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ABSTRACT

This paper demonstrates that modern deep forecast models are susceptible to
a fundamental EXPRESSIVENESS BOTTLENECK, which stems from the use of
step-invariant representations in multi-step prediction tasks. Through theoreti-
cal analysis, we demonstrate that step-invariant representation causes an unavoid-
able forecast error that cannot be overcome simply by advancing neural archi-
tectures. To address this issue, we propose Step-wise Representation adaPta-
tion (SRP): first, a foundation model is pre-trained for one-step-ahead forecast;
subsequently, the model is adapted to various forecast horizons via low-rank
adaptation. This design enables the generation of step-specific representations,
thereby avoiding the expressiveness bottleneck. Moving forward, we further es-
tablish SRP++, which employs adaptively weighted low-rank adapters to miti-
gate the expressiveness bottleneck while enhancing efficiency and forecast per-
formance. Experiments show that SRP++ significantly improves model expres-
siveness and outperforms state-of-the-art time-series forecast methods. Code is
available at https://anonymous.4open.science/r/SRP-7C55.

1 INTRODUCTION

Time-series forecast seeks to predict future values of a sequence from its historical observations and
constitutes a core component of real-world applications, such as finance (e.g., stock selection (Hu
et al., 2025)), meteorology (e.g., weather forecast (Allen et al., 2025)), and manufacturing (e.g., pro-
cess monitoring (Wang et al., 2023a)). Recent advances in deep learning have led to the widespread
adoption of deep forecast models. Central to these approaches is a fundamental question: How to
extract discriminative representations from historical sequences truly helpful for forecast.

Most contemporary research tackles this question by devising specialized neural architectures that
model temporal dynamics to obtain representations. Representative examples span recurrent neural
networks (Salinas et al., 2020), convolutional neural networks (Wu et al., 2023; Wang et al., 2023b),
and graph neural networks (Yi et al., 2023a). Current progress is characterized by an ongoing debate
between Transformers and simple linear models. Transformers, powered by self-attention mecha-
nisms, provide superior scalability (Liu et al., 2024; Nie et al., 2023; Piao et al., 2024), whereas
linear models, which capture temporal dynamics using linear layers, are straightforward to imple-
ment and often perform competitively (Zeng et al., 2023; Yang et al., 2024a; Lin et al., 2024). These
advancements showcase the rapid evolution of representation learning in time-series analysis.

Despite above architectural progress, existing methods predominantly rely on a step-invariant (SI)
representation. They typically use neural networks to encode historical sequence into a single rep-
resentation vector, then use a linear layer to generate forecasts for all future steps. In this work, we
reveal that this step-invariant representation constitutes a fundamental expressiveness bottle-
neck. Heuristically, it falsely assumes that the optimal representations for predicting all future steps
are identical. Operationally, it forces a shared representation across all future steps, which constrains
the predictions to simple linear combinations of this shared representation. Theoretically, we prove
that this constraint imposes an unavoidable forecast error that cannot be overcome by advancing
neural architectures.

A natural solution to the expressiveness bottleneck is to learn step-specific representations for multi-
step forecasting. To this end, we propose Step-wise Representation adaPtation (SRP), a principled
two-stage framework designed to generate step-specific representations. SRP begins by pre-training
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a model for one-step-ahead forecasting, followed by adaptation to longer forecasting horizons us-
ing the low-rank adaptation (LoRA) technique Hu et al. (2021). However, a straightforward im-
plementation of this framework incurs significant computational costs and may yield suboptimal
performance, as it fails to model the dependencies among different forecast steps. To overcome
these limitations, we introduce SRP++, which leverages a mixture-of-experts mechanism to enable
selective parameter sharing across step-specific LoRA modules. This design not only reduces com-
putational overhead but also captures the relationships between forecast steps, effectively improving
both efficiency and predictive accuracy.

Our main contributions are summarized as follows:

• We identify and theoretically prove the expressiveness bottleneck hampering and being inherent
in modern deep forecast models.

• We propose the SRP framework to address the bottleneck via step-specific representations. We
further develop SRP++, which is augmented by adaptively weighted low-rank adapters exploit
dependencies between forecast steps to enhance both efficiency and accuracy.

• We conduct comprehensive experiments and demonstrate that SRP++ can effectively improve
diverse forecast models over different public datasets.

2 PRELIMINARIES

In this work, we consider the multi-step time-series forecast problem: predicting future observa-
tions from historical data. As a preface, it is important to emphasize a key distinction between
two prevailing paradigms in multi-step forecast: iterative forecast, where future values are predicted
sequentially by feeding previous forecasts back as inputs, and direct forecast, where the entire se-
quence of future values is predicted in a single pass Wang et al. (2025). Our focus in this study is
on the direct forecast paradigm, which has currently become dominant in deep forecast models.

Formally, consider a time-series dataset X with D covariates, where Xn denotes the observation at
the n-th step. We define two central constructs (Box et al., 2015): (1) historical sequence L =
[Xn−L+1, . . . , Xn] ∈ RL×D, where L is the historical window length; (2) label sequence Y =
[Xn+1, . . . , Xn+T] ∈ RT×D, where T is the forecast horizon. Based on these elements, the task can
be described as estimating E[Y |L], the expected label sequence conditioned on the history (Nguyen
et al., 2024; Ghimire et al., 2024).

Most deep forecast models comprise two primary components. Firstly, a neural encoder ge extracts
informative representations from historical sequence, producing R = ge(L). Secondly, a linear
header gd transforms this representation to generate the forecast: Ŷ = gd(R). The learnable param-
eters in ge and gd are optimized to minimize the discrepancy between Ŷ and Y . Previous work has
largely focused on advancing encoder architectures, leading to the development of diverse frame-
works such as convolutional neural networks (Wu et al., 2023; Wang et al., 2023b), graph neural
networks (Yi et al., 2023a), and Transformers (Liu et al., 2024; Vaswani et al., 2017).

3 PROPOSED METHOD

3.1 MOTIVATION

Modern deep forecast models are prevalently trained to generate the full sequence simultane-
ously (Liu et al., 2024; Wu et al., 2023; Zeng et al., 2023). In this section, we demonstrate that
this approach suffers from an expressiveness bottleneck due to its reliance on step-invariant rep-
resentations, causing an unavoidable forecast error that cannot be overcome simply by advancing
neural architectures.

Let R ∈ RL×D be the encoder output. The direct forecast approach produces forecasts using a linear
layer with learnable weights W ∈ RT×L and b ∈ RT:[

Ŷ1, . . . , ŶT

]
= [W1, . . . ,WT]R+ [b1, . . . , bT]. (1)

where Ŷt = WtR+ bt is the prediction for the t-th future step. This assumes a single step-invariant
representation R is optimal for all forecast steps, and that different linear transformations suffice to
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Figure 1: Visualization of step-specific representations. (a) Synthetic time series; (b–d) 2D encoder
features (pre-decoder) for forecast steps T=1, 16, 32. Each step trains a separate single-output MLP
with history length L=16.

generate accurate predictions across all horizons. However, this assumption becomes problematic
when different forecast steps require fundamentally different representational features, particularly
in long-term forecast scenarios where T is large. The reliance on step-invariant representations
creates an expressiveness bottleneck: regardless of encoder quality, using a shared representation
across all forecast steps leads to an unavoidable modeling error. As shown in Theorem 3.1, this
error is strictly positive when L + 1 < T — a typical setting in long-term forecast tasks.

Theorem 3.1 (Expressiveness Bottleneck). Let W̄ = [W b] ∈ RT×(L+1) be the parameters in the
SI’s linear decoder, Y ∈ RT×D be the label sequence; the minimum attainable estimation error is

∥ϵ∥2F =

T∑
t=rank(W̄ )+1

∥U⊤
t Y ∥22, (2)

where W̄ = UΣV ⊤ is the singular value decomposition of W̄ , rank(W̄ ) ≤ min{T,L + 1}, and
{Ui}Ti=rank+1 form an orthonormal basis for the null space of W̄ . Notably, this error is independent
of the representation R provided by encoder.

Case Study. To illustrate how step-invariant representations limit expressiveness, we conduct a
case study on synthetic data. We set the historical window length to L = 16 and use a two-layer
perceptron encoder (hidden sizes 16 and 2) with a single-output linear decoder. For each forecast
step, we train a separate model and visualize the resulting representations before the decoder layer
in Figure 1 (b)-(d). The results show that optimal representations differ significantly across steps,
demonstrating that enforcing step-invariant representations creates an expressiveness bottleneck that
leads to unavoidable modeling errors.

Given the substantial limitations inherent in step-invariant representations, there is a clear need for
forecast strategies that can harness the power of step-specific representations. This raises two key
questions: How to design a framework that generates and exploits step-specific representations for
forecast? Does step-specific representation truly improve forecast performance?

3.2 STEP-WISE REPRESENTATION ADAPTATION

According to Theorem 3.1, the error disappears when the linear layer’s output dimension is 1. Mo-
tivated by this, we propose Step-wise Representation adaPtation (SRP), a two-stage framework that
transitions from step-invariant to step-specific representation to address the expressiveness bottle-
neck.

Pre-training. We begin by training a foundation model for one-step prediction. Given the histori-
cal sequence L ∈ RL×D, the process can be described as follows:

R = ge(L), Ŷ1 = gd(R) = WR+ b, (3)

Lpre = ∥Y1 − Ŷ1∥22, (4)

where the encoder ge extracts features R, and the one-step-ahead prediction Ŷ1 ∈ RD is generated
using a single-output linear projection with weights W ∈ R1×L and bias b ∈ R. The pre-training
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Figure 2: Visualization of SI, SRP, and SRP++ approaches. Gray blocks denote identical encoder
components. Purple blocks represent decoding strategies. Rectangles with varying transparencies
indicate different expert matrices in SRP++.

objective is the MSE on the one-step prediction, establishing a solid foundation for subsequent step-
specific adaptations.

Adaptation. After pre-training for one-step-ahead prediction (T = 1), we adapt the model for
multi-step forecast (T ≥ 2). For each forecast step t, we introduce step-specific LoRA modules to
selected encoder linear layers, enabling the generation of step-specific representations R(t) while
freezing the weights of the original encoder and decoder. Specifically, for a selected linear layer
with weight matrix M ∈ Rdout×din , we modify the weights for each step t as follows:

M (t) = M +B(t)A(t), (5)

where B(t) ∈ Rdout×r and A(t) ∈ Rr×din are LoRA matrices, with rank r < min(dout,din). For
each forecast step t, the modified encoder g(t)e generates step-specific predictions as follows:

R(t) = g(t)e (L), Ŷt = gd(R
(t)) = WR+ b, (6)

L(t)
ada = ∥Yt − Ŷt∥22, (7)

where the adaptation objective is the MSE on the t-step prediction. Notably, only the LoRA matrices
(B(t), A(t)) are optimized to minimize the adaptation objective, while the rest of the foundation
model remains frozen. This process is repeated for each prediction step 1 < t ≤ T, enabling the
model to generate forecasts for diverse steps while avoiding the expressiveness bottleneck.

Discussion. SRP overcomes the expressiveness bottleneck by transitioning from step-invariant to
step-specific representations. By ensuring both the pre-trained and adapted models use single out-
puts, SRP eliminates the error term identified in Theorem 3.1. The step-specific representations R(t)

are specifically optimized for each forecast step t, removing the constraint that forces all predictions
to be linear combinations of the same representation bases. Moreover, during the adaptation stage,
the pre-trained weights remain frozen, preventing any interference with the foundation model. This
property has a critical implication for time-series forecast: adapting to long-range forecasts does not
compromise the performance on short-term predictions.

3.3 SRP++: CONTEXTUALIZING SRP FOR FORECASTING

Time series data exhibits strong autocorrelation, inducing correlations across multiple forecast steps.
However, the SRP approach treats each forecast step independently by assigning separate LoRA
matrices to generate step-specific representations and using a single-output layer for prediction. This
leads to two limitations: (1) the number of adaptations increases linearly with the forecast horizon,
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resulting in high computational cost; and (2) neglecting inter-step correlations can impair forecast
accuracy despite achieving step-specific representations.

In this section, we propose SRP++, which leverages the dependencies among forecast steps for
improved performance and efficiency. According to Theorem 3.1, the expressiveness bottleneck
vanishes as long as the number of outputs does not exceed L + 1; thus, single-step output is not
strictly required. Building on this insight, we partition the T-step label sequence into K contiguous
segments, each containing S = T/K steps. The foundation model’s output dimension is then in-
creased from 1 to S, allowing each adaptation to generate step-specific representations for S future
steps jointly, and thereby reducing the number of required adaptations. This segment-based adap-
tation exploits the step-wise dependency within each segment to improve accuracy and efficiency,
while maintaining step-specific expressiveness as long as S ≤ L + 1.

To further exploit dependency across segments, we enable partial parameter sharing across different
LoRA modules via a mixture-of-experts mechanism. Specifically, suppose we have P expert matri-
ces, each denoted as B(p) and A(p). For a selected linear layer in the encoder with original weights
M , the step-specific adaptation for segment k is given by

M (k) = M +
P∑

p=1

∆
(p)
k ·B(p)A(p), (8)

where ∆k = [∆
(1)
k ,∆

(2)
k , . . . ,∆

(P)
k ] is a learnable, normalized weight vector that adaptively com-

bines the P expert matrices for each segment. This design enables expert matrices to be shared
across segments, allowing the model to leverage inter-segment dependencies in the label sequence
and enrich supervision signals for improved step-specific adaptation. A visual comparison among
step-invariant (SI), SRP, and SRP++ approaches is provided in Figure 2.

3.4 OVERALL WORKFLOW

Algorithm 1 The workflow of SRP++.

Input: X: training dataset, K: number of segments, P:
number of LoRA experts, r: rank of LoRA matrices.
Parameter: {∆k}Kk=1: segment-specific weight
vectors, {B(p), A(p)}Pp=1: LoRA expert matrices.
Output: {∆k}Kk=1, {B(p), A(p)}Pp=1: optimized
adaptation parameters.

1: Pre-train a S-step model {ge, gd} on X
2: Freeze the foundation model parameters
3: for k = 1 to K do
4: for L, Y in X do
5: Modify the encoder ge to g

(k)
e :

M (k) ←M +
∑P

p=1 ∆
(p)
k ·B

(p)A(p)

6: R(k) ← g
(k)
e (L), Ŷk ← gd(R

(k))

7: L(k)
ada ← ||Yk − Ŷk||22

8: Update ∆k and {B(p), A(p)}Pp=1 with L(k)
ada

9: end for
10: Freeze the segment-specific weight vector ∆k

11: end for
12: Return optimized step-specific adaptation

parameters

In this section, we detail the procedure for
applying SRP++ to train step-specific forecast
models, as outlined in Algorithm 1. The work-
flow demonstrates how to transition from step-
invariant to step-specific representations while
leveraging mixture-of-experts principles for ef-
ficiency. The workflow begins by pre-training
a foundation model for S-step prediction (step
1). After pre-training, the foundation model
parameters are frozen (step 2). Next, we in-
ject step-specific adaptation modules into the
backbone encoder: for each of the K segments,
a segment-specific weight vector ∆k and P
shared LoRA expert modules {B(p), A(p)}Pp=1
are introduced. For each segment k, the mixing
weights ∆k are learned to adaptively combine
the shared LoRA experts, as defined in (8) (step
5). During adaptation, the segment-specific
weight vector and segment-shared LoRA mod-
ules are optimized using the corresponding seg-
ment’s ground truth, while the backbone re-
mains frozen (steps 6-8). During inference,
the segment-specific adapters are applied to the
frozen foundation model to generate step-specific representations for each segment, which are then
concatenated to produce the final estimations.

4 EXPERIMENTS

To validate the effectiveness of our SRP++ approach for time-series forecast, we conduct a compre-
hensive empirical evaluation across four key dimensions:
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Table 1: Multi-step forecast performance.

Models
SRP++ iTransformer FreTS TimesNet TiDE DLinear FEDformer Autoformer Informer Transformer TCN
(Ours) (2024) (2023) (2023) (2023) (2023) (2022) (2021) (2021) (2017) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.400 0.406 0.415 0.416 0.407 0.415 0.413 0.418 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.887 0.693 0.943 0.733 0.891 0.632

ETTm2 0.287 0.330 0.294 0.335 0.335 0.379 0.297 0.332 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.256 0.801 1.322 0.814 3.411 1.432

ETTh1 0.443 0.441 0.449 0.447 0.488 0.474 0.478 0.466 0.628 0.574 0.462 0.458 0.441 0.457 0.476 0.477 1.064 0.806 0.993 0.788 0.763 0.636

ETTh2 0.377 0.401 0.390 0.410 0.550 0.515 0.413 0.426 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 4.358 1.719 3.296 1.419 3.325 1.445

ECL 0.174 0.265 0.176 0.267 0.209 0.297 0.214 0.307 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.335 0.416 0.274 0.367 0.617 0.598

Traffic 0.425 0.284 0.428 0.286 0.552 0.348 0.535 0.309 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.727 0.404 0.680 0.376 1.001 0.652

Weather 0.266 0.286 0.281 0.302 0.255 0.299 0.262 0.288 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.595 0.541 0.632 0.552 0.584 0.572

PEMS03 0.112 0.222 0.116 0.226 0.146 0.257 0.118 0.223 0.316 0.370 0.233 0.344 0.174 0.302 0.501 0.513 0.137 0.241 0.126 0.233 0.666 0.634

PEMS08 0.138 0.236 0.159 0.258 0.174 0.277 0.154 0.245 0.319 0.378 0.294 0.377 0.232 0.322 0.630 0.572 0.319 0.314 0.249 0.266 0.713 0.629

Note: We fix the input length as 96 following the established benchmarks (Liu et al., 2024; Wu et al., 2023). Bold typeface highlights the
top performance for each metric, while underlined text denotes the second-best results. The results are averaged over prediction lengths
(96, 192, 336 and 720), with full results in Appendix Table 2.

1. Performance: How does SRP++ perform compared to current state-of-the-art step-invariant
methods? In Section 4.2, we benchmark SRP++ against state-of-the-art baselines on public
datasets.

2. Generality: Is it effective to enhance other forecast models? In Section 4.3, we assess the
versatility of applying SRP++ to enhance different forecast models.

3. Flexibility: Does it support different adaptation methods? Section 4.3 explores SRP++’s flexi-
bility by substituting LoRA with alternative adaptation modules while maintaining step-specific
capabilities.

4. Sensitivity: How sensitive is SRP++ to hyperparameter changes? In Section 4.4, we conduct a
sensitivity analysis on the key hyperparameters.

4.1 EXPERIMENTAL SETUP

Datasets. We use nine standard time-series forecast datasets: ETT (with 4 subsets), ECL, Traffic,
Weather, and PEMS (with 2 subsets), following the settings in (Wu et al., 2021) and (Liu et al.,
2024). Each dataset is split chronologically into training, validation, and test sets. Appendix 4.1
provides detailed descriptions and statistics for each dataset.

Baselines. We select a diverse suite of baseline models for comparison: Transformer (Vaswani
et al., 2017), Informer (Li et al., 2021), Autoformer (Wu et al., 2021), FEDformer (Zhou et al.,
2022b), iTransformer (Liu et al., 2024), DLinear (Zeng et al., 2023), FreTS (Yi et al., 2023b), Times-
Net (Wu et al., 2023) and TCN (Bai et al., 2018).

Implementation details. To benchmark models under a unified and fair protocol, we reproduced
baselines using the official scripts from the TSLib1. All models were trained using the Adam
optimizer (Kingma & Ba, 2015), tuning learning rates from {0.0001, 0.0005, 0.001}. The fore-
cast horizons were set to {96, 192, 336, 720} for ETT, ECL, Traffic, and Weather datasets, and to
{12, 24, 36, 48} for PEMS datasets. Performance was evaluated using mean squared error (MSE)
and mean absolute error (MAE).

To apply SRP++ to enhance the baseline models, we first pre-trained baselines using their original
hyperparameters with forecast horizons set to T/K where K ∈ {2, 3, 4, 6}. During the subsequent
step-specific adaptation stage, we tuned the learning rate (η) and SRP++ specific parameters (the
LoRA rank r and the number of LoRA experts). We conducted all experiments on NVIDIA RTX
4090 GPUs, with more implementation details provided in Appendix 4.2.

1https://github.com/thuml/Time-Series-Library
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Figure 3: Visualization of forecast sequence generated with and without SRP++ under two snap-
shots.

Table 2: Varying adaptation technique results.

Variants SI Ada IA3 SRP SRP++

Metrics MSE ∆ MAE ∆ MSE ∆ MAE ∆ MSE ∆ MAE ∆ MSE ∆ MAE ∆ MSE ∆ MAE ∆

E
T

T
h2

96 0.301 - 0.349 - 0.292 2.93% ↓ 0.342 2.10% ↓ 0.304 0.88% ↑ 0.346 0.84% ↓ 0.293 2.53% ↓ 0.342 2.13% ↓ 0.293 2.57% ↓ 0.341 2.25% ↓
192 0.382 - 0.402 - 0.384 0.55% ↑ 0.398 1.08% ↓ 0.381 0.17% ↓ 0.397 1.34% ↓ 0.380 0.54% ↓ 0.398 1.00% ↓ 0.377 1.25% ↓ 0.397 1.32% ↓
336 0.430 - 0.434 - 0.420 2.31% ↓ 0.431 0.78% ↓ 0.418 2.88% ↓ 0.428 1.48% ↓ 0.422 1.81% ↓ 0.433 0.23% ↓ 0.421 2.06% ↓ 0.429 1.22% ↓
720 0.447 - 0.455 - 0.430 3.87% ↓ 0.446 1.97% ↓ 0.437 2.23% ↓ 0.447 1.68% ↓ 0.428 4.25% ↓ 0.444 2.44% ↓ 0.418 6.49% ↓ 0.438 3.67% ↓

Avg 0.390 - 0.410 - 0.382 2.05% ↓ 0.402 1.95% ↓ 0.385 1.28% ↓ 0.405 1.22% ↓ 0.381 2.31% ↓ 0.402 1.98% ↓ 0.377 3.33% ↓ 0.401 2.20% ↓

W
ea

th
er

96 0.201 - 0.247 - 0.202 0.43% ↑ 0.246 0.39% ↓ 0.204 1.69% ↑ 0.249 0.80% ↑ 0.202 0.40% ↑ 0.245 1.00% ↓ 0.173 13.78% ↓ 0.211 14.71% ↓
192 0.250 - 0.283 - 0.248 0.83% ↓ 0.279 1.23% ↓ 0.250 0.14% ↓ 0.281 0.63% ↓ 0.248 0.90% ↓ 0.279 1.45% ↓ 0.246 1.43% ↓ 0.280 1.02% ↓
336 0.302 - 0.317 - 0.299 0.89% ↓ 0.317 0.03% ↓ 0.300 0.60% ↓ 0.315 0.66% ↓ 0.280 7.28% ↓ 0.297 6.44% ↓ 0.277 8.28% ↓ 0.296 6.63% ↓
720 0.370 - 0.362 - 0.361 2.41% ↓ 0.351 3.04% ↓ 0.365 1.40% ↓ 0.356 1.66% ↓ 0.357 3.57% ↓ 0.349 3.63% ↓ 0.367 0.86% ↓ 0.356 1.60% ↓

Avg 0.281 - 0.302 - 0.278 1.07% ↓ 0.299 0.99% ↓ 0.280 0.36% ↓ 0.300 0.66% ↓ 0.272 3.20% ↓ 0.293 2.98% ↓ 0.266 5.34% ↓ 0.286 5.30% ↓

Note: ∆ denotes the relative error improvement compared to iTransformer with SI paradigm.

4.2 OVERALL PERFORMANCE

The performance of our proposed step-wise representation adaptation approach on the MSTF task
is presented in Table 1. We use iTransformer as the base model gθ and apply it to different fore-
cast horizons using the two-stage SRP++ framework. Overall, SRP++ significantly enhances the
performance of iTransformer. For example, on the ETTm1 dataset, SRP++ reduces the MSE of
iTransformer by 0.015. Similar improvements are observed across other datasets, underscoring the
effectiveness of step-specific adaptation in overcoming the limitations imposed by shared represen-
tations across all forecast steps.

Importantly, SRP++ not only improves iTransformer’s performance but also enables it to surpass
models that previously outperformed iTransformer on certain datasets and metrics, like PEMS08
with MSE and MAE. This suggests that the gains achieved by SRP++ go beyond architectural de-
signs alone, emphasizing the critical importance of addressing the expressiveness bottleneck through
step-specific representations.

Showcases. To further illustrate the improvements provided by SRP++, we visualize forecast se-
quences for two snapshots from the ETTm2 dataset with a forecast horizon of T = 336 in Figure 3.
While step-invariant approaches follow the general trends of the true label sequence, they struggle
with capturing sharp peaks due to the expressiveness bottleneck, leading to misaligned forecasts
across different horizons. In contrast, SRP++ mitigates this issue by employing step-specific rep-
resentations tailored to each forecast horizon, resulting in more accurate predictions that track both
trends and sharp peaks across multiple time steps.

4.3 GENERALIZATION STUDIES

In this section, we explore the generality of the SRP++ framework to enhance varying forecast
models and encompass existing adaptation techniques.
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Figure 4: Benefit of incorporating SRP++ in varying models, shown with colored bars for means
over forecast lengths (96, 192, 336, 720) and error bars for 95% confidence intervals.

Table 3: Varying segment number performance.

ETTh1 Weather
K MSE ∆ MAE ∆ MSE ∆ MAE ∆

SI 0.390 - 0.410 - 0.201 - 0.247 -
1 0.390 0.09% ↓ 0.410 0.21% ↓ 0.201 0.02% ↓ 0.246 0.69% ↓
2 0.383 2.02% ↓ 0.403 1.79% ↓ 0.202 0.25% ↑ 0.246 0.61% ↓
3 0.389 0.33% ↓ 0.409 0.24% ↓ 0.200 0.54% ↓ 0.244 1.23% ↓
4 0.379 2.93% ↓ 0.400 2.47% ↓ 0.201 0.03% ↓ 0.245 1.07% ↓
8 0.391 0.14% ↑ 0.408 0.70% ↓ 0.173 13.99% ↓ 0.211 14.68% ↓
16 0.390 0.10% ↓ 0.407 0.79% ↓ 0.176 12.57% ↓ 0.214 13.53% ↓
32 0.388 0.66% ↓ 0.403 1.81% ↓ 0.174 13.43% ↓ 0.213 14.02% ↓
48 0.389 0.27% ↓ 0.405 1.37% ↓ 0.198 1.50% ↓ 0.244 1.47% ↓
96 0.389 0.31% ↓ 0.404 1.61% ↓ 0.181 9.92% ↓ 0.221 10.84% ↓
Note: ∆ denotes the relative error improvement compared to iTransformer with SI paradigm. The results are generated with forecast
length fixed at 96.

Generalization to Adaptation Techniques. We implement SRP++ by replacing the LoRA mod-
ules with two alternative adaptation techniques: Adapter (Houlsby et al., 2019a) (Ada) and IA3 (Liu
et al., 2022a) (IA3), to demonstrate its support for existing adaptation techniques while preserving
step-specific adaptation capabilities. Both Adapter and IA3 are well-established parameter-efficient
adaptation technologies. We also introduce a variant that applies step-specific adaptation with stan-
dard LoRA modules (SRP) for comparison. Detailed illustrations of their technical differences
and parameter settings are provided in Appendix 5.3. The results in Table 2 indicate that all vari-
ants exhibit comparable improvements over step-invariant approaches, affirming SRP++’s flexibil-
ity in integrating diverse adaptation strategies while maintaining step-specific expressiveness. The
standard SRP++, enabling parameter sharing across different segments with the mixture-of-experts
mechanism, outperforms the variants since it leverages inter-step information while maintaining
computational efficiency and step-specific capabilities.

Generalization to Forecasting Models. We incorporate SRP++ into several well-established
forecast models: iTransformer, Autoformer, Informer, and Transformer. The results, averaged across
different prediction lengths (96, 192, 336, 720) and accompanied by 95% confidence intervals, are
presented in Figure 4. Overall, SRP++ improves the performance of these models by transition-
ing them from step-invariant to step-specific paradigms. Notably, Autoformer and Informer benefit
significantly from SRP++, showing a relative MSE improvement of over 4% on both the ECL and
Weather datasets. These results demonstrate the generality and broad applicability of SRP++, rein-
forcing its potential as a plug-and-play strategy for enhancing various neural forecast models.

4.4 SENSITIVITY STUDIES

In this section, we examine the impact of key hyperparameters on SRP’s performance, with results
shown in Table 3 and Figure 5. The main observations are as follows:

• The coefficient K determines the number of segments. We observe that SRP++ outperforms step-
invariant approaches across nearly all values of K. The best performance is typically achieve at
small K values (e.g., K = 4 for ETTh1), demonstrating that finer-grained step-specific adaptations

8
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Figure 5: Performance given varying rank r, learning rate η and the number of experts P.

are more effective in capturing step-specific patterns while still leveraging correlations in neigh-
boring steps. Therefore, although ideally each prediction step would have its own step-specific
representation (i.e., K = T), the segmentation strategy offers a flexible solution that reduces
computational complexity while maintaining the benefits of step-specific expressiveness.

• The coefficient r determines the rank of the LoRA expert modules. We observe that both exces-
sively small and large ranks degrade performance, with the optimal value balancing step-specific
expressiveness and overfitting risks. For instance, on ETTh1, r = 8 achieves minimal MSE val-
ues of 0.441 (T = 192) and 0.484 (T = 336), while higher ranks overfit and lower ranks lack
sufficient expressiveness for step-specific adaptation.

• The coefficient η determines the learning rate in the adaptation phase. The model is sensitive to
it, increasing η from 0.0002 to 0.001 on ETTh1 reduces MSE from 0.459 to 0.440 for 192-step
forecasts, which underscores the role of update rate in the adaptation phase.

• The coefficient P determines the number of LoRA expert modules. It exhibits stable performance
unless it severely mismatches the segment count K. For example, on Weather (192-step), ex-
panding experts from 2 to 10 only reduces MSE by 0.001, suggesting robustness to moderate
variations while maintaining step-specific capabilities. These trends highlight the necessity of
calibrating r and η precisely for effective step-specific adaptation, while the expert count offers
flexibility within practical bounds.

5 CONCLUSION

In summary, this work identifies a fundamental expressiveness bottleneck in modern deep fore-
cast models arising from step-invariant representations. Through rigorous theoretical analysis,
we demonstrate that this limitation causes an unavoidable forecast error irrespective of architec-
tural advances. To overcome this challenge, we propose SRP, a two-stage framework that enables
step-specific representation learning via low-rank adaptation, and further extend this approach with
SRP++, which introduces adaptively weighted adapters for improving efficiency and accuracy. Ex-
tensive experiments confirm that SRP++ substantially alleviates the expressiveness bottleneck and
improves the performance of diverse forecast models over different public datasets.

Limitations and Future Work. In this study the parameter cost of LoRA still scales with model
size and forecast horizon. Exploring alternative parameter-efficient adaptation techniques, such as
prompt-tuning or adapter-tuning, may further enhance scalability and applicability. Additionally, the
segmentation of forecast steps for SRP++ is manually specified. Automatically determining optimal
segment boundaries, possibly via meta-learning techniques, represents a promising direction for
further optimizing step-specific adaptation.
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REPRODUCIBILITY STATEMENT

The anonymous downloadable source code is available at https://anonymous.4open.
science/r/SRP-7C55. For theoretical results, a complete proof of the claims is included in
the Appendix C; For datasets used in the experiments, a complete description of the dataset statistics
and processing workflow is provided in the Appendix D.1.
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A RELATED WORK

A.1 TIME SERIES FORECASTING MODELING

Time-series forecasting (TSF) modeling generally involves encoding historical sequences to extract
discriminative representations for future predictions. To exploit temporal dynamics during encoding,
various deep learning backbones have been developed, generally grouped into four main categories:
RNN-based (e.g., SegRNN (Lin et al., 2023)), CNN-based (e.g., TimesNet (Wu et al., 2023)), GNN-
based (e.g., MAGNN (Chen et al., 2023)), MLP-based, and Transformer-based methods. Recent
debates focus on MLP versus Transformer architectures, where MLPs (e.g., DLinear (Zeng et al.,
2023), TSMixer (Ekambaram et al., 2023)) are efficient but limited in handling complex temporal
patterns, whereas Transformers (e.g., PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024))
excel in temporal encoding but are computationally intensive. To better capture intricate temporal
patterns, specialized designs such as series decomposition (e.g., Autoformer (Wu et al., 2021)) and
multiperiodicity analysis (e.g., FiLM (Zhou et al., 2022a)) have been proposed, addressing seasonal
and mixed period forecasting, respectively. Recent innovations explore frequency-domain repre-
sentations for temporal patterns, exemplified by FedFormer (Zhou et al., 2022b) which employs
frequency-domain attention score computation to enhance both efficiency and effectiveness. This
paradigm demonstrates remarkable adaptability across architectures, including Transformers (Zhou
et al., 2022b; Wu et al., 2021), MLPs (Yi et al., 2023b), and GNNs (Yi et al., 2023a; Cao et al.,
2020), establishing frequency-domain analysis as a versatile plug-and-play component for temporal
modeling.

Despite significant advancements in representation learning, modern TSF models predominantly
rely on step-invariant (SI) representations, encoding historical sequences into a single shared rep-
resentation for all forecast steps. This approach inherently suffers from an expressiveness
bottleneck, where predictions are confined to linear transformations of a shared representation,
limiting the model’s capacity to capture step-specific temporal patterns. Our theoretical analysis
reveals that this constraint induces unavoidable forecast errors, highlighting fundamental limitations
in conventional TSF paradigms.

A.2 MODULARIZED ADAPTATION

Adaptation has emerged as a pivotal technique for leveraging pre-trained models in downstream
tasks, initially gaining prominence in natural language processing and computer vision (Xin et al.,
2024). Modern approaches have evolved into modular frameworks categorized into three paradigms:
Adapter-based, Selection-based, and LoRA-based methods. The Adapter-based paradigm intro-
duces lightweight task-specific modules between pre-trained layers, preserving original parameters
while enabling domain adaptation (Houlsby et al., 2019b; He et al., 2021; Lei et al., 2023; He et al.,
2023b). In contrast, Selection-based methods employ parameter masking strategies to identify crit-
ical subnetworks for task-specific tuning (Liao et al., 2023; He et al., 2023a; Vucetic et al., 2022;
Gheini et al., 2021). The LoRA-based paradigm marks a significant technical evolution in parameter-
efficient adaptation by introducing Low-Rank Adaptation (LoRA) (Hu et al., 2021; Fomenko et al.,
2024), which augments certain layers of a pre-trained model with trainable low-rank matrices. In-
stead of updating the full set of model parameters, LoRA only optimizes a small, low-rank decompo-
sition of the weight update, thereby drastically reducing memory and computational overhead. This
design allows for efficient adaptation to new tasks with minimal storage and enables fast switching
between tasks by maintaining separate LoRA weights. LoRA’s effectiveness and versatility have
been further demonstrated through updated matrix decomposition (Yang et al., 2024b; Zhang et al.,
2023), quantization (Dettmers et al., 2023; Li et al., 2023), and ranking adaptation (Ding et al., 2023;
Xia et al., 2024), reflecting a broader trend toward modularized and scalable LoRA applications.

In the context of TSF, LoRA-based adaptation has demonstrated promising capabilities from two
main perspectives. On one hand, (Nie et al., 2024) introduces channel-aware LoRA, leveraging
low-rank adaptation to capture channel dependencies. On the other hand, a series of studies (Khanal
et al., 2024; Chang et al., 2023; Zhou et al., 2023; Gupta et al., 2024) investigate the impact of LoRA
within time series foundation models, focusing on how LoRA facilitates efficient adaptation and task
transfer in time series forecasting. Though these explorations are promising, they largely overlook
two critical aspects: the expressiveness bottleneck we have identified in TSF, and the untapped
potential of LoRA for overcoming this limitation. Our work diverges by specifically addressing the
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Figure 6: Running time of SRP++ given varying rank r, the number of experts P and the number of
segments K.

expressiveness bottleneck through innovative integration of temporal segmentation and Mixture-of-
LoRA enhanced adaptation, ensuring both model efficiency and step-specific expressiveness.

B COMPLEXITY ANALYSIS

In this section, we conduct a parameter count analysis and evaluate the running cost of SRP++
through empirical investigation. Take iTransformer (Liu et al., 2024) as the base model, let the
number of layers in iTransformer be Nl, the hidden dimension of the attention layer be dm, and the
hidden dimension of the FFN layer be dff. Then, the number of parameters introduced by SRP++ is
given by:

NSRP++ = Nl × 2× (NLoRA × P + NWeight ×K)

= Nl × 2× ((dm × r + r × dff)× P + P×K),
(9)

where NLoRA and NWeight are the number of parameters introduced by LoRA expert module and
learnable weights for each expert, respectively.

Consider that iTransformer is a standard Transformer architecture with dimension permutation in
the input sequence, its number of parameters can be given by:

NiTrans = Nl × (NAtt +NFFN +NLN)

= Nl × (4× d2m + 2× dm × dff + 4× dm),
(10)

where NAtt, NFFN and NLN are the number of parameters introduced by self attention layer, feedfor-
ward layer and layer normalization layer, respectively.

The ratio between the two parameter counts is therefore:

NSRP++

NiTrans
=

P× (dm × r + r × dff +K)

2× dm × (dm + dff + 1)
. (11)

For example, with P = 4, K = 6, dm = 512, dff = 1024, and r = 8, the ratio NSRP++
NiTrans

is approximately
0.047, indicating a relevant small increase in model size. Figure 6 shows SRP++’s empirical running
costs with varying r, P, and K, capturing the sum time for weight matrix adaptation and base layer
forward pass. Our results confirm that the additional computational duration imposed by SRP++
is lower than 1ms, with a small increase as the hyperparameters grow. Therefore, SRP++ does not
compromise the model’s efficiency while effectively improving the model’s performance.
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C THEORETICAL JUSTIFICATION

Theorem C.1 (Expressiveness Bottleneck). Let W̄ = [W b] ∈ RT×(L+1) be the parameters in the
SI’s linear decoder, Y ∈ RT×D be the label sequence; the minimum attainable estimation error is

∥ϵ∥2F =

T∑
t=rank(W̄ )+1

∥U⊤
t Y ∥22, (12)

where W̄ = UΣV ⊤ is the singular value decomposition of W̄ , rank(W̄ ) ≤ min{T,L + 1}, and
{Ui}Ti=rank+1 form an orthonormal basis for the null space of W̄ . Notably, this error is independent
of the representation R provided by encoder.

Proof. Consider the least squares estimation, the aim of linear decoder is to find R̄ = [R⊤, 1]⊤ ∈
R(L+1)×1 such that:

ˆ̄R = argmin
R̄

∥Y − W̄ R̄∥22.

To solve this optimization problem, we set the gradient of the cost function with respect to R̄ to
zero:

∂

∂R̄
∥Y − W̄ R̄∥22 = −2W̄⊤(Y − W̄ R̄) = 0.

Assuming W̄⊤W̄ is invertible, we have:

R̄ = (W̄⊤W̄ )−1W̄⊤Y.

Then, the estimation error is:

ϵ = Y − Ŷ =
(
I − W̄ (W̄⊤W̄ )−1W̄⊤)Y = (I − P )Y,

where P = W̄ (W̄⊤W̄ )−1W̄⊤ is known as the projection matrix onto the column space of W̄ .
Therefore, I − P projects onto the orthogonal complement of the column space of W̄ .

Let the Singular Value Decomposition (SVD) of W̄ be

W̄ = UΣV ⊤,

where U ∈ RT×T is orthogonal, Σ ∈ RT×(L+1) is diagonal, and V ∈ R(L+1)×(L+1) is orthogonal.

Partition Σ and U as

Σ =

[
Σo 0
0 0

]
, U = [Uo Un],

where Σo ∈ Ro×o contains the positive singular values, Uo ∈ RT×o contains the corresponding
left singular vectors, and Un ∈ RT×(T−o) contains the left singular vectors corresponding to zero
singular values, and o = rank(W̄ ).

The projection matrix onto the column space of W̄ is

P = W̄ (W̄⊤W̄ )−1W̄⊤ = UoU
⊤
o .

Therefore, the estimation error is

ϵ = (I − P )Y = UnU
⊤
n Y.

The minimum attainable estimation error is

∥ϵ∥2F = ∥U⊤
n Y ∥22 =

T∑
t=rank(W̄ )+1

∥∥U⊤
t Y

∥∥2
2
.
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Theorem C.2 (Variance Reduction of SRP++). LSRP++ has a smaller variance than LSI,

Var(LSRP++) ≤ Var(LSI). (13)

Proof. Consider the total loss expressed as the average of losses over the prediction horizons:

L =
1

T

T∑
t=1

Lt,

where Lt is the MSE loss for the t-th prediction horizon.

The variance of the total loss is:

Var(L) = Var

(
1

T

T∑
t=1

Lt

)

=
1

T2

 T∑
t=1

Var(Lt) + 2
∑

1≤t<s≤T

Cov(Lt,Ls)

 .

Under modularized adaptation, the covariances between different Lt decrease because the LoRA
modules introduce horizon-specific parameters, reducing parameter sharing. Let ∆Cov(Lt,Ls) =
CovSI(Lt,Ls)− CovSRP++(Lt,Ls) ≥ 0. The variance difference is then:

Var(LSI)−Var(LSRP++) =
2

T2

∑
1≤t<s≤T

∆Cov(Lt,Ls) ≥ 0.

Therefore,

Var(LSRP++) = Var(LSI)−
2

T2

∑
1≤t<s≤T

∆Cov(Lt,Ls)

≤ Var(LSI).

The equation realize only when all the LoRA modules do not contribute to the improvement of
the prediction performance with corresponding time step. However, we didn’t recognize that phe-
nomenon in our experiments.

D REPRODUCTION DETAILS

D.1 DATASET DESCRIPTIONS

The datasets used in this study span a variety of domains and time resolutions, each with distinct
characteristics that are well-suited for evaluating time-series forecasting:

• ETT (Li et al., 2021): This dataset consists of data from 7 key variables related to electricity
transformers, collected between July 2016 and July 2018. It includes four subsets: ETTh1 and
ETTh2, which are recorded hourly, and ETTm1 and ETTm2, which are recorded every 15 minutes.

• ECL (Electricity Consumption Load) (Wu et al., 2021): This dataset contains hourly electricity
consumption data from 321 clients, offering insights into power usage patterns over time.

• Traffic (Wu et al., 2021): This dataset comprises hourly road occupancy rates collected by 862
sensors deployed across the freeways in the San Francisco Bay Area. The data spans the period
from January 2015 to December 2016, reflecting traffic conditions over time.

• Weather (Wu et al., 2021): This dataset includes 21 meteorological variables, recorded every
10 minutes throughout 2020 at the Max Planck Biogeochemistry Institute’s weather station. It
provides a comprehensive set of climate-related factors for forecasting purposes.
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Table 4: Detailed dataset descriptions. D denotes the number of variates. Forecast Length
denotes the prediction lengths investigated in this dataset. Frequency denotes the sampling inter-
val of time points. Train, Validation, Test denotes the number of samples employed in
each split. The taxonomy and statistic are aligned with the recent works (Wu et al., 2023; Liu et al.,
2024).

Dataset D Forecast Length Split Ratio Frequency Domain
ETTm1 7 96,192,336,720 34465/11521/11521 15mins Electricity

ETTm2 7 96,192,336,720 34465/11521/11521 15mins Electricity

ETTh1 7 96,192,336,720 8545/2881/2881 Hourly Electricity

ETTh2 7 96,192,336,720 8545/2881/2881 Hourly Electricity

ECL 321 96,192,336,720 18317/2633/5261 Hourly Electricity

Traffic 862 96,192,336,720 12185/1757/3509 Hourly Transportation

Weather 21 96,192,336,720 36792/5271/10540 10mins Weather

PEMS03 358 12,24,36,48 15617/5135/5135 5mins Transportation

PEMS08 170 12,24,36,48 10690/3548/265 5mins Transportation

• PEMS (Liu et al., 2022b): This dataset consists of public traffic data from the California highway
network, with recordings collected every 5 minutes. We utilize two subsets in this study: PEMS03
and PEMS08, which are frequently adopted in traffic forecasting benchmarks.

For all datasets, the data processing and division into training, validation, and test sets follow the
protocols established by TimesNet (Wu et al., 2023) and iTransformer (Liu et al., 2024), ensuring a
consistent chronological split to avoid data leakage. The standardized lookback window is set at 96
for the ETT, ECL, Traffic, Weather, and PEMS datasets. Prediction horizons vary across datasets,
with forecasting lengths of 96, 192, 336, and 720 for the first five datasets, and shorter horizons of
12, 24, 36, and 48 for the PEMS subsets. Detailed specifications of each dataset can be found in
Table 4.

D.2 IMPLEMENTATION DETAILS

The baseline models in this study were carefully reproduced using training scripts from the TimesNet
Repository (Wu et al., 2023), ensuring full reproducibility verification. All models were trained
using the Adam optimizer (Kingma & Ba, 2015) while minimizing the MSE loss. A batch size of
32 was maintained consistently across all experiments. Training was performed for a maximum of
10 epochs, with an early stopping criterion triggered if no improvement in validation performance
was observed for 3 consecutive epochs.

For the experiments integrating SRP++ into existing forecasting models, we strictly adhered to the
original hyperparameter settings as outlined in the respective publications during the pre-training
phase. The forecasting horizon of pre-trained models were set to T/K, where K ∈ {2, 3, 4, 6}.
Pre-training was limited to a maximum of 5 epochs, with early stopping applied after 2 epochs
without improvement. During the adaptation phase, only the rank r in the LoRA expert module,
the learning rate η and the number of LoRA expert modules P were tuned, as these parameters
are crucial for adjusting the differences in weight magnitudes between the base models and the
LoRA expert modules. Specifically, we tuned r in {4, 8, 16, 32, 64}, P in {2, 4, 6, 8, 10}, and η in
{2× 10−4, 5× 10−4, 10−3, 2× 10−3, 5× 10−3}. Adaptation was performed to minimize the MSE
averaged over all prediction lengths, with forecasting segments selected from range {2, 3, 4, 6}. The
current results sufficiently demonstrate the effectiveness of SRP++, showing that its efficacy is not
dependent on highly specific hyperparameter configurations.
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Table 5: Full results on the multi-step forecasting task. The length of history window is set to 96 for
all baselines. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.

Models SRP++ iTransformer FreTS TimesNet TiDE DLinear FEDformer Autoformer Informer Transformer TCN
(Ours) (2024) (2023) (2023) (2023) (2023) (2022) (2021) (2021) (2017) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.330 0.364 0.346 0.379 0.339 0.374 0.338 0.379 0.364 0.387 0.345 0.372 0.389 0.427 0.468 0.463 0.633 0.560 0.591 0.549 0.887 0.613
192 0.378 0.392 0.392 0.400 0.382 0.397 0.389 0.400 0.398 0.404 0.381 0.390 0.402 0.431 0.573 0.509 0.736 0.625 0.704 0.629 0.877 0.626
336 0.414 0.416 0.427 0.422 0.421 0.426 0.429 0.428 0.428 0.425 0.414 0.414 0.438 0.451 0.596 0.527 1.061 0.787 1.171 0.861 0.890 0.636
720 0.480 0.453 0.494 0.461 0.485 0.462 0.495 0.464 0.487 0.461 0.473 0.451 0.529 0.498 0.749 0.569 1.119 0.801 1.307 0.893 0.911 0.653

Avg 0.400 0.406 0.415 0.416 0.407 0.415 0.413 0.418 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.887 0.693 0.943 0.733 0.891 0.632

E
T

T
m

2 96 0.181 0.262 0.184 0.266 0.190 0.282 0.185 0.264 0.207 0.305 0.195 0.294 0.194 0.284 0.240 0.319 0.541 0.581 0.317 0.408 3.125 1.345
192 0.247 0.307 0.257 0.315 0.260 0.329 0.254 0.307 0.290 0.364 0.283 0.359 0.264 0.324 0.300 0.349 0.527 0.558 1.069 0.758 3.130 1.350
336 0.312 0.347 0.315 0.351 0.373 0.405 0.314 0.345 0.377 0.422 0.384 0.427 0.319 0.359 0.339 0.375 1.126 0.797 1.325 0.869 3.185 1.375
720 0.407 0.403 0.419 0.409 0.517 0.499 0.434 0.413 0.558 0.524 0.516 0.502 0.430 0.424 0.423 0.421 2.828 1.268 2.576 1.223 4.203 1.658

Avg 0.287 0.330 0.294 0.335 0.335 0.379 0.297 0.332 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.256 0.801 1.322 0.814 3.411 1.432

E
T

T
h1

96 0.379 0.400 0.390 0.410 0.399 0.412 0.422 0.433 0.479 0.464 0.396 0.410 0.377 0.418 0.423 0.441 0.920 0.745 0.796 0.691 0.767 0.633
192 0.436 0.432 0.443 0.441 0.453 0.443 0.465 0.457 0.521 0.503 0.449 0.444 0.421 0.445 0.498 0.485 0.998 0.781 0.813 0.699 0.739 0.619
336 0.477 0.456 0.480 0.457 0.503 0.475 0.492 0.470 0.659 0.603 0.487 0.465 0.468 0.472 0.506 0.496 1.091 0.812 1.181 0.876 0.717 0.613
720 0.480 0.478 0.484 0.479 0.596 0.565 0.532 0.502 0.893 0.736 0.516 0.513 0.500 0.493 0.477 0.487 1.247 0.887 1.182 0.885 0.828 0.678

Avg 0.443 0.441 0.449 0.447 0.488 0.474 0.478 0.466 0.628 0.574 0.462 0.458 0.441 0.457 0.476 0.477 1.064 0.806 0.993 0.788 0.763 0.636

E
T

T
h2

96 0.293 0.341 0.301 0.349 0.350 0.403 0.320 0.364 0.400 0.440 0.343 0.396 0.347 0.391 0.383 0.424 2.340 1.220 2.072 1.140 3.171 1.364
192 0.377 0.397 0.382 0.402 0.472 0.475 0.409 0.417 0.528 0.509 0.473 0.474 0.430 0.443 0.557 0.511 6.284 2.078 5.081 1.814 3.222 1.398
336 0.421 0.429 0.430 0.434 0.564 0.528 0.449 0.451 0.643 0.571 0.603 0.546 0.469 0.475 0.470 0.481 4.824 1.853 3.564 1.475 3.306 1.452
720 0.418 0.438 0.447 0.455 0.815 0.654 0.473 0.474 0.874 0.679 0.812 0.650 0.473 0.480 0.501 0.515 3.985 1.724 2.469 1.247 3.599 1.565

Avg 0.377 0.401 0.390 0.410 0.550 0.515 0.413 0.426 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 4.358 1.719 3.296 1.419 3.325 1.445

E
C

L

96 0.147 0.237 0.148 0.239 0.189 0.277 0.171 0.273 0.237 0.329 0.210 0.302 0.200 0.315 0.199 0.315 0.315 0.398 0.252 0.352 0.688 0.621
192 0.163 0.254 0.167 0.258 0.193 0.282 0.188 0.289 0.236 0.330 0.210 0.305 0.207 0.322 0.215 0.327 0.327 0.411 0.266 0.364 0.587 0.582
336 0.179 0.270 0.179 0.272 0.207 0.296 0.208 0.304 0.249 0.344 0.223 0.319 0.226 0.340 0.232 0.343 0.354 0.434 0.292 0.383 0.590 0.588
720 0.208 0.297 0.209 0.298 0.245 0.332 0.289 0.363 0.284 0.373 0.258 0.350 0.282 0.379 0.268 0.371 0.343 0.423 0.287 0.371 0.602 0.601

Avg 0.174 0.265 0.176 0.267 0.209 0.297 0.214 0.307 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.335 0.416 0.274 0.367 0.617 0.598

Tr
af

fic

96 0.396 0.271 0.397 0.272 0.528 0.341 0.504 0.298 0.805 0.493 0.697 0.429 0.577 0.362 0.609 0.385 0.698 0.390 0.686 0.385 1.451 0.744
192 0.416 0.278 0.418 0.279 0.531 0.338 0.526 0.305 0.756 0.474 0.647 0.407 0.603 0.372 0.633 0.400 0.697 0.386 0.679 0.377 0.842 0.622
336 0.425 0.283 0.432 0.286 0.551 0.345 0.540 0.310 0.762 0.477 0.653 0.410 0.615 0.378 0.637 0.398 0.715 0.397 0.663 0.361 0.844 0.620
720 0.464 0.304 0.467 0.305 0.598 0.367 0.570 0.324 0.719 0.449 0.694 0.429 0.649 0.403 0.668 0.415 0.797 0.443 0.693 0.381 0.867 0.624

Avg 0.425 0.284 0.428 0.286 0.552 0.348 0.535 0.309 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.727 0.404 0.680 0.376 1.001 0.652

W
ea

th
er

96 0.173 0.211 0.201 0.247 0.184 0.239 0.178 0.226 0.202 0.261 0.197 0.259 0.221 0.304 0.284 0.355 0.383 0.438 0.332 0.383 0.610 0.568
192 0.246 0.280 0.250 0.283 0.223 0.275 0.227 0.266 0.242 0.298 0.236 0.294 0.275 0.345 0.313 0.371 0.415 0.449 0.634 0.539 0.541 0.552
336 0.277 0.296 0.302 0.317 0.272 0.316 0.283 0.305 0.287 0.335 0.282 0.332 0.338 0.379 0.359 0.393 0.618 0.551 0.656 0.579 0.565 0.569
720 0.367 0.356 0.370 0.362 0.340 0.363 0.359 0.355 0.351 0.386 0.347 0.384 0.408 0.418 0.440 0.446 0.963 0.726 0.908 0.706 0.622 0.601

Avg 0.266 0.286 0.281 0.302 0.255 0.299 0.262 0.288 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.595 0.541 0.632 0.552 0.584 0.572

PE
M

S0
3 12 0.067 0.173 0.069 0.175 0.083 0.194 0.082 0.188 0.117 0.225 0.122 0.245 0.123 0.248 0.239 0.365 0.122 0.226 0.107 0.209 0.632 0.606

24 0.095 0.205 0.098 0.210 0.127 0.241 0.110 0.216 0.233 0.320 0.202 0.320 0.160 0.287 0.492 0.506 0.129 0.233 0.121 0.227 0.655 0.626
36 0.127 0.240 0.131 0.243 0.169 0.281 0.133 0.236 0.380 0.422 0.275 0.382 0.191 0.321 0.399 0.459 0.143 0.249 0.133 0.243 0.678 0.644
48 0.159 0.270 0.164 0.275 0.204 0.311 0.146 0.251 0.536 0.511 0.335 0.429 0.223 0.350 0.875 0.723 0.153 0.255 0.144 0.253 0.699 0.659

Avg 0.112 0.222 0.116 0.226 0.146 0.257 0.118 0.223 0.316 0.370 0.233 0.344 0.174 0.302 0.501 0.513 0.137 0.241 0.126 0.233 0.666 0.634

PE
M

S0
8 12 0.079 0.181 0.085 0.189 0.095 0.204 0.110 0.209 0.121 0.231 0.152 0.274 0.175 0.275 0.446 0.483 0.268 0.281 0.213 0.236 0.680 0.607

24 0.114 0.218 0.131 0.236 0.150 0.259 0.142 0.239 0.232 0.326 0.245 0.350 0.211 0.305 0.488 0.509 0.296 0.302 0.238 0.256 0.701 0.622
36 0.158 0.256 0.182 0.282 0.202 0.305 0.167 0.258 0.379 0.428 0.344 0.417 0.250 0.338 0.532 0.513 0.340 0.327 0.263 0.277 0.727 0.637
48 0.203 0.290 0.236 0.323 0.250 0.341 0.195 0.274 0.543 0.527 0.437 0.469 0.293 0.371 1.052 0.781 0.373 0.345 0.283 0.295 0.746 0.648

Avg 0.138 0.236 0.159 0.258 0.174 0.277 0.154 0.245 0.319 0.378 0.294 0.377 0.232 0.322 0.630 0.572 0.319 0.314 0.249 0.266 0.713 0.629

1st Count 33 36 0 0 4 0 2 6 0 0 1 3 4 0 1 0 0 0 0 0 0 0

E MORE EXPERIMENTAL RESULTS

E.1 OVERALL PERFORMANCE

We present a comprehensive comparison of the multi-step forecasting task in Table 5. The iTrans-
former model serves as the base model for implementing the SRP++ framework. Despite iTrans-
former’s initial performance gap compared to other state-of-the-art baseline models, integrating
SRP++ significantly enhances its forecasting accuracy.

Specifically, SRP++ achieves the lowest MSE in 33 out of 45 cases and the lowest MAE in 36 out of
45 cases, illustrating its effectiveness in enhancing model performance. The improvements brought
by SRP++ are particularly noticeable on challenging datasets such as ETTm1 and Traffic, where
capturing long-term dependencies is crucial. These results underscore the robustness and adaptabil-
ity of the SRP++ framework. While there are a few instances where SRP++ does not achieve the
top performance, this can be attributed to the inherent advantages of specific models in particular
contexts. For example, FreTS shows competitive results on the Weather dataset, where its architec-
tural design may better suit certain meteorological patterns. Nonetheless, the overall performance
of SRP++ demonstrates its strength as a adaptation framework for time-series forecasting, consis-
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tently mitigating the expressiveness bottleneck and delivering superior results across a wide range
of forecasting tasks.

E.2 GENERALIZATION STUDIES

Q K V

FC

ReLU

FC

Q K V

softmax

FC

FC

ReLU

Adapter

LoRA

IA

Figure 7: Visualization of common parameter-
efficient adaptation strategies.

We visualize the three prominent PEFT meth-
ods: Adapter, LoRA and IA3 in Figure 7, show-
ing the architectural modifications introduced
by each PEFT technique within a typical trans-
former block. Adapter, shown in the upper left,
introduces additional fully connected (FC) lay-
ers and a short-cut connection after the FFN
layer. The Adapter module typically consists of
a down-projection FC layer, followed by a non-
linearity (often ReLU), an up-projection FC
layer, and a residual connection. This approach
provides a compact, trainable module that can
adjust the model’s behavior for specific tasks
without modifying the entire network. LoRA,
illustrated on the lower left, modifies the FFN
layer by adding low-rank matrices to the frozen
weight matrix. LoRA decomposes the weight update into two low-rank matrices, enabling the model
to learn task-specific adaptations in a parameter-efficient manner. IA3, shown on the right, works by
applying learnable scaling factors to the key and value projections in the self-attention mechanism
and to the hidden representations in the feed-forward network, allowing for fine-grained control over
the model’s behavior with minimal additional parameters.

For a fair comparison, we matched the low-rank configuration of the Adapter and the LoRA modules
with that of the LoRA expert in SRP++, applying both to the feed-forward network (FFN) layers.
IA3, on the other hand, dynamically adjusts the weights of intermediate hidden vectors in both the
FFN and attention layers.

E.3 HYPERPARAMETER SENSITIVITY

In this section, we further analyze the sensitivity of SRP++ to three key hyperparameters under
different segment number settings: the low-rank value r in the LoRA modules, the learning rate η,
and the number of LoRA expert modules P. The experiments are conducted using iTransformer
across two datasets, ETTh1 and Weather, with the results visualized in Figure 8 and Figure 9.

The results generally indicate that both extremely low and high values of rank r and learning rate η
lead to performance degradation. This pattern suggests that overly high ranks may lead to overfitting,
while excessively low ranks may not provide sufficient flexibility for effective model adaptation.
Similarly, very high learning rates can cause instability in training, while very low learning rates may
result in slow convergence or getting stuck in suboptimal solutions. Interestingly, for the number
of expert modules P, SRP++ exhibits high stability as long as P is not significantly lower than the
number of segments K. This robustness indicates that the model can effectively leverage multiple
experts to capture diverse patterns across different forecasting segments.

These findings indicate that adaptation the hyperparameters for each specific forecasting horizon
can further improve performance. However, our results demonstrate that even without exhaustive
tuning, the SRP++ framework delivers robust performance improvements, highlighting its flexibility
and effectiveness in time-series forecasting tasks.

E.4 EXTRA DISCUSSIONS

Discussion on adaptation bias. In this section, we extend our analysis by evaluating the impact of
jointly adaptation both the weight and bias within the LoRA modules under the SRP++ framework.
The results, detailed in Table 6, cover a variety of datasets.
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(a) Varying r on ETTh1.

0.0002 0.0005 0.001 0.002 0.005
η

0.39
0.40
0.41
0.42
0.43
0.44

Va
lu
e

MAE
MSE

0.0002 0.0005 0.001 0.002 0.005
η

0.44
0.45
0.46
0.47
0.48
0.49
0.50

Va
lu
e

MAE
MSE

0.0002 0.0005 0.001 0.002 0.005
η

0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53

Va
lu
e

MAE
MSE

0.0002 0.0005 0.001 0.002 0.005
η

0.49

0.50

0.51

Va
lu
e

MAE
MSE

(b) Varying η on ETTh1.

2 4 6 8 10
P

0.39

0.40

0.41

0.42

Va
lu
e

MAE
MSE

2 4 6 8 10
P

0.44

0.45

0.46

0.47

Va
lu
e

MAE
MSE

2 4 6 8 10
P

0.47

0.48

0.49

0.50

Va
lu
e

MAE
MSE

2 4 6 8 10
P

0.49

0.50

Va
lu
e

MAE
MSE
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Figure 8: Performance of iTransformer enhanced by SRP++ given different low rank of LoRA
modules r, learning rate η and the number of experts P. Different columns correspond to different
number of forecasting length T (from left to right: 96, 192, 336, 720). The results are averaged on
four forecasting segment number (2, 3, 4, 6) with shaded areas being 50% confidence intervals.
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(c) Varying P on Weather.

Figure 9: Performance of iTransformer enhanced by SRP++ given different low rank of LoRA
modules r, learning rate η and the number of experts P. Different columns correspond to different
number of forecasting length T (from left to right: 96, 192, 336, 720). The results are averaged on
four forecasting segment number (2, 3, 4, 6) with shaded areas being 50% confidence intervals.

Overall, the findings indicate that the joint adaptation of weights and biases (SRP++/WB) results
in performance degradation compared to adaptation weights alone under the SRP++ framework.
Specifically, SRP++/WB tends to increase the risk of overfitting, particularly in datasets with com-
plex temporal dependencies, where the added non-low-rank parameters introduce excessive flexibil-

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Full results on the multi-step forecasting task with jointly adaptation weight and bias under
SRP++ framework. The length of history window is set to 96 for all baselines. Avg indicates
the results averaged over forecasting lengths: T=96, 192, 336 and 720 for ETT, ECL, Traffic and
Weather dataset, T=12,24,36 and 48 for PEMS datasets.

Datasets ETTm1 ETTm2 ETTh1 ETTh2 ECL Traffic Weather PEMS03 PEMS08

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SR
P+

+/
W

B 96 0.337 0.368 0.182 0.263 0.378 0.400 0.297 0.345 0.147 0.237 0.394 0.270 0.201 0.245 12 0.070 0.175 0.079 0.181
192 0.382 0.394 0.246 0.306 0.434 0.431 0.379 0.398 0.163 0.254 0.420 0.282 0.246 0.279 24 0.095 0.205 0.114 0.218
336 0.419 0.420 0.315 0.350 0.477 0.456 0.420 0.431 0.182 0.273 0.640 0.426 0.280 0.297 36 0.127 0.239 0.158 0.256
720 0.483 0.456 0.415 0.407 0.495 0.488 0.432 0.448 0.211 0.300 0.585 0.352 0.367 0.356 48 0.158 0.269 0.202 0.290

Avg 0.405 0.409 0.289 0.332 0.446 0.444 0.382 0.405 0.176 0.266 0.549 0.353 0.274 0.294 Avg 0.112 0.222 0.138 0.236

ity, making the model more difficult to optimize effectively. This is especially evident in the larger
forecasting horizons, where the performance gap becomes more pronounced.

However, SRP++/WB generally improves the performance of the SI paradigm, suggesting that while
the joint adaptation strategy introduces challenges for the SRP++ framework, it may still offer some
benefit in simpler or less modular adaptation strategies. The overall results affirm that focusing on
weight adaptation alone is a more effective approach for leveraging the full potential of SRP++,
ensuring better generalization and predictive accuracy across diverse forecasting tasks.

Discussion on Layer-wise Adaptation. In this section, we explore the impact of layer-wise adap-
tation in the multi-layer iTransformer model across various datasets. Specifically, for the ETT
dataset, we adaptd the first (SRP++/L1) and second (SRP++/L2) layers, while for the ECL, Traffic,
Weather, and PEMS datasets, we extended the study to include the third layer (SRP++/L3). The
results are detailed in Tables 7 and Table 8.

From the experiments, we observe that layer-wise adaptation generally yields positive performance
improvements over the SI paradigm in most cases, particularly for datasets like ETTm1, ETTm2,
Weather, and ECL. In these datasets, adaptation a single layer was sufficient to capture the temporal
dependencies effectively, leading to reduced MSE and MAE. For instance, in the ETT datasets, both
SRP++/L1 and SRP++/L2 show competitive results compared to full-layer adaptation, indicating
that focusing on specific layers can provide significant computational savings without sacrificing
accuracy.

However, for more complex datasets such as Traffic and PEMS03, adaptation a single layer did not
achieve results better than those obtained with the SI paradigm. This could be due to the disruption
of key inter-layer interactions that are crucial for the hierarchical processing in Transformer-based
models. These interactions are particularly important in datasets with complex temporal patterns or
multiple variates, where adjustments in a single layer may not provide enough capacity to adapt to
the nuances of the time-series data.

The results suggest that while layer-wise adaptation can be beneficial in reducing the computational
overhead and maintaining high performance, it is dataset-dependent. In datasets with more complex
structures, a more comprehensive adaptation strategy involving multiple layers or full-layer adap-
tation may be necessary to avoid underfitting and fully capture the temporal dependencies in the
data.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLM-based tools solely as copy-editing assistants to improve grammar, spelling, and read-
ability of text written by the authors. The tools were not used for research ideation, literature review,
technical content generation, data analysis, result generation, or figure creation. All scientific content
was conceived and written by the authors. Suggestions from the tools were limited to surface-level
language polishing and were manually reviewed to ensure that meaning and technical correctness
were preserved.
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Table 7: Full results on the multi-step forecasting task with
layer-wise adaptation under SRP++ framework.

Datasets ETTm1 ETTm2 ETTh1 ETTh2

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

SR
P+

+/
L

1 96 0.342 0.373 0.183 0.263 0.379 0.400 0.293 0.342
192 0.386 0.396 0.251 0.310 0.436 0.432 0.380 0.397
336 0.426 0.424 0.315 0.352 0.477 0.456 0.428 0.434
720 0.495 0.462 0.412 0.406 0.486 0.481 0.428 0.445

Avg 0.412 0.414 0.290 0.333 0.444 0.442 0.382 0.404

SR
P+

+/
L

2 96 0.335 0.369 0.181 0.262 0.377 0.398 0.296 0.343
192 0.382 0.395 0.246 0.306 0.434 0.431 0.384 0.402
336 0.414 0.418 0.308 0.344 0.480 0.459 0.432 0.438
720 0.480 0.454 0.411 0.405 0.498 0.490 0.430 0.445

Avg 0.403 0.409 0.286 0.329 0.447 0.445 0.385 0.407

Table 8: Full results on the multi-step forecasting task with layer-wise adaptation
under SRP++ framework.

Datasets ECL Traffic Weather PEMS03 PEMS08

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SR
P+

+/
L

1 96 0.149 0.239 0.401 0.275 0.203 0.245 12 0.069 0.175 0.081 0.185
192 0.164 0.255 0.425 0.286 0.250 0.281 24 0.099 0.210 0.123 0.228
336 0.182 0.274 0.432 0.286 0.280 0.298 36 0.136 0.249 0.173 0.271
720 0.215 0.301 0.480 0.320 0.368 0.358 48 0.172 0.284 0.222 0.309

Avg 0.177 0.267 0.435 0.292 0.275 0.296 Avg 0.119 0.229 0.150 0.249

SR
P+

+/
L

2 96 0.149 0.240 0.401 0.276 0.203 0.246 12 0.069 0.175 0.082 0.185
192 0.163 0.254 0.423 0.285 0.248 0.280 24 0.099 0.209 0.122 0.228
336 0.182 0.274 0.431 0.286 0.281 0.298 36 0.135 0.248 0.174 0.272
720 0.212 0.299 0.479 0.319 0.369 0.358 48 0.171 0.281 0.218 0.305

Avg 0.176 0.267 0.433 0.292 0.275 0.295 Avg 0.118 0.228 0.149 0.247

SR
P+

+/
L

3 96 0.150 0.240 0.402 0.276 0.201 0.245 12 0.069 0.176 0.083 0.186
192 0.162 0.254 0.424 0.287 0.249 0.280 24 0.099 0.210 0.125 0.230
336 0.180 0.272 0.431 0.286 0.280 0.297 36 0.136 0.249 0.175 0.272
720 0.210 0.297 0.481 0.319 0.369 0.358 48 0.171 0.282 0.219 0.305

Avg 0.176 0.266 0.435 0.292 0.275 0.295 Avg 0.119 0.229 0.150 0.248
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