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Abstract
We introduce “representative generation,” extend-
ing the theoretical framework for generation pro-
posed by Kleinberg et al. (2024) and formalized
by Li et al. (2024), to additionally address diver-
sity and bias concerns in generative models. Our
notion requires outputs of a generative model to
proportionally represent groups of interest from
the training data. We characterize representative
uniform and non-uniform generation, introducing
the “group closure dimension” as a key combina-
torial quantity. For representative generation in
the limit, we analyze both information-theoretic
and computational aspects, demonstrating feasi-
bility for countably infinite hypothesis classes and
collections of groups under certain conditions, but
proving a negative result for computability using
only membership queries. This contrasts with
Kleinberg et al.’s (2024) positive results for stan-
dard generation in the limit. Our findings provide
a rigorous foundation for developing more diverse
and representative generative models.

1. Introduction
For decades, a central paradigm in machine learning has
been prediction, where models are trained to map input data
to specific output variables or categories. This approach en-
compasses tasks such as classification and regression, where
the goal is to accurately estimate outcomes based on given
inputs. However, recent years have seen a significant shift
toward generative models, such as Large Language Mod-
els (LLMs) and diffusion-based image generators. These
models are designed not to predict specific outcomes, but to
create new data that resembles their training sets, offering a
different approach to machine learning tasks.

This shift towards generative models necessitates the devel-
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opment of new theoretical frameworks to rigorously analyze
their performance, capabilities, and limitations. Recently,
Kleinberg & Mullainathan (2024) proposed a theoretical
framework that encapsulates the fundamental objective of
generative models: after being shown a sequence of strings
from an unknown target language (such as all valid code
snippets in java), generate new, unseen strings from the
target language. Informally, we say that a model satisfies
generation in the limit if it achieves this goal after seeing a
finite number of strings from the target language. Kleinberg
& Mullainathan (2024) showed that generation in the limit
is indeed possible in many scenarios, such as whenever the
class of potential target languages is countable, contrasting
to classic negative results by Gold and Angluin on identifi-
cation, which tell us that no model can identify the target
language from a sequence of strings for most natural classes
of languages (1967; 1979; 1980). This positive result for the
task of language generation has spurred a flurry of follow-
up works further formalizing the landscape of generation
tasks and understanding the limits of when generation is
possible (Li et al., 2024; Kalavasis et al., 2024b; Charikar &
Pabbaraju, 2024; Kalavasis et al., 2024a).

While these recent results have demonstrated the possibility
of successful generation, a concern remains that models that
successfully generate in the limit may do so by generating
from a restricted subset of the true language. For instance,
consider an image generator trained on a diverse set of ani-
mal pictures. If this model were to produce only new images
of cats, it would technically satisfy the criteria for generation
in the limit, yet fail to capture the full diversity of the true
target set of animal pictures. In the spirit of this example,
it is not hard to imagine real-life concerns about the usage
of LLMs and other generative models. Training data often
includes text or images representing diverse groups, char-
acterized by ethnicity, race, gender, and other protected at-
tributes. However, the mere presence of diverse data doesn’t
guarantee diverse outputs. Beyond demographics, it’s es-
sential to ensure that generators intended for widespread
use accurately reflect the diverse perspectives found across
various communities. Ensuring proportional representation
in a generator’s outputs can significantly enhance its utility,
enabling it to accurately reflect the diverse trends, themes,
and ideological perspectives present in human discourse,
rather than producing homogeneous responses.
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This theoretical concern mirrors practical challenges ob-
served in real-world generative models. One significant
issue is the potential for these models to exacerbate biases
present in their training data, leading to unfair representation
across different demographic groups (Sheng et al., 2019;
Bender et al., 2021; Kirk et al., 2021; Sheng et al., 2021;
Mei et al., 2023; Gallegos et al., 2024; Zhou et al., 2024).
Beyond fairness considerations, models that fail to capture
the diversity of their data reduce their effectiveness and prac-
tical value. This reduced diversity is commonly observed
in generative models and referred to as “mode collapse,” in
which a learned model focuses only on a limited subset of
the true data distribution (Arjovsky et al., 2017; Goodfellow
et al., 2020; Thanh-Tung & Tran, 2020; Wang et al., 2024).

In this work, we introduce a new definition of generation
that protects against these concerns that we term representa-
tive generation. Rather than generating a single element at
each step, a representative generator generates a distribution
over multiple elements at each step. In addition to the now
standard requirement that a generator must eventually be
consistent, i.e. the distribution must be supported on new
elements from the true language, we additionally require
that all of the generator’s outputted distributions be repre-
sentative, meaning that for each group in a set of groups-
of-interest, the proportion of elements from that group seen
in the training sequence thus far must be close to the prob-
ability that the generator outputs a member of that group.
Coming back to our animal example, if our training data
stream consisted of 1/3 cats, 1/3 dogs, and 1/3 rabbits, then
a representative generator with respect to groups specified
by animal species could not get away with only generating
cats, but would be required to generate a roughly even mix
of cats, dogs, and rabbits.

We provide a detailed discussion of related notions and
additional related work in Appendix A.

1.1. Main Contributions

The loose goal of “eventually generating consistently” has
been taxonomized by prior works into a hierarchy of three
notions of generation. The weakest is Kleinberg & Mul-
lainathan (2024)’s generation in the limit (Definition 2.12),
followed by the stronger notions of non-uniform genera-
tion and uniform generation introduced by Li et al. (2024)
(Definitions 2.11 and 2.10, respectively).

Our results consider the feasibility of representative gen-
eration with respect to all three goals. For uniform and
non-uniform generation, we focus on information-theoretic
bounds, analogous to sample complexity results in learning
theory, without considering computational efficiency. This
approach is motivated by the recent barrier to efficiently
computable non-uniform generators identified by Charikar
& Pabbaraju (2024). For the weaker objective of representa-

tive generation in the limit, we analyze feasibility from both
information-theoretic and computational perspectives. We
prove a strong negative result, demonstrating the impossibil-
ity of achieving representative generation in the limit using
only membership queries.

We give a brief overview of our main contributions below.

Formalizing Representative Generation. We propose a
new property of generators termed representative genera-
tion. This property ensures that at each timestep, a genera-
tor’s outputs closely approximate the proportions of training
data across a collection of groups A ⊆ 2X . Our definition
extends the formal model of generation by Kleinberg &
Mullainathan (2024), providing a rigorous framework to
understand and address several real-world concerns related
to generative models that we highlight below.

First, representative generation can guarantee accurate pro-
portional representation of community opinions and per-
spectives found in the training data. This is crucial for
maintaining the diversity of viewpoints present in the origi-
nal dataset. Second, when the training data is highly diverse
across the set of groups-of-interest, the generator’s outputs
must also exhibit high diversity. This feature protects against
mode collapse and offers a tractable relaxation to existing
notions of generation with breadth, which we discuss further
in Appendix A.

Representative generation can also be viewed as a theoreti-
cal operationalization of some aspects of “alignment,” the
process of fine-tuning generative models to conform with
societal and use-specific values. Imagine feeding a repre-
sentative generator a gold-standard distribution of data that
encapsulates a practitioner’s values and diverse opinions.
Unlike standard generators, which may learn to produce
correct outputs but offer no guarantees about maintaining
alignment with the input data distribution, representative
generators are designed to both generate accurate outputs
and preserve the distribution of values and perspectives
found in the alignment data. This approach ensures that the
model remains faithful to the intended balance of viewpoints
and opinions, even as it generates novel content.

Representative Uniform Generation. We give a char-
acterization of which pairs of hypothesis classes H and
collections of groups A satisfy representative uniform gen-
eration, assuming the groups in A form a partition of X . We
characterize the representative uniform generatability of a
pair (H,A) by a new combinatorial quantity that we term
the group closure dimension (Definition 3.1):

Theorem 1.1 (Informal Statement of Theorem 3.3). A hy-
pothesis class H and countable partition A can be uniformly
generated with representation if and only if the group clo-
sure dimension of (H,A) is finite.
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We instantiate this result in Corollary 3.5, where we show
that any finite hypothesis class H and finite partition A can
satisfy representative uniform generation. This corollary
can be compared with Theorem 2.2 of Kleinberg & Mul-
lainathan (2024), who show that any finite H is uniformly
generatable (without concern for representation).

While one might wonder if requiring representation with
respect to only a finite collection of groups is always as easy
as uniform generation without representation, we provide a
counterexample to this conjecture in Corollary 3.6, in which
we provide an example of a class H that is uniformly gener-
atable, but cannot satisfy representative uniform generation
with respect to a partition A containing just two disjoint
groups.

Representative Non-Uniform Generation. We next con-
sider the slightly weaker notion of representative non-
uniform generation, and also give a characterization of
which pairs of hypothesis classes and collections of disjoint
groups can satisfy non-uniform generation with representa-
tion.

Theorem 1.2 (Informal Statement of Theorem 3.7). A hy-
pothesis class H and countable partition A can be non-
uniformly generated with representation if and only if there
exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆
· · · such that H =

⋃∞
i=1 Hi and (Hi,A) is uniformly gen-

eratable with representation for all i ∈ N.

We pair this characterization with a practical instantiation
in Corollary 3.8, in which we show that all countable H
and finite partitions A satisfy representative non-uniform
generatability.

Representative Generation in the Limit. Finally, we
consider the weakest notion of generation: representative
generation in the limit. As all previous possible results also
apply to this weaker setting, the results of the preceding
sections already establish that any countable H and finite
collection of disjoint groups A can be generated in the limit
with representation. We show that the requirement that A be
finite and disjoint can be significantly relaxed when we only
require generation in the limit. In particular, in Theorem 4.4,
we show that any countable collection of (possibly overlap-
ping) groups and countable H satisfying an assumption we
term the finite support assumption (Definition 4.2) can be
generated with representation in the limit.

We show that this finite support assumption is necessary, and
in Lemma 4.3 give an example of a finite H and countable
set of disjoint groups A that cannot satisfy representative
generation in the limit.

We finally turn to computability, and show a negative result:

Lemma 1.3 (Informal Statement of Lemma 4.9). No gener-

ator can satisfy representative generation in the limit for all
finite H and A, and during each timestep use only a finite
number of membership queries of the form “x ∈ supp(h)?”
or “x ∈ A?” for various h ∈ H and A ∈ A.

The impossibility contrasts with a positive result of Klein-
berg & Mullainathan (2024), who show that generation in
the limit (without representation) is possible with only a
finite number of membership queries at each timestep.

2. Preliminaries
We consider a countable example space X , and associate
with X a hypothesis class H ⊆ {0, 1}X . Any particular
h ∈ H can be thought of as an indicator for a valid element
of X when h(x) = 1. In the context of languages, h denotes
a language with h(x) = 1 when x is a valid string in that
language.

We define the support of a hypothesis h to be the set of all
valid elements of X according to h, denoted supp(h) :=
{x ∈ X : h(x) = 1}. We will also sometimes reference
the support of a distribution µ ∈ ∆X , where supp(µ) :=
{x ∈ X : µ(x) > 0} refers to the set of elements that are
drawn from the distribution with positive probability. An
enumeration of supp(h) is any infinite sequence x1, x2, ...
such that

⋃
i∈N{xi} = supp(h).

We will make the following assumption about hypothesis
classes throughout.

Assumption 2.1 (Uniformly Unbounded Support (UUS)).
A hypothesis class H ⊆ {0, 1}X satisfies the Uniformly
Unbounded Support (UUS) property if |supp(h)| = ∞ for
every h ∈ H.

Going beyond the standard model of generation that has
been considered in prior works, we also endow the space
X with a countable set of (possibly overlapping) groups-of-
interest A ⊆ 2X . We assume that X ⊆

⋃
A∈A A, though

this is without loss of generality because any A can be al-
tered to satisfy this by adding a single group to the collection
corresponding to the complement of the union of all existing
groups.

Our results on representative uniform and non-uniform gen-
eration presented in Section 3 focus on the special case
where A forms a partition of X :

Definition 2.2 (Countable Partition). Let X be any count-
able example space. Then, A := {A1, A2, . . . } is a count-
able partition of X if and only if the following two con-
ditions hold: (1) Ai ∩ Aj = ∅ for all i ̸= j and (2)⋃∞

i=1 Ai = X .

We introduce two operators that will be useful for notation
throughout. Note that we occasionally denote a finite se-
quence x1, ..., xn by x1:n, and use |{x1, ..., xn}| to denote
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the number of unique elements in x1:n.
Definition 2.3 (Set of Consistent Hypotheses). For any
finite sequence of samples x1:n and hypothesis class H, we
define notation for the set of hypotheses consistent with the
sample: H(x1:n) := {h ∈ H : {x1:n} ⊆ supp(h)}.
Definition 2.4 (Closure). Given a class H and finite se-
quence of samples x1, ..., xn, define the closure operator
as the set of samples consistent with every hypothesis in
H(x1, ..., xn):

⟨x1, ..., xn⟩H :=

{⋂
h∈H(x1:n)

supp(h), if |H(x1:n)| ≥ 1

⊥, if |H(x1:n)| = 0.

2.1. Generators

In this paper, we will consider randomized generators. A
randomized generator is a map G : X ⋆ → ∆X . Note that by
definition, randomized generators output distributions over
examples. Given a finite sequence of examples x1, . . . , xt

and a randomized generator G, one can always obtain a new
example by sampling x̂t ∼ G(x1, . . . , xt). By allowing our
generators to output distributions over examples, we can
measure “representation” by comparing how close a dis-
tribution’s induced group probabilities are to the empirical
probabilities of the groups in the stream. To formalize this,
we need a few more definitions, starting with induced group
probabilities and group empirical probabilities.
Definition 2.5 (Induced Group Probabilities). Given a
distribution µ ∈ ∆X and countable family of groups
A = {A}i∈N, let µ|A denote µ’s induced probabilities
over A such that for any group i ∈ N, we have that
µ|A(i) := Prx∼µ [x ∈ Ai] .

Observe that for any countable partition A = {Ai}i∈N and
µ ∈ ∆X , µ|A is a probability distribution. If A is not a
partition, the probabilities in µ|A may sum to more than 1.
Definition 2.6 (Empirical Distribution and Group Empir-
ical Probabilities). Let x1, . . . , xt be a finite sequence of
examples, and x⋆

1, . . . x
⋆
m denote its subsequence of unique

examples. The empirical distribution of unique examples in
x1, . . . xt is denoted by x1:t. In particular, for every x ∈ X ,
we have x1:t(x) := 1

m

∑m
j=1 1{x⋆

j = x}. Given a count-
able collection of groups A = {Ai}i∈N, the group empirical
probabilities of the unique examples in x1, . . . , xt with re-
spect to A are defined analogously as the induced group
probabilities of the empirical distribution and denoted by
x1:t|A.

The final ingredient is a measure of closeness between the
induced group probabilities of the output of a randomized
generator and the empirical group probabilities:
Definition 2.7 (Supremum Distance). Given two vectors
π1, π2 ∈ [0, 1]N define their supremum distance as ||π1 −
π2||∞ := maxi∈N |π1(i)− π2(i)|.

Our choice to focus on the supremum distance draws di-
rectly on the foundational principles established in algorith-
mic fairness literature, which emphasizes the importance
of limiting the error experienced by the worst-off group.
This perspective prioritizes ensuring good representation for
every group rather than merely optimizing for average per-
formance. The supremum distance naturally operationalizes
this principle by measuring the maximum disparity across
all groups, effectively placing an upper bound on the error
that any group might experience.

It’s worth noting that for finite group settings, different
choices of distance measures (L1 or L2 distance) are
typically within constant factors of one another, making
the specific choice less critical. However, as we move
to settings with infinite groups, these equivalences break
down—distance measures such as L1 become less infor-
mative, potentially obscuring significant disparities among
individual groups.

While we selected the supremum distance for its robust guar-
antees from an algorithmic fairness perspective, exploring
representation guarantees under alternative distance metrics
is certainly an interesting direction for future research.

Finally, we are now able to rigorously define what it means
to be α-representative.

Definition 2.8 (α-Representative Generator). A randomized
generator is α-representative with respect to a countable
collection of groups A if for every stream of examples
x1, x2, . . . and for all t ∈ N, we have that ||G(x1:t)|A −
x1:t|A||∞ ≤ α.

On its own, α-representativeness is trivial to achieve –
given any collection of groups A and any finite sequence
x1, . . . , xt, one can always output exactly the empirical
distribution, x1:t. Thus, our goal will be to satisfy represen-
tation in addition to existing definitions of correctness for
generation, as defined in Section 2.2.

2.2. Representative Generation

In this section, we introduce several notions of representa-
tive generatability for a tuple (H,A), each varying in the
amount of distinct examples that an α-representative gener-
ator can observe before it needs to “succeed.” In our setting,
a α-representative generator “succeeds” if it is eventually
“consistent.” Formally, given an α-representative genera-
tor G, a hypothesis h ∈ H, and any stream x1, x2, · · · ⊆
supp(h), we say that G is consistent from time point t ∈ N,
if for all s ≥ t:

Pr
x̂s∼G(x1:s)

[x̂s ∈ supp(h) \ {x1, . . . , xs}] = 1.

We note that generators are allowed some initial inconsistent
outputs, provided they eventually achieve consistency. In
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contrast, outputs must be representative of the data stream
at every timestep. Thus, our definition implicitly prioritizes
group representation over correctness in generation during
initial timesteps. While consistency cannot always be ver-
ified, it is possible to construct and verify a representative
distribution at each time step. This makes it reasonable to
require representation throughout, and less reasonable to
favor potentially consistent but verifiably unrepresentative
alternatives. However, understanding the tradeoffs between
representation and consistency is an interesting direction of
future research.

Given our definitions of consistency and representativeness,
we are now ready to introduce the strongest form of rep-
resentative generatability – α-representative uniform gen-
eratability. Roughly speaking, α-representative uniform
generatability requires that the amount of unique examples
that G needs to observe before being consistent should be
uniform over all h ∈ H and streams x1, x2, · · · ⊆ supp(h).

Definition 2.9 (α-Representative Uniform Generatability).
Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property and A = {Ai}i∈N be any collection of
groups over X . Then, (H,A) is α-representatively uni-
formly generatable if there exists an α-representative gen-
erator G and d⋆ ∈ N, such that for every h ∈ H and
any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h), if
there exists t⋆ ∈ N where |{x1, . . . , xt⋆}| = d⋆, then G is
consistent from t⋆.

A tuple (H,A) is then representatively uniformly gener-
atable if it is α-representatively uniformly generatable for
every α ∈ (0, 1].

Definition 2.10 (Representative Uniform Generatability).
Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property and A = {Ai}i∈N be any collection of
groups over X . Then, (H,A) is representatively uniformly
generatable, if (H,A) is α-representatively uniformly gen-
eratable for every α ∈ (0, 1].

Representative uniform generatability is a strong property
as it requires the sample complexity (i.e. number of distinct
examples before consistency is achieved) to be uniform over
all choices of the adversary. We can weaken the definition by
allowing the sample complexity to depend on the hypothesis,
but still be uniform over all possible streams of examples
the adversary might pick. This leads to our next notion of
representative non-uniform generatability.

Definition 2.11 (Representative Non-uniform Generatabil-
ity). Let H ⊆ {0, 1}X be any hypothesis class satisfying
the UUS property and A = {Ai}i∈N be any countable col-
lection of groups over X . Then, (H,A) is representatively
non-uniformly generatable, if for every α > 0 there exists
an α-representative generator G, such that for every h ∈ H,
there exists a d⋆ ∈ N such that for any sequence x1, x2, . . .

with {x1, x2, . . . } ⊆ supp(h), if there exists t⋆ ∈ N where
|{x1, . . . , xt⋆}| = d⋆, then G is consistent from t⋆.

Finally, we can weaken the requirements even further by
allowing the sample complexity to depend on both the hy-
pothesis and stream selected by the adversary.

Definition 2.12 (Representative Generation in the Limit).
Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property and A = {Ai}i∈N be any countable collec-
tion of groups over X . Then, (H,A) is representatively
generatable in the limit, if for every α > 0 there exists an
α-representative generator G such that for every h ∈ H and
any enumeration x1, x2, ... of supp(h), there exists t⋆ ∈ N
such that G is consistent from t⋆.

We remark that our notions of generatability are direct
analogs of those from Li et al. (2024) with an additional
representation requirement.

3. Characterizations of Representative
Uniform and Non-uniform Generation

In this section, we focus on characterizing representative
uniform and non-uniform generatability. In light of the com-
putational barriers for uniform and non-uniform generation
established by Charikar & Pabbaraju (2024), our characteri-
zation is information-theoretic in nature. Moreover, we will
only consider collections of groups A which are countable
partitions of X . This is still a very general setting, capturing
problems like animal image generation, where one consid-
ers groups based on class. We leave the characterization
of representative uniform and non-uniform for overlapping
collections of groups as future work.

3.1. Representative Uniform Generation

Our starting point is representative uniform generation. In
order to characterize which classes are representatively uni-
formly generatable, we extend the Closure dimension from
Li et al. (2024) to account for the group-constraints induced
by A. To do so, we define a new scale-sensitive dimension,
termed the Group Closure dimension, which accounts for
the complexity induced by both H and A.

Definition 3.1 (Group Closure dimension). Let H ⊆
{0, 1}X be any hypothesis class satisfying the UUS prop-
erty and A = {Ai}i∈N be any countable partition of X .
The Group Closure dimension of (H, A) at scale α > 0,
denoted GCα(H,A), is the largest natural number d ∈ N
for which there exists distinct x1, . . . , xd ∈ X such that
⟨x1, . . . , xd⟩H ̸= ⊥ and either (1) maxi∈S x1:d|A(i) > α
or (2) α|N/S| <

∑
i∈S x1:d|A(i), where S := {i ∈ N :

⟨x1, . . . , xd⟩H ∩Ai \ {x1, . . . , xd} = ∅}. If this is true for
arbitrarily large d ∈ N, then we say that GCα(H,A) = ∞.
On the other hand, if this is not true for d = 1, we say that
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GCα(H,A) = 0.

Remark 3.2. Our definition of the Group Closure dimen-
sion is for countable groups A = {Ai}i∈N. One can de-
fine the Group Closure dimension for finite groups A =
{Ai}i∈[K] by modifying the definition of S and condi-
tion (2) in the following way. Define S := {i ∈ [K] :
⟨x1, . . . , xd⟩H ∩ Ai \ {x1, . . . , xd} = ∅} and then change
(2) to α(K − |S|) <

∑
i∈S x1:d|A(i). We will use this

modified definition when proving Corollary 3.5.

At a high-level, for any given error tolerance α > 0, one
should interpret GCα(H,A) as the minimal number of dis-
tinct examples that a generator needs to see before it is
guaranteed a winning strategy with respect to error level α
(i.e. one that is both consistent and α-representative). In-
deed, as we will show in this section, GCα(H,A) provides
a precise quantitative bound on the sample complexity of
representative uniform generation for (H,A). We highlight
that unlike the Closure dimension, the Group Closure di-
mension depends on both H and A and is scale-sensitive
and defined for every α > 0. Scale-sensitive combinato-
rial dimensions are not new to learning theory, and have
also been defined to characterize learnability for regression
problems (Bartlett et al., 1994; Rakhlin et al., 2015).

Our first result in this section shows that for every α > 0,
the finiteness of GCα(H,A) provides a qualitative charac-
terization of α-group constrained generatability.
Theorem 3.3 (Characterization of α-Representative Uni-
form Generatability). Let X be countable, H ⊆ {0, 1}X
be any class satisfying the UUS property, and A =
{Ai}i∈N be any countable partition of X . Then, (H,A)
is α-representatively uniformly generatable if and only if
GCα(H,A) < ∞.

An immediate consequence of Theorem 3.3 is a characteri-
zation for representative uniform generatability.
Corollary 3.4 (Characterization of Representative Uniform
Generatability). Let X be countable, H ⊆ {0, 1}X be any
class satisfying the UUS property, and A = {Ai}i∈N be any
countable partition of X . Then, (H,A) is representatively
uniformly generatable if and only if GCα(H,A) < ∞ for
all α > 0.

Our proof of Theorem 3.3 is constructive. In particular,
to show that the finiteness of GCα(H,A) is necessary, we
first assume that GCα(H,A) = ∞. Then, for every gen-
erator G, we explicitly choose a hypothesis h ∈ H and
construct a valid stream of examples x1, x2, · · · ⊆ supp(h)
such that G eventually violates either consistency or α-
representativeness. In fact, if GCα(H,A) = d, a simple
adaption of our proof shows that for any generator G, there
exists a hypothesis h ∈ H and a valid stream of exam-
ples x1, x2, · · · ⊆ supp(h) such that G violates either con-
sistency or α-representativeness after observing d distinct

examples. To prove that the finiteness of GCα(H,A) is suf-
ficient, we construct an α-representative generator G which
satisfies consistency after observing GCα(H,A)+1 distinct
examples. Unlike uniform generation without representa-
tion, our generator G for representative uniform generation
computes closures at every time point t ∈ N. Combining
both the necessary and sufficient directions shows that not
only does the finiteness of GCα(H,A) characterize α-group
constrained uniform generation, but also that the optimal
sample complexity is exactly Θ(GCα(H,A)). We defer the
full proof of Theorem 3.3 to Appendix C.1.

Another important consequence of Theorem 3.3 is its im-
plications on representative uniform generation for finite H
and A. Our next result uses the Group Closure dimension
and Theorem 3.3 to show that all tuples (H,A) where both
H and A are finite are representative uniform generatable.
The full proof can be found in Appendix C.2

Corollary 3.5 (All Finite Classes and Finite Partitions are
Representatively Uniformly Generatable). Let X be count-
able, H ⊆ {0, 1}X be any finite class satisfying the UUS
property, and A = {Ai}i∈K be any finite partition of X .
Then, (H,A) is representatively uniformly generatable.

As we will show in Lemma 4.3, the finiteness of A is in
a weak sense necessary for Corollary 3.5 to hold – if A
is allowed to be countably infinite in size, there exists a
hypothesis class of size one that is not even generatable in
the limit with representation! Nevertheless, even when A is
finite, representative uniform generation is still harder than
(unrepresentative) uniform generation as evidenced by the
following Corollary, which we prove in Appendix C.3.

Corollary 3.6 (Representative Uniform Generation ̸= Uni-
form Generation). Let X be countable. There exists a
countable, UUS class H ⊆ {0, 1}X and a finite partition
A = {Ai}i∈[K] of X such that H is uniformly generatable
but (H,A) is not representatively uniformly generatable.

In fact, Corollary 3.6 shows something stronger – there
are trivially uniformly generatable classes which are not
representatively uniformly generatable with just two groups.
This brittleness of generatability when forced to satisfy both
consistency and representation is not unique to our notion
of diversity, but also shown by existing work on generation
with breadth (Kalavasis et al., 2024b; Charikar & Pabbaraju,
2024; Kalavasis et al., 2024a).

3.2. Representative Non-uniform Generation

We now proceed to give a characterization of representa-
tive non-uniform generation. Recall that for non-uniform
generation, we allow the sample complexity (i.e., the num-
ber of distinct examples needed before consistency) of the
generator to depend on the hypothesis chosen by the adver-
sary, but not the stream. Similar to the characterization of
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non-uniform generatability from Li et al. (2024) without
representation constraints, our main result in this section
provides a characterization of representative non-uniform
generation in terms of representative uniform generation.

Theorem 3.7 (Characterization of Representative Non-uni-
form Generatability). Let X be countable, H ⊆ {0, 1}X be
any class satisfying the UUS property, and A = {Ai}i∈N
be any countable partition of X . Then, (H,A) is represen-
tatively non-uniformly generatable if and only if for every
α > 0, there exists a non-decreasing sequence of classes
H1 ⊆ H2 ⊆ · · · such that H =

⋃∞
i=1 Hi and (Hi,A) is

α-representative uniformly generatable ∀ i ∈ N.

The proof of Theorem 3.7 is similar to the proof of Theorem
3.5 in Li et al. (2024), hence we defer the details to Appendix
C.4. We instantiate Theorem 3.7 with Corollary 3.8 to show
that every tuple (H,A) where H is countably infinite and
A is finite is representatively non-uniformly generatable.
The proof of Corollary 3.8 is in Appendix C.5. Like for
representative uniform generation, the finiteness of A is, in
a weak sense, necessary for Corollary 3.8 to hold.

Corollary 3.8 (All Countable Classes and Finite Partitions
are Representatively Non-uniformly Generatable). Let X
be countable, H ⊆ {0, 1}X be any countably infinite class
satisfying the UUS property, and A = {Ai}i∈K be any
finite partition of X . Then, (H,A) is representatively non-
uniformly generatable and hence, also representatively gen-
eratable in the limit.

4. Representative Generation in the Limit
We finally consider the weakest definition of successful gen-
eration: generation in the limit. As per Definition 2.12, this
requires a generator to output a distribution representative of
the data stream at each timestep, and after some finite point
in time, all outputs must be consistent with the true lan-
guage. We note that as the weakest notion of generation, all
positive results from Section 3 for uniform and non-uniform
representative generatability apply to representative gener-
atability in the limit. Notably, Corollary 3.8 implies that
any countably infinite H can be generated in the limit with
representation for any finite partition A of X .

In this section, we prove that relaxing to representative
generatability in the limit expands the set of feasible A’s
in two ways: (1) allowing overlapping groups instead of
disjoint partitions, and (2) permitting countably infinite sets
of groups under a finite support assumption (defined below).
We maintain that X ⊆

⋃
i∈N Ai.

Definition 4.1 (Finite Support Size). For any hypothesis
h : X → {0, 1} and collection of possibly overlapping
groups A, we define h’s finite support size with respect to

A as

fh,A =
∑
S⊆A,

|
⋂

A∈S A∩supp(h)|<∞

∣∣∣ ⋂
A∈S

A ∩ supp(h)
∣∣∣.

In other words, the total size of all arbitrary intersections
with a subset of groups in A and the support of h. Note
that in the case of disjoint groups, this quantity simplifies
to the number of individuals in supp(h) that are members
of groups that have finite intersection with supp(h). While
any finite collection of groups A will always satisfy the
finite support assumption, this is not the case for countably
infinite sets of groups. A simple example of a collection of
groups that does not satisfy the assumption is any infinite
collection of groups where the size of every group is finite,
such as the collection of all singletons A = {{x} : x ∈ X},
or the collection defined in the proof of Lemma 4.3.
Definition 4.2 (Hypothesis Class with Finite Support). We
say that a hypothesis class H has finite support with respect
to a collection of groups A if for every h ∈ H, fh,A < ∞.

While ideally we could show that all classes of countable
groups can be generated in the limit with representation
without any additional assumptions, the following lemma
shows that this finite support assumption is crucially neces-
sary for generatability with representation.
Lemma 4.3 (Necessity of Finite Support). There exists a
countably infinite partition of X , A, and a finite hypothesis
class H with |H| = 1 that is not generatable in the limit
with representation for any 0 < α < 1.

The proof of Lemma 4.3 can be found in Appendix D.1.
We contrast this impossibility result with a strong positive
result: any countable H and countable, possibly overlapping
A satisfying the finite support assumption can be generated
in the limit with representation.
Theorem 4.4. Let X be countable, H ⊆ {0, 1}X be any
countable class satisfying the UUS property, and A =
{Ai}i∈N a countable collection of possibly overlapping sub-
sets of X such that H has finite support with respect to A.
Then, (H,A) is representative generatable in the limit.

Before providing the proof in full, we provide a sketch
of the main ideas. In Kleinberg & Mullainathan (2024),
the generator they provide to generate in the limit uses the
notion of a critical hypothesis:
Definition 4.5 (Critical Hypothesis). Given an enumeration
of H, h1, h2, ..., we say that a hypothesis hn is critical at
step t if n ≤ t, hn is consistent with the samples seen thus
far, i.e. {x1, ..., xt} ⊆ supp(hn), and for every i < n with
{x1, ..., xt} ⊆ supp(hi), we have supp(hn) ⊆ supp(hi).

Given any countable H, the generator constructed by Klein-
berg & Mullainathan (2024) works as follows: at time step t
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the generator finds the critical hypothesis hj with the largest
index j ≤ t, and outputs an arbitrary unseen element from
that hypothesis’s support. The correctness of their algorithm
follows from a key property of the true language:

Lemma 4.6 (Kleinberg & Mullainathan (2024), Claim 4.3).
Given any countable H = {h1, h2, ...} and enumeration
x1, x2, ... of some h ∈ H, there exists a timepoint t ∈ N
such that h is critical for all timesteps s ≥ t.

By the definition of a critical language, if h is critical, then
the critical hypothesis hj with the largest index at step t
must satisfy supp(hj) ⊆ supp(h). Thus, any point output
by the generator after step t must be consistent, as it comes
from a subset of the true language.

While sufficient for generating in the limit, this last line
of reasoning exposes an obstacle in satisfying group rep-
resentation: while hj is guaranteed to be a subset of the
true hypothesis’s support, supp(hj) could consist of only
elements from a single group, even if the true hypothesis’s
support and the data stream thus far are more diverse. Thus,
we will need to ignore some critical hypotheses that do
not allow the possibility of representative generation. We
define a feasible hypothesis to be an h that admits a distri-
bution over its unseen elements that approximates the group
proportions in the empirical distribution:

Definition 4.7 (Feasible Hypothesis). Given a hypothesis
hi ∈ H, we say that a hi is α-feasible at step t if there
exists a distribution µ over unseen data points in supp(hi) \
{x1, ..., xt} such that ∥µ|A − x1:t|A∥∞ ≤ α.

Note that even the true hypothesis h may not be α-feasible
at a given timestep. However, like criticality, we can show
that there exists a timestep d ∈ N such that for all s ≥ d, h
must be feasible:

Lemma 4.8. Consider any countable, UUS, H ⊆ {0, 1}X
and countable collection of possibly overlapping subsets
A = {Ai}i∈N and assume H has finite support with respect
to A. Let x1, x2, ... be an enumeration of supp(h) for some
h ∈ H. Then, for any α > 0, there exists a d ∈ N such that
for all s ≥ d, h is α-feasible at timestep s.

We prove this lemma in Appendix D.2. By definition,
the feasibility of a language guarantees that there exists
a distribution µ over unseen elements that satisfies the α-
representative requirement. Thus, we can tweak our algo-
rithm to only consider the critical and feasible hypothesis
hj with the largest index j ≤ t. Combining lemmas 4.6
and 4.8, we can guarantee that for any α > 0 there exists
some finite point t∗ = max{d, t} such that for all s ≥ t∗,
the true hypothesis h is both critical and α-feasible. Thus,
for all s ≥ t∗ at least one such feasible and critical language
exists, and by the same reasoning as before, we must have
supp(hj) ⊆ supp(h), and so outputting an α-representative

µ from the right-most α-feasible and critical language guar-
antees both consistency and representation after t∗. Thus,
our generator satisfies representative generation in the limit.

With the building blocks of Lemmas 4.6 and 4.8 in place,
the proof of Theorem 4.4 follows as described in the proof
sketch. The formal proof can be found in Appendix D.3.

4.1. Barriers to Achieving Representative Generation in
the Limit with only Membership Queries

Thus far, we have considered representative generatabil-
ity only in an information-theoretic sense, without regard
for the amount of computation required by our generators.
However, Kleinberg & Mullainathan (2024) provide an inter-
esting positive result: any countable H can be generated in
the limit with a generator that only requires a finite number
of membership queries of the form “x ∈ supp(h)?” for any
h ∈ H at each timestep. In contrast to this positive result,
Charikar & Pabbaraju (2024) show that no algorithm us-
ing only membership queries can be used to non-uniformly
generate for all hypothesis classes of size two.

With these results in mind, it’s natural to ask whether rep-
resentative generation in the limit can also be achieved by
an algorithm that uses only a membership query oracle. In
this new setting where we care about representation as well
as consistency, it’s natural to assume we can make queries
about both group and hypothesis membership, i.e. ask ques-
tions of the form “x ∈ supp(h)?” or “x ∈ Ai?” for any
h ∈ H or Ai ∈ A.

We show that unlike in the standard setting of generation in
the limit, the additional representation constraint poses a sig-
nificant barrier to generating with only membership queries.
This negative result is with respect to the generation in the
limit setting, while Charikar & Pabbaraju (2024)’s negative
result holds only in the stronger non-uniform generation set-
ting without representation. However, both proofs revolve
around a similar obstacle: with only membership queries
to single groups or single hypotheses, it’s difficult to know
whether the intersection of a group and a hypothesis’s sup-
port (or in the case of Charikar & Pabbaraju (2024), the
intersection of the supports of two hypotheses), contains
infinitely many elements, or finitely many.

The following lemma shows that no algorithm that works
even just for very simple, finite pairs of H and A can gener-
ate in the limit with representation using only membership
queries. The proof proceeds by contradiction, assuming the
existence of such a generator. We then analyze its behavior
to construct an enumeration that forces the generator to vi-
olate either consistency or representation at each timestep.
The complete proof, along with an extended discussion of
special cases where representative generation with member-
ship queries is feasible, is provided in Appendix D.4.
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Lemma 4.9 (Impossibility of Generating with Group Con-
straints with Only Membership Queries). For any α < 1/2,
there cannot exist a (deterministically computed) random-
ized generator that satisfies α-representative generation in
the limit for any UUS hypothesis class H = {h} and finite
partition of X , A = {A1, A2}, and uses only a finite num-
ber of membership queries of the form “x ∈ supp(h)?” or

“x ∈ Ai?” for h ∈ H and i ∈ {1, 2} at each step.

5. Discussion and Future Directions
In this paper, we introduced and analyzed the concept of
representative generatability, which extends the theoreti-
cal framework for generation introduced by Kleinberg &
Mullainathan (2024) and Li et al. (2024). This novel prop-
erty ensures that the outputs of generative models closely
approximate the proportions of certain groups-of-interest
in the training data. We provide a complete, information-
theoretic characterization of which combinations of hypoth-
esis classes and groups are uniformly and non-uniformly
generatable with representation. In addition, we study repre-
sentative generatability in the limit from both information-
theoretic and computational perspectives. Notably, we
demonstrate that, unlike the case of non-representative gen-
eratability in the limit, membership queries alone are insuf-
ficient for computable algorithms to achieve representative
generation in the limit.

Our additional constraint of representational generation
highlights key tensions and possibilities between the pos-
itive results of Kleinberg & Mullainathan (2024)’s model
and real-world approaches to generation. Specifically, while
real-world approaches typically aim to develop generative
models that closely approximate training distributions—and
it is indeed natural to expect our generations to resemble
training data in certain aspects–Kleinberg & Mullainathan
(2024)’s notion of generation in the limit imposes no require-
ment that generated data must resemble previously observed
data, only that it must belong to the true language. Our work
maintains the generation-in-the-limit framework while intro-
ducing an additional constraint: generations must resemble
training data with respect to simple statistical tests mea-
suring the prevalence of certain subpopulations. Arguably,
our notion of representation is useful to formalize even in a
practical setting, as it addresses an important consideration:
generative models can potentially under- or over-represent
certain subpopulations, even when they demonstrate good
overall alignment with the training data. There are still sev-
eral directions of future work, three of which we review
below.

Representative Uniform and Non-uniform Generation
for Richer Collections of Groups. In Sections 3.1 and
3.2, we show that for all finite A that form a partition of X ,

all finite and countable classes are representative uniformly
and non-uniformly generatable, respectively. In the case of
representative generation in the limit, however, our positive
results extend to a much richer class of group collections:
any countable collection of possibly overlapping groups sat-
isfying the finite support assumption. Lemma 4.3 shows that
in full generality, this finite support assumption is necessary
for representative generation to be possible. However, this
still leaves a large gap between the collections of groups we
show are uniformly and non-uniformly generatable with rep-
resentation (finite partitions) vs. the collections of groups
we can show are generatable in the limit with represen-
tation (countable overlapping groups with finite support).
This raises the question of whether this gap can be closed:
are all finite and countable classes representative uniformly
and non-uniformly generatable respectively if H has finite
support with respect to A? If not, what are the minimal
assumptions that need to be placed on (H,A) so that all
finite and countable H are representative uniformly and
non-uniformly generatable, respectively? More generally,
what characterizes representative uniform and non-uniform
generation when groups may be overlapping?

Representative Generation with Dynamic Groups. Our
model of representative generation considers a fixed collec-
tion of groups A. However, in practice, group membership
may evolve with time, with existing groups growing and
shrinking in size, different features signaling membership in
particular groups, and even some new groups forming. We
leave it as an important direction of future work to extend
our characterizations and study of representative generation
to the case where there exists a time-indexed collection of
groups A1,A2, . . . , capturing the fact that in practice, group
memberships may evolve with time.

Representative Generation Beyond the Supremum Dis-
tance. In this paper, we quantified the quality of group
representation of a generator’s outputs via the supremum
distance between the empirical probabilities over groups and
the induced group probabilities of the generator’s output.
However, there are other natural ways of enforcing group
representation. For example, one could consider swapping
the supremum distance with the ℓ1-distance between group
probabilities, or some other notion of distance that is more
appropriate for a particular application in mind. We leave
the study of generatability under these alternate notions of
group representation as a important direction of future work.

Impact Statement
This work introduces a theoretical framework for represen-
tative generation in machine learning models, addressing
critical issues of bias and lack of diversity in generative
model outputs. By requiring proportional representation of
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different groups from training data, our approach aims to
mitigate risks of underrepresentation and promote more fair
and inclusive AI systems.

The implementation of representative generation could help
reduce societal biases perpetuated by AI systems, potentially
leading to more equitable outcomes in machine-learning-
aided decision-making processes such as hiring or content
recommendation. It may also enhance the utility of gen-
erative models by ensuring they capture a wider range of
perspectives and experiences.

However, risks exist. Defining and categorizing groups for
representation could introduce new biases or oversimplify
complex social dynamics. As this work is theoretical, prac-
tical implementation will require careful consideration of
these ethical implications.
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A. Related Works
We highlight a few existing notions that are closest to our work.

Language Identification and Generation. In his seminal 1967 paper, E Mark Gold introduced the model of “Language
Identification in the Limit” (1967). In this model, there is a countable collection of strings U and a language family
L = {L1, L2, . . . }, where each Li ⊆ U. An adversary plays a sequential game with a player over rounds indexed by t ∈ N.
Before the game begins, the adversary picks a language K ∈ L and an enumeration w1, w2, . . . of the strings in K, with
possible repetitions. In each round t ∈ N, the player observes the string wt ∈ K, and outputs an index it. The goal of the
player is to eventually “identify” the language K by eventually outputting indices it such that Lit = K. More formally, the
player has identified K in the limit if there exists an s ∈ N such that Lit = K for all t ≥ s. The family L is identifiable
in the limit, if every language K ∈ L is identifiable in the limit. Gold proved that while all finite language families L are
identifiable in the limit, there exists simple countable language families where this is not the case. Following this work,
(Angluin, 1979; 1980) provides a precise characterization of which language families are identifiable in the limit, further
emphasizing the impossibility of language identification in the limit.

Very recently, Kleinberg & Mullainathan (2024) revisit the Gold’s model of Language Identification in the Limit with a
twist: suppose in each round t ∈ N, the player is not asked to output the index of K, but rather a string ŵ ∈ U with the
hope that ŵ ∈ K \ {w1, . . . , wt}. Naming this setting “Language Generation in the Limit”, Kleinberg & Mullainathan
(2024) show a surprisingly different result. Unlike the case of identification, Kleinberg & Mullainathan (2024) show that
all countable language families are generatable in the limit. In a follow-up work, Li et al. (2024) extend Kleinberg &
Mullainathan (2024)’s results beyond language generation in the limit by (1) re-framing the problem in terms of a binary
hypothesis classes defined over a countable example space (2) defining new, stronger models of generation termed uniform
and non-uniform generation and (3) formalizing an abstract, prompted version of generation. In this paper, we mainly adopt
the notation and models of generation from Li et al. (2024). In addition, we highlight connections between representative
generation and the model of prompted generation introduced by Li et al. (2024) in Appendix B.

In addition to Li et al. (2024), there have been several follow-up works to Kleinberg & Mullainathan (2024) that study both
consistency and breadth in language generation in the limit. We review the consistency results of these papers here, and
defer a discussion of their results on breadth to the next section. Concurrently with Li et al. (2024), Kalavasis et al. (2024b)
study generation in the stochastic setting, where the positive examples revealed to the generator are sampled i.i.d. from
some unknown distribution. In this model, Kalavasis et al. (2024b) quantify the error rates for generation with consistency
according to the universal rates framework of Bousquet et al. (2021). Charikar & Pabbaraju (2024) study several facets of
language generation. First, they show that all countable classes satisfy the stronger property of non-uniform generation.
Then, they show a hardness result – the stronger setting of non-uniform generation is not possible using only membership
queries. This is in contrast to generatability in the limit, where Kleinberg & Mullainathan (2024) show that every countable
class is generatable in the limit using only membership queries. Lastly, Charikar & Pabbaraju (2024) characterize which
classes are uniformly generatable when additional feedback is available.

Language Generation with Breadth. In their original paper, Kleinberg & Mullainathan (2024) formally describe a
tension between consistency and “breadth,” defined as “producing outputs that represent the full range of valid outputs in
some reasonable way.” This observation has prompted several follow-up studies proposing and examining various definitions
of breadth. Charikar & Pabbaraju (2024) introduce the notion of “exhaustive generation,” while Kalavasis et al. (2024b) and
Kalavasis et al. (2024a) explore three potential definitions: “generation with breadth,” “generation with approximate breadth,”
and “unambiguous generation.” Although these notions differ slightly, they all essentially require that the generator’s outputs
cover nearly (or exactly) the entirety of the true language in the limit. Both sets of authors demonstrate an inherent tension
between consistency and breadth, as theorized by Kleinberg & Mullainathan (2024). Notably, Kalavasis et al. (2024b) show
that the strongest notion, “generation with breadth” is as difficult as identification in the limit.

Our notion of representative generation can be contrasted with these definitions of breadth as both stronger and weaker
along different axes.

On one hand, representative generation can be viewed as a relaxation of generation with breadth. While it requires the
generator to produce diverse outputs with respect to group membership, it doesn’t demand complete coverage of the entire
language. The generator has two key flexibilities: it can ignore groups that appear only in a tiny fraction of the data sequence,
and it need not cover the entirety of every group it does generate from. These allowances make representative generation less
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stringent than full breadth requirements. Notably, our notion proves much more tractable compared to prior breadth concepts,
making it a significant relaxation. In particular, Theorem 4.4 demonstrates that any countable collection of languages and
countable collection of groups, under a minor assumption, can be generated in the limit with group representation.

On the other hand, representative generation can also be seen as a stronger notion compared to breadth. Previous breadth
concepts do not consider how the generated output at each step compares to the data seen thus far. For instance, a valid
generator with breadth for our diverse set of animal images might produce all possible animal images in the limit but could
do so by generating 1000 cat pictures for every picture of a different species. While this approach might achieve coverage in
the limit, it would fail to capture the diversity of animals seen in the data stream in the short term. Such a generator would
lack practical utility, as it wouldn’t reflect the variety in the input data. Representative generation, in contrast, maintains
diversity throughout, offering more immediate value.

Multigroup Fairness. Our notion of α-representativeness is closely related to multigroup fairness notions in the algorith-
mic fairness literature that have been studied mainly in the context of prediction, such as multiaccuracy and multicalibra-
tion (Hébert-Johnson et al., 2018; Kearns et al., 2018). These notions require that a predictor satisfy quality metrics like
accuracy-in-expectation or calibration not only for the overall population but also for every subset within a rich collection of
demographic groups. Perhaps closest to our notion is the work of Gopalan et al. (2022), who study notions of multicalibration
for distributions. While they focus on the stronger notion of multicalibration for distributions, they do define an analogous
notion of “α-multiaccuracy in expectation” for distributions (Gopalan et al. (2022), Definition 9). In their framework,
the requirement of an α-representative generator can be equivalently expressed as follows: at each step, the generator
must produce a distribution that is α-multiaccurate in expectation with respect to both the empirical distribution of points
generated thus far and the collection of groups A. Our work, however, diverges from this framework by concentrating on the
generative process itself. We explore how group representation can be achieved and maintained throughout the sequential
generation of points, in contrast to analyzing the properties of a single estimated distribution.

Outcome Indistinguishability. Although presented in terms of group representation, our notion can be reframed in the
language of indistinguishability. From this perspective, the goal of representative generation can be interpreted as producing
a generator that is not only consistent in the limit but also, at every step, outputs a distribution indistinguishable from the data
seen so far. This indistinguishability is measured with respect to a set of tests, which in our case are precisely the indicator
functions for group membership. We see potential in expanding this perspective and extending our results to incorporate
richer sets of tests. This direction for future work is particularly promising given the success of related concepts in other
domains. For instance, the outcome indistinguishability framework introduced by Dwork et al. (2021) for the prediction
setting has proven to be a powerful notion, enabling powerful guarantees for predictors such as omniprediction (Gopalan
et al., 2021).

B. Connections to Prompted Generation
Existing works have also explored variants of the generation setting that capture generation tailored to specific prompts at
each time step. This concept is referred to as “prompted generation” by Kleinberg & Mullainathan (2024), and generalized
to “multiclass generation” by Li et al. (2024).

Prompted generation modifies the standard generation setting by expanding the representation of a language from a binary
hypothesis h : X → {0, 1} to a multiclass hypothesis h : X → [k]. At each time step, the adversary provides an element xt,
as well as its associated label h(xt). The generator’s goal is to generate a consistent element with the same label, i.e. an
x ∈ X with h(x) = h(xt).

As noted by Remark 5.1 in Li et al. (2024), the multiclass framework could be shaped to be similar to the representative
generation setting by selecting a partition A of X and transforming each h : X → {0, 1} into a multiclass hypothesis such
that h(x) = i if h(x) = 1 and x ∈ Ai, and 0 otherwise. However, the existence of such a conversion is less clear in the
case of overlapping groups. Additionally, whereas representative generation only requires generations that approximate the
empirical distribution, prompted generation could require the generator to output an element with a label that has appeared
in only a tiny fraction of the data. For this reason, the generation guarantees for these approaches differ in nature. Prompted
generation requires a certain number of elements to be seen per group before generating consistently. On the other hand,
representative generation offers consistency guarantees that depend solely on the total number of elements seen, regardless
of their group membership.
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C. Proofs from Section 3
C.1. Proof of Theorem 3.3

We separate the two directions (necessity and sufficiency) of Theorem 3.3 into two proofs below.

Proof of Necessity in Theorem 3.3. Let X be countable, H ⊆ {0, 1}X be any class satisfying the UUS property, and
A = {Ai}i∈N be any countable infinite 1 partition of X . Suppose that GCα(H,A) = ∞. It suffices to show that for every
generator G and d ∈ N, there exists d⋆ ≥ d, an h ∈ H, and a sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h) such that
either

(1) for every t ∈ N where |{x1, . . . , xt}| = d⋆, there exists an s ≥ t where

Pr
x̂s∼G(x1:s)

[x̂s ∈ supp(h) \ {x1, . . . , xs}] < 1

or

(2) there exists a t ∈ N such that ||G(x1:t)|A − x1:t|A||∞ > α.

To that end, fix a generator G and a number d ∈ N. Since GCα(H,A) = ∞, we know there must exist some d⋆ ≥ d and a
sequence of distinct examples x1, . . . , xd⋆ such that either

(a) ∃ i ∈ N such that ⟨x1, . . . , xd⋆⟩H ∩Ai \ {x1, . . . , xd⋆} = ∅ and x1:d⋆ |A(i) > α or

(b) α|N/S| <
∑

i∈S x1:d⋆ |A(i) where S = {i ∈ N : ⟨x1, . . . , xd⋆⟩H ∩Ai \ {x1, . . . , xd⋆} = ∅}.

Consider passing to G the sequence x1, . . . , xd⋆ . If

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] = 1,

then pick any h ∈ H such that {x1:d⋆} ⊆ supp(h) and any completion of the stream xd⋆+1, xd⋆+2, . . . such that
{xd⋆+j}j∈N ⊆ supp(h) \ {x1:d⋆}. On the other hand, if

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] < 1,

then there must exist an h ∈ H such that {x1:d⋆} ⊆ supp(h) while

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ supp(h) \ {x1:d⋆}] < 1.

Pick this h ∈ H and complete the stream like before using this h ∈ H. To see why such an h ∈ H must exist, note that if
Prx̂d⋆∼G(x1:d⋆ ) [x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] < 1, then there must exist an x /∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}
which G(x1:d⋆) puts positive mass on. But because this x /∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}, there must be an h ∈ H which
contains x1:d⋆ in its support but not x. We now show that the selected hypothesis and stream satisfies either condition (1) or
(2) in three cases.

Case 1: Suppose on the input x1, . . . , xd⋆ , we have that

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] < 1.

Consider the hypothesis h ∈ H and the stream x1, x2, . . . chosen above for this case. Note that {x1, x2, . . . } ⊆ supp(h) by
definition. Moreover, since xd⋆+1 ̸= xd⋆ , t = d⋆ is the only such time point where |{x1, . . . , xt}| = d⋆. Finally, on round
s = d⋆ ≥ t, we have that Prx̂s∼G(x1:s) [x̂s ∈ supp(h) \ {x1:s}] < 1, satisfying condition (1).

1An identical proof follows if A is instead a finite partition of X .
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Case 2: Suppose on the input x1, . . . , xd⋆ , we have that

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] = 1

and the input x1, . . . , xd⋆ satisfies condition (a). Consider the hypothesis h ∈ H and the stream x1, x2, . . . chosen
above for this case. Note that {x1, x2, . . . } ⊆ supp(h) by definition. Let i ∈ N be the group satisfying the property
in condition (a). Observe that on time point t = d⋆, we have that ||G(x1:t)|A − x1:t|A||∞ ≥ x1:t|A(i) > α because
⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆} ∩ Ai = ∅ and G(x1:d⋆)|A puts all its mass on ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}. Thus,
condition (2) is met and G violates α-representation.

Case 3: Suppose on the input x1, . . . , xd⋆ , we have that

Pr
x̂d⋆∼G(x1:d⋆ )

[x̂d⋆ ∈ ⟨x1, . . . , xd⋆⟩H \ {x1, . . . , xd⋆}] = 1

and the input x1, . . . , xd⋆ satisfies condition (b). Consider the hypothesis h ∈ H and the stream x1, x2, . . . chosen above
for this case. Note that {x1, x2, . . . } ⊆ supp(h) by construction. Let t = d⋆. We claim that if condition (b) holds, we have
that ||G(x1:t)|A − x1:t|A||∞ > α. For the sake of contradiction, suppose that ||G(x1:t)|A − x1:t|A||∞ ≤ α. Then, we have
that G(x1:t)|A(i) ≤ x1:t|A(i) + α for all i ∈ N/S and G(x1:t)|A(i) = 0 for all i ∈ S, where the latter is true by definition
of S. If condition (b) holds, it must be the case that |N \ S| < ∞. Thus, we can write:

∑
i∈N

G(x1:t)|A(i) =
∑

i∈N\S

G(x1:t)|A(i) ≤
∑

i∈N\S

x1:t|A(i) + α|N \ S|.

If condition (b) is true, then
∑

i∈N\S x1:t|A(i) < 1− α|N \ S| giving that
∑

i∈N G(x1:t)|A(i) < 1, a contradiction to the
fact that G(x1:t)|A is a probability measure (recall that when A is a partition of X , the induced group probabilities of any
µ ∈ ∆X form a probability measure). Thus, it must be the case that ||G(x1:t)|A − x1:t|A||∞ > α and as in Case 2, G
violates α-representation and condition (2) is met.

This completes all cases. The overall proof is complete after noting that the generator G and number d ∈ N were picked
arbitrarily.

Proof of Sufficiency in Theorem 3.3. Let X be countable, H ⊆ {0, 1}X be any class satisfying the UUS property, and
A = {Ai}i∈N be any countable infinite partition of X . Suppose that GCα(H,A) < ∞ for some α > 0. Let d := GCα(H,A)
Then, by definition, we have that for every c ≥ d + 1 and sequence of distinct examples x1, x2, . . . , xc such that
⟨x1, x2, . . . , xc⟩H ̸= ⊥, both of the following conditions hold true:

(1) maxi∈S x1:c|A(i) ≤ α and

(2) α |N/S| ≥
∑

i∈S x1:c|A(i),

where S = {i ∈ N : ⟨x1, . . . , xc⟩H ∩Ai \ {x1, . . . , xc} = ∅}.

We will use this fact to construct an α-representative uniform generator satisfying the properties in Definition 2.9.

Let x1, x2, . . . be any stream of examples. Consider the following generator G. For each round t until d+1 unique examples
have been observed, G computes and plays from any µt ∈ ∆X such that µt|A is an α-approximation of the group empirical
distribution x1:t|A, i.e. ∥µt|A − x1:t|A∥∞ ≤ α. Note that such a µt is always guaranteed to exist, as we can choose
precisely µt = x1:t. Suppose on round t⋆, we have that |{x1, . . . , xt⋆}| = d+ 1. For all rounds t ≥ t⋆, G checks whether
⟨x1, . . . , xt⟩H = ⊥. If this is true, then G computes and plays from any µt ∈ ∆X such that µt|A is an α-approximation of
the group empirical distribution x1:t|A. Otherwise, G first computes the group empirical distribution x1:t|A(i) and then the
set St = {i ∈ N : ⟨x1, . . . , xt⟩H ∩Ai \ {x1, . . . , xt} = ∅}. If St := ∅, G picks zi ∈ ⟨x1, . . . , xt⟩H ∩Ai \ {x1, . . . , xt} for
all i ∈ N and constructs the distribution µt ∈ ∆X such that µt(zi) = x1:t|A(i) and µt(x) = 0 for all x ∈ X \ {z1, z2, . . . }.
Otherwise, if St ̸= ∅, G picks zi ∈ ⟨x1, . . . , xt⟩H∩Ai\{x1, . . . , xt} for all i ∈ N\St and constructs a distribution µt ∈ ∆X
in the following way. First, G picks a measure µ′ : X → [0, 1] such that µ′

t(zi) = x1:t|A(i) for all i ∈ N \St and µ′
t(x) = 0

for all x ∈ X \ {z1, z2, . . . }. At this point,
∑

x∈X µ′
t(x) =

∑
i∈N\St

x1:t|A(i) and thus, there is still
∑

i∈St
x1:t|A(i)
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amount of mass to be placed. To complete the distribution, G distributes the remaining
∑

i∈St
x1:t|A(i) mass among

{z1, z2, . . . } and obtains a probability measure µt ∈ ∆X such that 0 ≤ µt(zi)− x1:t|A(i) ≤ α and
∑

x∈X µt(x) = 1. We
will prove why this is possible below.

We now show that such a generator is α-representative and consistent after observing d⋆ := GCα(H,A) + 1 distinct
examples. We first prove consistency.

Proof of consistency: Let G be the generator described above. Let h ∈ H be the target hypothesis and x1, x2, · · · ⊆ supp(h)
be the stream chosen by the adversary. Without loss of generality, suppose there are at least d⋆ distinct examples in the
stream and let t⋆ be the first time point such that |{x1, . . . , xt⋆}| = d⋆. We need to show for all s ≥ t⋆:

Pr
x̂s∼G(x1:s)

[x̂s ∈ supp(h) \ {x1, . . . , xs}] = 1.

Fix some s ≥ t⋆. Then, observe that by construction, G always picks and plays from a distribution µs ∈ ∆X such that
supp(µs) ⊆ ⟨x1, . . . , xs⟩H \ {x1, . . . , xs}. Since ⟨x1, . . . , xs⟩H ⊆ supp(h), the proof of consistency is complete.

We now prove that G is α-representative.

Proof of α-representativeness: Fix any (not necessarily valid) sequence of examples x1, x2, . . . . It suffices to show that
for every t ∈ N, we have that

||G(x1:t)|A − x1:t|A||∞ ≤ α.

Let t⋆ ∈ N be the smallest time point such that |{x1, . . . , xt⋆}| = d⋆. By definition, observe that G satisfies α-
representativeness for all t < t⋆. Fix some t ≥ t⋆. There are three cases to consider. Suppose that ⟨x1, . . . , xt⟩H = ⊥.
Then by definition, G plays an α-approximation of x1:t|A and hence is α-representative. Suppose that ⟨x1, . . . , xt⟩H ̸= ⊥
and St = ∅. Then, by construction, G picks and plays from a distribution µt ∈ ∆X such that µt|A = x1:t|A and thus
α-representativeness is trivially satisfied. Finally, consider the case where ⟨x1, . . . , xt⟩H ̸= ⊥ and St ̸= ∅. We claimed
above that in this scenario, G first computes an incomplete measure µ′

t and then distributes the remaining
∑

i∈St
x1:t|A(i)

mass to obtain a probability measure µt such that 0 ≤ µt(zi)− x1:t|A(i) ≤ α and
∑

x∈X µt(x) = 1. To see why this is
possible, first note that since |{x1, . . . , xt}| ≥ GCα(H,A) + 1, we know that conditions (1) and (2) hold. Then, consider
two cases: (i)

∑
i∈St

x1:t|A(i) > α and (ii)
∑

i∈St
x1:t|A(i) ≤ α. In case (i), we know that µ′

t(zi) < 1 − α for all
i ∈ N \ St. Hence, we can obtain the probability measure µt by adding at most α mass to z1, and then z2, and so on until all
of

∑
i∈St

x1:t|A(i) has been accounted for since α |N/S| ≥
∑

i∈St
x1:t|A(i). In case (ii), there must exist an i ∈ N \ St

such that µ′
t(i) ≤ 1 −

∑
i∈St

x1:t|A(i). Hence we can obtain the probability measure µt, by adding all of the mass of∑
i∈St

x1:t|A(i) on zi since
∑

i∈St
x1:t|A(i) ≤ α. The analysis above gives that G plays a measure µt ∈ ∆X such that

|µt|A(i)−x1:t|A(i)| ≤ α for all i ∈ N\St and µt|A(i) = 0 for all i ∈ St. However, since |{x1, . . . , xt}| ≥ GCα(H,A)+1,
condition (1) holds and thus maxi∈St

x1:t|A(i) ≤ α. This gives that |µt|A(i)− x1:t|A(i)| ≤ α for all i ∈ St implying that
||G(x1:t)|A − x1:t|A||∞ ≤ α. Since t ≥ t⋆, this concludes the proof of α-representativeness and the overall proof.

C.2. Proof of Corollary 3.5

Proof of Corollary 3.5. Let X be countable, H ⊆ {0, 1}X be any finite class satisfying the UUS property, and A =
{Ai}i∈K be any finite partition of X . Suppose for the sake of contradiction that GCα(H,A) = ∞ for some α > 0. Let
F := {V : V ⊆ H, V ̸= ∅} be the set of all non-empty subsets of H. Since H is finite, F is also finite. We will assign a
number to every V ∈ F . In particular, for every V ∈ F , first define and compute:

⟨∅⟩V :=
⋂
h∈V

supp(h).

Then, let dV ∈ N be the largest finite number for which there exists x1, . . . , xdV
∈ ⟨∅⟩V such that

(1) maxi∈S x1:dV
|A(i) > α or
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(2) α(K − |S|) <
∑

i∈S x1:dV
|A(i)

where S := {i ∈ [K] : ⟨∅⟩V \ {x1, . . . , xdV
} ∩Ai = ∅}.

We will use the fact that |K| < ∞ to prove that such a finite dV exists for all V ∈ F . To that end, fix some V ∈ F .
Without loss of generality, suppose that |⟨∅⟩V | = ∞, as otherwise, the claim is trivially true (i.e if |⟨∅⟩V | < ∞, it must be
the case that dV ≤ |⟨∅⟩V | < ∞). It suffices to show that there exists a d ∈ N such that for every d′ ≥ d and sequence
x1, . . . , xd′ ∈ ⟨∅⟩V , we have that

(1) maxi∈S x1:d′ |A(i) ≤ α and

(2)
∑

i∈S x1:d′ |A(i) ≤ α (K − |S|)

where S = {i ∈ [K] : Ai ∩ ⟨∅⟩V \ {x1, . . . , xd′} = ∅}. To do so, we need some more notation. First, separate the K
groups into two sets. The set R1 = {i ∈ [K] : |Ai ∩ ⟨∅⟩V | = ∞} contains those groups whose intersection with ⟨∅⟩V is
unbounded in size. The set R2 = {i ∈ [K] : |Ai ∩ ⟨∅⟩V | < ∞} are those groups whose intersection with ⟨∅⟩V is finite.
Note that for any x1, . . . , xd, the groups in R1 will never appear in S, and so we have that S ⊆ R2. Now, define

p := max
j∈R2

|Aj ∩ ⟨∅⟩V |.

and observe that p < ∞ because |R2| ≤ K < ∞.

We are now ready to show the existence of such a d ∈ N. In particular, pick d = Kp
α and consider any sequence

x1, . . . , xd′ ∈ ⟨∅⟩V for d′ ≥ d. In the worst-case, x1, . . . , xd′ contains Ai ∩ ⟨∅⟩V for all i ∈ R2. However, for any given
i ∈ R2, at most p of the elements from x1, . . . , xd′ can be from Ai. Accordingly, we have that

max
i∈S

x1:d′ |A(i) ≤
α

K
≤ α.

Moreover, observe that

∑
i∈S

x1:d′ |A(i) ≤
α|S|
K

≤ α ≤ α(K − |S|),

where the last inequality is true because the groups form a partition of X and so |S| < K. Accordingly, dV ≤ Kp
α < ∞.

Since V ∈ F was chosen arbitrarily, this is true for all such V ∈ F . Now, we complete the proof by showing a contradiction.
Define

d⋆ = max{dV : V ∈ F}.

Again, d⋆ < ∞ because |F| < ∞ and dV < ∞ for all V ∈ F . Because GCα(H,A) = ∞, we know that there exists a
t ≥ d⋆ + 1, and a distinct sequence of examples x1, . . . , xt such that

(1) maxi∈S x1:t|A(i) > α or

(2) α(K − |S|) <
∑

i∈S x1:t|A(i)

where S := {i ∈ N : ⟨x1, . . . , xt⟩H ∩Ai \ {x1, . . . , xt} = ∅}. Take V ⋆ := H(x1, . . . , xt) and note that ⟨x1, . . . , xt⟩H =
⟨∅⟩V ⋆ . Thus, we have shown that dV ⋆ ≥ t ≥ d⋆ + 1, which contradicts the fact that d⋆ = max{dV : V ∈ F} since
V ⋆ ∈ F . The proof is complete, showing that GCα(H,A) < ∞.
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C.3. Proof of Corollary 3.6

Proof of Corollary 3.6. Let X = Z be the set of integers. Let H′ ⊆ {0, 1}N be any class that is not uniformly generatable
(for example see Lemma 3.9 in Li et al. (2024)). Define a new class H ⊆ {0, 1}X such that H := {x 7→ 1{x ∈
supp(h′) ∪ Z≤0} : h′ ∈ H′} and let A := {N,Z≤0}. Note that A is finite partition of X of size 2.

First, observe that H is trivially uniformly generatable since
∣∣∣⋂h∈H supp(h)

∣∣∣≥ ∣∣∣Z≤0

∣∣∣= ∞. We now show that (H,A)

is not representatively uniformly generatable. For the sake of contradiction, suppose that (H,A) was representatively
uniformly generatable. Then, for every α ∈ (0, 1], there exists an α-representative generator G and a number d⋆ ∈ N such
that after observing d⋆ distinct examples, the output of G is consistent (see Definition 2.9). Let G be such a generator for any
α < 1. We will use G in a blackbox manner to construct a uniform generator for H′.

Consider the following generator G′ for H′. On input x1, . . . , xt ∈ N, G′ passes x1, . . . , xt to G and receives an α-
representative distribution µt. G′ plays any x ∈ supp(µt) ∩ N \ {x1, . . . , xt} if one exists. Otherwise, G′ plays any
x ∈ X . We claim that G′ perfectly generates from H′ after observing d⋆ number of distinct examples. To see why, let
h′ ∈ H′ and x1, . . . , xt ⊂ supp(h′) be any sequence such that |{x1, . . . , xt}| ≥ d⋆. Let h : X → {0, 1} be defined as
h(x) := 1{x ∈ supp(h′) ∪ Z≤0}. Then, h ∈ H, {x1, . . . , xt} ⊆ supp(h), and therefore by definition of d⋆ and G, we have
that

(1) Prx̂t∼µt
[x̂t ∈ supp(h) \ {x1, . . . , xt}] = 1 and

(2) ||µt|A − x1:t|A||∞ ≤ α.

Because x1:t ⊂ N and α < 1, in order to satisfy conditions (1) and (2), there must exist an x̂t ∈ supp(µt)∩N\{x1, . . . , xt},
and hence G′, by playing this x̂t, perfectly generates on round t. Since t ∈ N and x1, . . . , xt were chosen arbitrarily, we have
that G′ is a uniform generator for H′ which contradicts the fact that H′ was chosen to not be uniformly generatable.

C.4. Proof of Theorem 3.7

We separate the two directions (necessity and sufficiency) of Theorem 3.7 into two proofs below.

Proof of Sufficiency in Theorem 3.7. Let X be countable, H ⊆ {0, 1}X be any class satisfying the UUS property, and
A = {Ai}i∈N be any countable partition of X .

Fix some α > 0. Suppose there exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ · · · such that H =
⋃∞

i=1 Hi and
(Hi,A) is α-representative uniformly generatable for all i ∈ N. Then, there exists a α-representative uniform generator
Gi for each (Hi,A). For every i ∈ N, let ni be the number of distinct examples that Gi needs to see before it is consistent
(i.e. ni is the d⋆ in Definition 2.9). Observe we can assume without loss of generality that n1, n2, . . . is a non-decreasing
sequence by using the α-representative uniform generator constructed in the proof of Theorem 3.3.

We will now use G1,G2, . . . to construct a α-representative non-uniform generator Q. To that end, let x1, x2, . . . be any
stream of examples. Consider the following generator Q. On time point t ∈ N, Q first computes the number of distinct
examples dt := |{x1, . . . , xt}| in the stream so far. Then, Q computes

it = max {i ∈ [t] : ni ≤ dt} ∪ {1}

and plays Git(x1, . . . , xt), the output of Git on input x1, . . . , xt.

We now show that Q is an α-representative non-uniform generator that satisfies Definition 2.11. Let us start by proving
that Q is α-representative. Let x1, x2, . . . be any (not necessarily valid) stream of examples. It suffices to show that for
every t ∈ N, we have that ||Q(x1:t)|A − x1:t|A||∞ ≤ α. Recall that Q(x1, . . . , xt) = Git(x1, . . . , xt). Since Git is an
α-representative generator for (Hit ,A), it must be the case that

||Git(x1:t)|A − x1:t|A||∞ ≤ α.

We now complete the proof by establishing the consistency guarantees of Q. To that end, let h ∈ H and x1, x2, · · · ⊆ supp(h)
be the hypothesis and stream picked by the adversary. Let j⋆ ∈ N be the smallest index such that h ∈ Hj⋆ and let
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d⋆ := max{j⋆, nj⋆}. We claim that Q is consistent after observing d⋆ unique examples. To see why, suppose without
loss of generality that x1, x2, . . . contains at least d⋆ distinct elements and let t⋆ be the smallest time point such that
|{x1, . . . , xt⋆}| = d⋆. We need to show that for all s ≥ t⋆, we have that Prx̂s∼Q(x1:s) [x̂s ∈ supp(h) \ {x1, . . . , xs}] = 1.
Fix some s ≥ t⋆. Then, observe that ds ≥ nj⋆ and t⋆ ≥ j⋆. Accordingly, we have that is ≥ j⋆ and hence h ∈ His . Since
nis ≤ ds, we also know that

Pr
x̂s∼Gis (x1:s)

[x̂s ∈ supp(h) \ {x1, . . . , xs}] = 1.

Finally, since Q(x1:s) = Gis(x1:s) by construction, we have that Q is consistent on round s. Since s ≥ t⋆ is chosen
arbitrarily, this is true for all such s, completing the proof of consistency and the overall. proof that Q is an α-representative
non-uniform generator for (H,A).

Proof of Necessity in Theorem 3.7. Let X be countable, H ⊆ {0, 1}X be any class satisfying the UUS property, and
A = {Ai}i∈N be any countable partition of X . Suppose that (H,A) is representative non-uniformly generatable. We need
to show that for every α > 0, there exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ · · · such that H =

⋃∞
i=1 Hi

and (Hi,A) is α-representative uniformly generatable ∀ i ∈ N. To that end, fix some α > 0. If H is representative
non-uniformly generatable, then for this error level α, there exists a α-representative non-uniform generator G. For every
h ∈ H, let dh ∈ N be such that for any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h), if there exists t⋆ ∈ N where
|{x1, . . . , xt⋆}| = dh, then G is consistent from t⋆. Now, define Hi := {h ∈ H : dh ≤ i} for all i ∈ N. Note that
H1 ⊆ H2 ⊆ · · · and that

⋃∞
i=1 Hi = H. Finally, observe that G is an α-representative uniform generator for Hi, and hence,

(Hi,A) is α-representative uniformly generatable.

C.5. Proof of Corollary 3.8

Proof. Let X be countable, H ⊆ {0, 1}X be any countably infinite class satisfying the UUS property, and A = {Ai}i∈K be
any finite partition of X . Fix some α > 0. By Theorem 3.7, it suffices to show that there exists a non-decreasing sequence
of classes H1 ⊆ H2 ⊆ · · · such that H =

⋃∞
i=1 Hi and (Hi,A) is α-representative uniformly generatable ∀ i ∈ N. Let

h1, h2, . . . be any enumeration of H. Define Hi = {h1, . . . , hi} for all i ∈ N. Observe that H1 ⊆ H2 ⊆ · · · and that
H =

⋃∞
i=1 Hi. Finally, since |Hi| = i < ∞ and |A| < ∞, by Corollary 3.5, we have that (Hi,A) is α-representative

uniformly generatable. Since representative non-uniform generatability implies representative generatability in the limit, our
proof is complete.

D. Proofs from Section 4
D.1. Proof of Lemma 4.3

Proof of Lemma 4.3. Select any 0 < α < 1, and let H = {h}, where supp(h) = X (note that this H is trivially generatable
in the limit if we do not require group representation). Consider any arbitrary enumeration of supp(h), u1, u2, ..., with each
ui distinct. Define a countable partition of X , A = {A1, A2, ...} such that for each i ∈ N,

Ai =

{
uj :

i−1∑
k=0

(
1

1− α

)k

≤ j <

i∑
k=0

(
1

1− α

)k
}
.

Clearly this is a valid partition as all groups are disjoint, and because 1
1−α > 1 by definition, for every uj , there exists an

i ∈ N such that
∑i−1

k=0

(
1

1−α

)k

≤ j <
∑i

k=0

(
1

1−α

)k

. Note that for each i ∈ N,

|Ai| = |Ai ∩ supp(h)| =
i∑

k=0

(
1

1− α

)k

−
i−1∑
k=0

(
1

1− α

)k

=

(
1

1− α

)i

.

Choose u1, u2, ... be the enumeration of supp(h) selected by the adversary. Consider any i ∈ N, and note that at step

t =
∑i

j=0

(
1

1−α

)j

− 1, all elements of Ai have been exhausted, and supp(h) ∩Ai \ {x1, ..., xt} = ∅. Moreover, Ai takes
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up more than an α-fraction of the distinct elements seen thus far, as x1:t|A(i) can be lower-bounded as

|Ai ∩ x1:t|
|x1:t|

=

(
1

1−α

)i

∑i
j=0

(
1

1−α

)j

− 1

=

(
1

1−α

)i

1
1−α (1−( 1

1−α )i)

1− 1
1−α

formula for sum of geometric series

=

(
1

1−α

)i+1

−
(

1
1−α

)i

(
1

1−α

)i+1

− 1
1−α

>

(
1

1−α

)
− 1(

1
1−α

)
= α

This implies that in order to be representative, the generator must output a distribution µt that puts positive mass on some
x ∈ Ai, otherwise

|µt|A(i)− x1:t|A(i)| ≥ x1:t|A(i) > α.

However, because all elements of Ai have already been exhausted in the sequence, the generator must either violate
consistency by putting mass on an x ∈ Ai that has already been seen in the sequence, or violate representation by putting
no mass on Ai despite appearing in greater than an α-fraction of the sequence. Thus, the generator cannot satisfy both
consistency and representation simultaneously at this timestep (in fact, it cannot generate correctly from any of the groups
that have been seen so far).

This happens for each Ai, and thus any generator must make infinitely many mistakes at timesteps
∑i

j=0

(
1

1−α

)j

− 1 for
every i ∈ N on this sequence, and thus it cannot satisfy the requirement of representative generation in the limit.

D.2. Proof of Lemma 4.8

Proof of Lemma 4.8. We introduce the notion of a group vector v(x) ∈ {0, 1}N \ {0N}, which given x ∈ X , indicates an
x’s group membership in all groups in A, with v(x)i = 1[x ∈ Ai].

Recall that fh,A denotes the finite support size of h with respect to A (Definition 4.1), which by assumption satisfies
fh,A < ∞. We can equivalently write the definition of fh,A in terms of group membership vectors, i.e.

fh,A =
∑

v∈{0,1}N\{0N},
|
⋂

i∈N,vi=1 Ai∩supp(h)|<∞

∣∣∣ ⋂
i∈N,vi=1

Ai ∩ supp(h)
∣∣∣.

Let V ⊆ {0, 1}N \ {0N} be the subset of all group membership vectors with finite support, i.e. all v ∈ {0, 1}N \ {0N} such
that ∣∣∣∣∣∣

⋂
i∈N,vi=1

Ai ∩ supp(h)

∣∣∣∣∣∣ < ∞.

The remainder of the proof follows in three key steps:

1. We first show that after enough timesteps, the proportion of the data sequence taken up by unique elements with group
membership lying in V must shrink to a very small quantity and stay below that amount. In particular, less than α/2.
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2. Next, we show that due to how little mass is placed on these vectors, it’s possible to construct a distribution that
α-approximates the empirical group probabilities, but places no mass on any x with v(x) ∈ V .

3. It follows that h must be feasible at this point, because all other group vectors have infinite support when intersected
with supp(h).

Step 1: V takes up a small proportion of of the empirical distribution. Consider the timestep t at which point the
sequence has included d∗ =

2fh,A
α unique elements. For any s ≥ t, the proportion of elements in the empirical distribution

with v(x) ∈ V is upper bounded by

fh,A
d∗

= α/2.

Thus, for all s ≥ t, the total proportion of unique elements from V in the sequence must be at most α/2, as desired.

Step 2: Constructing an α-approximate distribution that ignores V . We now show that for all s ≥ t, because we are
guaranteed that the total proportion of unique datapoints from V is at most α/2, we can construct a distribution whose
group probabilities α-approximate x1:s|A and places no mass on any x with v(x) ∈ V . For now we will ignore exactly
what elements the distribution uses, and just care about their group membership vectors. We construct a distribution πs over
these elements as follows:

πs(x) ∝

{
0 v(x) ∈ V or x ̸∈ x1:s

x1:s(x) otherwise
.

Clearly by definition πs places no mass on any x with v(x) ∈ V . It remains to show that this is actually a valid approximation,
i.e ∥πs|A − x1:s|A∥∞ ≤ α.

To this end, consider any Ai ∈ A. We rewrite the proportions of Ai appearing in πs and the empirical distribution:

|πs|A(i)− x1:s|A(i)|

≤ Pr
x∼x1:s

[x ∈ Ai, v(x) ∈ V ] +
Prx∼x1:s [v(x) ∈ V ]

1− Prx∼x1:s
[v(x) ∈ V ]

Pr
x∼x1:s

[x ∈ Ai, v(x) ̸∈ V ]

≤ Pr
x∼x1:s

[x ∈ Ai, v(x) ∈ V ] +
Prx∼x1:s

[v(x) ∈ V ]

1− Prx∼x1:s [v(x) ∈ V ]
Pr

x∼x1:s

[v(x) ̸∈ V ]

≤ 2 Pr
x∼x1:s

[v(x) ∈ V ]

≤ α guarantee from Step 1

Thus, because this holds for any Ai, we conclude that πs|A α-approximates x1:s|A.

Step 3: Constructing a feasible distribution. πs passes all group representation requirements, but is not quite what
we want, because supp(πs) is supported on previously seen points in x1:s, whereas we want a distribution supported on
supp(h) \ x1:s. Note that it suffices if for every x ∈ supp(πs) we can find an x′ ∈ supp(h) \ x1:s such that v(x) = v(x′).
Then, the distribution µs defined as µs(x

′) = πs(x) would exactly match the group vector proportions of πs, and thus also
satisfy ∥µs|A − x1:s|A∥∞ ≤ α as well as supp(µs) ⊆ supp(h) \ x1:s.

This is in fact easy to do, as note that by construction, for every x ∈ supp(πs), we must have v(x) ̸∈ V , and thus∣∣∣∣∣∣
⋂

i∈N,v(x)i=1

Ai ∩ supp(h)

∣∣∣∣∣∣ = ∞.

This means that even after removing x1:s, there are an infinite number of x′ that we can choose from to replace x for each
x ∈ supp(πs).

Thus, putting all these steps together, we conclude that at the finite timestep t ∈ N after we have seen 2fh,A/α unique
elements, for every s ≥ t we can find a distribution µs with supp(µs) ⊆ supp(h) \ x1:s and ∥µs|A − x1:s|A∥∞ ≤ α. Thus,
h is α-feasible for all s ≥ t, completing the proof.
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D.3. Proof of Theorem 4.4

Proof of Theorem 4.4. Choose some α > 0, and consider the following mapping from a sequence of examples x1, ..., xt to
a distribution over X :

1. Given examples x1, ..., xt, let Ct ⊆ {h1, ..., ht} be the set of critical hypotheses at step t.

2. Let Ft ⊆ Ct be the subset of critical hypotheses that are also α-feasible.

3. if Ft is empty, output the distribution µt = x1:t.

4. Otherwise, let hn ∈ Ft be the hypothesis in Ft with the largest index n ≤ t. Output the distribution µt over
supp(hn) \ x1:t that witnesses hn’s α-feasibility.

We now show that the generator G that follows this mapping and outputs µt at step t for all t ∈ N satisfies representative
generation in the limit. To do this, we need to verify that G is α-representative, and for any enumeration x1, x2, ... of an
h ∈ H and there exists some t∗ ∈ N such that G is consistent after timestep t∗.

Property 1: α-Representative. We first show that the generator’s output is representative at every t ∈ N. This is trivially
true if G outputs µt = x1:t at Step 3, and by the definition of α-feasibility, the µt output at step 4 also α-approximates the
empirical distribution of groups. Thus, in either case the µt output satisfies the representation requirement. Because this
holds true for any datastream x1, x2, ..., we conclude that G is α-representative.

Property 2: Consistent. It remains to show that there exists some t∗ ∈ N such that for all s ≥ t∗, supp(µs) ⊆
supp(h) \ x1:s. Let t ∈ N be the timestep guaranteed to exist by Lemma 4.6 such that for all s ≥ t, h is a critical hypothesis,
i.e. h ∈ Cs. Let d ∈ N be the finite timestep guaranteed to exist by Lemma 4.8 such that for all s ≥ d, h is α-feasible. Let
t∗ = max{d, t}. It follows that for all s ≥ t∗, we have h ∈ Fs, as it is both critical and α-feasible.

Thus, for any timestep s ≥ t∗, we are guaranteed that Fs is non-empty, and µs is guaranteed to satisfy supp(µs) ⊆
supp(hn) \ x1:s, where hn ∈ Ft is the hypothesis with the largest index n ≤ t. It follows from the definition of a critical
hypothesis that we must have supp(hn) ⊆ supp(h), and thus µs satisfies consistency.

Thus, we have shown that G as described above is an α-representative generator and is consistent for all s ≥ t∗, and thus
because α > 0 was chosen arbitrarily, we conclude that (H,A) is generatable in the limit with representation.

D.4. Proof and Discussion of Lemma 4.9

Before providing the proof of Lemma 4.9, we provide some additional discussion of the result and comparison to the positive
result of Kleinberg & Mullainathan (2024).

The algorithm of Kleinberg & Mullainathan (2024) that generates in the limit using only a finite number of membership
queries at each step crucially relies on the UUS assumption, in particular the fact that finding an element from supp(h) \x1:t

is always possible because |supp(h)| = ∞, and thus one can simply enumerate the elements of X until an unseen point is
encountered. In the case of representative generation, however, a generator may need to generate from (supp(h)∩Ai) \x1:t,
which is not always guaranteed to be infinite, making this problem a lot more difficult. We note that in the case where
A partitions X , if we made the strong assumption that supp(h) ∩ Ai is either empty or has infinite size for all Ai ∈ A
and h ∈ H, then this would be similar to the assumption made by Kleinberg & Mullainathan (2024), and we could
use membership queries to generate with representation using an algorithm almost identical to their membership-query
algorithm.

However, the Lemma 4.3 shows that weakening this assumption to allow for groups with finite intersection with hypotheses
in H introduces some inherent difficulty. In particular, no algorithm that works even just for very simple, finite pairs of H
and A can generate in the limit with representation using only membership queries.

With this in mind, we present the proof below.

Proof of Lemma 4.9. Consider a deterministically computed randomized generator G that at step t, sees examples x1, ..., xt

and can make queries of the form “x ∈ supp(h)” or “x ∈ A1?”. Note that because we only have two groups making up the
partition, querying about A2 as well can provide no extra information.
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Assume for contradiction that at each timestep t, the generator makes a finite number of such membership queries before
outputting its generated distribution µt, and satisfies representative generation in the limit.

We examine the execution of this generator and use it to construct a hypothesis h, partition A, and enumeration x1, x2, ... of
supp(h) that forces the generator to make infinitely many mistakes.

Let u1, u2, .... be an enumeration of X .

We now imagine running G (this can be run offline prior to execution as the generator is deterministic) and use the run to
build up a hypothesis h, an enumeration k1, k2, ... of supp(h), and disjoint groups A1, A2 with A1 ∪A2 = X .

We introduce some variables for keeping track of our constructed example:

• A dictionary H : X → {−1, 0, 1} that keeps track of the values assigned for the language h thus far, with H(x) = 1 if
h(x) = 1, H(x) = 0 if h(x) = 0, and H(x) = −1 if the value has not been assigned. We initialize H(x) = −1 for all
x ∈ X .

• A dictionary A : X → {−1, 1, 2} that keeps track of the group membership of each x (with 1 and 2 responding to A1

and A2, respectively, and −1 if x has not yet been assigned). We initialize A(x) = −1 for all x ∈ X .

• A list K that will keep track of the enumeration of elements. We begin with K = {}.

• A queue Q, to which we can insert elements and pull them off the queue in a first-in, first-out manner.

Now, at each timestep t = 1, 2, ..., we perform three stages of actions. The first is to add to the enumeration, the second is to
answer the queries of the generator, and the last is to handle the generator’s outputted distribution µt for that timestep.

Stage 1: Adding to the enumeration. If t is odd or Q is empty, we find the smallest i ≥ 1 such that A(ui) = −1. Such a
ui is guaranteed to exist as u1, ... is an enumeration of X , which starts with infinitely many ui with A(ui) = −1, and at each
step we will only fix the membership of a finite number of such ui. Having found this ui, we set A(ui) = 1, H(ui) = 1,
and append it to the enumeration K, so set kt = ui.

Otherwise, if t is even and Q is non-empty, we pull an element x off of the queue, and append it to K, thus setting kt = x.

Stage 2: Answering G’s queries. We now run the generator upon seeing k1, ..., kt, and answer each membership query as
follows.

Every time the generator asks “x ∈ supp(h)?” for some x, if H(x) ̸= −1, and the membership has already been fixed, we
output the correct membership value. Otherwise, if H(x) = −1, we answer “yes,” set H(x) = 1, A(x) = 2, and add it to
Q.

Every time the generator asks “x ∈ A1?,” if A(x) ̸= −1, we provide the correct answer that has already been fixed.
Otherwise, we set A(x) = 2, H(x) = 1, and add it to Q. Note that if A(x) = −1, we necessarily have H(x) = −1.

Stage 3: Handling G’s output. After a finite number of queries, G is guaranteed by assumption to output a distribution µt.
We make no assumptions about the representation of µt, and thus it could have infinite support.

We perform the following actions depending on the contents of supp(µt):

• If there exists an x ∈ supp(µt) with H(x) = 0 or x ∈ {x1, ..., xt}, we do nothing and end execution for the timestep.

• If there exists an x ∈ supp(µt) with H(x) = −1, i.e. x has not yet been queried by the generator, we set H(x) = 0,
A(x) = 2, and finish execution for timestep t.

• Otherwise, note that every x ∈ supp(µt) has H(x) = 1, A(x) = 2 by definition of our construction.

We repeat these three steps for each timestep. This completes the definition of the construction.

We now verify the necessary facts for this H, enumeration, and group partition to be well-defined. In particular, H = {h}
must be UUS and K must be a valid enumeration of supp(h). Clearly, each x can be assigned only one of A(x) = 1 or
A(x) = 2, so we have a valid partition.
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We first consider the UUS property of H. We consider two cases. First, if the generator makes a finite number of queries at
each time step as promised, then {x ∈ X : H(x) = −1} will have infinite size at all timesteps, and so at every timestep we
are able to find an unseen x ∈ X with H(x) = −1 to add to the enumeration, or pull one off the queue. Because this can be
repeated indefinitely, supp(h) will be infinite. On the other hand, if at some finite timestep the generator makes an infinite
number of queries, either an infinite number of the queries are on elements with H(x) = −1 or A(x) = −1, in which case
each of these elements get set to H(x) = 1 resulting in an infinite support, or there are only a finite number of such queries,
and thus the remaining un-queried portion of X must be infinite, and we can set all of it to H(x) = 1 to again get an infinite
support. Thus, in all cases supp(h) satisfies the UUS property.

Lastly, we show that K is a valid enumeration. First, consider the case where at some timestep t, the generator makes
an infinite number of queries. We can follow the assignment of H above to construct a UUS H, and then append any
enumeration of the remaining unseen elements with H(x) = 1 to K to obtain a valid enumeration.

Otherwise, we can assume that at every step, the generator makes a finite number of queries. Clearly by definition of the
construction, only elements with H(x) = 1 are added to the enumeration, meaning that

⋃
i∈N{ki} ⊆ supp(h). Thus, it

remains to show that the K covers all of supp(h). Consider any x ∈ supp(h), i.e. an x ∈ X such that there exists some
finite timestep at which H(x) is set to 1. We will show that there exists some j ∈ N such that kj = x. Note that because
supp(h) ⊆ X and u1, ... is an enumeration of X , there exists some i ∈ N such that ui = x. At timestep 2i− 1, we have
three possibilities.

• k2i−1 = ui.

• k2i−1 ̸= ui, but there exists a j < 2i− 1 such that kj = ui.

• k2i−1 ̸= ui, and ui has not appeared earlier in the enumeration.

If we are in either of the first conditions, we are done because we have guaranteed that there exists a j ∈ N such that kj = x.
Note that in the third case, this can only happen because ui is currently in the queue. Because at each previous step the
generator made a finite number of membership queries, the position of ui in the queue must be some finite s ∈ N. Thus,
because even timestep outputs an element from the queue if it is nonempty, we are guaranteed that k2i−1+2s−1 = ui, and
thus in all cases there exists a j ∈ N such that kj = x, and thus K is a valid enumeration of supp(h).

Construction of Contradiction. We finally consider what happens when the generator is run on enumeration K with
group and hypothesis membership defined by A and H as above. Consider any timestep t, where the generator outputs a
distribution µt.

We consider the three cases considered in Stage 3. Note that in both of the first two cases, the generator must violate
consistency, as there exists an x ∈ supp(µt) with x ̸∈ supp(h) \ {x1, ..., xt}.

Otherwise, the only other possibility is given by the third case, which guarantees that every x ∈ supp(µt) has A(x) = 2,
and thus x ∈ A2. This means that the generator is not representative of the data sequence thus far, because by definition of
the enumeration, x1:t|A(1) ≥ 1/2 while µt|A(1) = 0, and thus ∥x1:t|A − µt|A∥∞ ≥ 1/2 > α.

Thus, the generator fails to generate consistently with group constraints at every timestep. We thus conclude that the
assumption was false, and at some iteration the generator must make an infinite number of membership queries.
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