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Abstract001

Fine-tuning large language models (LLMs) typ-002
ically relies on producing large sets of input-003
output pairs. Yet for a given question, there can004
be many valid outputs. In practice, these out-005
puts are often derived by distilling knowledge006
from teacher models, and they can vary depend-007
ing on the specific teacher model or prompt-008
ing strategy employed. Recent findings show009
that how these training outputs are generated010
can significantly affect the performance of the011
fine-tuned model, raising an important ques-012
tion: how do we pick the best data generation013
method from among numerous possibilities?014
Rather than exhaustively training and evaluat-015
ing on each candidate, this paper proposes a016
scalable approximate method that assesses a017
small subset of generated data to estimate its018
suitability for a specific target LLM. Our cen-019
tral idea is that effective outputs should be fa-020
miliar to the target LLM. While previous work021
measures familiarity with perplexity, we find022
that perplexity might be suboptimal in charac-023
terizing “familiarity” through empirical analy-024
ses and practical observations. To address this,025
we introduce self-aligned perplexity, a novel026
metric capturing how closely candidate out-027
puts adhere to the target LLM’s own style and028
reasoning patterns. In this way, we can iden-029
tify the most effective generation strategy on a030
small sample, then apply it to produce the com-031
plete training set. We demonstrate that train-032
ing on data generated by the chosen method033
yields significant improvements across diverse034
reasoning-focused benchmarks, particularly in035
cases where different candidate methods lead036
to highly divergent training outcomes.037

1 Introduction038

When instruction-tuning an LLM, training data con-039

sists of question-response pairs, where multiple040

valid responses can be generated for the same in-041

put. Previous studies (Anonymous, 2024) show042

that datasets with identical input questions but dif-043

ferent responses can lead to varied learning out- 044

comes, even when responses contain similar levels 045

of detail. This raises a key question: how can we 046

construct responses that are most effective for the 047

target LLM? 048

Prior research has explored improving responses 049

by adding details or rationales, such as structur- 050

ing ground truth step by step (Hsieh et al., 2023; 051

Ranaldi and Freitas, 2024), incorporating ratio- 052

nales, or enriching responses with additional in- 053

formation (Zhang et al., 2024; Kang et al., 2023; Li 054

et al., 2022). However, recent studies (Anonymous, 055

2024; Yang et al., 2024) suggest that more details 056

or converting responses to step by step style do not 057

always improve performance and that alignment 058

with the LLM’s linguistic style is crucial. 059

In our experiment, we observe that no single re- 060

sponse generation strategy works universally across 061

tasks. Thus, we need to create a method to find out 062

the most effective way to generate responses for 063

each task, rather than a single method for all tasks. 064

Some works (Xu et al., 2024; Kim et al., 2024) 065

attempt to predict the effectiveness of response gen- 066

eration methods by evaluating the entire training 067

dataset. They generate full training datasets using 068

each method and then estimate training effective- 069

ness based on scores computed via algorithms or 070

reward models. However, these approaches are 071

computationally expensive and not scalable. 072

However, can we predict the effectiveness of 073

each data generation methods efficiently? We 074

observe an interesting phenomenon that each re- 075

sponse generation method produces responses with 076

a consistent style, meaning that a small subset of 077

generated examples can effectively represent the 078

entire dataset. Based on this assumption, we pro- 079

pose an efficient ranking pipeline that evaluates a 080

limited number of samples (e.g., 50) to assess the 081

performance of each response generation strategy. 082

This approach uses an alignment estimation func- 083

tion to assign scores to each strategy, enabling us 084
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to identify the best-performing method without the085

need for a full-dataset evaluation.086

Previous research (Anonymous, 2024) used per-087

plexity to measure a model’s familiarity with can-088

didate question-answer pairs, proposing that lower-089

perplexity responses for the same input tend to090

yield better training performance. However, we091

found several cases where perplexity-based filter-092

ing was ineffective. For instance, responses struc-093

tured in a step-by-step or redundant language style094

often have low perplexity but do not necessarily095

improve training outcomes. When examining the096

initial response from the target LLM, we note that097

on some tasks, the probability of the model pro-098

ducing a step-by-step or redundant response in its099

initial prediction is very low, even though these100

responses have low perplexity. These findings sug-101

gest that perplexity can be "hacked" by response102

style. Thus, traditional perplexity alone is insuf-103

ficient for selecting the best response generation104

strategy.105

To address this, we propose self-aligned perplex-106

ity, a refined metric for measuring a model’s famil-107

iarity with target responses. The key idea is that a108

model is most familiar with the data it generates it-109

self. Leveraging this, we modify perplexity compu-110

tation by incorporating model-generated responses111

as in-context examples. Specifically, we first have112

the model produce initial responses, which is then113

appended to the question as an in-context exam-114

ple. A prompt enforce the model to pay atten-115

tion to these examples when computing perplexity,116

thereby altering the probability estimation of the117

candidate response. If the target response devi-118

ates significantly from the model’s own generated119

response—the one it is most familiar with—the120

model assigns it a lower probability, increasing its121

perplexity. Our experiments show that self-aligned122

perplexity outperforms traditional perplexity in se-123

lecting effective data generation strategies.124

In our experiments, we observe a strong cor-125

relation between the proposed indicator and the126

ranking of training dataset performance. Further-127

more, we construct a pool of answer generation128

strategies and demonstrate that applying our selec-129

tion criterion leads to significant performance gains130

compared to the baselines—especially in scenarios131

where different data-generation methods produce132

highly divergent outcomes133

2 Related Works 134

There has been extensive research into what types 135

of data yield the best training outcomes for large 136

language models (LLMs). Previous studies have 137

identified several factors that positively influence 138

model training, such as adding complexity (Xu 139

et al., 2023), adding details (Zhang et al., 2024; 140

Kang et al., 2023; Li et al., 2022), adding diversity 141

(Luo et al., 2023), augmenting ground-truth an- 142

swers in a step-by-step manner (Hsieh et al., 2023; 143

Ho et al., 2022; Magister et al., 2023; Fu et al., 144

2023; Ranaldi and Freitas, 2024), and ensuring cor- 145

rectness (Trinh et al., 2024; Ranaldi and Freitas, 146

2024). However, in practice, these metrics are chal- 147

lenging to measure for a given dataset, making it 148

difficult to determine the quality of training data 149

based on these criteria. Anonymous (2024) found 150

that familiarity, measured by perplexity, signifi- 151

cantly impacts model training. 152

Perplexity has been widely used for different pur- 153

pose in prior research. Perplexity has been used to 154

select prompts (Gonen et al., 2022), showing that 155

prompts with lower perplexity generally lead to 156

better performance in question-answering tasks. It 157

has also been used for selecting pretraining datasets 158

(De la Rosa et al., 2022), detecting AI-generated 159

content (Xu and Sheng, 2024; Hu et al., 2020), and 160

selecting instruction-tuning data from a database 161

(Mekala et al., 2024). Li et al. (2024) modify the 162

perplexity score and propose “IDF” (Instruction 163

Following Difficulty), which is used to select a 164

small pool of challenging data from the original 165

dataset for efficient training. Researchers hypoth- 166

esize that higher perplexity indicates more chal- 167

lenging data, which can be beneficial for teaching 168

LLMs new knowledge. In addition, perplexity or 169

confidence-based curricula have been explored for 170

NMT (Kocmi and Bojar, 2017) and general text 171

generation (Platanios et al., 2019), where harder 172

(high-perplexity) data are introduced progressively 173

to improve sample efficiency. Unlike these stud- 174

ies, our focus is on identifying the best strategy 175

to generate target responses (y) for a given input 176

(x), rather than selecting difficult (x, y) pairs for 177

training language models. 178

Recent efforts have begun to ask which teacher 179

model produces the most useful synthetic tar- 180

gets. Xu et al. (2024) introduce a Compatibility- 181

Adjusted Reward (CAR) and judge its quality by 182

the Spearman correlation between CAR scores and 183

downstream accuracy on two instruction-following 184
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datasets, each evaluated with a single meta-prompt.185

Kim et al. (2024) study nine datasets spanning186

mathematics, coding, and general instructions; they187

correlate several corpus statistics with training188

gains and combine them with principal-component189

analysis to rank teacher models. Our study differs190

in four key respects. First, we estimate a strategy’s191

quality from only a small sample of its outputs,192

making synthetic data generation and evaluation193

far more affordable. Second, we target accuracy im-194

provement, not just rank correlation. Third, we ex-195

periment on a much broader benchmark: 17 diverse196

tasks plus six Plan-Bench planning tasks. Fourth,197

we evaluate our method on datasets generated us-198

ing diverse meta-prompts, explicitly accounting for199

prompt variability.200

3 Method201

This paper aims to efficiently select the most ef-202

fective answer generation strategy for fine-tuning203

a target LLM. In what follows, we first present204

the problem setup, then detail our proposed self-205

aligned perplexity metric for scoring the outputs206

from each candidate strategy.207

3.1 Problem Definition208

Let S = {S1, . . . , Sn} be a set of candidate answer-209

generation strategies, where each strategy Sk pro-210

duces a response ŷk = Sk(x) for an input x. Our211

goal is to select the strategy Sι that yields the most212

effective training data D = {(x, ŷk)} to fine-tune213

a target model M . Since generating the full dataset214

via the API for every strategy is costly, we evaluate215

a small subset Ds of size K (K ≪ |D|) to estimate216

how well each strategy’s outputs align with M .217

3.2 The Familiarity Hypothesis218

The work in (Anonymous, 2024) suggests that if219

the model is more “familiar” with a given response,220

then the model can learn better with the given re-221

sponse. In their work, perplexity, which is cor-222

related to the likelihood of generating a response223

with the model, is used to measure this familiar-224

ity score. In our study, we argue that perplexity225

is sub-optimal to measure familiarity. We suggest226

that familiarity can be more precisely measured by227

this equation:228

F (ŷ) = Ey [s(y, ŷ)] =

∫
s(y, ŷ)PM (y)dy, (1)229

where s(y, ŷ) is a semantic similarity measure be-230

tween ŷ and a sample response y drawn from the231

model M . In plain language, it quantifies how sim- 232

ilar a candidate response is to the range of answers 233

that the model might generate. It is straightforward 234

to demonstrate that when s(y, ŷ) = δ(y, ŷ), i.e., 235

when δ(y, ŷ) = 1 only if y is exactly identical to 236

ŷ, the function F becomes equivalent to the like- 237

lihood PM (ŷ), and hence equivalent to perplexity. 238

using perplexity as a surrogate to measure famil- 239

iarity fails to account for the variety of responses 240

that may be semantically equivalent to a candidate 241

response, thereby underestimating the familiarity. 242

In practice, this results in assigning an excessively 243

high perplexity to a good candidate response that 244

the model might actually be familiar with, as evi- 245

denced by our empirical study in section 6.1. 246

3.3 Self-Aligned Perplexity 247

To address the issue above, we propose a new 248

surrogate for measuring familiarity based on in- 249

context learning. Instead of relying solely on raw 250

likelihood, we treat the model’s own prediction 251

y = M(x) as an in-context style example, and 252

assess the likelihood of a candidate response condi- 253

tioned on this example. This encourages the model 254

to favor candidates that stylistically align with its 255

own reasoning patterns. 256

Traditional Perplexity. For a candidate response 257

ŷ consisting of |ŷ| tokens, perplexity is defined as: 258

φPPL(M,x, ŷ) = exp

− 1

|ŷ|

|ŷ|∑
t=1

logPM

(
ŷt

∣∣x, ŷ<t

) .

(2) 259

Although lower perplexity suggests familiarity, it 260

can misjudge responses that differ stylistically from 261

what M typically produces (see When perplexity 262

fails from the section 6.1). 263

Self-Aligned Perplexity. To address this, we use 264

M ’s initial prediction, y = M(x), as an in-context 265

style example. For each input xi in a subset Ds: 266

1. Generate yi = M(xi). M(xi) may gener- 267

ate incorrect responses, which can sometimes 268

cause Prompt(yi) to mislead the in-context 269

perplexity calculation. To mitigate this, we 270

employ a filtering mechanism to remove in- 271

correct M(xi). After removing the incorrect 272

samples using the evaluation metrics we used 273

during testing, we get a group of correct y and 274

place it into the collection S. 275

2. For candidate ŷi, include ys (ensure s not 276

equal to i) from the collection S in the prompt 277
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P to provide style guidance. Please notice that278

we make sure the correct prediction ys do not279

answer the question xi, because we wish to280

evaluate response candidates, we only wish to281

provide a stylish guide rather than providing282

the answer.283

3. Compute the perplexity of ŷi conditioned on284

this prompt.285

Formally,286

φSPPL(M,xi, ŷi) = φPPL

(
M, P(ys), ŷi

)
for s ̸= i .

(3)287

This self-aligned measure penalizes responses288

that deviate from M ’s own style.289

Selection Criterion. For each generation strat-290

egy Sk, we evaluate its effectiveness on a small291

subset Ds by computing the average self-aligned292

perplexity:293

πSPPL(Sk) =
1

K

K∑
i=1

φSPPL(M,xi, ŷ
k
i ), (4)294

and select the optimal strategy via:295

Sι = argmin
k

πSPPL(Sk). (5)296

4 Benchmark Construction297

In this section, we show how we use different strate-298

gies (distinct prompts and teacher LLMs) in gener-299

ating high-quality responses with different styles.300

4.1 Target LLMs and APIs301

We use Mistral-7B-instruct-V2 (Jiang et al., 2023),302

Llama3-instruct (Dubey and Abhinav Jauhri, 2024)303

and Qwen-2.5-7B-Instruct(Qwen et al., 2025) as304

the target language models M . In this paper, we re-305

fer to Llama3-instruct, Mistral-7B-instruct-V2, and306

Qwen-2.5-7B-Instruct as Mistral7B, Llama3, and307

Qwen2.5, respectively. We use GPT-4o, MiniGPT-308

4o, and Claude 3.5 APIs as teacher models for309

response generation. Specifically, we use gpt-310

4o-mini-2024-07-18 and gpt-4o-2024-08-06 (Ope-311

nAI, 2023) from OpenAI, and claude-3-5-sonnet-312

20240620 (Anthropic, 2023) from Anthropic.313

4.2 Datasets314

We use English reasoning datasets referenced in315

the technical reports of LLaMA3 (Dubey and Ab-316

hinav Jauhri, 2024), Mistral (Jiang et al., 2023),317

and Qwen-2.5 (Qwen et al., 2025) (the three target318

models M in our experiments). We select datasets 319

with at least 650 examples that can be evaluated via 320

accuracy. If a dataset lacks sufficient training data, 321

we reconstruct it to contain at least 400 training, 50 322

validation, and 200 testing examples. 323

For datasets with subcategories (e.g., MATH, 324

MMLU, MMLU_PRO, API_BANK, AGIEVAL), 325

we choose the challenging subcategory (i.e., with 326

the lowest reported accuracy). For example, we 327

include moral scenarios from MMLU, Professional 328

Law from MMLU_PRO, Level 3 problems from 329

API_BANK, geometry from MATH, and LogicQA 330

from AGIEVAL; we also incorporate the Algebra 331

subcategory from MATH as in (Anonymous, 2024). 332

Following (Anonymous, 2024), we train and 333

evaluate the first 1,000 training and testing exam- 334

ples, generating up to 1,000 training examples per 335

data generation strategy. 336

Main-experiment corpus. In total, our datasets 337

include: Mathematics: GSM8K (Cobbe et al., 338

2021), MATH (Algebra) and MATH (Geometry) 339

(Hendrycks et al., 2021); Commonsense reason- 340

ing: PIQA (Bisk et al., 2020), WinoGrande (Sak- 341

aguchi et al., 2021), Hellaswag (Zellers et al., 342

2019), and ECQA (Aggarwal et al., 2021); Read- 343

ing comprehension: BoolQ (Clark et al., 2019) 344

and SQuAD (Rajpurkar et al., 2016); Aggre- 345

gated benchmarks: MMLU (Moral Scenarios) 346

(Hendrycks et al., 2020), MMLU_PRO (Profes- 347

sional Law) (Wang et al., 2024), and AGIEval 348

(LogicQA) (Zhong et al., 2023); Coding: MBPP 349

(Austin et al., 2021); Reasoning: DROP (Dua et al., 350

2019) and ARC-Challenge (Clark et al., 2018); and 351

Tool-using: API-BANK (Lv 3 problems) (Li et al., 352

2023). More details are in Table 16 (Appendix). 353

PlanBench Extension. We further evalu- 354

ate the most challenging subtasks of Plan- 355

Bench (Valmeekam et al., 2023)—those on which 356

GPT-3 attains an accuracy below 20%. The sub- 357

tasks comprise plan generation, plan optimization, 358

plan verification, plan reuse, plan generalization, 359

and replanning. Although we experimented with 360

various prompt formats, Qwen consistently failed 361

to solve any execution problems. Since our method 362

relies on generating correct responses for use as 363

in-context examples, we exclude the execution task 364

from our evaluation. The remaining six categories 365

remain sufficiently challenging and are not part of 366

our main training benchmarks. We use them solely 367

to analyze performance variance when models are 368

trained on tasks that are very challenging. How 369
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do different response generation strategies affect370

performance variance under such conditions?371

4.3 Data Generation Strategies372

Given 1,000 samples, we use different strategies373

to generate target responses. For a fair compar-374

ison, we use the same prompts from (Anony-375

mous, 2024) to generate responses, including GPT-376

4o Answer Directly, Claud Answer Directly,377

MiniGPT-4o Answer Directly, Step-by-Step and378

Rewrite Ground Truth. Besides, we design two379

new prompts named GPT-4o Examples and Hu-380

man Examples on our own. Please refer to Ap-381

pendix A.5 for details on each response construc-382

tion method.383

We provide ground truth to the teacher models384

and allow up to three attempts for data generation.385

If the first result is incorrect, we regenerate; oth-386

erwise, we stop. The same evaluation script used387

during testing is applied to check correctness.388

5 Experiment389

In this section, we treat each generation strategy390

from Section 4.3, and response-selection metrics391

from the related work section, as baselines. We392

then compare the average training outcomes of our393

method against these baselines across all tasks.394

There are two benchmark sets, detailed in Sec-395

tion 4.2. The first is the Main-experiment corpus,396

which covers a diverse range of tasks and serves as397

the primary benchmark for evaluating both the gen-398

eral ranking ability of our metric and the average399

performance gains achievable by our method.400

Since our goal is efficient data selection, we eval-401

uate each metric using only a small subset of the402

training data. For each method, we repeat the pro-403

cess three times, each time selecting a different404

subset of size K=50 from the training dataset, and405

report the average performance across these runs.406

For example, one run may use the first 50 samples,407

another the second 50, and so on. The final result is408

computed as the average of these three evaluations.409

5.1 Hyperparameters410

We utilize the identical hyperparameter settings as411

referenced in (Anonymous, 2024). Specifically, for412

model fine-tuning, a learning rate of 2e-5, a batch413

size of 32, and a warm-up phase encompassing414

10% of the total training iterations are applied. A415

cosine annealing schedule is implemented for the416

learning rate, and only the Q and V matrices of the417

LoRA parameters are fine-tuned with a rank of 8. 418

All models undergo training and evaluation using 419

half-precision arithmetic. 420

5.2 Evaluation Metrics 421

Accuracy. For every {model, dataset} pair, we let 422

each ranking metric select the top-ranked response- 423

generation strategy, fine-tune the model on data 424

produced by that strategy, and record the resulting 425

test accuracy. We then report the macro average 426

of these accuracies across all evaluated tasks. This 427

score answers the practical question: If I trust a 428

metric to choose my training data, how well will 429

my model perform on average? 430

Weighted Spearman correlation. To measure 431

how closely a metric’s ranking matches the gold 432

ranking, we compute a weighted Spearman coef- 433

ficient in which each task is weighted by the stan- 434

dard deviation of accuracies obtained from all can- 435

didate strategies; tasks whose choice of strategy 436

matters more thus contribute more. The exact for- 437

mula and implementation details are provided in 438

Appendix A.3. 439

5.3 Comparison with Baseline Response 440

Generation Strategies 441

Table 1 summarizes the average test accuracy ob- 442

tained when the target model is fine-tuned on data 443

produced by each response-generation strategy. 444

For datasets that provide chain-of-thought (CoT) 445

groundtruth, we additionally evaluate the Rewrite 446

Ground Truth strategy. As this strategy is only ap- 447

plicable to CoT datasets and some datasets do not 448

have CoT groundtruth, its results are excluded from 449

the table to avoid skewing the overall averages; 450

nevertheless, they are included in every metric that 451

ranks candidate strategies on a per-task basis. 452

Effect of task-specific variance. Table 10 shows 453

that the performance gap among generation strate- 454

gies is highly task-dependent: some tasks show 455

differences of several percentage points, while oth- 456

ers are nearly insensitive to the chosen strategy. 457

To quantify how much our method helps when 458

the choice of generation strategy matters most, we 459

group every {model, dataset} pair by the standard 460

deviation (SD) of accuracies across baselines. All 461

tasks include all pairs without filtering. High- 462

variance tasks retain only those with SD > 2%. 463

Very-high-variance tasks retain only those with 464

SD > 4%. In the whole Main-experiment corpus, 465

our approach delivers the highest mean accuracy, 466
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Methods STD Range num of recorded data mistral llama 3 instruct qwen Avg Acc
Upper bound All Data 51 59.39% 64.44% 71.41% 65.08%
Step-by-step 56.25% 60.94% 69.87% 62.35%
GPT-4 ICL examples 57.29% 62.03% 69.90% 63.07%
Human examples 56.95% 61.91% 70.22% 63.03%
Mini-GPT-4 56.72% 61.36% 70.13% 62.74%
GPT-4 56.92% 62.83% 69.89% 63.21%
Claude 57.45% 62.93% 70.30% 63.56%
Ours 58.33% 63.63% 70.38% 64.11%
Ours - Best All Data 51 +0.87% +0.69% +0.08% +0.55%
Ours - Avg of Others +1.40% +1.63% +0.33% +1.12%
Ours - Best SD > 2.00% 27 +1.24% +0.98% -0.93% +0.88%
Ours - Avg of Others +1.80% +2.23% +1.18% +1.92%
Ours - Best SD > 4.00% 14 +2.21% +1.44% -1.32% +1.49%
Ours - Avg of Others +2.63% +5.88% +0.76% +3.29%

Table 1: Comparison of our method with other response generation strategies, averaged over three subsets. Experi-
ments are conducted on datasets from the Main-experiment corpus, introduced in Section 4.2. In this benchmark,
Claude emerges as the strongest competitor among the baseline methods.

Methods STD Range num of recorded data mistral llama 3 instruct qwen Avg Acc Weighted Spearman Pho
Upper bound All Data 51 59.39% 64.44% 71.41% 65.08%
IDF 56.78% 61.18% 69.55% 62.51% 0.019
skywork 56.32% 61.64% 70.26% 62.74% 0.250
CAR 56.36% 61.80% 70.31% 62.82% 0.258
perplexity 57.48% 63.03% 70.37% 63.63% 0.236
Ours 58.33% 63.63% 70.38% 64.11% 0.267
Ours - Perplexity All Data 51 +0.85% +0.60% +0.01% +0.48% +0.031
Ours - Perplexity STD > 2.00% 27 +1.22% +0.84% -0.03% +0.91% +0.039
Ours - Perplexity STD > 4.00% 14 +1.83% +2.71% +0.02% +1.82% +0.077

Table 2: We compare our method against IDF (Li et al., 2024), Skywork (Liu et al., 2024), CAR (Xu et al., 2024),
and Perplexity(Anonymous, 2024). The experiments are conducted on datasets from the Main-experiment corpus,
introduced in Section 4.2. In this benchmark, Perplexity emerges as the strongest competitor among the baselines.

exceeding the strongest single baseline (Claude) by467

0.55% and the mean of all baselines by 1.12%.468

When we restrict evaluation to high-variance469

tasks, the average gain of our method over Claude470

rises to 0.88%; under the very-high-variance fil-471

ter, the gain further climbs to 1.49%. Relative to472

the mean of all baselines, the improvements reach473

3.29% on the very-high-variance subset. These474

results confirm that self-aligned perplexity is espe-475

cially valuable when candidate generation strate-476

gies lead to widely divergent training outcomes.477

5.4 Comparison with Alternative Response478

Selection Metrics479

Table 2 reports results obtained with the same set-480

up as in Section 5.3, but swapping the ranking481

metric. Across the full Main-experiment corpus,482

self-aligned perplexity achieves the best mean ac-483

curacy and the highest weighted Spearman corre-484

lation; standard perplexity is the closest baseline.485

All tasks: Using every training run, our metric486

surpasses standard perplexity by 0.48% in accu-487

racy and by 0.031 in weighted Spearman ρ. High-488

variance tasks (SD > 2%): The margins widen489

to 0.91% in accuracy and 0.039 in weighted ρ.490

Very-high-variance tasks (SD > 4%): Gains 491

further increase to 1.82% in accuracy and 0.077 in 492

weighted ρ. These results mirror the trend observed 493

in Section 5.3: the larger the performance spread 494

among candidate strategies, the more our metric 495

outperforms conventional perplexity, underscoring 496

its value for selecting high-quality training data. 497

5.5 Performance Differences among Response 498

Generation Strategies Can be Very Large 499

Candidate response-generation strategies can yield 500

significantly different results depending on the 501

task. To illustrate this, we evaluate various strate- 502

gies on the PLANBENCH benchmark introduced 503

in Section 4.2, which is designed to be more dif- 504

ficult than standard instruction-following datasets 505

due to its long-horizon, goal-conditioned reason- 506

ing requirements. As shown in Table 6 and 507

Tabel 17(Appendix), training outcomes vary sig- 508

nificantly across methods, underscoring the impor- 509

tance of selecting an appropriate generation strat- 510

egy. Our self-aligned perplexity metric improves 511

accuracy by an average of 1.77% over standard per- 512

plexity and 5.24% over the mean performance of 513

all strategies. The results further demonstrate that, 514
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Target Response style Model Task PPL SsbsPPL ScadPPL SrPPL

Step by Step(sbs) Mistral7B ECQA 4.476 3.695 4.85 4.329
GPT4 Answer Directly(cad) 5.551 4.116 4.768 4.456
Redundant(r) 4.944 4.334 5.615 4.326
Step by Step(sbs) Mistral7B PIQA 4.290 3.816 5.968 4.028
GPT4 Answer Directly(cad) 6.277 4.053 5.962 4.250
Redundant(r) 4.547 3.919 6.724 4.027

Table 3: Examples showing that in-context perplexity
favors responses matching the style of the in-context
example. PPL is standard perplexity; SsbsPPL, ScadPPL,
and SrPPL use step-by-step, GPT-4o Answer Directly,
and redundant responses as context, respectively.

as the optimal model varies across datasets and515

continues to shift as APIs evolve, model-aware se-516

lection metrics like self-aligned perplexity remain517

critical.518

6 Ablation Study519

6.1 Why Self-Aligned Perplexity Outperforms520

Traditional Perplexity521

Traditional perplexity is sensitive to surface-level522

stylistic cues, so a low score does not necessarily523

mean the response “feels” familiar to the model.524

We therefore anchor the metric on the model’s own525

zero-shot prediction: the closer a candidate lies to526

this anchor, the more familiar it should be. Inject-527

ing that prediction as a single in-context example528

reshapes the probability distribution, yielding a self-529

aligned perplexity that more faithfully reflects the530

response’s true familiarity.531

When perplexity fails. According to Table 3, On532

ECQA, a deliberately redundant answer(see Ap-533

pendix A.5.1 for how we construct this dataset)534

scores 4.94 in raw perplexity, while the terser,535

higher-quality GPT-4-direct answer scores 5.55536

(Table 3). A similar pattern appears in PIQA (4.55537

vs. 6.28). Thus, lower perplexity can sometimes538

reflect wordiness rather than genuine familiarity539

with the model’s preferred style.540

How self-aligned perplexity helps. According541

to Table 3, adding a single in-context example can542

realign the perplexity scores. For the GPT-4–style543

response on ECQA, the raw perplexity (PPL) is544

5.551, which is higher than the redundant-style545

response (4.944). After prepending an in-context546

example drawn from another GPT-4–style answer,547

the GPT-4 response’s perplexity drops to 4.768. In548

contrast, when the same example is added to the549

redundant and step-by-step responses, their per-550

plexities increase from 4.944 and 4.476 to 5.615551

and 4.850, respectively.552

Weighted Method Model Accuracy Spearman’s ρ
Ours Mistral7B 58.3% 0.301
TTT (lr=2e-5) 57.8% 0.103
TTT (lr=2e-4) 57.9% 0.545
Ours Llama3 63.6% 0.147
TTT (lr=2e-5) 61.3% 0.083
TTT (lr=2e-4) 62.7% 0.372
Ours Qwen2.5 70.4% 0.449
TTT (lr=2e-5) 70.2% -0.040
TTT (lr=2e-4) 70.9% 0.256
Ours Average 64.1% 0.267
TTT (lr=2e-5) 63.1% 0.077
TTT (lr=2e-4) 63.8% 0.297

Table 4: Ours (K=50, avg. of 3 subsets) vs. Train-then-
Test (TTT) (K=100, 1 seed) on Main-experiment corpus.

Figure 1: When the improvement ratio is high, the stan-
dard deviation of training outcomes across different
response-generation strategies tends to be larger.

A similar effect occurs on PIQA: the GPT-4 re- 553

sponse on Mistral has an initial perplexity of 6.277, 554

higher than the redundant style (4.570). With a 555

GPT-4 in-context example, its perplexity decreases 556

to 5.962, while the redundant style’s perplexity 557

rises to 6.724. 558

Across the two tasks, using the model’s own pre- 559

diction as the in-context anchor consistently low- 560

ers the score for its native style by 0.6–1.5 points, 561

restoring the correct ordering and yielding rankings 562

that track downstream fine-tuning gains. 563

6.2 Why Do Some Datasets Show Greater 564

Variance in Training Outcomes? 565

We observed a striking regularity across tasks: 566

whenever enlarging the training set from 100 to 567

1 000 examples yields little or no accuracy gain, 568

the choice of response-generation method matters 569

equally little. Conversely, tasks that continue to 570

improve with more data show pronounced perfor- 571

mance gaps between generation strategies. 572

Let the improvement ratio be defined as 573

Acc1000/Acc100 − 1, representing the relative gain 574

from increasing the training size ten-fold. Figure 1 575

plots log(improvement ratio) (x-axis) against the 576

standard deviation of accuracies across generation 577
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0–10 10–20 20–30 0–30 30–60 60–90 0–50 50–100 100–150
Accuracy (%) 63.92 64.28 63.51 64.15 63.96 64.08 64.15 63.98 64.20
Weighted ρ 0.242 0.316 0.184 0.244 0.251 0.217 0.249 0.233 0.319

0–100 100–200 200–300 0–200 0–300 - - - -
Accuracy (%) 64.18 64.12 64.08 64.12 64.12 - - - -
Weighted ρ 0.269 0.280 0.287 0.288 0.287 - - - -

Table 5: Performance on different subsets when ranking with self-aligned perplexity. An interval such as 60–90
means starting at index 60 and using the next 30 instances (indices 60–89) for ranking calculation.

methods (y-axis). A clear positive trend emerges:578

once the improvement ratio exceeds roughly 2%,579

the variance among methods rises sharply; below580

this threshold, it is nearly zero. We plot Figure 1581

using training results from all tasks in the Main-582

experiment corpus and PlanBench.583

The results suggest that divergence across gener-584

ation strategies is greatest exactly when the dataset585

still offers headroom for improvement. On such586

high-variance tasks, selecting the right response-587

generation method is critical, underscoring the588

value of our self-aligned perplexity criterion.589

6.3 Our Method vs. Train-Then-Select590

One natural (but computationally expensive) ap-591

proach to select the optimal response generation592

strategy is to adopt a Train-Then-Select (TTS) pro-593

cedure. In this way, we first generate a small dataset594

(e.g., 100 samples) using each candidate strategy.595

For each dataset, we train the target model and eval-596

uate its performance. We then rank the strategies597

based on the results and choose the best-performing598

one to generate the remainder of the dataset.599

When evaluating TTS, we train the target model600

on 100 samples under two settings: 1) Standard601

Training: A learning rate of 2e-5 for 20 epochs602

(matching our main setup). The performance accu-603

racies for each strategy under this setting is in the604

Table 14. 2) Intense Training: A learning rate of605

2e-4 for 40 epochs. The performance accuracies606

for each strategy under this setting is in Table 15.607

After ranking the strategies using TTS, we com-608

pare their performance with ours. In Table 4, de-609

spite using less data and requiring no training, vali-610

dation, or testing computations for strategy selec-611

tion, our method achieves better average accuracy612

and comparable weighted Spearman correlation.613

6.4 Stability of Our Method614

As shown in Table 5, accuracy generally improves615

as the subset size grows, and the overall perfor-616

mance is consistent across ranges. Small subsets617

sometimes degrade accuracy (values highlighted in618

red); thus, we recommend using at least 30 sam-619

ples or even 50 samples for the best performance. 620

Specifically, “0–10”, “10–20”, and “20–30” denote 621

the first, second, and third batches of ten training 622

examples, respectively, while “0–50” and “0–100” 623

correspond to the first 50 and 100 examples. When 624

the subset size reaches 50 or more, average accu- 625

racy stabilises. The weighted Spearman correlation 626

(ρ) also increases with larger subsets, but the gains 627

taper off once the subset size exceeds 50. 628

6.5 Ground Truth vs. Synthetic Data 629

As shown in Table 10 (Appendix), when ground 630

truth is provided in natural language (e.g., GSM8K, 631

MATH, ECQA, MBPP), training on ground truth 632

is less effective than on synthetic data. This 633

is because LLMs are more familiar with LLM- 634

generated data, as demonstrated by Anonymous 635

(2024). However, when the ground truth is written 636

as a gold label without a CoT inference process, 637

training on the gold label can sometimes outper- 638

form training on CoT synthetic data within the 639

same domain. However, in Table 8 (Appendix), 640

training on gold labels harms cross-domain perfor- 641

mance more than training on synthetic data. Be- 642

sides, in real-life scenarios, training on natural lan- 643

guage data is crucial, as users expect to see the ra- 644

tionale behind the final prediction made by LLMs. 645

7 Conclusions 646

In this paper, we present a novel and scal- 647

able approach for selecting the optimal response- 648

generation strategy to train large language models. 649

We introduce a new metric, self-aligned perplex- 650

ity, which more effectively evaluates the alignment 651

between a target model and its response options 652

compared to traditional perplexity. We demonstrate 653

that choosing the optimal generation strategy based 654

on self-aligned perplexity leads to substantial im- 655

provements in model performance, particularly on 656

tasks with high performance variance. We hope our 657

work will inspire researchers who use perplexity as 658

a downstream metric or who wish to build the most 659

effective instruction tuning datasets. 660
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8 Limitations661

While recent open-source “O1” models support in-662

context chain-of-thought reasoning, our evaluations663

focus on larger teacher models. We used meta664

prompts to elicit reasoning steps but did not test665

on O1 models. We believe our style-alignment666

approach still applies, though further validation on667

smaller or differently pretrained models is needed.668

We leave broader scaling studies and extensions to669

other model families for future work.670
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A Appendix907

A.1 Can we get performance gain if we simply908

put all of the response variants together?909

Selecting the optimal data generation strategy re-910

mains essential, even when resources or funding911

are unlimited. As shown in Table 7, simply combin-912

ing six types of synthetic data (Total ntrain = 6000)913

does not guarantee a performance gain over select-914

ing the best synthetic training data. For example,915

after training the Llama3 model on API-Bank us-916

ing all six types of synthetic data, the evaluation917

accuracy is only 49%, much lower than when se-918

lecting the Claude Answer Directly data (54.7%).919

Indeed, according to Table 7, if we combine the920

mixture of the top three data generation strategies921

(Mixture of good ntrain = 3000), the performance922

is almost always better than if we simply combine923

all of the data together (Total ntrain = 6000). This924

underscores the importance of selecting data gener-925

ation strategies, even if we can afford large-scale926

synthetic data generation and training.927

A.2 The Impact of Accuracy of the Synthetic928

Data on Training Outcomes929

In our experiment, we aim to ensure the correctness930

of generated answers by validating them against931

ground truth answers. Our research seeks to iden- 932

tify the best strategy for generating the optimal 933

version of an answer. In other words, we can adjust 934

data generation strategies to ensure correctness. 935

In our experiments, we use ground truth an- 936

swers to guide the generated answers for nearly 937

all datasets, with the only exceptions being math- 938

ematical problems. This follows the setting of the 939

paper to maintain consistency with previous work 940

(Anonymous, 2024). This approach might be ac- 941

ceptable since closed-source APIs tend to generate 942

accurate answers. For GSM8K and Math Algebra, 943

GPT-4o, Claude, and MiniGPT-4o achieve accura- 944

cies of 90% or above. 945

To evaluate the impact of accuracy on training 946

outcomes, we conducted the following experiment. 947

As shown in Table 9, we tested three approaches: 948

training on the full dataset, using only correct pre- 949

dictions, and replacing incorrect predictions with 950

rewritten ground truth. These approaches showed 951

less than a 2% improvement overall. Note that in 952

this experiment, GPT-4 refers to the gpt-4-1106- 953

preview API, rather than the gpt-4o-2024-08-06 954

API, which was used in all other experiments in 955

the paper. The mathematical capabilities of GPT- 956

4o, GPT-4-Mini, and Claude are similar on Math 957

Algebra tasks. Therefore, we used the gpt-4-1106- 958

preview API, which has a weaker ability to solve 959

Math Algebra problems. The benifit of using it is 960

that it makes more mistakes on GSM8K so that we 961

can better evaluate the influence of accuracy. We 962

used this API once to generate the data and train 963

the model from there. 964

According to the table, the overall benefit of 965

replacing incorrect examples with rewritten ground 966

truth or removing incorrect examples has minimal 967

impact on the overall training outcomes. 968

A.3 Weighted Spearman’s Rank Correlation 969

Coefficient 970

Spearman’s rank correlation (ρ) measures how 971

well two orderings agree, ignoring absolute values. 972

Because some of our {model, dataset} pairs ex- 973

hibit far larger performance gaps among response- 974

generation strategies than others, we assign higher 975

importance to pairs whose choice of strategy mat- 976

ters more. We therefore adopt a weighted variant of 977

Spearman’s correlation in which each item is given 978

a non-negative weight wi. 979

Definition. Let R1,i and R2,i be the ranks of the i- 980

th item under two orderings and let wi be its weight. 981
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Methods STD Range num of recorded data mistral llama 3 instruct qwen Avg Acc Weighted Spearman Pho
Upper bound All Data 18.0 52.88% 54.87% 41.87% 49.88%
Step-by-step 37.56% 44.48% 31.06% 37.70%
GPT-4 ICL examples 40.86% 45.84% 36.86% 41.19%
Human examples 45.01% 41.82% 29.89% 38.91%
Mini-GPT-4 38.68% 40.29% 30.51% 36.49%
GPT-4 39.33% 41.86% 31.08% 37.42%
Claude 51.89% 50.09% 37.27% 46.42%
Ours 45.29% 50.63% 41.26% 45.73%
Ours - Claude -6.60% +0.55% +3.98% -0.69%
Ours - Avg of Others +3.07% +6.57% +8.48% +6.04%
Upper bound All Data 18.0 52.88% 54.87% 41.87% 49.88%
IDF 43.29% 46.17% 34.91% 41.46% 0.331
skywork 43.66% 46.01% 36.12% 41.93% 0.226
CAR 41.87% 44.99% 35.00% 40.62% 0.239
perplexity 42.69% 48.50% 36.44% 42.54% 0.226
Ours 45.29% 50.63% 41.26% 45.73% 0.239
Ours - Perplexity +2.59% +2.14% +4.81% +3.18% +0.012

Table 6: Comparison of our method with other metrics or response generation methods on 6 subsets from the
PlanBench dataset as introduced by PlanBench Extension, introduced in Section 4.2. We compare our method
against IDF (Li et al., 2024), Skywork (Liu et al., 2024), CAR (Xu et al., 2024), and Perplexity(Anonymous, 2024).

Denote the weighted means982

R̄1 =

∑n
i=1wiR1,i∑n

i=1wi
, R̄2 =

∑n
i=1wiR2,i∑n

i=1wi
.983

The weighted Spearman correlation is then the984
weighted Pearson correlation between the rank vec-985
tors:986

ρw =

n∑
i=1

wi (R1,i − R̄1) (R2,i − R̄2)√√√√ n∑
i=1

wi (R1,i − R̄1)
2

√√√√ n∑
i=1

wi (R2,i − R̄2)
2

.987

Choice of weights. For each {model, dataset}988

pair, we first train the target model on data pro-989

duced by every candidate response-generation990

method and record the resulting accuracies. The991

weight wi is set to the standard deviation of these992

accuracies. Intuitively, tasks in which the strategies993

yield very different outcomes (wi large) are more994

informative when judging a ranking metric, so they995

contribute more to ρw.996

Interpretation. A value of ρw≈1 indicates that997

the metric produces a ranking almost identical to998

the gold ranking, with higher-variance tasks influ-999

encing the score most strongly. Conversely, ρw≈01000

implies no weighted monotonic relationship, and1001

ρw≈−1 signals an inverse agreement.1002

Throughout the main text and Appendix, all re-1003

ported “Spearman” results actually correspond to1004

this weighted formulation.1005

A.4 Data Selection Rationale for the 1006

Benchmark 1007

The datasets included in our benchmark, drawn 1008

from the Mistral, Llama, and Qwen benchmarks, 1009

were selected according to a specific set of rules 1010

designed to ensure relevance and suitability. These 1011

rules are as follows: 1012

1. Sufficient Dataset Size: We only included 1013

datasets where the combined size of the training, 1014

validation, and testing sets exceeded 650 samples. 1015

This threshold was chosen to ensure sufficient data 1016

for robust model evaluation. 1017

2. Accuracy as Evaluation Metric: A key re- 1018

quirement was that the dataset could be evaluated 1019

using accuracy as the primary metric. This allows 1020

for a clear and quantifiable assessment of model 1021

performance. 1022

3. English Question-Answering Format: All 1023

selected datasets are in an English question-and- 1024

answer format to maintain consistency and focus 1025

on English language reasoning abilities. 1026

4. Focus on Reasoning Tasks: The underlying 1027

task presented by each dataset must involve rea- 1028

soning skills. This ensures that the benchmark 1029

effectively assesses the models’ ability to reason 1030

and infer. 1031

A detailed justification for the inclusion or ex- 1032

clusion of each dataset can be found in Table 16. 1033

A.5 Correctness Filter 1034

Without supervised fine-tuning (SFT), M(x) may 1035

generate incorrect responses, making cosine simi- 1036

larity calculations between M(x)and ŷ unreliable. 1037
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Method Model DROP Hellaswag API-Bank
Best ntrain = 1000 Mistral7B 0.743 0.675 0.559
Avg ntrain = 1000 0.726 0.646 0.446
Total ntrain = 6000 0.740 0.738 0.555
Mixture of good ntrain = 3000 0.770 0.731 0.555
Mixture of good ntrain = 1000 0.744 0.686 0.535
Average of all ntrain = 1000 0.711 0.686 0.433
Best ntrain = 1000 Llama3 0.805 0.718 0.547
Avg ntrain = 1000 0.778 0.711 0.392
Total ntrain = 6000 0.810 0.738 0.490
Mixture of good ntrain = 3000 0.812 0.745 0.527
Mixture of good ntrain = 1000 0.804 0.728 0.490
Average of all ntrain = 1000 0.771 0.705 0.457
Best ntrain = 1000 Qwen2.5 0.814 0.739 0.461
Avg ntrain = 1000 0.804 0.719 0.413
Total ntrain = 6000 0.798 0.748 0.584
Mixture of good ntrain = 3000 0.824 0.738 0.584
Mixture of good ntrain = 1000 0.818 0.742 0.490
Average of all ntrain = 1000 0.778 0.712 0.412

Table 7: Best represents the best data generation strategy for the task with the target model. Total combines all
strategies, yielding ntrain = 6000. Mixture of good (ntrain = 3000) includes the top three strategies with 1000
samples each, while Mixture of good (ntrain = 1000) has about 333 samples per strategy.

To alleviate this, we introduce a filtering mech-1038

anism to filter out the incorrect M(x). We no-1039

tice that for mathematical problems, the correct1040

final answer typically appears as the last number1041

in M(x). Therefore, for Math-related tasks, we1042

use regular expressions (regex) to extract the last1043

number from the prediction and compare it directly1044

with the ground truth. For other types of problem,1045

we use the Qwen2.5-Instruct 7b model to extract1046

the predicted label from the model output. We1047

then compare this extracted label with the true gold1048

label; if they match, we consider the prediction cor-1049

rect by default. The code we used to extract labels1050

are detailed in Appendix A.61051

Response Construction Details1052

Ground Truth: This strategy uses the original1053

ground-truth responses from the datasets as target1054

outputs. Since our focus is on selecting effective1055

chain-of-thought (CoT) target responses, we ap-1056

ply this method to datasets that include human-1057

annotated CoT reasoning steps, such as GSM8K,1058

MATH, ECQA, MBPP. When human-annotated1059

CoT is unavailable, we use the gold label as ground1060

truth.1061

GPT-4o Answer Directly, Claud Answer Di-1062

rectly, and MiniGPT-4o Answer Directly gener-1063

ate responses based on questions and the ground1064

truth using GPT-4o, Claude 3.5 and Mini-GPT4, 1065

respectively. Rewrite Ground Truth: Direct GPT- 1066

4o to restyle the ground truth in its own language. 1067

This method is only applicable to GSM8K, MATH 1068

Algebra, ECQA. The other tasks’s ground truth con- 1069

sists of target labels without any human-annotated 1070

chain-of-thought (CoT) reasoning, making rewrit- 1071

ing infeasible. Step-by-Step: instructs GPT-4o to 1072

generate step-by-step responses based on questions 1073

and ground truth. GPT-4o Examples: To facil- 1074

itate problem-solving, we provide GPT-4o with 1075

two high-quality, expert-selected in-context exam- 1076

ples of its own responses. GPT-4o is then tasked 1077

with generating new responses based on these ex- 1078

amples. Human Examples: To aid GPT-4o in 1079

understanding problem-solving for these datasets, 1080

we provide two carefully chosen human-written 1081

examples as context. GPT-4o then uses these ex- 1082

amples to generate new responses. We put more 1083

details in Section A.5.2 in Appendix. 1084

A.5.1 Prompt for Self-Aligned Perplexity 1085

Redundant Prompt 1086

We construct redundant prompts to demonstrate 1087

that the perplexity of the redundant target responses 1088

is lower than that of GPT-4’s answers. Perplexity 1089

primarily reflects how fluent the language is and 1090

how well the language style aligns with the model, 1091

13



Figure 2: Prompt that we used for self-aligned perplex-
ity

but it places less emphasis on semantic meaning.1092

f"""We have the question and the groundtruth.1093

↪→ Given on the groundtruth, please1094

↪→ reformat the groundtruth so that it1095

↪→ answer the question in a step by step1096

↪→ redundant manner. Be as repetitive and1097

↪→ step by step and redundant as possible.1098

1099

1100

Question: {question}1101

Groundtruth: {groundtruth}1102

1103

1104

1. We wish you to reformat a new groundtruth.1105

↪→ The new groundtruth are reformated a1106

↪→ new groundtruth which solve the1107

↪→ problem as steo by step and redundant as1108

↪→ possible.1109

2. You will pretend as you do not know the1110

↪→ groundtruth, because we will use your1111

↪→ step by step redundant answer as target1112

↪→ responses to train our model.1113

3. (important format) You must generate the1114

↪→ groundtruth with the step by step1115

↪→ redundant inference process directly.1116

↪→ Please not saying anything like ’sure I1117

↪→ can help you with’ or ’sure, i will not1118

↪→ mention the gold label’1119

4. (important format) You will inference first then1120

↪→ put the Final Answer: {gold_label}1121

1122

at the end like this1123

1124

INFERENCE HERE1125

Final Answer: {gold_label}1126

"""1127

Declaration of Independence1128

This is the part of Declaration of Independence that1129

we use in the experiment in Table 4.1130

f"""The Unanimous Declaration of the Thirteen 1131

↪→ United States of America . When, in the 1132

↪→ course of human events, it becomes 1133

↪→ necessary for one people to dissolve the 1134

↪→ political bonds which have connected 1135

↪→ them with another, and to assume among 1136

↪→ the powers of the earth, the separate and 1137

↪→ equal station to which the laws of nature 1138

↪→ and of nature\’’s God entitle them, a 1139

↪→ decent respect to the opinions of 1140

↪→ mankind requires that they should 1141

↪→ declare the causes which impel them to 1142

↪→ the separation 1143

1144

We hold these truths to be self−evident, that all 1145

↪→ men are created equal, that they are 1146

↪→ endowed by their Creator with certain 1147

↪→ unalienable rights, that among these are 1148

↪→ life, liberty and the pursuit of happiness. 1149

↪→ That to secure these rights, governments 1150

↪→ are instituted among men, deriving their 1151

↪→ just powers from the consent of the 1152

↪→ governed. That whenever any form of 1153

↪→ government becomes destructive to these 1154

↪→ ends, it is the right of the people to alter 1155

↪→ or to abolish it, and to institute new 1156

↪→ government, laying its foundation on 1157

↪→ such principles and organizing its powers 1158

↪→ in such form, as to them shall seem most 1159

↪→ likely to effect their safety and 1160

↪→ happiness.""" 1161

Self-Aligned In-Context Prompt for Perplex- 1162

ity Calculation This prompt shows how we add 1163

self - generated initial predictions from other ques- 1164

tions as in - context examples for perplexity calcu- 1165

lation. 1166

in_context_question = \ 1167

f"""Question: {original_question} 1168

1169

We have an inference example below to show you 1170

↪→ how to solve the problem. please follow 1171

↪→ the inference style and solve the problem 1172

1173

inference example: { 1174

↪→ initial_prediction_of_another_question} 1175

1176

1177

now, according to the inference example, please 1178

↪→ solve the problem. 1179

1180

IMPORTANT FORMAT REQUIREMENT: 1181

14



↪→ When you solve the problem, you need1182

↪→ to make the problem solving process and1183

↪→ language as similar to the inference1184

↪→ example above as possible. If the1185

↪→ inference process does not follow at the1186

↪→ prediction before, you have to correct1187

↪→ your style at anytime when you notice1188

↪→ the style is not following the inference1189

↪→ example. this is the most important1190

↪→ requirement. please follow it.1191

1192

"""1193

A.5.2 Data Generation Strategies1194

We instruct GPT-4, Claude 3.5, Mini-GPT4 to gen-1195

erate different of target responses using different1196

target reponse generation strategies.1197

GPT-4/Claude 3.5/Mini-GPT4 Answer Di-1198

rectly: This prompt is from (Anonymous, 2024).1199

For tasks involving mathematics and coding, we1200

submit the problems from our training dataset di-1201

rectly to GPT-4 or Claude 3.5 to obtain their solu-1202

tions. In the case of classification tasks, we provide1203

these models with the input questions alongside1204

the correct labels (excluding any human-generated1205

explanations) and utilize their outputs. These gen-1206

erated answers are then paired with the original1207

questions to form the GPT-4/Claude 3.5 Direct An-1208

swer Training Dataset.1209

To ensure that the models develop their own1210

problem-solving and analytical capabilities, we de-1211

liberately exclude any solutions or rationales re-1212

lated to math, coding, or classification tasks. This1213

approach prevents the models from simply mim-1214

icking the ground truth processes, which could1215

otherwise result in some of GPT-4’s predictions1216

lacking its unique reasoning style. Such mimicry1217

would undermine the reliability of our perplexity1218

measurements, which are designed to evaluate how1219

effectively a language model handles outputs from1220

other models.1221

The prompt below is designed to guide GPT-1222

4/Claude 3.5 in generating responses without rely-1223

ing on the ground truth solutions:1224

"""We have the {question}1225

1226

1227

1. We wish you to answer the question.1228

2. You must answer the question (with inference1229

↪→ process) directly without say anything1230

↪→ else. Please not saying anything ’like1231

↪→ sure I can help you with’ or ’sure, i will 1232

↪→ not mention the gold label’ 1233

3. You will inference first then put the Final 1234

↪→ Answer (NUMBER_HERE) at the end 1235

↪→ of the prediction like this 1236

1237

INFERENCE HERE 1238

Final Answer: NUMBER_HERE""" 1239

Rewrite Ground Truth: This prompt is from 1240

(Anonymous, 2024). In this approach, we provide 1241

GPT-4 and Claude 3.5 with the ground truth data, 1242

which includes human-annotated rationales and de- 1243

tailed problem-solving steps. The goal is to have 1244

GPT-4 and Claude 3.5 rephrase the ground truth 1245

content using their own linguistic styles. 1246

The subsequent prompt guides GPT-4 and 1247

Claude 3.5 to generate the GPT-4/Claude 3.5 Re- 1248

sponse (Rewrite GT) output. 1249

"""Given the question: {question} 1250

and the groundtruth: {groundtruth} 1251

1252

Please states the prediction in your own words. 1253

↪→ The groundtruth is 100% correct. You 1254

↪→ should not change the problem solving 1255

↪→ logic of the groundtruth. just restates it in 1256

↪→ your own words. 1257

1258

1. You will pretend as you do not know the 1259

↪→ groundtruth, because we will use your 1260

↪→ prediction as target labels to train our 1261

↪→ model. 1262

2. (important format) You must generate the 1263

↪→ groundtruth directly. Please not saying 1264

↪→ anything like ’sure I can help you with’ 1265

↪→ or ’sure, i will not mention the gold label’ 1266

↪→ 1267

3. (important format) Please make sure the Final 1268

↪→ Answer: {gold_label} is placed at the 1269

↪→ end of the modified prediction.""" 1270

Step-by-step: This prompt is from (Anonymous, 1271

2024). We instruct GPT-4 and Claude 3.5 to me- 1272

thodically address each problem by breaking it 1273

down into sequential steps. For tasks involving 1274

mathematics and coding, we present the problems 1275

directly from our training dataset to these models 1276

to obtain their solutions. In classification tasks, we 1277

provide GPT-4 and Claude 3.5 with the correct la- 1278

bels (excluding any human-generated explanations) 1279

along with the input questions, and then utilize their 1280

detailed, step-by-step responses. These generated 1281

answers are subsequently paired with the original 1282
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questions to form the GPT-4/Claude 3.5 Step-by-1283

Step Response (No GT) Dataset.1284

To ensure that the models develop their own1285

unique problem-solving and analytical approaches,1286

we intentionally exclude the solutions or rationales1287

for the mathematics, coding, or classification tasks.1288

This prevents the models from simply mimick-1289

ing the problem-solving and analytical methods1290

found in the ground truth data. Including such pro-1291

cesses could result in some of GPT-4’s and Claude1292

3.5’s outputs not reflecting their inherent reason-1293

ing styles, thereby compromising the accuracy of1294

our perplexity measurements. These measurements1295

are designed to assess how effectively a language1296

model can handle outputs generated by other lan-1297

guage models.1298

The following prompt directs GPT-4 and Claude1299

3.5 to generate the GPT-4/Claude 3.5 Step-by-Step1300

Response (No GT) responses.1301

"""1302

We have the question and the groundtruth. Please1303

↪→ reformat the groundtruth in step by step1304

↪→ manner with details.1305

1306

Question: {question}1307

Groundtruth: {groundtruth}1308

1309

1. We wish you to regenerate a new groundtruth.1310

↪→ The new groundtruth solve the problem1311

↪→ step by step. If you believe the1312

↪→ groundtruth is not detail enough, you1313

↪→ could add details.1314

2. You will pretend as you do not know the1315

↪→ groundtruth, because we will use your1316

↪→ prediction as target labels to train our1317

↪→ model.1318

3. (important format) You must generate the1319

↪→ groundtruth with the step by step1320

↪→ inference process directly. Please not1321

↪→ saying anything like ’sure I can help you1322

↪→ with’ or ’sure, i will not mention the gold1323

↪→ label’1324

4. (important format) You will inference first then1325

↪→ put the Final Answer: {gold_label}1326

1327

at the end like this1328

1329

INFERENCE HERE1330

Final Answer: {gold_label}1331

"""1332

GPT-4o with GPT-4o Examples: We devel-1333

oped this prompt specifically for the API-Bank and 1334

Plan-Bench datasets. This prompt utilizes GPT- 1335

4’s own accurate generations as examples to help 1336

GPT-4 not only better understand the task but also 1337

demonstrate how to solve the problems effectively. 1338

The prompt below is an example that we used to 1339

generate target responses for the API-Bank dataset. 1340

""" 1341

We have the {question} and the groundtruth { 1342

↪→ gold_label} 1343

1344

1345

1. We wish you to answer the question. We will 1346

↪→ use your answer to train our model, thus 1347

↪→ you will answer and pretend as not 1348

↪→ knowing the gold_label. 1349

2. You must answer the question (with inference 1350

↪→ process) directly without say anything 1351

↪→ else. Please not saying anything ’like 1352

↪→ sure I can help you with’ or ’sure, i will 1353

↪→ not mention the gold label’ 1354

3. You will inference first then put the Final 1355

↪→ Answer ({gold_label}) at the end of the 1356

↪→ prediction like this 1357

1358

INFERENCE HERE 1359

Final Answer: {gold_label} 1360

1361

Example 1: 1362

1363

Question : {q1} 1364

1365

groundtruth: API−Request: [ToolSearcher( 1366

↪→ keywords=’healthcare provider 1367

↪→ appointment availability checker’)] 1368

1369

Inference: The user is requesting to find a 1370

↪→ healthcare provider (specifically a 1371

↪→ cardiologist) in Los Angeles for a check− 1372

↪→ up appointment. The available API 1373

↪→ description indicates that the 1374

↪→ ToolSearcher API can be used to search 1375

↪→ for relevant tools based on the provided 1376

↪→ keywords. Therefore, the first step is to 1377

↪→ search for a tool that can help find a 1378

↪→ healthcare provider appointment 1379

↪→ availability checker. 1380

1381

Final Answer: API−Request: [ToolSearcher( 1382

↪→ keywords=’healthcare provider 1383

↪→ appointment availability checker’)] 1384
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1385

1386

Example 2:1387

1388

question: {q2}1389

1390

groundtruth: API−Request: [1391

↪→ HealthcareProviderAppointmentChecker1392

↪→ (specialty=’cardiologist’, location=’Los1393

↪→ Angeles’)]1394

1395

Inference: The first API request was successfully1396

↪→ made to find a tool for checking1397

↪→ healthcare provider appointment1398

↪→ availability. The1399

↪→ HealthcareProviderAppointmentChecker1400

↪→ API was identified, which requires1401

↪→ specialty and location as input1402

↪→ parameters to search for available1403

↪→ appointment slots. Based on the user’s1404

↪→ request to find a cardiologist in Los1405

↪→ Angeles for a check−up appointment, the1406

↪→ next API call should use this1407

↪→ information.1408

1409

Final Answer: API−Request: [1410

↪→ HealthcareProviderAppointmentChecker1411

↪→ (specialty=’cardiologist’, location=’Los1412

↪→ Angeles’)]1413

1414

1415

Example 3:1416

1417

question: {q3}1418

1419

groundtruth: API−Request: [ToolSearcher(1420

↪→ keywords=’healthcare provider1421

↪→ appointment scheduler’)]1422

1423

Inference: The user initially searched for an1424

↪→ availability checker and found available1425

↪→ appointment slots for a cardiologist in1426

↪→ Los Angeles. Now, the user needs to1427

↪→ schedule an appointment, so the next1428

↪→ step is to find a tool for scheduling1429

↪→ healthcare provider appointments using1430

↪→ the ToolSearcher API with relevant1431

↪→ keywords.1432

1433

Final Answer: API−Request: [ToolSearcher(1434

↪→ keywords=’healthcare provider1435

↪→ appointment scheduler’)]1436

1437

We have the {question} and the groundtruth { 1438

↪→ gold_label} 1439

1440

1441

1. We wish you to answer the question. We will 1442

↪→ use your answer to train our model, thus 1443

↪→ you will answer and pretend as not 1444

↪→ knowing the gold_label. 1445

2. You must answer the question (with inference 1446

↪→ process) directly without say anything 1447

↪→ else. Please not saying anything ’like 1448

↪→ sure I can help you with’ or ’sure, i will 1449

↪→ not mention the gold label’ 1450

3. You will inference first then put the Final 1451

↪→ Answer ({gold_label}) at the end of the 1452

↪→ prediction like this 1453

1454

INFERENCE HERE 1455

Final Answer: {gold_label} 1456

1457

""" 1458

GPT-4 with Human Written Examples: We 1459

developed this prompt specifically for the API- 1460

Bank and Plan-Bench datasets. This prompt uti- 1461

lizes human written examples to help GPT-4 not 1462

only better understand the task but also demonstrate 1463

how to solve the problems effectively. The prompt 1464

below is an example that we used to generate target 1465

responses for the API-Bank dataset. 1466

""" 1467

We have the {question} and the groundtruth { 1468

↪→ gold_label} 1469

1470

1471

1. We wish you to answer the question. We will 1472

↪→ use your answer to train our model, thus 1473

↪→ you will answer and pretend as not 1474

↪→ knowing the gold_label. 1475

2. You must answer the question (with inference 1476

↪→ process) directly without say anything 1477

↪→ else. Please not saying anything ’like 1478

↪→ sure I can help you with’ or ’sure, i will 1479

↪→ not mention the gold label’ 1480

3. You will inference first then put the Final 1481

↪→ Answer ({gold_label}) at the end of the 1482

↪→ prediction like this 1483

1484

INFERENCE HERE 1485

Final Answer: {gold_label} 1486

1487
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Example 1:1488

1489

Question : {q1}1490

1491

groundtruth: API−Request: [ToolSearcher(1492

↪→ keywords=’healthcare provider1493

↪→ appointment availability checker’)]1494

1495

Inference: The user is requesting to find a1496

↪→ healthcare provider (specifically a1497

↪→ cardiologist) in Los Angeles for a check−1498

↪→ up appointment. The first step should be1499

↪→ to search for a tool that can help find a1500

↪→ healthcare provider appointment1501

↪→ availability checker. To accomplish this,1502

↪→ we choose the ToolSearcher API from1503

↪→ the available APIs. The ToolSearcher1504

↪→ API is used to search for relevant tools1505

↪→ based on the provided keywords1506

↪→ according to the description. We need to1507

↪→ fill out the keywords according to the1508

↪→ description. The keywords could be ’1509

↪→ healthcare provider appointment1510

↪→ availability checker.’ Therefore, the next1511

↪→ step (which is also the first step) is:1512

1513

Final Answer: API−Request: [ToolSearcher(1514

↪→ keywords=’healthcare provider1515

↪→ appointment availability checker’)]1516

1517

1518

1519

Example 2:1520

1521

question: {q2}1522

1523

groundtruth: API−Request: [1524

↪→ HealthcareProviderAppointmentChecker1525

↪→ (specialty=’cardiologist’, location=’Los1526

↪→ Angeles’)]1527

1528

Inference: According to the API call history, the1529

↪→ user has called the ToolSearcher API and1530

↪→ found the1531

↪→ HealthcareProviderAppointmentChecker1532

↪→ API. The next step is to fill out the input1533

↪→ parameters for1534

↪→ HealthcareProviderAppointmentChecker1535

↪→ and use it to find healthcare provider1536

↪→ appointment availability. The input1537

↪→ parameters are specialty and location.1538

↪→ The user wants to find a cardiologist in1539

↪→ Los Angeles for a check−up appointment. 1540

↪→ Therefore, the next API request should 1541

↪→ be: 1542

1543

Final Answer: API−Request: [ 1544

↪→ HealthcareProviderAppointmentChecker 1545

↪→ (specialty=’cardiologist’, location=’Los 1546

↪→ Angeles’)] 1547

1548

1549

Example 3: 1550

1551

question: {q3} 1552

1553

groundtruth: API−Request: [ToolSearcher( 1554

↪→ keywords=’healthcare provider 1555

↪→ appointment scheduler’)] 1556

1557

Inference: The user previously called the 1558

↪→ HealthcareProviderAppointmentChecker 1559

↪→ API and found three appointment times, 1560

↪→ which are ’2034−04−18 14:30:00’, 1561

↪→ ’2034−04−19 11:00:00’, and 1562

↪→ ’2034−04−20 09:45:00’. The next step is 1563

↪→ to find the scheduler for the appointment. 1564

↪→ Since there is no available tool, the user 1565

↪→ needs to search for a tool that can 1566

↪→ schedule healthcare provider 1567

↪→ appointments. The ToolSearcher API can 1568

↪→ be used to search for relevant tools 1569

↪→ based on the keywords according to the 1570

↪→ description. The keywords should be ’ 1571

↪→ healthcare provider appointment 1572

↪→ scheduler’. Therefore, the answer is: 1573

1574

Final Answer: API−Request: [ToolSearcher( 1575

↪→ keywords=’healthcare provider 1576

↪→ appointment scheduler’)] 1577

1578

1579

1580

1581

We have a question and a groundtruth 1582

1583

question: {question} 1584

1585

groundtruth: {gold_label} 1586

1587

1588

1. We wish you to answer the question. We will 1589

↪→ use your answer to train our model, thus 1590

↪→ you will answer and pretend as not 1591
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↪→ knowing the gold_label.1592

2. You must answer the question (with inference1593

↪→ process) directly without say anything1594

↪→ else. Please not saying anything ’like1595

↪→ sure I can help you with’ or ’sure, i will1596

↪→ not mention the gold label’1597

3. You will inference first then put the Final1598

↪→ Answer ({gold_label}) at the end of the1599

↪→ prediction like this1600

1601

INFERENCE HERE1602

Final Answer: {gold_label}1603

1604

"""1605

A.6 Prompt Used to Extract Labels from1606

Predictions1607

The code below shows how we use Qwen-2.5-1608

Instruct to extract the predicted labels from the1609

predictions.1610

if ’arc_challenge’ in task_name or ’mmlu’ in1611

↪→ task_name or ’agieval’ in task_name:1612

gold_label_type = ’A/B/C/D’1613

elif ’piqa’ in task_name or ’winogrande’ in1614

↪→ task_name:1615

gold_label_type = ’1/2’1616

elif ’squad’ in task_name:1617

gold_label_type = ’text_span’1618

elif ’gsm8k’ in task_name or ’math’ in1619

↪→ task_name:1620

gold_label_type = ’number’1621

elif ’ecqa’ in task_name:1622

gold_label_type = ’1/2/3/4/5’1623

elif ’esnli’ in task_name:1624

gold_label_type = ’Entailment/Neutral/1625

↪→ Contradiction’1626

elif ’boolq’ in task_name:1627

gold_label_type = ’True/False’1628

elif ’mmlu_pro’ in task_name:1629

gold_label_type = ’A/B/C/D/E/F/G/H/I/1630

↪→ J’1631

elif ’hellaswag’ in task_name:1632

gold_label_type = ’1/2/3/4’1633

elif ’drop’ in task_name:1634

gold_label_type = ’1635

↪→ number_or_text_span’1636

elif ’api_bank’ in task_name:1637

gold_label_type = ’API−request’1638

elif ’plan_bench’ in task_name:1639

gold_label_type = ’[PLAN]1640

↪→ SOME_PLAN_HERE[PLAN1641

↪→ END]’ 1642

else: 1643

a = 1 1644

1645

for i in range(len(question_list)): 1646

question = \ 1647

f"""Given the prediction, what is the final answer 1648

↪→ by the prediction? 1649

1650

The prediction is "{predict_list[i]}" 1651

1652

Directly output {gold_label_type} without saying 1653

↪→ anything else. 1654

""" 1655

A.7 AI Assistant 1656

We used GPT-4o as a writing assistant and pro- 1657

gramming aid for editing purposes. 1658

A.8 Required Compute Resources 1659

Each individual training run reported in this paper 1660

requires approximately 5–48 GPU hours when us- 1661

ing a 40GB A100 GPU. We do not recommend 1662

you to reproduce every training run, as there are 1663

too many experiments. Instead, we strongly rec- 1664

ommend directly using the reported training out- 1665

comes from each table as the final results. You can 1666

then compute your ranking metrics to evaluate how 1667

well your metric aligns with the training outcomes. 1668

Calculating metrics such as perplexity on a small 1669

subset of all of the dataset takes only about 2 hours 1670

on a single 40GB A100 GPU. 1671

A.9 License of the Dtasets 1672

All dataset we use are publicly available dataset 1673

for research purpose. API-BANK (Lv 3 prob- 1674

lems) (Li et al., 2023): CC-BY-SA GSM8K (Cobbe 1675

et al., 2021): MIT license PIQA (Bisk et al., 1676

2020): unkown BoolQ (Clark et al., 2019):CC 1677

BY-SA 3.0 MBPP (Austin et al., 2021):CC BY 1678

4.0 DROP (Dua et al., 2019): CC BY-SA 4.0 1679

ARC-Challenge (Clark et al., 2018):CC BY-SA 1680

4.0 PlanBench (Valmeekam et al., 2023): MIT 1681

license MATH (Algebra) and MATH (Geom- 1682

etry) (Hendrycks et al., 2021): MIT license 1683

SQuAD (Rajpurkar et al., 2016):SA 4.0 license 1684

MMLU(Hendrycks et al., 2020): MIT license 1685

WinoGrande (Sakaguchi et al., 2021): Apache-2.0 1686

license Hellaswag (Zellers et al., 2019): MIT li- 1687

cense ECQA (Aggarwal et al., 2021): Apache-2.0 1688

license MMLU_PRO (Wang et al., 2024): Apache- 1689
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Method Model Type training task GSM8K Math Algebra ECQA SQUAD DROP WINOGRANDE
Gold Label Mistral ECQA 0.383 0.181 0.722 0.251 0.084 0.562
GPT-4o Answer Directly 0.484 0.218 0.707 0.175 0.016 0.638
Gold Label Mistral SQUAD 0.082 0.0931 0.633 0.74 0.208 0.566
GPT-4o Answer Directly 0.512 0.234 0.594 0.748 0.268 0.628
Gold Label Mistral DROP 0.076 0.097 0.621 0.561 0.628 0.578
GPT-4o Answer Directly 0.542 0.241 0.602 0.546 0.736 0.638
Gold Label Mistral WINOGRANDE 0.381 0.172 0.625 0.166 0.042 0.742
GPT-4o Answer Directly 0.477 0.219 0.569 0.106 0.016 0.713

Gold Label LLAMA3 ECQA 0.798 0.416 0.734 0.193 0.1 0.637
GPT-4o Answer Directly 0.778 0.469 0.723 0.389 0.284 0.638
Gold Label LLAMA3 SQUAD 0.584 0.366 0.712 0.758 0.49 0.639
GPT-4o Answer Directly 0.791 0.457 0.726 0.759 0.368 0.651
Gold Label LLAMA3 DROP 0.144 0.169 0.674 0.574 0.738 0.582
GPT-4o Answer Directly 0.776 0.507 0.703 0.555 0.786 0.626
Gold Label LLAMA3 WINOGRANDE 0.776 0.445 0.717 0.226 0.162 0.766
GPT-4o Answer Directly 0.775 0.485 0.721 0.305 0.238 0.695

Gold Label Qwen ECQA 0.914 0.903 0.814 0.662 0.008 0.675
GPT-4o Answer Directly 0.903 0.888 0.793 0.668 0.016 0.716
Gold Label Qwen SQUAD 0.899 0.892 0.784 0.768 0.056 0.693
GPT-4o Answer Directly 0.896 0.911 0.789 0.756 0.074 0.712
Gold Label Qwen DROP 0.788 0.904 0.799 0.701 0.664 0.711
GPT-4o Answer Directly 0.911 0.903 0.792 0.741 0.806 0.701
Gold Label Qwen WINOGRANDE 0.893 0.904 0.78 0.651 0.004 0.725
GPT-4o Answer Directly 0.902 0.896 0.798 0.68 0.022 0.721

Table 8: The training data size is 1000. This table compares the in-domain and cross-domain performance when
training on gold-label vs. GPT-4 generated synthetic data. As can be seen from the table, the in-domain performance
of the model is typically higher when training with gold-label data. However, the cross-domain performance when
training on GPT-4 generated data is significantly higher than when training with only gold-label data. The grey area
represents the in-domain performance.

Dataset Method Accuracy and N train Mistral Llama3-8B-Chat
MATH Algebra GPT4 preview 82.5%, 1000 0.301 0.504

GPT4 only correct 100%, 825 0.293 0.501
GPT4 only correct + rewritten ground truth 100%, 1000 0.293 0.500

MATH Algebra Claude 90.1%, 1000 0.265 0.508
Claude only correct 100%, 901 0.277 0.487
Claude only correct + rewritten ground truth 100%, 1000 0.286 0.492

MATH Algebra Mini GPT4 91.6% , 1000 0.313 0.523
Mini GPT4 only correct 100%, 916 0.311 o.523
Mini GPT4 only correct + rewritten ground truth 100%, 1000 0.326 0.539

GSM8K GPT4 preview 92.1%, 1000 0.597 0.799
GPT4 only correct 100%, 921 0.587 0.791
GPT4 only correct + rewritten ground truth 100%, 1000 0.588 0.808

GSM8K Claude 95.6%, 1000 0.578 0.796
Claude only correct 100%, 956 0.580 0.797
Claude only correct + rewritten ground truth 100%, 1000 0.588 0.798

GSM8K Mini GPT4 89.8% , 1000 0.623 0.795
Mini GPT4 only correct 100%, 898 0.606 0.793
Mini GPT4 only correct + rewritten ground truth 100%, 1000 0.607 0.790

Table 9: The table shows that the accuracy of the generated data has a marginal effect on the training outcome. In
this table, we use the API with different math abilities. The rank of their math problem-solving abilities is: Claude
>MiniGPT-4 >GPT-4 preview. GPT-4 preview represents the data generated using the GPT-4 preview model, rather
than the GPT-4o model.

2.0 license AGIEval(Zhong et al., 2023): MIT li-1690

cense1691
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Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.717 0.997 0.736 0.854 0.44 0.741 0.747 0.645 0.452 0.772 0.263 0.679
groundtruth 0.442 0.194 0.125 0.684 0.325
gpt4 0.62 0.324 0.146 0.703 0.87 0.717 0.864 0.41 0.732 0.631 0.723 0.362 0.515 0.659 0.238 0.691
claude 0.582 0.278 0.136 0.735 0.885 0.724 0.848 0.445 0.736 0.753 0.729 0.379 0.579 0.553 0.248 0.751
mini gpt4 0.619 0.306 0.151 0.708 0.882 0.695 0.868 0.427 0.732 0.772 0.735 0.348 0.43 0.663 0.205 0.659
step by step 0.626 0.314 0.137 0.706 0.874 0.693 0.862 0.445 0.749 0.71 0.696 0.333 0.377 0.644 0.249 0.714
openai human written examples 0.621 0.303 0.163 0.708 0.891 0.721 0.859 0.413 0.76 0.692 0.741 0.345 0.411 0.674 0.233 0.71
gpt4 style in context examples 0.61 0.254 0.158 0.726 0.884 0.727 0.868 0.44 0.761 0.697 0.735 0.378 0.416 0.672 0.225 0.728
rewrite groundtruth in own words 0.502 0.238 0.127 0.703 0.306
gold label llama 3 instruct 0.737 0.979 0.761 0.852 0.432 0.756 0.766 0.742 0.507 0.772 0.332 0.639
groundtruth 0.678 0.404 0.239 0.701 0.445
gpt4 0.816 0.559 0.301 0.74 0.87 0.697 0.866 0.448 0.759 0.806 0.793 0.482 0.477 0.712 0.247 0.659
claude 0.803 0.5 0.254 0.756 0.865 0.72 0.86 0.445 0.765 0.801 0.757 0.471 0.547 0.709 0.259 0.737
mini gpt4 0.805 0.551 0.28 0.721 0.864 0.677 0.868 0.437 0.747 0.816 0.783 0.491 0.384 0.719 0.225 0.645
step by step 0.797 0.562 0.26 0.731 0.869 0.72 0.853 0.433 0.779 0.792 0.78 0.455 0.227 0.71 0.242 0.684
openai human written examples 0.81 0.547 0.283 0.735 0.893 0.717 0.867 0.44 0.766 0.804 0.807 0.477 0.347 0.706 0.229 0.667
gpt4 style in context examples 0.796 0.494 0.285 0.736 0.885 0.719 0.87 0.447 0.752 0.811 0.794 0.47 0.368 0.721 0.259 0.681
rewrite groundtruth in own words 0.742 0.444 0.241 0.727 0.437
gold label qwen 0.816 0.892 0.732 0.867 0.48 0.77 0.855 0.663 0.515 0.74 0.303 0.605
groundtruth 0.899 0.894 0.667 0.793 0.59
gpt4 0.897 0.916 0.679 0.794 0.858 0.709 0.878 0.552 0.76 0.886 0.798 0.591 0.436 0.722 0.3 0.656
claude 0.895 0.904 0.648 0.788 0.862 0.72 0.88 0.553 0.766 0.874 0.793 0.607 0.462 0.72 0.309 0.66
mini gpt4 0.904 0.904 0.654 0.787 0.87 0.712 0.882 0.555 0.763 0.891 0.821 0.642 0.379 0.701 0.308 0.664
step by step 0.899 0.907 0.642 0.792 0.859 0.716 0.88 0.548 0.767 0.881 0.806 0.623 0.417 0.713 0.287 0.662
openai human written examples 0.905 0.909 0.647 0.787 0.871 0.697 0.883 0.547 0.794 0.883 0.82 0.628 0.458 0.724 0.283 0.608
gpt4 style in context examples 0.899 0.903 0.657 0.803 0.88 0.731 0.878 0.57 0.785 0.868 0.809 0.631 0.309 0.742 0.3 0.642
rewrite groundtruth in own words 0.902 0.904 0.654 0.787 0.589

Table 10: average of seed 0,1,2 train datasize 1000 lr 2e-05 epoch num 20

Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.722 0.996 0.742 0.852 0.440 0.748 0.759 0.628 0.465 0.771 0.252 0.650
groundtruth 0.440 0.201 0.110 0.672 0.370
gpt4 0.625 0.319 0.177 0.700 0.867 0.713 0.869 0.400 0.732 0.611 0.746 0.347 0.510 0.654 0.229 0.713
claude 0.583 0.279 0.160 0.720 0.886 0.709 0.849 0.425 0.728 0.732 0.726 0.403 0.584 0.549 0.219 0.760
mini gpt4 0.627 0.291 0.148 0.710 0.873 0.688 0.877 0.420 0.740 0.775 0.726 0.363 0.433 0.663 0.183 0.643
step by step 0.639 0.323 0.127 0.705 0.885 0.687 0.861 0.445 0.752 0.708 0.676 0.340 0.478 0.639 0.196 0.723
openai human written examples 0.604 0.306 0.160 0.709 0.897 0.718 0.869 0.420 0.756 0.685 0.742 0.350 0.400 0.664 0.196 0.717
gpt4 style in context examples 0.619 0.231 0.169 0.725 0.887 0.732 0.879 0.430 0.764 0.678 0.732 0.373 0.433 0.687 0.223 0.710
rewrite groundtruth in own words 0.511 0.231 0.127 0.709 0.323
gold label llama 3 instruct 0.734 0.978 0.766 0.855 0.435 0.761 0.764 0.738 0.502 0.777 0.312 0.630
groundtruth 0.681 0.396 0.215 0.691 0.450
gpt4 0.814 0.562 0.278 0.723 0.880 0.695 0.865 0.435 0.752 0.801 0.796 0.480 0.494 0.722 0.276 0.677
claude 0.816 0.493 0.253 0.748 0.879 0.728 0.864 0.455 0.763 0.808 0.746 0.500 0.547 0.710 0.286 0.757
mini gpt4 0.795 0.557 0.278 0.725 0.867 0.702 0.863 0.450 0.739 0.826 0.730 0.500 0.384 0.703 0.223 0.670
step by step 0.798 0.564 0.308 0.728 0.874 0.718 0.866 0.460 0.783 0.792 0.780 0.450 0.216 0.715 0.229 0.657
openai human written examples 0.811 0.547 0.266 0.736 0.891 0.719 0.864 0.450 0.770 0.809 0.808 0.457 0.355 0.699 0.269 0.640
gpt4 style in context examples 0.792 0.515 0.274 0.742 0.875 0.717 0.854 0.460 0.755 0.809 0.798 0.483 0.273 0.718 0.219 0.683
rewrite groundtruth in own words 0.729 0.443 0.241 0.715 0.417
gold label qwen 0.814 0.880 0.725 0.868 0.500 0.769 0.856 0.652 0.518 0.747 0.296 0.590
groundtruth 0.906 0.898 0.675 0.784 0.610
gpt4 0.889 0.916 0.658 0.793 0.865 0.721 0.879 0.545 0.762 0.890 0.794 0.607 0.433 0.706 0.276 0.633
claude 0.884 0.906 0.662 0.796 0.873 0.716 0.885 0.550 0.767 0.867 0.798 0.600 0.457 0.717 0.322 0.667
mini gpt4 0.905 0.904 0.654 0.782 0.865 0.704 0.881 0.535 0.760 0.891 0.818 0.633 0.396 0.704 0.299 0.657
step by step 0.899 0.908 0.624 0.795 0.846 0.703 0.874 0.545 0.752 0.882 0.766 0.630 0.412 0.717 0.276 0.653
openai human written examples 0.907 0.910 0.658 0.790 0.876 0.699 0.884 0.540 0.808 0.881 0.816 0.617 0.445 0.731 0.286 0.583
gpt4 style in context examples 0.896 0.902 0.654 0.799 0.883 0.734 0.871 0.540 0.782 0.863 0.800 0.607 0.339 0.742 0.302 0.653
rewrite groundtruth in own words 0.911 0.899 0.654 0.791 0.587

Table 11: seed 0 train datasize 1000 lr 2e-05 epoch num 20

Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.714 0.997 0.733 0.855 0.738 0.741 0.654 0.445 0.772 0.269 0.693
groundtruth 0.443 0.191 0.131 0.690 0.303
gpt4 0.617 0.327 0.148 0.704 0.872 0.719 0.861 0.415 0.732 0.641 0.712 0.370 0.518 0.662 0.243 0.680
claude 0.581 0.277 0.143 0.742 0.885 0.731 0.847 0.455 0.740 0.764 0.730 0.367 0.576 0.555 0.262 0.747
mini gpt4 0.615 0.314 0.148 0.707 0.886 0.698 0.863 0.430 0.728 0.771 0.740 0.340 0.429 0.663 0.216 0.667
step by step 0.619 0.309 0.131 0.707 0.868 0.696 0.862 0.445 0.748 0.711 0.706 0.330 0.327 0.646 0.276 0.710
openai human written examples 0.630 0.302 0.165 0.707 0.888 0.723 0.854 0.410 0.762 0.695 0.740 0.343 0.416 0.679 0.252 0.707
gpt4 style in context examples 0.605 0.265 0.152 0.726 0.882 0.724 0.862 0.445 0.760 0.706 0.736 0.380 0.408 0.665 0.226 0.737
rewrite groundtruth in own words 0.497 0.241 0.139 0.700 0.297
gold label llama 3 instruct 0.738 0.979 0.759 0.850 0.430 0.754 0.767 0.744 0.510 0.769 0.342 0.643
groundtruth 0.677 0.408 0.241 0.706 0.443
gpt4 0.817 0.557 0.312 0.748 0.865 0.698 0.866 0.455 0.762 0.808 0.792 0.483 0.469 0.707 0.233 0.650
claude 0.796 0.504 0.253 0.760 0.858 0.716 0.858 0.440 0.766 0.797 0.762 0.457 0.547 0.709 0.246 0.727
mini gpt4 0.810 0.548 0.274 0.719 0.863 0.664 0.871 0.430 0.751 0.811 0.810 0.487 0.384 0.727 0.226 0.633
step by step 0.796 0.561 0.266 0.733 0.867 0.721 0.846 0.420 0.777 0.792 0.780 0.457 0.233 0.708 0.249 0.697
openai human written examples 0.809 0.547 0.291 0.735 0.894 0.716 0.868 0.435 0.764 0.801 0.806 0.487 0.343 0.709 0.209 0.680
gpt4 style in context examples 0.798 0.484 0.291 0.733 0.890 0.720 0.878 0.440 0.751 0.812 0.792 0.463 0.416 0.723 0.279 0.680
rewrite groundtruth in own words 0.749 0.445 0.253 0.733 0.447
gold label qwen 0.817 0.898 0.735 0.867 0.470 0.771 0.854 0.668 0.514 0.737 0.306 0.613
groundtruth 0.896 0.892 0.658 0.798 0.580
gpt4 0.901 0.904 0.692 0.794 0.855 0.703 0.878 0.555 0.759 0.884 0.800 0.583 0.437 0.730 0.312 0.667
claude 0.901 0.903 0.654 0.784 0.857 0.722 0.878 0.555 0.765 0.877 0.790 0.610 0.465 0.721 0.302 0.657
mini gpt4 0.903 0.904 0.662 0.789 0.872 0.716 0.882 0.565 0.765 0.891 0.822 0.647 0.371 0.700 0.312 0.667
step by step 0.899 0.907 0.646 0.790 0.866 0.723 0.883 0.550 0.775 0.881 0.826 0.620 0.420 0.711 0.292 0.667
openai human written examples 0.904 0.908 0.641 0.786 0.868 0.696 0.883 0.550 0.787 0.884 0.822 0.633 0.465 0.720 0.282 0.620
gpt4 style in context examples 0.900 0.903 0.658 0.805 0.878 0.730 0.882 0.585 0.787 0.870 0.814 0.643 0.294 0.742 0.299 0.637
rewrite groundtruth in own words 0.897 0.907 0.692 0.785 0.590

Table 12: seed 1 train datasize 1000 lr 2e-05 epoch num 20
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Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.681 0.996 0.743 0.838 0.450 0.741 0.734 0.656 0.449 0.776 0.269 0.663
groundtruth 0.441 0.211 0.101 0.679 0.350
gpt4 0.617 0.315 0.169 0.708 0.868 0.700 0.870 0.415 0.739 0.661 0.720 0.343 0.482 0.641 0.276 0.703
claude 0.612 0.277 0.148 0.742 0.883 0.716 0.856 0.410 0.744 0.743 0.726 0.367 0.445 0.570 0.246 0.713
mini gpt4 0.622 0.320 0.177 0.703 0.865 0.688 0.855 0.435 0.740 0.768 0.708 0.353 0.429 0.670 0.219 0.697
step by step 0.622 0.322 0.139 0.709 0.866 0.697 0.843 0.430 0.763 0.700 0.714 0.360 0.298 0.661 0.219 0.720
openai human written examples 0.614 0.323 0.156 0.701 0.900 0.718 0.855 0.405 0.754 0.663 0.748 0.363 0.408 0.679 0.246 0.720
gpt4 style in context examples 0.606 0.251 0.165 0.712 0.884 0.724 0.860 0.420 0.771 0.711 0.748 0.373 0.449 0.673 0.266 0.737
rewrite groundtruth in own words 0.506 0.222 0.135 0.703 0.327
gold label llama 3 instruct 0.735 0.980 0.760 0.865 0.445 0.757 0.762 0.740 0.465 0.784 0.329 0.663
groundtruth 0.696 0.415 0.228 0.690 0.413
gpt4 0.806 0.553 0.278 0.733 0.864 0.697 0.865 0.450 0.742 0.824 0.748 0.487 0.445 0.725 0.233 0.683
claude 0.789 0.489 0.257 0.734 0.866 0.685 0.846 0.450 0.759 0.800 0.770 0.507 0.547 0.716 0.243 0.743
mini gpt4 0.795 0.536 0.287 0.733 0.866 0.690 0.869 0.450 0.754 0.796 0.686 0.467 0.367 0.709 0.246 0.640
step by step 0.800 0.551 0.245 0.719 0.884 0.707 0.865 0.460 0.767 0.782 0.792 0.467 0.245 0.697 0.269 0.653
openai human written examples 0.796 0.529 0.287 0.736 0.884 0.714 0.863 0.450 0.757 0.808 0.800 0.460 0.367 0.689 0.223 0.680
gpt4 style in context examples 0.800 0.500 0.283 0.729 0.876 0.709 0.856 0.440 0.767 0.809 0.816 0.480 0.433 0.708 0.252 0.683
rewrite groundtruth in own words 0.754 0.431 0.291 0.715 0.457
gold label qwen 0.818 0.887 0.724 0.867 0.495 0.774 0.861 0.652 0.539 0.740 0.302 0.590
groundtruth 0.901 0.910 0.675 0.758 0.623
gpt4 0.897 0.892 0.654 0.791 0.858 0.710 0.883 0.540 0.777 0.882 0.788 0.603 0.433 0.703 0.306 0.607
claude 0.881 0.916 0.641 0.785 0.859 0.735 0.877 0.540 0.762 0.872 0.798 0.597 0.461 0.732 0.292 0.690
mini gpt4 0.902 0.904 0.658 0.778 0.875 0.711 0.880 0.555 0.760 0.890 0.798 0.613 0.396 0.696 0.309 0.677
step by step 0.886 0.907 0.679 0.770 0.859 0.715 0.869 0.560 0.767 0.867 0.792 0.597 0.404 0.711 0.332 0.677
openai human written examples 0.900 0.887 0.646 0.794 0.881 0.707 0.872 0.540 0.802 0.895 0.804 0.603 0.449 0.724 0.306 0.640
gpt4 style in context examples 0.911 0.908 0.650 0.792 0.875 0.728 0.891 0.535 0.790 0.866 0.824 0.577 0.318 0.734 0.316 0.643
rewrite groundtruth in own words 0.905 0.899 0.637 0.799 0.600

Table 13: seed 2 train datasize 1000 lr 2e-05 epoch num 20

Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.627 0.869 0.608 0.814 0.430 0.582 0.704 0.482 0.220 0.625 0.153 0.420
groundtruth 0.420 0.205 0.101 0.591 0.267
gpt4 0.513 0.231 0.101 0.596 0.837 0.636 0.790 0.345 0.333 0.624 0.244 0.317 0.249 0.269 0.166 0.380
claude 0.505 0.215 0.110 0.634 0.837 0.627 0.804 0.400 0.290 0.630 0.250 0.340 0.257 0.284 0.179 0.413
mini gpt4 0.511 0.223 0.097 0.619 0.845 0.644 0.782 0.360 0.404 0.633 0.210 0.337 0.253 0.223 0.183 0.343
step by step 0.494 0.247 0.080 0.593 0.845 0.636 0.765 0.355 0.314 0.618 0.092 0.317 0.265 0.254 0.183 0.403
openai human written examples 0.504 0.230 0.118 0.611 0.853 0.639 0.811 0.355 0.467 0.578 0.280 0.317 0.257 0.316 0.166 0.517
gpt4 style in context examples 0.500 0.245 0.114 0.560 0.845 0.649 0.789 0.340 0.312 0.611 0.124 0.337 0.208 0.295 0.183 0.423
rewrite groundtruth in own words 0.450 0.214 0.110 0.603 0.317
gold label llama 3 instruct 0.710 0.852 0.636 0.789 0.395 0.680 0.764 0.620 0.082 0.610 0.196 0.200
groundtruth 0.794 0.460 0.249 0.691 0.407
gpt4 0.791 0.491 0.266 0.686 0.802 0.634 0.801 0.430 0.504 0.760 0.410 0.480 0.082 0.592 0.223 0.387
claude 0.804 0.492 0.266 0.699 0.806 0.640 0.821 0.450 0.495 0.739 0.420 0.483 0.082 0.608 0.233 0.430
mini gpt4 0.797 0.477 0.257 0.710 0.800 0.621 0.823 0.425 0.509 0.751 0.400 0.497 0.086 0.589 0.229 0.373
step by step 0.808 0.496 0.219 0.702 0.818 0.626 0.799 0.435 0.565 0.743 0.488 0.477 0.110 0.608 0.199 0.407
openai human written examples 0.809 0.472 0.257 0.720 0.810 0.630 0.815 0.440 0.564 0.747 0.414 0.500 0.078 0.600 0.236 0.387
gpt4 style in context examples 0.800 0.434 0.266 0.695 0.793 0.638 0.808 0.455 0.429 0.762 0.344 0.497 0.090 0.582 0.229 0.407
rewrite groundtruth in own words 0.813 0.480 0.262 0.718 0.447
gold label qwen 0.791 0.843 0.677 0.875 0.465 0.703 0.877 0.334 0.220 0.702 0.306 0.387
groundtruth 0.913 0.918 0.679 0.792 0.603
gpt4 0.908 0.898 0.692 0.802 0.831 0.711 0.863 0.560 0.661 0.891 0.092 0.637 0.237 0.697 0.326 0.580
claude 0.911 0.912 0.679 0.788 0.837 0.718 0.876 0.550 0.652 0.894 0.114 0.640 0.237 0.691 0.282 0.577
mini gpt4 0.902 0.914 0.667 0.791 0.852 0.720 0.884 0.550 0.660 0.891 0.068 0.600 0.237 0.702 0.296 0.583
step by step 0.909 0.919 0.599 0.802 0.848 0.708 0.870 0.545 0.682 0.879 0.062 0.617 0.224 0.690 0.309 0.563
openai human written examples 0.900 0.918 0.671 0.789 0.842 0.718 0.864 0.545 0.681 0.887 0.090 0.597 0.237 0.706 0.322 0.563
gpt4 style in context examples 0.918 0.914 0.679 0.798 0.836 0.710 0.865 0.535 0.678 0.888 0.050 0.627 0.196 0.696 0.326 0.567
rewrite groundtruth in own words 0.910 0.916 0.667 0.782 0.590

Table 14: seed 0 train datasize 100 lr 2e-05 epoch num 20

Data Generation Strategy Model Type gsm8k math algebra math geometry ecqa boolq winogrande piqa agieval squad arc challenge drop mbpp api bank hellaswag mmlu pro law mmlu moral scenarios
gold label mistral 0.681 0.870 0.694 0.830 0.420 0.730 0.726 0.620 0.486 0.737 0.236 0.677
groundtruth 0.409 0.186 0.093 0.638 0.293
gpt4 0.586 0.270 0.152 0.672 0.864 0.686 0.821 0.455 0.649 0.736 0.670 0.340 0.404 0.623 0.233 0.687
claude 0.554 0.237 0.122 0.663 0.858 0.701 0.855 0.405 0.690 0.760 0.662 0.360 0.400 0.619 0.243 0.710
mini gpt4 0.514 0.266 0.152 0.705 0.850 0.674 0.847 0.425 0.670 0.739 0.666 0.357 0.359 0.651 0.233 0.623
step by step 0.575 0.235 0.131 0.662 0.853 0.667 0.842 0.415 0.691 0.746 0.646 0.327 0.286 0.575 0.233 0.593
openai human written examples 0.536 0.278 0.156 0.674 0.874 0.665 0.850 0.435 0.700 0.764 0.698 0.340 0.302 0.628 0.229 0.677
gpt4 style in context examples 0.548 0.222 0.156 0.658 0.879 0.681 0.864 0.430 0.676 0.741 0.650 0.333 0.343 0.628 0.203 0.687
rewrite groundtruth in own words 0.443 0.202 0.101 0.330
gold label llama 3 instruct 0.705 0.866 0.675 0.847 0.430 0.727 0.773 0.684 0.494 0.682 0.299 0.633
groundtruth 0.683 0.404 0.211 0.679 0.430
gpt4 0.798 0.529 0.257 0.731 0.864 0.679 0.845 0.440 0.729 0.815 0.734 0.470 0.424 0.711 0.246 0.683
claude 0.805 0.495 0.224 0.712 0.834 0.694 0.857 0.420 0.744 0.789 0.742 0.467 0.677 0.226 0.693
mini gpt4 0.807 0.504 0.278 0.719 0.852 0.674 0.858 0.445 0.746 0.795 0.744 0.473 0.335 0.676 0.266 0.630
step by step 0.779 0.528 0.198 0.690 0.874 0.683 0.863 0.435 0.736 0.797 0.708 0.457 0.253 0.688 0.233 0.620
openai human written examples 0.772 0.483 0.249 0.712 0.873 0.678 0.853 0.405 0.726 0.789 0.772 0.473 0.302 0.674 0.262 0.640
gpt4 style in context examples 0.794 0.488 0.283 0.712 0.861 0.690 0.859 0.440 0.729 0.770 0.754 0.473 0.380 0.702 0.259 0.693
rewrite groundtruth in own words 0.693 0.415 0.232 0.430
gold label qwen 0.820 0.883 0.704 0.858 0.480 0.747 0.849 0.642 0.457 0.725 0.339 0.563
groundtruth 0.867 0.896 0.637 0.823 0.523
gpt4 0.897 0.890 0.620 0.787 0.859 0.709 0.881 0.545 0.743 0.882 0.808 0.617 0.388 0.687 0.362 0.690
claude 0.882 0.890 0.616 0.790 0.869 0.738 0.867 0.555 0.766 0.871 0.810 0.603 0.527 0.702 0.316 0.750
mini gpt4 0.889 0.912 0.624 0.794 0.867 0.719 0.887 0.530 0.750 0.891 0.772 0.580 0.429 0.707 0.289 0.640
step by step 0.902 0.899 0.586 0.788 0.868 0.731 0.878 0.545 0.737 0.881 0.788 0.630 0.339 0.715 0.309 0.677
openai human written examples 0.892 0.899 0.616 0.783 0.874 0.727 0.883 0.565 0.776 0.875 0.824 0.590 0.392 0.694 0.233 0.643
gpt4 style in context examples 0.896 0.899 0.637 0.782 0.864 0.720 0.881 0.550 0.764 0.868 0.832 0.620 0.335 0.752 0.302 0.677
rewrite groundtruth in own words 0.899 0.892 0.646 0.583

Table 15: seed 0 train datasize 100 lr 0.0002 epoch num 40
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Benchmark Name Data Name Chosen/Not Chosen Why not chosen
Mistral 7B Winogrande ✓

PIQA ✓
GSM8K ✓
MATH ✓
MBPP ✓
MMLU ✓
AGIEVAL ✓
ARC Challenge ✓
BoolQ ✓
Hellaswag ✓
CommonsenseQA × not a reasoning task
BBH × In github, it says this dataset can never used in training.
SIQA × not a reasoning task
OpenbookQA × not a reasoning task
ARC Easy × We already choose ARC Challenge
NaturalQuestions × It evaluates world knowledge instead of reasoning ability
TriviaQA × It evaluates world knowledge instead of reasoning ability
QuAC × this is a multiturn, muti context qa dataset. evaluation is too hard

Llama 3 MMLU ✓
MMLU_Pro ✓
GSM8K ✓
MATH ✓
AGIEVAL ✓
ARC CHALLENGE ✓
DROP ✓
API-BANK ✓
IFEval × less than 650 data
HumanEval+ × less than 650 data
BFCL × (subcategory) less than 650 data
Nexus × Unable to find the dataset
GPQA × less than 650 data
HumanEval × less than 650 data
ZeroSCROLLS/QuALITY × This dataset evaluating model’s long context QA ability. The input is too long thus is hard to train.
InfiniteBench/En.MC × This dataset evaluating model’s long context QA ability. The input is too long thus is hard to train.
NIH/Multi-needle × Long context QA task. The input is too long thus is hard to train. Llama already achieves 98.8% accuracy with zero-shot setting.

Qwen2.5 MMLU ✓
MMLU Pro ✓
MBPP ✓
ARC CHALLENGE ✓
GSM8K ✓
MATH ✓
WindoGrande ✓
HellaSwag ✓
MMLU stem × (subcategory) less than 650 data
TruthfulQA × not reasoning task
GPQA × less than 650 data
TheoremQA × the data set is tooooo challenging for GPT-4o. it does not have the ability to be a teacher for this task.
HumanEval × less than 650 data
HumanEval+ × less than 650 data
MMLU redux × (subcategory) less than 650 data
BBH × In github, it says this dataset can never used in training.
MBPP+ × less than 650 data
MultiPL-E × (subcategory) less than 650 data

Table 16: This table explains which data from the Mistral, LLaMA3, and Qwen benchmarks were chosen and
why some data were not selected. Multi-lingual dataset is not listed in this Table since our experiment only covers
English-only datasets. API-BANK is in Table 16 from Llama 3 technical report.

Data Generation Strategy Model Type plan bench generation plan bench optimality plan bench generalization plan bench replaning plan bench reuse plan bench verification
gold label mistral 0.607 0.448 0.807 0.815 0.945 0.318
groundtruth
gpt4 0.458 0.37 0.215 0.2 0.61 0.518
claude 0.505 0.45 0.362 0.445 0.755 0.586
mini gpt4 0.445 0.38 0.282 0.235 0.51 0.5
step by step 0.448 0.253 0.253 0.177 0.63 0.492
openai human written examples 0.485 0.43 0.302 0.28 0.73 0.474
gpt4 style in context examples 0.37 0.232 0.43 0.207 0.665 0.56
gold label llama 3 instruct 0.478 0.38 0.853 0.87 0.87 0.482
groundtruth
gpt4 0.463 0.36 0.265 0.225 0.72 0.49
claude 0.545 0.485 0.407 0.425 0.637 0.532
mini gpt4 0.415 0.375 0.25 0.215 0.5 0.674
step by step 0.475 0.39 0.287 0.232 0.732 0.564
openai human written examples 0.458 0.372 0.307 0.25 0.603 0.516
gpt4 style in context examples 0.45 0.435 0.438 0.223 0.75 0.468
gold label qwen 0.32 0.285 0.38 0.732 0.845 0.516
groundtruth
gpt4 0.237 0.253 0.145 0.2 0.515 0.538
claude 0.325 0.265 0.277 0.46 0.393 0.534
mini gpt4 0.253 0.255 0.168 0.188 0.42 0.55
step by step 0.265 0.182 0.135 0.17 0.577 0.536
openai human written examples 0.24 0.19 0.222 0.155 0.47 0.52
gpt4 style in context examples 0.302 0.268 0.338 0.2 0.597 0.534

Table 17: seed average of seed_0,1 train datasize 1000 lr 2e-05 epoch num 40
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