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ABSTRACT

Supervised fine-tuning (SFT) on chain-of-thought (CoT) trajectories is a standard
component of reasoning-oriented post-training for large language models. In cur-
rent practice, such CoT-based SFT typically retains only trajectories whose fi-
nal answers match the ground truth, which can lead to poor generalization due
to overfitting and wasted data from discarding incorrect samples. Considering
that incorrect samples contain implicit valid reasoning processes and diverse erro-
neous patterns, we investigate whether incorrect reasoning trajectories can serve
as valuable supervision and surprisingly find that they substantially improve out-
of-domain (OOD) generalization over correct-only training. To explain this, we
performed an in-depth analysis through data, training, and inference, revealing 22
different patterns in incorrect chains, which yield two benefits: (1) For training,
they produce a slower loss descent, indicating a broader optimization landscape
that mitigates overfitting. (2) For inference, they raise model’s policy entropy in
the reasoning process by 35.67% over correct-only training (under on-policy strat-
egy) and encourage exploration of alternative reasoning paths to improve gener-
alization. Inspired by this, we propose Gain-based LOss Weighting (GLOW),
an adaptive, sample-aware method that prompts models to identify underexplored
patterns by rescaling sample loss weights based on inter-epoch progress. Theo-
retically, it converges to more generalizable solutions. Empirically, it outperforms
full-data training across different model sizes and significantly improves the OOD
performance of Qwen2.5-7B trained on math reasoning by 15.81% over positive-
only training. Code is available at Github.

1 INTRODUCTION

Recent advances in large language models (LLMs), exemplified by GPT-5 (OpenAI, 2025), Gem-
ini (Comanici et al., 2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Qwen (Yang et al., 2025a),
highlight the central role of Supervised Fine-Tuning (SFT) in modern training pipelines. By adapting
base models with curated task-specific data, often enriched with Chain-of-Thougnt (CoT) annota-
tions, SFT establishes the foundation for effective reasoning. Together with reinforcement learning
(RL), which further optimizes outputs via preference-based feedback, SFT constitutes the standard
two-stage paradigm underlying today’s state-of-the-art LLMs. In this paradigm, we focus on the
SFT stage and study the common practice of transferring reasoning ability via distilled CoT trajec-
tories to a student model that does not initially exhibit strong reasoning behavior.

Although SFT forms the foundation of current training pipelines, existing methods remain hindered
by limitations that reduce both effectiveness and efficiency, most notably two key shortcomings (Luo
et al., 2024a; Chu et al., 2025; Gupta et al., 2025; Deb et al., 2025): (1) Poor Generalization:
models tend to overfit to domain-specific reasoning shortcuts present in the demonstrations rather
than learning robust, transferable reasoning capabilities (Press et al., 2022; Han et al., 2025). This
often leads to performance degradation on out-of-distribution (OOD) tasks (see Tables 1 and 2 for
details). (2) Data Inefficiency: Current reasoning post-training pipelines predominantly perform
SFT on CoT trajectories distilled from a stronger teacher model, and use rejection sampling to
retain only trajectories whose final answers and formats match the ground truth. Discarding samples
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Figure 1: (a) Qwen2.5-14B trained with positive samples shows limited transfer beyond math,
whereas models trained on negative samples generalize more broadly across reasoning tasks. Bars
report the final accuracy on each benchmark, and the “+” annotations above them denote the ab-
solute accuracy improvement over the model before SFT. (b) Training loss curves on MMLU for
Qwen2.5-32B. The red curve corresponds to training on positive samples only, and the blue curve
to training on negative samples only. ∆ denotes the per-sample loss difference between epochs.

yielding incorrect answers not only wastes resources but also overlooks the correct reasoning paths
potentially hidden therein (Hamdan & Yuret, 2025; Luo et al., 2024b; Li et al., 2025).
Owing to the above challenges, a natural question arises: Are incorrect reasoning trajectories, often
dismissed as noise, truly incapable of providing effective supervision? Considering that errors en-
compass both valid reasoning processes and diverse erroneous patterns, these characteristics prompt
us to inquire whether an SFT approach can not only improve data efficiency through utilizing all
available samples but also benefit from this expanded exploration space to enhance generalization.

To investigate, we distill some data of mathematical reasoning problems and their corresponding
trajectories from Qwen3-8B (Yang et al., 2025b) and split them based on whether the model’s final
answer matches the ground truth: correct solutions (positive) versus incorrect ones (negative). We
then fine-tune a series of models, including Qwen2.5 and LLaMA (Dubey et al., 2024), on each sub-
set separately. As illustrated in Figure 1a, the results surprisingly demonstrate that models trained
solely on negative samples outperform those trained on positive samples across many tasks,
especially in the out-of-domain benchmarks.

To understand this, we analyze it stepwise from the perspectives of data, training, and inference.
The negative samples can be divided into 9 major types and 22 diverse patterns (see Table 3 and
Appendix A.5), with each type serving as a distinct environment. To perform well across these envi-
ronments, the model needs to learn invariant reasoning patterns, fostering better generalization. Such
diversity also brings two benefits: 1) For training: loss declines more slowly than positive-only train-
ing yet converges eventually (Figure 1b), demonstrating the optimizing process for diverse reasoning
patterns instead of overfitting to limited patterns. 2) For inference, models trained on negatives ex-
hibit higher policy entropy in reasoning trajectories, indicating more diverse path exploration and
boosting cross-domain generalization. Collectively, the surprising advantage of negatives over posi-
tives reveals that previously overlooked negatives can encourage the model to conduct broader, more
diverse exploration during optimization, yielding more efficient, generalizable reasoning strategies.

These observations provide insights into training more generalizable models with SFT. While neg-
ative trajectories can help generalization, training on negatives alone would still be a rejection-
sampling scheme that discards large portions of data. This motivates seeking a method that learns
from both correct and incorrect trajectories without filtering. To address this, we introduce a dynamic
mechanism called Gain-based LOss Weighting (GLOW), which leverages the entire dataset without
requiring prior negative sample selection. Specifically, during training, we measure a sample’s value
by its loss difference across consecutive epochs: a smaller difference implies minimal loss change
between two optimization steps, indicating insufficient coverage of the sample’s direction by other
samples’ optimization, and thus highlighting its greater uniqueness relative to other samples. We
design a scaling function that adaptively emphasizes such samples by increasing their contribution
to the loss. Theoretically, we show that this mechanism guides the model toward solutions with
stronger generalization. Experimental results across models with different scales demonstrate its
consistent improvements. In particular, on Qwen2.5-7B, GLOW achieves an average improvement
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of 2.14% over mixed-data training and gains of 5.51% in OOD scenarios compared to training with
only positive samples.

In all, our core contributions can be summarized as follows:

• We provide the first systematic study demonstrating that negative reasoning samples consti-
tute valuable supervision: fine-tuning on them improves out-of-distribution generalization.
This offers a novel perspective on mitigating overfitting in SFT by exploiting these data.

• We provide a deep analysis of how negatives improve generalization from data, training,
and inference perspectives, which reflects that negative samples can enable the model to
conduct broader exploration of reasoning paths and directly strengthen generalization.

• We propose a novel GLOW mechanism that adaptively recognize and amplifies the contri-
bution of samples with the highest training gain, measured by their loss reduction trajectory.
This approach improves the utility of negative samples, enhances generalization, and offers
a practical path toward more data-efficient SFT.

2 RELATED WORKS

Supervised Fine-Tuning for Reasoning SFT has emerged as a central approach for improving
the reasoning capabilities of large language models (Wei et al., 2021; Ouyang et al., 2022). It
adapts a general-purpose model to downstream tasks or desired behaviors by training on carefully
curated datasets. To ensure data quality, rejection sampling (Ahn et al., 2024) is often employed as
a filtering strategy that discards samples failing to meet predefined standards. Recent studies further
show that SFT can transfer long CoT reasoning patterns from larger models to smaller ones (Shao
et al., 2024a; Zheng et al., 2025; Yu et al., 2025b), thereby enhancing the reasoning performance
of resource-efficient models. In addition, SFT provides a strong initialization for reinforcement
learning by aligning models with human-preferred behaviors before optimization (Lewkowycz et al.,
2022; Shao et al., 2024b). However, this reliance on heavily filtered data inevitably wastes data, as
a large portion of available supervision is discarded.

Learning from Negative Data Learning from negative samples can be broadly grouped into
prompt-based, fine-tuning–based, and reinforcement-learning–based approaches. Prompt-based
methods use negative examples to steer model behavior. Gao & Das (2024) employ them to encode
ambiguous preferences that models should avoid, while Alazraki et al. (2025) show that inserting
a negative example into the prompt can be more effective than adding an additional positive one,
and that providing incorrect rationales may even over-constrain the model. However, the effective-
ness of such methods is ultimately limited by the model’s own reasoning and instruction-following
abilities. By contrast, fine-tuning–based approaches are more commonly used to strengthen reason-
ing or to provide a strong initialization for subsequent reinforcement learning (Guo et al., 2025).
Some studies distill positive CoT trajectories from initially negative samples using teacher mod-
els (Yu et al., 2025a; Pan et al., 2025; An et al., 2023), whereas others introduce explicit prefixes
to distinguish positive from negative samples (Wang et al., 2024a; Tong et al., 2024). Beyond SFT,
recent reinforcement-learning (RL) methods for reasoning language models also explore how to
exploit negative signals. Examples include decomposing RL with verifiable rewards into separate
positive and negative reinforcement (Zhu et al., 2025), reactivating residual prompts through ex-
ploration (Liu et al., 2025), mining useful steps within otherwise incorrect trajectories (Yang et al.,
2025d), and converting homogeneous errors into informative gradients (Nan et al., 2025). Neverthe-
less, in both SFT and RL, negative samples are still typically treated as less valuable than positive
ones and are used mainly as penalties, down-weighted rewards, or auxiliary signals.

Domain Generalization in LLMs Most fine-tuning studies prioritize improving reasoning within
a single domain such as mathematics or code, while systematic treatment of cross-domain transfer
remains limited. For example, Huan et al. (2025) study math data and show that SFT induces sig-
nificant latent space and token rank shifts, which lead to forgetting of general capabilities. Wu et al.
(2025) introduce two metrics, knowledge index and information gain, to disentangle knowledge
from reasoning, finding that SFT on math provides little benefit in knowledge-intensive domains
such as medicine. Similarly, Yang et al. (2025c) and Zhao et al. (2025) argue that SFT often con-
structs only superficial reasoning chains and fails to transfer effectively across domains. However,
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these studies are primarily diagnostic analyses: they do not propose concrete methods, nor do they
investigate the problem from a data-centric perspective.

3 NEGATIVE SAMPLES ENHANCE OUT-OF-DOMAIN REASONING

In this section, we describe the empirical phenomenon that motivates our study: fine-tuning on neg-
ative reasoning samples can enhance OOD generalization more effectively than fine-tuning on pos-
itive samples. We first detail the controlled experiments designed to validate this phenomenon and
then present results that demonstrate its consistency across diverse benchmarks and model scales.

3.1 DATA CONSTRUCTION AND TRAINING SETUP

We use Qwen3-8B to distill responses from OpenMathReasoning (Moshkov et al., 2025) and the
MMLU (Hendrycks et al., 2021b) training set as training data for mathematical and general reason-
ing tasks. Responses that matched the final answer are classified as positive, while others are defined
as negative. To ensure a fair comparison, we sample an equal number of positive and negative re-
sponses, each containing the complete reasoning format. We then use Qwen-2.5 series (3B, 7B,
14B, and 32B) model and Llama-3.1 8B for SFT training. For more detailed training configurations,
please refer to the Appendix 3.1.

3.2 NEGATIVES SURPASS POSITIVES IN OUT-OF-DOMAIN

Table 1: Cross-domain performance of models trained on the math reasoning dataset. “Avg.” de-
notes the average score within each group. Colored cells highlight entries that support our findings:
orange cells mark in-domain benchmarks where positives outperform negatives, and blue cells mark
out-of-domain benchmarks where negatives outperform positives. Within each positive/negative
pair, the higher score is additionally highlighted in the corresponding color.

Math Reasoning (In-Domain) General Reasoning (Out-of-Domain) Other Reasoning (Out-of-Domain)

Model Setting Math500 Minerva Olympia AMC Avg. MMLU MMLU-Pro BBH Avg. ACPBench HeadQA Avg.

Qwen2.5-3B

Base 52.60 21.32 22.52 32.50 32.24 31.88 12.54 27.75 24.06 23.31 33.15 28.23
Full 60.80 26.10 23.26 35.00 36.29 64.13 38.66 52.29 51.69 32.68 62.69 47.69

Positive 61.60 25.74 24.44 42.50 38.60 54.45 25.62 44.35 41.50 30.21 59.81 45.01
Negative 58.60 23.53 24.15 42.50 37.20 64.09 39.20 53.87 52.39 33.06 63.13 48.10
∆(pos-neg) +3.00 +2.21 +0.29 0.00 +1.38 -9.64 -13.58 -9.52 -10.91 -2.85 -3.32 -3.09

Qwen2.5-7B

Base 58.40 26.84 26.07 52.50 40.95 55.80 26.56 51.10 44.49 28.77 57.29 43.03
Full 76.60 40.07 38.96 55.00 52.66 72.24 53.71 70.84 65.60 38.27 72.06 55.17

Positive 78.00 36.76 41.78 57.50 53.51 61.03 32.70 60.58 51.44 33.38 68.60 50.99
Negative 77.60 40.44 38.37 57.50 53.48 73.11 53.74 71.73 66.19 38.98 71.81 55.40
∆(pos-neg) +0.40 -3.68 +3.41 0.00 +0.03 -12.08 -21.04 -11.15 -14.76 -5.60 -3.21 -4.41

Qwen2.5-14B

Base 62.60 26.84 27.56 40.00 39.25 64.68 35.77 59.27 53.24 37.04 68.75 52.90
Full 86.80 47.79 52.30 82.50 67.35 81.56 67.63 80.90 76.70 48.13 81.44 64.79

Positive 88.00 48.53 53.93 82.50 68.24 73.81 47.21 76.54 65.85 46.62 81.15 63.89
Negative 87.20 46.69 51.11 70.00 63.75 80.77 67.70 78.95 75.81 48.73 81.77 65.25
∆(pos-neg) +0.80 +1.84 +2.82 +12.50 +4.49 -6.96 -20.49 -2.41 -9.95 -2.11 -0.62 -1.37

Qwen2.5-32B

Base 63.20 34.19 26.52 35.00 39.73 68.34 39.80 58.65 55.60 38.63 68.45 53.54
Full 92.20 52.57 57.19 85.00 71.74 85.22 73.10 83.53 80.62 50.67 84.90 67.79

Positive 91.40 50.74 60.89 85.00 72.01 79.01 54.31 80.61 71.31 49.96 83.15 66.56
Negative 92.20 50.74 58.37 95.00 74.08 85.47 73.53 84.51 81.17 51.80 85.27 68.54
∆(pos-neg) -0.80 0.00 +2.52 -10.00 -2.07 -6.46 -19.22 -3.90 -9.86 -1.84 -2.12 -1.98

Llama3.1-8B

Base 2.80 1.10 0.44 0.00 1.09 66.49 0.47 2.33 23.10 5.18 2.30 3.74
Full 41.20 18.01 14.67 15.00 22.22 62.48 36.88 55.12 51.49 32.96 65.90 49.43

Positive 37.80 18.01 10.37 12.50 19.67 41.95 23.15 45.07 36.72 31.20 47.81 39.50
Negative 34.40 18.38 9.19 20.00 20.49 62.14 36.22 54.85 51.07 33.31 65.17 49.24
∆(pos-neg) +3.40 -0.37 +1.18 -7.50 -0.82 -20.19 -13.07 -9.78 -14.35 -2.11 -17.36 -9.74

As shown in Table 1 and Table 2, we surprisingly find that training on negative samples, although it
yields smaller improvements than positive samples on in-domain performance, consistently consis-
tently improves OOD generalization. Overall, models trained on negative math reasoning samples
achieve an average improvement of 11.97% on general reasoning tasks and 4.11% on other reasoning
tasks. Similarly, models trained on negative MMLU samples gain an average of 1.98% on math-
ematical reasoning and 1.35% on other reasoning benchmarks. Although mathematical problems
are generally more suitable for constructing reasoning-focused data, the same trend is observed for
models trained on MMLU, indicating that the benefit of negative samples for OOD generalization is
not limited to a specific domain. These observations motivate a deeper analysis into the underlying
factors that make negative samples more effective for enhancing OOD reasoning performance.
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Table 2: Cross-domain performance of models trained on the general reasoning dataset. “Avg.”
denotes the average score within each group. Colored cells highlight entries that support our find-
ings: orange cells mark in-domain benchmarks where positives outperform negatives, and blue cells
mark out-of-domain benchmarks where negatives outperform positives. Within each positive/nega-
tive pair, the higher score is additionally highlighted in the corresponding color.

Math Reasoning (Out-of-Domain) General Reasoning (In-Domain) Other Reasoning (Out-of-Domain)

Model Setting Math500 Minerva Olympia AMC Avg. MMLU MMLU-Pro BBH Avg. ACPBench HeadQA Avg.

Qwen2.5-3B

Base 52.60 21.32 22.52 32.50 32.24 31.88 12.54 27.75 24.06 23.31 33.15 28.23
Full 58.20 23.16 25.19 35.00 35.39 66.74 40.82 53.35 53.64 35.70 67.61 51.66

Positive 59.20 27.21 25.04 30.00 35.36 67.88 42.56 52.84 54.43 34.93 67.69 51.31
Negative 59.60 28.31 25.48 40.00 38.35 65.42 38.55 52.28 52.08 36.13 68.85 52.49
∆(pos-neg) -0.40 -1.10 -0.44 -10.00 -2.99 +2.32 +4.01 +0.56 +2.30 -1.20 -1.16 -1.18

Qwen2.5-7B

Base 58.40 26.84 26.07 52.50 40.95 55.80 26.56 51.10 44.49 28.77 57.29 43.03
Full 75.60 38.60 40.15 47.50 50.46 73.14 51.15 71.30 65.20 42.18 72.76 57.47

Positive 74.40 37.50 39.85 50.00 50.44 73.42 53.22 68.23 64.96 40.32 74.25 57.29
Negative 77.00 37.13 42.07 60.00 54.05 71.23 45.79 69.46 62.16 42.61 73.38 58.00
∆(pos-neg) -2.60 +0.37 -2.22 -10.00 -3.61 +2.19 +7.43 -1.23 +2.80 -2.29 +0.87 -0.71

Qwen2.5-14B

Base 62.60 26.84 27.56 40.00 39.25 64.68 35.77 59.27 53.24 37.04 68.75 52.90
Full 82.20 43.01 51.85 70.00 61.77 78.13 59.57 80.56 72.75 48.87 79.94 64.41

Positive 80.20 42.28 50.96 72.50 61.49 80.09 65.26 80.21 75.19 48.56 80.53 64.55
Negative 83.00 45.22 48.89 65.00 60.53 76.83 56.03 80.15 71.00 48.27 80.56 64.42
∆(pos-neg) -2.80 -2.94 +2.07 +7.50 +0.96 +3.26 +9.23 +0.06 +4.18 +0.29 -0.03 +0.13

Qwen2.5-32B

Base 63.20 34.19 26.52 35.00 39.73 68.34 39.80 58.65 55.60 38.63 68.45 53.54
Full 86.60 46.69 55.70 80.00 67.25 79.06 61.15 79.94 73.38 49.89 83.01 66.45

Positive 85.20 46.69 56.15 75.00 65.76 81.97 68.54 81.60 77.37 50.35 82.90 66.63
Negative 86.40 47.06 56.89 72.50 65.71 77.99 58.34 80.71 72.35 51.20 82.39 66.80
∆(pos-neg) -1.20 -0.37 -0.74 +2.50 +0.05 +3.98 +10.20 +0.89 +5.02 -0.85 +0.51 -0.17

Llama3.1-8B

Base 2.80 1.10 0.44 0.00 1.09 66.49 0.47 2.33 23.10 5.18 2.30 3.74
Full 20.00 15.81 6.52 2.50 11.21 66.49 40.56 53.73 53.59 36.06 69.55 52.81

Positive 15.60 11.76 3.85 7.50 9.68 64.73 39.74 45.39 49.95 29.61 67.69 48.65
Negative 23.00 16.18 6.67 10.00 13.96 64.63 38.85 53.23 52.24 37.15 69.80 53.48
∆(pos-neg) -7.40 -4.42 -2.82 -2.50 -4.29 +0.10 +0.89 -7.84 -2.28 -7.54 -2.11 -4.83

4 WHY NEGATIVE IS BETTER

To better understand why negative samples benefit out-of-distribution generalization, we analyze
this phenomenon step by step. Empirically, we observe that correct trajectories usually share a few
common success factors (such as accurate computation and proper problem understanding), whereas
the reasons for failure are much more diverse. We therefore first examine the data to characterize
how negative samples introduce greater diversity. We then study the training dynamics to reveal
how this diversity influences optimization. Finally, we analyze model behaviors during inference
to show how these training effects translate into stronger generalization. This step-by-step analysis
sheds light on the mechanism through which negatives improve OOD performance.

4.1 DATA PERSPECTIVE

Table 3: Error categorization in the negative
OpenMathReasoning and MMLU samples.

Error Categories OpenMathReasoning MMLU
Calculation 27 9
Completeness 11 28
Evaluation System 2599 2024
Formal 57 123
Knowledge 27 199
Logical 195 4116
Programming 8 5
Understanding 435 1056
Special Cases 301 1137

Total 3660 8697

Following (He et al., 2025), we categorize reason-
ing errors into 9 major types and 22 subtypes. For
each negative sample in the OpenMathReasoning
and MMLU training datasets, we employ Gemini-
2.5-Pro (Comanici et al., 2025) to assign its error
category (see Appendix A.5 for the prompt used).
As shown in Table 3, the distribution of error types
is highly diverse, covering a wide spectrum from
logical errors to comprehension errors. Negative
samples exhibit a richer variety of reasoning pat-
terns, whereas positive data tend to follow more
consistent trajectories. Detailed classification can
be found in Appendix A.3.

This phenomenon can be understood more formally through the lens of Invariant Risk Minimiza-
tion (IRM) (Arjovsky et al., 2019). IRM posits that generalization improves when a model learns
representations that capture invariant causal structure across diverse environments. In our setting,
we interpret different categories of incorrect reasoning as different environments: each error type
induces its own sub-distribution over inputs and outputs, with characteristic failure patterns that de-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

fine a distinct local data distribution. Importantly, many negative samples still contain partially valid
reasoning paths, as illustrated in Figure 8, so these environments are far from pure noise. Exposure
to many such environments requires the model to perform well under varied failure modes, which
in turn encourages it to learn reasoning features that remain stable across them.

Formally, let E denote the set of environments induced by these negative error categories, and let
each e ∈ E correspond to a data distribution De over input–output sequences (x, y). We decompose
the language model into a shared sequence representation Φ and a shared next-token predictor w,
where Φ represents the main layers of the model and w is the vocabulary projection head. IRM
in the autoregressive setting requires that the same predictor w be optimal across all environments
when paired with Φ:

min
Φ

∑
e∈E

Re(w ◦ Φ) subject to w ∈ argmin
w′

Re(w′ ◦ Φ), ∀e ∈ E , (1)

where the per-environment autoregressive risk is

Re(w ◦ Φ) = E(x,y)∼De

[ |y|∑
t=1

ℓ
(
w
(
Φ(x, y<t)

)
, yt

)]
, (2)

and ℓ denotes the cross-entropy loss. Because the predictor w is shared across all environments,
achieving optimality requires the representation Φ to encode reasoning features that remain reliable
under different types of errors. This provides a conceptual explanation of why diverse negative
samples, which span many environments, can improve the robustness and out-of-distribution gener-
alization of the learned reasoning patterns.

From this perspective, positive samples are clean and correct but occupy a relatively narrow range
of environments, which limits their ability to support invariance. Negative samples, in contrast,
cover multiple environments and expose diverse failure modes within otherwise valid reasoning
structures. This diversity pushes the model to learn more robust representations that generalize
across heterogeneous reasoning scenarios.

4.2 TRAINING PERSPECTIVE

Table 4: Comparison of training dynamics of Qwen2.5-
32B under positive and negative MMLU settings. Each
value represents the difference between the per-epoch
loss drops of the Positive (∆pos) and Negative (∆neg), i.e.,
∆pos −∆neg. Small decimal values are expected, and the
interpretation relies on the relative difference.

Model ∆epoch 2−1
avg loss ∆epoch 3−2

avg loss ∆epoch 4−3
avg loss ∆epoch 5−4

avg loss

Qwen2.5-3B 0.014957 0.013486 0.015686 0.014000
Qwen2.5-7B 0.009729 0.022514 0.014172 0.001156
Qwen2.5-14B 0.008515 0.017786 0.011157 0.005472
Qwen2.5-32B 0.007143 0.018200 0.015557 0.003772
Llama3.1-8B 0.015586 0.023344 0.005571 0.004915

To characterize the learning dynam-
ics, we plot the training loss every 10
steps for all models fine-tuned on pos-
itive and negative samples from math
reasoning and MMLU. We present
Qwen2.5-32B (Figure 1b) as a repre-
sentative example, while others are pro-
vided in Appendix A.8. The curves
follow a consistent stage-wise pattern.
Loss drops sharply at the end of each
epoch for positive samples, leading
to faster initial convergence, whereas
negative samples produce a smoother,
gradual decline that ultimately reaches a comparable loss floor. This is because the optimization
directions of individual samples align more consistently with the average gradient in the positive
set than in the negative set, while negative samples point to a wider exploration space. We quantify
this behavior using the average loss difference between consecutive epochs, as reported in Table 4,
which confirms that positives decrease faster in the early stages. The negative-trajectory loss de-
creases consistently throughout training and follows a trend similar to the positives (see Figure 1b
and Figure 9). More importantly, this is accompanied by steady improvements on held-out evalua-
tions at 5/10/15 epochs (see Table 9 and appendix A.9), suggesting that negatives act as learnable
supervision rather than pure noise. They encode diverse exploratory patterns where incorrect an-
swers coexist with partially valid reasoning, offering sustained constraints that encourage the model
to develop more robust reasoning strategies instead of memorizing a single correct trajectory.

These results show that the value of negative samples lies in their diversity. Although this slows loss
reduction by introducing varied optimization directions, it compels the model to explore a broader
reasoning space and converge to more generalizable patterns.
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4.3 INFERENCE PERSPECTIVE

After analyzing the properties of the training data and the characteristics of the optimization process,
we further investigate what drives the superior out-of-distribution performance of models trained
with negatives. To this end, we focus on policy entropy, which provides a principled measure of the
uncertainty and exploration in model reasoning. We investigate how training on different types of
trajectories shapes the entropy dynamics of model reasoning. We first analyze the policy entropy of
the model. We use Mpos to denote the model trained on the positive subset of OpenMathReasoning,
and Mneg for the one trained on the negative subset. To assess entropy in both in-domain and out-
of-domain settings, we distill trajectories with reasoning trace and final answers from Qwen3-8B on
a math set (denoted as “Math”) and an OOD set (denoted as “Other”).
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Figure 2: Token frequency differences between Mneg
and Mpos on digits and high-entropy tokens.

Table 5: Policy entropy analysis on Mpos
and Mneg.

Model Setting Data H̄think H̄ans ∆H

Mpos

Off-policy Math 0.909 0.708 0.202
Other 1.138 0.873 0.265

On-policy Math 0.753 0.601 0.153
Other 0.669 0.757 -0.088

Mneg

Off-policy Math 1.212 0.883 0.329
Other 1.427 0.992 0.435

On-policy Math 1.011 0.772 0.239
Other 0.917 0.783 0.134

We mark the thinking span as the tokens between <think> and </think>, and the answer
span as the tokens after </think>. For each prompt x, we compute the policy entropy within
these spans under two rules: (i) off-policy: measuring under the teacher’s reference trajectory; and
(ii) on-policy: the model generates its own trajectory under a fixed decoding rule. Unless noted,
entropy is computed from raw T=1 logits (no temperature rescaling), not excluding padding and
special boundary tokens.

Formally, let V be the vocabulary and θ the model parameters. At step t the token-level policy
entropy is

Ht(θ | x, y<t) = −
∑
v∈V

pθ(v |x, y<t) log pθ(v |x, y<t) , (3)

where pθ(· | x, y<t) is induced by pre-softmax logits. For each sample i, let T (i)
think and T (i)

ans denote
the token within thinking and answer spans, respectively. The spans are determined by model’s own
generation (on-policy) or teacher’s trajectory (off-policy). We report the average entropy per span:

H̄
(i)
think =

1∣∣∣T (i)
think

∣∣∣
∑

t∈T (i)
think

Ht, H̄(i)
ans =

1∣∣∣T (i)
ans

∣∣∣
∑

t∈T (i)
ans

Ht, (4)

as well as the entropy drop across the boundary:

∆H(i) = H̄
(i)
think − H̄(i)

ans , (5)

Results in Table 5 show that models trained on negative trajectories sustain higher policy entropy in
thinking span and exhibit a larger boundary gap, indicating broader search followed by sharper
commitment and aligning with their stronger cross-domain transfer. Moreover, Off-policy
are consistently higher than on-policy, since teacher-forcing trajectories push the model into low-
confidence neighborhoods with diffuse distributions, while self-decoding remains confined to a few
high-confidence modes that yield lower entropy. Under distribution shift, entropy increases for both
spans. The positive-trained model degrades most and even flips the margin on on-policy OOD,
indicating unstable calibration and over-specialization to in-domain templates. Overall, negative
supervision induces a “high-entropy reasoning” profile that better predicts generalization.
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We then analyze the distribution of high-entropy tokens in the trajectories generated by different
models. Figure 2 shows the token frequency distribution difference per trajectory for Mpos and
Mneg . Compared with Mpos, Mneg produces substantially more discourse and hesitation tokens such
as “maybe,” “wait,” and “but,” while emitting numerals less frequently, indicating that its trajecto-
ries devote more budget to exploratory connective reasoning than committing to numeric content.
We also visualize the trajectories generated by the two models in Figure 7, showing that during
inference, Mneg has a higher effective branching factor, enabling the model to maintain multiple
continuations plausible and to explore more reasoning paths before committing to an answer.

5 BETTER LEVERAGING OF NEGATIVE

In this section, we move beyond the empirical finding that negatives improve out-of-distribution
generalization. Relying solely on negatives is essentially a form of rejection sampling and does not
make efficient use of the data, as sample quality cannot be determined simply by correctness. Our
goal is to develop models that achieve strong performance on both in-domain and out-of-distribution
settings with higher data efficiency. To this end, we focus on the training process as the most princi-
pled direction for improvement. Building on the analysis of training dynamics, we present a general
mechanism, establish its theoretical foundation, and validate its effectiveness through experiments.

5.1 GAIN-BASED LOSS WEIGHTING

Negative trajectory supervision improves reasoning because it enlarges the model’s effective training
space. This is evidenced by three key observations: (1) compared to positive training, negative train-
ing yields similarly shaped learning curves but slower convergence at a fixed step budget, indicating
that updates are less concentrated along a few dominant directions and thus avoid early collapse into
limited reasoning patterns. (2) Analysis in Section 4.3 shows that models trained with negatives
exhibit a higher policy entropy, thereby gaining a greater capacity for exploration. Taken together,
our observations suggest a practical motivation: reweight the objective to amplify the loss contri-
butions of under-explored samples, dynamically steering updates toward complementary directions
and yielding progressively larger incremental gains.

We use ℓ(t)i to denote the loss of sample i at epoch t. We assess the learning progress of each sample
by the reduction in its loss across consecutive epochs. Samples with small loss reductions correspond
to patterns that remain insufficiently learned and offer higher optimization utility, while large reduc-
tions imply saturated learning with limited marginal utility. We therefore use ∆

(t)
i = ℓ

(t−1)
i − ℓ

(t)
i

to identify under-learned samples and amplify their impact, ensuring that training prioritizes the
regions where the model can still achieve the greatest gain. Specifically, the contribution of each
sample is adjusted according to ∆

(t)
i :

w
(t)
i = α

(
1− σ

(
β∆

(t)
i

))
, (6)

where σ(·) is the sigmoid function, and α, β are scaling hyperparameters. For the first epoch, we set
w

(1)
i = 1 for all samples. The reweighted training objective becomes:

L(t)
GLOW(θ) =

N∑
i=1

w
(t)
i · ℓ

(t)
i . (7)

Theoretical View We provide a sketch of why the reweighted objective in Eq. 7 improves gen-
eralization. Consider one gradient update at step t, θ(t) = θ(t−1) − ηG(t−1) with G(t−1) =∑

i w
(t−1)
i g

(t−1)
i . By the L-smoothness of the loss, a Taylor expansion gives

∆
(t)
i = ℓ

(t−1)
i − ℓ

(t)
i ≈ η g

(t−1)⊤
i G(t−1) − 1

2η
2G(t−1)⊤HiG

(t−1), (8)

where Hi is the Hessian of model parameters. The leading term shows that ∆(t)
i is large if g(t−1)

i

aligns with the dominant descent directions G(t−1), and small otherwise. Hence, Eq. 6 adaptively
increases the weight of samples whose gradients lie in less explored directions.
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Let Fw = 1
N

∑
i w

(t)
i g

(t)
i g

(t)⊤
i denote the empirical Fisher, which quantifies the extent of the

model’s directional exploration in parameter space. Increasing w
(t)
i for small-∆(t)

i samples adds
positive semi-definite increments ∆wigig

⊤
i along diverse directions. By Weyl’s inequality (Weyl,

1912), this raises the smaller eigenvalues of Fw, improving its effective rank and conditioning (Horn
& Johnson, 2012). Since Fw approximates the Hessian in standard settings (Martens, 2020), the
optimization landscape becomes better conditioned, leading to more balanced descent across direc-
tions. Stability-based generalization bounds (Bousquet & Elisseeff, 2002; Hardt et al., 2016) then
imply a tighter generalization bound, as flatter and more isotropic minima correlate with improved
robustness (Keskar et al., 2016; Neyshabur et al., 2017).

In summary, the dynamic weighting in Eq. 6 systematically enlarges gradients from diverse, less-
explored reasoning trajectories (often negatives), increases gradient diversity, and thus improves
both optimization and generalization. For detailed proof, see Appendix A.2.

5.2 EXPERIMENTAL RESULTS

Building on the theoretical analysis, we empirically validate the effectiveness of GLOW in the SFT
stage. All other experimental settings are the same as 3.1 and details are described in Appendix A.1.

Table 6: Cross-domain performance of models trained on the math reasoning dataset. “Avg.”
denotes the average score within each group. Bold indicates the best results under the same model.

Math Reasoning (In-Domain) General Reasoning (Out-of-Domain) Other Reasoning (Out-of-Domain)
Model Setting Math500 Minerva Olympia AMC Avg. MMLU MMLU-Pro BBH Avg. ACPBench HeadQA Avg.

Qwen2.5-3B
Full 60.80 26.10 23.26 35.00 36.29 64.13 38.66 52.29 51.69 32.68 62.69 47.69
GLOW 62.80 27.21 24.30 42.50 39.20 64.49 38.63 53.20 52.11 33.66 63.38 48.52

Qwen2.5-7B
Full 76.60 40.07 38.96 55.00 52.66 72.24 53.71 70.84 65.60 38.27 72.06 55.17
GLOW 79.60 40.07 41.04 60.00 55.18 73.99 55.77 71.99 67.25 39.19 72.50 55.85

Qwen2.5-14B
Full 86.80 47.79 52.30 82.50 67.35 81.56 67.63 80.90 76.70 48.13 81.44 64.79
GLOW 87.80 52.21 52.44 82.50 68.74 82.53 68.70 81.65 77.63 49.51 82.35 65.93

Qwen2.5-32B
Full 92.20 52.57 57.19 85.00 71.74 85.22 73.10 83.53 80.62 50.67 84.90 67.79
GLOW 93.40 54.41 59.11 92.50 74.86 85.51 74.14 83.98 81.21 51.97 85.19 68.58

Llama3.1-8B
Full 41.20 18.01 14.67 15.00 22.22 62.48 36.88 55.12 51.49 32.96 65.90 49.43
GLOW 44.60 20.59 15.11 17.50 24.45 63.80 38.34 58.17 53.44 35.04 66.70 50.87

Table 7: Cross-domain performance of models trained on the general reasoning dataset. “Avg.”
denotes the average score within each group. Bold indicates the best results under the same model.

Math Reasoning (Out-of-Domain) General Reasoning (In-Domain) Other Reasoning (Out-of-Domain)
Model Setting Math500 Minerva Olympia AMC Avg. MMLU MMLU-Pro BBH Avg. ACPBench HeadQA Avg.

Qwen2.5-3B
Full 58.20 23.16 25.19 35.00 35.39 66.74 40.82 53.35 53.64 35.70 67.61 51.66
GLOW 61.40 29.41 25.78 40.00 39.15 67.09 41.27 52.61 53.66 36.20 69.15 52.68

Qwen2.5-7B
Full 75.60 38.60 40.15 47.50 50.46 73.14 51.15 71.30 65.20 42.18 72.76 57.47
GLOW 78.20 41.18 43.70 60.00 55.77 74.51 51.13 71.99 65.88 43.56 75.35 59.46

Qwen2.5-14B
Full 82.20 43.01 51.85 70.00 61.77 78.13 59.57 80.56 72.75 48.87 79.94 64.41
GLOW 85.00 48.09 54.22 70.00 64.33 79.97 62.78 82.32 75.02 50.95 82.20 66.58

Qwen2.5-32B
Full 86.60 46.69 55.70 80.00 67.25 79.06 61.15 79.94 73.38 49.89 83.01 66.45
GLOW 89.00 47.06 58.67 82.50 69.31 80.81 64.72 81.98 75.84 52.08 83.73 67.91

Llama3.1-8B
Full 20.00 15.81 6.52 2.50 11.21 66.49 40.56 53.73 53.59 36.06 69.55 52.81
GLOW 24.80 20.59 6.96 12.50 16.21 68.52 42.96 57.53 56.33 39.72 72.57 56.15

GLOW enhances cross-domain generalization without pre-selecting samples. We apply
GLOW to the random shuffled mixture of positive and negative data and observe consistent im-
provements across domains and different scales of models. For simplicity, we only report results for
full and GLOW. For training results using standard SFT on positive-only and negative-only sam-
ples, please refer to Table 1 and Table 2. As shown in Table 6, GLOW surpasses standard SFT
in-domain across all math-trained models and attains the best average on out-of-domain tasks. On
Qwen2.5-7B it reaches 55.18 in-domain and 67.25 out-of-domain, while remaining competitive on
general reasoning. Models trained on the general reasoning dataset also exhibit clear overall gains.
Table 7 further reports that on Qwen2.5-14B, GLOW lifts out-of-domain math from 61.77 to 64.33
and out-of-domain reasoning from 64.41 to 66.58. These results indicate stronger data use from
leveraging all samples and consistent improvements in both settings.
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Figure 3: Fraction of negatives in the
subset with the larger weights over
epochs on Math and MMLU training.

GLOW typically assigns higher weights to negatives.
As shown in Figure 3, we train Qwen2.5-3B on math and
MMLU tasks using GLOW. We use only questions and di-
rect answers (for correctness checking) from these datasets,
with all responses distilled from Qwen3-8B. The figure
shows the fraction of negatives among examples receiving
larger weights at each epoch. During Math and MMLU
training, this fraction stays above 50% for most epochs,
reaches about 75% to 80% early in training, and then de-
creases as learning progresses, but stays near 50%. This
occurs because GLOW assigns larger weights to examples
with stagnant loss reduction, a condition more common
among negative samples. As a result, training places greater emphasis on unresolved reasoning
rather than easy positives.

Table 8: Policy entropy changes with and without
GLOW under various settings.

Setting Train Test H̄think H̄ans ∆H

Full
Math

Math 0.36 0.22 0.14
Other 1.24 1.38 -0.14

MMLU
Math 0.54 0.34 0.20
Other 0.96 0.98 -0.02

GLOW
Math

Math 0.71 0.35 0.36
Other 1.52 1.30 0.22

MMLU
Math 0.89 0.52 0.37
Other 1.44 1.21 0.23

GLOW enhances reasoning exploration
while maintaining answer decisiveness. As
shown in Table 8, applying GLOW consis-
tently increases the average entropy during
the thinking phase across all settings. For
instance, think entropy rises from 0.36 to 0.71
on Math-to-Math and from 0.96 to 1.44 on
MMLU-to-Other. In contrast, answer entropy
changes modestly and even decreases out-of-
domain. Taken together, these effects show that
GLOW promotes broader exploration in rea-
soning while preserving answer decisiveness,
which benefits generalization.

6 CONCLUSION

We show that negative reasoning trajectories can improve SFT generalization, mitigating the out-of-
domain weakness of conventional training. Through analyses of data, training, and inference, we
explain why negatives improve OOD generalization. Building on these insights, we introduce Gain-
based LOss Weighting (GLOW), an adaptive, sample-aware scheme that up-weights underexplored
examples by rescaling losses according to inter-epoch progress. Experiments demonstrate more
data-efficient learning and consistent generalization gains across models and tasks.

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or potentially harmful appli-
cations. The datasets used in our experiments are derived from publicly available resources and
follow their respective licenses. We do not foresee ethical risks or violations associated with our
methodology or findings.

REPRODUCIBILITY STATEMENT
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A APPENDIX

A.1 EXPERIMENTS SETUP

Distillation data curation We conduct experiments on mathematical reasoning and common
sense, using Qwen3-8B (Yang et al., 2025b) to distill reasoning trajectories. For mathematics,
we collect data from OpenMathReasoning (Moshkov et al., 2025), and for common sense from
MMLU (Hendrycks et al., 2021b;a). Each trajectory is labeled as positive if the final answer matches
the ground truth and negative otherwise. To ensure that all samples preserve complete reasoning
structures and differ only in correctness, we discard instances exceeding 8,192 tokens. We then
sample positive and negative data in a 1:1 ratio, resulting in 7.2k instances for mathematics and
17.4k for common sense.

Training Details We conduct experiments on the Qwen2.5 series (3B, 7B, 14B, 32B) (Team,
2024) and LLaMA-3.1-8B(Dubey et al., 2024). All models are fine-tuned for 20 epochs with a
batch size of 128, using a cosine learning rate scheduler with 10% warm-up steps and a maximum
learning rate of 5 × 10−5. We set the training length to 20 epochs, as the loss does not converge
earlier and benchmark performance continues to improve up to this point.

Evaluation Details Following Huan et al. (2025); Yuan et al. (2025), we evaluate models on
three categories of benchmarks: (1) mathematical reasoning: MATH500 (Hendrycks et al., 2024),
OlympiaBench (He et al., 2024), MinervaMath (Lewkowycz et al., 2022), and the competition-level
AMC2023 (Art of Problem Solving Foundation, 2023); (2) common sense reasoning: MMLU,
MMLU-Pro (Wang et al., 2024b), and BBH (Suzgun et al., 2022); (3) other OOD reasoning:
ACPBench (Kokel et al., 2025) for planning, and HeadQA (Vilares & Gómez-Rodrı́guez, 2019) for
medicine. Model performance is measured by accuracy. Evaluation uses the codebase from (Yuan
et al., 2025), with sampling temperature 0.6, top-p 0.95, one sample per input, and max generation
length 32,768 tokens.

We define in-domain and out-of-domain (OOD) evaluation based on the training data distribution.
For models fine-tuned on mathematical reasoning tasks, in-domain evaluation uses mathematical
problems while OOD evaluation employs other task categories. Conversely, models trained on
MMLU are evaluated in-domain on commonsense tasks and OOD on the remaining domains. We
compare three training strategies: using only positive samples, only negative samples, and a bal-
anced combination of both.

A.2 DETAILED THEORETICAL DERIVATION

We provide a detailed derivation explaining why the dynamic reweighting mechanism in Eq. 6 im-
proves optimization conditioning and, under standard assumptions, leads to improved generalization
guarantees. The argument proceeds through a sequence of lemmas establishing: (i) the link be-
tween the loss-reduction statistic ∆

(t)
i and gradient alignment, (ii) the positive semi-definite (PSD)

augmentation of the empirical Fisher induced by positive weight increments, (iii) a quantitative im-
provement of the spectrum of the Fisher in low-energy subspaces, and (iv) the transfer of improved
conditioning to stability and generalization.

Throughout training, the underlying target objective remains the uniform empirical risk

R(θ) =
1

N

N∑
i=1

ℓi(θ).

However, the update direction at iteration t is the gradient of the reweighted surrogate objective

R(t)
w (θ) =

1

N

N∑
i=1

w
(t)
i ℓ

(t)
i (θ),

whose weights w(t)
i are dynamically adjusted by the reweighting rule. Accordingly, all conditioning

and curvature statements in this section refer to the local quadratic model of R(t)
w at iteration t, rather

than to the fixed uniform objective R(θ). Our results therefore characterize how the reweighting
mechanism reshapes the second-order geometry of the surrogate objective used at each step.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2.1 NOTATION AND STANDING ASSUMPTIONS

We keep the notation from the main text. At iteration t, we write θ(t) for the current parameters,
g
(t)
i = ∇θℓi(θ

(t)) for the per-example gradients, and w
(t)
i for the corresponding weights. For nota-

tional simplicity, we fix an iteration t and often drop the superscript (t) when it is clear from context.
In particular, we write

gi ≜ g
(t)
i = ∇θℓi(θ

(t)), G ≜ G(t) =
1

N

∑
i

wigi.

We use Hi(θ) = ∇2
θℓi(θ) for the per-example Hessians, and we denote by

Rw(θ) ≜
1

N

N∑
i=1

wi ℓi(θ)

the reweighted surrogate objective at iteration t (with weights {wi} held fixed). Its Hessian is

H(θ) ≜ ∇2
θRw(θ).

The empirical (weighted) Fisher at the same iteration is

Fw(θ) ≜
1

N

N∑
i=1

wi gig
⊤
i ,

and, since we work at a fixed iteration, we often abbreviate Fw(θ
(t)) to Fw.

We now collect the assumptions used in the analysis.
Assumption A.1 (Smoothness, boundedness, curvature, and energy injection).

(A1) Each ℓi(θ) is twice differentiable and L-smooth: ∥Hi(θ)∥op ≤ L.

(A2) Gradient norms are uniformly bounded: ∥gi(θ)∥2 ≤ Gmax.

(A3) The learning rate η is small enough that higher-order terms are controlled.

(A4) (Fisher–Hessian closeness for Rw) In the local region of interest and for all iterates θ
visited by the algorithm, the Hessian H(θ) = ∇2

θRw(θ) of the reweighted objective and
the corresponding empirical Fisher Fw(θ) satisfy

∥H(θ)− Fw(θ)∥op ≤ δ.

(A5) (Energy injection of the reweighting rule) Let U be a k-dimensional low-curvature sub-
space with orthogonal projector PU . At each step, let T denote the set of examples whose
weights are increased, with nonnegative increments δwi ≥ 0 for i ∈ T . The induced
change in the empirical Fisher is

∆F ≜
1

N

∑
i∈T

δwi gig
⊤
i .

We assume that the reweighting rule injects curvature uniformly into U in the sense that
for every unit vector v ∈ U ,

v⊤∆Fv ≥ γ

k
.

Equivalently, the restriction of ∆F to U satisfies ∆F |U ⪰ (γ/k)PU , and in particular

tr(PU∆FPU ) = tr(∆F |U ) ≥ γ.

Lemma A.1 (Taylor relation between ∆i and gradient alignment). Under assumptions (A1)–(A3),
after one update θ ← θ − ηG,

∆i = ℓi(θ)− ℓi(θ − ηG) = η g⊤i G−
1

2
η2 G⊤Hi(ξi)G,

for some ξi on the line segment between θ and θ − ηG. Moreover,∣∣∣∆i − η g⊤i G
∣∣∣ ≤ 1

2
Lη2∥G∥22.
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Proof. Second-order Taylor expansion yields the stated form, and L-smoothness gives the remainder
bound.

Lemma A.2 (Positive weight increments induce PSD augmentation). Let the weights change by
nonnegative increments δwi ≥ 0 for i ∈ T . The induced change in the empirical Fisher is

∆F =
1

N

∑
i∈T

δwi gig
⊤
i ,

which is PSD. Consequently, the updated Fisher F ′
w = Fw +∆F satisfies F ′

w ⪰ Fw, and, when the
eigenvalues of both matrices are ordered in nondecreasing order, we have λj(F

′
w) ≥ λj(Fw) for all

j.

Proof. Each outer product gig⊤i is symmetric and PSD. Since δwi ≥ 0, every term δwigig
⊤
i is PSD,

and their average ∆F is PSD as well. Thus F ′
w = Fw +∆F is a PSD perturbation of the symmetric

matrix Fw, so by Weyl’s eigenvalue inequality we obtain λj(F
′
w) ≥ λj(Fw) for all j when the

eigenvalues are ordered in nondecreasing order.

To evaluate how reweighting affects curvature in directions where the objective is weakly curved,
we consider a k-dimensional subspace U spanned by small-eigenvalue directions of the empirical
Fisher Fw. Introducing such a subspace is standard in conditioning analysis, as the restricted spec-
trum Fw|U precisely characterizes curvature along these low-eigenvalue directions. Let PU denote
the orthogonal projector onto U . Intuitively, directions associated with large eigenvalues of Fw al-
ready exhibit sufficient curvature and are repeatedly explored by gradient-based updates. In contrast,
the low-eigenvalue subspace U captures flat or poorly conditioned directions that act as the main
bottleneck for optimization and conditioning. Our analysis therefore focuses on how reweighting
increases curvature within U rather than on further amplifying already well-conditioned directions.

The effect of reweighting on second-order geometry is captured entirely by the increment

∆F =
1

N

∑
i∈T

δwi gig
⊤
i ,

which is positive semi-definite by construction: each gig
⊤
i is PSD and each weight increment δwi

arising from the reweighting rule equation 6 is nonnegative. Hence the updated Fisher satisfies
F ′
w = Fw + ∆F ⪰ Fw, providing a monotone PSD augmentation that allows the application of

standard Weyl-type eigenvalue inequalities.

To guarantee that this PSD increment has a meaningful effect on the low-curvature subspace U , we
impose the uniform energy condition in (A5): there exists a constant γ > 0 such that, for every unit
vector v ∈ U (where U is k-dimensional with orthogonal projector PU ),

v⊤∆Fv ≥ γ

k
.

Equivalently, the restriction ∆F |U satisfies ∆F |U ⪰ (γ/k)PU , so that tr(PU∆FPU ) =
tr(∆F |U ) ≥ γ as a simple corollary. Intuitively, this condition rules out the degenerate case in
which all of the additional mass is concentrated on a few directions inside U ; instead, it enforces a
uniform strengthening of curvature across the low-eigenvalue subspace. We now state the resulting
spectral improvement.
Lemma A.3 (Improvement of small-eigenvalue subspace). Let U be a k-dimensional subspace with
projector PU . Suppose the weight increments satisfy the energy condition (A5), so that ∆F |U ⪰
(γ/k)PU for some γ > 0. Let λmin(Fw|U ) denote the minimal eigenvalue of Fw restricted to U .
Then the minimal eigenvalue satisfies

λmin(F
′
w|U ) ≥ λmin(Fw|U ) +

γ

k
.

Proof. By (A5) we have ∆F |U ⪰ (γ/k)PU , which implies λmin(∆F |U ) ≥ γ/k. Since F ′
w|U =

Fw|U +∆F |U and both are symmetric, the eigenvalue monotonicity for sums of Hermitian matrices
yields

λmin(F
′
w|U ) ≥ λmin(Fw|U ) + λmin(∆F |U ) ≥ λmin(Fw|U ) +

γ

k
,

as claimed.
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Remark A.4. The uniform energy condition in (A5) ensures that the augmented weights inject non-
trivial curvature in every direction of U , not just along a few isolated eigenvectors. This rules out
pathological cases where the trace increases but the smallest eigenvalue remains nearly unchanged,
and guarantees a genuine improvement of the worst-case curvature on U .

Lemma A.5 (Transfer from Fisher to Hessian). Under (A4), if

λmin(F
′
w|U )− λmin(Fw|U ) ≥ ∆λF ,

then the local Hessian of the reweighted objective satisfies

λmin(H
′|U ) ≥ λmin(H|U ) + ∆λF − 2δ,

where H and H ′ denote the Hessian H(θ) = ∇2
θRw(θ) evaluated at the current and updated

parameters, respectively.

Proof. Assumption (A4) yields ∥H −Fw∥op ≤ δ and ∥H ′ −F ′
w∥op ≤ δ at the current and updated

iterates. These bounds imply matching eigenvalue relations before and after the update, giving the
stated inequality.

Lemma A.6 (Improved conditioning reduces parameter sensitivity). Assume a restricted strong
convexity condition on U : there exists µ > 0 such that, throughout the local region,

λmin(H|U ) ≥ µ.

Consider two training sets that differ by a single example and run identical reweighted updates. Un-
der standard Lipschitz assumptions on the gradients, the resulting parameter perturbation between
the two runs is O(1/µ). Hence increasing µ—equivalently improving the smallest eigenvalue of H
on U—reduces algorithmic instability and yields a smaller generalization gap.

Proof sketch. Restricted strong convexity with parameter µ implies that the reweighted surrogate
objective Rw is µ-strongly convex along directions in U . In particular, the map that sends the
empirical risk (or its gradient) to its minimizer is 1/µ-Lipschitz along U : if two datasets differ by
one example, the corresponding empirical gradients differ by at most a constant Lg , and the resulting
parameters θ and θ′ satisfy

∥θ′ − θ∥ ≤ Lg

µ
.

This O(1/µ) sensitivity of the iterates yields uniform stability, in the sense that the loss on any test
point differs by at most O(1/µ) between the two runs. The uniform stability framework of Bousquet
& Elisseeff (2002) and the refinement in Hardt et al. (2016) then imply that such a stability bound
translates into an O(1/µ) upper bound on the generalization error. We refer to these works for
complete statements and proofs.

Proposition A.7 (Main result: conditioning and generalization improvement). Under (A1)–(A5),
suppose the weight update rule equation 6 produces nonnegative increments satisfying the energy
condition (A5). Then:

1. The empirical Fisher receives a PSD augmentation ∆F and, on the low-curvature subspace
U , both its average eigenvalue and its minimal eigenvalue increase by at least γ/k:

1

k
tr(PUF

′
wPU ) ≥

1

k
tr(PUFwPU ) +

γ

k
, λmin(F

′
w|U ) ≥ λmin(Fw|U ) +

γ

k
.

The first inequality follows from the trace identity and (A5), while the second is the content
of Lemma A.3.

2. By Lemma A.5, taking ∆λF = γ/k as provided by Lemma A.3, the minimal Hessian
eigenvalue of the reweighted objective on U satisfies

λmin(H
′|U ) ≥ λmin(H|U ) +

γ

k
− 2δ.
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3. If the local loss satisfies a restricted strong-convexity condition on U with parameter µ, i.e.
λmin(H|U ) ≥ µ, then after reweighting we can take

µ′ ≜ µ+
γ

k
− 2δ,

which improves algorithmic stability and yields a sharper stability-based generalization
bound according to Lemma A.6.

Proof. The conclusions follow by combining Lemmas A.2, A.3, A.5, and A.6.

In summary, the dynamic reweighting mechanism amplifies underrepresented gradients and in-
duces a PSD augmentation of the empirical Fisher, thereby improving the conditioning of the local
quadratic model of the reweighted objective R

(t)
w at each iteration. Through the stability analysis

of Lemma A.6, this improved per-iteration conditioning translates into more stable optimization
dynamics and sharper stability-based generalization guarantees.

A.3 DETAILED TAXONOMY OF NEGATIVE TRAINING SAMPLES

We provide statistics on the detailed categorization of negative samples in our training dataset. As
shown in Figure 4a and Figure 4b, the error types of samples from OpenMathReasoning and MMLU
that are not selected by reject sampling can be grouped into nine major categories and twenty-four
subcategories. Although the distribution across categories is imbalanced, the errors still exhibit a
broad coverage, ensuring a comprehensive representation of error types.
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Figure 4: Detailed categorization of negative samples in OpenMathReasoning and MMLU.

A.4 HYPERPARAMETER SENSITIVITY OF GLOW

As shown in Figure 5, GLOW yields modest improvements over the full-SFT reference in most
configurations. Varying α between 0.8 and 1.5 leads to small changes, and β = 12 is generally
stronger than β = 10 or β = 18 at matched α. These results suggest incremental gains with
moderate hyperparameter choices in our setup.

A.5 PROMPT FOR CATEGORIZE NEGATIVE SAMPLES

We design a structured prompt to categorize each erroneous reasoning trajectory into a fine-grained
error class. The classification framework contains 9 primary categories and 22 sub-categories. The
full classification schema and the prompt used for categorization are shown in Figure 6.
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Figure 5: Ablation study on the hyperparameters α and β. GLOW exhibits stable performance
across different settings, demonstrating the robustness of the reweighting formulation.

A.6 CASE STUDY

As discussed in Section 4.3, negative trajectories exhibit higher entropy than positives ones on cer-
tain reasoning tokens and transition words. For illustration, we select one case and highlight the
high-entropy segments. The results show that negatives contain substantially more such reasoning-
related high-entropy fragments than positives.

A.7 CASE STUDY OF NEGATIVE SAMPLES

As discussed in Section 4.3, negative trajectories exhibit higher entropy than positives ones on cer-
tain reasoning tokens and transition words. For illustration, we select one case and highlight the
high-entropy segments. The results show that negatives contain substantially more such reasoning-
related high-entropy fragments than positives.

A.8 TRAINING LOSS ON OPENMATHREASONING AND MMLU

We present in Figure 9 the loss comparison of all models trained under the positive and negative
settings on the OpenMathReasoning and MMLU datasets.

A.9 PROGRESS LOSS

Table 9 reports intermediate checkpoint evaluations for Qwen2.5-7B and Qwen2.5-32B trained on
the math reasoning and general reasoning datasets. For each setting, we compare SFT using posi-
tive distilled reasoning trajectories against SFT using negative distilled reasoning trajectories at 5,
10, 15, and 20 epochs. Across model sizes and training sets, negative-trajectory SFT consistently
improves over the base model and shows gains that are comparable to the positive-trajectory counter-
part. In several configurations, negative-trajectory SFT matches or exceeds positive-trajectory SFT
on out-of-domain benchmarks. These results suggest that negative trajectories contain structured
supervision signal rather than noise.

A.10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for copy-editing and minor stylistic polishing (grammar, phrasing, and LaTeX
formatting). All suggestions were manually reviewed and edited by the authors. The authors take
full responsibility for the manuscript’s contents.
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Prompt for Categorizing Negative Samples

You are an expert AI assistant tasked with identifying the single,
most specific error category from the list below.

Error Category List:
- Primary_category: Understanding Errors
- sub_category: Problem Misunderstanding, Conceptual

Misunderstanding
- Primary_category: Knowledge Errors
- sub_category: Factual Error, Theorem Error, Definition Error

- Primary_category: Logical Errors
- sub_category: Strategy Error, Reasoning Error, Premise Error,

Consistency Error
- Primary_category: Calculation Errors
- sub_category: Numerical Error, Formula Error, Parameter Error,

Unit Error
- Primary_category: Programming Errors
- sub_category: Syntax Error, Function Error, Data Type Error

- Primary_category: Formal Errors
- sub_category: Symbol Error, Formatting Error

- Primary_category: Completeness Errors
- sub_category: Boundary Omission

- Primary_category: Special Cases
- sub_category: Reflection Error, Summary Error, Hallucination,

Redundancy
- Primary_category: Evaluation System Errors
- sub_category: Incorrect Ground Truth, Correct Answer Parsing

Error

Data for Analysis:
- Question: {question}
- Ground Truth Answer: {groundtruth}
- Model’s Reasoning Process (to be analyzed): {model_reasoning}

CRITICAL INSTRUCTION:
Analyze the provided reasoning process. Your response MUST be ONLY

a single,
raw JSON object with the keys "sub_category" and "analysis". Do not

include any
other text, explanations, apologies, or markdown formatting.

Example of a perfect response:
{
"sub_category": "Premise Error",
"analysis": "The model incorrectly assumed that all bicycles use

plastic
squares for identification, which is a flawed premise

not
supported by the question’s context."

}

Figure 6: Prompt used for categorizing negative reasoning samples into predefined error subcate-
gories.
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An Example from MATH-500

Problem: Denali and Nate work for a dog walking business and are paid for each dog they walk.
Denali is responsible for 16 dogs and Nate is responsible for 12 dogs. Under the company’s new
policy, they will be assigned or unassigned new dogs in groups of x dogs. The ratio of Denali’s pay to
Nate’s pay would be the same if Denali started walking 4x more dogs and Nate stayed at 12 dogs or if
x of Nate’s dogs were reassigned to Denali. Find x if x ̸= 0. Answer: 5

Mpos Thinking Trajectories

Okay, let me try to figure out this problem...
So, setting up the equation...
Let me compute both sides...

...would be the same under two different sce-
narios. Let me parse that...

So, solution is x = 0...

But the problem says ...

Let me check again...

x = 0 is correct...
The final answer is 0 .

Mneg Thinking Trajectories

Okay, let me try to figure out this problem...
The key is that...
Now, we can solve this...
..., so the answer is x = 3.
Wait, let me check...
it is wrong...

Alternatively, maybe there’s a different way to
interpret the problem?...
Maybe I missed something...

Alternatively, maybe there’s a different inter-
pretation? Let me check...
Wait, no. The problem says...
..., so the answer is 5.
But, Let me check ...
Therefore, x = 5 is correct...
The final answer is 5 .

Figure 7: Case study of thinking trajectories for Mpos and Mneg on the same question.
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Problem

The graph shows the total distance Sam drove from 6 a.m. to 11 a.m. How many miles per hour is the
car’s average speed for the period from 6 a.m. to 11 a.m.?

unitsize(0.2inch); draw((0,0)–(5.5,0)); draw((0,0)–(0,8.5)); draw((1,0)–(1,8.5)); draw((2,0)–(2,8.5));
draw((3,0)–(3,8.5)); draw((4,0)–(4,8.5)); draw((5,0)–(5,8.5)); draw((0,1)–(5.5,1)); draw((0,8)–
(5.5,8)); draw((0,7)–(5.5,7)); draw((0,6)–(5.5,6)); draw((0,5)–(5.5,5)); draw((0,4)–(5.5,4));
draw((0,3)–(5.5,3)); draw((0,2)–(5.5,2)); draw((0,0)–(1,2)–(2,3)–(3,5)–(4,6)–(5,8)); dot((0,0));
dot((1,2)); dot((2,3)); dot((3,5)); dot((4,6)); dot((5,8)); label(”6”,(0,-0.5),S); label(”7”,(1,-0.5),S);
label(”8”,(2,-0.5),S); label(”9”,(3,-0.5),S); label(”10”,(4,-0.5),S); label(”11”,(5,-0.5),S); label(”0”,(-
0.5,0),W); label(”40”,(-0.5,2),W); label(”80”,(-0.5,4),W); label(”120”,(-0.5,6),W); label(”160”,(-
0.5,8),W); label(”Time of Day (a.m.)”,(2.7,-2),S); label(”Total distance”,(-0.5,9),N);

Model’s Thinking Trajectory and Answer

Let me start with the total time. The period is from 6 a.m. to 11 a.m. Let me count the hours. From 6
to 7 is 1 hour, 7 to 8 is another, 8 to 9, 9 to 10, and 10 to 11. That’s 5 hours total. Wait, is that right?
Let me check again. From 6 to 11 is 5 hours? Wait, 11 minus 6 is 5, yes. So total time is 5 hours.
Okay, that seems straightforward.
Now, the total distance. The graph shows the total distance driven at different times. The Asymptote
code draws a graph with time on the x-axis and total distance on the y-axis. The points given are at
time 6 a.m. (which is the first point, x = 0), then at 7 a.m. (x = 1), 8 a.m. (x = 2), etc., up to 11 a.m. (x
= 5). The corresponding distances are given as y-values. Let me check the Asymptote code again to
see the coordinates.
Looking at the Asymptote code, the graph is drawn from (0, 0) to (1, 2) to (2, 3) to (3, 5) to (4, 6) to
(5, 8). The labels on the y-axis are 0, 40, 80, 120, 160. So each unit on the y-axis corresponds to 40
miles? Let me confirm. The labels are at y = 0, 2, 4, 6, 8. The labels next to them are 0, 40, 80, 120,
160. So, each vertical unit is 40 miles. Therefore, the y-coordinate multiplied by 40 gives the total
distance in miles.
So, for example:

• At 6 a.m. (x = 0), the total distance is 0 miles.

• At 7 a.m. (x = 1), the total distance is 2 units, which is 2× 40 = 80 miles.

• At 8 a.m. (x = 2), it’s 3 units, so 3× 40 = 120 miles.

• At 9 a.m. (x = 3), 5 units, which is 5× 40 = 200 miles.

• At 10 a.m. (x = 4), 6 units, which is 6× 40 = 240 miles.

• At 11 a.m. (x = 5), 8 units, which is 8× 40 = 320 miles.

The question is about the total distance from 6 a.m. to 11 a.m. The graph is showing cumulative
distance. So at 11 a.m., the total distance is 320 miles. Therefore, the total distance driven is 320
miles.
If the graph is cumulative, then the total distance at 11 a.m. is the total distance driven from 6 a.m.
to 11 a.m., so that would be 320 miles. Therefore, total distance is 320 miles, total time is 5 hours.
Therefore, average speed is 320÷ 5 = 64 miles per hour.
Let me check if the total distance is indeed 320. The last point is at 11 a.m., which is x = 5, y = 8.
Since each y unit is 40 miles, 8× 40 = 320. Yes. So that seems correct.
Alternatively, maybe the question is trying to trick me? Suppose someone might think that the total
distance is the sum of all the segments, but because the graph is cumulative, the total distance at 11
a.m. is already the total distance driven from 6 a.m. to 11 a.m.
We can also confirm by looking at increments: From 6–7: 80 miles, From 7–8: 120− 80 = 40 miles.
From 8–9: 200− 120 = 80 miles. From 9–10: 240− 200 = 40 miles. From 10–11: 320− 240 = 80
miles Summing gives 80 + 40 + 80 + 40 + 80 = 320 miles, consistent with the final value.
So average speed is total distance divided by total time. Total time is 5 hours. 320 ÷ 5 = 64, so 64
miles per hour.
The time from 6 a.m. to 11 a.m. is indeed 5 hours. The x-axis is labeled from 6 a.m. to 11 a.m., with
each unit representing one hour, so that checks out.
Therefore, I think my answer is correct.
Final Answer: the car’s average speed is 64 miles per hour.

Figure 8: Case study of a negative trajectory from the OpenMathReasoning training dataset. The
model misinterprets the problem, but its subsequent step-by-step reasoning and formula derivations
remain structurally correct.
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(f) Qwen2.5-14B on MMLU
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(g) Qwen2.5-32B on OpenMathReasoning
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(h) Qwen2.5-32B on MMLU
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Figure 9: Training loss of Qwen2.5 models and Llama3.1-8B on OpenMathReasoning (left) and
MMLU (right). Losses drop across epochs, with the positive setting converging faster than the
negative.
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Table 9: Checkpoint evaluation across SFT epochs with distilled reasoning trajectories. We
report performance at 5, 10, 15, and 20 epochs. Each row corresponds to a model size and training
dataset, and each row contains two subtables that compare training on positive (left) versus negative
(right) distilled trajectories. Columns in each subtable correspond to benchmarks, while rows corre-
spond to training epochs, with Base denoting the model before SFT.

(a) Qwen2.5-7B is fine-tuned on the math reasoning
dataset using positive distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 58.40 26.84 26.07 52.50 55.80 26.56 51.10
5epoch 72.80 37.13 37.19 45.00 60.95 30.34 54.69
10epoch 75.80 38.24 40.59 65.00 64.06 32.50 61.62
15epoch 77.20 36.76 41.93 55.00 60.81 32.15 59.69
20epoch 78.00 36.76 41.78 57.50 61.03 32.70 60.58

(b) Qwen2.5-7B is fine-tuned on the math reasoning
dataset using negative distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 58.40 26.84 26.07 52.50 55.80 26.56 51.10
5epoch 71.20 31.99 31.56 47.50 62.58 44.04 56.28
10epoch 77.20 34.93 39.26 50.00 71.39 52.14 69.49
15epoch 78.60 39.71 38.37 52.50 72.10 52.24 71.09
20epoch 77.60 40.44 38.37 57.50 73.11 53.74 71.73

(c) Qwen2.5-7B is fine-tuned on the general reason-
ing dataset using positive distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 58.40 26.84 26.07 52.50 55.80 26.56 51.10
5epoch 72.00 36.76 37.33 47.50 73.62 50.61 64.05
10epoch 74.60 37.50 41.48 55.00 73.79 53.32 69.73
15epoch 72.00 37.50 39.26 50.00 74.11 53.91 68.34
20epoch 74.40 37.50 39.85 50.00 73.42 53.22 68.23

(d) Qwen2.5-7B is fine-tuned on the general reason-
ing dataset using negative distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 58.40 26.84 26.07 52.50 55.80 26.56 51.10
5epoch 76.80 36.76 37.78 47.50 71.09 43.99 66.00
10epoch 76.80 37.87 40.30 52.50 71.43 45.87 68.84
15epoch 76.80 37.13 41.48 55.00 71.30 44.62 69.30
20epoch 77.00 37.13 42.07 60.00 71.23 45.79 69.46

(e) Qwen2.5-32B is fine-tuned on the math reasoning
dataset using positive distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 63.20 34.19 26.52 35.00 68.34 39.80 58.65
5epoch 90.20 49.63 59.11 85.00 76.53 46.77 78.04
10epoch 92.60 50.00 60.44 85.00 78.63 51.67 79.01
15epoch 93.00 48.53 62.07 90.00 78.72 51.99 80.57
20epoch 91.40 50.74 60.89 85.00 79.01 54.31 80.61

(f) Qwen2.5-32B is fine-tuned on the math reasoning
dataset using negative distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 63.20 34.19 26.52 35.00 68.34 39.80 58.65
5epoch 88.40 45.22 52.30 85.00 83.07 68.23 83.55
10epoch 92.20 51.10 57.93 85.00 85.14 73.75 84.22
15epoch 91.20 50.74 57.33 90.00 85.02 73.48 84.62
20epoch 92.20 50.74 58.37 95.00 85.47 73.53 84.51

(g) Qwen2.5-32B is fine-tuned on the general reason-
ing dataset using positive distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 63.20 34.19 26.52 35.00 68.34 39.80 58.65
5epoch 84.60 44.85 52.00 62.50 82.10 66.54 80.03
10epoch 86.60 46.69 55.70 75.00 81.14 67.01 80.69
15epoch 85.00 47.06 56.59 75.00 81.73 68.33 81.73
20epoch 85.20 46.69 56.15 75.00 81.97 68.54 81.60

(h) Qwen2.5-32B is fine-tuned on the math reason-
ing dataset using negative distilled trajectories.

Epoch Math500 Minerva Olympia AMC MMLU MMLU-Pro BBH

Base 63.20 34.19 26.52 35.00 68.34 39.80 58.65
5epoch 85.00 44.49 51.26 77.50 78.74 57.48 79.09
10epoch 87.20 46.30 54.52 75.00 79.01 60.43 80.88
15epoch 86.40 47.79 55.70 65.00 77.77 57.14 79.97
20epoch 86.40 47.06 56.89 72.50 77.99 58.34 80.71

A.11 LIMITATION

Our study primarily examines gain-based reweighting in the supervised fine-tuning stage of reason-
ing post-training, and we leave its interaction with subsequent RLHF or other reinforcement learn-
ing stages as an exciting direction for future work. In addition, our experiments focus on text-only
chain-of-thought data for math and multi-task knowledge benchmarks with a small set of open-
source backbones, so a natural next step is to extend the same analysis and method to broader task
families, larger model scales and multimodal or tool-augmented settings, building on the phenomena
and gains established in this work.
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