminative self-supervised methods. Our results validate this
latent assumption and show the efficacy of SimVAE relative to previous VAE approaches, including
CRVAE that aims for comparable latent structure. SimVAE demonstrably reduces the performance
gap to discriminative SSL objectives, including those based on the popular InfoNCE objective.

SimVAE offers a more principled approach to modeling sets a of semantically related observations,
facilitating the simultaneous representation of both content and style information, and taking a
positive step towards fully task-agnostic representations. Additionally, the posterior provides an
estimate of uncertainty, which may be important for critical downstream tasks, and the prior allows
for explicit design choices, offering the prospect of separating latent factors to achieve disentangled
representations.

While we consider SimVAE to be a positive advancement in representation learning, challenges
remain in bridging the gap between generative and discriminative methods. Previous research
shows that leveraging more complex model architectures, e.g. NVAE (22), StyleGAN (12), and
CRVAE (19), can significantly enhance the ability of generative models. In this work, we hold the
model architecture constant for fair comparison of the loss functions, but the additional complexity
of generative methods and the increased information that representations are required to retain,
may require more expressive architectures (e.g. (6)). Further, we note that increased variability of
augmentations tend to improve discriminative methods but increase the challenge for generative
approaches (e.g. see appendix A.5), suggesting a further direction for future investigation.
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A Appendix

A.1 Representation alignment in InfoNCE with cosine similarity

Pointwise mutual information (PMI) is a measurement of association that compares the probability of
two events x and x′ happening jointly with their probability of happening independently, defined as:

PMI(x, x′) = log
p(x, x′)

p(x)p(x′)
= log

p(x′|x)
p(x′)

(4)

PMI values reflect, in log scale, the likelihood of observing x′ having observed x relative to
otherwise. In the case of synthetic augmentation, p(x′|x) ≫ p(x′) if x′ is an augmentation of x,
and p(x′|x) = 0 otherwise, hence PMI(x, x′) is a small positive value reflective of the number of
augmentations, e.g. 5, or unboundedly negative.

The InfoNCE(17) objective is optimised when representations z, z′ of samples x, x′ satisfy
sim(z, z′) = PMI(x, x′) + c(x), where sim(·) is the similarity function, e.g. cosine similar-
ity (sim(z, z′) = zT z

||z||2||z′||2 ), and c is a scalar that can vary with x. Us of the bounded popular
cosine similarity function restricts the ability for the optimality condition to be reached, instead
the optimization of this restricted InfoNCE objective leads to representations of similar data being
aligned (z = z′) and representations of dissimilar data being maximally dispersed.

A.2 Relationship between Representations and PMI

When considering why representations learned by InfoNCE are useful, which intuitively pertains to
the information they capture, the fact that the loss function is optimised when representations satisfy
a relationship to pointwise mutual information seems highly relevant (§2). Even more so, since an
analogous relationship underpins properties of word2vec learned word embeddings (§2). However,
several further observations undermine this natural line of thought:

(i) Closer approximations of mutual information do not appear to improve representations (21);

(ii) As discussed in §3.1, employing cosine similarity sim(x,x’)= zT z′

|z||z′| ∈ [−1, 1] often leads to
better downstream performance than using unbounded similarity functions, e.g. dot product,
even though PMI values can fall far outside the bounded range [-1,1]; and

(iii) Several recent self-supervised methods take a different contrastive approach, with the aim of
circumventing negative sampling, showing no clear relationship to PMI and yet perform well
(1).

A.3 Objective derivation

Let x = {x1, ..., xj}, with j ≤ N , be a set of N samples generated through augmentations, as
described in section A.4. Let θ = {θx, θz, π} and ϕ = {ϕz, ϕy} be parameters of the model and
approximate posterior, respectively. We derive the Evidence Lower Bound (ELBO) used as the
SimVAE optimization objective and described in section 3.2 as:
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min
θ

DKL[ p(x) ∥ pθ(x) ] = max
θ

E
x

[
log pθ(x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθ(x)
]

= max
θ,ϕ

E
x

[∫
z

∑
y

qϕ(y, z|x) log pθ(x) qϕ(y,z|x)qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
pθ(y,z|x)

qϕ(y,z|x)
qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
qϕ(y,z|x)

]
+DKL[ qϕ(y, z|x) ∥ pθ(y, z|x) ]

≥ max
θ,ϕ

E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕz(z|x)pϕy (y|z) log
pθx(x|z)pθz(z|y)pπ(y)

qϕz(z|x)qϕy(y|z)

]
= max

θ,ϕ
E
x

[∫
z

qϕz(z|x)
{
log

pθx(x|z)
qϕz(z|x)

+
∑
y

qϕy(y|z) log
pθz(z|y)pπ(y)

qϕy(y|z)
}]

= max
θ,ϕ

E
x

∫
z

qϕz
(z|x) log pθx(x|z)︸ ︷︷ ︸

−recon(x)

−
∫
z

qϕz
(z|x) log qϕz

(z|x)︸ ︷︷ ︸
Hqϕ(z|x)

+

∫
z

qϕz
(z|x)

∑
y

pπ,θz(y|z) log pθz(z|y)pπ(y)

where recon(·) refers to the reconstruction loss, H to the entropy and DKL to the KL-divergence. In
the last step, we use maxϕy qϕy (y|z) = pπ,θz(y|z)

.
=

pθz(z|y)pπ(y)∑
y′ pθz(z|y′)pπ(y′) using Bayes’ rule since y

is assumed to be discrete in this case. In the setting with N = 2 related samples, x = {x, x′}, the
SimVAE objective can be formulated as:

min
θ

DKL[ p(x) ∥ pθ(x) ] ≥ max
θ,ϕ

E
x

∫
z

qϕ(z|x) log pθx(x|z)︸ ︷︷ ︸
−recon(x)

+

∫
z′
qϕ(z

′|x′) log pθx(x
′|z′)︸ ︷︷ ︸

−recon(x′)

−
∫
z

qϕ(z|x) log qϕ(z|x)︸ ︷︷ ︸
Hqϕ(z|x)

−
∫
z′
qϕ(z

′|x′) log qϕ(z
′|x′)︸ ︷︷ ︸

Hqϕ(z′|x′)

+

∫
z

qϕ(z|x)
∑
y

pπ,θz(y|z) log pθz(z|y)pπ(y)

Algorithm 1 provides an overview of the main computational steps required for the training of the
SimVAE evidence lower bound detailed above.
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Algorithm 1 SimVAE

Require: data {xk}Mk=1; batch size N ; data dimension D; augmentation set T ; latent dimension L;
number of augmentations A; encoder network fϕ; decoder network gθ; prior variance {σ∗

l }Ll=1

for randomly sampled mini-batch {xk}Nk=1 do
# augment mini-batch
{ta}Aa=1 ∼ T ;

{xa
k}Aa=1 = {ta(xk)}Aa=1;

# forward pass : z ∼ p(z|x), x̃ ∼ p(x|z)
{(µa

k,Σ
a
k) = fϕ(x

a
k)}Aa=1;

{zak ∼ N (µa
k,Σ

a
k)}Aa=1;

{x̃a
k = gθ(z

a
k)}Aa=1;

# compute & minimize loss terms
Lk

rec =
1

σND

∑A
a=1

∑D
d=1(x

a
k,d − x̃a

k,d)
2

Lk
H = L log(2πe) + 1

2

∑A
a=1 log(|Σa

k|)
µ∗

k = 1
A

∑A
a=1 z

a
k

Lk
prior = N +AL log (

√
2π) +A

∑L
l=1 log (σ∗

l ) +
∑A

a=1

∑L
l=1

1
2σ∗

l
(zak,l − µ∗

k,l)
2

min(L = 1
N

∑N
k=1 Lk

rec + Lk
H + Lk

prior) w.r.t ϕ,θ by SGD;

end for
return ϕ,θ;

A.4 Experimental Details

A.4.1 Datasets

FashionMNIST The FashionMNIST dataset (24) is a collection of 60’000 training and 10’000 test
images depicting Zalando clothing items (i.e., t-shirts, trousers, pullovers, dresses, coats, sandals,
shirts, sneakers, bags and ankle boots). Images were kept to their original 28x28 pixel resolution.
The 10-class clothing type classification task was used for evaluation.

CIFAR10 The CIFAR10 dataset (14) offers a compact dataset of 60,000 (50,000 training and 10,000
testing images) small, colorful images distributed across ten categories including objects like airplanes,
cats, and ships, with various lighting conditions. Images were kept to their original 32x32 pixel
resolution.

Celeb-A The Celeb-A dataset (15) comprises a vast collection of celebrity facial images. It encom-
passes a diverse set of 183’000 high-resolution images (i.e., 163’000 training and 20’000 test images),
each depicting a distinct individual. The dataset showcases a wide range of facial attributes and poses
and provides binary labels for 40 facial attributes including hair & skin color, presence or absence of
attributes such as eyeglasses and facial hair. Each image was cropped and resized to a 64x64 pixel
resolution. Attributes referring to hair color were aggregated into a 5-class attribute (i.e., bald, brown
hair, blond hair, gray hair, black hair). Images with missing or ambiguous hair color information
were discarded at evaluation.

All datasets were sourced from Pytorch’s dataset collection.

A.4.2 Data augmentation strategy

Taking inspiration from SimCLR’s (3) augmentation strategy which highlights the importance of ran-
dom image cropping and color jitter on downstream performance, our augmentation strategy includes
random image cropping, random image flipping and random color jitter. The color augmentations are
only applied to the non gray-scale datasets (i.e., CIFAR10 (14) & Celeb-A dataset (15)). Due to the
varying complexity of the datasets we explored, hyperparameters such as the cropping strength were
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adapted to each dataset to ensure that semantically meaningful features remained after augmentation.
The augmentation strategy hyperparameters used for each dataset are detailed in table 3.

Dataset Crop Vertical Flip Color Jitter
scale ratio prob. b-s-c hue prob.

MNIST 0.4 [0.75,1.3] 0.5 - - -
Fashion 0.4 [0.75,1.3] 0.5 - - -
CIFAR10 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8
Celeb-A 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8

Table 3: Data augmentation strategy for each dataset: (from left to right)
cropping scale, cropping ratio, probability of vertical and horizontal
flipping, brightness-saturation-contrast jitter strength, hue jitter strength,
probability of color jitter

A.4.3 Training Implementation Details

This section contains all details regarding the architectural and optimization design choices used to
train SimVAE and all baselines. Method-specific hyperparameters are also reported below.

Datasets and Evaluation Metrics We evaluated SimVAE on three benchmark datasets including two
with natural images: FashionMNIST (24), Celeb-A (15) and CIFAR10 (14). We augment images
following the SimCLR (3) protocol which includes cropping and flipping as well as color jitter for
natural images. We evaluate representations’ utility for downstream classification tasks using a linear
probe, a non-linear MLP probe, and k-nearest neighbors (kNN) (4) trained on the pre-trained frozen
representations using image labels (3; 2). Additionally, we conducted a fully unsupervised evaluation
by fitting a Gaussian mixture model (GMM) to the frozen features for which the number of clusters
was set to its ground-truth value. Downstream performance is measured in terms of classification
accuracy (CA). A model’s generative quality was evaluated using the Fréchet Inception Distance
(FID) (9), reconstruction error as well as the Normalized Mutual Information (NMI) and Adjusted
Rank Index (ARI) clustering scores (see appendix A.5).

Baselines methods We compare SimVAE to other VAE-based models including the vanilla VAE (13),
β-VAE (10) and CR-VAE (19), as well as to state-of-the-art self-supervised discriminative methods
including SimCLR (3), VicREG (1), and MoCo (8). As a lower bound, we also provide results
obtained for randomly initialized embeddings. To ensure fair comparison, the augmentation strategy,
representation dimensionality, batch size, and encoder-decoder architectures were kept invariant
across methods. To enable a qualitative comparison of representations, decoder networks were trained
for each discriminative baseline on top of frozen representations using the reconstruction error. See
appendices A.4.3 and A.4.4 for further details on training baselines and decoder models.

Hyperparameters We use MLP and Resnet18 (7) network architectures for simple and natural image
datasets respectively. We fix the dimension of representations z to 10 for FashionMNIST, and to 64 for
Celeb-A and CIFAR10 datasets. For all generative approaches, we adopt Gaussian posteriors, priors,
and likelihoods, employing diagonal covariance matrices as in (13). We fix covariances of the prior
and likelihood distributions and perform a hyper-parameter search. SimVAE conveniently allows for
the simultaneous incorporation of sets of related observations. After tuning, we fix the number of
augmentations to 6 (see Figure 4 for an ablation). For baselines, all sensitive hyperparameters were
tuned independently for each dataset and method.

Network Architectures The encoder network architectures used for SimCLR, MoCo, VicReg, and
VAE-based approaches including SimVAE for simple (i.e., FashionMNIST ) and complex datasets
(i.e., CIFAR10, Celeb-A) are detailed in table 4a, table 5a respectively. Generative models which
include all VAE-based methods also require decoder networks for which the architectures are detailed
in table 4b and table 5b. The encoder and decoder architecture networks are kept constant across
methods including the latent dimensionality to ensure a fair comparison across methods.

Optimisation & Hyper-parameter tuning All methods were trained using an Adam optimizer until
training loss convergence. A learning rate tuning was performed for each method independently
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Layer Name Output Size Block Parameters

fc1 500 784x500 fc, relu
fc2 500 500x500 fc, relu
fc3 2000 500x2000 fc, relu
fc4 10 2000x10 fc

(a) Encoder

Layer Name Output Size Block Parameters

fc1 2000 10x2000 fc, relu
fc2 500 2000x500 fc, relu
fc3 500 500x500 fc, relu
fc4 784 500x784 fc

(b) Decoder

Table 4: Multi-layer perceptron network architectures used for FashionMNIST training

Layer Name Output Block Parameters

conv1 32x32 4x4, 16, stride 1
batchnorm, relu
3x3 maxpool, stride 2

conv2 x 32x32 3x3, 32, stride 1
3x3, 32, stride 1

conv3 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv4 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv5 x 4x4 3x3, 256, stride 2
3x3, 256, stride 1

fc 64 4096x64 fc

(a) Encoder

Layer Name Output Block Parameters

fc 256x4x4 64x4096 fc

conv1 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv2 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv3 x 32x32 3x3, 32, stride 2
3x3, 32, stride 1

conv4 x 64x64 3x3, 16, stride 2
3x3, 16, stride 1

conv5 64x64 5x5, 3, stride 1

(b) Decoder

Table 5: Resnet18 network architectures used for CIFAR10 & Celeb-A training

across the range 1e−3 to 8e−5. A fixed batch size of 128 was used across methods and datasets. The
β, τ , λ parameters for the β-VAE, SimCLR and CRVAE methods were tuned across the [0.1,0.2,0.5],
[0.1,0.5,1.0] and [0.01,0.1,1.0] ranges respectively based on downstream performance. β = 0.1,
λ = 0.01 were selected and τ = 1.0, τ = 0.5 were chosen for simple and natural datasets respectively.
The likelihood probability variance for VAE-based methods including SimVAE was kept to σ2 = 1.0
and the prior probability, p(z|y), variance parameter for SimVAE was tuned and fixed to 0.003, 0.005,
0.005 for FashionMNIST, CIFAR10 and Celeb-A respectively.

A.4.4 Evaluation Implementation Details

Following common practices (3), downstream performance is assessed using a linear probe, a multi-
layer perceptron probe, a k-nearest neighbors (kNN) algorithm, and a Gaussian mixture model
(GMM). The linear probe consists of a fully connected layer whilst the mlp probe consists of two
fully connected layers with a relu activation for the intermediate layer. Both probes were trained
using an Adam optimizer with a learning rate of 3e-4 for 200 epochs with batch size fixed to 128.
Scikit-learn’s Gaussian Mixture model with a full covariance matrix and 200 initialization was fitted
to the representations using the ground truth cluster number. The kNN algorithm from Python’s
Scikit-learn library was used with k spanning from 1 to 15 neighbors. The best performance was
chosen as the final performance measurement. No augmentation strategy was used at evaluation.

A.4.5 Generation Protocol

In this section, we detail the image generation protocol as well as the evaluation of the quality of the
generated samples.
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Ad-hoc decoder training VAE-based approaches, including SimVAE, are fundamentally generative
methods aimed at approximating the logarithm of the marginal likelihood distribution, denoted as
log p(x). In contrast, most traditional self-supervised methods adopt a discriminative framework
without a primary focus on accurately modeling p(x). However, for the purpose of comparing
representations, and assessing the spectrum of features present in z, we intend to train a decoder
model for SimCLR & VicReg models. This decoder model is designed to reconstruct images from the
fixed representations initially trained with these approaches. To achieve this goal, we train decoder
networks using the parameter configurations specified in Tables 4b and 5b, utilizing the mean squared
reconstruction error as the loss function. The encoder parameters remain constant, while we update
the decoder parameters using an Adam optimizer with a learning rate of 1e−4 until convergence is
achieved (i.e. ∼ 200 epochs).

Conditional Image Generation To allow for a fair comparison, all images across all methods are
generated by sampling z from a multivariate Gaussian distribution fitted to the training samples’
representations. More precisely, each Gaussian distribution is fitted to z conditioned on a label y.
Scikit-Learn Python library Gaussian Mixture model function (with full covariance matrix) is used.

A.5 Additional Results

A.5.1 Self-supervised classification

Clustering metrics Table 6 and table 7 report the normalized mutual information (NMI) and adjusted
rank index (ARI) for the fitting of a GMM to latent representations z.

Dataset Random VAE β-VAE CR-VAE SimVAE

Fashion ARI 28.7± 0.6 44.2± 1.1 44.7± 0.2 23.3± 0.8 55.7± 0.0

NMI 51.5± 0.2 66.7± 0.7 66.4± 0.4 46.1± 2.2 76.8± 0.2

Celeb-A ARI 3.4± 0.3 5.7± 0.2 6.2± 0.7 6.6± 0.9 2.6± 0.7

NMI 4.2± 0.4 3.9± 0.2 4.7± 0.9 5.0± 0.7 2.9± 0.7

CIFAR10 ARI 0.09± 0.0 0.7± 0.2 0.7± 0.2 0.9± 0.1 8.6± 0.3

NMI 27.9± 0.1 17.7± 0.5 18.7± 0.3 18.9± 0.1 37.2± 0.4

Table 6: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all generative
methods and datasets; Average scores and standard errors are computed across three random seeds

Dataset MoCo VicReg SimCLR

Fashion ARI 30.9± 0.5 37.1± 1.3 50.3± 1.9

NMI 50.4± 0.6 64.5± 0.7 71.2± 1.0

Celeb-A ARI − 18.7± 0.8 0.0± 0.1

NMI − 24.3± 0.3 0.0± 0.0

CIFAR10 ARI 27.2± 1.0 31.2± 0.2 49.6± 1.3

NMI 16.5± 0.4 53.4± 0.1 26.9± 0.8

Table 7: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all discriminative
baselines and datasets; Average scores and standard errors are computed across three random seeds

Augmentation Protocol Strength Figure 3 reports the downstream CA across methods for various
augmentations stategy. More precisely, we progressively increase the cropping scale and color jitter
amplitude. Unsurprinsingly (3), discriminative methods exhibit high sensitivity to the augmentation
strategy with stronger disruption leading to improved content prediction. The opposite trend is
observed with vanilla generative methods where reduced variability amongst the data leads to
increased downstream performance. Interestingly, SimVAE is robust to augmentation protocol and
performs comparably across settings.
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Figure 3: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds.

# Augmentation Ablation Figure 4 reports the downstream classification accuracy for increasing
numbers of augmentations considered simultaneously during the training of SimVAE. A larger number
of augmentations result in a performance increase up to a certain limit (i.e., 6-8 augmentations).
Further exploration is needed to understand how larger sets of augmentations can be effectively
leveraged potentially by allowing for batch size increase.

Figure 4: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds. Batch size of 128 for all
reported methods and number of augmentations.

A.5.2 Image Generation

In this section, we explore and report the quality of images generated through SimVAE and all
considered baselines through visualisations (for VAE-based approaches only) and quantitative
measurements.

Generated Images Figure 5 report examples of randomly generated images for each digit class and
clothing item using the SimVAE trained on MNIST and FashionMNIST respectively.
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Figure 5: Conditional sampling for each one of the FashionMNIST clothing type using pre-trained
SimVAE model

RE FID NLL

Fashion

VAE 4.4± 0.1 99.4± 0.6 5696.5± 0.1

β-VAE 4.6± 0.1 99.9± 0.7 5696.7± 0.1

CR-VAE 4.3± 0.0 98.7± 0.0 5696.7± 0.0

SimVAE 3.4± 0.1 96.1± 1.0 5695.6± 0.0

Celeb-A

VAE 56.6± 0.2 162.9± 2.8 −
β-VAE 60.3± 1.0 163.8± 2.3 −
CR-VAE 57.4± 0.1 159.3± 5.4 −
SimVAE 35.3± 0.2 157.8± 2.3 −

CIFAR10

VAE 21.4± 0.2 365.4± 3.3 22330.8± 0.2

β-VAE 22.3± 0.2 376.7± 1.7 22327.7± 0.2

CR-VAE 22.5± 0.0 374.4± 0.4 22327.3± 0.8

SimVAE 22.1± 0.1 349.9± 2.1 22327.3± 0.2

Table 8: Generation quality evaluation of all generative methods across three
random seeds: (from left to right) mean squared reconstruction error (RE, ↓),
fréchet inception distance (FID, ↓), negative log-likelihood (NLL,↓)

Generative quality Table 8 reports the FID scores, reconstruction error and approximate negative
log-likelihoods using 1000 importance-weighted samples for all generative baselines and SimVAE.
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