

000 001 002 003 004 005 006 007 008 009 010 TAMING SCORE-BASED DENOISERS IN ADMM: A CONVERGENT PLUG-AND-PLAY FRAMEWORK

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While score-based generative models have emerged as powerful priors for solving
 012 inverse problems, directly integrating them into optimization algorithms such as
 013 ADMM remains nontrivial. Two central challenges arise: i) the mismatch be-
 014 tween the noisy data manifolds used to train the score functions and the geometry
 015 of ADMM iterates, especially due to the influence of dual variables, and ii) the
 016 lack of convergence understanding when ADMM is equipped with score-based
 017 denoisers. To address the manifold mismatch issue, we propose ADMM plug-and-
 018 play (ADMM-PnP) with the AC-DC denoiser, a new framework that embeds a
 019 three-stage denoiser into ADMM: (1) auto-correction (AC) via additive Gaussian
 020 noise, (2) directional correction (DC) using conditional Langevin dynamics, and
 021 (3) score-based denoising. In terms of convergence, we establish two results: first,
 022 under proper denoiser parameters, each ADMM iteration is a weakly nonexpansive
 023 operator, ensuring high-probability fixed-point *ball convergence* using a constant
 024 step size; second, under more relaxed conditions, the AC-DC denoiser is a bounded
 025 denoiser, which leads to convergence under an adaptive step size schedule. Experi-
 026 ments on a range of inverse problems demonstrate that our method consistently
 027 improves solution quality over a variety of baselines.

028 1 INTRODUCTION

030 Inverse problems arise in many fields, including medical imaging (Song et al., 2022b; Jin et al., 2017;
 031 Arridge, 1999), remote sensing (Entekhabi et al., 1994; Combal et al., 2003), oceanography (Bennett,
 032 1992), and computational physics (Raissi et al., 2019; Tarantola, 2005). Their solutions typically rely
 033 on incorporating prior knowledge or structural assumptions about the target signals, either through
 034 explicit regularization or data-driven models.

035 Classical approaches to inverse problems often rely on handcrafted regularizers, such as the ℓ_1 norm
 036 for sparsity (Yang et al., 2010; Elad & Aharon, 2006; Dabov et al., 2007) and the nuclear norm
 037 for low-rank structure (Semerci et al., 2014; Hu et al., 2017). Deep learning introduced a new
 038 paradigm of using learned generative models—VAEs, GANs, and normalizing flows—as data-driven
 039 regularizers (Ulyanov et al., 2020; Alkhouri et al., 2024; Shah & Hegde, 2018), offering more
 040 expressive priors by capturing complex distributions. More recently, pre-trained score functions
 041 from diffusion models have gained attention for inverse problems (Song et al., 2022b; Chung et al.,
 042 2023), as they effectively approximate data distributions and align solutions with the underlying data
 043 geometry (Xiao et al., 2022).

044 The use of pre-trained score functions in inverse problems mainly falls into two categories. The first
 045 modifies the MCMC process of diffusion sampling to incorporate observation information, as in DPS
 046 (Chung et al., 2023) and DDRM (Kawar et al., 2022), where observations guide unconditional score
 047 functions to perform posterior sampling. The second integrates score functions into deterministic or
 048 stochastic optimization algorithms; for example, Wang et al. (2024) and Song et al. (2023) use them
 049 as “projectors” to keep iterates on the desired data manifold. Furthermore, building on Tweedie’s
 050 lemma, which links score functions to signal denoising, works such as (Zhu et al., 2023; Mardani
 051 et al., 2024; Renaud et al., 2024b) employ score as denoisers in proximal-gradient-like steps.

052 **Challenges.** The works in (Zhu et al., 2023; Mardani et al., 2024; Li et al., 2024) present flexible “plug-
 053 and-play (PnP)” paradigms that integrate diffusion models with optimization algorithms. However,
 two challenges remain in this line of work. First, score functions are trained on noisy data manifolds

054 constructed via Gaussian perturbations, whereas optimization iterates need not lie on such manifolds,
 055 leading to geometry mismatch and degraded denoising performance. Remedies such as stochastic
 056 regularization (Renaud et al., 2024b) or purification (Li et al., 2024) add Gaussian noise to the iterates,
 057 but this does not guarantee alignment with the score manifolds. Second, the theoretical understanding
 058 of these methods—particularly their convergence properties when combining the score denoisers
 059 with various optimization paradigms—remains limited.

060 **Contributions.** We propose to integrate score-based denoisers with the ADMM framework. Using
 061 ADMM iterates with score-based denoising is particularly challenging, as the presence of dual
 062 variables further distorts the “noise” geometry—likely explaining why score-based denoising has
 063 rarely been combined with primal–dual methods. Nevertheless, ADMM remains attractive for its
 064 flexibility in handling diverse inverse problems with multiple regularizers. Our contributions are:

065 ▶ **Score-Based AC-DC Denoiser:** To mitigate the manifold mismatches, we propose a three-stage
 066 denoiser consisting of (1) additive Gaussian noise *auto-correction* (AC), (2) conditional Langevin
 067 dynamics-based *directional correction* (DC), and (3) score-based denoising. The AC stage pulls
 068 ADMM iterates toward neighborhoods of noise-trained manifolds, while DC refines alignment
 069 without losing signal information. This combination balances efficiency and accuracy, making
 070 score-based denoising effective within ADMM.

071 ▶ **Convergence Analysis:** We show that, under proper AC-DC parameters, each ADMM iteration
 072 is weakly nonexpansive, ensuring convergence to a fixed-point neighborhood under constant step
 073 sizes under strongly convex losses. We further relax convexity and prove that an adaptive step-size
 074 scheme (Chan et al., 2016) guarantees convergence with high probability. These results extend prior
 075 ADMM-PnP convergence theory (Ryu et al., 2019; Chan et al., 2016) to score-based settings.

076 Our method is validated on diverse applications—including inpainting, phase retrieval, Gaussian and
 077 motion deblurring, super-resolution, and high dynamic range (HDR).

078 **Notation.** The detailed notation designation is listed in Appendix A.1.

081 2 BACKGROUND

083 **Inverse Problems.** We consider the typical inverse problem setting where

$$084 \mathbf{y} = \mathcal{A}(\mathbf{x}) + \boldsymbol{\xi} \quad (1)$$

086 where $\mathcal{A} : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is the *measurement operator*, $n \leq d$, and $\boldsymbol{\xi}$ is additive noise. In some inverse
 087 problems, e.g., signal denoising and image deblurring, we have $n = d$; while for some other problems,
 088 e.g., data compression and recovery, we have $n < d$. The goal is to recover \mathbf{x} from the \mathbf{y} , with the
 089 knowledge of \mathcal{A} . Structural regularization on \mathbf{x} is often used to underpin the desired solution:

$$090 \min_{\mathbf{x}} \ell(\mathbf{y} \parallel \mathcal{A}(\mathbf{x})) + h(\mathbf{x}), \quad (2)$$

092 where $\ell(\mathbf{y} \parallel \mathcal{A}(\mathbf{x}))$ is a divergence term that measures the similarity of \mathbf{y} and $\mathcal{A}(\mathbf{x})$ (e.g., $\|\mathbf{y} -$
 093 $\mathcal{A}(\mathbf{x})\|^2$), and $h(\mathbf{x})$ is a structural regularization term (e.g., $\|\mathbf{x}\|_1$ for sparse \mathbf{x}).

094 **Diffusion-Based Inverse Problem Solving.** Diffusion models can also be used for solving inverse
 095 problems, in ways more subtle than direct regularization. Consider training a diffusion model
 096 on $\mathbf{x}_0 \sim p_{\text{data}}$ via *denoising score matching* (Song et al., 2021), where the forward process is
 097 $\mathbf{x}_t | \mathbf{x}_0 \sim \mathcal{N}(\mathbf{x}_0, \sigma(t)\mathbf{I})$, $t \in [0, T]$, with variance schedule $\sigma(0) = 0$ and $\sigma(t)$ increasing in t .
 098 After training, the model provides a score function $s_{\theta}(\mathbf{x}, \sigma(t)) \approx \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$, where $p(\mathbf{x}_t)$ is the
 099 marginal density of \mathbf{x}_t . This induces noisy data manifolds

$$100 \mathcal{M}_{\sigma(t)} = \text{supp}(\mathbf{x}_t), \quad \forall t \in [T],$$

102 which are continuous since \mathbf{x}_t is generated by Gaussian perturbations of $\mathbf{x}_0 \sim p_{\text{data}}$. These score
 103 functions can then be leveraged in different ways to assist inverse problem solving.

104 ▶ **Posterior Sampling:** Many works formulate inverse problems as posterior sampling from $p(\mathbf{x}|\mathbf{y}) \propto$
 105 $p(\mathbf{x})p(\mathbf{y}|\mathbf{x})$. These methods approximate $\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$ and combine it with the learned score
 106 $s_{\theta}(\mathbf{x}_t, \sigma(t)) \approx \nabla \log p(\mathbf{x}_t)$ to perform stochastic sampling as t decreases (Chung et al., 2023; Song
 107 et al., 2022a; Kawar et al., 2021; 2022; Wang et al., 2023). While effective, their performance is often
 108 limited by the accuracy of the approximation to $\nabla \log p(\mathbf{y}|\mathbf{x}_t)$.

108 \blacktriangleright *Plug-and-Play (PnP) Approaches:* Instead of sampling schemes, another line of work employs
109 deterministic or stochastic optimization to solve (2), plugging score functions into the updates as
110 structural regularizers. A representative example is DiffPIR (Zhu et al., 2023), which adopts a
111 variable-splitting reformulation, $\min_{\mathbf{x}, \mathbf{z}} \ell(\mathbf{y} \|\mathcal{A}(\mathbf{x})) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + h(\mathbf{z})$, where the \mathbf{z} -subproblem
112 at iteration k reduces to a standard denoising step:

$$\text{Denoising: } \mathbf{z}^{(k+1)} = \arg \min_{\mathbf{z}} \frac{\mu}{2} \|\mathbf{x}^{(k+1)} - \mathbf{z}\|_2^2 + h(\mathbf{z}). \quad (3)$$

113 This step is then tackled using a score-based denoiser:

$$\mathbf{z}^{(k+1)} \leftarrow D_{\sigma^{(k)}}(\tilde{\mathbf{x}}^{(k+1)}) = \tilde{\mathbf{x}}^{(k+1)} + (\sigma^{(k)})^2 \mathbf{s}_{\theta}(\tilde{\mathbf{x}}^{(k+1)}, \sigma^{(k)}) \quad (4)$$

114 where $\tilde{\mathbf{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \sigma^{(k)} (\zeta(\tilde{\mathbf{x}}^{(k)} - \mathbf{x}^{(k+1)}) / \sigma^{(k)} + (1 - \zeta) \mathbf{n})$ with $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\zeta \in [0, 1]$;
115 also see (Li et al., 2024) for a similar method. These denoisers are designed following the *Tweedie’s
116 lemma* (Robbins, 1992) (see Appendix A). The construction of $\tilde{\mathbf{x}}^{(k)}$ is meant to make the inputs to the
117 score function closer to a certain $\mathcal{M}_{\sigma^{(k)}}$. Using score-based denoising, $h(\mathbf{z})$ is implicitly reflected in
118 the denoising process and thus does not need to be specified analytically.

119 Another line of approaches explicitly construct regularizers $h(\mathbf{x})$ whose gradients correspond to
120 applying the score function. Examples include RED-diff (Mardani et al., 2024) and SNORE (Renaud
121 et al., 2024a). In SNORE, the regularizer is defined as $h(\mathbf{x}) = \mathbb{E}_{\tilde{\mathbf{x}} \mid \mathbf{x}} \log p_{\sigma}(\tilde{\mathbf{x}})$, $\tilde{\mathbf{x}} \leftarrow \mathbf{x} + \sigma \epsilon$,
122 $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and taking its gradient in (2) yields:

$$\text{SNORE update: } \mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} - \delta \nabla \ell(\mathbf{y} \|\mathcal{A}(\mathbf{x}^{(k)})) - \eta(\tilde{\mathbf{x}}^{(k)} - D_{\sigma_i}(\tilde{\mathbf{x}}^{(k)})), \quad (5)$$

123 where, again, $D_{\sigma}(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}} + \sigma^2 \mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma)$ by the Tweedie’s lemma.

124 **Challenges — Manifold Mismatch and Convergence.** Score-based PnP methods face two main
125 challenges. First, the score is not trained on algorithm-induced iterates (e.g., $\mathbf{x}^{(k+1)}$ in (3)). While
126 both \mathbf{x}_t and $\mathbf{x}^{(k)}$ can be seen as noisy versions of $\mathbf{x} \sim p_{\text{data}}$, \mathbf{x}_t follows Gaussian noise whereas
127 the distribution of $\mathbf{x}^{(k)}$ is unclear. Many works attempt to bridge this gap by injecting Gaussian
128 noise before applying the score function (cf. $\tilde{\mathbf{x}}^{(k+1)}$ in (3), $\tilde{\mathbf{x}}^{(k)}$ in (5)), or by purification-based
129 schemes (Nie et al., 2022; Alkhouri et al., 2023; Meng et al., 2022). Yet noise injection alone is
130 insufficient, and overfitting to measurement noise remains an issue (Wang et al., 2024). Second,
131 the understanding to convergence of score-based PnP remains limited. Unlike classical denoisers
132 with established theory, the geometry mismatch above makes it unclear whether iterates stabilize or
133 under what conditions convergence can be ensured. Existing analyses mostly cover primal algorithms
134 (see, e.g., (Renaud et al., 2024a)). Primal–dual methods such as ADMM offer greater flexibility
135 for handling multiple regularizers and constraints, but their convergence with score-based denoisers
136 remains unclear, as dual variables further complicate the manifold geometry of the iterates.

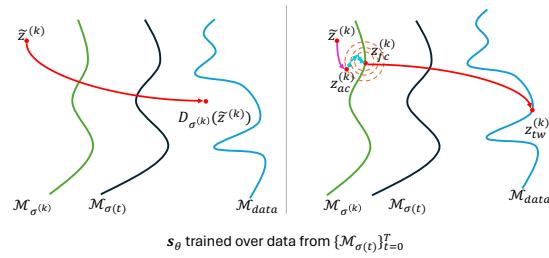
3 PROPOSED APPROACH

145 In this section, we propose our score-based
146 denoiser and embed it in the ADMM frame-
147 work. While we focus on ADMM due to its
148 flexibility, the denoiser can be plugged into
149 any other proximal operator based schemes
150 (e.g. proximal gradient or variable-splitting as
151 in DiffPIR).

152 **Preliminaries of ADMM-PnP.** ADMM-
153 based inverse problem solvers start by rewrit-
154 ing (2) as

$$\min_{\mathbf{x}, \mathbf{z}} \ell(\mathbf{y} \|\mathcal{A}(\mathbf{x})) + \gamma h(\mathbf{z}) \text{ s.t. } \mathbf{x} = \mathbf{z} \quad (6)$$

155 The augmented Lagrangian of (6) is given
156 by $L_{\rho}(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}; \mathbf{y}) = \ell(\mathbf{y} \|\mathcal{A}(\mathbf{x})) + \gamma h(\mathbf{z}) +$
157 $\boldsymbol{\lambda}^T(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$, where $\boldsymbol{\lambda}$ is the dual



158 Figure 1: Left: direct denoising of $\tilde{\mathbf{z}}^{(k)}$ using score
159 functions could lead to unnatural recovered signals
160 with artifacts. Right: AC-DC denoising brings $\tilde{\mathbf{z}}^{(k)}$
161 closer to $\mathcal{M}_{\sigma^{(k)}}$, and then uses the score function to
162 bring $\tilde{\mathbf{z}}^{(k)}$ to the data manifold $\mathcal{M}_{\text{data}}$.

162	Algorithm 1 AC-DC Denoiser at iteration k of ADMM in (7)
163	
164	1: auto correction (AC): $\mathbf{z}_{\text{ac}}^{(k)} \leftarrow \tilde{\mathbf{z}}^{(k)} + \sigma^{(k)} \mathbf{n}$, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
165	2: directional correction (DC):
166	3: $\mathbf{w}^{(0)} \leftarrow \mathbf{z}_{\text{ac}}^{(k)}$
167	4: for $j = 0$ to $J - 1$ do
168	5: $\mathbf{w}^{(k,j+1)} \leftarrow \mathbf{w}^{(k,j)} + \eta^{(k)} \left(\frac{1}{\sigma_{\mathbf{s}^{(k)}}^2} (\mathbf{z}_{\text{ac}}^{(k)} - \mathbf{w}^{(k,j)}) + \mathbf{s}_{\theta}(\mathbf{w}^{(k,j)}, \sigma^{(k)}) \right) + \sqrt{2\eta^{(k)}} \mathbf{n}$,
169	6: end for
170	7: $\mathbf{z}_{\text{dc}}^{(k)} \leftarrow \mathbf{w}^{(J)}$
171	8: Denoising : $\mathbf{z}_{\text{tw}}^{(k)} \leftarrow \mathbb{E}[\mathbf{z}_0 \mathbf{z}_t = \mathbf{z}_{\text{dc}}^{(k)}] = \mathbf{z}_{\text{dc}}^{(k)} + (\sigma^{(k)})^2 \mathbf{s}_{\theta}(\mathbf{z}_{\text{dc}}^{(k)}, \sigma^{(k)})$ (Tweedie Denoising)
172	(Alternative: $\mathbf{z}_{\text{ode}}^{(k)} \leftarrow \mathbf{z}_0$ by solving: $\frac{d\mathbf{z}_t}{dt} = \lambda(t) \mathbf{s}_{\theta}(\mathbf{z}_t, t)$, with $\mathbf{z}_{\sigma^{(k)}} = \mathbf{z}_{\text{dc}}^{(k)}$) (ODE Denoising)
173	
174	

175 variable and $\rho > 0$ is the penalty parameter.

176 At iteration k , ADMM updates are as follows:

$$177 \quad \mathbf{x}^{(k+1)} = \arg \min_{\mathbf{x}} \frac{1}{\rho} \ell(\mathbf{y} || \mathcal{A}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_2^2 \quad (7a)$$

$$180 \quad \mathbf{z}^{(k+1)} = \arg \min_{\mathbf{z}} \frac{\gamma}{\rho} h(\mathbf{z}) + \frac{1}{2} \left\| \mathbf{x}^{(k+1)} - \mathbf{z} + \mathbf{u}^{(k)} \right\|_2^2 \quad (7b)$$

$$182 \quad \mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + (\mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}) \quad (7c)$$

184 where $\mathbf{u}^{(k)} = \lambda^{(k)} / \rho$ is the scaled dual variable. The subproblem (7b) is a denoising problem, and
185 thus can be replaced by

$$186 \quad \mathbf{z}^{(k+1)} = \text{Prox}_{\frac{\gamma}{\rho} h}(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}) = D_{\sigma^{(k)}}(\tilde{\mathbf{z}}^{(k)}). \quad (8)$$

188 The above is the classical ADMM-PnP method; see (Chan et al., 2016; Ryu et al., 2019). Same
189 as before, Eq. (8) can be replaced by the score-based denoising following the Tweedie’s lemma.
190 However, as $\tilde{\mathbf{z}}^{(k)} = \mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}$ could be in any of the manifolds $\mathcal{M}_{\sigma(t)}$ on which the score
191 function was trained, such naive replacement does not ensure effective denoising. The existence of
192 the dual variable $\mathbf{u}^{(k)}$ makes the noise distribution in $\tilde{\mathbf{z}}^{(k)}$ even harder to understand.

193 **Proposed Approach: The AC-DC Denoiser.** To address the manifold mismatch issues, we propose
194 a three-stage denoiser. To be specific, in the k th iteration of the ADMM algorithm, we use the
195 denoising process shown in Algorithm 1. Note that the Tweedie’s lemma step (line 8) can also be
196 substituted by a score ODE based process (Karras et al., 2022) initialized at $\mathbf{z}_{\text{dc}}^{(k)}$. Our algorithm using
197 these two different denoisers will be referred to as `Ours-tweedie` and `Ours-ode`, respectively.

199 The rationale of the AC-DC denoiser is illustrated in Fig.1. Recall that the score function is most
200 effective on the noisy data manifolds $\{\mathcal{M}_{\sigma(t)}\}_{t=1}^T$, as it is trained over them. Since ADMM-induced
201 iterates $\tilde{\mathbf{z}}^{(k)}$ need not lie on these manifolds, directly applying score-based denoising may be
202 ineffective. The AC step addresses this by adding Gaussian noise, making $\mathbf{z}_{\text{ac}}^{(k)}$ closer to some $\mathcal{M}_{\sigma(t)}$
203 (see AppendixB). This idea is related to the “purification” step in (Nie et al., 2022; Alkhouri et al.,
204 2023; Li et al., 2024) and noise-added denoising in (Mardani et al., 2024; Renaud et al., 2024a; Zhu
205 et al., 2023) (cf. (5) and (3)). However, AC alone does not guarantee manifold alignment. The
206 proposed DC step, based on Langevin dynamics, further refines $\mathbf{z}_{\text{dc}}^{(k)}$ toward $\mathcal{M}_{\sigma^{(k)}}$.

207 To see the idea, let us break down the three steps. First, the AC step gives

$$209 \quad \mathbf{z}_{\text{ac}}^{(k)} = \mathbf{z}_{\sigma^{(k)}} + \tilde{\mathbf{s}}^{(k)}, \quad \mathbf{s}^{(k)} = \tilde{\mathbf{z}}^{(k)} - \mathbf{z}_{\text{ac}}^{(k)}, \quad \mathbf{z}_{\text{ac}}^{(k)} \sim p_{\text{data}} \quad (9)$$

211 where $\mathbf{z}_{\text{ac}}^{(k)}$ is denoised signal of $\tilde{\mathbf{z}}^{(k)}$, $\mathbf{z}_{\sigma^{(k)}} = \mathbf{z}_{\text{ac}}^{(k)} + \sigma^{(k)} \mathbf{n}_1$, $\tilde{\mathbf{s}}^{(k)} = \sqrt{2\sigma^{(k)}} \mathbf{n}_2 + \mathbf{s}^{(k)}$, and
212 $\mathbf{n}_1, \mathbf{n}_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Given a sufficiently large $\sigma^{(k)}$, $\mathbf{z}_{\text{ac}}^{(k)}$ would have dominated by Gaussian noise—
213 but not necessarily on any of \mathcal{M}_{σ_t} where the score was trained. Starting from $\mathbf{z}_{\text{ac}}^{(k)}$, the DC step
214 runs a few iterations of *Langevin dynamics* targeting the distribution $p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$. This is because
215 $\text{supp}(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)}) \subseteq \text{supp}(\mathbf{z}_{\sigma^{(k)}}) = \mathcal{M}_{\sigma^{(k)}}$. In addition, $p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$ at the same time retains the

information of $\mathbf{z}_{\text{ac}}^{(k)}$ (thereby the information from the measurements). Assume that the forward process used in training the score has sufficiently small time intervals, $\mathcal{M}_{\sigma^{(k)}}$ is approximately contained in $\{\mathcal{M}_{\sigma_t}\}_{t=1}^T$. This way, when applying Tweedie's lemma for denoising, the step is expected to be effective, as the score was trained over $\{\mathcal{M}_{\sigma_t}\}_{t=1}^T$.

Note that the conditional score for the Langevin dynamics step can be expressed as follows

$$\nabla \log p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)}) = \mathbf{s}_{\theta}(\mathbf{z}_{\sigma^{(k)}}, \sigma^{(k)}) + \nabla \log p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}}). \quad (10)$$

Ideally, one would use the exact $\nabla \log p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}})$ for the DC step—which is unavailable. In practice, we approximate $p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}})$ using a Gaussian distribution. Note that under proper scheduling of $\sigma^{(k)}$ and mild regularity conditions on $\mathbf{s}^{(k)}$, e.g., when $\text{Var}(\mathbf{s}^{(k)})^{1/2} \ll \sigma^{(k)}$, the likelihood can be well-approximated by a locally quadratic form, leading to $\nabla \log p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}}) \approx -1/\sigma_{\mathbf{s}^{(k)}}^2 (\mathbf{z}_{\sigma^{(k)}} - \mathbf{z}_{\text{ac}}^{(k)})$ and the DC step in Algorithm 1.

4 CONVERGENCE ANALYSIS

4.1 CONVERGENCE OF UNDER WEAKLY NON-EXPANSIVE RESIDUALS

Following the established convention in ADMM-PnP, e.g., (Buzzard et al., 2018; Sun et al., 2019; Chan, 2019; Teodoro et al., 2017), we aim at understanding the convergence properties when the AC-DC denoiser is used. We will use the following definitions:

Definition 1 (Fixed point convergence). *Let $T : \mathcal{X} \rightarrow \mathcal{X}$ be the update map of an iterative algorithm, and let $\mathbf{x}^{(0)} \in \mathcal{X}$ be arbitrary initialization. The algorithm is said to converge to a fixed point \mathbf{x}^* if for any $\delta > 0$ there exists $K_\delta > 0$ such that the sequence generated by the algorithm $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}^+}$ satisfies $\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_2 < \delta$ for all $k \geq K_\delta$. Equivalently, $\lim_{k \rightarrow \infty} \mathbf{x}^{(k)} = \mathbf{x}^*$ with $T(\mathbf{x}^*) = \mathbf{x}^*$.*

Definition 2 (Sequence convergence to a δ -ball). *For a certain $\delta > 0$, a sequence $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}^+}$ is said to converge within a δ -ball if there exists $K > 0$ and \mathbf{x}^* such that the following holds for all $k \geq K$.*

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_2 \leq \delta \quad (11)$$

Comparing the two definitions, Definition 2 is a weaker statement; that is, even when $k \rightarrow \infty$, $\mathbf{x}^{(k)} \rightarrow \mathbf{x}^*$ does not necessarily happen. Nonetheless, convergence to a δ -ball is still meaningful. The notion of δ -ball convergence is often used in numerical analysis for stability characterization; see, e.g., Ren & Argyros (2021); Ren & Wu (2009); Liang (2007).

Definition 3 (ADMM convergence to a δ -ball). *ADMM is said to converge within a δ ball if the sequences $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}^+}$ and $\{\mathbf{u}^{(k)}\}_{k \in \mathbb{N}^+}$ obtained from ADMM converges within a δ -ball.*

To proceed, consider the following assumption:

Assumption 1. *For a certain $\delta > 0$ there exists $\epsilon \leq 1$ such that for all $\tilde{\mathbf{z}}_1, \tilde{\mathbf{z}}_2 \in \mathbb{R}^d$, the following holds:*

$$\|R_\sigma(\tilde{\mathbf{z}}_1) - R_\sigma(\tilde{\mathbf{z}}_2)\|_2^2 \leq \epsilon^2 \|\tilde{\mathbf{z}}_1 - \tilde{\mathbf{z}}_2\|_2^2 + \delta^2 \quad (12)$$

where $R_\sigma(\tilde{\mathbf{z}}) = (D_{\sigma^{(k)}} - I)(\tilde{\mathbf{z}})$ with I being the identity function (i.e., $I(\mathbf{z}) = \mathbf{z}$).

Here, the notation $(D_{\sigma^{(k)}} - I)(\tilde{\mathbf{z}})$ denotes the residual of $D_{\sigma^{(k)}}$ i.e. $D_{\sigma^{(k)}}(\tilde{\mathbf{z}}) - \tilde{\mathbf{z}}$. The next theorem extends the fixed point convergence of ADMM-PnP in Ryu et al. (2019). Unlike Ryu et al. (2019) where R_σ needs to be strictly contractive, our result allows R_σ to be weakly contractive:

Theorem 1. *Under Assumption 1, assume that ℓ is μ -strongly convex. Then, there exists \mathbf{x}^* , \mathbf{u}^* and $K > 0$ such that the sequences $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}^+}$ and $\{\mathbf{u}^{(k)}\}_{k \in \mathbb{N}^+}$ generated by ADMM-PnP using a fixed step size ρ satisfies $\|\mathbf{u}^{(k)} - \mathbf{u}^*\|_2 \leq r$ and $\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_2 \leq r$ with $r = (1 + \frac{\rho}{\rho + \mu})\bar{\delta}/\sqrt{1 - \bar{\epsilon}^2}$ for all $k \geq K$ when $\epsilon/\mu(1 + \epsilon - 2\bar{\epsilon}^2) < 1/\rho$ where $\bar{\delta}^2 = \frac{\delta^2 \bar{\epsilon}}{\epsilon}$ and $\bar{\epsilon} = \frac{\rho + \rho\epsilon + \mu\epsilon + 2\mu\epsilon^2}{\rho + \mu + 2\mu\epsilon}$.*

The proof is relegated to Appendix C. Note that when $\delta = 0$, it implies the result in Ryu et al. (2019).

270 4.2 CONVERGENCE UNDER WEAKLY NON-EXPANSIVENESS WITH AC-DC
271272 In this subsection, we will show that the AC-DC denoiser satisfies Assumption 1 under mild conditions.
273 To this end, consider the following:274 **Assumption 2** (Smoothness of $\log p_{\text{data}}$). *The log data density $\log p_{\text{data}}$ is M -smooth for a constant
275 $M > 0$, i.e., $\|\nabla \log p_{\text{data}}(\mathbf{x}) - \nabla \log p_{\text{data}}(\mathbf{y})\|_2 \leq M\|\mathbf{x} - \mathbf{y}\|_2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.*276 **Assumption 3** (Coercivity for $-\log p_{\text{data}}$). *There exists constants $c_1 > 0$ and $c_2 \geq 0$ such that*

277
$$\|\nabla \log p_{\text{data}}(\mathbf{x})\|_2^2 \geq -c_1 \log p_{\text{data}}(\mathbf{x}) - c_2, \|\mathbf{x}\|_2 \leq -c_1 \log p_{\text{data}}(\mathbf{x}) + c_2, \forall \mathbf{x} \in \mathcal{X} \quad (13)$$

279

280 This coercivity assumption means the negative log-density grows sufficiently fast at infinity, which
281 prevents the Langevin dynamics from "escaping to infinity". This assumption guarantees stability
282 and ensure ergodicity leading to convergence to the stationary distribution (Mattingly et al., 2002).283 **Theorem 2.** *Suppose that the assumptions in Theorem 1, Assumption 2 and Assumption 3 hold.
284 Further, assume that the DC step reaches the stationary distribution for each k . Let $D_{\sigma^{(k)}} : \tilde{\mathbf{z}}^{(k)} \mapsto$
285 $\mathbf{z}_{\text{tw}}^{(k)}$ denote the AC-DC denoiser. Then, we have:*286 (a) *With probability at least $1 - 2e^{-\nu_k}$, the following holds for iteration k of ADMM-PnP:*

288
$$\|(D_{\sigma^{(k)}} - I)(\mathbf{x}) - (D_{\sigma^{(k)}} - I)(\mathbf{y})\|_2^2 \leq \epsilon_k^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_k^2 \quad (14)$$

289

290 for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $k \in \mathbb{N}^+$ when $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 < 1/M$ with

292
$$\epsilon_k^2 = 3((\sqrt{2}M\sigma_{\mathbf{s}^{(k)}}^2/1 - \sigma_{\mathbf{s}^{(k)}}^2 M)^2 + (\sigma^{(k)})^4 M^2) \quad (15)$$

293

294
$$\delta_k^2 = 3(2(\sigma^{(k)})^2(d + 2\sqrt{d\nu_k} + 2\nu_k) + 32d\sigma_{\mathbf{s}^{(k)}}^2/(1 - M\sigma_{\mathbf{s}^{(k)}}^2) \log 2/\nu_k). \quad (16)$$

295 In other words, with $\nu_k = \ln 2\pi/6\eta + 2\ln k$, the denoiser $D_{\sigma^{(k)}}$ satisfies part (a) for all $k \in \mathbb{N}^+$ with
296 probability at least $1 - \eta$.297 (b) *Assume that $\sigma^{(k)}$ is scheduled such that $\lim_{k \rightarrow \infty} (\sigma^{(k)})^2 \nu_k = 0$ for $\nu_k = \ln 2\pi/6\eta + 2\ln k$, $\epsilon < 1$,
298 and $\epsilon/\mu(1 + \epsilon - 2\epsilon^2) < 1/\rho$ all hold, where $\epsilon = \lim_{k \rightarrow \infty} \sup \epsilon_k$ with ϵ_k defined in (15). Consequently,
299 $\delta = \lim_{k \rightarrow \infty} \sup \delta_k$ is finite and ADMM-PnP with the AC-DC denoiser converges to an r -ball (see r
300 in Theorem 1) with probability at least $1 - \eta$.*301 The proof is relegated to Appendix D. Theorem 2 (a) establishes that the AD-DC denoiser is weakly
302 non-expansive with probability $1 - 2e^{-\nu_k}$ in iteration k . The (b) part states that when $\sigma^{(k)}$ is carefully
303 scheduled to approach zero as k grows, then, with high probability, all the iterations satisfy the weakly
304 non-expansiveness together—this leads to the convergence of the ADMM-PnP algorithm.306 4.3 CONVERGENCE WITHOUT CONVEXITY OF ℓ
307308 The weakly non-expansiveness based convergence analysis holds under fixed step size (i.e., ρ) of the
309 ADMM-PnP algorithm, which is consistent with practical implementations in many cases. However,
310 the assumption that the ℓ term is μ -strongly convex is only met by some inverse problems, e.g.,
311 signal denoising and deblurring, but not met by others such as signal compression/recovery and
312 data completion. In this subsection, we remove the convexity assumption and analyze the AC-DC
313 denoiser's properties under the adaptive ρ -scheme following that in (Chan et al., 2016).314 **Theorem 3.** *Suppose that Assumptions 2-3 hold. Let $D := \text{diam}(\mathcal{X}) = \sup_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|_2 <$
315 ∞ , $S := \inf_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_2 < \infty$ and define $L := MD + S$. Let $D_{\sigma^{(k)}} : \tilde{\mathbf{z}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$
316 denote the AC-DC denoiser. Also, assume that the DC step reaches the stationary distribution for
317 each k ¹. Then, the following hold:*318 (a) **(Boundedness)** *With probability at least $1 - 2e^{-\nu_k}$, the denoiser $D_{\sigma^{(k)}}$ is bounded at each iteration
319 k i.e. $\frac{1}{d} \|(D_{\sigma^{(k)}} - I)(\mathbf{x})\|_2^2 \leq c_k^2$ whenever $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 < 1/M$, where $c_k = (\sigma^{(k)})^2(2 + 4\sqrt{\nu_k} +$
320 $4\nu_k) + 16\sigma_{\mathbf{s}^{(k)}}^2/1 - M\sigma_{\mathbf{s}^{(k)}}^2 \log 2/\nu_k + 2\sigma_{\mathbf{s}^{(k)}}^4 L^2 + 2(\sigma^{(k)})^4 L^2$, and $\nu_k > 0$.*322
323 ¹Note that Theorems 2 and 3 use this stationary distribution assumption for notation conciseness. For their
counterparts removing this assumption, see Appendix E.2.

324 Let $\nu_k = \ln \frac{2\pi^2}{6\eta} + 2 \ln k$ with $\eta \in (0, 1]$. Consequently, the denoiser $D_{\sigma^{(k)}}$ is bounded for all $k \in \mathbb{N}_+$
 325 with corresponding c_k and probability at least $1 - \eta$.
 326

327 (b) (**Convergence**) Assume there exists $R < \infty$ such that $\|\nabla \ell(\mathbf{x})\|_2 / \sqrt{d} \leq R$. Apply the ρ -increasing
 328 rule in (Chan et al., 2016) and schedule $(\sigma^{(k)}, \sigma_{\mathbf{s}^{(k)}})$ such that $\lim_{k \rightarrow \infty} (\sigma^{(k)})^2 (2 + 4\sqrt{\nu_k} + 4\nu_k) =$
 329 0 , $\lim_{k \rightarrow \infty} \frac{\sigma_{\mathbf{s}^{(k)}}^2}{1 - M\sigma_{\mathbf{s}^{(k)}}^2} \log \frac{2}{\nu_k} = 0$, $\lim_{k \rightarrow \infty} \sigma^{(k)} = 0$, $\lim_{k \rightarrow \infty} \sigma_{\mathbf{s}^{(k)}} = 0$, $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 <$
 330 $1/M$, $\forall k \in \mathbb{N}_+$ for $\nu_k = \ln \frac{2\pi^2}{6\eta} + 2 \ln k$ with $\eta \in (0, 1]$. Then, the solution sequence converges to a
 331 fixed point with probability at least $1 - \eta$.
 332

333 The proof is relegated to Appendix E. Theorem 3 (a) shows that, with high probability the denoiser is
 334 bounded uniformly across all iterations k . Part (b) further shows that, under the proper scheduling of
 335 $(\sigma^{(k)}, \sigma_{\mathbf{s}^{(k)}})$, the AD-DC ADMM-PnP algoirthm converges to a fixed point with high probability.
 336

337 The condition of $D < \infty$ implies the data space \mathcal{X} has bounded support, which is natural in practice:
 338 for images, pixel intensities typically lie within a bounded range such as $[0, 1]$. Additionally, the
 339 condition $S < \infty$ ensures that there exists at least one point in \mathcal{X} where the score norm is finite. **This**
 340 prevents pathological cases where the score diverges everywhere (making the distribution degenerate).
 341 Together, these conditions guarantee that the score is “well-behaved”.

342 A remark is that all theoretical results in this section focus on fixed-point convergence, which is
 343 not the strongest form of convergence guarantees. Establishing stronger convergence results, e.g.,
 344 stationary-point convergence, for PnP approaches is considered challenging as the objective function
 345 is implicit (more specifically, $h(\cdot)$ in (2) is implicit). Nonetheless, in recent years, some efforts have
 346 been made towards establishing stationary-point convergence for PnP methods under certain types of
 347 denoisers (see, e.g., (Hurault et al., 2022a;b; Wei et al., 2025; Xu et al., 2025)); more discussions are
 348 in Sec. 5.

349

350 5 RELATED WORKS

351

352 ADMM-PnP has gained much popularity, due to access to data-driven effective denoisers. It has
 353 been used in various applications like image restoration (Chan et al., 2016), data compression
 354 (Yuan et al., 2022), hyperspectral imaging (Liu et al., 2022), and medical imaging (Ahmad et al.,
 355 2020). **Theoretical understanding of PnP algorithms with general “black-box” denoisers remains**
 356 **limited**. Unlike classical proximal operators, the implicit regularizer $h(\cdot)$ in (2) handled by data-
 357 driven denoisers is typically unknown. Hence, many results are therefore restricted to fixed-point
 358 convergence; see, e.g., (Ryu et al., 2019; Chan et al., 2016). Nonetheless, in certain cases where the
 359 denoisers have interesting structures, stronger convergence results can be established. For example,
 360 (Xu et al., 2025) used classical results from image denoising connecting linear denoisers with
 361 quadratic $h(\cdot)$ to show that when linear denoisers are employed, ADMM-PnP converges to KKT
 362 points. Hurault et al. (2022a) showed stationary-point convergence of PnP methods gradient-type
 363 denoisers, leveraging the fact that this type of denoisers can be written as a proximal operator of a
 364 special function (see the nonconvex counterpart in (Hurault et al., 2022b)); Wei et al. (2025) trained
 365 denoisers to satisfy a cocoercive conservativity condition, which also ensures convergence of PnP
 366 to stationary points associated with an implicit convex $h(\cdot)$. Nonetheless, these results do not cover
 367 diffusion-based denoisers. In this work, we generalize the fixed-point convergence proofs in (Chan
 368 et al., 2016; Ryu et al., 2019) to accommodate the diffusion score-based AC-DC denoiser.

368 Recent advances in score-based generative modeling have motivated their integration into PnP
 369 algorithms. One line of work directly replaces the proximal denoiser with a pre-trained scores (Zhu
 370 et al., 2023; Li et al., 2024). Alternatively, others embed the score function as an explicit regularizer
 371 with task-specific loss (Mardani et al., 2024; Renaud et al., 2024a). Deterministic version PnP have
 372 also been considered. For example, Wang et al. (2024); Song et al. (2023) use unrolled ODE and
 373 consistency model-distilled one-step representation to express the target signal, respectively. These
 374 methods are similar to (Bora et al., 2017), but with diffusion-driven parameterization.

375 Prior works have emphasized the importance of matching the residual noise to the operating range of
 376 the PnP denoiser. D-AMP (Metzler et al., 2016; Eksioglu & Tanc, 2018) achieve this via the Onsager
 377 correction, which approximately Gaussianizes the residual under compressive sensing problem
 378 structures. Wei et al. (2021) learns a reinforcement learning-based policy to automatically tune all

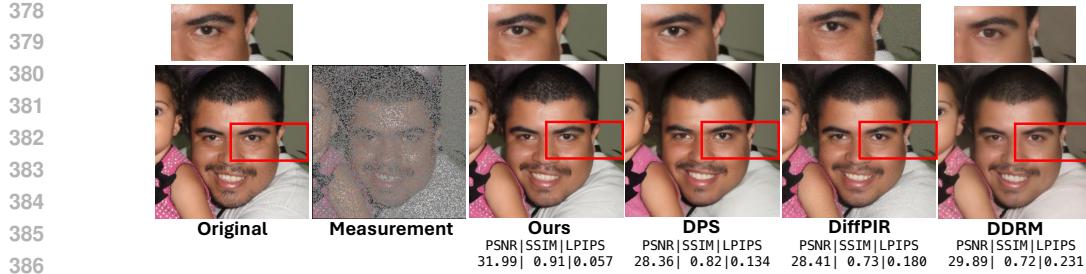


Figure 2: Inpainting under random missings.

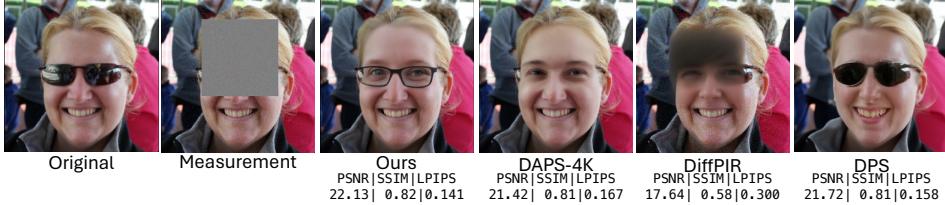


Figure 3: Inpainting under box missing.

397 internal parameters, including denoising strength. Unlike AC-DC that provides a generic correction
398 mechanism for a variety inverse problems, these methods either problem specific or require training
399 additional models. Score-based inverse problem solvers have also attempted to “bring” iterates to
400 **noisy data manifolds used during training**. The work Chung et al. (2022) uses a manifold constraint
401 based on gradient of data-fidelity, while He et al. (2024) uses an off-the-shelf pretrained neural
402 network to impose a manifold constraint. On the other hand, Zirvi et al. (2025) uses the projection
403 of measurement guidance to low-rank subspace, using SVD on the intermediate diffusion state, for
404 similar purposes.

405 The idea of adding noise before evaluating score functions during optimization procedures (similar to
406 our AC step) has been widely considered (Li et al., 2024; Graikos et al., 2022; Renaud et al., 2024b;
407 Mardani et al., 2024). A variant of this called estimation-correction idea proposed in (Karras et al.,
408 2022) is used in (Zhu et al., 2023) for this purpose.

410 6 EXPERIMENTS

412 **Dataset and Evaluation Metrics.** For all these tasks, we use two datasets: FFHQ 256×256 (Karras
413 et al., 2021) and ImageNet 256×256 (Deng et al., 2009). During testing, we randomly sample 100
414 images from the validation set of each dataset. All the methods use the pre-trained score model in
415 Chung et al. (2023). We use *Peak Signal-to-Noise Ratio* (PSNR) as a pixel-wise similarity metric,
416 and *Structural Similarity Index* (SSIM) and *Learned Perceptual Image Patch Similarity* (LPIPS)
417 (Zhang et al., 2018) as perceptual similarity metrics. We report these metrics averaged over the 100
418 test images for each method and inverse problem.

419 **Task Description.** We consider $\xi \sim \mathcal{N}(\mathbf{0}, \sigma_n^2 \mathbf{I})$ with $\sigma_n = 0.05$ for all the tasks. (a) For *super-*
420 *resolution*, we use cubic interpolation method with kernel size 4 for downsampling the resolution by
421 4 times. (b) For *recovery under Gaussian blurring* (Gaussian deblurring), a kernel of size 61 and
422 standard deviation 3 is used. (c) As for *recovery under motion blurring* (motion deblurring), a kernel
423 of size 61 and standard deviation of 0.5 is used. (d) In *inpainting under box mask* (box inpainting),
424 an approximately centered mask of size 128×128 is sampled in image while maintaining the 32
425 pixel margin in both spatial dimensions of the input image. (e) For *inpainting under random missings*
426 (random inpainting), 70% of the pixels are uniformly sampled to be masked, and a scaling of 2 was
427 used in high dynamic range (HDR) before clipping the values. (f) For *phase retrieval*, similar as
428 in prior works (Wu et al., 2024; Mardani et al., 2024), we use oversampling by factor of 2. g) For
429 deblurring under nonlinear blurring, we use the operator in (Tran et al., 2021) with default settings.

430 **Baselines.** We use a set of baselines, namely, DPS (Chung et al., 2023), DAPS (Zhang et al., 2024),
431 DDRM (Kawar et al., 2022), DiffPIR (Zhu et al., 2023), RED-diff (Mardani et al., 2024), DPIR
(Zhang et al., 2022), DCDP (Li et al., 2025), PMC (Sun et al., 2024).

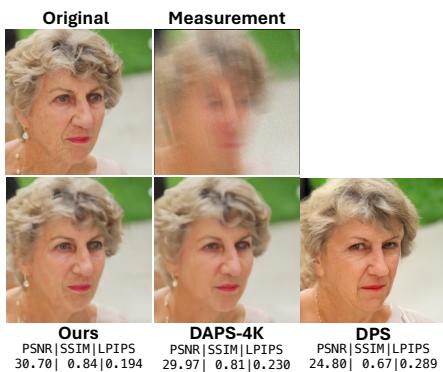


Figure 4: Recovery under motion blurring.

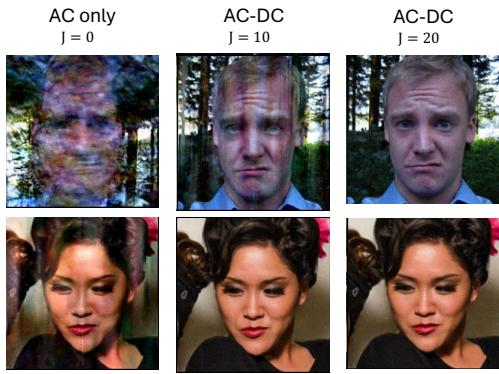


Figure 5: Influence of DC steps in the denoiser.

Table 1: Reconstruction metrics (100 images) on FFHQ / ImageNet. **Bold**: best, **blue**: 2nd best.

Task	Method	FFHQ			ImageNet		
		PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Superresolution (4x)	Ours-tweedie	30.439	0.857	0.178	27.318	0.717	0.280
	Ours-ode	29.991	0.845	0.156	26.919	0.700	0.276
	DAPS	29.529	0.814	0.167	26.653	0.680	0.266
	DPS	24.828	0.705	0.257	22.785	0.549	0.411
	DDRM	27.145	0.782	0.261	26.105	0.683	0.306
	DiffPIR	26.771	0.749	0.208	23.884	0.543	0.336
	RED-diff	16.833	0.422	0.547	18.662	0.309	0.519
	DPIR	28.849	0.826	0.254	26.524	0.699	0.334
	DCDP	27.761	0.639	0.332	24.517	0.525	0.361
	PMC	23.774	0.421	0.407	22.534	0.334	0.456
Inpainting (Random)	Ours-tweedie	32.844	0.906	0.122	29.564	0.817	0.184
	Ours-ode	32.127	0.894	0.095	28.733	0.795	0.148
	DAPS	31.652	0.847	0.124	28.137	0.751	0.162
	DPS	29.084	0.828	0.181	26.049	0.678	0.318
	DDRM	28.969	0.847	0.178	27.883	0.778	0.203
	DiffPIR	28.558	0.709	0.230	26.923	0.639	0.222
	RED-diff	20.361	0.630	0.275	20.948	0.464	0.315
	PMC	23.289	0.755	0.263	25.965	0.636	0.342
Motion Deblur	Ours-tweedie	30.003	0.854	0.179	27.149	0.717	0.280
	Ours-ode	29.648	0.841	0.154	26.615	0.694	0.275
	DAPS	29.051	0.815	0.175	26.571	0.689	0.276
	DPS	23.257	0.663	0.265	19.613	0.451	0.451
	DCDP	19.480	0.590	0.426	21.608	0.480	0.510
	PMC						
Gaussian Blur	Ours-tweedie	30.402	0.853	0.175	27.199	0.705	0.281
	Ours-ode	30.019	0.841	0.158	26.899	0.690	0.282
	DAPS	29.790	0.813	0.157	26.886	0.678	0.260
	DPS	26.106	0.730	0.207	23.995	0.575	0.328
	DiffPIR	25.148	0.699	0.230	22.756	0.508	0.374
	DPIR	28.875	0.833	0.228	26.702	0.700	0.314
	DCDP	16.821	0.171	0.642	15.102	0.136	0.620
Inpainting (Box)	PMC	20.172	0.638	0.344	24.103	0.545	0.415
	Ours-tweedie	24.025	0.859	0.131	21.626	0.789	0.222
	Ours-ode	23.342	0.837	0.136	20.618	0.743	0.227
	DAPS	23.643	0.815	0.146	21.303	0.774	0.199
	DPS	23.488	0.817	0.164	19.933	0.677	0.309
	DiffPIR	20.934	0.561	0.294	19.565	0.562	0.342
Phase Retrieval	RED-diff	18.713	0.523	0.364	18.075	0.499	0.371
	DCDP	25.230	0.754	0.163	20.991	0.727	0.195
	PMC	14.828	0.697	0.318	15.550	0.666	0.326
	Ours-tweedie	27.944	0.793	0.209	17.770	0.440	0.471
	Ours-ode	27.095	0.757	0.237	16.013	0.339	0.539
Phase Retrieval	DAPS	26.707	0.749	0.230	16.444	0.395	0.512
	DPS	11.627	0.366	0.658	9.434	0.216	0.768
	DiffPIR	15.411	0.490	0.480	12.852	0.204	0.695
	DCDP	20.026	0.540	0.424	12.257	0.212	0.665
	PMC	10.421	0.287	0.783	8.636	0.129	0.890

Qualitative performance. Figs 2, 3 and 4 show reconstructions under inpainting under random missings, inpainting under box missing, and motion deblurring. It can be seen that our method is able to recover the image that is comparatively natural looking with less noise and artifacts, while being consistent with the measurements. On the other hand, images recovered with DiffPIR appears to suffer from noise and artifacts, whereas DPS leads to measurement-inconsistent reconstructions.

Our method outperforms others while other methods appear to either be blurred or contain noisy artifacts in the recovered image. Recovery by DPS is less consistent with the original image; the pattern on the child’s clothing is completely lost.

Quantitative performance. Table 1 summarizes PSNR, SSIM and LPIPS averaged over 100 images on FFHQ and Imagenet datasets. In almost all of the inverse problems, both of our variants (Ours-tweedie and Ours-ode) achieve the best or second-best performance in terms of all metrics. Our method significantly outperforms other PnP baseline methods considered, namely, DDRM, DiffPIR and RED-diff. This demonstrates the effectiveness of our AC-DC denoiser.

Effectiveness of DC. To perform ablation study on the DC stage, we consider the challenging phase retrieval problem. Fig. 5 shows the output of ADMM-PnP with our AC-DC denoiser with different numbers of DC iterations J . With $J = 0$ (disabling DC step), artifacts remain severe. Increasing J progressively results in cleaner images.

More Details and Additional Experiments. More details and experiments are in appendices.

486
487

7 CONCLUSION

488
489
490
491
492
493
We introduced the AC-DC denoiser, a score-based denoiser designed for integration within the
ADMM-PnP framework. The denoiser adopts a three-stage structure aimed at mitigating the mismatch
between ADMM iterates and the noisy manifolds on which score functions are trained. We established
convergence guarantees for ADMM-PnP with the AC-DC denoiser under both fixed and adaptive step
size schedules. Empirical results across a range of inverse problems demonstrate that the proposed
method consistently improves solution quality over existing baselines.494
495
496
497
498
499
500
501
502
503

Limitations. While our analysis provides initial insights, several aspects merit deeper understanding.
The second convergence result relaxes convexity by allowing adaptive step sizes, though such
schedules are arguably less appealing in practice. Our experiments, however, suggest that constant
step sizes also perform well for nonconvex objectives; it is therefore desirable to establish convergence
guarantees for constant step sizes in such settings. **In addition, our result ensures the *stability* of the
ADMM method, but does not directly explain the reason *why* the AC-DC denoiser attains high-quality
recovery; recoverability and estimation error analyses are also desirable.** On the implementation
side, the noise schedules used in the AC and DC stages are currently guided by empirical heuristics.
Designing problem-adaptive scheduling strategies may further improve both convergence speed
and robustness. **Additionally, each iteration of AC-DC denoiser needs multiple score evaluations.
Reducing the required NFEs could significantly improve its efficiency.**

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
Ethics Statement: This work focuses exclusively on the theory and methodology of solving inverse
 541 problems. It does not involve human subjects, personal data, or any sensitive procedures.
 542

543
Reproducibility Statement: The source code is provided as a part of the supplementary material.
 544 All assumptions, derivations and necessary details regarding the theory and experiments are included
 545 in the appendices.

546
REFERENCES

547 Rizwan Ahmad, Charles A. Bouman, Gregery T. Buzzard, Stanley Chan, Sizhuo Liu, Edward T.
 548 Reehorst, and Philip Schniter. Plug-and-play methods for magnetic resonance imaging: Using
 549 denoisers for image recovery. *IEEE Signal Processing Magazine*, 37(1):105–116, January 2020.
 550 ISSN 1558-0792. doi: 10.1109/msp.2019.2949470. URL <http://dx.doi.org/10.1109/MSP.2019.2949470>.
 551

552 Ismail Alkhouri, Shijun Liang, Rongrong Wang, Qing Qu, and Saiprasad Ravishankar. Robust
 553 physics-based deep mri reconstruction via diffusion purification, 2023. URL <https://arxiv.org/abs/2309.05794>.
 554

555 Ismail Alkhouri, Shijun Liang, Evan Bell, Qing Qu, Rongrong Wang, and Saiprasad Ravishankar.
 556 Image reconstruction via autoencoding sequential deep image prior. In *The Thirty-eighth Annual
 557 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=K1EG2ABzNE>.
 558

559 Simon R Arridge. Optical tomography in medical imaging. *Inverse problems*, 15(2):R41, 1999.
 560

561 Heinz H Bauschke, Patrick L Combettes, Heinz H Bauschke, and Patrick L Combettes. *Convex
 562 analysis and monotone operator theory in Hilbert spaces*. Springer, 2017.

563 Andrew F Bennett. *Inverse methods in physical oceanography*. Cambridge university press, 1992.

564 Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative
 565 models. In *International conference on machine learning*, pp. 537–546. PMLR, 2017.

566 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

567 Herm Jan Brascamp and Elliott H Lieb. On extensions of the brunn-minkowski and prékopa-
 568 leindler theorems, including inequalities for log concave functions, and with an application to
 569 the diffusion equation. *Journal of Functional Analysis*, 22(4):366–389, 1976. ISSN 0022-1236.
 570 doi: [https://doi.org/10.1016/0022-1236\(76\)90004-5](https://doi.org/10.1016/0022-1236(76)90004-5). URL <https://www.sciencedirect.com/science/article/pii/0022123676900045>.
 571

572 Felix E. Browder. Nonexpansive nonlinear operators in a banach space. *Proceedings of the National
 573 Academy of Sciences of the United States of America*, 54(4):1041–1044, 1965. ISSN 00278424,
 574 10916490. URL <http://www.jstor.org/stable/73047>.
 575

576 Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman. Plug-and-play
 577 unplugged: Optimization-free reconstruction using consensus equilibrium. *SIAM Journal on
 578 Imaging Sciences*, 11(3):2001–2020, 2018.

579 Stanley Chan, Xiran Wang, and Omar Elgendy. Plug-and-play admm for image restoration: Fixed
 580 point convergence and applications. *IEEE Transactions on Computational Imaging*, PP, 05 2016.
 581 doi: 10.1109/TCI.2016.2629286.

582 Stanley H. Chan. Performance analysis of plug-and-play admm: A graph signal processing per-
 583 spective. (arXiv:1809.00020), May 2019. doi: 10.48550/arXiv.1809.00020. URL <http://arxiv.org/abs/1809.00020>. arXiv:1809.00020 [eess].
 584

585 Xi Chen, Simon S. Du, and Xin T. Tong. On stationary-point hitting time and ergodicity of stochastic
 586 gradient langevin dynamics. *Journal of Machine Learning Research*, 21(68):1–41, 2020. URL
 587 <http://jmlr.org/papers/v21/19-327.html>.
 588

594 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
 595 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,
 596 35:25683–25696, 2022.

597

598 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
 599 Ye. Diffusion posterior sampling for general noisy inverse problems. In *International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=OnD9zGAGT0k>.

600

601 B Combal, Frédéric Baret, M Weiss, Alain Trubuil, D Macé, A Pragnere, R Myneni, Y Knyazikhin,
 602 and L Wang. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior
 603 information to solve the ill-posed inverse problem. *Remote sensing of environment*, 84(1):1–15,
 604 2003.

605

606

607 Patrick L. Combettes and Isao Yamada. Compositions and convex combinations of averaged
 608 nonexpansive operators. *Journal of Mathematical Analysis and Applications*, 425(1):55–70,
 609 2015. ISSN 0022-247X. doi: <https://doi.org/10.1016/j.jmaa.2014.11.044>. URL <https://www.sciencedirect.com/science/article/pii/S0022247X14010865>.

610

611 Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
 612 sparse 3-d transform-domain collaborative filtering. *IEEE Transactions on Image Processing*, 16
 613 (8):2080–2095, 2007. doi: 10.1109/TIP.2007.901238.

614

615 Arnak S. Dalalyan and Avetik G. Karagulyan. User-friendly guarantees for the langevin monte
 616 carlo with inaccurate gradient. *Stochastic Processes and their Applications*, 129(12):5278–5311,
 617 December 2019. ISSN 03044149. doi: 10.1016/j.spa.2019.02.016. arXiv:1710.00095 [math].

618

619 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
 620 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 621 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

622

623 Alex Dytso, H. Vincent Poor, and Shlomo Shamai. A general derivative identity for the conditional
 624 mean estimator in gaussian noise and some applications, 2021. URL <https://arxiv.org/abs/2104.01883>.

625

626 Jonathan Eckstein and Dimitri P Bertsekas. On the douglas—rachford splitting method and the
 627 proximal point algorithm for maximal monotone operators. *Mathematical programming*, 55:
 628 293–318, 1992.

629

630 Ender M. Eksioglu and A. Korhan Tanc. Denoising amp for mri reconstruction: Bm3d-amp-mri.
 631 *SIAM Journal on Imaging Sciences*, 11(3):2090–2109, January 2018. doi: 10.1137/18M1169655.

632

633 Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over
 634 learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006. doi:
 10.1109/TIP.2006.881969.

635

636 Dara Entekhabi, Hajime Nakamura, and Eni G Njoku. Solving the inverse problem for soil moisture
 637 and temperature profiles by sequential assimilation of multifrequency remotely sensed observations.
 638 *IEEE Transactions on Geoscience and Remote Sensing*, 32(2):438–448, 1994.

639

640 Pontus Giselsson. Tight global linear convergence rate bounds for douglas–rachford splitting.
 641 *Journal of Fixed Point Theory and Applications*, 19:2241 – 2270, 2015. URL <https://api.semanticscholar.org/CorpusID:56162917>.

642

643 Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as plug-
 644 and-play priors. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 645 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=yh1MZ3iR7Pu>.

646

647 C. Hatsell and L. Nolte. Some geometric properties of the likelihood ratio (corresp.). *IEEE*
 648 *Transactions on Information Theory*, 17(5):616–618, 1971. doi: 10.1109/TIT.1971.1054672.

648 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
 649 Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
 650 preserving guided diffusion. In *The Twelfth International Conference on Learning Representations*,
 651 2024. URL <https://openreview.net/forum?id=o3BxOLoxm1>.

652 Wenrui Hu, Dacheng Tao, Wensheng Zhang, Yuan Xie, and Yehui Yang. The twist tensor nuclear
 653 norm for video completion. *IEEE Transactions on Neural Networks and Learning Systems*, 28(12):
 654 2961–2973, 2017. doi: 10.1109/TNNLS.2016.2611525.

655 Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. Gradient step denoiser for convergent
 656 plug-and-play. (arXiv:2110.03220), February 2022a. doi: 10.48550/arXiv.2110.03220. URL
 657 <http://arxiv.org/abs/2110.03220>. arXiv:2110.03220 [cs].

658 Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. Proximal denoiser for convergent
 659 plug-and-play optimization with nonconvex regularization. In *Proceedings of the 39th Inter-
 660 national Conference on Machine Learning*, pp. 9483–9505. PMLR, 2022b. URL <https://proceedings.mlr.press/v162/hurault22a.html>.

661 Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
 662 neural network for inverse problems in imaging. *IEEE transactions on image processing*, 26(9):
 663 4509–4522, 2017.

664 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 665 adversarial networks. *IEEE Trans. Pattern Anal. Mach. Intell.*, 43(12):4217–4228, December 2021.
 666 ISSN 0162-8828. doi: 10.1109/TPAMI.2020.2970919. URL <https://doi.org/10.1109/TPAMI.2020.2970919>.

667 Tero Karras, Miika Aittala, Samuli Laine, and Timo Aila. Elucidating the design space of diffusion-
 668 based generative models. In *Proceedings of the 36th International Conference on Neural Infor-
 669 mation Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
 670 9781713871088.

671 Bahjat Kawar, Gregory Vaksman, and Michael Elad. SNIPS: Solving noisy inverse problems
 672 stochastically. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances
 673 in Neural Information Processing Systems*, 2021. URL https://openreview.net/forum?id=pBK0x_dxYAN.

674 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 675 models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances
 676 in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=kxXvopt9pWK>.

677 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 678 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 679 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

680 B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.
 681 *The Annals of Statistics*, 28(5):1302–1338, October 2000. ISSN 0090-5364, 2168-8966. doi:
 682 10.1214/aos/1015957395.

683 Xiang Li, Soo Min Kwon, Ismail R. Alkhouri, Saiprasad Ravishankar, and Qing Qu. Decoupled
 684 data consistency with diffusion purification for image restoration. (arXiv:2403.06054), May
 685 2024. doi: 10.48550/arXiv.2403.06054. URL <http://arxiv.org/abs/2403.06054>.
 686 arXiv:2403.06054 [eess].

687 Xiang Li, Soo Min Kwon, Shijun Liang, Ismail R. Alkhouri, Saiprasad Ravishankar, and Qing
 688 Qu. Decoupled data consistency with diffusion purification for image restoration, 2025. URL
 689 <https://arxiv.org/abs/2403.06054>.

690 Kewei Liang. Homocentric convergence ball of the secant method. *Applied Mathematics-A Journal
 691 of Chinese Universities*, 22:353–365, 2007.

702 Yun-Yang Liu, Xi-Le Zhao, Yu-Bang Zheng, Tian-Hui Ma, and Hongyan Zhang. Hyperspectral
 703 image restoration by tensor fibered rank constrained optimization and plug-and-play regularization.
 704 *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–17, 2022. doi: 10.1109/TGRS.2020.
 705 3045169.

706 Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
 707 inverse problems with diffusion models. In *The Twelfth International Conference on Learning
 708 Representations*, 2024. URL <https://openreview.net/forum?id=1YO4EE3SPB>.

709

710 J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for sdes and approximations: locally
 711 lipschitz vector fields and degenerate noise. *Stochastic Processes and their Applications*, 101(2):
 712 185–232, October 2002. ISSN 0304-4149. doi: 10.1016/S0304-4149(02)00150-3.

713 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 714 SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International
 715 Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=aBsCjcPu_tE.

716

717 Christopher A. Metzler, Arian Maleki, and Richard G. Baraniuk. From denoising to compressed
 718 sensing. (arXiv:1406.4175), April 2016. doi: 10.48550/arXiv.1406.4175. URL <http://arxiv.org/abs/1406.4175> [cs].

719

720 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
 721 Diffusion models for adversarial purification. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 722 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
 723 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 724 16805–16827. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/nie22a.html>.

725

726 D.P. Palomar and S. Verdu. Gradient of mutual information in linear vector gaussian channels. *IEEE
 727 Transactions on Information Theory*, 52(1):141–154, 2006. doi: 10.1109/TIT.2005.860424.

728

729 Leandro Pardo. *Statistical inference based on divergence measures*. Chapman and Hall/CRC, 2018.

730

731 Xinyu Peng, Ziyang Zheng, Wenrui Dai, Nuoqian Xiao, Chenglin Li, Junni Zou, and Hongkai Xiong.
 732 Improving diffusion models for inverse problems using optimal posterior covariance, 2024. URL
 733 <https://arxiv.org/abs/2402.02149>.

734

735 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 736 deep learning framework for solving forward and inverse problems involving nonlinear partial
 737 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

738

739 Hongmin Ren and Ioannis K. Argyros. On the complexity of extending the convergence ball of wang’s
 740 method for finding a zero of a derivative. *Journal of Complexity*, 64:101526, 2021. ISSN 0885-
 741 064X. doi: <https://doi.org/10.1016/j.jco.2020.101526>. URL <https://www.sciencedirect.com/science/article/pii/S0885064X20300704>.

742

743 Hongmin Ren and Qingbiao Wu. Convergence ball and error analysis of a family of iterative
 744 methods with cubic convergence. *Applied Mathematics and Computation*, 209(2):369–378,
 745 2009. ISSN 0096-3003. doi: <https://doi.org/10.1016/j.amc.2008.12.057>. URL <https://www.sciencedirect.com/science/article/pii/S0096300308009739>.

746

747 Marien Renaud, Jean Prost, Arthur Leclaire, and Nicolas Papadakis. Plug-and-play image restoration
 748 with stochastic denoising regularization. In *Proceedings of the 41st International Conference on
 749 Machine Learning*, ICML’24. JMLR.org, 2024a.

750

751 Marien Renaud, Jean Prost, Arthur Leclaire, and Nicolas Papadakis. Plug-and-play image restoration
 752 with stochastic denoising regularization. *CoRR*, abs/2402.01779, 2024b. URL <https://doi.org/10.48550/arXiv.2402.01779>.

753

754 Herbert Robbins. An empirical bayes approach to statistics. *Proceedings of the Third Berkeley Sympo-
 755 sium on Mathematical and Statistical Probability*, 1, 01 1992. doi: 10.1007/978-1-4612-0919-5_
 26.

756 Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-
 757 and-play methods provably converge with properly trained denoisers. In Kamalika Chaudhuri
 758 and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine
 759 Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5546–5557. PMLR,
 760 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/ryu19a.html>.

761 Oguz Semerci, Ning Hao, Misha E. Kilmer, and Eric L. Miller. Tensor-based formulation and
 762 nuclear norm regularization for multienergy computed tomography. *IEEE Transactions on Image
 763 Processing*, 23(4):1678–1693, 2014. doi: 10.1109/TIP.2014.2305840.

764

765 Viraj Shah and Chinmay Hegde. Solving linear inverse problems using gan priors: An algorithm
 766 with provable guarantees. In *2018 IEEE international conference on acoustics, speech and signal
 767 processing (ICASSP)*, pp. 4609–4613. IEEE, 2018.

768 Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving
 769 inverse problems with latent diffusion models via hard data consistency. October 2023. URL
 770 <https://openreview.net/forum?id=j8hdRqOUhN>.

771

772 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
 773 models for inverse problems. September 2022a. URL https://openreview.net/forum?id=9_gsMA8MRKQ.

774

775 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 776 Poole. Score-based generative modeling through stochastic differential equations. In *9th Interna-
 777 tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.*
 778 OpenReview.net, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

779

780 Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
 781 with score-based generative models. In *International Conference on Learning Representations,*
 782 2022b. URL <https://openreview.net/forum?id=vaRCHVj0uGI>.

783

784 Yu Sun, Brendt Wohlberg, and Ulugbek S. Kamilov. An online plug-and-play algorithm for reg-
 785 ularized image reconstruction. *IEEE Transactions on Computational Imaging*, 5(3):395–408,
 786 September 2019. ISSN 2333-9403, 2334-0118, 2573-0436. doi: 10.1109/TCI.2019.2893568.
 787 arXiv:1809.04693 [cs].

788

789 Yu Sun, Zihui Wu, Yifan Chen, Berthy T. Feng, and Katherine L. Bouman. Provable probabilistic
 790 imaging using score-based generative priors, 2024. URL <https://arxiv.org/abs/2310.10835>.

791

792 Albert Tarantola. *Inverse problem theory and methods for model parameter estimation*. SIAM, 2005.

793

794 Afonso M. Teodoro, José M. Bioucas-Dias, and Mário A. T. Figueiredo. Scene-adapted plug-and-play
 795 algorithm with convergence guarantees. (arXiv:1702.02445), November 2017. doi: 10.48550/
 796 arXiv.1702.02445. URL <http://arxiv.org/abs/1702.02445>. arXiv:1702.02445 [cs].

797

798 Edward Charles Titchmarsh and David Rodney Heath-Brown. *The theory of the Riemann zeta-
 799 function*. Oxford university press, 1986.

800

801 Phong Tran, A. Tran, Quynh Phung, and Minh Hoai. Explore image deblurring via encoded
 802 blur kernel space. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
 803 nition (CVPR)*, pp. 11951–11960, 2021. URL <https://api.semanticscholar.org/CorpusID:235328539>.

804

805 G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. *Phys. Rev.*, 36:823–841,
 806 Sep 1930. doi: 10.1103/PhysRev.36.823. URL <https://link.aps.org/doi/10.1103/PhysRev.36.823>.

807

808 Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. *International Jour-
 809 nal of Computer Vision*, 128(7):1867–1888, March 2020. ISSN 1573-1405. doi: 10.1007/s11263-020-01303-4. URL <http://dx.doi.org/10.1007/s11263-020-01303-4>.

810

Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

810 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge university press, 2019.

811

812 Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. DMPlug: A
813 plug-in method for solving inverse problems with diffusion models. In *The Thirty-eighth Annual*
814 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=81IFFsfQUj>.

815

816 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
817 null-space model. In *The Eleventh International Conference on Learning Representations*, 2023.
818 URL <https://openreview.net/forum?id=mRieQgMtNTQ>.

819

820 Deliang Wei, Peng Chen, Haobo Xu, Jiale Yao, Fang Li, and Tieyong Zeng. Learning cocoercive con-
821 servative denoisers via helmholtz decomposition for poisson inverse problems. (arXiv:2505.08909),
822 October 2025. doi: 10.48550/arXiv.2505.08909. URL <http://arxiv.org/abs/2505.08909>. arXiv:2505.08909 [cs].

823

824 Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Hua Huang, and Carola-Bibiane
825 Schönlieb. Tfpnp: Tuning-free plug-and-play proximal algorithm with applications to inverse
826 imaging problems. (arXiv:2012.05703), 2021. doi: 10.48550/arXiv.2012.05703. URL <http://arxiv.org/abs/2012.05703>. arXiv:2012.05703 [cs].

827

828 Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine Bouman. Principled
829 probabilistic imaging using diffusion models as plug-and-play priors. In *The Thirty-eighth Annual*
830 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=Xq9HQf7VNV>.

831

832 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
833 denoising diffusion GANs. In *International Conference on Learning Representations*, 2022. URL
834 <https://openreview.net/forum?id=JprM0p-q0Co>.

835

836 Le Xu, Lei Cheng, Junting Chen, Wenqiang Pu, and Xiao Fu. Radio map estimation via latent domain
837 plug-and-play denoising, 2025. URL <https://arxiv.org/abs/2501.13472>.

838

839 Jianchao Yang, John Wright, Thomas S. Huang, and Yi Ma. Image super-resolution via sparse
840 representation. *IEEE Transactions on Image Processing*, 19(11):2861–2873, 2010. doi: 10.1109/TIP.2010.2050625.

841

842 Yonghong Yao, Haiyun Zhou, and Yeong-Cheng Liou. Iterative algorithms with variable anchors for
843 non-expansive mappings. *Journal of Applied Mathematics and Computing*, 28:39–49, 2008.

844

845 Xin Yuan, Yang Liu, Jinli Suo, Frédo Durand, and Qionghai Dai. Plug-and-play algorithms for video
846 snapshot compressive imaging. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
847 44(10):7093–7111, 2022. doi: 10.1109/TPAMI.2021.3099035.

848

849 Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang Song. Im-
850 proving diffusion inverse problem solving with decoupled noise annealing. *CoRR*, abs/2407.01521,
851 2024. URL <https://doi.org/10.48550/arXiv.2407.01521>.

852

853 Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play
854 image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine
855 Intelligence*, 44(10):6360–6376, 2022. doi: 10.1109/TPAMI.2021.3088914.

856

857 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unre-
858asonable Effectiveness of Deep Features as a Perceptual Metric . In *2018 IEEE/CVF Con-
859 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 586–595, Los Alamitos,
CA, USA, June 2018. IEEE Computer Society. doi: 10.1109/CVPR.2018.00068. URL
<https://doi.ieee.org/10.1109/CVPR.2018.00068>.

860

861 Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezheng Cao, Bihan Wen, Radu Timofte, and Luc Van
862 Gool. Denoising diffusion models for plug-and-play image restoration. In *IEEE/CVF Conference
863 on Computer Vision and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC, Canada,
June 17-24, 2023*, pp. 1219–1229. IEEE, 2023. doi: 10.1109/CVPRW59228.2023.00129. URL
<https://doi.org/10.1109/CVPRW59228.2023.00129>.

864 Rayhan Zirvi, Bahareh Tolooshams, and Anima Anandkumar. Diffusion state-guided projected gradient for inverse problems. In *The Thirteenth International Conference on Learning Representations*,
865 2025. URL <https://openreview.net/forum?id=kRBQwlkFSP>.
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A PRELIMINARIES
919920 A.1 NOTATION
921922 Table 2: Summary of notation
923

924 Symbol	925 Description
$926 \mathbf{x} \in \mathbb{R}^d$	The unknown signal or image to be recovered
$927 \mathbf{y} \in \mathbb{R}^n$	Measurements, with $n \leq d$
$928 y_i$	i th element of measurement \mathbf{y}
$929 \mathcal{A} : \mathbb{R}^d \rightarrow \mathbb{R}^n$	Measurement operator
$930 \mathcal{X}$	Support of \mathbf{x}
$931 \mathcal{X}_t$	Support of \mathbf{x}_t
932ξ	Additive measurement noise
$933 \mathbf{x}_t$	noisy data by using forward diffusion process with noise $\sigma(t)$
$934 \mathbf{x}_{\sigma^{(k)}}$	noisy data by using forward diffusion process with noise $\sigma^{(k)}$
$935 \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x}))$	data-fidelity loss (e.g. $\ \mathbf{y} - \mathcal{A}(\mathbf{x})\ _2^2$)
$936 h(\mathbf{x})$	structural regularization prior (enforced via denoiser)
$937 \rho > 0$	ADMM penalty parameter
$938 \text{Prox}(\cdot)$	Proximal operator
$939 \mathbf{u}^{(k)}$	Scaled dual variable in iteration k of ADMM
$940 \mathbf{z}^{(k)}$	Auxiliary variable in iteration k of ADMM
$941 \tilde{\mathbf{z}}^{(k)} = \mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}$	Pre-denoising input to the PnP denoiser
$942 \sigma^{(k)}$	Noise level schedule for the AC-DC denoiser
$943 \sigma_{\mathbf{s}^{(k)}}$	Variance parameter in the AC-DC prior for directional correction.
$944 \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$	Multivariate standard gaussian random variable
$945 s_{\theta}(\mathbf{x}, \sigma) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x} + \sigma \mathbf{n})$	Pretrained score function
$946 K$	Maximum iteration of ADMM
$947 J$	Total iteration of directional correction at for each denoising
$948 M$	Smoothness constant of $\nabla \log p_{\text{data}}$ (Assumption 2)
$949 M_t$	Smoothness constant of $\nabla \log p_t$
$950 T > 0$	Maximum time steps used for diffusion
$951 \mathcal{M}_{\sigma(t)}$	Manifold of \mathbf{x}_t
$952 \mathcal{M}_{\sigma^{(k)}}$	Manifold of \mathbf{x}_t where $t \in [0, T]$ such that $\sigma(t) = \sigma^{(k)}$
$953 D_{\sigma^{(k)}}(\mathbf{z})$	AC-DC denoiser at k th iteration
$954 R_{\sigma^{(k)}}(\mathbf{z}) = D_{\sigma^{(k)}}(\mathbf{z}) - \mathbf{z}$	Residual of AC-DC denoiser at k th iteration
$955 I(\mathbf{x}) = \mathbf{x}$	Identity mapping function
$956 \mathbf{I}$	Identity matrix
$957 \mathbf{0}$	vector of values 0
$958 T_1 \circ T_2(\mathbf{z}) = T_1(T_2(\mathbf{z}))$	Concatentation of two functions T_1 and T_2
$959 \ \mathbf{x}\ _2$	2-norm of a vector \mathbf{x}
$960 \text{Cov}(\cdot)$	Covariance matrix

963 A.2 DEFINITIONS
964965 **μ -strongly convex function (Boyd & Vandenberghe, 2004).** A differentiable function $f : \mathbb{R}^m \rightarrow$
966 \mathbb{R} is μ -strongly convex for a certain $\mu > 0$ if
967

968
$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \quad (17)$$

969 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$.
970971 The notion of of *nonexpansive* and *averaged nonexpansive* have been widely used in the convergence
analysis of various nonlinear problems (Combettes & Yamada, 2015; Yao et al., 2008; Eckstein &

972 Bertsekas, 1992). We use the generalized form of both *nonexpansive* and *averaged nonexpansive*
 973 operator for establishing the ball convergence in our method.
 974

975 **Nonexpansive function (Browder, 1965).** A function $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is *nonexpansive* if T is
 976 *nonexpansive* function if there exists $\epsilon \in [0, 1]$ such that

$$977 \quad \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq \epsilon^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \quad (18)$$

979 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
 980

981 **θ -averaged function (Combettes & Yamada, 2015).** A mapping $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined to be
 982 θ -averaged for a constant $\theta \in (0, 1)$ if there exists a nonexpansive operator $R : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that
 983 $T = (1 - \alpha)I + \alpha R$.

984 The notion of relaxed bound $\|T_k(\mathbf{x}) - T_k(\mathbf{y})\| \leq \epsilon^{(k)} \|\mathbf{x} - \mathbf{y}\| + \delta^{(k)}$, $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$ was used to study
 985 and show the convergence in Yao et al. (2008) when $\sum_{k=1}^{\infty} |\delta^{(k)}| < \infty$. We define a similar weaker
 986 form of nonexpansive function and θ -averaged functions below.
 987

988 **δ -weakly nonexpansive function.** A mapping $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is said to be δ -weakly nonexpansive
 989 for $\delta \geq 0$ if there exists $\epsilon \in [0, 1]$ such that

$$991 \quad \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq \epsilon^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta^2 \quad (19)$$

992 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
 993

994 **δ -weakly θ -averaged function.** A mapping $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined to be δ -weakly θ -averaged
 995 function for a certain $\delta \geq 0$ and $\theta \in (0, 1)$, if there exists a δ -weakly nonexpansive function
 996 $R : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that $T = \theta R + (1 - \theta)I$.
 997

998 **Sub-Gaussian random vector.** A random vector $\mathbf{x} \in \mathbb{R}^d$ (with mean $\mathbb{E}[\mathbf{x}]$) is called *sub-Gaussian*
 999 with parameter σ^2 if its Euclidean norm satisfies a sub-Gaussian tail bound:

$$1001 \quad \Pr(\|\mathbf{x} - \mathbb{E}[\mathbf{x}]\|_2 > \varepsilon) \leq 2 \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right), \quad \forall \varepsilon > 0. \quad (20)$$

1003 **2-Wasserstein Distance.** Let μ and ν be probability measures on \mathbb{R}^d with finite second moments.
 1004 The 2-Wasserstein distance between μ and ν is defined as
 1005

$$1006 \quad W_2(\mu, \nu) = \left(\inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|\mathbf{x} - \mathbf{y}\|_2^2 d\gamma(\mathbf{x}, \mathbf{y}) \right)^{1/2}, \quad (21)$$

1008 where $\Gamma(\mu, \nu)$ denotes the set of all couplings of μ and ν , i.e.,
 1009

$$1010 \quad \Gamma(\mu, \nu) = \left\{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \gamma(A \times \mathbb{R}^d) = \mu(A), \gamma(\mathbb{R}^d \times B) = \nu(B), \forall A, B \subseteq \mathbb{R}^d \text{ measurable} \right\}. \quad (22)$$

1014 A.3 SUPPORTING LEMMAS

1015 Tweedie's lemma establishes an important connection between the score of the marginal distribution
 1016 and expectation of posterior when the likelihood function is gaussian. This allows the score function
 1017 of the diffusion model to be used as a *minimum-mean-square-error* (MMSE) denoiser.
 1018

1019 **Lemma 1** (Tweedie's lemma (Robbins, 1992)). Let $p_0(\mathbf{x}_0)$ be the prior distribution and then
 1020 $\mathbf{x}_t \sim \mathcal{N}(\mathbf{x}_0, \Sigma)$ be observed with Σ known. Suppose $p_t(\mathbf{x}_t)$ be the marginal distribution of \mathbf{x}_t . Then,
 1021 Tweedie's lemma computes the posterior expectation of \mathbf{x}_0 given \mathbf{x}_t as

$$1022 \quad \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \mathbf{x}_t + \Sigma \nabla \log p_t(\mathbf{x}_t) \quad (23)$$

1024 The lemmas related to θ -averaged from Combettes & Yamada (2015) are used to show fixed point
 1025 convergence in Ryu et al. (2019). In the following, we extend all these lemmas to a more general
 1026 δ -weakly θ -averaged cases that will be used later to show our ball convergence.

1026
1027**Lemma 2.** $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a function. Then, the following statements are equivalent:1028
1029(a) T is δ -weakly θ -averaged for $\delta \geq 0$ and $\theta \in (0, 1)$.1030
1031(b) $\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \leq \delta^2\theta^2$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

1032

1033

(c) $(1 - 1/\theta)I + (1/\theta)T$ is δ -weakly nonexpansive.

1034

1035

(d) $\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{1-\theta}{\theta}\|(I - T)(\mathbf{x}) - (I - T)(\mathbf{y})\|_2^2 + \delta^2\theta^2$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$

1036

1037

1038

1039

Proof. Equivalence between (a) and (b): Provided T is δ -weakly θ -averaged, let's find the LHS - RHS in (b)

1040

1041

$$\begin{aligned}
& (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 + \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 - 2(1 - \theta)\langle \mathbf{x} - \mathbf{y}, T(\mathbf{x}) - T(\mathbf{y}) \rangle \\
& \leq (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 + \|\theta R(\mathbf{x}) - \theta R(\mathbf{y}) + (1 - \theta)(\mathbf{x} - \mathbf{y})\|_2^2 \\
& \quad - 2(1 - \theta)\langle \mathbf{x} - \mathbf{y}, \theta(R(\mathbf{x}) - R(\mathbf{y})) + (1 - \theta)(\mathbf{x} - \mathbf{y}) \rangle \\
& = (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 + \theta^2\|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 + (1 - \theta)^2\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)^2\|\mathbf{x} - \mathbf{y}\|_2^2 \\
& \quad + 2\theta(1 - \theta)\langle \mathbf{x} - \mathbf{y}, R(\mathbf{x}) - R(\mathbf{y}) \rangle - 2(1 - \theta)\theta\langle \mathbf{x} - \mathbf{y}, R(\mathbf{x}) - R(\mathbf{y}) \rangle \\
& \leq (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 + \theta^2\|\mathbf{x} - \mathbf{y}\|_2^2 + \theta^2\delta^2 + (1 - \theta)^2\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)^2\|\mathbf{x} - \mathbf{y}\|_2^2 \\
& \quad + 2\theta(1 - \theta)\langle \mathbf{x} - \mathbf{y}, R(\mathbf{x}) - R(\mathbf{y}) \rangle - 2(1 - \theta)\theta\langle \mathbf{x} - \mathbf{y}, R(\mathbf{x}) - R(\mathbf{y}) \rangle \\
& = (1 - 2\theta + \theta^2 + (1 - \theta)^2 - 2(1 - \theta)^2)\|\mathbf{x} - \mathbf{y}\|_2^2 + \theta^2\delta^2 \\
& = \theta^2\delta^2
\end{aligned}$$

1053

1054

1055
1056
1057For another direction, let us suppose T satisfies (a). Let $R = \frac{1}{\theta}(T - (1 - \theta)I)$ so that we have $T = \theta R + (1 - \theta)I$. Now, we need to show that $\|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 \leq \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ i.e. δ -weakly nonexpansive.

1058

1059

$$\begin{aligned}
& \|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 \\
& = \frac{1}{\theta^2}\|T(\mathbf{x}) - T(\mathbf{y}) - (1 - \theta)(\mathbf{x} - \mathbf{y})\|_2^2 \\
& = \frac{1}{\theta^2} \left(\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + (1 - \theta)^2\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \right) \\
& = \frac{1}{\theta^2} \left(\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \theta^2\|\mathbf{x} - \mathbf{y}\|_2^2 \right) \\
& \leq \frac{1}{\theta^2} \left(\theta^2\delta^2 + \theta^2\|\mathbf{x} - \mathbf{y}\|_2^2 \right) \\
& = \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta^2
\end{aligned}$$

1069

where, the inequality is due to T satisfying (b).1070
1071
1072
1073Equivalence between (a) and (c): Note that T is δ -weakly θ -averaged $\iff T = \theta R + (1 - \theta)I$ with R being δ -weakly nonexpansive function. Now, we have

1074

1075

1076

1077

1078

1079

$$\begin{aligned}
(1 - 1/\theta)I + (1/\theta)T &= (1 - 1/\theta)I + 1/\theta \cdot (\theta R + (1 - \theta)I) \\
&= (1 - 1/\theta)I + R - (1 - 1/\theta)I \\
&= R
\end{aligned}$$

Hence, T being δ -weakly θ -average is equivalent to $(1 - 1/\theta)I + (1/\theta)T$ being δ -weakly nonexpansive.

1080 Equivalence between (a) and (d): From equivalence between (a) and (b), we have

1081

$$\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 - 2(1 - \theta)\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \leq \delta^2\theta^2$$

1082

$$\iff \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + (1 - 2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 -$$

1083

$$(1 - \theta) \left(\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 + \|\mathbf{x} - \mathbf{y}\|_2^2 - \|(T - I)(\mathbf{x}) - (T - I)(\mathbf{y})\|_2^2 \right) \leq \delta^2\theta^2$$

1084

$$\iff \theta\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 - \theta\|\mathbf{x} - \mathbf{y}\|_2^2 \leq \delta^2\theta^2 - (1 - \theta)\|(T - I)(\mathbf{x}) - (T - I)(\mathbf{y})\|_2^2$$

1085

$$\iff \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{1 - \theta}{\theta}\|(I - T)(\mathbf{x}) - (I - T)(\mathbf{y})\|_2^2 + \delta^2\theta$$

1086

1087

1088

1089

□

1090

1091 **Lemma 3** (Concatenation of δ -weakly θ -averaged functions). *Assume $T_1 : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $T_2 : \mathbb{R}^d \rightarrow \mathbb{R}^d$ are δ_1 -weakly θ_1 -averaged and δ_2 -weakly θ_2 -averaged respectively. Then, $T_1 \circ T_2$ is δ -weakly θ -averaged, with $\theta = \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2}$, and $\delta^2 = \frac{1}{\theta}(\delta_1^2\theta_1 + \delta_2^2\theta_2)$.*

1092

1093

1094

1095 *Proof.* Here, we follow the proof structure of Combettes & Yamada (2015). Since $\theta_1(1 - \theta_2) \leq 1 - \theta_2$, we have $\theta_1 + \theta_2 \leq 1 + \theta_1\theta_2$, and therefore, $\theta = \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2} \in (0, 1)$, and let $\delta^2 = \frac{\delta_1^2\theta_1 + \delta_2^2\theta_2}{\theta}$

1096

1097

1098 Now, from Lemma 2, for $i \in \{1, 2\}$, we have,

1099

$$\|T_i(\mathbf{x}) - T_i(\mathbf{y})\|_2^2 \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{1 - \theta_i}{\theta_i}\|(I - T_i)(\mathbf{x}) - (I - T_i)(\mathbf{y})\|_2^2 + \delta_i^2\theta_i \quad (24)$$

1100

1101

1102 Then, let us evaluate the composition function using this property.

1103

$$\begin{aligned} & \|T_1 \circ T_2(\mathbf{x}) - T_1 \circ T_2(\mathbf{y})\|_2^2 \\ & \leq \|T_2(\mathbf{x}) - T_2(\mathbf{y})\|_2^2 - \frac{1 - \theta_1}{\theta_1}\|(I - T_1)(T_2(\mathbf{x})) - (I - T_1)(T_2(\mathbf{y}))\|_2^2 \\ & \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{1 - \theta_2}{\theta_2}\|(I - T_2)(\mathbf{x}) - (I - T_2)(\mathbf{y})\|_2^2 + \delta_2^2\theta_2 \\ & \quad - \frac{1 - \theta_1}{\theta_1}\|(I - T_1)(T_2(\mathbf{x})) - (I - T_1)(T_2(\mathbf{y}))\|_2^2 + \delta_1^2\theta_1 \end{aligned}$$

1104

1105

1106

1107

1108

1109

1110

1111 From Bauschke et al. (2017)[Corollary 2.15], we have, for $\alpha \in \mathbb{R}$,

1112

$$\begin{aligned} & \|\alpha\mathbf{u} + (1 - \alpha)\mathbf{v}\|_2^2 + \alpha(1 - \alpha)\|\mathbf{u} - \mathbf{v}\|_2^2 = \alpha\|\mathbf{u}\|_2^2 + (1 - \alpha)\|\mathbf{v}\|_2^2 \\ & \implies \alpha(1 - \alpha)\|\mathbf{u} + \mathbf{v}\|_2^2 \leq \alpha\|\mathbf{u}\|_2^2 + (1 - \alpha)\|\mathbf{v}\|_2^2 \end{aligned}$$

1113

1114

1115

1116 Now, let $\mathbf{u} = (I - T_2)(\mathbf{x}) - (I - T_2)(\mathbf{y})$, $\mathbf{v} = (I - T_1)(T_2(\mathbf{x})) - (I - T_1)(T_2(\mathbf{y}))$, $a = \frac{1 - \theta_2}{\theta_2}$, and
1117 $b = \frac{1 - \theta_1}{\theta_1}$.

1118

$$\begin{aligned} & \|T_1 \circ T_2(\mathbf{x}) - T_1 \circ T_2(\mathbf{y})\|_2^2 \\ & \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - a\|\mathbf{u}\|_2^2 - b\|\mathbf{v}\|_2^2 + \delta_1^2\theta_1 + \delta_2^2\theta_2 \\ & = \|\mathbf{x} - \mathbf{y}\|_2^2 - (a + b) \left(\frac{a}{a + b}\|\mathbf{u}\|_2^2 + \frac{b}{a + b}\|\mathbf{v}\|_2^2 \right) + \delta_1^2\theta_1 + \delta_2^2\theta_2 \\ & = \|\mathbf{x} - \mathbf{y}\|_2^2 - (a + b) \left(\frac{a}{a + b}\|\mathbf{u}\|_2^2 + 1 - \frac{a}{a + b}\|\mathbf{v}\|_2^2 \right) + \delta_1^2\theta_1 + \delta_2^2\theta_2 \end{aligned}$$

1119

1120

1121

1122

1123

1124

1125

1126

1127 Using the above results, we get,

1128

$$\begin{aligned} & \|T_1 \circ T_2(\mathbf{x}) - T_1 \circ T_2(\mathbf{y})\|_2^2 \\ & \leq \|\mathbf{x} - \mathbf{y}\|_2^2 - (a + b) \frac{ab}{(a + b)^2} \|\mathbf{u} + \mathbf{v}\|_2^2 + \delta_1^2\theta_1 + \delta_2^2\theta_2 \\ & = \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{ab}{(a + b)} \|(I - T_1 \circ T_2)(\mathbf{x}) - (I - T_1 \circ T_2)(\mathbf{y})\|_2^2 + \delta_1^2\theta_1 + \delta_2^2\theta_2 \end{aligned}$$

1129

1130

1131

1132

1133

1134 Let $\theta = \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2}$. Then, we can see that $\frac{ab}{a+b} = \frac{1-\theta}{\theta}$.
 1135

$$\begin{aligned} 1136 \quad \|T_1 \circ T_2(\mathbf{x}) - T_1 \circ T_2(\mathbf{y})\|_2^2 &\leq \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{1-\theta}{\theta} \|(I - T_1 \circ T_2)(\mathbf{x}) - (I - T_1 \circ T_2)(\mathbf{y})\|_2^2 \\ 1137 \quad &\quad + \delta^2\theta \end{aligned} \quad (25)$$

1139 where, $\delta^2\theta = \delta_1^2\theta_1 + \delta_2^2\theta_2$. This implies that $T_1 \circ T_2$ is δ -weakly θ -averaged with
 1140

$$\begin{aligned} 1141 \quad \theta &= \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2}, \quad \delta^2 = \frac{1}{\theta}(\delta_1^2\theta_1 + \delta_2^2\theta_2) \\ 1142 \quad &\quad \end{aligned} \quad (26)$$

1143 \square
 1144

1145 **Lemma 4** (Proposition 5.4 of Giselsson (2015)). *Assume ℓ is μ -strongly convex, closed, and proper.
 1146 Then, $-(2\text{Prox}_{\frac{1}{\rho}\ell} - I)$ is $\frac{\rho}{\rho+\mu}$ -averaged.*

1147 **Lemma 5** (Pardo (2018)). *The KL divergence between two gaussian distributions $q_1 = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$
 1148 and $q_2 = \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ in \mathbb{R}^d space is given by*

$$1150 \quad \text{KL}(q_1 || q_2) = \frac{1}{2} \left[\log \frac{|\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|} - d + \text{tr}(\boldsymbol{\Sigma}_2^{-1} \boldsymbol{\Sigma}_1) + (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_2^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) \right] \quad (27)$$

1151 where $|\cdot|$ denotes the determinant, and tr denotes the trace of the matrix.
 1152

1153

1154 B INFLUENCE OF AC-STEP ON BRINGING CLOSE TO $\{\mathcal{M}_{\sigma(t)}\}_{t=0}^T$

1155 Given a noisy image $\tilde{\mathbf{z}}^{(k)}$ at each iteration k , the denoising aims to recover the underlying clean image
 1156 $\mathbf{z}_{\natural}^{(k)} \sim p_0(\mathbf{z})$ such that $\tilde{\mathbf{z}}^{(k)} = \mathbf{z}_{\natural}^{(k)} + \mathbf{s}^{(k)}$, where $\mathbf{s}^{(k)}$ is the noise contained in $\tilde{\mathbf{z}}^{(k)}$. The AC-step
 1157 aims to bring $\mathbf{z}_{\text{ac}}^{(k)}$ closer to the noisy distribution $\mathcal{M}_{\sigma^{(k)}}$ on which the $\mathbf{s}_{\theta}(\cdot, \sigma^{(k)})$ was trained on.
 1158 Lemma 6 shows that the AC-step tries to match with the distribution induced by the forward diffusion
 1159 process.
 1160

1161 **Lemma 6.** *The KL divergence between the target distribution $p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\natural}^{(k)})$ for correction steps and
 1162 the distribution $p(\mathbf{z}_{\text{ac}}^{(k)} | \tilde{\mathbf{z}}^{(k)})$ induced by the approximate correction step in Algorithm 1 is given by*

$$1163 \quad \text{KL}(p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\natural}^{(k)}) || p(\mathbf{z}_{\text{ac}}^{(k)} | \tilde{\mathbf{z}}^{(k)})) = \frac{1}{2(\sigma^{(k)})^2} \left\| \mathbf{s}^{(k)} \right\|_2^2 \quad (28)$$

1164

1165 *Proof.*

1166

$$1167 \quad \text{Target distribution: } p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\natural}^{(k)}) = \mathcal{N}(\mathbf{z}_{\natural}^{(k)}, \sigma^{(k)} \mathbf{I}) \quad (29)$$

1168

$$1169 \quad \text{AC induced distribution: } p(\mathbf{z}_{\text{ac}}^{(k)} | \tilde{\mathbf{z}}^{(k)}) = \mathcal{N}(\tilde{\mathbf{z}}^{(k)}, \sigma^{(k)} \mathbf{I}) \quad (30)$$

1170

1171 The KL divergence between these two distribution can be computed in closed form using Lemma 5.
 1172

1173

$$\begin{aligned} 1174 \quad \text{KL}(q_1 || q_2) &= \frac{1}{2} \left(\log 1 - d + \text{tr}(\mathbf{I}) + (\tilde{\mathbf{z}}^{(k)} - \mathbf{z}_{\natural}^{(k)})^T (\sigma^{(k)})^{-2} \mathbf{I} (\tilde{\mathbf{z}}^{(k)} - \mathbf{z}_{\natural}^{(k)})^T \right) \\ 1175 \quad &= \frac{1}{2} \left(0 - d + d + (\sigma^{(k)})^{-2} \left\| \tilde{\mathbf{z}}^{(k)} - \mathbf{z}_{\natural}^{(k)} \right\|_2^2 \right) \\ 1176 \quad &= \frac{1}{2(\sigma^{(k)})^2} \left\| \mathbf{s}^{(k)} \right\|_2^2 \end{aligned}$$

1177

1178 where, $\mathbf{s}^{(k)} = \tilde{\mathbf{z}}^{(k)} - \mathbf{z}_{\natural}^{(k)}$.
 1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 Lemma 6 shows that KL-gap of our approximate AC update; as long as $\sigma^{(k)}$ is sufficiently large, the
 1189 two distributions remain close. Alkhouri et al. (2023)[Theorem 1] showed a result with a similar
 1190 flavor. Larger noise $\sigma^{(k)}$ makes the posterior nearly indistinguishable, but it also washes out fine

structural details originally present (low *Signal-to-Noise Ratio* with larger $\sigma^{(k)}$). Existing works often use annealed scheduling $\sigma^{(k)} \downarrow 0$ (Zhu et al., 2023; Renaud et al., 2024a; Wang et al., 2024) to preserve image details, implicitly assuming $\|\mathbf{s}^{(k)}\|_2^2$ decays at least as fast as $(\sigma^{(k)})^2$. With just the use of annealing $\sigma^{(k)}$ schedule, it is not sufficient to ensure that $\mathbf{z}_{\text{ac}}^{(k)}$ lands in a desired manifold in each ADMM iteration. To bridge this gap, we propose to use DC-step in addition to the widely used annealing $\sigma^{(k)}$ schedule that explicitly corrects this gap.

C PROOF OF THEOREM 1

The proof involves showing that the each iteration of ADMM-PnP is weakly non-expansive when the denoiser satisfies Assumption 1. This weakly nonexpansiveness of each step leads to ball convergence of the algorithm.

Recall that the subproblems at k th iteration of ADMM-PnP is given by:

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \arg \min_{\mathbf{x}} \frac{1}{\rho} \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x})) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)}\|_2^2 \\ &= \text{Prox}_{\frac{1}{\rho} \ell}(\mathbf{z}^{(k)} - \mathbf{u}^{(k)}) \end{aligned} \quad (31\text{a})$$

$$\begin{aligned} \mathbf{z}^{(k+1)} &= \arg \min_{\mathbf{z}} \frac{\gamma}{\rho} h(\mathbf{z}) + \frac{1}{2} \|\mathbf{x}^{(k+1)} - \mathbf{z} + \mathbf{u}^{(k)}\|_2^2 \\ &= \text{Prox}_{\frac{\gamma}{\rho} h}(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}) \\ &= D_{\sigma^{(k)}}(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}) \end{aligned} \quad (31\text{b})$$

$$\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + (\mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}) \quad (31\text{c})$$

Lemma 7 (Ryu et al. (2019)). *The steps of ADMM-PnP in (31) can be expressed as $\mathbf{v}^{(k+1)} = T(\mathbf{v}^{(k)})$ with $\mathbf{v}^{(k)} = \mathbf{z}^{(k)} - \mathbf{u}^{(k)}$ and*

$$T = \frac{1}{2}I + \frac{1}{2}(2D_{\sigma^{(k)}} - I)(2\text{Prox}_{\frac{1}{\rho} \ell} - I) \quad (32)$$

Lemma 8. $D_{\sigma} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ satisfies Assumption 1 if and only if $\frac{1}{1+2\epsilon}(2D_{\sigma^{(k)}} - I)$ is Δ -weakly θ -averaged with $\theta = \frac{2\epsilon}{1+2\epsilon}$ and $\Delta^2 = 4\delta^2 \frac{(1-\theta)^2}{\theta^2}$.

Proof. We follow the similar proof structure as in Ryu et al. (2019). Let $\theta = \frac{2\epsilon}{1+2\epsilon}$ which implies $\epsilon = \frac{\theta}{2(1-\theta)}$. Here, we can clearly see that $\theta \in [0, 1)$. Let us define $G = \frac{1}{1+2\epsilon}(2D_{\sigma^{(k)}} - I)$ which implies $D_{\sigma^{(k)}} = \frac{1}{2(1-\theta)}G + \frac{1}{2}I$. Then,

$$\begin{aligned} &\|(D_{\sigma^{(k)}} - I)(\mathbf{x}) - (D_{\sigma^{(k)}} - I)(\mathbf{y})\|^2 - \epsilon^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \\ &= \|(D_{\sigma^{(k)}}(\mathbf{x}) - D_{\sigma^{(k)}}(\mathbf{y})) - (\mathbf{x} - \mathbf{y})\|_2^2 - \epsilon^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \\ &= \left\| \left(D_{\sigma^{(k)}} - \frac{1}{2}I \right) (\mathbf{x}) - \left(D_{\sigma^{(k)}} - \frac{1}{2}I \right) (\mathbf{y}) \right\|_2^2 + \frac{1}{4} \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{\theta^2}{4(1-\theta)^2} \|\mathbf{x} - \mathbf{y}\|_2^2 \\ &\quad - 2 \left\langle \left(D_{\sigma^{(k)}} - \frac{1}{2}I \right) (\mathbf{x}) - \left(D_{\sigma^{(k)}} - \frac{1}{2}I \right) (\mathbf{y}), \frac{1}{2}(\mathbf{x} - \mathbf{y}) \right\rangle \\ &= \frac{1}{4(1-\theta)^2} \|G(\mathbf{x}) - G(\mathbf{y})\|_2^2 + \frac{1}{4} \left(1 - \frac{\theta^2}{(1-\theta)^2} \right) \|\mathbf{x} - \mathbf{y}\|_2^2 \\ &\quad - \frac{1}{2(1-\theta)} \langle G(\mathbf{x}) - G(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \\ &= \frac{1}{4(1-\theta)^2} \left(\|G(\mathbf{x}) - G(\mathbf{y})\|_2^2 - 2(1-\theta) \langle G(\mathbf{x}) - G(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + (1-2\theta) \|\mathbf{x} - \mathbf{y}\|_2^2 \right) \end{aligned}$$

1242

Now,

1243

$$\begin{aligned}
& \frac{1}{4(1-\theta)^2} \left(\|G(\mathbf{x}) - G(\mathbf{y})\|_2^2 - 2(1-\theta)\langle G(\mathbf{x}) - G(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + (1-2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 \right) \leq \delta^2 \\
& \Leftrightarrow \|G(\mathbf{x}) - G(\mathbf{y})\|_2^2 - 2(1-\theta)\langle G(\mathbf{x}) - G(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + (1-2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 \leq 4\delta^2(1-\theta)^2 \\
& \Leftrightarrow \|G(\mathbf{x}) - G(\mathbf{y})\|_2^2 - 2(1-\theta)\langle G(\mathbf{x}) - G(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + (1-2\theta)\|\mathbf{x} - \mathbf{y}\|_2^2 \leq \Delta^2\theta^2
\end{aligned}$$

1249

where, $\Delta^2 = 4\delta^2 \frac{(1-\theta)^2}{\theta^2}$. From Lemma 2, this is equivalent to G being Δ -weakly θ -averaged. \square

1250

C.1 PROOF OF THE THEOREM

1253

We follow the procedures in Ryu et al. (2019) and expand the results in the δ -weakly expansive denoisers. We show that each iteration of PnP ADMM is also weakly nonexpansive when the denoiser satisfies Assumption 1.

1256

Proof. From Assumption 1.

1258

$$\|(D_{\sigma^{(k)}} - I)(\mathbf{x}) - (D_{\sigma^{(k)}} - I)(\mathbf{y})\|_2^2 \leq \epsilon^2\|\mathbf{x} - \mathbf{y}\|_2^2 + \delta^2 \quad (33)$$

1260

From Lemma 4, we have $-(2\text{Prox}_{\frac{1}{\rho}\ell} - I)$ is $\frac{\rho}{\rho+\mu}$ -averaged.

1262

Then, from Lemma 8, we have

1263

$$\frac{1}{1+2\epsilon} (2D_{\sigma^{(k)}} - I) \quad (34)$$

1265

is δ_1 -weakly θ -averaged with $\theta = \frac{2\epsilon}{1+2\epsilon}$ and $\delta_1^2 = 4\delta^2 \frac{(1-\theta)^2}{\theta^2}$.

1266

By Lemma 3, it implies

1268

$$-\frac{1}{1+2\epsilon} (2D_{\sigma^{(k)}} - I) (2\text{Prox}_{\frac{1}{\rho}\ell} - I) \quad (35)$$

1270

is δ_\circ -weakly θ_\circ -averaged with $\theta_\circ = \frac{\rho+2\mu\epsilon}{\rho+\mu+2\mu\epsilon}$ and $\delta_\circ = \frac{1}{\theta_\circ} \cdot \frac{4\delta^2}{2\epsilon(1+2\epsilon)}$.

1272

Now, using the definition of δ_\circ -weakly θ_\circ -averagedness, we have

1273

$$\begin{aligned}
(2D_{\sigma^{(k)}} - I) (2\text{Prox}_{\frac{1}{\rho}} - I) &= -(1+2\epsilon) ((1-\theta_\circ)I + \theta_\circ R) \\
&= -(1+2\epsilon) \left(\frac{\mu}{\rho+\mu+2\mu\epsilon} I + \frac{\rho+2\mu\epsilon}{\rho+\mu+2\mu\epsilon} R \right)
\end{aligned}$$

1275

where, R is a certain δ_\circ -weakly nonexpansive function.

1277

Plugging this result into ADMM-PnP operator (Lemma 7), we get

1279

$$\begin{aligned}
T &= \frac{1}{2}I + \frac{1}{2}(2D_{\sigma^{(k)}} - I) (2\text{Prox}_{\frac{1}{\rho}\ell} - I) \\
&= \frac{1}{2}I - \frac{1}{2}(1+2\epsilon) \left(\frac{\mu}{\rho+\mu+2\mu\epsilon} I + \frac{\rho+2\mu\epsilon}{\rho+\mu+2\mu\epsilon} R \right) \\
&= \underbrace{\frac{\rho}{2(\rho+\mu+2\mu\epsilon)} I}_a - \underbrace{\frac{(1+2\epsilon)(\rho+2\mu\epsilon)}{2(\rho+\mu+2\mu\epsilon)} R}_b
\end{aligned}$$

1288

where, clearly $a > 0$ and $b > 0$.

1289

Now,

1291

$$\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 = a^2\|\mathbf{x} - \mathbf{y}\|_2^2 + b^2\|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 - 2\langle a(\mathbf{x} - \mathbf{y}), b(R(\mathbf{x}) - R(\mathbf{y})) \rangle \quad (36)$$

1293

From Young's inequality, for any $\gamma > 0$, we have

1294

$$\langle a(\mathbf{x} - \mathbf{y}), b(R(\mathbf{x}) - R(\mathbf{y})) \rangle \leq \frac{1}{2\gamma} a^2\|\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\gamma b^2}{2} \|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 \quad (37)$$

1296 Plugging this, we get,
1297

$$1298 \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq a^2 \left(1 + \frac{1}{\gamma}\right) \|\mathbf{x} - \mathbf{y}\|_2^2 + b^2(1 + \gamma) \|R(\mathbf{x}) - R(\mathbf{y})\|_2^2 \quad (38)$$

$$1300 \leq \left(a^2 \left(1 + \frac{1}{\gamma}\right) + b^2(1 + \gamma)\right) \|\mathbf{x} - \mathbf{y}\|_2^2 + b^2(1 + \gamma) \delta_o^2 \quad (39)$$

1302 where, the second inequality is due to δ_o -weak nonexpansiveness of R .
1303

1304 Note, that this holds for any $\gamma > 0$. When $\gamma = \frac{a}{b}$, we have
1305

$$1306 \left(a^2 \left(1 + \frac{1}{\gamma}\right) + b^2(1 + \gamma)\right) = (a + b)^2 \quad (40)$$

$$1309 \|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \\ 1310 \leq (a + b)^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + b^2 \left(1 + \frac{a}{b}\right) \delta_o^2 \\ 1311 = \underbrace{\left(\frac{\rho + \rho\epsilon + \mu\epsilon + 2\mu\epsilon^2}{\rho + \mu + 2\mu\epsilon}\right)^2}_{\epsilon_T^2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \underbrace{\frac{(\rho + \rho\epsilon + \mu\epsilon + 2\mu\epsilon^2)\delta^2}{\epsilon(\rho + \mu + 2\mu\epsilon)}}_{\delta_T^2} \quad (41)$$

1316 Hence, we have
1317

$$\|T(\mathbf{x}) - T(\mathbf{y})\|_2^2 \leq \epsilon_T^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_T^2 \quad (42)$$

1319 This shows that when $\epsilon_T \leq 1$, then, $\exists \mathbf{v}^* \in \mathbb{R}^d$, and $K > 0$ such that $\forall k \geq K$ the following holds:
1320

$$1321 \|\mathbf{v}^{(k)} - \mathbf{v}^*\|_2^2 \leq \epsilon_T^{2k} \|\mathbf{v}^{(0)} - \mathbf{v}^*\|_2^2 + \frac{\delta_T^2}{1 - \epsilon_T^2} \\ 1323 \implies \lim_{k \rightarrow \infty} \|\mathbf{v}^{(k)} - \mathbf{v}^*\| \leq \frac{\delta_T}{\sqrt{1 - \epsilon_T^2}} \quad (43)$$

1325 Hence with this we have the sequence $\{\mathbf{v}^{(k)} = \mathbf{z}^{(k)} - \mathbf{u}^{(k)}\}_{k \in \mathbb{N}^+}$ converges within a ball of radius
1327 $\frac{\delta_T}{\sqrt{1 - \epsilon_T^2}}$. Since, $-(2\text{Prox}_{\frac{1}{\rho}\ell} - I)$ is $\frac{\rho}{\rho + \mu}$ -averaged, this implies
1328

$$1329 \text{Prox}_{\frac{1}{\rho}\ell} = \frac{1}{2} \frac{\rho}{\rho + \mu} (R - I) \quad (44)$$

1331 for some nonexpansive function R . With this, we have
1332

$$1333 \lim_{k \rightarrow \infty} \|\text{Prox}_{\frac{1}{\rho}\ell}(\mathbf{v}^{(k)}) - \text{Prox}_{\frac{1}{\rho}\ell}(\mathbf{v}^*)\|_2^2 \leq \left(\frac{\rho}{\rho + \mu}\right)^2 \|\mathbf{v}^{(k)} - \mathbf{v}^*\|_2^2 \\ 1335 \implies \lim_{k \rightarrow \infty} \|\mathbf{x}^{(k)} - \mathbf{x}^*\|_2 \leq \frac{\rho}{\rho + \mu} \frac{\delta_T}{\sqrt{1 - \epsilon_T^2}} \quad (45)$$

1338 where $\mathbf{x}^* = \text{Prox}_{\frac{1}{\rho}\ell}(\mathbf{v}^*)$.
1339

1340 With these results, we know there exists \mathbf{u}^* such that
1341

$$\lim_{k \rightarrow \infty} \|\mathbf{u}^k - \mathbf{u}^*\|_2 \leq \left(1 + \frac{\rho}{\rho + \mu}\right) \frac{\delta_T}{\sqrt{1 - \epsilon_T^2}} \quad (46)$$

1343 \square
1344

1345 D PROOF OF THEOREM 2

1348 Here, we show that our 3-step AC-DC denoiser satisfies Assumption 1 for constants ϵ and δ . In the
1349 following, we first show that each step satisfies the weakly nonexpansive assumption. Therefore, the
concatenation of these 3 steps meets Assumption 1.

1350
 1351 **Lemma 9.** Assume the Variance Exploding (VE) scheduling (Karras et al., 2022) is used in the diffusion model. Given that the log-density $\log p_0$ (i.e. $\log p_{\text{data}}$) is M -smooth (Assumption 2), the intermediate noisy log-densities $\{\log p_t\}$ are M_t -smooth for $t \in [0, T]$ i.e. $\|\nabla \log p_t(\mathbf{x}) - \nabla \log p_t(\mathbf{y})\|_2 \leq M_t \|\mathbf{x} - \mathbf{y}\|_2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. For t such that $\sigma^2(t) < 1/M$, the smoothness constant M_t can be upperbounded as

$$1355 \quad M_t \leq \frac{M}{1 + M\sigma^2(t)} \leq M \quad (47)$$

1358 *Proof.* From Tweedie's lemma, we have,

$$1359 \quad \Rightarrow \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = -\frac{1}{\sigma^2(t)} (\mathbf{x}_t - \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t])$$

$$1360 \quad \Rightarrow \nabla_{\mathbf{x}_t}^2 \log p_t(\mathbf{x}_t) = -\frac{1}{\sigma^2(t)} (\mathbf{I} - \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]) \quad (48)$$

1364 Now, let us evaluate the Jacobian $\nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$,

$$1365 \quad \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \nabla_{\mathbf{x}_t} \int_{\mathbf{x}_0 \in \mathcal{X}} \mathbf{x}_0 p(\mathbf{x}_0 | \mathbf{x}_t) d\mathbf{x}_0$$

$$1366 \quad = \int_{\mathbf{x}_0 \in \mathcal{X}} \mathbf{x}_0 \left(\nabla_{\mathbf{x}_t} \frac{p(\mathbf{x}_t | \mathbf{x}_0)}{p_t(\mathbf{x}_t)} \right) p_0(\mathbf{x}_0) d\mathbf{x}_0$$

$$1367 \quad = \int_{\mathbf{x}_0 \in \mathcal{X}} \mathbf{x}_0 \left(\frac{1}{p_t(\mathbf{x}_t)} \nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) - p(\mathbf{x}_t | \mathbf{x}_0) \frac{1}{p_t^2(\mathbf{x}_t)} \nabla_{\mathbf{x}_t} p_t(\mathbf{x}_t) \right) p_0(\mathbf{x}_0) d\mathbf{x}_0 \quad (49)$$

1373 Given $\mathbf{x}_t | \mathbf{x}_0 \sim \mathcal{N}(\mathbf{x}_0, \sigma(t)^2 \mathbf{I})$ and $p(\mathbf{x}_t) = \int_{\mathbf{x}_0 \in \mathcal{X}} p(\mathbf{x}_0) p(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_0$, we can compute their
 1374 gradient (similar to Peng et al. (2024)) as:

$$1375 \quad \nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) = -\frac{1}{\sigma^2(t)} p(\mathbf{x}_t | \mathbf{x}_0) (\mathbf{x}_t - \mathbf{x}_0)$$

$$1376 \quad \nabla_{\mathbf{x}_t} p(\mathbf{x}_t) = \int_{\mathbf{x}_0 \in \mathcal{X}} p_0(\mathbf{x}_0) \nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_0$$

$$1377 \quad = \int_{\mathbf{x}_0 \in \mathcal{X}} p_0(\mathbf{x}_0) \left(-\frac{1}{\sigma^2(t)} p(\mathbf{x}_t | \mathbf{x}_0) (\mathbf{x}_t - \mathbf{x}_0) \right) d\mathbf{x}_0$$

$$1378 \quad = -\frac{1}{\sigma^2(t)} p_t(\mathbf{x}_t) \mathbb{E}[\mathbf{x}_t - \mathbf{x}_0 | \mathbf{x}_t] \quad (50)$$

1385 Plugging these results in (49) and using integration by parts,

$$1386 \quad \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{1}{p(\mathbf{x}_t)} \int_{\mathbf{x}_0 \in \mathcal{X}} \mathbf{x}_0 \nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0 - \frac{\nabla_{\mathbf{x}_t} p(\mathbf{x}_t)}{p(\mathbf{x}_t)} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] \quad (51)$$

1391 Substituting $\nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) = -1/(\sigma^2(t))(\mathbf{x}_t - \mathbf{x}_0)p(\mathbf{x}_t | \mathbf{x}_0)$, we have

$$1392 \quad \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = -\frac{1}{\sigma^2(t)p(\mathbf{x}_t)} \int_{\mathbf{x}_0 \in \mathcal{X}} \mathbf{x}_0 (\mathbf{x}_t - \mathbf{x}_0) p(\mathbf{x}_t | \mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0 - \frac{\nabla_{\mathbf{x}_t} p(\mathbf{x}_t)}{p(\mathbf{x}_t)} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$$

$$1393 \quad = \frac{-1}{\sigma^2(t)} \mathbb{E}[\mathbf{x}_0 (\mathbf{x}_t - \mathbf{x}_0) | \mathbf{x}_t] - \frac{\nabla_{\mathbf{x}_t} p(\mathbf{x}_t)}{p(\mathbf{x}_t)} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] \quad (52)$$

1397 Substituting $\nabla_{\mathbf{x}_t} p(\mathbf{x}_t) = \int_{\mathbf{x}_0 \in \mathcal{X}} p(\mathbf{x}_0) \nabla_{\mathbf{x}_t} p(\mathbf{x}_t | \mathbf{x}_0) d\mathbf{x}_0 = -p_t(\mathbf{x}_t)/\sigma^2(t) \mathbb{E}[\mathbf{x}_t - \mathbf{x}_0 | \mathbf{x}_t]$, we have

$$1398 \quad \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{-1}{\sigma^2(t)} \mathbb{E}[\mathbf{x}_0 (\mathbf{x}_t - \mathbf{x}_0) | \mathbf{x}_t] + \frac{1}{\sigma^2(t)} \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] \mathbb{E}[\mathbf{x}_t - \mathbf{x}_0 | \mathbf{x}_t]$$

$$1399 \quad = -\frac{1}{\sigma^2(t)} \text{Cov}(\mathbf{x}_0, \mathbf{x}_t - \mathbf{x}_0)$$

$$1400 \quad = \frac{1}{\sigma^2(t)} \text{Cov}(\mathbf{x}_0 | \mathbf{x}_t) \quad (53)$$

1404 Note that this result in (53) is similar to Dytso et al. (2021)[Proposition 1], and has also been derived
 1405 in Hatsell & Nolte (1971); Palomar & Verdu (2006).

1406 From Assumption 2, we have

$$1408 -M\mathbf{I} \preceq \nabla_{\mathbf{x}_0}^2 \log p_0(\mathbf{x}_0) \preceq M\mathbf{I}, \forall \mathbf{x}_0 \in \mathcal{X} \quad (54)$$

1409 where, $M > 0$ is a constant.

1410 Then, let's analyze the hessian of the log of posterior distribution $p(\mathbf{x}_0|\mathbf{x}_t)$,

$$1412 \nabla_{\mathbf{x}_0}^2 \log p(\mathbf{x}_0|\mathbf{x}_t) = \nabla_{\mathbf{x}_0}^2 \log p_0(\mathbf{x}_0) + \nabla_{\mathbf{x}_0}^2 \log p(\mathbf{x}_t|\mathbf{x}_0) \quad (55)$$

$$1414 \Rightarrow -M\mathbf{I} + \frac{1}{\sigma^2(t)}\mathbf{I} \preceq \nabla_{\mathbf{x}_0}^2 \log p(\mathbf{x}_0|\mathbf{x}_t) \preceq M\mathbf{I} + \frac{1}{\sigma^2(t)}\mathbf{I} \quad (56)$$

1416 When $M < \frac{1}{\sigma^2(t)}$, then the distribution $\log p(\mathbf{x}_0|\mathbf{x}_t)$ is strongly log-concave. In this case, the
 1417 covariance of distribution $p(\mathbf{x}_0|\mathbf{x}_t)$ can be bounded (Brascamp & Lieb, 1976) as
 1418

$$1421 \left(M\mathbf{I} + \frac{1}{\sigma^2(t)}\mathbf{I} \right)^{-1} \preceq \text{Cov}(\mathbf{x}_0|\mathbf{x}_t) \preceq \left(-M\mathbf{I} + \frac{1}{\sigma^2(t)}\mathbf{I} \right)^{-1} \quad (57)$$

1424 Combining result from equations (48), (53) and (57), we get

$$1426 \begin{aligned} \nabla_{\mathbf{x}_t}^2 \log p_t(\mathbf{x}_t) &= -\frac{1}{\sigma^2(t)} (\mathbf{I} - \nabla_{\mathbf{x}_t} \mathbb{E}[\mathbf{x}_0|\mathbf{x}_t]) \\ 1427 &= -\frac{1}{\sigma^2(t)} \left(\mathbf{I} - \frac{1}{\sigma^2(t)} \text{Cov}(\mathbf{x}_0|\mathbf{x}_t) \mathbf{I} \right) \\ 1428 \|\nabla_{\mathbf{x}_t}^2 \log p_t(\mathbf{x}_t)\|_2 &\leq \frac{1}{\sigma^2(t)} \left| \left(1 - \frac{1}{\sigma^2(t)} \cdot \frac{\sigma^2(t)}{M\sigma^2(t) + 1} \right) \right| \\ 1429 &= \frac{1}{\sigma^2(t)} \cdot \frac{M\sigma^2(t)}{1 + M(\sigma^2(t))} \\ 1430 &= \frac{M}{1 + M\sigma^2(t)} \end{aligned} \quad (58)$$

1438 Hence, the smoothness constant of $\log q(\mathbf{x}_t)$ is upper bounded as $M_t \leq \frac{M}{1 + M\sigma^2(t)}$ i.e. $M_t \leq M$.
 1439

1440 \square

1442 **Lemma 10.** Let $H_{\text{ac}}^{(k)} : \tilde{\mathbf{z}}^{(k)} \mapsto \mathbf{z}_{\text{ac}}^{(k)}$ denote the function corresponding to approximate correction in
 1443 Algorithm 1. Then, with probability at least $1 - e^{-\nu_k}$, the following holds for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$1445 \left\| (H_{\text{ac}}^{(k)} - I)(\mathbf{x}) - (H_{\text{ac}}^{(k)} - I)(\mathbf{y}) \right\|_2^2 \leq (\delta_{\text{ac}}^{(k)})^2 + (\epsilon_{\text{ac}}^{(k)})^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \quad (59)$$

1447 where, $\delta_{\text{ac}}^{(k)} = 2(\sigma^{(k)})^2(d + 2\sqrt{d\nu_k} + 2\nu_k)$, and $(\epsilon_{\text{ac}}^{(k)})^2 = 0$.

1449 *Proof.* For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have the residuals $R_{\text{ac}}^{(k)}(\mathbf{x}) = (H_{\text{ac}}^{(k)} - I)(\mathbf{x}) = \sigma^{(k)}\mathbf{n}_1$ and $R_{\text{ac}}^{(k)}(\mathbf{y}) =$
 1450 $(H_{\text{ac}}^{(k)} - I)(\mathbf{y}) = \sigma^{(k)}\mathbf{n}_2$ where, $\mathbf{n}_1, \mathbf{n}_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I})$.

1452 Then, we can bound the norm of difference of these two residuals as

$$1454 \begin{aligned} \left\| R_{\text{ac}}^{(k)}(\mathbf{x}) - R_{\text{ac}}^{(k)}(\mathbf{y}) \right\|_2^2 &= \left\| \sigma^{(k)}\mathbf{n}_1 - \sigma^{(k)}\mathbf{n}_2 \right\|_2^2 \\ 1455 &= (\sigma^{(k)})^2 \|\mathbf{n}_{12}\|_2^2 \\ 1456 &= 2(\sigma^{(k)})^2 \chi_d^2 \\ 1457 \end{aligned} \quad (60)$$

1458 where, $\mathbf{n}_{12} = \mathbf{n}_1 - \mathbf{n}_2 \sim \mathcal{N}(\mathbf{0}, 2\mathbf{I})$ and χ_d^2 is standard chi-square distribution with d degree of
 1459 freedom.

1460 From Laurent & Massart (2000)[Lemma 1], the following holds with probability at least $1 - e^{-\nu_k}$

$$1462 \quad \chi_d^2 \leq d + 2\sqrt{d\nu_k} + 2\nu_k \quad (61)$$

1463 Plugging this in proves the lemma. □

1464

1465 **Lemma 11.** Let $H_{\text{dc}}^{(k)} : \mathbf{z}_{\text{ac}}^{(k)} \mapsto \mathbf{z}_{\text{dc}}^{(k)}$ denote the function corresponding to fine correction as defined
 1466 in Algorithm 1. Then, with probability at least $1 - e^{-\nu_k}$, the following holds for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ if
 1467 $\sigma_{\mathbf{s}^{(k)}}^2 < \frac{1}{M_t}$:

$$1470 \quad \left\| (H_{\text{dc}}^{(k)} - I)(\mathbf{x}) - (H_{\text{dc}}^{(k)} - I)(\mathbf{y}) \right\|_2^2 \leq (\delta_{\text{dc}}^{(k)})^2 + (\epsilon_{\text{dc}}^{(k)})^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \quad (62)$$

1472 where, $(\delta_{\text{dc}}^{(k)})^2 = \frac{32d\sigma_{\mathbf{s}^{(k)}}^2}{(1-M_t\sigma_{\mathbf{s}^{(k)}}^2)} \log \frac{2}{\nu_k}$, and $(\epsilon_{\text{dc}}^{(k)})^2 = \left(\frac{\sqrt{2}M_t\sigma_{\mathbf{s}^{(k)}}^2}{1-\sigma_{\mathbf{s}^{(k)}}^2 M_t} \right)^2$.

1475 *Proof.* Recall that the target distribution for this step is given by

$$1476 \quad \log p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)}) \propto \log p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}}) + \log p(\mathbf{z}_{\sigma^{(k)}}) \quad (63)$$

1478 where, $p(\mathbf{z}_{\text{ac}}^{(k)} | \mathbf{z}_{\sigma^{(k)}}) = \mathcal{N}(\mathbf{z}_{\sigma^{(k)}}, \sigma_{\mathbf{s}^{(k)}}^2 \mathbf{I})$.

1479 Under Assumptions 2 and 3, the target distribution $p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$ also inherits smoothness and
 1480 coercivity properties. These conditions imply the ergodicity of corresponding Langevin diffusion
 1481 (Mattingly et al., 2002; Chen et al., 2020). In particular, Fokker-Planck equation (Uhlenbeck &
 1482 Ornstein, 1930) characterizes $p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$ as its unique stationary distribution. Consequently, the
 1483 iterates $\mathbf{z}_{\text{dc}}^{(k)}$ obtained through Langevin dynamics converge to this distribution as the step size
 1484 $\eta^{(k)} \rightarrow 0$ and the number of iterations $J \rightarrow \infty$. The gradient and hessian of the log of this desired
 1485 distribution are given by

$$1486 \quad \nabla_{\mathbf{z}_{\text{dc}}^{(k)}} \log p(\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}) = \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2} (\mathbf{z}_{\text{ac}}^{(k)} - \mathbf{z}_{\text{dc}}^{(k)}) + \nabla_{\mathbf{z}_{\text{dc}}^{(k)}} \log p_t(\mathbf{z}_{\text{dc}}^{(k)}) \quad (64)$$

$$1490 \quad \nabla_{\mathbf{z}_{\text{dc}}^{(k)}}^2 \log p(\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}) = -\frac{1}{\sigma_{\mathbf{s}^{(k)}}^2} + \nabla_{\mathbf{z}_{\text{dc}}^{(k)}}^2 \log p_t(\mathbf{z}_{\text{dc}}^{(k)}) \quad (65)$$

1492 Here, t refers to the noise level such that $\sigma(t) = \sigma^{(k)}$. By the M_t -smoothness of $\log p_t$ distribution
 1493 (Lemma 9), we have

$$1494 \quad - \left(M_t + \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2} \right) \mathbf{I} \preceq \nabla_{\mathbf{z}_{\text{dc}}^{(k)}}^2 \log p(\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}) \preceq \left(M_t - \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2} \right) \mathbf{I} \quad (66)$$

1495 When $M_t < \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2}$, the hessian is negative semi-definite that implies the distribution being log
 1496 concave. This also implies that when $M_t \ll \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2}$, the likelihood term dominates in the posterior
 1497 (63).

1498 Using (Wainwright, 2019)[Theorem 3.16], the following holds with probability at least $1 - \nu_k$

$$1504 \quad \left\| \mathbf{z}_{\text{dc}}^{(k)} - \mathbb{E}[\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}] \right\|_2 \leq \sqrt{\frac{4}{\lambda_t} \log \frac{2}{\nu_k}} \quad (67)$$

1506 where $\lambda_t = -M_t + \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2}$.

1508 Now, using Tweedie's lemma, we have

$$1509 \quad \mathbb{E}[\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}] = \mathbf{z}_{\text{ac}}^{(k)} + \sigma_{\mathbf{s}^{(k)}}^2 \nabla_{\mathbf{z}_{\text{ac}}^{(k)}} \log p(\mathbf{z}_{\text{ac}}^{(k)})$$

$$1511 \quad \implies \mathbb{E}[\mathbf{z}_{\text{dc}}^{(k)} | \mathbf{z}_{\text{ac}}^{(k)}] - \mathbf{z}_{\text{ac}}^{(k)} = \sigma_{\mathbf{s}^{(k)}}^2 \nabla_{\mathbf{z}_{\text{ac}}^{(k)}} \log p(\mathbf{z}_{\text{ac}}^{(k)}) \quad (68)$$

Combining the above two results, with probability at least $1 - 2\nu_k$, the difference of residual for \mathbf{x} and \mathbf{y} can be bounded as

$$\begin{aligned}
 \|R_{\text{dc}}^{(k)}(\mathbf{x}) - R_{\text{dc}}^{(k)}(\mathbf{y})\|_2^2 &\leq 2 \left(2 \sqrt{\frac{4}{\lambda_t} \log \frac{2}{\nu_k}} \right)^2 + \left\| \sigma_{\mathbf{s}^{(k)}}^2 \left(\nabla_{\mathbf{x}} \log p_{\mathbf{z}_{\text{ac}}^{(k)}}(\mathbf{x}) - \nabla_{\mathbf{y}} \log p_{\mathbf{z}_{\text{ac}}^{(k)}}(\mathbf{y}) \right) \right\|_2^2 \\
 &\leq \frac{32d}{\lambda_t} \log \frac{2}{\nu_k} + 2 \left\| \sigma_{\mathbf{s}^{(k)}}^2 \left(\nabla_{\mathbf{x}} \log p_{\mathbf{z}_{\text{ac}}^{(k)}}(\mathbf{x}) - \nabla_{\mathbf{y}} \log p_{\mathbf{z}_{\text{ac}}^{(k)}}(\mathbf{y}) \right) \right\|_2^2 \\
 &\leq \frac{32d}{\lambda_t} \log \frac{2}{\nu_k} + 2\sigma_{\mathbf{s}^{(k)}}^4 M_{\mathbf{z}_{\text{ac}}^{(k)}}^2 \|\mathbf{x} - \mathbf{y}\|^2
 \end{aligned} \tag{69}$$

where, $M_{\mathbf{z}_{\text{ac}}^{(k)}}$ is the smoothness constant of $\log p_{\mathbf{z}_{\text{ac}}^{(k)}}$ that can be derived using a similar proof procedure as Lemma 9, and $\lambda_t = -M_t + \frac{1}{\sigma_{\mathbf{s}^{(k)}}^2}$.

Following the similar procedure as in proof of Lemma 9, we get,

$$M_{\mathbf{z}_{\text{ac}}^{(k)}} \leq \frac{M_t}{1 - \sigma_{\mathbf{s}^{(k)}}^2 M_t} \tag{70}$$

Plugging this leads to the lemma. \square

Lemma 12. Let $H_{\text{tw}}^{(k)} : \mathbf{z}_{\text{dc}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$ denote the projection function using Tweedie's lemma defined in Algorithm 1. Then, we have the following

$$\|(H_{\text{tw}}^{(k)} - I)(\mathbf{x}) - (H_{\text{tw}}^{(k)} - I)(\mathbf{y})\|_2^2 \leq (\epsilon_{\text{tw}}^{(k)})^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_{\text{tw}}^{(k)2} \tag{71}$$

for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, where $(\epsilon_{\text{tw}}^{(k)})^2 = (\sigma^{(k)})^4 M_t^2$, and $\delta_{\text{tw}}^{(k)2} = 0$.

Proof. From Tweedie's lemma, we have

$$\begin{aligned}
 \mathbf{z}_{\text{tw}}^{(k)} &= \mathbb{E}[\mathbf{z}_0 | \mathbf{z}_t = \mathbf{z}_{\text{dc}}^{(k)}] \\
 &= \mathbf{z}_{\text{dc}}^{(k)} + (\sigma^{(k)})^2 \nabla \log p_t(\mathbf{z}_{\text{dc}}^{(k)})
 \end{aligned}$$

where, $t \in [0, T]$ such that $\sigma^{(k)} = \sigma(t)$.

Then, the residuals are given by

$$R_{\text{tw}}^{(k)}(\mathbf{x}) = (\sigma^{(k)})^2 \nabla \log p_t(\mathbf{x}) \tag{72}$$

$$R_{\text{tw}}^{(k)}(\mathbf{y}) = (\sigma^{(k)})^2 \nabla \log p_t(\mathbf{y}) \tag{73}$$

Now, the norm of the difference of the residuals can be written as

$$\|R_{\text{tw}}^{(k)}(\mathbf{x}) - R_{\text{tw}}^{(k)}(\mathbf{y})\|_2^2 = (\sigma^{(k)})^4 \|\nabla \log p_t(\mathbf{x}) - \nabla \log p_t(\mathbf{y})\|_2^2 \tag{74}$$

$$\leq (\sigma^{(k)})^4 M_t^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \tag{75}$$

where, M_t is the smoothness constant of $\log p_t(\mathbf{x})$. \square

D.1 MAIN PROOF:

Proof. **Part (a)** Using Lemma 10, 11, and 12, with probability at least $1 - 2e^{-\nu_k}$, we have

$$\begin{aligned}
 &\|R_{\sigma^{(k)}}(\mathbf{x}) - R_{\sigma^{(k)}}(\mathbf{y})\|_2^2 \\
 &\leq 3 \|R_{\text{ac}}^{(k)}(\mathbf{x}) - R_{\text{ac}}^{(k)}(\mathbf{y})\|_2^2 + 3 \|R_{\text{dc}}^{(k)}(\mathbf{x}) - R_{\text{dc}}^{(k)}(\mathbf{y})\|_2^2 + 3 \|R_{\text{tw}}^{(k)}(\mathbf{x}) - R_{\text{tw}}^{(k)}(\mathbf{y})\|_2^2 \\
 &\leq 3((\epsilon_{\text{ac}}^{(k)})^2 + (\epsilon_{\text{dc}}^{(k)})^2 + (\epsilon_{\text{tw}}^{(k)})^2) \|\mathbf{x} - \mathbf{y}\|_2^2 + 3(\delta_{\text{ac}}^{(k)2} + \delta_{\text{dc}}^{(k)2} + \delta_{\text{tw}}^{(k)2}) \\
 &\leq \epsilon_k^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_k^2
 \end{aligned} \tag{76}$$

1566 where,

$$\begin{aligned} \epsilon_k^2 &= 3 \left(\left(\frac{\sqrt{2} M_t \sigma_{\mathbf{s}^{(k)}}^2}{1 - \sigma_{\mathbf{s}^{(k)}}^2 M_t} \right)^2 + (\sigma^{(k)})^4 M_t^2 \right) \\ \delta_k^2 &= 3 \left(2(\sigma^{(k)})^2 (d + 2\sqrt{d\nu_k} + 2\nu_k) + \frac{32d\sigma_{\mathbf{s}^{(k)}}^2}{(1 - M_t \sigma_{\mathbf{s}^{(k)}}^2)^2} \log \frac{2}{\nu_k} \right) \end{aligned}$$

1573 Using Lemma 9 leads to the final theorem.

1575 **Part (b).** Let us set $\nu_k = \ln \left(\frac{2\pi^2}{6\eta} \right) + 2 \ln k$. With this, the above weakly nonexpansiveness holds for
1576 all $k \in \mathbb{N}^+$ with probability at least
1577

$$\begin{aligned} 1 - \sum_{k=1}^{\infty} 2e^{-\ln \left(\frac{2\pi^2}{6\eta} \right) - 2 \ln k} \\ = 1 - \frac{6\eta}{\pi^2} \times \sum_{k=1}^{\infty} \frac{1}{k^2} \end{aligned} \tag{77}$$

1584 Using Riemann zeta function (Titchmarsh & Heath-Brown, 1986) at value 2, we have

$$\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{78}$$

1588 Plugging this in we get the probability to be at least $1 - \eta$. Now, combining the results with Theorem 1
1589 leads to the final proof of this part. \square
1590

1591 E PROOF OF THEOREM 3

1593 Here, show that our 3-step AC-DC denoiser is bounded with high probability. We first show that each
1594 of 3 steps are bounded, and then combined them to establish the boundedness of our AC-DC denoiser
1595 as a whole. And following the boundedness, we show that AC-DC ADMM-PnP converges to a fixed
1596 point with proper scheduling of $\sigma^{(k)}$ and $\sigma_{\mathbf{s}^{(k)}}$.

1597 **Lemma 13** (Uniform score bound). *Suppose Assumption 2 holds. Let*

$$1599 D := \text{diam}(\mathcal{X}) = \sup_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|_2 < \infty \text{ and } S := \inf_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_2 < \infty.$$

1601 Then, with $L = MD + S$, we have

$$1602 \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_{\infty} \leq L.$$

1604 *Proof.* From Assumption 2, we have

$$1606 \|\nabla \log p_{\text{data}}(\mathbf{x}) - \nabla \log p_{\text{data}}(\mathbf{y})\|_2 \leq M\|\mathbf{x} - \mathbf{y}\|_2, \forall \mathbf{x}, \mathbf{y} \in \mathcal{X} \tag{79}$$

1608 Fix any $\mathbf{x}_0 \in \mathcal{X}$. By the triangle inequality, for all $\mathbf{x} \in \mathcal{X}$,

$$\begin{aligned} 1609 \|\nabla \log p_{\text{data}}(\mathbf{x})\|_2 &\leq \|\nabla \log p_{\text{data}}(\mathbf{x}) - \nabla \log p_{\text{data}}(\mathbf{x}_0)\|_2 + \|\nabla \log p_{\text{data}}(\mathbf{x}_0)\|_2 \\ 1610 &\leq M\|\mathbf{x} - \mathbf{x}_0\|_2 + \|\nabla \log p_{\text{data}}(\mathbf{x}_0)\|_2 \end{aligned} \tag{80}$$

1612 Taking the supremum over $\mathbf{x} \in \mathcal{X}$ and then the infimum over $\mathbf{x}_0 \in \mathcal{X}$ yields

$$1613 \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_2 \leq \sup_{\mathbf{x} \in \mathcal{X}} M\|\mathbf{x} - \mathbf{x}_0\|_2 + \inf_{\mathbf{x}_0 \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x}_0)\|_2 \tag{81}$$

$$1615 \leq MD + S \tag{82}$$

1617 Because $\|\mathbf{u}\|_{\infty} \leq \|\mathbf{u}\|_2$ for any vector,

$$1618 \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_{\infty} \leq MD + S \tag{83}$$

1619 which proves the above lemma. \square

Lemma 14. Assuming $\|\nabla \log p_{\text{data}}(\mathbf{x})\|_\infty \leq \epsilon, \forall \mathbf{x} \in \mathcal{X}$, the score of intermediate noisy distributions $\{p_t\}_{t \in [0, T]}$ are bounded as.

$$\|\nabla \log p_t(\mathbf{x})\|_2 \leq \sqrt{d}L \quad (84)$$

for all $x \in \mathcal{X}$.

Proof. We have $\mathbf{x}_t = \mathbf{x}_0 + \sigma(t)\mathbf{n}$ with $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Let us denote $\mathbf{n}_1 = \sigma(t)\mathbf{n}$. Then, the marginal distribution is given by the convolution of two distributions.

$$p_t(\mathbf{x}) = \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) p_0(\mathbf{x} - \mathbf{x}_1) d\mathbf{x}_1 \quad (85)$$

Then, the score is given by

$$\begin{aligned}
\nabla \log p_t(\mathbf{x}) &= \frac{\nabla p_t(\mathbf{x})}{p_t(\mathbf{x})} \\
&= \frac{1}{p_t(\mathbf{x})} \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) \nabla_{\mathbf{x}} p_0(\mathbf{x} - \mathbf{x}_1) d\mathbf{x}_1 \\
&= \frac{1}{p_t(\mathbf{x})} \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) p_0(\mathbf{x} - \mathbf{x}_1) \frac{\nabla_{\mathbf{x}} p_0(\mathbf{x} - \mathbf{x}_1)}{p_0(\mathbf{x} - \mathbf{x}_1)} d\mathbf{x}_1 \\
&= \frac{1}{p_t(\mathbf{x})} \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) p_0(\mathbf{x} - \mathbf{x}_1) \nabla_{\mathbf{x}} \log p_0(\mathbf{x} - \mathbf{x}_1) d\mathbf{x}_1
\end{aligned} \tag{86}$$

Now the norm can be bounded as

$$\begin{aligned}
\|\nabla \log p_t(\mathbf{x})\|_2 &\leq \frac{1}{p_t(\mathbf{x})} \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) p_0(\mathbf{x} - \mathbf{x}_1) \|\nabla_{\mathbf{x}} \log p_0(\mathbf{x} - \mathbf{x}_1)\|_2 d\mathbf{x}_1 \\
&\leq \sup_{\mathbf{x}_2 \in \mathcal{X}} \|\nabla_{\mathbf{x}} \log p_0(\mathbf{x}_2)\|_2 \frac{1}{p_t(\mathbf{x})} \int_{\mathbf{x}_1 \in \mathcal{X}} p_{\mathbf{n}_1}(\mathbf{x}_1) p_0(\mathbf{x} - \mathbf{x}_1) d\mathbf{x}_1 \\
&= \sqrt{d}L
\end{aligned} \tag{87}$$

The final equality is due to the fact $\|x\|_2 \leq \sqrt{d}\|x\|_\infty$.

Lemma 15. Let $H_{\text{ac}}^{(k)} : \tilde{z}^{(k)} \mapsto z_{\text{ac}}^{(k)}$ denote the function corresponding to approximate correction to noise level $\sigma^{(k)}$ defined in Algorithm 1. Then, with probability at least $1 - e^{-\nu}$, the following holds for any $x, y \in \mathcal{X}$

$$\frac{1}{d} \left\| (H_{\text{ac}}^{(k)} - I)(\mathbf{x}) \right\|_2^2 \leq (\sigma^{(k)})^2 (1 + 2\sqrt{\nu} + 2\nu) \quad (88)$$

Proof. For any $\mathbf{x} \in \mathcal{X}$, we have the residual $R_{\text{ac}}^{(k)}(\mathbf{x}) = (H_{\text{ac}}^{(k)} - I)(\mathbf{x}) = \sigma^{(k)} \mathbf{n}$, $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Then

$$\left\| R_{\text{ac}}^{(k)}(\mathbf{x}) \right\|_2^2 = (\sigma^{(k)})^2 \|\mathbf{n}\|_2^2 = (\sigma^{(k)})^2 \chi_d^2 \quad (89)$$

where χ_d^2 is standard chi-square distribution with d degrees of freedom. From Laurent & Massart (2000)[Lemma 1], the following holds with probability at least $1 - e^{-\nu}$

$$\gamma_1^2 \leq d + 2\sqrt{d\nu} + 2\nu \quad (90)$$

This implies $\frac{1}{d} \left\| H_{\text{ac}}^{(k)} - I \right\|_2^2 \leq (\sigma^{(k)})^2 (1 + 2\sqrt{1/\nu} + 2\nu)$ with probability at least $1 - e^{-\nu}$ due to $d \geq 1$.

Lemma 16. Let $H_{\text{dc}}^{(k)} : \mathbf{z}_{\text{dc}}^{(k)} \mapsto \mathbf{z}_{\text{dc}}^{(k)}$ denote the function corresponding to fine correction defined in Algorithm 1. Assume $\|\nabla \log p_{\text{data}}(\mathbf{x})\|_{\infty} \leq L$. Then, with probability at least $1 - e^{-\nu}$, the following holds for any $\mathbf{x}, \mathbf{u} \in \mathcal{X}$:

$$\frac{1}{d} \left\| (H_{dc}^{(k)} - I)(\mathbf{x}) \right\|_2^2 \leq \frac{8}{\sqrt{d}} \log \frac{2}{\delta} + \sigma_{\mathbf{s}^{(k)}}^4 L^2 \quad (91)$$

where, $\lambda_t = -M_t + \frac{1}{\sigma^2_{(t)}}$.

1674 *Proof.* From (67), with probability at least $1 - 2\nu$, the norm can be bounded as
 1675

$$1676 \quad \left\| R_{\text{dc}}^{(k)}(\mathbf{x}) \right\|_2^2 \leq \frac{8d}{\lambda_t} \log \frac{2}{\nu} + \sigma_{\mathbf{s}^{(k)}}^4 \left\| \nabla_{\mathbf{x}} \log p_{\mathbf{z}_{\text{dc}}^{(k)}}(\mathbf{x}) \right\|_2^2 \quad (92)$$

1678 Then, using Lemma 14, we have
 1679

$$1680 \quad \frac{1}{d} \left\| R_{\text{dc}}^{(k)}(\mathbf{x}) \right\|_2^2 \leq \frac{8}{\lambda_t} \log \frac{2}{\nu} + \sigma_{\mathbf{s}^{(k)}}^4 L^2 \quad (93)$$

□

1684 **Lemma 17.** Let $H_{\text{tw}}^{(k)} : \mathbf{z}_{\text{dc}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$ denote the projection function using Tweedie's lemma defined
 1685 in Algorithm 1. Assume $\|\nabla \log p_{\text{data}}(\mathbf{x})\|_{\infty} \leq L$. Then, we have the following

$$1686 \quad \frac{1}{d} \left\| (H_{\text{tw}}^{(k)} - I)(\mathbf{x}) \right\|_2^2 \leq (\sigma^{(k)})^4 L^2 \quad (94)$$

1689 for any $\mathbf{x} \in \mathcal{X}$.
 1690

1691 *Proof.* From Tweedie's lemma, we have
 1692

$$1693 \quad \mathbf{z}_{\text{tw}}^{(k)} = \mathbb{E}[\mathbf{z}_0 | \mathbf{z}_t = \mathbf{z}_{\text{dc}}^{(k)}] \\ 1694 \quad = \mathbf{z}_{\text{dc}}^{(k)} + (\sigma^{(k)})^2 \nabla \log p_t(\mathbf{z}_{\text{dc}}^{(k)}) \quad (95)$$

1695 where, $t \in [0, T]$ such that $\sigma^{(k)} = \sigma(t)$.
 1696

1697 Now, the norm of residual can be written as
 1698

$$1699 \quad \left\| R_{\text{tw}}^{(k)}(\mathbf{x}) \right\|_2^2 = \left\| (\sigma^{(k)})^2 \nabla \log p_t(\mathbf{x}) \right\|_2^2 \\ 1700 \quad \leq (\sigma^{(k)})^4 L^2 \cdot d \quad (96)$$

1702 where, L bound of gradient from Lemma 14. □
 1703

1704 E.1 MAIN PROOF

1705 Combining Lemmas 15, 16 and 17 leads to the proof of part (a) of Theorem 3.

1706 With probability at least $1 - 2e^{-\nu_k}$, the denoiser satisfies the bounded residual condition.
 1707

$$1709 \quad \frac{1}{d} \left\| (D_{\sigma^{(k)}} - I)(\mathbf{x}) \right\|_2^2 \leq c_k^2. \quad (97)$$

1711 Let's define the relative residue as:
 1712

$$1713 \quad \beta_k := \frac{1}{\sqrt{d}} \left(\left\| \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)} \right\|_2 + \left\| \mathbf{z}^{(k)} - \mathbf{z}^{(k-1)} \right\|_2 + \left\| \mathbf{u}^{(k)} - \mathbf{u}^{(k-1)} \right\|_2 \right) \quad (98)$$

1714 For any $\eta \in [0, 1)$ and a constant $\gamma > 1$, the penalty parameter ρ_k is adjusted at each iteration k
 1715 according to following rule (Chan et al., 2016):
 1716

$$1717 \quad \rho_{k+1} = \begin{cases} \gamma \rho_k & \text{if } \beta_{k+1} \geq \eta \beta_k & \text{(Case 1)} \\ \rho_k & \text{else (Case 2)} & \end{cases} \quad (99)$$

1720 The PnP-ADMM with adaptive penalty involves two cases as shown above.
 1721

1722 At iteration k , if Case 1 holds, then by Lemma 18 we have
 1723

$$1724 \quad \beta_{k+1} \leq 6c_k + 2c_{k-1} + \frac{2R}{\rho_k} \quad (100)$$

1726 On the other hand if Case 2 holds, then,
 1727

$$\beta_{k+1} \leq \eta \beta_k \quad (101)$$

1728 Define $a_k = 6c_k + 2c_{k-1} + \frac{2R}{\rho_k}$. Combining two cases, we get
 1729

$$1730 \quad \beta_{k+1} \leq \delta\beta_k + a_k, \quad \delta = \begin{cases} \eta, & \text{if Case 2 holds at iteration } k \\ 0, & \text{if Case 1 holds at iteration } k \end{cases} \quad (102)$$

1733 Note that for Case 1 $\rho_{k+1} = \gamma\rho_k$ and with $\gamma > 1$, we get $\lim_{k \rightarrow \infty} \frac{c}{\rho_k} = 0$. In addition, with
 1734 $\nu_k = \ln \frac{2\pi^2}{6\eta} + 2\ln k$, and the scheduling of $\sigma^{(k)}$, $\sigma_{s^{(k)}}$ that satisfies
 1735

$$1736 \quad \lim_{k \rightarrow \infty} (\sigma^{(k)})^2 (2 + 4\sqrt{\nu_k} + 4\nu_k) = 0, \quad \lim_{k \rightarrow \infty} \frac{\sigma_{s^{(k)}}^2}{1 - M\sigma_{s^{(k)}}^2} \log \frac{2}{\nu_k} = 0, \quad \lim_{k \rightarrow \infty} \sigma^{(k)} = 0, \quad \lim_{k \rightarrow \infty} \sigma_{s^{(k)}} = 0$$

1738 results in $\lim_{k \rightarrow \infty} a_k = 0$.

1739 As $k \rightarrow \infty$, 3 different scenarios could occur. Let's analyze each of the scenarios one by one.
 1740

- 1741 • Scene 1: Case 1 occurs infinitely many times and Case 2 occurs finitely many times.
 1742 When Scene 1 occurs, then, there exists a constant $K_1 > 0$ such that $\beta_{k+1} \leq a_k$ for all
 1743 $k \geq K_1$. Since $\lim_{k \rightarrow \infty} a_k = 0$, this leads to $\lim_{k \rightarrow \infty} \beta_k = 0$.
- 1744 • Scene 2: Case 2 occurs infinitely many times and Case 1 occurs finitely many times.
 1745 Similarly, there exists a constant $K_2 > 0$ such that $\beta_{k+1} \leq \eta\beta_k$ for all $k \geq K_2$. Then, we
 1746 have

$$1747 \quad \beta_k \leq \eta^{k-K_2} \beta_{K_2} \quad (103)$$

1748 And with $\eta \in [0, 1)$, we have $\lim_{k \rightarrow \infty} \beta_k = 0$.

- 1749 • Scene 3: Both Case 1 and Case 2 occurs infinitely many times. With the Scene 1 and Scene
 1750 2 converging, the sequence $\lim_{k \rightarrow \infty} \beta_k = 0$ under this Scene as well.
 1751

1752 This proves the part (b) of Theorem 3.

1753 **Lemma 18.** *For any iteration k that falls into Case 1, the following holds*

$$1755 \quad \beta_{k+1} \leq 6c_k + 2c_{k-1} + \frac{2R}{\rho_k} \quad (104)$$

1757 *Proof.* Consider the subproblem (7a) with adaptive penalty parameter ρ_k (as defined in (99)),

$$1759 \quad \mathbf{x}^{(k+1)} = \arg \min_{\mathbf{x}} \frac{1}{\rho_k} \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_2^2 \quad (105)$$

1761 With the first order optimality condition, the solution $\mathbf{x}^{(k+1)}$ satisfies

$$1763 \quad \frac{1}{\rho_k} \nabla_{\mathbf{x}} \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x})) \Big|_{\mathbf{x}=\mathbf{x}^{(k+1)}} + (\mathbf{x}^{(k+1)} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)}) = \mathbf{0} \quad (106)$$

$$1765 \quad \Rightarrow \quad \frac{1}{\sqrt{d}} \left\| \mathbf{x}^{(k+1)} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_2 = \frac{1}{\rho_k \sqrt{d}} \left\| \nabla_{\mathbf{x}} \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x})) \Big|_{\mathbf{x}=\mathbf{x}^{(k+1)}} \right\|_2 \quad (107)$$

1768 Using the assumption of existence of $R < \infty$ such that $\left\| \nabla_{\mathbf{x}} \ell(\mathbf{y} \mid \mathcal{A}(\mathbf{x})) \right\|_2 / \sqrt{d} \leq R$, $\forall \mathbf{x} \in \mathcal{X}$, we
 1769 get

$$1770 \quad \frac{1}{\sqrt{d}} \left\| \mathbf{x}^{(k+1)} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)} \right\|_2 \leq \frac{R}{\rho_k} \quad (108)$$

1772 Since the denoiser $D_{\sigma^{(k)}}$ is bounded with probability at least $1 - 2e^{-\nu_k}$, we have
 1773

$$1774 \quad \frac{1}{\sqrt{d}} \left\| (D_{\sigma^{(k)}} - I)(\mathbf{x}) \right\|_2 \leq c_k \quad (109)$$

1776 Now,

$$1778 \quad \frac{1}{\sqrt{d}} \left\| \mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)} + \mathbf{u}^{(k)} \right\|_2 = \frac{1}{\sqrt{d}} \left\| \mathbf{x}^{(k+1)} + \mathbf{u}^{(k)} - D_{\sigma^{(k)}}(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}) \right\|_2 \quad (110)$$

$$1780 \quad = \frac{1}{\sqrt{d}} \left\| (D_{\sigma^{(k)}} - I)(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)}) \right\|_2 \quad (111)$$

$$1781 \quad \leq c_k \quad (112)$$

1782 Now, using triangle inequality, we can bound $\|\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}\|_2$ as
 1783

$$\frac{1}{\sqrt{d}} \|\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}\|_2 = \frac{1}{\sqrt{d}} \|\mathbf{z}^{(k+1)} - \mathbf{x}^{(k+1)} - \mathbf{u}^{(k)} + \mathbf{x}^{(k+1)} + \mathbf{u}^{(k)} - \mathbf{z}^{(k)}\|_2 \quad (113)$$

$$\leq \frac{R}{\rho_k} + c_k \quad (114)$$

1789 Similarly, it can be shown that
 1790

$$\frac{1}{\sqrt{d}} \|\mathbf{u}^{(k+1)}\|_2 = \frac{1}{\sqrt{d}} \|\mathbf{u}^{(k)} + \mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)}\|_2 \quad (115)$$

$$= \frac{1}{\sqrt{d}} \|\mathbf{u}^{(k)} + \mathbf{x}^{(k+1)} - D_{\sigma^{(k)}}(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)})\|_2 \quad (116)$$

$$= \frac{1}{\sqrt{d}} \|(D_{\sigma^{(k)}} - I)(\mathbf{x}^{(k+1)} + \mathbf{u}^{(k)})\|_2 \quad (117)$$

$$= c_k \quad (118)$$

1799 This implies $\frac{1}{\sqrt{d}} \|\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)}\|_2 \leq 2c_k$. Finally, we use $\mathbf{x}^{(k+1)} = \mathbf{u}^{(k+1)} - \mathbf{u}^{(k)} + \mathbf{z}^{(k+1)}$ to
 1800 obtain

$$\frac{1}{\sqrt{d}} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2 \quad (119)$$

$$= \frac{1}{\sqrt{d}} \|\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)} + \mathbf{z}^{(k+1)} - \mathbf{u}^{(k)} + \mathbf{u}^{(k-1)} - \mathbf{z}^{(k)}\|_2 \quad (120)$$

$$\leq \frac{1}{\sqrt{d}} \|\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)}\|_2 + \frac{1}{\sqrt{d}} \|\mathbf{u}^{(k)} - \mathbf{u}^{(k-1)}\|_2 + \frac{1}{\sqrt{d}} \|\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}\|_2 \quad (121)$$

$$\leq 2c_k + 2c_{k-1} + \frac{R}{\rho_k} + c_k \quad (122)$$

$$= 3c_k + 2c_{k-1} + \frac{R}{\rho_k} \quad (123)$$

1813 Combining all the bounds results using triangle inequality results in

$$\beta_{k+1} \leq 6c_k + 2c_{k-1} + \frac{2R}{\rho_k} \quad (124)$$

1817 where, $c_k = (\sigma^{(k)})^2 (2 + 4\sqrt{\nu_k} + 4\nu_k) + 16\sigma_{s^{(k)}}^2 / (1 - M_t \sigma_{s^{(k)}}^2) \log 2/\nu_k + 2\sigma_{s^{(k)}}^4 L^2 + 2(\sigma^{(k)})^4 L^2$ \square
 1818

1819 **Remark 1.** While the proposed method and its theoretical results are based on Variance Exploding
 1820 (VE) scheduling, they can be easily extended to Variance Preserving (VP) scheduling case (Karras
 1821 et al., 2022).

E.2 THEORETICAL RESULTS WITH FINITE DC STEPS J

1825 **Lemma 19.** Let $H_{dc}^{(k)} : \mathbf{z}_{ac}^{(k)} \mapsto \mathbf{z}_{dc}^{(k)}$ denote the function corresponding to fine correction as defined
 1826 in Algorithm 1 with finite J and $\eta^{(k)} \leq 2\sigma_{s^{(k)}}^2$. Also, let $\pi^{(k)} = p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{ac}^{(k)})$ be the stationary target
 1827 distribution and $\tilde{\pi}_0^{(k)}$ be initial distribution used for the DC at iteration k . Then, with probability at
 1828 least $1 - e^{-\nu_k}$, the following holds for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ if $1/\sigma_{s^{(k)}}^2 < M_t$:
 1829

$$\left\| (H_{dc}^{(k)} - I)(\mathbf{x}) - (H_{dc}^{(k)} - I)(\mathbf{y}) \right\|_2^2 \leq (\delta_{dc}^{(k)})^2 + (\epsilon_{dc}^{(k)})^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \quad (125)$$

1833 where, $0 < \kappa < 1$, $C > 0$, $(\delta_{dc}^{(k)})^2 = \frac{64d\sigma_{s^{(k)}}^2}{(1 - M_t \sigma_{s^{(k)}}^2)} \log \frac{2}{\nu_k} + C(1 - \kappa)^{2J} \mathcal{W}_2^2(\tilde{\pi}_0^{(k)}, \pi^{(k)}) + O((\eta^{(k)})^2)$,
 1834

$$\text{and } (\epsilon_{dc}^{(k)})^2 = \left(\frac{2\sqrt{2}M_t \sigma_{s^{(k)}}^2}{1 - M_t \sigma_{s^{(k)}}^2} \right)^2.$$

1836 *Proof.* With finite J , the langevin dynamics doesn't necessarily converge to the stationary distribution
 1837 $\pi^{(k)} = p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$. Let $\tilde{\pi}_0^{(k)}$ be the initial distribution used to initialize the finite step langevin
 1838 dynamics and $\tilde{\pi}^{(k)}$ be the distribution of the iterate after running finite J steps of langevin dynamics.
 1839 Using (Dalalyan & Karagulyan, 2019)[Theorem 1], the following holds for $\eta^{(k)} \leq 2\sigma_{\mathbf{s}^{(k)}}^2$
 1840

$$1841 \quad \mathcal{W}_2(\tilde{\pi}^{(k)}, \pi^{(k)}) \leq (1 - \kappa)^J \mathcal{W}_2(\tilde{\pi}_0^{(k)}, \pi^{(k)}) + O(\eta^{(k)}) \quad (126)$$

1842 where, $0 < \kappa < 1$ and \mathcal{W}_2 is the 2-Wassertein distance.
 1843

1844 Using Kantorovich and Rubinstein dual representation (Villani et al., 2008),
 1845

$$1846 \quad \|\mathbb{E}_{\tilde{\pi}^{(k)}}[\mathbf{z}] - \mathbb{E}_{\pi^{(k)}}[\mathbf{z}]\|_2 = \left\| \int \mathbf{z}_{\text{dc}}^{(k)} d\tilde{\pi}^{(k)}(\mathbf{z}) - \int \mathbf{z} d\pi^{(k)}(\mathbf{z}) \right\|_2 \quad (127)$$

$$1848 \quad \leq \mathcal{W}_1(\tilde{\pi}^{(k)}, \pi^{(k)}) \quad (128)$$

$$1849 \quad \leq \mathcal{W}_2(\tilde{\pi}^{(k)}, \pi^{(k)}) \quad (129)$$

1850 The last inequality is due to the Holder's inequality Villani et al. (2008). Using triangle inequality
 1851 leads to following:
 1852

$$1853 \quad \|\mathbf{z}_{\text{dc}}^{(k)} - \mathbb{E}_{\pi^{(k)}}[\mathbf{z}]\|_2 \leq \|\mathbf{z}_{\text{dc}}^{(k)} - \mathbb{E}_{\tilde{\pi}^{(k)}}[\mathbf{z}]\|_2 + \|\mathbb{E}_{\tilde{\pi}^{(k)}}[\mathbf{z}] - \mathbb{E}_{\pi^{(k)}}[\mathbf{z}]\|_2 \quad (130)$$

$$1854 \quad \leq \|\mathbf{z}_{\text{dc}}^{(k)} - \mathbb{E}_{\tilde{\pi}^{(k)}}[\mathbf{z}]\|_2 + (1 - \kappa)^J \mathcal{W}_2(\tilde{\pi}_0^{(k)}, \pi^{(k)}) + O(\eta^{(k)}) \quad (131)$$

1856 Using this result and following the same procedure as in Lemma 11, we get the theorem.
 1857

□

1859 **Theorem 4.** Suppose that the assumptions in Theorem 1, Assumption 2, and Assumption 3 hold.
 1860 Further, assume that the DC steps finite steps J and $\eta^{(k)} \leq 2\sigma_{\mathbf{s}^{(k)}}^2$. Also, let $\pi^{(k)} = p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$ be
 1861 the stationary target distribution and $\tilde{\pi}_0^{(k)}$ be initial distribution used for the DC at iteration k . Let
 1862 $D_{\sigma^{(k)}} : \tilde{\mathbf{z}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$ denote the AC-DC denoiser. Then, we have:
 1863

1864 With probability at least $1 - 2e^{-\nu_k}$, the following holds for iteration k of ADMM-PnP:
 1865

$$1866 \quad \|(D_{\sigma^{(k)}} - I)(\mathbf{x}) - (D_{\sigma^{(k)}} - I)(\mathbf{y})\|_2^2 \leq \epsilon_k^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_k^2 \quad (132)$$

1867 for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, $k \in \mathbb{N}^+$, a constant $0 < \kappa < 1$ and $C > 0$, when $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 < 1/M$ with
 1868

$$1869 \quad \epsilon_k^2 = 3((2\sqrt{2M\sigma_{\mathbf{s}^{(k)}}^2}/(1-M\sigma_{\mathbf{s}^{(k)}}^2))^2 + (\sigma^{(k)})^4 M^2) \quad (133)$$

$$1870 \quad \delta_k^2 = 3(2(\sigma^{(k)})^2(d + 2\sqrt{d\nu_k} + 2\nu_k) + 64d\sigma_{\mathbf{s}^{(k)}}^2/(1-M\sigma_{\mathbf{s}^{(k)}}^2) \log 2/\nu_k) +$$

$$1872 \quad C(1 - \kappa)^{2J} \mathcal{W}_2^2(\tilde{\pi}_0^{(k)}, \pi^{(k)}) + O((\eta^{(k)})^2). \quad (134)$$

1873 In other words, with $\nu_k = \ln 2\pi/6\eta + 2 \ln k$, the denoiser $D_{\sigma^{(k)}}$ satisfies part (a) for all $k \in \mathbb{N}^+$ with
 1874 probability at least $1 - \eta$.
 1875

1876 *Proof.* By substituting Lemma 11 with Lemma 19 leads to the theorem. □
 1877

1878 **Theorem 5.** Suppose that Assumptions 2-3 hold. Let $D := \text{diam}(\mathcal{X}) = \sup_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|_2 <$
 1879 ∞ , $S := \inf_{\mathbf{x} \in \mathcal{X}} \|\nabla \log p_{\text{data}}(\mathbf{x})\|_2 < \infty$ and define $L := MD + S$. Let $D_{\sigma^{(k)}} : \tilde{\mathbf{z}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$
 1880 denote the AC-DC denoiser. Further, assume that the DC steps finite steps J and $\eta^{(k)} \leq 2\sigma_{\mathbf{s}^{(k)}}^2$. Also,
 1881 let $\pi^{(k)} = p(\mathbf{z}_{\sigma^{(k)}} | \mathbf{z}_{\text{ac}}^{(k)})$ be the stationary target distribution and $\tilde{\pi}_0^{(k)}$ be initial distribution used for
 1882 the DC at iteration k . Then, the following hold:
 1883

1884 (**Boundedness**) With probability at least $1 - 2e^{-\nu_k}$, the denoiser $D_{\sigma^{(k)}}$ is bounded at each iteration
 1885 k i.e. $\frac{1}{d} \|(D_{\sigma^{(k)}} - I)(\mathbf{x})\|_2^2 \leq c_k^2$ whenever $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 < 1/M$, where $c_k = (\sigma^{(k)})^2(2 +$
 1886 $4\sqrt{\nu_k} + 4\nu_k) + 32\sigma_{\mathbf{s}^{(k)}}^2/(1-M\sigma_{\mathbf{s}^{(k)}}^2) \log 2/\nu_k + C(1 - \kappa)^{2J} \mathcal{W}_2^2(\tilde{\pi}_0^{(k)}, \pi^{(k)}) + O((\eta^{(k)})^2) + 4L^2\sigma_{\mathbf{s}^{(k)}}^4 +$
 1887 $2(\sigma^{(k)})^4 L^2$, $0 < \kappa < 1$, $C > 0$ and $\nu_k > 0$.
 1888

1889 Let $\nu_k = \ln \frac{2\pi^2}{6\eta} + 2 \ln k$ with $\eta \in (0, 1]$. Consequently, the denoiser $D_{\sigma^{(k)}}$ is bounded for all $k \in \mathbb{N}_+$
 1890 with corresponding c_k and probability at least $1 - \eta$.

1890 *Proof.* The proof follows similar as in Theorem 3 by incorporating the effect of finite J in Lemma 16
 1891 as done in Lemma 19. \square

1894 F THEORETICAL RESULTS FOR ODE BASED DENOISER

1895 Refer to the Zhang et al. (2024) for details on ODE based denoiser.

1896 F.1 THEORETICAL RESULTS EQUIVALENT TO THEOREM 2

1900 **Lemma 20.** Let $H_{\text{ode}}^{(k)} : \mathbf{z}_{\text{dc}}^{(k)} \mapsto \mathbf{z}_{\text{ode}}^{(k)}$ denote the projection function using ode based denoiser
 1901 (Karras et al., 2022) in Algorithm 1. Then, we have the following

$$1902 \quad \left\| (H_{\text{ode}}^{(k)} - I)(\mathbf{x}) - (H_{\text{ode}}^{(k)} - I)(\mathbf{y}) \right\|_2^2 \leq (\epsilon_{\text{ode}}^{(k)})^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_{\text{ode}}^{(k)} \quad (135)$$

1904 for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $(\epsilon_{\text{ode}}^{(k)})^2 = 2 \left(\int_{t=t_{\sigma^{(k)}}}^0 (\sigma(t)\sigma'(t)M_t)^2 dt \right)$, and $\delta_{\text{ode}}^{(k)} = 0$.

1907 *Proof.* Then, the difference of residual of ode projection i.e. $R_{\text{ode}}^{(k)} = H_{\text{ode}}^{(k)} - I$ can be bounded as

$$1909 \quad \left\| R_{\text{ode}}^{(k)}(\mathbf{x}) - R_{\text{ode}}^{(k)}(\mathbf{y}) \right\|_2^2 = \left\| \int_{t=t_{\sigma^{(k)}}}^0 -\sigma(t)\sigma'(t)(\nabla \log p_t(\mathbf{x}) - \nabla \log p_t(\mathbf{y})) dt \right\|_2^2 \\ 1910 \quad \leq 2 \left\| \int_{t=t_{\sigma^{(k)}}}^0 -\sigma(t)\sigma'(t)(\nabla \log p_t(\mathbf{x}) - \nabla \log p_t(\mathbf{y})) dt \right\|_2^2 \\ 1911 \quad \leq 2 \int_{t=t_{\sigma^{(k)}}}^0 (\sigma(t)\sigma'(t))^2 \|(\nabla \log p_t(\mathbf{x}) - \nabla \log p_t(\mathbf{y}))\|_2^2 dt \\ 1912 \quad \leq 2 \int_{t=t_{\sigma^{(k)}}}^0 (\sigma(t)\sigma'(t))^2 M_t^2 \|\mathbf{x} - \mathbf{y}\|_2^2 dt \\ 1913 \quad \leq 2 \left(\int_{t=t_{\sigma^{(k)}}}^0 (\sigma(t)\sigma'(t))^2 M_t^2 dt \right) \|\mathbf{x} - \mathbf{y}\|_2^2 \quad (136)$$

1923 \square

1924 **Theorem 6.** Suppose that the assumptions in Theorem 1, Assumption 2 and Assumption 3 hold.
 1925 Further, assume that the step size satisfies $\eta^{(k)} \rightarrow 0$ and the number of iterations $J \rightarrow \infty$. Let
 1926 $D_{\sigma^{(k)}} : \tilde{\mathbf{z}}^{(k)} \mapsto \mathbf{z}_{\text{tw}}^{(k)}$ denote the AC-DC denoiser. Then, we have:

1927 (a) With probability at least $1 - 2e^{-\nu_k}$, the following holds for iteration k of ADMM-PnP:

$$1929 \quad \|(D_{\sigma^{(k)}} - I)(\mathbf{x}) - (D_{\sigma^{(k)}} - I)(\mathbf{y})\|_2^2 \leq \epsilon_k^2 \|\mathbf{x} - \mathbf{y}\|_2^2 + \delta_k^2 \quad (137)$$

1930 for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $k \in \mathbb{N}^+$ when $\sigma_{\mathbf{s}^{(k)}}^2 + (\sigma^{(k)})^2 < 1/M$ with

$$1932 \quad \epsilon_k^2 = 3(\sqrt{2}M\sigma_{\mathbf{s}^{(k)}}^2/1 - \sigma_{\mathbf{s}^{(k)}}^2 M)^2 + 6 \int_{t=t_{\sigma^{(k)}}}^0 (\sigma(t)\sigma'(t))^2 M_t^2 dt \quad (138)$$

$$1934 \quad \delta_k^2 = 3(2(\sigma^{(k)})^2(d + 2\sqrt{d\nu_k} + 2\nu_k) + 32d\sigma_{\mathbf{s}^{(k)}}^2/(1 - M\sigma_{\mathbf{s}^{(k)}}^2) \log 2/\nu_k). \quad (139)$$

1936 In other words, if $\nu_k = \ln 2\pi/6\eta + 2nk$, the denoiser $D_{\sigma^{(k)}}$ satisfies part (a) for all $k \in \mathbb{N}^+$ with
 1937 probability at least $1 - \eta$.

1938 (b) Assume that $\sigma^{(k)}$ is scheduled such that $\lim_{k \rightarrow \infty} (\sigma^{(k)})^2 \nu_k = 0$ for $\nu_k = \ln 2\pi/6\eta + 2nk$, $\epsilon < 1$,
 1939 and $\epsilon/\mu(1 + \epsilon - 2\epsilon^2) < 1/\rho$ all hold, where $\epsilon = \lim_{k \rightarrow \infty} \sup \epsilon_k$ with ϵ_k defined in (138). Consequently,
 1940 $\delta = \lim_{k \rightarrow \infty} \sup \delta_k$ is finite and ADMM-PnP with the AC-DC denoiser with ode based denoiser
 1941 converges to an r -ball (see r in Theorem 1) with probability at least $1 - \eta$.

1942 *Proof.* The proof follows similar to the proof of Theorem 2 in Appendix D.1 with the residual bound
 1943 of Tweedie's lemma replaced by Lemma 20. \square

1944
1945

F.2 THEORETICAL RESULTS EQUIVALENT TO THEOREM 3

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
280100
280101
280102
280103
280104
280105
280106
280107
280108
280109
280110
280111
280112
280113
280114
280115
280116
280117
280118
280119
280120
280121
280122
280123
280124
280125
280126
280127
280128
280129
280130
280131
280132
280133
280134
280135
280136
280137
280138
280139
280140
280141
280142
280143
280144
280145
280146
280147
280148
280149
280150
280151
280152
280153
280154
280155
280156
280157
280158
280159
280160
280161
280162
280163
280164
280165
280166
280167
280168
280169
280170
280171
280172
280173
280174
280175
280176
280177
280178
280179
280180
280181
280182
280183
280184
280185
280186
280187
280188
280189
280190
280191
280192
280193
280194
280195
280196
280197
280198
280199
280200
280201
280202
280203
280204
280205
280206
280207
280208
280209
280210
280211
280212
280213
280214
280215
280216
280217
280218
280219
280220
280221
280222
280223
280224
280225
280226
280227
280228
280229
280230
280231
280232
280233
280234
280235
280236
280237
280238
280239
280240
280241
280242
280243
280244
280245
280246
280247
280248
280249
280250
280251
280252
280253
280254
280255
280256
280257
280258
280259
280260
280261
280262
280263
280264
280265
280266
280267
280268
280269
280270
280271
280272
280273
280274
280275
280276
280277
280278
280279
280280
280281
280282
280283
280284
280285
280286
280287
280288
280289
280290
280291
280292
280293
280294
280295
280296
280297
280298
280299
280300
280301
280302
280303
280304
280305
280306
280307
280308
280309
280310
280311
280312
280313
280314
280315
280316
280317
280318
280319
280320
280321
280322
280323
280324
280325
280326
280327
280328
280329
280330
280331
280332
280333
280334
280335
280336
280337
280338
280339
280340
280341
280342
280343
280344
280345
280346
280347
280348
280349
280350
280351
280352
280353
280354
280355
280356
280357
280358
280359
280360
280361
280362
280363
280364
280365
280366
280367
280368
280369
280370
280371
280372
280373
280374
280375
280376
280377
280378
280379
280380
280381
280382
280383
280384
280385
280386
280387
280388
280389
280390
280391
280392
280393
280394
280395
280396
280397
280398
280399
280400
280401
280402
280403
280404
280405
280406
280407
280408
280409
280410
280411
280412
280413
280414
280415
280416
280417
280418
280419
280420
280421
280422
280423
280424
280425
280426
280427
280428
280429
280430
280431
280432
280433
280434
280435
280436
280437
280438
280439
280440
280441
280442
280443
280444
280445
280446
280447
280448
280449
280450
280451
280452
280453
280454
280455
280456
280457
280458
280459
280460
280461
280462
280463
280464
280465
280466
280467
280468
280469
280470
280471
280472
280473
280474
280475
280476
280477
280478
280479
280480
280481
280482
280483
280484
280485
280486
280487
280488
280489
280490
280491
280492
280493
280494
280495
280496
280497
280498
280499
280500
280501
280502
280503
280504
280505
280506
280507
280508
280509
280510
280511
280512
280513
280514
280515
280516
280517
280518
280519
280520
280521
280522
280523
280524
280525
280526
280527
280528
280529
280530
280531
280532
280533
280534
280535
280536
280537
280538
280539
280540
280541
280542
280543
280544
280545
280546
280547
280548
280549
280550
280551
280552
280553
280554
280555
280556
280557
280558
280559
280560
280561
280562
280563
280564
280565
280566
280567
280568
280569
280570
280571
280572
280573
280574
280575
280576
280577
280578
280579
280580
280581
280582
280583
280584
280585
280586
280587
280588
280589
280590
280591
280592
280593
280594
280595
280596
280597
280598
280599
280600
280601
280602
280603
280604
280605
280606
280607
280608
280609
280610
280611
280612
280613
280614
280615
280616
280617
280618
280619
280620
280621
280622
280623
280624
280625
280626
280627
280628
280629
280630
280631
280632
280633
280634
280635
280636
280637
280638
280639
280640
280641
280642
280643
280644
280645
280646
280647
280648
280649
280650
280651
280652
280653
280654
280655
280656
280657
280658
280659
280660
280661
280662
280663
280664
280665
280666
280667
280668
280669
280670
280671
280672
280673
280674
280675
280676
280677
280678
280679
280680
280681
280682
280683
280684
280685
280686
280687
280688
280689
280690
280691
280692
280693
280694
280695
280696
280697
280698
280699
280700
280701
280702
280703
280704
280705
280706
280707
280708
280709
280710
280711
280712
280713
280714
280715
280716
280717
280718
280719
280720
280721
280722
280723
280724
280725
280726
280727
280728
280729
280730
280731
280732
280733
280734
280735
280736
280737
280738
280739
280740
280741
280742
280743
280744
280745
280746
280747
280748
280749
280750
280751
280752
280753
280754
280755
280756
280757
280758
280759
280760
280761
280762
280763
280764
280765
280766
280767
280768
280769
280770
280771
280772
280773
280774
280775
280776
28077

Table 3: Hyperparameter settings for each task

Task	ρ	W	lr of Adam in (7a)
Superresolution (4 \times)	100	100	3×10^{-2}
Gaussian Deblur	100	100	5×10^{-2}
HDR	500	100	3×10^{-2}
Inpainting (Random)	500	100	1×10^{-1}
Inpainting (Box)	500	100	1×10^{-1}
Motion Deblur	100	100	1×10^{-1}
Nonlinear Deblur	300	400	3×10^{-1}
Phase Retrieval	100	400	1×10^{-1}

H.3 DETAILS ON PRETRAINED DIFFUSION MODELS

The pretrained models provided in Chung et al. (2023) are used in our experiment. Refer to Chung et al. (2023) for more details on these pretrained models.

H.4 BASELINE DETAILS

Unless mentioned otherwise, we conduct the experiments in the default settings of their original implementation except for maintaining consistency within the measurement operators.

- **DDRM (Kawar et al., 2021):** We use 20 steps DDIM with $\eta = 0.85$ and $\eta_b = 1$ as specified in Kawar et al. (2022).
- **DPS (Chung et al., 2023) :** The original implementation is ran in their default settings.
- **DiffPIR (Zhu et al., 2023):** The default settings are adopted in the experiments.
- **RED-diff (Mardani et al., 2024):** We use $\lambda = 0.25$ and $lr = 0.5$ as specified in the paper.
- **DAPS (Zhang et al., 2024):** We use the best performing DAPS-4K version as proposed in the paper.
- **DPIR (Zhang et al., 2022):** We employ "drunet_color" as PnP denoiser, while keeping all the other settings at their default values.
- **DCDP (Li et al., 2025):** All the setttings are set to their default values.
- **PMC (Sun et al., 2024):** PMC was proposed using different score models for two different tasks with relatively high measurement SNR. For a fair comparison, we used our own implementation with the same score model checkpoints as our methods, and further tuned this method accordingly.

H.5 EVALUATION METRICS

For all the methods, we use the implementation of PSNR, SSIM, and LPIPS provided in *piq* python package. The default settings for these metrics are used except the average pooling enabled for LPIPS.

H.6 COMPUTATION RESOURCE DETAILS

All the experiments were run on a instance equipped with one Nvidia H100 GPU, 20 cores of 2.0 Ghz Intel Xeon Platinum 8480CL CPU, and 64 GB of RAM.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ILLUSTRATION OF PROPOSED DENOISER

Figure 6 illustrates the effect of the proposed correction-denoising procedure. The noisy input image $\tilde{z}^{(k)}$ typically lies far away from the Gaussian noise manifold, leading to poor denoising

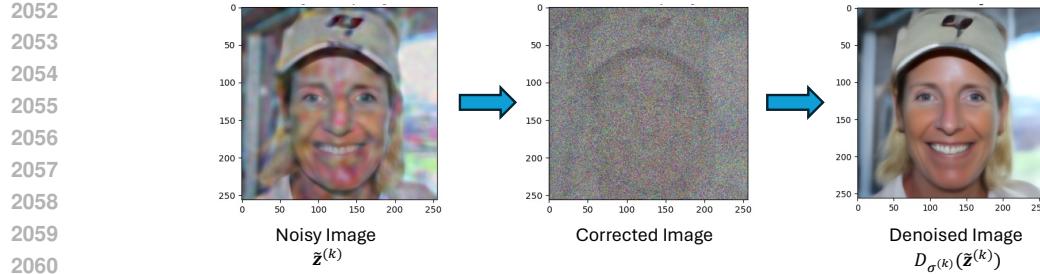
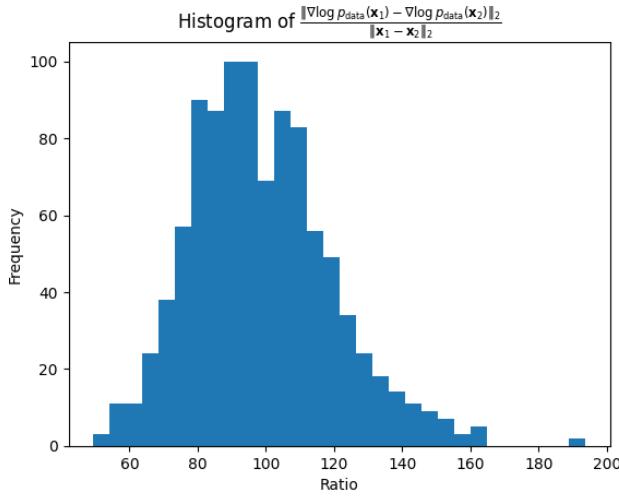


Figure 6: Illustration of correction and denoising step in proposed method.

Figure 7: Histogram of score difference norm ratio: $\|\nabla \log p_{\text{data}}(\mathbf{x}_2) - \nabla \log p_{\text{data}}(\mathbf{x}_1)\|_2 / \|\mathbf{x}_1 - \mathbf{x}_2\|_2$, illustrating empirical smoothness (Assumption 2).

performance if directly used. To address this mismatch, our method first performs correction to effectively gaussianize the noise which is then denoised using Tweedie’s lemma or ode-style score integration, producing a high-quality clean reconstruction.

1.2 EMPIRICAL VALIDATION OF ASSUMPTION 2 AND ASSUMPTION 3

To assess the practicality of the smoothness and coercivity assumptions used in Theorem 2, we conduct two diagnostic experiments using a pretrained score model on the validation split of the FFHQ dataset. These experiments are designed to evaluate (i) the empirical Lipschitz behavior of the score function $\nabla \log p_{\text{data}}(\mathbf{x})$ (Assumption 2), and (ii) the coercivity of the energy landscape $-\log p_{\text{data}}(\mathbf{x})$ (Assumption 3).

Empirical smoothness of the score. We randomly sample 1000 samples of $\mathbf{x}_1, \mathbf{x}_2$ and compute score differences $\|\nabla \log p_{\text{data}}(\mathbf{x}_1) - \nabla \log p_{\text{data}}(\mathbf{x}_2)\|_2$ and image differences $\|\mathbf{x}_1 - \mathbf{x}_2\|_2$. Figure 7 plots the histogram of their ratio. The distribution concentrates around a finite value (mostly between 50 and 160), indicating that the score behaves approximately M -Lipschitz with a moderate empirical constant. This supports the smoothness requirement in Assumption 2.

Empirical coercivity. To evaluate coercivity, we scale images by factors $c \in \{1, 1.5, 2, 3\}$ and measure the quantity $\langle \mathbf{x}, -\nabla \log p_{\text{data}}(\mathbf{x}) \rangle$ as a function of the squared image norm $\|\mathbf{x}\|_2^2$. As shown in Figure 8, the inner product grows approximately linearly with $\|\mathbf{x}\|_2^2$, indicating that the learned score consistently pulls large-norm images back toward the data manifold. This behavior is consistent with the coercivity structure assumed in Assumption 3.

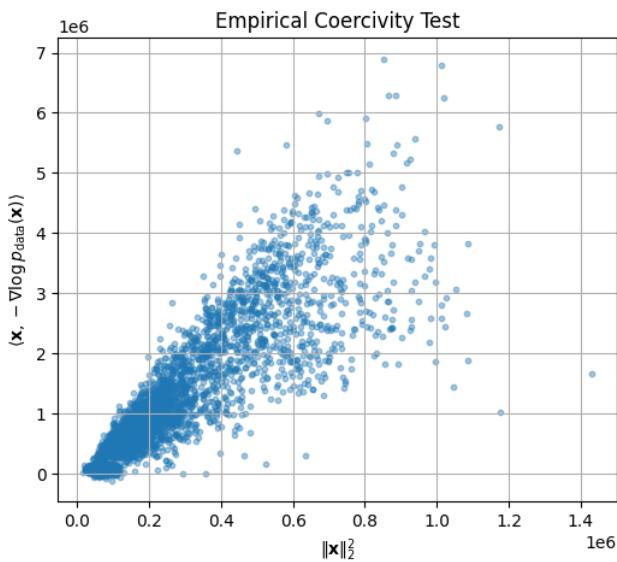


Figure 8: Empirical coercivity test: relationship between $\langle \mathbf{x}, -\nabla \log p_{\text{data}}(\mathbf{x}) \rangle$ and $\|\mathbf{x}\|_2^2$. The strong positive correlation indicates coercive energy behavior (Assumption 3).

Together, these empirical diagnostics demonstrate that the theoretical assumptions employed in our analysis hold approximately in practice and therefore justify the use of DC correction in our AC–DC algorithm.

I.3 ILLUSTRATION OF USAGE OF ADDITIONAL REGULARIZATION

To further demonstrate the flexibility of integrating diffusion-based PnP denoisers within the ADMM framework, we present an example where we employ an additional perceptual regularization term which will be handled in the maximum-likelihood (ML) step. In particular, the \mathbf{x} -update step of ADMM with an LPIPS perceptual regularization (Zhang et al., 2018) becomes:

$$\mathbf{x}^{(k+1)} = \arg \min_{\mathbf{x}} \frac{1}{\rho} \ell(y \|\mathcal{A}(\mathbf{x})) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}^{(k)} + \mathbf{u}^{(k)}\|_2^2 + \lambda_{\text{lips}} \text{LPIPS}_{\text{VGG}}(\mathbf{x}, \mathbf{x}_{\text{ref}}), \quad (143)$$

where \mathbf{x}_{ref} is the reference image and λ_{lips} controls the perceptual strength.

This example highlights the flexibility of the proposed method: unlike traditional diffusion-based PnP approaches that struggle in the presence of dual variables, our design enables seamless incorporation of additional regularization terms. In Fig. 9 we illustrate box inpainting reconstruction task with the perceptual LPIPS-VGG regularization which enhances semantic content consistency while allowing visual style transfer from the reference images.

I.4 RESULTS ON ADDITIONAL TASKS

The results on additional two tasks: hdr and nonlinear deblurring are presented in the Table 4.

I.5 ABLATION STUDY

We perform the ablation study on the significance of our proposed correction steps. The results are presented in the Table 5.

I.6 INFLUENCE OF DECAY SCHEDULE AND NFE EFFICIENCY

In our ADMM-PnP scheme, the size of the decay window for $\sigma^{(k)}$ determines the total number of iterations – and thus the speed of convergence. A shorter window (small W) drives $\sigma^{(k)}$ down more

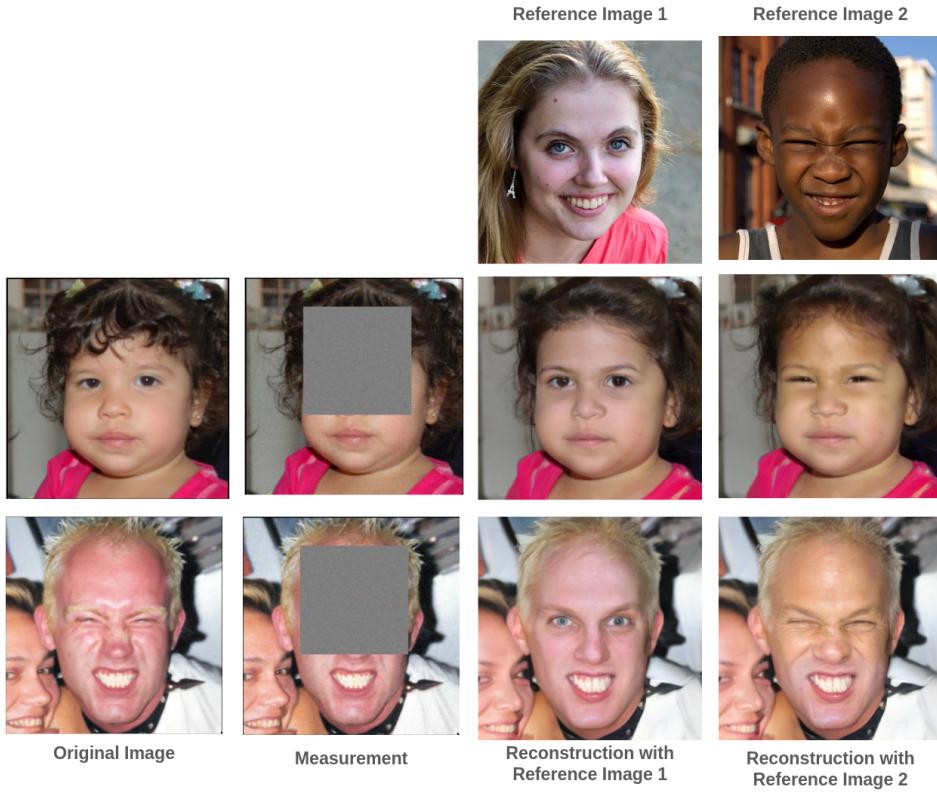


Figure 9: Demonstration of incorporating additional perceptual regularization.

Table 4: Reconstruction metrics (100 images) on FFHQ / ImageNet for additional tasks. **Bold**: best, **blue**: 2nd best.

Task	Method	FFHQ			ImageNet		
		PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
HDR	Ours-tweedie	27.425	0.853	0.164	26.515	0.817	0.182
	DAPS	26.94	0.852	0.154	26.848	0.816	0.172
	RED-diff	26.815	0.836	0.241	26.794	0.771	0.232
	PMC	21.582	0.707	0.291	22.745	0.707	0.290
Nonlinear Deblur	Ours-tweedie	29.326	0.823	0.185	27.837	0.725	0.212
	DAPS	28.598	0.782	0.172	27.745	0.739	0.201
	DPS	23.746	0.668	0.276	22.724	0.543	0.394
	RED-diff	26.9	0.72	0.234	25.488	0.72	0.207
	PMC	21.102	0.0623	0.354	22.347	0.533	0.430

Table 5: Comparison of our method with and without correction on FFHQ. Best results are highlighted in bold.

Tasks	Ours-tweedie without correction			Ours-tweedie with correction		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Superresolution (4x)	26.915	0.730	0.314	30.439	0.857	0.178
Gaussian Blur	28.896	0.788	0.275	30.402	0.853	0.175
Inpainting (Box)	15.604	0.617	0.361	24.025	0.859	0.131
Motion Deblur	25.123	0.538	0.370	30.003	0.854	0.179
Nonlinear Deblur	21.731	0.561	0.375	29.326	0.823	0.185
Phase Retrieval	11.978	0.181	0.726	27.944	0.793	0.209

quickly, often reaching convergence in fewer steps but at the risk of settling in a suboptimal local minimum.

To study this trade-off, we sweep

$$W \in \{5, 10, 50, 100, 200, 300, 400, 500\}$$

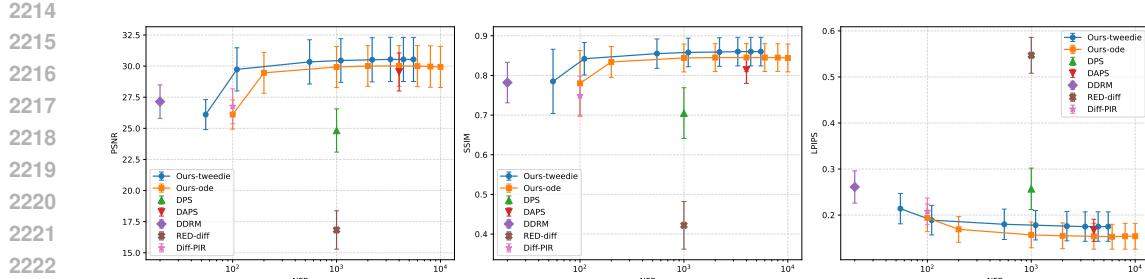


Figure 10: Performance with respect to NFE for Superresolution task (FFHQ)

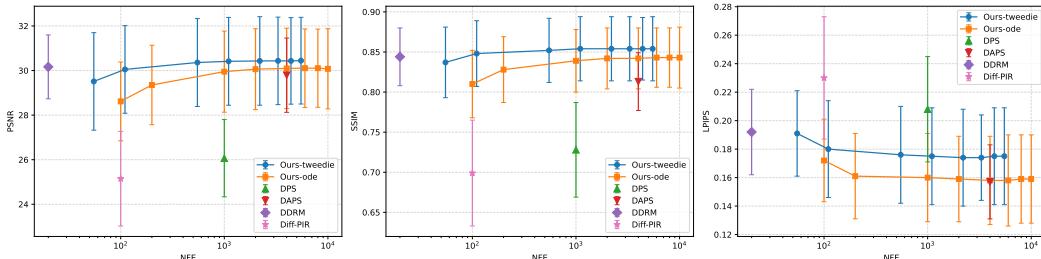


Figure 11: Performance with respect to NFE for Gaussian deblurring task (FFHQ)

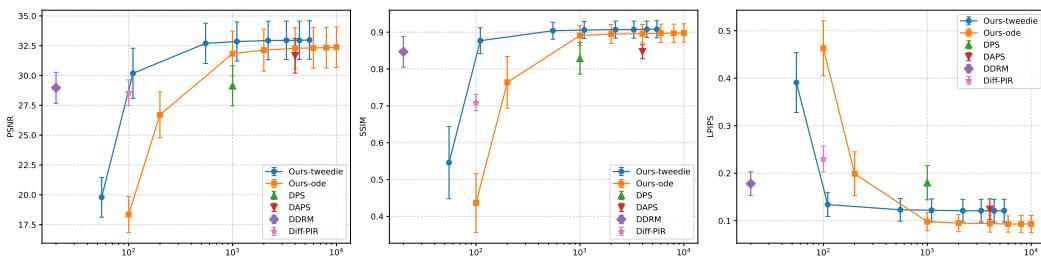


Figure 12: Performance with respect to NFE for Inpainting with random missings (FFHQ)

for each task. Since each iteration of Ours-tweedie uses 11 score evaluations (10 for the DC update and 1 for the Tweedie’s lemma based denoiser), these W value translate to

$$\text{Number of Function Evaluations (NFE)} = \{55, 110, 550, 1100, 2200, 3300, 4400, 5500\}$$

By contrast, each Ours-ode iteration costs 20 NFEs, giving

$$\text{Number of Function Evaluations (NFE)} = \{100, 200, 1000, 2000, 4000, 6000, 8000, 10000\}$$

Figures 10-15 plot mean \pm std. (standard deviation) performance of our methods and all baselines against NFE over 100 images of FFHQ dataset. For most tasks, quality saturates after just 10 iterations (110 NFE for Ours-tweedie, 200 NFE for Ours-ode), showing a rapid decay schedule suffices to achieve near-peak results. However, on the hardest inverse problems (phase retrieval and nonlinear blur), gradually decaying noise (larger W) and more NFEs yield significantly better reconstructions—far outpacing every baseline. Thus, while aggressive schedules excel on simple tasks, challenging problems benefit from extended iteration and gentler annealing; given enough NFEs, our approach establishes state-of-the-art performance across most of the tasks.

I.7 MORE QUALITATIVE RESULTS

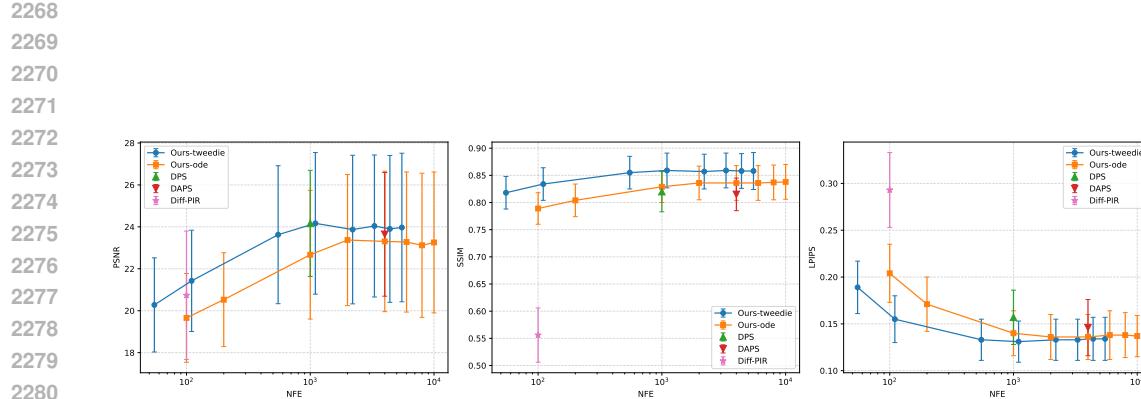


Figure 13: Performance with respect to NFE for Inpainting with box missing (FFHQ)

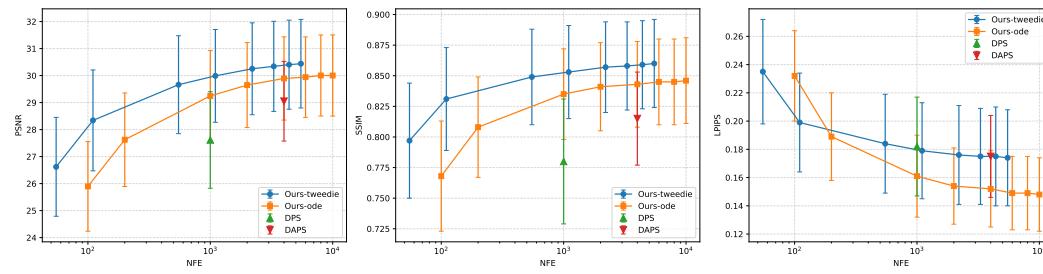


Figure 14: Performance with respect to NFE for Motion blur (FFHQ)

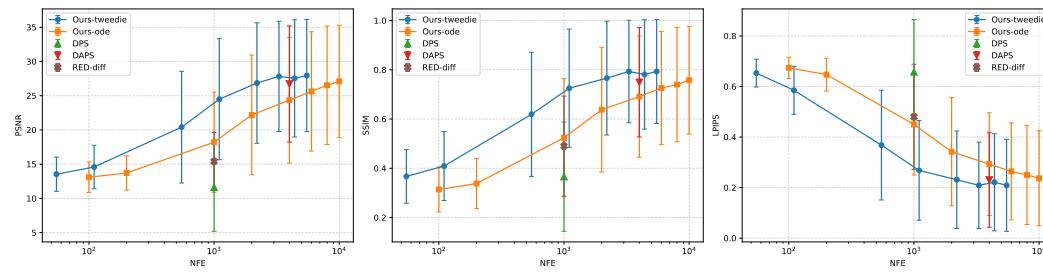


Figure 15: Performance with respect to NFE for Phase retrieval (FFHQ)

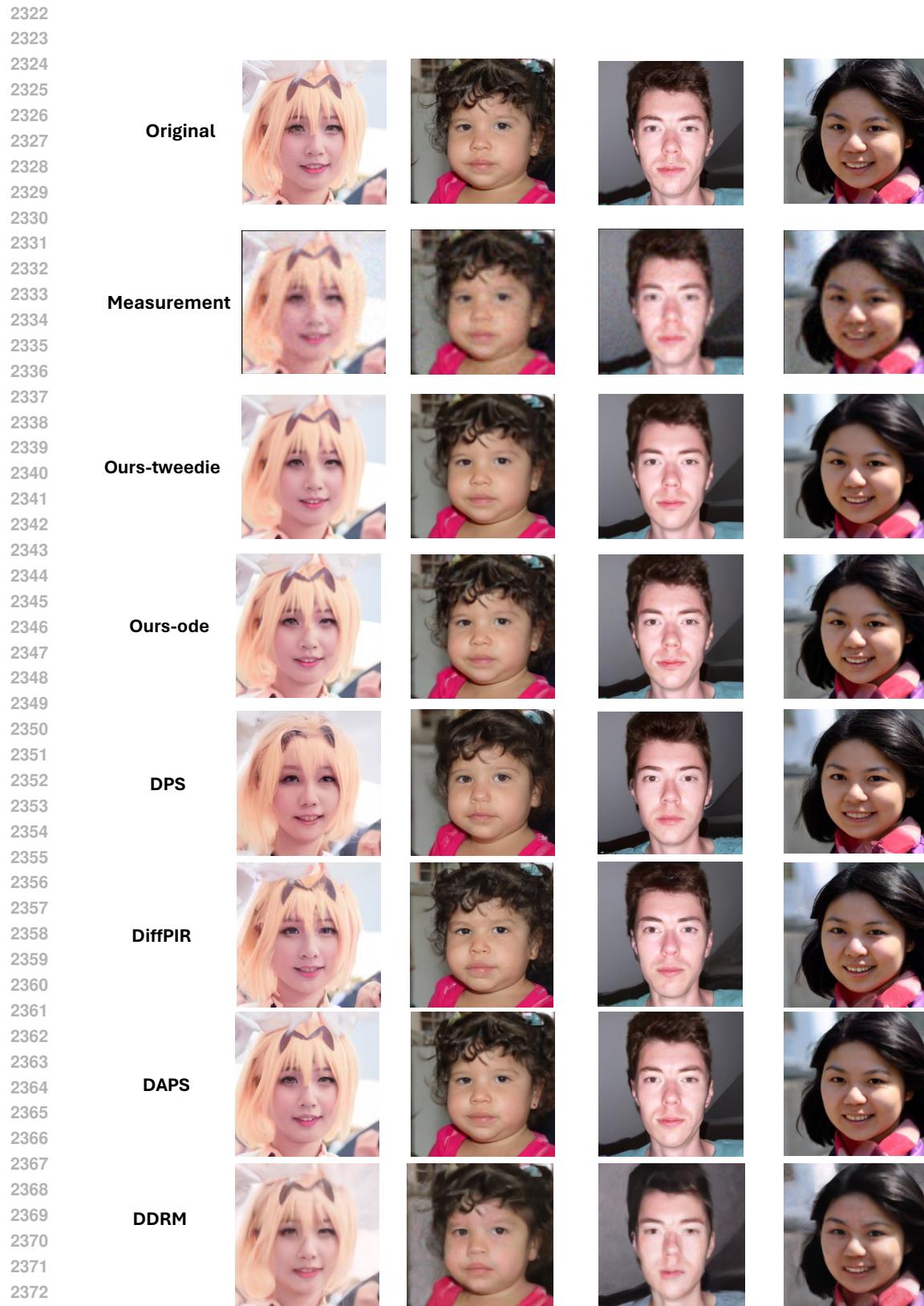


Figure 16: Recovery under 4× superresolution task on FFHQ

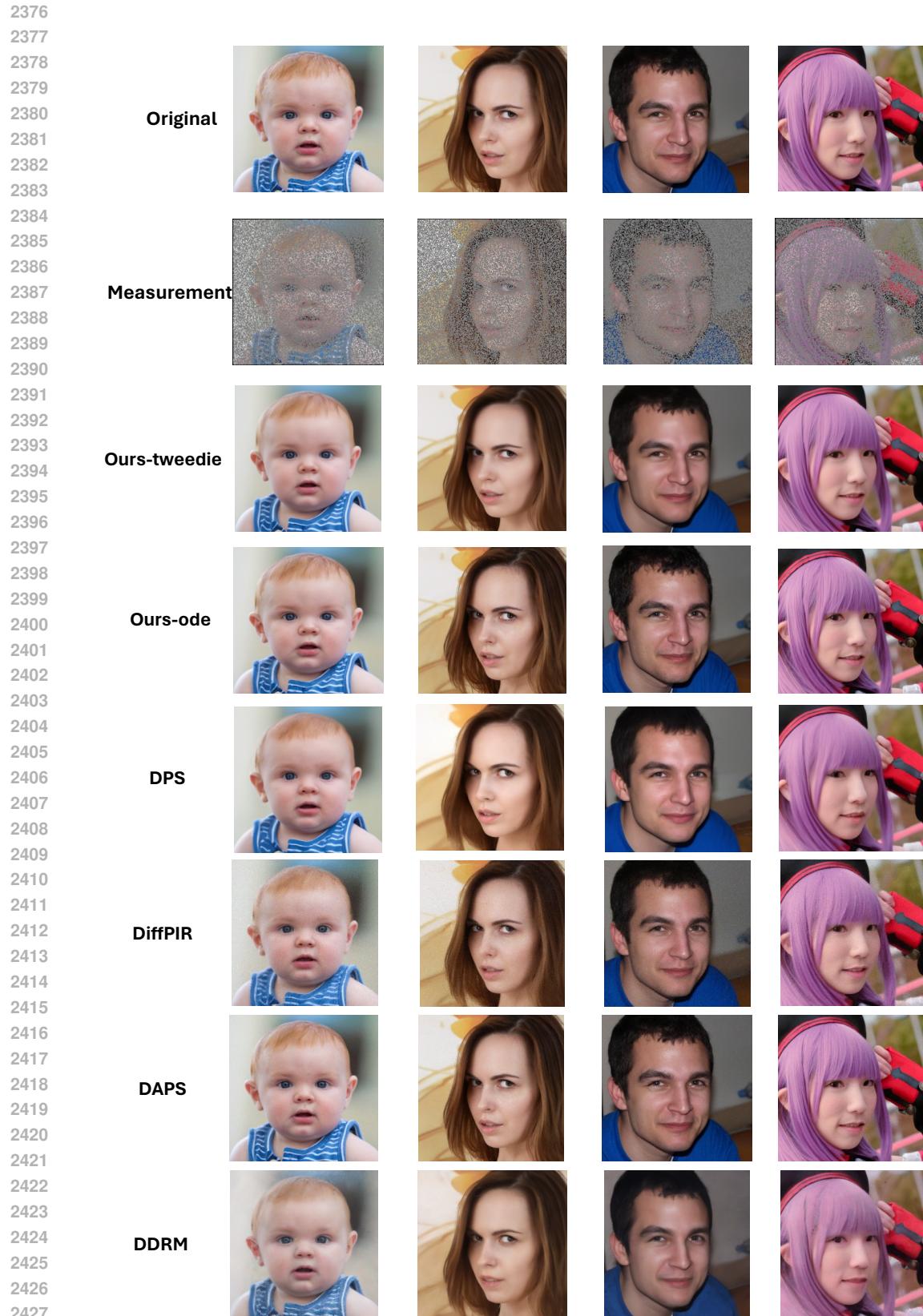


Figure 17: Recovery under inpainting with random missings on FFHQ

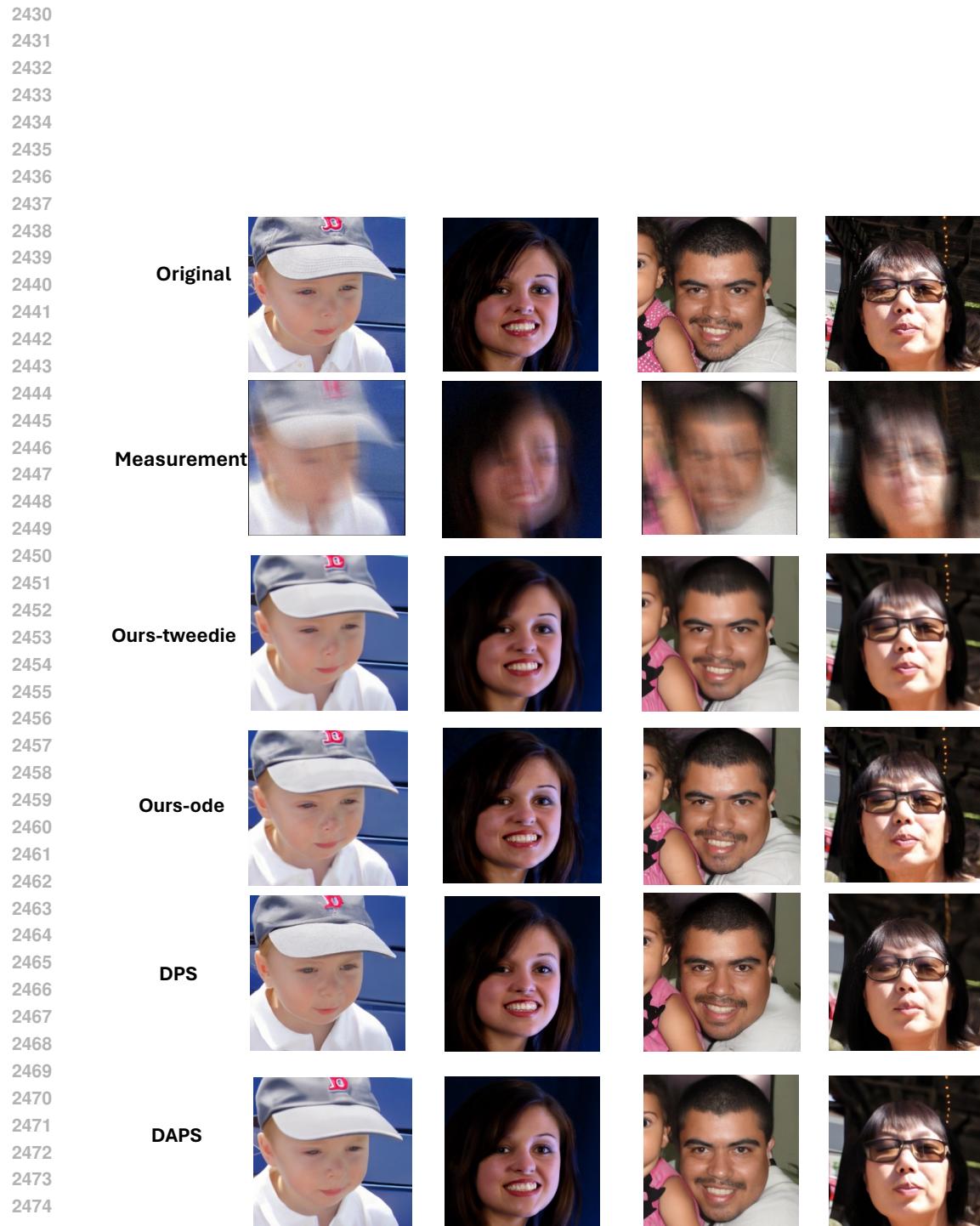


Figure 18: Recovery under motion blur task on FFHQ