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ABSTRACT

While score-based generative models have emerged as powerful priors for solving
inverse problems, directly integrating them into optimization algorithms such as
ADMM remains nontrivial. Two central challenges arise: i) the mismatch be-
tween the noisy data manifolds used to train the score functions and the geometry
of ADMM iterates, especially due to the influence of dual variables, and ii) the
lack of convergence understanding when ADMM is equipped with score-based
denoisers. To address the manifold mismatch issue, we propose ADMM plug-and-
play (ADMM-PnP) with the AC-DC denoiser, a new framework that embeds a
three-stage denoiser into ADMM: (1) auto-correction (AC) via additive Gaussian
noise, (2) directional correction (DC) using conditional Langevin dynamics, and
(3) score-based denoising. In terms of convergence, we establish two results: first,
under proper denoiser parameters, each ADMM iteration is a weakly nonexpansive
operator, ensuring high-probability fixed-point ball convergence using a constant
step size; second, under more relaxed conditions, the AC-DC denoiser is a bounded
denoiser, which leads to convergence under an adaptive step size schedule. Exper-
iments on a range of inverse problems demonstrate that our method consistently
improves solution quality over a variety of baselines.

1 INTRODUCTION

Inverse problems arise in many fields, including medical imaging (Song et al., 2022b; Jin et al., 2017;
Arridge, 1999), remote sensing (Entekhabi et al., 1994; Combal et al., 2003), oceanography (Bennett,
1992), and computational physics (Raissi et al., 2019; Tarantola, 2005). Their solutions typically rely
on incorporating prior knowledge or structural assumptions about the target signals, either through
explicit regularization or data-driven models.

Classical approaches to inverse problems often rely on handcrafted regularizers, such as the ℓ1 norm
for sparsity (Yang et al., 2010; Elad & Aharon, 2006; Dabov et al., 2007) and the nuclear norm
for low-rank structure (Semerci et al., 2014; Hu et al., 2017). Deep learning introduced a new
paradigm of using learned generative models—VAEs, GANs, and normalizing flows—as data-driven
regularizers (Ulyanov et al., 2020; Alkhouri et al., 2024; Shah & Hegde, 2018), offering more
expressive priors by capturing complex distributions. More recently, pre-trained score functions
from diffusion models have gained attention for inverse problems (Song et al., 2022b; Chung et al.,
2023), as they effectively approximate data distributions and align solutions with the underlying data
geometry (Xiao et al., 2022).

The use of pre-trained score functions in inverse problems mainly falls into two categories. The first
modifies the MCMC process of diffusion sampling to incorporate observation information, as in DPS
(Chung et al., 2023) and DDRM (Kawar et al., 2022), where observations guide unconditional score
functions to perform posterior sampling. The second integrates score functions into deterministic or
stochastic optimization algorithms; for example, Wang et al. (2024) and Song et al. (2023) use them
as “projectors” to keep iterates on the desired data manifold. Furthermore, building on Tweedie’s
lemma, which links score functions to signal denoising, works such as (Zhu et al., 2023; Mardani
et al., 2024; Renaud et al., 2024b) employ score as denoisers in proximal-gradient-like steps.

Challenges. The works in (Zhu et al., 2023; Mardani et al., 2024; Li et al., 2024) present flexible “plug-
and-play (PnP)” paradigms that integrate diffusion models with optimization algorithms. However,
two challenges remain in this line of work. First, score functions are trained on noisy data manifolds
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constructed via Gaussian perturbations, whereas optimization iterates need not lie on such manifolds,
leading to geometry mismatch and degraded denoising performance. Remedies such as stochastic
regularization (Renaud et al., 2024b) or purification (Li et al., 2024) add Gaussian noise to the iterates,
but this does not guarantee alignment with the score manifolds. Second, the theoretical understanding
of these methods—particularly their convergence properties when combining the score denoisers
with various optimization paradigms—remains limited.

Contributions. We propose to integrate score-based denoisers with the ADMM framework. Using
ADMM iterates with score-based denoising is particularly challenging, as the presence of dual
variables further distorts the “noise” geometry—likely explaining why score-based denoising has
rarely been combined with primal–dual methods. Nevertheless, ADMM remains attractive for its
flexibility in handling diverse inverse problems with multiple regularizers. Our contributions are:

▶ Score-Based AC-DC Denoiser: To mitigate the manifold mismatches, we propose a three-stage
denoiser consisting of (1) additive Gaussian noise auto-correction (AC), (2) conditional Langevin
dynamics-based directional correction (DC), and (3) score-based denoising. The AC stage pulls
ADMM iterates toward neighborhoods of noise-trained manifolds, while DC refines alignment
without losing signal information. This combination balances efficiency and accuracy, making
score-based denoising effective within ADMM.

▶ Convergence Analysis: We show that, under proper AC-DC parameters, each ADMM iteration
is weakly nonexpansive, ensuring convergence to a fixed-point neighborhood under constant step
sizes under strongly convex losses. We further relax convexity and prove that an adaptive step-size
scheme (Chan et al., 2016) guarantees convergence with high probability. These results extend prior
ADMM-PnP convergence theory (Ryu et al., 2019; Chan et al., 2016) to score-based settings.

Our method is validated on diverse applications—including inpainting, phase retrieval, Gaussian and
motion deblurring, super-resolution, and high dynamic range (HDR).

Notation. The detailed notation designation is listed in Appendix A.1.

2 BACKGROUND

Inverse Problems. We consider the typical inverse problem setting where

y = A(x) + ξ (1)

where A : Rd → Rn is the measurement operator, n ≤ d, and ξ is additive noise. In some inverse
problems, e.g., signal denoising and image deblurring, we have n = d; while for some other problems,
e.g., data compression and recovery, we have n < d. The goal is to recover x from the y, with the
knowledge of A. Structural regularization on x is often used to underpin the desired solution:

min
x

ℓ(y || A(x)) + h(x), (2)

where ℓ(y || A(x)) is a divergence term that measures the similarity of y and A(x) (e.g., ∥y −
A(x)∥2), and h(x) is a structural regularization term (e.g., ∥x∥1 for sparse x).

Diffusion-Based Inverse Problem Solving. Diffusion models can also be used for solving inverse
problems, in ways more subtle than direct regularization. Consider training a diffusion model
on x0 ∼ pdata via denoising score matching (Song et al., 2021), where the forward process is
xt|x0 ∼ N (x0, σ(t)I), t ∈ [0, T ], with variance schedule σ(0) = 0 and σ(t) increasing in t.
After training, the model provides a score function sθ(x, σ(t)) ≈ ∇xt

log p(xt), where p(xt) is the
marginal density of xt. This induces noisy data manifolds

Mσ(t) = supp(xt), ∀t ∈ [T ],

which are continuous since xt is generated by Gaussian perturbations of x0 ∼ pdata. These score
functions can then be leveraged in different ways to assist inverse problem solving.

▶ Posterior Sampling: Many works formulate inverse problems as posterior sampling from p(x|y) ∝
p(x)p(y|x). These methods approximate ∇xt

log p(y|xt) and combine it with the learned score
sθ(xt, σ(t)) ≈ ∇ log p(xt) to perform stochastic sampling as t decreases (Chung et al., 2023; Song
et al., 2022a; Kawar et al., 2021; 2022; Wang et al., 2023). While effective, their performance is often
limited by the accuracy of the approximation to ∇ log p(y|xt).
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▶ Plug-and-Play (PnP) Approaches: Instead of sampling schemes, another line of work employs
deterministic or stochastic optimization to solve (2), plugging score functions into the updates as
structural regularizers. A representative example is DiffPIR (Zhu et al., 2023), which adopts a
variable-splitting reformulation, minx,z ℓ(y∥A(x)) + µ

2 ∥x− z∥22 + h(z), where the z-subproblem
at iteration k reduces to a standard denoising step:

Denoising: z(k+1) = argmin
z

µ

2

∥∥∥x(k+1) − z
∥∥∥2
2
+ h(z). (3)

This step is then tackled using a score-based denoiser:

z(k+1) ← Dσ(k)(x̃(k+1)) = x̃(k+1) + (σ(k))2sθ(x̃
(k+1), σ(k)) (4)

where x̃(k+1) = x(k+1) + σ(k)(ζ(x̃
(k)−x(k+1))/σ(k) + (1 − ζ)n) with n ∼ N (0, I) and ζ ∈ [0, 1];

also see (Li et al., 2024) for a similar method. These denoisers are designed following the Tweedie’s
lemma (Robbins, 1992) (see Appendix A). The construction of x̃(k) is meant to make the inputs to the
score function closer to a certainMσ(k) . Using score-based denoising, h(z) is implicitly reflected in
the denoising process and thus does not need to be specified analytically.

Another line of approaches explicitly construct regularizers h(x) whose gradients correspond to
applying the score function. Examples include RED-diff (Mardani et al., 2024) and SNORE (Renaud
et al., 2024a). In SNORE, the regularizer is defined as h(x) = Ex̃|x log pσ(x̃), x̃ ← x + σϵ,
ϵ ∼ N (0, I) and taking its gradient in (2) yields:

SNORE update: x(k+1) ← x(k) − δ∇ℓ(y||A(x(k)))− η(x̃(k) −Dσi(x̃
(k))), (5)

where, again, Dσ(x̃) = x̃+ σ2sθ(x̃, σ) by the Tweedie’s lemma.

Challenges — Manifold Mismatch and Convergence. Score-based PnP methods face two main
challenges. First, the score is not trained on algorithm-induced iterates (e.g., x(k+1) in (3)). While
both xt and x(k) can be seen as noisy versions of x ∼ pdata, xt follows Gaussian noise whereas
the distribution of x(k) is unclear. Many works attempt to bridge this gap by injecting Gaussian
noise before applying the score function (cf. x̃(k+1) in (3), x̃(k) in (5)), or by purification-based
schemes (Nie et al., 2022; Alkhouri et al., 2023; Meng et al., 2022). Yet noise injection alone is
insufficient, and overfitting to measurement noise remains an issue (Wang et al., 2024). Second,
the understanding to convergence of score-based PnP remains limited. Unlike classical denoisers
with established theory, the geometry mismatch above makes it unclear whether iterates stabilize or
under what conditions convergence can be ensured. Existing analyses mostly cover primal algorithms
(see, e.g., (Renaud et al., 2024a)). Primal–dual methods such as ADMM offer greater flexibility
for handling multiple regularizers and constraints, but their convergence with score-based denoisers
remains unclear, as dual variables further complicate the manifold geometry of the iterates.

3 PROPOSED APPROACH
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Figure 1: Left: direct denoising of z̃(k) using score
functions could lead to unnatural recovered signals
with artifacts. Right: AC-DC denoising brings z̃(k)

closer toMσ(k) , and then uses the score function to
bring z̃(k) to the data manifoldMdata.

In this section, we propose our score-based
denoiser and embed it in the ADMM frame-
work. While we focus on ADMM due to its
flexibility, the denoiser can be plugged into
any other proximal operator based schemes
(e.g. proximal gradient or variable-splitting as
in DiffPIR).
Preliminaries of ADMM-PnP. ADMM-
based inverse problem solvers start by rewrit-
ing (2) as

min
x,z

ℓ(y||A(x)) + γh(z) s.t. x = z (6)

The augmented Lagrangian of (6) is given
by Lρ(x,y,λ;y) = ℓ(y||A(x)) + γh(z) +

λT (x−z)+ ρ
2∥x− z∥22, where λ is the dual

3
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Algorithm 1 AC-DC Denoiser at iteration k of ADMM in (7)

1: auto correction (AC): z
(k)
ac ← z̃(k) + σ(k)n, n ∼ N (0, I)

2: directional correction (DC):
3: w(0) ← z

(k)
ac

4: for j = 0 to J − 1 do
5: w(k,j+1) ← w(k,j) + η(k)

(
1/σ2

s(k)(z
(k)
ac −w(k,j)) + sθ(w

(k,j), σ(k))
)
+

√
2η(k)n,

6: end for
7: z

(k)
dc ← w(J)

8: Denoising : z
(k)
tw ← E[z0|zt = z

(k)
dc ] = z

(k)
dc + (σ(k))2sθ(z

(k)
dc , σ(k)) (Tweedie Denoising)

(Alternative: z
(k)
ode ← z0 by solving: dzt

dt
= λ(t)sθ(zt, t), with zσ(k) = z

(k)
dc ) (ODE Denoising)

variable and ρ > 0 is the penalty parameter.
At iteration k, ADMM updates are as follows:

x(k+1) = argmin
x

1

ρ
ℓ(y||A(x)) + 1

2

∥∥∥x− z(k) + u(k)
∥∥∥2
2

(7a)

z(k+1) = argmin
z

γ

ρ
h(z) +

1

2

∥∥∥x(k+1) − z + u(k)
∥∥∥2
2

(7b)

u(k+1) = u(k) + (x(k+1) − z(k+1)) (7c)

where u(k) = λ(k)/ρ is the scaled dual variable. The subproblem (7b) is a denoising problem, and
thus can be replaced by

z(k+1) = Prox γ
ρ h(x

(k+1) + u(k)) = Dσ(k)(z̃(k)). (8)

The above is the classical ADMM-PnP method; see (Chan et al., 2016; Ryu et al., 2019). Same
as before, Eq. (8) can be replaced by the score-based denoising following the Tweedie’s lemma.
However, as z̃(k) = x(k+1) + u(k) could be in any of the manifolds Mσ(t) on which the score
function was trained, such naive replacement does not ensure effective denoising. The existence of
the dual variable u(k) makes the noise distribution in z̃(k) even harder to understand.

Proposed Approach: The AC-DC Denoiser. To address the manifold mismatch issues, we propose
a three-stage denoiser. To be specific, in the kth iteration of the ADMM algorithm, we use the
denoising process shown in Algorithm 1 . Note that the Tweedie’s lemma step (line 8) can also be
substituted by a score ODE based process (Karras et al., 2022) initialized at z(k)

dc . Our algorithm using
these two different denoisers will be referred to as Ours-tweedie and Ours-ode, respectively.

The rationale of the AC-DC denoiser is illustrated in Fig.1. Recall that the score function is most
effective on the noisy data manifolds {Mσ(t)}Tt=1, as it is trained over them. Since ADMM-induced
iterates z̃(k) need not lie on these manifolds, directly applying score-based denoising may be
ineffective. The AC step addresses this by adding Gaussian noise, making z

(k)
ac closer to someMσ(t)

(see AppendixB). This idea is related to the “purification” step in (Nie et al., 2022; Alkhouri et al.,
2023; Li et al., 2024) and noise-added denoising in (Mardani et al., 2024; Renaud et al., 2024a; Zhu
et al., 2023) (cf. (5) and (3)). However, AC alone does not guarantee manifold alignment. The
proposed DC step, based on Langevin dynamics, further refines z(k)

dc towardMσ(k) .

To see the idea, let us break down the three steps. First, the AC step gives

z(k)
ac = zσ(k) + s̃(k), s(k) = z̃(k) − z

(k)
♮ , z

(k)
♮ ∼ pdata (9)

where z
(k)
♮ is denoised signal of z̃(k), zσ(k) = z

(k)
♮ + σ(k)n1, s̃(k) =

√
2σ(k)n2 + s(k), and

n1,n2
i.i.d∼ N (0, Id). Given a sufficiently large σ(k), z(k)

ac would have dominated by Gaussian noise—
but not necessarily on any ofMσt

where the score was trained. Starting from z
(k)
ac , the DC step

runs a few iterations of Langevin dynamics targeting the distribution p(zσ(k) |z(k)
ac ). This is because

supp(zσ(k) |z(k)
ac ) ⊆ supp(zσ(k)) =Mσ(k) . In addition, p(zσ(k) |z(k)

ac ) at the same time retains the

4
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information of z(k)
ac (thereby the information from the measurements). Assume that the forward

process used in training the score has sufficiently small time intervals, Mσ(k) is approximately
contained in {Mσt

}Tt=1. This way, when applying Tweedie’s lemma for denoising, the step is
expected to be effective, as the score was trained over {Mσt

}Tt=1.

Note that the conditional score for the Langevin dynamics step can be expressed as follows

∇ log p(zσ(k) |z(k)
ac ) = sθ(zσ(k) , σ(k)) +∇ log p(z(k)

ac |zσ(k)). (10)

Ideally, one would use the exact ∇ log p(z
(k)
ac |zσ(k)) for the DC step—which is unavailable. In

practice, we approximate p(z
(k)
ac |zσ(k)) using a Gaussian distribution. Note that under proper

scheduling of σ(k) and mild regularity conditions on s(k), e.g., when Var(s(k))1/2 ≪ σ(k), the
likelihood can be well-approximated by a locally quadratic form, leading to∇ log p(z

(k)
ac |zσ(k)) ≈

−1/σ2

s(k)(zσ(k) − z
(k)
ac ) and the DC step in Algorithm 1.

4 CONVERGENCE ANALYSIS

4.1 CONVERGENCE OF UNDER WEAKLY NON-EXPANSIVE RESIDUALS

Following the established convention in ADMM-PnP, e.g., (Buzzard et al., 2018; Sun et al., 2019;
Chan, 2019; Teodoro et al., 2017), we aim at understanding the convergence properties when the
AC-DC denoiser is used. We will use the following definitions:

Definition 1 (Fixed point convergence). Let T : X → X be the update map of an iterative algorithm,
and let x(0) ∈ X be arbitrary initialization. The algorithm is said to converge to a fixed point x∗ if
for any δ > 0 there exists Kδ > 0 such that the sequence generated by the algorithm {x(k)}k∈N+

satisfies
∥∥x(k) − x∗

∥∥
2
< δ for all k ≥ Kδ . Equivalently, limk→∞ x(k) = x∗ with T (x∗) = x∗.

Definition 2 (Sequence convergence to a δ-ball). For a certain δ > 0, a sequence {x(k)}k∈N+ is said
to converge within a δ-ball if there exists K > 0 and x∗ such that the following holds for all k ≥ K .∥∥∥x(k) − x∗

∥∥∥
2
≤ δ (11)

Comparing the two definitions, Definition 2 is a weaker statement; that is, even when k → ∞,
x(k) → x∗ does not necessarily happen. Nonetheless, convergence to a δ-ball is still meaningful.
The notion of δ-ball convergence is often used in numerical analysis for stability characterization;
see, e.g., Ren & Argyros (2021); Ren & Wu (2009); Liang (2007).

Definition 3 (ADMM convergence to a δ-ball). ADMM is said to converge within a δ ball if the
sequences {x(k)}k∈N+ and {u(k)}k∈N+ obtained from ADMM converges within a δ-ball.

To proceed, consider the following assumption:

Assumption 1. For a certain δ > 0 there exists ϵ ≤ 1 such that for all z̃1, z̃2 ∈ Rd, the following
holds:

∥Rσ(z̃1)−Rσ(z̃2)∥22 ≤ ϵ2∥z̃1 − z̃2∥22 + δ2 (12)

where Rσ(z̃) = (Dσ(k) − I)(z̃) with I being the identity function (i.e., I(z) = z).

Here, the notation (Dσ(k) − I)(z̃) denotes the residual of Dσ(k) i.e. Dσ(k)(z̃)− z̃. The next theorem
extends the fixed point convergence of ADMM-PnP in Ryu et al. (2019). Unlike Ryu et al. (2019)
where Rσ needs to be strictly contractive, our result allows Rσ to be weakly contractive:

Theorem 1. Under Assumption 1, assume that ℓ is µ-strongly convex. Then, there exists x∗, u∗ and
K > 0 such that the sequences {x(k)}k∈N+ and {u(k)}k∈N+ generated by ADMM-PnP using a fixed
step size ρ satisfies

∥∥u(k) − u∗
∥∥
2
≤ r and

∥∥x(k) − x∗
∥∥
2
≤ r with r = (1+ ρ

ρ+µ )δ̄/
√
1− ϵ̄2 for all

k ≥ K when ϵ/µ(1+ϵ−2ϵ2) < 1/ρ where δ̄2 = δ2 ϵ̄
ϵ and ϵ̄ = ρ+ρϵ+µϵ+2µϵ2

ρ+µ+2µϵ .

The proof is relegated to Appendix C. Note that when δ = 0, it implies the result in Ryu et al. (2019).

5
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4.2 CONVERGENCE UNDER WEAKLY NON-EXPANSIVENESS WITH AC-DC

In this subsection, we will show that the AC-DC denoiser satisfies Assumption 1 under mild conditions.
To this end, consider the following:

Assumption 2 (Smoothness of log pdata). The log data density log pdata is M -smooth for a constant
M > 0, i.e., ∥∇ log pdata(x)−∇ log pdata(y)∥2 ≤M∥x− y∥2 for all x,y ∈ X .

Assumption 3 (Coercivity for − log pdata). There exists constants c1 > 0 and c2 ≥ 0 such that

∥∇ log pdata(x)∥22 ≥ −c1 log pdata − c2, ∥x∥2 ≤ −c1 log pdata(x) + c2, ∀x ∈ X (13)

This coercivity assumption means the negative log-density grows sufficiently fast at infinity, which
prevents the Langevin dynamics from "escaping to infinity". This assumption guarantees stability
and ensure ergodicity leading to convergence to the stationary distribution (Mattingly et al., 2002).

Theorem 2. Suppose that the assumptions in Theorem 1, Assumption 2 and Assumption 3 hold.
Further, assume that the DC step reaches the stationary distribution for each k. Let Dσ(k) : z̃(k) 7→
z
(k)
tw denote the AC-DC denoiser. Then, we have:

(a) With probability at least 1− 2e−νk , the following holds for iteration k of ADMM-PnP:

∥(Dσ(k) − I)(x)− (Dσ(k) − I)(y)∥22 ≤ ϵ2k∥x− y∥22 + δ2k (14)

for any x,y ∈ X and k ∈ N+ when σ2
s(k) + (σ(k))2 < 1/M with

ϵ2k = 3((
√
2Mσ2

s(k)/1−σ2

s(k)M)2 + (σ(k))4M2) (15)

δ2k = 3(2(σ(k))2(d+ 2
√
dνk + 2νk) + 32dσ2

s(k)/(1−Mσ2

s(k) ) log 2/νk). (16)

In other words, with νk = ln 2π/6η + 2 ln k, the denoiser Dσ(k) satisfies part (a) for all k ∈ N+ with
probability at least 1− η.

(b) Assume that σ(k) is scheduled such that limk→∞(σ(k))2νk = 0 for νk = ln 2π/6η + 2 ln k, ϵ < 1,
and ϵ/µ(1+ϵ−2ϵ2) < 1/ρ all hold, where ϵ = limk→∞ sup ϵk with ϵk defined in (15). Consequently,
δ = limk→∞ sup δk is finite and ADMM-PnP with the AC-DC denoiser converges to an r-ball (see r
in Theorem 1) with probability at least 1− η.

The proof is relegated to Appendix D. Theorem 2 (a) establishes that the AD-DC denoiser is weakly
non-expansive with probability 1−2e−νk in iteration k. The (b) part states that when σ(k) is carefully
scheduled to approach zero as k grows, then, with high probability, all the iterations satisfy the weakly
non-expansiveness together—this leads to the convergence of the ADMM-PnP algorithm.

4.3 CONVERGENCE WITHOUT CONVEXITY OF ℓ

The weakly non-expansiveness based convergence analysis holds under fixed step size (i.e., ρ) of the
ADMM-PnP algorithm, which is consistent with practical implementations in many cases. However,
the assumption that the ℓ term is µ-strongly convex is only met by some inverse problems, e.g.,
signal denoising and deblurring, but not met by others such as signal compression/recovery and
data completion. In this subsection, we remove the convexity assumption and analyze the AC-DC
denoiser’s properties under the adaptive ρ-scheme following that in (Chan et al., 2016).

Theorem 3. Suppose that Assumptions 2-3 hold. Let D := diam(X ) = supx,y∈X ∥x− y∥2 <

∞, S := infx∈X ∥∇ log pdata(x)∥2 < ∞ and define L := MD + S. Let Dσ(k) : z̃(k) 7→ z
(k)
tw

denote the AC-DC denoiser. Also, assume that the DC step reaches the stationary distribution for
each k1. Then, the following hold:

(a) (Boundedness) With probability at least 1−2e−νk , the denoiser Dσ(k) is bounded at each iteration
k i.e. 1

d∥(Dσ(k) − I)(x)∥22 ≤ c2k whenever σ2
s(k) +(σ(k))2 < 1/M, where ck = (σ(k))2(2+4

√
νk+

4νk) + 16σ2

s(k)/1−Mσ2

s(k) log 2/νk + 2σ4
s(k)L

2 + 2(σ(k))4L2, and νk > 0.

1Note that Theorems 2 and 3 use this stationary distribution assumption for notation conciseness. For their
counterparts removing this assumption, see Appendix E.2.
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Let νk = ln 2π2

6η +2 ln k with η ∈ (0, 1]. Consequently, the denoiser Dσ(k) is bounded for all k ∈ N+

with corresponding ck and probability at least 1− η.

(b) (Convergence) Assume there exists R <∞ such that ∥∇ℓ(x)∥2/
√
d ≤ R. Apply the ρ-increasing

rule in (Chan et al., 2016) and schedule (σ(k), σs(k)) such that limk→∞(σ(k))2(2 + 4
√
νk + 4νk) =

0, limk→∞
σ2

s(k)

1−Mσ2

s(k)

log 2
νk

= 0, limk→∞ σ(k) = 0, limk→∞ σs(k) = 0 σ2
s(k) + (σ(k))2 <

1/M, ∀k ∈ N+ for νk = ln 2π2

6η + 2 ln k with η ∈ (0, 1]. Then, the solution sequence converges to a
fixed point with probability at least 1− η.

The proof is relegated to Appendix E. Theorem 3 (a) shows that, with high probability the denoiser is
bounded uniformly across all iterations k. Part (b) further shows that, under the proper scheduling of
(σ(k), σs(k)), the AD-DC ADMM-PnP algoirthm converges to a fixed point with high probability.

The condition of D <∞ implies the data space X has bounded support, which is natural in practice:
for images, pixel intensities typically lie within a bounded range such as [0, 1]. Additionally, the
condition S <∞ ensures that there exists at least one point in X where the score norm is finite. This
prevents pathological cases where the score diverges everywhere (making the distribution degenerate).
Together, these conditions guarantee that the score is “well-behaved”.

A remark is that all theoretical results in this section focus on fixed-point convergence, which is
not the strongest form of convergence guarantees. Establishing stronger convergence results, e.g.,
stationary-point convergence, for PnP approaches is considered challenging as the objective function
is implicit (more specifically, h(·) in (2) is implicit). Nonetheless, in recent years, some efforts have
been made towards establishing stationary-point convergence for PnP methods under certain types of
denoisers (see, e.g., (Hurault et al., 2022a;b; Wei et al., 2025; Xu et al., 2025)); more discussions are
in Sec. 5.

5 RELATED WORKS

ADMM-PnP has gained much popularity, due to access to data-driven effective denoisers. It has
been used in various applications like image restoration (Chan et al., 2016), data compression
(Yuan et al., 2022), hyperspectral imaging (Liu et al., 2022), and medical imaging (Ahmad et al.,
2020). Theoretical understanding of PnP algorithms with general “black-box” denoisers remains
limited. Unlike classical proximal operators, the implicit regularizer h(·) in (2) handled by data-
driven denoisers is typically unknown. Hence, many results are therefore restricted to fixed-point
convergence; see, e.g., (Ryu et al., 2019; Chan et al., 2016). Nonetheless, in certain cases where the
denoisers have interesting structures, stronger convergence results can be established. For example,
(Xu et al., 2025) used classical results from image denoising connecting linear denoisers with
quadratic h(·) to show that when linear denoisers are employed, ADMM-PnP converges to KKT
points. Hurault et al. (2022a) showed stationary-point convergence of PnP methods gradient-type
denoisers, leveraging the fact that this type of denoisers can be written as a proximal operator of a
special function (see the nonconvex counterpart in (Hurault et al., 2022b)); Wei et al. (2025) trained
denoisers to satisfy a cocoercive conservativity condition, which also ensures convergence of PnP
to stationary points associated with an implicit convex h(·). Nonetheless, these results do not cover
diffusion-based denoisers. In this work, we generalize the fixed-point convergence proofs in (Chan
et al., 2016; Ryu et al., 2019) to accommodate the diffusion score-based AC–DC denoiser.

Recent advances in score-based generative modeling have motivated their integration into PnP
algorithms. One line of work directly replaces the proximal denoiser with a pre-trained scores (Zhu
et al., 2023; Li et al., 2024). Alternatively, others embed the score function as an explicit regularizer
with task-specific loss (Mardani et al., 2024; Renaud et al., 2024a). Deterministic version PnP have
also been considered. For example, Wang et al. (2024); Song et al. (2023) use unrolled ODE and
consistency model-distilled one-step representation to express the target signal, respectively. These
methods are similar to (Bora et al., 2017), but with diffusion-driven parameterization.

Prior works have emphasized the importance of matching the residual noise to the operating range of
the PnP denoiser. D-AMP (Metzler et al., 2016; Eksioglu & Tanc, 2018) achieve this via the Onsager
correction, which approximately Gaussianizes the residual under compressive sensing problem
structures. Wei et al. (2021) learns a reinforcement learning-based policy to automatically tune all

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Original Measurement Ours
PSNR|SSIM|LPIPS 

31.99| 0.91|0.057 

DiffPIRDPS DDRM
PSNR|SSIM|LPIPS 

28.36| 0.82|0.134 
PSNR|SSIM|LPIPS 

28.41| 0.73|0.180 
PSNR|SSIM|LPIPS 

29.89| 0.72|0.231 

Figure 2: Inpainting under random missings.

Original Measurement Ours DAPS-4K DiffPIR DPS
PSNR|SSIM|LPIPS 

22.13| 0.82|0.141 
PSNR|SSIM|LPIPS 

21.42| 0.81|0.167
PSNR|SSIM|LPIPS 

17.64| 0.58|0.300 
PSNR|SSIM|LPIPS 

21.72| 0.81|0.158

Figure 3: Inpainting under box missing.

internal parameters, including denoising strength. Unlike AC–DC that provides a generic correction
mechanism for a variety inverse problems, these methods either problem specific or require training
additional models. Score-based inverse problem solvers have also attempted to “bring” iterates to
noisy data manifolds used during training. The work Chung et al. (2022) uses a manifold constraint
based on gradient of data-fidelity, while He et al. (2024) uses an off-the-shelf pretrained neural
network to impose a manifold constraint. On the other hand, Zirvi et al. (2025) uses the projection
of measurement guidance to low-rank subspace, using SVD on the intermediate diffusion state, for
similar purposes.

The idea of adding noise before evaluating score functions during optimization procedures (similar to
our AC step) has been widely considered (Li et al., 2024; Graikos et al., 2022; Renaud et al., 2024b;
Mardani et al., 2024). A variant of this called estimation-correction idea proposed in (Karras et al.,
2022) is used in (Zhu et al., 2023) for this purpose.

6 EXPERIMENTS

Dataset and Evaluation Metrics. For all these tasks, we use two datasets: FFHQ 256× 256 (Karras
et al., 2021) and ImageNet 256× 256 (Deng et al., 2009). During testing, we randomly sample 100
images from the validation set of each dataset. All the methods use the pre-trained score model in
Chung et al. (2023). We use Peak Signal-to-Noise Ratio (PSNR) as a pixel-wise similarity metric,
and Structural Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018) as perceptual similarity metrics. We report these metrics averaged over the 100
test images for each method and inverse problem.

Task Description. We consider ξ ∼ N (0, σ2
nI) with σn = 0.05 for all the tasks. (a) For super-

resolution, we use cubic interpolation method with kernel size 4 for downsampling the resolution by
4 times. (b) For recovery under Gaussian blurring (Gaussian deblurring), a kernel of size 61 and
standard deviation 3 is used. (c) As for recovery under motion blurring (motion deblurring), a kernel
of size 61 and standard deviation of 0.5 is used. (d) In inpainting under box mask (box inpainting),
an approximately centered mask of size 128 × 128 is sampled in image while maintaining the 32
pixel margin in both spatial dimensions of the input image. (e) For inpainting under random missings
(random inpainting), 70% of the pixels are uniformly sampled to be masked, and a scaling of 2 was
used in high dynamic range (HDR) before clipping the values. (f) For phase retrieval, similar as
in prior works (Wu et al., 2024; Mardani et al., 2024), we use oversampling by factor of 2. g) For
deblurring under nonlinear blurring, we use the operator in (Tran et al., 2021) with default settings.

Baselines. We use a set of baselines, namely, DPS (Chung et al., 2023), DAPS (Zhang et al., 2024),
DDRM (Kawar et al., 2022), DiffPIR (Zhu et al., 2023), RED-diff (Mardani et al., 2024), DPIR
(Zhang et al., 2022), DCDP (Li et al., 2025), PMC (Sun et al., 2024).
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Original Measurement

Ours DAPS-4K DPS
PSNR|SSIM|LPIPS 

30.70| 0.84|0.194 
PSNR|SSIM|LPIPS 

29.97| 0.81|0.230
PSNR|SSIM|LPIPS 

24.80| 0.67|0.289 

Figure 4: Recovery under motion blurring.

AC only
J = 0

AC-DC
J = 10

AC-DC
J = 20

Figure 5: Influence of DC steps in the denoiser.

Table 1: Reconstruction metrics (100 images) on FFHQ / ImageNet. Bold: best, blue: 2nd best.
FFHQ ImageNet

Task Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Su
pe

rr
es

ol
ut

io
n

(4
×)

Ours–tweedie 30.439 0.857 0.178 27.318 0.717 0.280
Ours–ode 29.991 0.845 0.156 26.919 0.700 0.276
DAPS 29.529 0.814 0.167 26.653 0.680 0.266
DPS 24.828 0.705 0.257 22.785 0.549 0.411
DDRM 27.145 0.782 0.261 26.105 0.683 0.306
DiffPIR 26.771 0.749 0.208 23.884 0.543 0.336
RED-diff 16.833 0.422 0.547 18.662 0.309 0.519
DPIR 28.849 0.826 0.254 26.524 0.699 0.334
DCDP 27.761 0.639 0.332 24.517 0.525 0.361
PMC 23.774 0.421 0.407 22.534 0.334 0.456

In
pa

in
tin

g
(R

an
do

m
)

Ours–tweedie 32.844 0.906 0.122 29.564 0.817 0.184
Ours–ode 32.127 0.894 0.095 28.733 0.795 0.148
DAPS 31.652 0.847 0.124 28.137 0.751 0.162
DPS 29.084 0.828 0.181 26.049 0.678 0.318
DDRM 28.969 0.847 0.178 27.883 0.778 0.203
DiffPIR 28.558 0.709 0.230 26.923 0.639 0.222
RED-diff 20.361 0.630 0.275 20.948 0.464 0.315
PMC 23.289 0.755 0.263 25.965 0.636 0.342

M
ot

io
n

D
eb

lu
r Ours–tweedie 30.003 0.854 0.179 27.149 0.717 0.280

Ours–ode 29.648 0.841 0.154 26.615 0.694 0.275
DAPS 29.051 0.815 0.175 26.571 0.689 0.276
DPS 23.257 0.663 0.265 19.613 0.451 0.451
PMC 19.480 0.590 0.426 21.608 0.480 0.510

FFHQ ImageNet

Task Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

G
au

ss
ia

n
B

lu
r

Ours-tweedie 30.402 0.853 0.175 27.199 0.705 0.281
Ours-ode 30.019 0.841 0.158 26.899 0.690 0.282
DAPS 29.790 0.813 0.157 26.886 0.678 0.260
DPS 26.106 0.730 0.207 23.995 0.575 0.328
DiffPIR 25.148 0.699 0.230 22.756 0.508 0.374
DPIR 28.875 0.833 0.228 26.702 0.700 0.314
DCDP 16.821 0.171 0.642 15.102 0.136 0.620
PMC 20.172 0.638 0.344 24.103 0.545 0.415

In
pa

in
tin

g
(B

ox
)

Ours-tweedie 24.025 0.859 0.131 21.626 0.789 0.222
Ours-ode 23.342 0.837 0.136 20.618 0.743 0.227
DAPS 23.643 0.815 0.146 21.303 0.774 0.199
DPS 23.488 0.817 0.164 19.933 0.677 0.309
DiffPIR 20.934 0.561 0.294 19.565 0.562 0.342
RED-diff 18.713 0.523 0.364 18.075 0.499 0.371
DCDP 25.230 0.754 0.163 20.991 0.727 0.195
PMC 14.828 0.697 0.318 15.550 0.666 0.326

Ph
as

e
R

et
ri

ev
al

Ours-tweedie 27.944 0.793 0.209 17.770 0.440 0.471
Ours-ode 27.095 0.757 0.237 16.013 0.339 0.539
DAPS 26.707 0.749 0.230 16.444 0.395 0.512
DPS 11.627 0.366 0.658 9.434 0.216 0.768
RED-diff 15.411 0.490 0.480 12.852 0.204 0.695
DCDP 20.026 0.540 0.424 12.257 0.212 0.665
PMC 10.421 0.287 0.783 8.636 0.129 0.890

Qualitative performance. Figs 2, 3 and 4 show reconstructions under inpainting under random
missings, inpainting under box missing, and motion deblurring. It can be seen that our method is
able to recover the image that is comparatively natural looking with less noise and artifacts, while
being consistent with the measurements. On the other hand, images recovered with DiffPIR appears
to suffer from noise and artifacts, whereas DPS leads to measurement-inconsistent reconstructions.

Our method outperforms others while other methods appear to either be blurred or contain noisy
artifacts in the recovered image. Recovery by DPS is less consistent with the original image; the
pattern on the child’s clothing is completely lost.

Quantitative performance. Table 1 summarizes PSNR, SSIM and LPIPS averaged over 100 images
on FFHQ and Imagenet datasets. In almost all of the inverse problems, both of our variants (Ours-
tweedie and Ours-ode) achieve the best or second-best performance in terms of all metrics. Our
method significantly outperforms other PnP baseline methods considered, namely, DDRM, DiffPIR
and RED-diff. This demonstrates the effectiveness of our AC-DC denoiser.

Effectiveness of DC. To perform albation study on the DC stage, we consider the challenging phase
retrieval problem. Fig. 5 shows the output of ADMM-PnP with our AC-DC denoiser with different
numbers of DC iterations J . With J = 0 (disabling DC step), artifacts remain severe. Increasing J
progressively results in cleaner images.

More Details and Additional Experiments. More details and experiments are in appendices.
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7 CONCLUSION

We introduced the AC-DC denoiser, a score-based denoiser designed for integration within the
ADMM-PnP framework. The denoiser adopts a three-stage structure aimed at mitigating the mismatch
between ADMM iterates and the noisy manifolds on which score functions are trained. We established
convergence guarantees for ADMM-PnP with the AC-DC denoiser under both fixed and adaptive step
size schedules. Empirical results across a range of inverse problems demonstrate that the proposed
method consistently improves solution quality over existing baselines.

Limitations. While our analysis provides initial insights, several aspects merit deeper understanding.
The second convergence result relaxes convexity by allowing adaptive step sizes, though such
schedules are arguably less appealing in practice. Our experiments, however, suggest that constant
step sizes also perform well for nonconvex objectives; it is therefore desirable to establish convergence
guarantees for constant step sizes in such settings. In addition, our result ensures the stability of the
ADMM method, but does not directly explain the reason why the AC–DC denoiser attains high-quality
recovery; recoverability and estimation error analyses are also desirable. On the implementation
side, the noise schedules used in the AC and DC stages are currently guided by empirical heuristics.
Designing problem-adaptive scheduling strategies may further improve both convergence speed
and robustness. Additionally, each iteration of AC–DC denoiser needs multiple score evaluations.
Reducing the required NFEs could significantly improve its efficiency.
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Ethics Statement: This work focuses exclusively on the theory and methodology of solving inverse
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Reproducibility Statement: The source code is provided as a part of the supplementary material.
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in the appendices.
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A PRELIMINARIES

A.1 NOTATION

Table 2: Summary of notation

Symbol Description

x ∈ Rd The unknown signal or image to be recovered
y ∈ Rn Measurements, with n ≤ d
yi ith element of measurement y
A : Rd → Rn Measurement operator
X Support of x
Xt Support of xt

ξ Additive measurement noise
xt noisy data by using forward diffusion process with noise σ(t)

xσ(k) noisy data by using forward diffusion process with noise σ(k)

ℓ(y||A(x)) data-fidelity loss (e.g. ∥y −A(x)∥22)
h(x) structural regularization prior (enforced via denoiser)
ρ > 0 ADMM penalty parameter
Prox(·) Proximal operator
u(k) Scaled dual variable in iteration k of ADMM
z(k) Auxiliary variable in iteration k of ADMM
z̃(k) = x(k+1) + u(k) Pre-denoising input to the PnP denoiser
σ(k) Noise level schedule for the AC-DC denoiser
σs(k) Variance parameter in the AC-DC prior for

directional correction.
n ∼ N (0, I) Multivariate standard gaussian random variable
sθ(x, σ) ≈ ∇x log p(x+ σn) Pretrained score function
K Maximum iteration of ADMM
J Total iteration of directional correction at for each denoising
M Smoothness constant of ∇ log pdata (Assumption 2)
Mt Smoothness constant of ∇ log pt
T > 0 Maximum time steps used for diffusion
Mσ(t) Manifold of xt

Mσ(k) Manifold of xt where t ∈ [0, T ] such that σ(t) = σ(k)

Dσ(k)(z) AC-DC denoiser at kth iteration
Rσ(k)(z) = Dσ(k)(z)− z Residual of AC-DC denoiser at kth iteration
I(x) = x Identity mapping function
I Identity matrix
0 vector of values 0
T1 ◦ T2(z) = T1(T2(z)) Concatentation of two functions T1 and T2

∥x∥2 2-norm of a vector x
Cov(·) Covariance matrix

A.2 DEFINITIONS

µ-strongly convex function (Boyd & Vandenberghe, 2004). A differentiable function f : Rm →
R is µ-strongly convex for a certain µ > 0 if

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥22 (17)

for all x,y ∈ Rm.

The notion of of nonexpansive and averaged nonexpansive have been widely used in the convergence
analysis of various nonlinear problems (Combettes & Yamada, 2015; Yao et al., 2008; Eckstein &
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Bertsekas, 1992). We use the generalized form of both nonexpansive and averaged nonexpansive
operator for establishing the ball convergence in our method.

Nonexpansive function (Browder, 1965). A function T : Rd → Rd is nonexpansive if T is
nonexpansive function if there exists ϵ ∈ [0, 1] such that

∥T (x)− T (y)∥22 ≤ ϵ2∥x− y∥22 (18)

for all x,y ∈ Rd.

θ-averaged function (Combettes & Yamada, 2015). A mapping T : Rd → Rd is defined to be
θ-averaged for a constant θ ∈ (0, 1) if there exists a nonexpansive operator R : Rd → Rd such that
T = (1− α)I + αR.

The notion of relaxed bound ∥Tk(x)− Tk(y)∥ ≤ ϵ(k)∥x− y∥+ δ(k), ∀x,y ∈ X was used to study
and show the convergence in Yao et al. (2008) when

∑∞
k=1 |δ(k)| <∞. We define a similar weaker

form of nonexpansive function and θ-averaged functions below.

δ-weakly nonexpansive function. A mapping T : Rd → Rd is said to be δ-weakly nonexpansive
for δ ≥ 0 if there exists ϵ ∈ [0, 1] such that

∥T (x)− T (y)∥22 ≤ ϵ2∥x− y∥22 + δ2 (19)

for all x,y ∈ Rd.

δ-weakly θ-averaged function. A mapping T : Rd → Rd is defined to be δ-weakly θ-averaged
function for a certain δ ≥ 0 and θ ∈ (0, 1), if there exists a δ-weakly nonexpansive function
R : Rd → Rd such that T = θR+ (1− θ)I .

Sub-Gaussian random vector. A random vector x ∈ Rd (with mean E[x]) is called sub-Gaussian
with parameter σ2 if its Euclidean norm satisfies a sub-Gaussian tail bound:

Pr(∥x− E[x]∥2 > ε) ≤ 2 exp

(
− ε2

2σ2

)
, ∀ ε > 0. (20)

2-Wasserstein Distance. Let µ and ν be probability measures on Rd with finite second moments.
The 2-Wasserstein distance between µ and ν is defined as

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥22 dγ(x, y)
)1/2

, (21)

where Γ(µ, ν) denotes the set of all couplings of µ and ν, i.e.,

Γ(µ, ν) =
{
γ ∈ P(Rd × Rd) : γ(A× Rd) = µ(A), γ(Rd ×B) = ν(B), ∀A,B ⊆ Rd measurable

}
.

(22)

A.3 SUPPORTING LEMMAS

Tweedie’s lemma establishes an important connection between the score of the marginal distribution
and expectation of posterior when the likelihood function is gaussian. This allows the score function
of the diffusion model to be used as a minimum-mean-square-error (MMSE) denoiser.
Lemma 1 (Tweedie’s lemma (Robbins, 1992)). Let p0(x0) be the prior distribution and then
xt ∼ N (x0,Σ) be observed with Σ known. Suppose pt(xt) be the marginal distribution of xt. Then,
Tweedie’s lemma computes the posterior expectation of x0 given xt as

E[x0|xt] = xt +Σ∇ log pt(xt) (23)

The lemmas related to θ-averaged from Combettes & Yamada (2015) are used to show fixed point
convergence in Ryu et al. (2019). In the following, we extend all these lemmas to a more general
δ-weakly θ-averaged cases that will be used later to show our ball convergence.
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Lemma 2. T : Rd → Rd be a function. Then, the following statements are equivalent:

(a) T is δ-weakly θ-averaged for δ ≥ 0 and θ ∈ (0, 1).

(b) ∥T (x)− T (y)∥22 + (1 − 2θ)∥x− y∥22 − 2(1 − θ)⟨T (x)− T (y),x− y⟩ ≤ δ2θ2, for all
x,y ∈ Rd.

(c) (1− 1/θ)I + (1/θ)T is δ-weakly nonexpansive.

(d) ∥T (x)− T (y)∥22 ≤ ∥x− y∥22−
1−θ
θ ∥(I − T )(x)− (I − T )(y)∥22+δ2θ, for all x,y ∈ Rd

Proof. Equivalence between (a) and (b): Provided T is δ-weakly θ-averaged, let’s find the LHS -
RHS in (b)

(1− 2θ)∥x− y∥22 + ∥T (x)− T (y)∥22 − 2(1− θ)⟨x− y, T (x)− T (y)⟩
≤(1− 2θ)∥x− y∥22 + ∥θR(x)− θR(y) + (1− θ)(x− y)∥22

− 2(1− θ)⟨x− y, θ(R(x)−R(y)) + (1− θ)(x− y)⟩
=(1− 2θ)∥x− y∥22 + θ2∥R(x)−R(y)∥22 + (1− θ)2∥x− y∥22 − 2(1− θ)2∥x− y∥22

+ 2θ(1− θ)⟨x− y, R(x)−R(y)⟩ − 2(1− θ)θ⟨x− y, R(x)−R(y)⟩
≤(1− 2θ)∥x− y∥22 + θ2∥x− y∥22 + θ2δ2 + (1− θ)2∥x− y∥22 − 2(1− θ)2∥x− y∥22

+ 2θ(1− θ)⟨x− y, R(x)−R(y)⟩ − 2(1− θ)θ⟨x− y, R(x)−R(y)⟩
=(1− 2θ + θ2 + (1− θ)2 − 2(1− θ)2)

∥∥x− y2
∥∥+ θ2δ2

=θ2δ2

For another direction, let us suppose T satisfies (a). Let R = 1
θ (T − (1− θ)I) so that we have

T = θR+(1−θ)I . Now, we need to show that ∥R(x)−R(y)∥22 ≤ ∥x− y∥22+δ2 for all x,y ∈ Rd

i.e. δ-weakly nonexpansive.

∥R(x)−R(y)∥22

=
1

θ2
∥T (x)− T (y)− (1− θ)(x− y)∥22

=
1

θ2

(
∥T (x)− T (y)∥22 + (1− θ)2∥x− y∥22 − 2(1− θ)⟨T (x)− T (y),x− y⟩

)
=

1

θ2

(
∥T (x)− T (y)∥22 + (1− 2θ)∥x− y∥22 − 2(1− θ)⟨T (x)− T (y),x− y⟩+ θ2∥x− y∥22

)
≤ 1

θ2

(
θ2δ2 + θ2∥x− y∥22

)
=∥x− y∥22 + δ2

where, the inequality is due to T satisfying (b).

Equivalence between (a) and (c): Note that T is δ-weakly θ-averaged ⇐⇒ T = θR + (1 − θ)I
with R being δ-weakly nonexpansive function. Now, we have

(1− 1/θ)I + (1/θ)T = (1− 1/θ)I + 1/θ · (θR+ (1− θ)I)

= (1− 1/θ)I +R− (1− 1/θ)I

= R

Hence, T being δ-weakly θ-average is equivalent to (1− 1/θ)I + (1/θ)T being δ-weakly nonexpan-
sive.
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Equivalence between (a) and (d): From equivalence between (a) and (b), we have

∥T (x)− T (y)∥22 + (1− 2θ)∥x− y∥22 − 2(1− θ)⟨T (x)− T (y),x− y⟩ ≤ δ2θ2

⇐⇒ ∥T (x)− T (y)∥22 + (1− 2θ)∥x− y∥22−

(1− θ)
(
∥T (x)− T (y)∥22 + ∥x− y∥22 − ∥(T − I)(x)− (T − I)(y)∥22

)
≤ δ2θ2

⇐⇒ θ∥T (x)− T (y)∥22 − θ∥x− y∥22 ≤ δ2θ2 − (1− θ)∥(T − I)(x)− (T − I)(y)∥22

⇐⇒ ∥T (x)− T (y)∥22 ≤ ∥x− y∥22 −
1− θ

θ
∥(I − T )(x)− (I − T )(y)∥22 + δ2θ

Lemma 3 (Concatenation of δ-weakly θ-averaged functions). Assume T1 : Rd → Rd and T2 : Rd →
Rd are δ1-weakly θ1-averaged and δ2-weakly θ2-averaged respectively. Then, T1 ◦ T2 is δ-weakly
θ-averaged, with θ = θ1+θ2−2θ1θ2

1−θ1θ2
, and δ2 = 1

θ (δ
2
1θ1 + δ22θ2).

Proof. Here, we follow the proof structure of Combettes & Yamada (2015). Since θ1(1 − θ2) ≤
(1−θ2), we have θ1+θ2 ≤ 1+θ1θ2, and therefore, θ = θ1+θ2−2θ1θ2

1−θ1θ2
∈ (0, 1), and let δ2 =

δ21θ1+δ22θ2
θ

Now, from Lemma 2, for i ∈ {1, 2}, we have,

∥Ti(x)− Ti(y)∥22 ≤ ∥x− y∥22 −
1− θi
θi
∥(I − Ti)(x)− (I − Ti)(y)∥22 + δ2i θi (24)

Then, let us evaluate the composition function using this property.

∥T1 ◦ T2(x)− T1 ◦ T2(y)∥22

≤∥T2(x)− T2(y)∥22 −
1− θ1
θ1
∥(I − T1)(T2(x))− (I − T1)(T2(y)∥22

≤∥x− y∥22 −
1− θ2
θ2
∥(I − T2)(x)− (I − T2)(y)∥22 + δ22θ2

− 1− θ1
θ1
∥(I − T1)(T2(x))− (I − T1)(T2(y)∥22 + δ21θ1

From Bauschke et al. (2017)[Corollary 2.15], we have, for α ∈ R,

∥αu+ (1− α)v∥22 + α(1− α)∥u− v∥22 = α∥u∥22 + (1− α)∥v∥22
=⇒ α(1− α)∥u+ v∥22 ≤ α∥u∥22 + (1− α)∥v∥22

Now, let u = (I − T2)(x)− (I − T2)(y), v = (I − T1)(T2(x))− (I − T1)(T2(y)), a = 1−θ2
θ2

, and
b = 1−θ1

θ1
.

∥T1 ◦ T2(x)− T1 ◦ T2(y)∥22
≤∥x− y∥22 − a∥u∥22 − b∥v∥22 + δ21θ1 + δ22θ2

=∥x− y∥22 − (a+ b)

(
a

a+ b
∥u∥22 +

b

a+ b
∥v∥22

)
+ δ21θ1 + δ22θ2

=∥x− y∥22 − (a+ b)

(
a

a+ b
∥u∥22 + 1− a

a+ b
∥v∥22

)
+ δ21θ1 + δ22θ2

Using the above results, we get,

∥T1 ◦ T2(x)− T1 ◦ T2(y)∥22

≤∥x− y∥22 − (a+ b)
ab

(a+ b)2
∥u+ v∥22 + δ21θ1 + δ22θ2

=∥x− y∥22 −
ab

(a+ b)
∥(I − T1 ◦ T2)(x)− (I − T1 ◦ T2)(y)∥22 + δ21θ1 + δ22θ2
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Let θ = θ1+θ2−2θ1θ2
1−θ1θ2

. Then, we can see that ab
a+b = 1−θ

θ .

∥T1 ◦ T2(x)− T1 ◦ T2(y)∥22 ≤ ∥x− y∥22 −
1− θ

θ
∥(I − T1 ◦ T2)(x)− (I − T1 ◦ T2)(y)∥22

+ δ2θ (25)

where, δ2θ = δ21θ1 + δ22θ2. This implies that T1 ◦ T2 is δ-weakly θ-averaged with

θ =
θ1 + θ2 − 2θ1θ2

1− θ1θ2
, δ2 =

1

θ
(δ21θ1 + δ22θ2) (26)

Lemma 4 (Proposition 5.4 of Giselsson (2015)). Assume ℓ is µ-strongly convex, closed, and proper.
Then, −(2Prox 1

ρ ℓ
− I) is ρ

ρ+µ -averaged.

Lemma 5 (Pardo (2018)). The KL divergence between two gaussian distributions q1 = N (µ1,Σ1)
and q2 = N (µ2,Σ2) in Rd space is given by

KL(q1||q2) =
1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
(27)

where | · | denotes the determinant, and tr denotes the trace of the matrix.

B INFLUENCE OF AC-STEP ON BRINGING CLOSE TO {Mσ(t)}Tt=0

Given a noisy image z̃(k) at each iteration k, the denoising aims to recover the underlying clean image
z
(k)
♮ ∼ p0(z) such that z̃(k) = z

(k)
♮ + s(k), where s(k) is the noise contained in z̃(k). The AC-step

aims to bring z
(k)
ac closer to the noisy distributionMσ(k) on which the sθ(·, σ(k)) was trained on.

Lemma 6 shows that the AC-step tries to match with the distribution induced by the forward diffusion
process.

Lemma 6. The KL divergence between the target distribution p(zσ(k) |z(k)
♮ ) for correction steps and

the distribution p(z
(k)
ac |z̃(k)) induced by the approximate correction step in Algorithm 1 is given by

KL(p(zσ(k) |z(k)
♮ )||p(z(k)

ac |z̃(k))) =
1

2
(
σ(k)

)2 ∥∥∥s(k)∥∥∥2
2

(28)

Proof.

Target distribution: p
(
zσ(k) |z(k)

♮

)
= N (z

(k)
♮ , σ(k)I) (29)

AC induced distribution: p
(
z(k)
ac |z̃(k)

)
= N (z̃(k), σ(k)I) (30)

The KL divergence between these two distribution can be computed in closed form using Lemma 5.

KL(q1||q2) =
1

2

(
log 1− d+ tr(I) + (z̃(k) − z

(k)
♮ )T

(
σ(k)

)−2

I(z̃(k) − z
(k)
♮ )T

)
=

1

2

(
0− d+ d+

(
σ(k)

)−2 ∥∥∥z̃(k) − z
(k)
♮

∥∥∥2
2

)
=

1

2
(
σ(k)

)2 ∥∥∥s(k)∥∥∥2
2

where, s(k) = z̃(k) − z
(k)
♮ .

Lemma 6 shows that KL-gap of our approximate AC update; as long as σ(k) is sufficiently large, the
two distributions remain close. Alkhouri et al. (2023)[Theorem 1] showed a result with a similar
flavor. Larger noise σ(k) makes the posterior nearly indistinguishable, but it also washes out fine
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structural details originally present (low Signal-to-Noise Ratio with larger σ(k)). Existing works
often use annealed scheduling σ(k) ↓ 0 (Zhu et al., 2023; Renaud et al., 2024a; Wang et al., 2024) to
preserve image details, implicitly assuming

∥∥s(k)∥∥2
2

decays at least as fast as (σ(k))2. With just the

use of annealing σ(k) schedule, it is not sufficient to ensure that z(k)
ac lands in a desired manifold in

each ADMM iteration. To bridge this gap, we propose to use DC-step in addition to the widely used
annealing σ(k) schedule that explicitly corrects this gap.

C PROOF OF THEOREM 1

The proof involves showing that the each iteration of ADMM-PnP is weakly non-expansive when the
denoiser satisfies Assumption 1. This weakly nonexpansiveness of each step leads to ball convergence
of the algorithm.

Recall that the subproblems at kth iteration of ADMM-PnP is given by:

x(k+1) = argmin
x

1

ρ
ℓ(y||A(x)) + 1

2

∥∥∥x− z(k) + u(k)
∥∥∥2
2

= Prox 1
ρ ℓ
(z(k) − u(k)) (31a)

z(k+1) = argmin
z

γ

ρ
h(z) +

1

2

∥∥∥x(k+1) − z + u(k)
∥∥∥2
2

= Prox γ
ρ h(x

(k+1) + u(k))

= Dσ(k)(x(k+1) + u(k)) (31b)

u(k+1) = u(k) + (x(k+1) − z(k+1)) (31c)

Lemma 7 (Ryu et al. (2019)). The steps of ADMM-PnP in (31) can be expressed as v(k+1) = T (v(k))
with v(k) = z(k) − u(k) and

T =
1

2
I +

1

2
(2Dσ(k) − I)(2Prox 1

ρ ℓ
− I) (32)

Lemma 8. Dσ : Rd → Rd satisfies Assumption 1 if and only if 1
1+2ϵ (2Dσ(k) − I) is ∆-weakly

θ-averaged with θ = 2ϵ
1+2ϵ and ∆2 = 4δ2 (1−θ)2

θ2 .

Proof. We follow the similar proof structure as in Ryu et al. (2019). Let θ = 2ϵ
1+2ϵ which implies

ϵ = θ
2(1−θ) . Here, we can clearly see that θ ∈ [0, 1). Let us define G = 1

1+2ϵ (2Dσ(k) − I) which
implies Dσ(k) = 1

2(1−θ)G+ 1
2I . Then,

∥(Dσ(k) − I)(x)− (Dσ(k) − I)(y)∥2 − ϵ2∥x− y∥22
=∥(Dσ(k)(x)−Dσ(k)(y))− (x− y)∥22 − ϵ2∥x− y∥22

=

∥∥∥∥(Dσ(k) −
1

2
I

)
(x)−

(
Dσ(k) −

1

2
I

)
(y)

∥∥∥∥2
2

+
1

4
∥x− y∥22 −

θ2

4(1− θ)2
∥x− y∥22

− 2⟨
(
Dσ(k) −

1

2
I

)
(x)−

(
Dσ(k) −

1

2

)
(y),

1

2
(x− y)⟩

=
1

4(1− θ)2
∥G(x)−G(y)∥22 +

1

4

(
1− θ2

(1− θ)2

)
∥x− y∥22

− 1

2(1− θ)
⟨G(x)−G(y),x− y⟩

=
1

4(1− θ)2

(
∥G(x)−G(y)∥22 − 2(1− θ)⟨G(x)−G(y),x− y⟩+ (1− 2θ)∥x− y∥22

)
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Now,

1

4(1− θ)2

(
∥G(x)−G(y)∥22 − 2(1− θ)⟨G(x)−G(y),x− y⟩+ (1− 2θ)∥x− y∥22

)
≤ δ2

⇔∥G(x)−G(y)∥22 − 2(1− θ)⟨G(x)−G(y),x− y⟩+ (1− 2θ)∥x− y∥22 ≤ 4δ2(1− θ)2

⇔∥G(x)−G(y)∥22 − 2(1− θ)⟨G(x)−G(y),x− y⟩+ (1− 2θ)∥x− y∥22 ≤ ∆2θ2

where, ∆2 = 4δ2 (1−θ)2

θ2 . From Lemma 2, this is equivalent to G being ∆-weakly θ-averaged.

C.1 PROOF OF THE THEOREM

We follow the procedures in Ryu et al. (2019) and expand the results in the δ-weakly expansive
denoisers. We show that each iteration of PnP ADMM is also wealkly nonexpansive when the
denoiser satisfies Assumption 1.

Proof. From Assumption 1.

∥(Dσ(k) − I)(x)− (Dσ(k) − I)(y)∥22 ≤ ϵ2∥x− y∥22 + δ2 (33)

From Lemma 4, we have −(2Prox 1
ρ ℓ
− I) is ρ

ρ+µ -averaged.

Then, from Lemma 8, we have
1

1 + 2ϵ
(2Dσ(k) − I) (34)

is δ1-weakly θ-averaged with θ = 2ϵ
1+2ϵ and δ21 = 4δ2 (1−θ)2

θ2 .

By Lemma 3, it implies

− 1

1 + 2ϵ
(2Dσ(k) − I)(2Prox 1

ρ ℓ
− I) (35)

is δ◦-weakly θ◦-averaged with θ◦ = ρ+2µϵ
ρ+µ+2µϵ and δ◦ = 1

θ◦
· 4δ2

2ϵ(1+2ϵ) .

Now, using the definition of δ◦-weakly θ◦-averagedness, we have

(2Dσ(k) − I)(2Prox 1
ρ
− I) = −(1 + 2ϵ) ((1− θ◦)I + θ◦R)

= −(1 + 2ϵ)

(
µ

ρ+ µ+ 2µϵ
I +

ρ+ 2µϵ

ρ+ µ+ 2µϵ
R

)
where, R is a certain δ◦-weakly nonexpansive function.

Plugging this result into ADMM-PnP operator (Lemma 7), we get

T =
1

2
I +

1

2
(2Dσ(k) − I)(2Prox 1

ρ ℓ
− I)

=
1

2
I − 1

2
(1 + 2ϵ)

(
µ

ρ+ µ+ 2µϵ
I +

ρ+ 2µϵ

ρ+ µ+ 2µϵ
R

)
=

ρ

2(ρ+ µ+ 2µϵ)︸ ︷︷ ︸
a

I − (1 + 2ϵ)(ρ+ 2µϵ)

2(ρ+ µ+ 2µϵ)︸ ︷︷ ︸
b

R

where, clearly a > 0 and b > 0.

Now,

∥T (x)− T (y)∥22 = a2∥x− y∥22 + b2∥R(x)−R(y)∥22 − 2⟨a(x− y), b(R(x)−R(y))⟩ (36)

From Young’s inequality, for any γ > 0, we have

⟨a(x− y), b(R(x)−R(y))⟩ ≤ 1

2γ
a2∥x− y∥22 +

γb2

2
∥R(x)−R(y)∥22 (37)
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Plugging this, we get,

∥T (x)− T (y)∥22 ≤ a2
(
1 +

1

γ

)
∥x− y∥22 + b2(1 + γ)∥R(x)−R(y)∥22 (38)

≤
(
a2
(
1 +

1

γ

)
+ b2(1 + γ)

)
∥x− y∥22 + b2(1 + γ)δ2◦ (39)

where, the second inequality is due to δ◦-weak nonexpansiveness of R.

Note, that this holds for any γ > 0. When γ = a
b , we have(

a2
(
1 +

1

γ

)
+ b2(1 + γ)

)
= (a+ b)2 (40)

∥T (x)− T (y)∥22
≤(a+ b)2∥x− y∥22 + b2

(
1 +

a

b

)
δ2◦

=

(
ρ+ ρϵ+ µϵ+ 2µϵ2

ρ+ µ+ 2µϵ

)2

︸ ︷︷ ︸
ϵ2T

∥x− y∥22 +
(ρ+ ρϵ+ µϵ+ 2µϵ2)δ2

ϵ(ρ+ µ+ 2µϵ)︸ ︷︷ ︸
δ2T

(41)

Hence, we have
∥T (x)− T (y)∥22 ≤ ϵ2T ∥x− y∥22 + δ2T (42)

This shows that when ϵT ≤ 1, then, ∃v∗ ∈ Rd, and K > 0 such that ∀k ≥ K the following holds:∥∥∥v(k) − v∗
∥∥∥2
2
≤ ϵ2kT

∥∥∥v(0) − v∗
∥∥∥2
2
+

δ2T
1− ϵ2T

=⇒ lim
k→∞

∥∥∥v(k) − v∗
∥∥∥ ≤ δT√

1− ϵ2T
(43)

Hence with this we have the sequence {v(k) = z(k) − u(k)}k∈N+ converges within a ball of radius
δT√
1−ϵ2T

. Since, −(2Prox 1
ρ ℓ
− I) is ρ

ρ+µ -averaged, this implies

Prox 1
ρ ℓ

=
1

2

ρ

ρ+ µ
(R− I) (44)

for some nonexpansive function R. With this, we have

lim
k→∞

∥∥∥Prox 1
ρ ℓ
(v(k))− Prox 1

ρ ℓ
(v∗)

∥∥∥2
2
≤
(

ρ

ρ+ µ

)2 ∥∥∥v(k) − v∗
∥∥∥2
2

=⇒ lim
k→∞

∥∥∥x(k) − x∗
∥∥∥
2
≤ ρ

ρ+ µ

δT√
1− ϵ2T

(45)

where x∗ = Prox 1
ρ ℓ
(v∗).

With these results, we know there exists u∗ such that

lim
k→∞

∥∥uk − u∗∥∥
2
≤
(
1 +

ρ

ρ+ µ

)
δT√
1− ϵ2T

(46)

D PROOF OF THEOREM 2

Here, we show that our 3-step AC-DC denoiser satisfies Assumption 1 for constants ϵ and δ. In the
following, we first show that each step satisfies the weakly nonexpansive assumption. Therefore, the
concatenation of these 3 steps meets Assumption 1.
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Lemma 9. Assume the Variance Exploding (VE) scheduling (Karras et al., 2022) is used in the diffu-
sion model. Given that the log-density log p0 (i.e. log pdata) is M -smooth (Assumption 2), the interme-
diate noisy log-densities {log pt} are Mt-smooth for t ∈ [0, T ] i.e. ∥∇ log pt(x)−∇ log pt(y)∥2 ≤
Mt∥x− y∥2 for all x,y ∈ X . For t such that σ2(t) < 1/M , the smoothness constant Mt can be
upperbounded as

Mt ≤
M

1 +Mσ2(t)
≤M (47)

Proof. From Tweedie’s lemma, we have,

=⇒ ∇xt
log pt(xt) = −

1

σ2(t)
(xt − E[x0|xt])

=⇒ ∇2
xt

log pt(xt) = −
1

σ2(t)
(I −∇xt

E[x0|xt]) (48)

Now, let us evaluate the Jacobian ∇xtE[x0|xt],

∇xtE[x0|xt] = ∇xt

∫
x0∈X

x0p(x0|xt)dx0

=

∫
x0∈X

x0

(
∇xt

p(xt|x0)

pt(xt)

)
p0(x0)dx0

=

∫
x0∈X

x0

(
1

pt(xt)
∇xt

p(xt|x0)− p(xt|x0)
1

p2t (xt)
∇xt

pt(xt)

)
p0(x0)dx0

(49)

Given xt|x0 ∼ N (x0, σ(t)
2I) and p(xt) =

∫
x0∈X p(x0)p(xt|x0)dx0, we can compute their

gradient (similar to Peng et al. (2024)) as:

∇xtp(xt|x0) = −
1

σ2(t)
p(xt|x0)(xt − x0)

∇xtp(xt) =

∫
x0∈X

p0(x0)∇xtp(xt|x0)dx0

=

∫
x0∈X

p0(x0)

(
− 1

σ2(t)
p(xt|x0)(xt − x0)

)
dx0

= − 1

σ2(t)
pt(xt)E[xt − x0|xt] (50)

Plugging these results in (49) and using integration by parts,

∇xt
E[x0|xt] =

1

p(xt)

∫
x0∈X

x0∇xt
p(xt|x0)p(x0)dx0 −

∇xt
p(xt)

p(xt)
E[x0|xt] (51)

Substituting ∇xt
p(xt|x0) = −1/(σ2(t))(xt − x0)p(xt|x0), we have

∇xt
E[x0|xt] =−

1

σ2(t)p(xt)

∫
x0∈X

x0(xt − x0)p(xt|x0)p(x0)dx0 −
∇xt

p(xt)

p(xt)
E[x0|xt]

=
−1
σ2(t)

E[x0(xt − x0)|xt]−
∇xtp(xt)

p(xt)
E[x0|xt] (52)

Substituting ∇xt
p(xt) =

∫
x0∈X p(x0)∇xt

p(xt|x0)dx0 = −pt(xt)/σ2(t)E[xt − x0|xt], we have

∇xtE[x0|xt] =
−1
σ2(t)

E[x0(xt − x0)|xt] +
1

σ2(t)
E[x0|xt]E[xt − x0xt]

= − 1

σ2(t)
Cov(x0,xt − x0)

=
1

σ2(t)
Cov(x0|xt) (53)
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Note that this result in (53) is similar to Dytso et al. (2021)[Proposition 1], and has also been derived
in Hatsell & Nolte (1971); Palomar & Verdu (2006).

From Assumption 2, we have

−MI ⪯ ∇2
x0

log p0(x0) ⪯MI, ∀x0 ∈ X (54)

where, M > 0 is a constant.

Then, let’s analyze the hessian of the log of posterior distribution p(x0|xt),

∇2
x0

log p(x0|xt) = ∇2
x0

log p0(x0) +∇2
x0

log p(xt|x0) (55)

=⇒ −MI +
1

σ2(t)
I ⪯ ∇2

x0
log p(x0|xt) ⪯MI +

1

σ2(t)
I (56)

When M <
1

σ2(t)
, then the distribution log p(x0|xt) is strongly log-concave. In this case, the

covariance of distribution p(x0|xt) can be bounded (Brascamp & Lieb, 1976) as

(
MI +

1

σ2(t)
I

)−1

⪯ Cov(x0|xt) ⪯
(
−MI +

1

σ2(t)
I

)−1

(57)

Combining result from equations (48), (53) and (57), we get

∇2
xt

log pt(xt) = −
1

σ2(t)
(I −∇xt

E[x0|xt])

= − 1

σ2(t)

(
I − 1

σ2(t)
Cov(x0|xt)I

)
∥∥∇2

xt
log qt(xt)

∥∥
2
≤ 1

σ2(t)

∣∣∣∣(1− 1

σ2(t)
· σ2(t)

Mσ2(t) + 1

)∣∣∣∣
=

1

σ2(t)
· Mσ2(t)

1 +M(σ2(t))

=
M

1 +Mσ2(t)
(58)

Hence, the smoothness constant of log q(xt) is upper bounded as Mt ≤
M

1 +Mσ2(t)
i.e. Mt ≤M .

Lemma 10. Let H(k)
ac : z̃(k) 7→ z

(k)
ac denote the function corresponding to approximate correction in

Algorithm 1. Then, with probability at least 1− e−νk , the following holds for any x,y ∈ X∥∥∥(H(k)
ac − I)(x)− (H(k)

ac − I)(y)
∥∥∥2
2
≤ (δ(k)ac )2 + (ϵ(k)ac )2∥x− y∥22 (59)

where, δ(k)ac

2
= 2(σ(k))2(d+ 2

√
dνk + 2νk), and (ϵ

(k)
ac )2 = 0.

Proof. For any x,y ∈ X , we have the residuals R(k)
ac (x) = (H

(k)
ac −I)(x) = σ(k)n1 and R

(k)
ac (y) =

(H
(k)
ac − I)(y) = σ(k)n2 where, n1,n2

i.i.d.∼ N (0, I).

Then, we can bound the norm of difference of these two residuals as∥∥∥R(k)
ac (x)−R(k)

ac (y)
∥∥∥2
2
=
∥∥∥σ(k)n1 − σ(k)n2

∥∥∥2
2

= (σ(k))2∥n12∥22
= 2(σ(k))2χ2

d (60)
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where, n12 = n1 − n2 ∼ N (0, 2I) and χ2
d is standard chi-square distribution with d degree of

freedom.

From Laurent & Massart (2000)[Lemma 1], the following holds with probability at least 1− e−νk

χ2
d ≤ d+ 2

√
dνk + 2νk (61)

Plugging this in proves the lemma.

Lemma 11. Let H(k)
dc : z

(k)
ac 7→ z

(k)
dc denote the function corresponding to fine correction as defined

in Algorithm 1. Then, with probability at least 1 − e−νk , the following holds for any x,y ∈ X if
σ2
s(k) <

1
Mt

: ∥∥∥(H(k)
dc − I)(x)− (H

(k)
dc − I)(y)

∥∥∥2
2
≤ (δ

(k)
dc )2 + (ϵ

(k)
dc )

2∥x− y∥22 (62)

where, (δ(k)dc )2 =
32dσ2

s(k)

(1−Mtσ2

s(k)
)
log 2

νk
, and (ϵ

(k)
dc )

2 =

(√
2Mtσ

2

s(k)

1−σ2

s(k)
Mt

)2

.

Proof. Recall that the target distribution for this step is given by

log p(zσ(k) |z(k)
ac ) ∝ log p(z(k)

ac |zσ(k)) + log p(zσ(k)) (63)

where, p(z(k)
ac |zσ(k)) = N (zσ(k) , σ2

s(k)I).

Under Assumptions 2 and 3, the target distribution p(zσ(k) |z(k)
ac ) also inherits smoothness and

coercivity properties. These conditions imply the ergodicity of corresponding Langevin diffusion
(Mattingly et al., 2002; Chen et al., 2020). In particular, Fokker-Planck equation (Uhlenbeck &
Ornstein, 1930) characterizes p(zσ(k) |z(k)

ac ) as its unique stationary distribution. Consequently, the
iterates z

(k)
dc obtained through Langevin dynamics converge to this distribution as the step size

η(k) → 0 and the number of iterations J →∞. The gradient and hessian of the log of this desired
distribution are given by

∇
z
(k)
dc

log p(z
(k)
dc |z

(k)
ac ) =

1

σ2
s(k)

(z(k)
ac − z

(k)
dc ) +∇

z
(k)
dc

log pt(z
(k)
dc ) (64)

∇2

z
(k)
dc

log p(z
(k)
dc |z

(k)
ac ) = − 1

σ2
s(k)

+∇2

z
(k)
dc

log pt(z
(k)
dc ) (65)

Here, t refers to the noise level such that σ(t) = σ(k). By the Mt-smoothness of log pt distribution
(Lemma 9), we have

−
(
Mt +

1

σ2
s(k)

)
I ⪯ ∇2

z
(k)
dc

log p(z
(k)
dc |z

(k)
ac ) ⪯

(
Mt −

1

σ2
s(k)

)
I (66)

When Mt <
1

σ2
s(k)

, the hessian is negative semi-definite that implies the distribution being log

concave. This also implies that when Mt ≪
1

σ2
s(k)

, the likelihood term dominates in the posterior

(63).

Using (Wainwright, 2019)[Theorem 3.16], the following holds with probability at least 1− νk∥∥∥z(k)
dc − E[z(k)

dc |z
(k)
ac ]
∥∥∥
2
≤
√

4

λt
log

2

νk
(67)

where λt = −Mt +
1

σ2

s(k)

.

Now, using Tweedie’s lemma, we have

E[z(k)
dc |z

(k)
ac ] = z(k)

ac + σ2
s(k)∇z

(k)
ac

log p(z(k)
ac )

=⇒ E[z(k)
dc |z

(k)
ac ]− z(k)

ac = σ2
s(k)∇z

(k)
ac

log p(z(k)
ac ) (68)
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Combining the above two results, with probability at least 1− 2νk, the difference of residual for x
and y can be bounded as∥∥∥R(k)

dc (x)−R
(k)
dc (y)

∥∥∥2
2
≤ 2

(
2

√
4

λt
log

2

νk

)2

2

+
∥∥∥σ2

s(k)

(
∇x log p

z
(k)
ac

(x)−∇y log p
z
(k)
ac

(y)
)∥∥∥2

2

≤ 32d

λt
log

2

νk
+ 2
∥∥∥σ2

s(k)

(
∇x log p

z
(k)
ac

(x)−∇y log p
z
(k)
ac

(y)
)∥∥∥2

≤ 32d

λt
log

2

νk
+ 2σ4

s(k)M
2

z
(k)
ac
∥x− y∥2 (69)

where, M
z
(k)
ac

is the smoothness constant of log p
z
(k)
ac

that can be derived using a similar proof
procedure as Lemma 9, and λt = −Mt +

1
σ2

s(k)

.

Following the similar procedure as in proof of Lemma 9, we get,

M
z
(k)
ac
≤ Mt

1− σ2
s(k)Mt

(70)

Plugging this leads to the lemma.

Lemma 12. Let H(k)
tw : z

(k)
dc 7→ z

(k)
tw denote the projection function using Tweedie’s lemma defined

in Algorithm 1. Then, we have the following∥∥∥(H(k)
tw − I)(x)− (H

(k)
tw − I)(y)

∥∥∥2
2
≤ (ϵ

(k)
tw )2∥x− y∥22 + δ

(k)
tw

2
(71)

for any x,y ∈ X , where (ϵ
(k)
tw )2 = (σ(k))4M2

t , and δ
(k)
tw

2
= 0.

Proof. From Tweedie’s lemma, we have

z
(k)
tw = E[z0|zt = z

(k)
dc ]

= z
(k)
dc + (σ(k))2∇ log pt(z

(k)
dc )

where, t ∈ [0, T ] such that σ(k) = σ(t).

Then, the residuals are given by

R
(k)
tw (x) = (σ(k))2∇ log pt(x) (72)

R
(k)
tw (y) = (σ(k))2∇ log pt(y) (73)

Now, the norm of the difference of the residuals can be written as∥∥∥R(k)
tw (x)−R

(k)
tw (y)

∥∥∥2
2
= (σ(k))4∥∇ log pt(x)−∇ log pt(y)∥22 (74)

≤ (σ(k))4M2
t ∥x− y∥22 (75)

where, Mt is the smoothness constant of log pt(x).

D.1 MAIN PROOF:

Proof. Part (a) Using Lemma 10, 11, and 12, with probability at least 1− 2e−νk , we have

∥Rσ(k)(x)−Rσ(k)(y)∥22

≤3
∥∥∥R(k)

ac (x)−R(k)
ac (y)

∥∥∥2
2
+ 3
∥∥∥R(k)

dc (x)−R
(k)
dc (y)

∥∥∥2
2
+ 3
∥∥∥R(k)

tw (x)−R
(k)
tw (y)

∥∥∥2
2

≤3((ϵ(k)ac )2 + (ϵ
(k)
dc )

2 + (ϵ
(k)
tw )2)∥x− y∥22 + 3(δ(k)ac

2
+ δ

(k)
dc

2
+ δ

(k)
tw

2
)

≤ϵ2k∥x− y∥22 + δ2k (76)
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where,

ϵ2k = 3

( √2Mtσ
2
s(k)

1− σ2
s(k)Mt

)2

+ (σ(k))4M2
t


δ2k = 3

(
2(σ(k))2(d+ 2

√
dνk + 2νk) +

32dσ2
s(k)

(1−Mtσ2
s(k))

log
2

νk

)
Using Lemma 9 leads to the final theorem.

Part (b). Let us set νk = ln
(

2π2

6η

)
+ 2 ln k. With this, the above weakly nonexpansiveness holds for

all k ∈ N+ with probability at least

1−
∞∑
k=1

2e
− ln

(
2π2

6η

)
−2 ln k

=1− 6η

π2
×

∞∑
k=1

1

k2
(77)

Using Riemann zeta function (Titchmarsh & Heath-Brown, 1986) at value 2, we have

ζ(2) =

∞∑
k=1

1

k2
=

π2

6
(78)

Plugging this in we get the probability to be at least 1−η. Now, combining the results with Theorem 1
leads to the final proof of this part.

E PROOF OF THEOREM 3

Here, show that our 3-step AC-DC denoiser is bounded with high probability. We first show that each
of 3 steps are bounded, and then combined them to establish the boundedness of our AC-DC denoiser
as a whole. And following the boundedness, we show that AC-DC ADMM-PnP converges to a fixed
point with proper scheduling of σ(k) and σs(k) .
Lemma 13 (Uniform score bound). Suppose Assumption 2 holds. Let

D := diam(X ) = sup
x,y∈X

∥x− y∥2 <∞ and S := inf
x∈X
∥∇ log pdata(x)∥2 <∞.

Then, with L = MD + S, we have

sup
x∈X
∥∇ log pdata(x)∥∞ ≤ L.

Proof. From Assumption 2, we have

∥∇ log pdata(x)−∇ log pdata(y)∥2 ≤M∥x− y∥2, ∀x,y ∈ X (79)

Fix any x0 ∈ X . By the triangle inequality, for all x ∈ X ,

∥∇ log pdata(x)∥2 ≤ ∥∇ log pdata(x)−∇ log pdata(x0)∥2 + ∥∇ log pdata(x0)∥2
≤M∥x− x0∥2 + ∥∇ log pdata(x0)∥2 (80)

Taking the supremum over x ∈ X and then the infimum over x0 ∈ X yields

sup
x∈X
∥∇ log pdata(x)∥2 ≤ sup

x∈X
M∥x− x0∥2 + inf

x0∈X
∥∇ log pdata(x0)∥2 (81)

≤MD + S (82)

Because ∥u∥∞ ≤ ∥u∥2 for any vector,

sup
x∈X
∥∇ log pdata(x)∥∞ ≤MD + S (83)

which proves the above lemma.
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Lemma 14. Assuming ∥∇ log pdata(x)∥∞ ≤, ∀x ∈ X , the score of intermediate noisy distributions
{pt}t∈[0,T ] are bounded as.

∥∇ log pt(x)∥2 ≤
√
dL (84)

for all x ∈ X .

Proof. We have xt = x0+σ(t)n with n ∼ N (0, I). Let us denote n1 = σ(t)n. Then, the marginal
distribution is given by the convolution of two distributions.

pt(x) =

∫
x1∈X

pn1
(x1)p0(x− x1)dx1 (85)

Then, the score is given by

∇ log pt(x) =
∇pt(x)
pt(x)

=
1

pt(x)

∫
x1∈X

pn1
(x1)∇xp0(x− x1)dx1

=
1

pt(x)

∫
x1∈X

pn1
(x1)p0(x− x1)

∇xp0(x− x1)

p0(x− x1)
dx1

=
1

pt(x)

∫
x1∈X

pn1
(x1)p0(x− x1)∇x log p0(x− x1)dx1 (86)

Now the norm can be bounded as

∥∇ log pt(x)∥2 ≤
1

pt(x)

∫
x1∈X

pn1
(x1)p0(x− x1)∥∇x log p0(x− x1)∥2dx1

≤ sup
x2∈X

∥∇x log p0(x2)∥2
1

pt(x)

∫
x1∈X

pn1
(x1)p0(x− x1)dx1

=
√
dL (87)

The final equality is due to the fact ∥x∥2 ≤
√
d∥x∥∞.

Lemma 15. Let H(k)
ac : z̃(k) 7→ z

(k)
ac denote the function corresponding to approximate correction to

noise level σ(k) defined in Algorithm 1. Then, with probability at least 1− e−ν , the following holds
for any x,y ∈ X

1

d

∥∥∥(H(k)
ac − I)(x)

∥∥∥2
2
≤ (σ(k))2(1 + 2

√
ν + 2ν) (88)

Proof. For any x ∈ X , we have the residual R(k)
ac (x) = (H

(k)
ac − I)(x) = σ(k)n, n ∼ N (0, I).

Then, ∥∥∥R(k)
ac (x)

∥∥∥2
2
= (σ(k))2∥n∥22 = (σ(k))2χ2

d (89)

where χ2
d is standard chi-square distribution with d degrees of freedom. From Laurent & Massart

(2000)[Lemma 1], the following holds with probability at least 1− e−ν

χ2
d ≤ d+ 2

√
dν + 2ν (90)

This implies 1
d

∥∥∥H(k)
ac − I)(x)

∥∥∥2
2
≤ (σ(k))2(1 + 2

√
1ν + 2ν) with probability at least 1− e−ν due

to d ≥ 1.

Lemma 16. Let H(k)
dc : z

(k)
ac 7→ z

(k)
dc denote the function corresponding to fine correction defined in

Algorithm 1. Assume ∥∇ log pdata(x)∥∞ ≤ L. Then, with probability at least 1− e−ν , the following
holds for any x,y ∈ X :

1

d

∥∥∥(H(k)
dc − I)(x)

∥∥∥2
2
≤ 8

λt
log

2

ν
+ σ4

s(k)L
2 (91)

where, λt = −Mt +
1

σ2

s(k)

.
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Proof. From (67), with probability at least 1− 2ν, the norm can be bounded as∥∥∥R(k)
dc (x)

∥∥∥2
2
≤ 8d

λt
log

2

ν
+ σ4

s(k)

∥∥∥∇x log p
z
(k)
ac

(x)
∥∥∥2
2

(92)

Then, using Lemma 14, we have

1

d

∥∥∥R(k)
dc (x)

∥∥∥2
2
≤ 8

λt
log

2

ν
+ σ4

s(k)L
2 (93)

Lemma 17. Let H(k)
tw : z

(k)
dc 7→ z

(k)
tw denote the projection function using Tweedie’s lemma defined

in Algorithm 1. Assume ∥∇ log pdata(x)∥∞ ≤ L. Then, we have the following

1

d

∥∥∥(H(k)
tw − I)(x)

∥∥∥2
2
≤ (σ(k))4L2 (94)

for any x ∈ X .

Proof. From Tweedie’s lemma, we have

z
(k)
tw = E[z0|zt = z

(k)
dc ]

= z
(k)
dc + (σ(k))2∇ log pt(z

(k)
dc ) (95)

where, t ∈ [0, T ] such that σ(k) = σ(t).

Now, the norm of residual can be written as∥∥∥R(k)
tw (x)

∥∥∥2
2
=
∥∥∥(σ(k))2∇ log pt(x)

∥∥∥2
2

≤ (σ(k))4L2 · d (96)

where, L bound of gradient from Lemma 14.

E.1 MAIN PROOF

Combining Lemmas 15, 16 and 17 leads to the proof of part (a) of Theorem 3.

With probability at least 1− 2e−νk , the denoiser satisfies the bounded residual condition.

1/d∥(Dσ(k) − I)(x)∥22 ≤ c2k. (97)

Let’s define the relative residue as:

βk :=
1√
d

(∥∥∥x(k) − x(k−1)
∥∥∥
2
+
∥∥∥z(k) − z(k−1)

∥∥∥
2
+
∥∥∥u(k) − u(k−1)

∥∥∥
2

)
(98)

For any η ∈ [0, 1) and a constant γ > 1, the penalty parameter ρk is adjusted at each iteration k
according to following rule (Chan et al., 2016):

ρk+1 =

{
γρk if βk+1 ≥ ηβk (Case 1)
ρk else (Case 2)

(99)

The PnP-ADMM with adaptive penalty involves two cases as shown above.

At iteration k, if Case 1 holds, then by Lemma 18 we have

βk+1 ≤ 6ck + 2ck−1 +
2R

ρk
(100)

On the other hand if Case 2 holds, then,

βk+1 ≤ ηβk (101)
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Define ak = 6ck + 2ck−1 +
2R
ρk

. Combining two cases, we get

βk+1 ≤ δβk + ak, δ =

{
η, if Case 2 holds at iteration k

0, if Case 1 holds at iteration k
(102)

Note that for Case 1 ρk+1 = γρk and with γ > 1, we get limk→∞
c
ρk

= 0. In addition, with

νk = ln 2π2

6η + 2 ln k, and the scheduling of σ(k), σs(k) that satisfies

lim
k→∞

(σ(k))2(2+4
√
νk +4νk) = 0, lim

k→∞

σ2
s(k)

1−Mσ2
s(k)

log
2

νk
= 0, lim

k→∞
σ(k) = 0, lim

k→∞
σs(k) = 0

results in limk→∞ ak = 0.

As k →∞, 3 different scenarios could occur. Let’s analyze each of the scenarios one by one.

• Scene 1: Case 1 occurs infinitely many times and Case 2 occurs finitely many times.
When Scene 1 occurs, then, there exists a constant K1 > 0 such that βk+1 ≤ ak for all
k ≥ K1. Since limk→∞ ak = 0, this leads to limk→∞ βk = 0.

• Scene 2: Case 2 occurs infinitely many times and Case 1 occurs finitely many times.
Similarly, there exists a constant K2 > 0 such that βk+1 ≤ ηβk for all k ≥ K2. Then, we
have

βk ≤ ηk−K2βK2 (103)
And with η ∈ [0, 1), we have limk→∞ βk = 0.

• Scene 3: Both Case 1 and Case 2 occurs infinitely many times. With the Scene 1 and Scene
2 converging, the sequence limk→∞ βk = 0 under this Scene as well.

This proves the part (b) of Theorem 3.
Lemma 18. For any iteration k that falls into Case 1, the following holds

βk+1 ≤ 6ck + 2ck−1 +
2R

ρk
(104)

Proof. Consider the subproblem (7a) with adaptive penalty parameter ρk (as defined in (99)),

x(k+1) = argmin
x

1

ρk
ℓ(y||A(x)) + 1

2

∥∥∥x− z(k) + u(k)
∥∥∥2
2

(105)

With the first order optimality condition, the solution x(k+1) satisfies
1

ρk
∇xℓ(y||A(x))

∣∣
x=x(k+1) + (x(k+1) − z(k) + u(k)) = 0 (106)

=⇒ 1√
d

∥∥∥x(k+1) − z(k) + u(k)
∥∥∥
2
=

1

ρk
√
d

∥∥∇xℓ(y||A(x))
∣∣
x=x(k+1)

∥∥
2

(107)

Using the assumption of existence of R <∞ such that ∥∇xℓ(y||A(x))∥2/
√
d ≤ R, ∀x ∈ X , we

get
1√
d

∥∥∥x(k+1) − z(k) + u(k)
∥∥∥
2
≤ R

ρk
(108)

Since the denoiser Dσ(k) is bounded with probability at least 1− 2e−νk , we have
1√
d
∥(Dσ(k) − I)(x)∥2 ≤ ck (109)

Now,
1√
d

∥∥∥x(k+1) − z(k+1) + u(k)
∥∥∥
2
=

1√
d

∥∥∥x(k+1) + u(k) −Dσ(k)(x(k+1) + u(k))
∥∥∥
2

(110)

=
1√
d

∥∥∥(Dσ(k) − I)(x(k+1) + u(k))
∥∥∥
2

(111)

≤ ck (112)
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Now, using triangle inequality, we can bound
∥∥z(k+1) − z(k)

∥∥
2

as

1√
d

∥∥∥z(k+1) − z(k)
∥∥∥
2
=

1√
d

∥∥∥z(k+1) − x(k+1) − u(k) + x(k+1) + u(k) − z(k)
∥∥∥
2

(113)

≤ R

ρk
+ ck (114)

Similarly, it can be shown that

1√
d

∥∥∥u(k+1)
∥∥∥
2
=

1√
d

∥∥∥u(k) + x(k+1) − z(k+1)
∥∥∥
2

(115)

=
1√
d

∥∥∥u(k) + x(k+1) −Dσ(k)(x(k+1) + u(k))
∥∥∥
2

(116)

=
1√
d

∥∥∥(Dσ(k) − I)(x(k+1) + u(k))
∥∥∥
2

(117)

= ck (118)

This implies 1√
d

∥∥u(k+1) − u(k)
∥∥
2
≤ 2ck. Finally, we use x(k+1) = u(k+1) − u(k) + z(k+1) to

obtain
1√
d

∥∥∥x(k+1) − x(k)
∥∥∥
2

(119)

=
1√
d

∥∥∥u(k+1) − u(k) + z(k+1) − u(k) + u(k−1) − z(k)
∥∥∥
2

(120)

≤ 1√
d

∥∥∥u(k+1) − u(k)
∥∥∥
2
+

1√
d

∥∥∥u(k) − u(k−1)
∥∥∥
2
+

1√
d

∥∥∥z(k+1) − z(k)
∥∥∥
2

(121)

≤2ck + 2ck−1 +
R

ρk
+ ck (122)

=3ck + 2ck−1 +
R

ρk
(123)

Combining all the bounds results using triangle inequality results in

βk+1 ≤ 6ck + 2ck−1 +
2R

ρk
(124)

where, ck = (σ(k))2(2 + 4
√
νk + 4νk) + 16σ2

s(k)/1−Mσ2

s(k) log 2/νk + 2σ4
s(k)L

2 + 2(σ(k))4L2

Remark 1. While the proposed method and its theoretical results are based on Variance Exploding
(VE) scheduling, they can be easily extended to Variance Preserving (VP) scheduling case (Karras
et al., 2022).

E.2 THEORETICAL RESULTS WITH FINITE DC STEPS J

Lemma 19. Let H(k)
dc : z

(k)
ac 7→ z

(k)
dc denote the function corresponding to fine correction as defined

in Algorithm 1 with finite J and η(k) ≤ 2σ2
s(k) . Also, let π(k) = p(zσ(k) |z(k)

ac ) be the stationary target

distribution and π̃
(k)
0 be initial distribution used for the DC at iteration k. Then, with probability at

least 1− e−νk , the following holds for any x,y ∈ X if 1/σ2

s(k) < Mt:∥∥∥(H(k)
dc − I)(x)− (H

(k)
dc − I)(y)

∥∥∥2
2
≤ (δ

(k)
dc )2 + (ϵ

(k)
dc )

2∥x− y∥22 (125)

where,0 < κ < 1, C > 0, (δ(k)dc )2 =
64dσ2

s(k)

(1−Mtσ2

s(k)
)
log 2

νk
+C(1−κ)2JW2

2 (π̃
(k)
0 , π(k))+O

(
(η(k))2

)
,

and (ϵ
(k)
dc )

2 =

(
2
√
2Mtσ

2

s(k)

1−Mtσ2

s(k)

)2

.
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Proof. With finite J , the langevin dynamics doesn’t necessarily converge to the stationary distribution
π(k) = p(zσ(k) |z(k)

ac ). Let π̃(k)
0 be the initial distribution used to initialize the finite step langevin

dynamics and π̃(k) be the distribution of the iterate after running finite J steps of langevin dynamics.
Using (Dalalyan & Karagulyan, 2019)[Theorem 1], the following holds for η(k) ≤ 2σ2

s(k)

W2(π̃
(k), π(k)) ≤ (1− κ)JW2(π̃

(k)
0 , π(k)) +O

(
η(k)

)
(126)

where, 0 < κ < 1 andW2 is the 2-Wassertein distance.

Using Kantorovich and Rubinstein dual representation (Villani et al., 2008),

∥Eπ̃(k) [z]− Eπ(k) [z]∥2 =

∥∥∥∥∫ z
(k)
dc dπ̃(k)(z)−

∫
zdπ(k)(z)

∥∥∥∥
2

(127)

≤ W1(π̃
(k), π(k)) (128)

≤ W2(π̃
(k), π(k)) (129)

The last inequality is due to the Holder’s inequality Villani et al. (2008). Using triangle inequality
leads to following:∥∥∥z(k)

dc − Eπ(k) [z]
∥∥∥
2
≤
∥∥∥z(k)

dc − Eπ̃(k) [z]
∥∥∥
2
+ ∥Eπ̃(k) [z]− Eπ(k) [z]∥2 (130)

≤
∥∥∥z(k)

dc − Eπ̃(k) [z]
∥∥∥
2
+ (1− κ)JW2(π̃

(k)
0 , π(k)) +O

(
η(k)

)
(131)

Using this result and following the same procedure as in Lemma 11, we get the theorem.

Theorem 4. Suppose that the assumptions in Theorem 1, Assumption 2, and Assumption 3 hold.
Further, assume that the DC steps finite steps J and η(k) ≤ 2σ2

s(k) . Also, let π(k) = p(zσ(k) |z(k)
ac ) be

the stationary target distribution and π̃
(k)
0 be initial distribution used for the DC at iteration k. Let

Dσ(k) : z̃(k) 7→ z
(k)
tw denote the AC-DC denoiser. Then, we have:

With probability at least 1− 2e−νk , the following holds for iteration k of ADMM-PnP:

∥(Dσ(k) − I)(x)− (Dσ(k) − I)(y)∥22 ≤ ϵ2k∥x− y∥22 + δ2k (132)

for any x,y ∈ X , k ∈ N+, a constant 0 < κ < 1 and C > 0, when σ2
s(k) + (σ(k))2 < 1/M with

ϵ2k = 3((2
√
2Mσ2

s(k)/(1−Mσ2
s(k)))

2 + (σ(k))4M2) (133)

δ2k = 3(2(σ(k))2(d+ 2
√

dνk + 2νk) + 64dσ2

s(k)/(1−Mσ2

s(k) ) log 2/νk)+

C(1− κ)2JW2
2 (π̃

(k)
0 , π(k)) +O

(
(η(k))2

)
. (134)

In other words, with νk = ln 2π/6η + 2 ln k, the denoiser Dσ(k) satisfies part (a) for all k ∈ N+ with
probability at least 1− η.

Proof. By substituting Lemma 11 with Lemma 19 leads to the theorem.

Theorem 5. Suppose that Assumptions 2-3 hold. Let D := diam(X ) = supx,y∈X ∥x− y∥2 <

∞, S := infx∈X ∥∇ log pdata(x)∥2 < ∞ and define L := MD + S. Let Dσ(k) : z̃(k) 7→ z
(k)
tw

denote the AC-DC denoiser. Further, assume that the DC steps finite steps J and η(k) ≤ 2σ2
s(k) . Also,

let π(k) = p(zσ(k) |z(k)
ac ) be the stationary target distribution and π̃

(k)
0 be initial distribution used for

the DC at iteration k. Then, the following hold:

(Boundedness) With probability at least 1− 2e−νk , the denoiser Dσ(k) is bounded at each iteration
k i.e. 1

d∥(Dσ(k) − I)(x)∥22 ≤ c2k whenever σ2
s(k) + (σ(k))2 < 1/M, where ck = (σ(k))2(2 +

4
√
νk+4νk)+ 32σ2

s(k)/(1−Mσ2

s(k) ) log 2/νk+C(1−κ)2JW2
2 (π̃

(k)
0 , π(k))+O

(
(η(k))2

)
+4L2σ4

s(k) +

2(σ(k))4L2, 0 < κ < 1, C > 0 and νk > 0.
Let νk = ln 2π2

6η +2 ln k with η ∈ (0, 1]. Consequently, the denoiser Dσ(k) is bounded for all k ∈ N+

with corresponding ck and probability at least 1− η.
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Proof. The proof follows similar as in Theorem 3 by incorporating the effect of finite J in Lemma 16
as done in Lemma 19.

F THEORETICAL RESULTS FOR ODE BASED DENOISER

Refer to the Zhang et al. (2024) for details on ODE based denoiser.

F.1 THEORETICAL RESULTS EQUIVALENT TO THEOREM 2

Lemma 20. Let H(k)
ode : z

(k)
dc 7→ z

(k)
ode denote the projection function using ode based denoiser

(Karras et al., 2022) in Algorithm 1. Then, we have the following∥∥∥(H(k)
ode − I)(x)− (H

(k)
ode − I)(y)

∥∥∥2
2
≤ (ϵ

(k)
ode)

2∥x− y∥22 + δ
(k)
ode

2
(135)

for any x,y ∈ X with (ϵ
(k)
ode)

2 = 2
(∫ 0

t=t
σ(k)

(σ(t)σ′(t)Mt)
2
dt
)

, and δ
(k)
ode

2
= 0.

Proof. Then, the difference of residual of ode projection i.e. R(k)
ode = H

(k)
ode − I can be bounded as∥∥∥R(k)

ode(x)−R
(k)
ode(y)

∥∥∥2
2
=

∥∥∥∥∥
∫ 0

t=t
σ(k)

−σ(t)σ′(t)(∇ log pt(x)−∇ log pt(y))dt

∥∥∥∥∥
2

2

≤2

∥∥∥∥∥
∫ 0

t=t
σ(k)

−σ(t)σ′(t)(∇ log pt(x)−∇ log pt(y))dt

∥∥∥∥∥
2

2

≤2
∫ 0

t=t
σ(k)

(σ(t)σ′(t))
2 ∥(∇ log pt(x)−∇ log pt(y))∥22dt

≤2
∫ 0

t=t
σ(k)

(σ(t)σ′(t))
2
M2

t ∥x− y∥22dt

≤2

(∫ 0

t=t
σ(k)

(σ(t)σ′(t))
2
M2

t dt

)
∥x− y∥22 (136)

Theorem 6. Suppose that the assumptions in Theorem 1, Assumption 2 and Assumption 3 hold.
Further, assume that the step size satisfies η(k) → 0 and the number of iterations J → ∞. Let
Dσ(k) : z̃(k) 7→ z

(k)
tw denote the AC-DC denoiser. Then, we have:

(a) With probability at least 1− 2e−νk , the following holds for iteration k of ADMM-PnP:

∥(Dσ(k) − I)(x)− (Dσ(k) − I)(y)∥22 ≤ ϵ2k∥x− y∥22 + δ2k (137)

for any x,y ∈ X and k ∈ N+ when σ2
s(k) + (σ(k))2 < 1/M with

ϵ2k = 3(
√
2Mσ2

s(k)/1−σ2

s(k)M)2 + 6

∫ 0

t=t
σ(k)

(σ(t)σ′(t))
2
M2

t dt)) (138)

δ2k = 3(2(σ(k))2(d+ 2
√
dνk + 2νk) + 32dσ2

s(k)/(1−Mσ2

s(k) ) log 2/νk). (139)

In other words, if νk = ln 2π/6η + 2nk, the denoiser Dσ(k) satisfies part (a) for all k ∈ N+ with
probability at least 1− η.

(b) Assume that σ(k) is scheduled such that limk→∞(σ(k))2νk = 0 for νk = ln 2π/6η + 2nk, ϵ < 1,
and ϵ/µ(1+ϵ−2ϵ2) < 1/ρ all hold, where ϵ = limk→∞ sup ϵk with ϵk defined in (138). Consequently,
δ = limk→∞ sup δk is finite and ADMM-PnP with the AC-DC denoiser with ode based denoiser
converges to an r-ball (see r in Theorem 1) with probability at least 1− η.

Proof. The proof follow similar to the proof of Theorem 2 in Appendix D.1 with the residual bound
of Tweedie’s lemma replaced by Lemma 20.
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F.2 THEORETICAL RESULTS EQUIVALENT TO THEOREM 3

Lemma 21. Let H(k)
ode : z

(k)
dc 7→ z

(k)
ode denote the projection function using ode based denoiser

(Karras et al., 2022) in Algorithm 1. Assume ∥∇ log pdata(x)∥∞ ≤ L, ∀x ∈ X . Then, we have the
following

1

d

∥∥∥(H(k)
ode − I)(x)

∥∥∥2
2
≤ L2

∫ 0

t=t
σ(k)

(σ(t)σ′(t)2dt (140)

for any x ∈ X .

Proof. Then, the residual of ode projection i.e. R(k)
ode = H

(k)
ode − I can be bounded as∥∥∥R(k)

ode(x)
∥∥∥2
2
=

∥∥∥∥∥
∫ 0

t=t
σ(k)

−σ(t)σ′(t)∇ log pt(x)dt

∥∥∥∥∥
2

2

≤d · L2

∥∥∥∥∥
∫ 0

t=t
σ(k)

−σ(t)σ′(t)dt

∥∥∥∥∥
2

2

≤d · L2

∥∥∥∥∥
∫ 0

t=t
σ(k)

−σ(t)σ′(t)dt

∥∥∥∥∥
2

2

≤d · L2

∫ 0

t=t
σ(k)

(σ(t)σ′(t)2dt (141)

A theorem analogous to Theorem 3 can also be obtained for ODE-based denoiser. The only difference
lies in the expression of the constant ck, which in this case becomes

ck = (σ(k))2(2+4
√
νk+4νk)+ 16σ2

s(k)/1−Mσ2

s(k) log 2/νk+2σ4
s(k)L

2+2L2

∫ 0

t=t
σ(k)

(σ(t)σ′(t)2dt.

G USAGE OF LARGE LANGUAGE MODELS (LLM)

An LLM was used solely to assist with polishing the writing. LLM played no part in the experiments,
results and conclusion.

H EXPERIMENTAL DETAILS

H.1 HYPERPARAMETER SETTINGS

We adopt a linear schedule for σ(k) with range [0.1, 10] over W decay window i.e. σ(k) =
max(0.1, 10− (10− 0.1) · k/W ). The maximal number of iterations for our proposed method is set
to K = W + 10. At iteration k, we use J = 10 DC steps, and the schedules η(k) = 5× 10−4σ(k)

and σs(k) = 0.1/
√
σ(k). We use gradient descent with Adam optimizer (Kingma & Ba, 2015) for

solving each regularized maximum likelihood subproblem (7a). This subproblem is optimized for
maximum of 1000 iterations with convergence detected when the loss value increases more than
∆tol = 1 × 10−1 consecutively for 3 iterations window. We conduct our experiment with two
variants based on the third stage: using Tweedie’s lemma (denoted as “Ours-tweedie”) and a 10-step
ODE based denoiser (Zhang et al., 2024; Karras et al., 2022) (denoted as “Ours-ode”). We use the
preconditioning in Karras et al. (2022) while using the pretrained diffusion models.

H.2 DETAILS ON TASK SPECIFIC DATA-FIDELITY LOSS ℓ

We use mean square error (MSE) as the data-fidelity loss for every task i.e.

ℓ(y||x) = − log p(y|x) = 1

2σ2
n

∥y −A(x)∥22 (142)
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Table 3: Hyperparameter settings for each task

Task ρ W lr of Adam in (7a)

Superresolution (4×) 100 100 3× 10−2

Gaussian Deblur 100 100 5× 10−2

HDR 500 100 3× 10−2

Inpainting (Random) 500 100 1× 10−1

Inpainting (Box) 500 100 1× 10−1

Motion Deblur 100 100 1× 10−1

Nonlinear Deblur 300 400 3× 10−1

Phase Retrieval 100 400 1× 10−1

H.3 DETAILS ON PRETRAINED DIFFUSION MODELS

The pretrained models provided in Chung et al. (2023) are used in our experiment. Refer to Chung
et al. (2023) for more details on these pretrained models.

H.4 BASELINE DETAILS

Unless mentioned otherwise, we conduct the experiments in the default settings of their original
implementation except for maintaining consistency within the measurement operators.

• DDRM (Kawar et al., 2021): We use 20 steps DDIM with η = 0.85 and ηb = 1 as
specified in Kawar et al. (2022).

• DPS (Chung et al., 2023) : The original implementation is ran in their default settings.
• DiffPIR (Zhu et al., 2023): The default settings are adopted in the experiments.
• RED-diff (Mardani et al., 2024): We use λ = 0.25 and lr = 0.5 as specified in the paper.
• DAPS (Zhang et al., 2024): We use the best performing DAPS-4K version as proposed in

the paper.
• DPIR (Zhang et al., 2022): We employ "drunet_color" as PnP denoiser, while keeping all

the other settings at their default values.
• DCDP (Li et al., 2025): All the setttings are set to their default values.
• PMC (Sun et al., 2024): PMC was proposed using different score models for two different

tasks with relatively high measurement SNR. For a fair comparison, we used our own
implementation with the same score model checkpoints as our methods, and further tuned
this method accordingly.

H.5 EVALUATION METRICS

For all the methods, we use the implementation of PSNR, SSIM, and LPIPS provided in piq python
package. The default settings for these metrics are used except the average pooling enabled for
LPIPS.

H.6 COMPUTATION RESOURCE DETAILS

All the experiments were run on a instance equipped with one Nvidia H100 GPU, 20 cores of 2.0
Ghz Intel Xeon Platinum 8480CL CPU, and 64 GB of RAM.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ILLUSTRATION OF PROPOSED DENOISER

Figure 6 illustrates the effect of the proposed correction-denoising procedure. The noisy input
image z̃(k) typically lies far away from the Gaussian noise manifold, leading to poor denoising
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Noisy Image 
𝒛"(")

Corrected Image Denoised Image 
𝐷$(")(𝒛"

("))

Figure 6: Illustration of correction and denoising step in proposed method.

Figure 7: Histogram of score difference norm ratio: ∥∇ log pdata(x2)−∇ log pdata(x1)∥2/∥x1 −
x2∥2, illustrating empirical smoothness (Assumption 2).

performance if directly used. To address this mismatch, our method first performs correction to
effectively gaussianize the noise which is then denoised using Tweedie’s lemma or ode-style score
integration, producing a high-quality clean reconstruction.

I.2 EMPRICIAL VALIDATION OF ASSUMPTION 2 AND ASSUMPTION 3

To assess the practicality of the smoothness and coercivity assumptions used in Theorem 2, we
conduct two diagnostic experiments using a pretrained score model on the validation split of the
FFHQ dataset. These experiments are designed to evaluate (i) the empirical Lipschitz behavior of
the score function ∇ log pdata(x) (Assumption 2), and (ii) the coercivity of the energy landscape
− log pdata(x) (Assumption 3).

Empirical smoothness of the score. We randomly 1000 samples of x1,x2 and compute score
differences ∥∇ log pdata(x1)−∇ log pdata(x2)∥2 and image differences ∥x1−x2∥2. Figure 7 plots
the histogram of their ratio. The distribution concentrates around a finite value (mostly between 50
and 160), indicating that the score behaves approximately M -Lipschitz with a moderate empirical
constant. This supports the smoothness requirement in Assumption 2.

Empirical coercivity. To evaluate coercivity, we scale images by factors c ∈ {1, 1.5, 2, 3} and
measure the quantity ⟨x,−∇ log pdata(x)⟩ as a function of the squared image norm ∥x∥22. As shown
in Figure 8, the inner product grows approximately linearly with ∥x∥22, indicating that the learned
score consistently pulls large-norm images back toward the data manifold. This behavior is consistent
with the coercivity structure assumed in Assumption 3.
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Figure 8: Empirical coercivity test: relationship between ⟨x,−∇ log pdata(x)⟩ and ∥x∥22. The strong
positive correlation indicates coercive energy behavior (Assumption 3).

Together, these empirical diagnostics demonstrate that the theoretical assumptions employed in our
analysis hold approximately in practice and therefore justify the use of DC correction in our AC–DC
algorithm.

I.3 ILLUSTRATION OF USAGE OF ADDITIONAL REGULARIZATION

To further demonstrate the flexibility of integrating diffusion-based PnP denoisers within the ADMM
framework, we present an example where we employ an additional perceptual regularization term
which will be handled in the maximum-likelihood (ML) step. In particular, the x-update step of
ADMM with an LPIPS perceptual regularization (Zhang et al., 2018) becomes:

x(k+1) = argmin
x

1

ρ
ℓ(y∥A(x)) + 1

2
∥x− z(k) + u(k)∥22 + λlpips LPIPSVGG(x,xref), (143)

where xref is the reference image and λlpips controls the perceptual strength.

This example highlights the flexibility of the proposed method: unlike traditional diffusion-based PnP
approaches that struggle in the presence of dual variables, our design enables seamless incorporation
of additional regularization terms. In Fig. 9 we illustrate box inpainting reconstruction task with the
perceptual LPIPS-VGG regularization which enhances semantic content consistency while allowing
visual style transfer from the reference images.

I.4 RESULTS ON ADDITIONAL TASKS

The results on additional two tasks: hdr and nonlinear deblurring are presented in the Table 4.

I.5 ABLATION STUDY

We perform the ablation study on the significance of our proposed correction steps. The results are
presented in the Table 5.

I.6 INFLUENCE OF DECAY SCHEDULE AND NFE EFFICIENCY

In our ADMM-PnP scheme, the size of the decay window for σ(k) determines the total number of
iterations – and thus the speed of convergence. A shorter window (small W ) drives σ(k) down more
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Figure 9: Demonstration of incorporating additional perceptual regularization.

Table 4: Reconstruction metrics (100 images) on FFHQ / ImageNet for additional tasks. Bold: best,
blue: 2nd best.

FFHQ ImageNet

Task Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HDR

Ours–tweedie 27.425 0.853 0.164 26.515 0.817 0.182
DAPS 26.94 0.852 0.154 26.848 0.816 0.172
RED-diff 26.815 0.836 0.241 20.794 0.771 0.232
PMC 21.582 0.707 0.291 22.745 0.707 0.290

Nonlinear Deblur

Ours–tweedie 29.326 0.823 0.185 27.837 0.725 0.212
DAPS 28.598 0.782 0.172 27.745 0.739 0.201
DPS 23.746 0.668 0.276 22.724 0.543 0.394
RED-diff 26.9 0.72 0.234 25.488 0.72 0.207
PMC 21.102 0.0623 0.354 22.347 0.533 0.430

Table 5: Comparison of our method with and without correction on FFHQ. Best results are highlighted
in bold.

Ours-tweedie without correction Ours-tweedie with correction

Tasks PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Superresolution (4x) 26.915 0.730 0.314 30.439 0.857 0.178
Gaussian Blur 28.896 0.788 0.275 30.402 0.853 0.175
Inpainting (Box) 15.604 0.617 0.361 24.025 0.859 0.131
Motion Deblur 25.123 0.538 0.370 30.003 0.854 0.179
Nonlinear Deblur 21.731 0.561 0.375 29.326 0.823 0.185
Phase Retrieval 11.978 0.181 0.726 27.944 0.793 0.209

quickly, often reaching convergence in fewer steps but at the risk of settling in a suboptimal local
minimum.

To study this trade-off, we sweep

W ∈ {5, 10, 50, 100, 200, 300, 400, 500}
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Figure 10: Performance with respect to NFE for Superresolution task (FFHQ)
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Figure 11: Performance with respect to NFE for Gaussian deblurring task (FFHQ)
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Figure 12: Performance with respect to NFE for Inpainting with random missings (FFHQ)

for each task. Since each iteration of Ours-tweedie uses 11 score evaluations (10 for the DC update
and 1 for the Tweedie’s lemma based denoiser), these W value translate to

Number of Function Evaluations (NFE) = {55, 110, 550, 1100, 2200, 3300, 4400, 5500}

By contrast, each Ours-ode iteration costs 20 NFEs, giving

Number of Function Evaluations (NFE) = {100, 200, 1000, 2000, 4000, 6000, 8000, 10000}

Figures 10-15 plot mean±std. (standard deviation) performance of our methods and all baselines
against NFE over 100 images of FFHQ dataset. For most tasks, quality saturates after just 10
iterations (110 NFE for Ours-tweedie, 200 NFE for Ours-ode), showing a rapid decay schedule
suffices to achieve near-peak results. However, on the hardest inverse problems (phase retrieval
and nonlinear blur), gradually decaying noise (larger W ) and more NFEs yield significantly better
reconstructions–far outpacing every baseline. Thus, while aggressive schedules excel on simple tasks,
challenging problems benefit from extended iteration and gentler annealing; given enough NFEs, our
approach establishes state-of-the-art performance across most of the tasks.

I.7 MORE QUALITATIVE RESULTS
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Figure 13: Performance with respect to NFE for Inpainting with box missing (FFHQ)
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Figure 14: Performance with respect to NFE for Motion blur (FFHQ)
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Figure 15: Performance with respect to NFE for Phase retrieval (FFHQ)
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Figure 16: Recovery under 4× superresolution task on FFHQ

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Original

Measurement

Ours-tweedie

Ours-ode

DAPS

DDRM

DiffPIR

DPS

Figure 17: Recovery under inpainting with random missings on FFHQ
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Figure 18: Recovery under motion blur task on FFHQ
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