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Abstract

The task of Knowledge Editing (KE) is aimed001
at efficiently and precisely adjusting the behav-002
ior of large language models (LLMs) to up-003
date specific knowledge while minimizing any004
adverse effects on other knowledge. Current005
research predominantly concentrates on edit-006
ing white-box LLMs, neglecting a significant007
scenario: editing black-box LLMs, where ac-008
cess is limited to interfaces and only textual009
output is provided. In this paper, we initially010
officially introduce KE on black-box LLMs,011
followed by presenting a thorough evaluation012
framework aimed at addressing the shortcom-013
ings of current evaluations, which are inade-014
quate for black-box LLMs editing and lack015
comprehensiveness. To address privacy leaks016
of editing data and style over-editing in existing017
approaches, we propose a new postEdit frame-018
work, ensuring privacy through downstream019
processing and maintaining textual style consis-020
tency via fine-grained editing. Experiments and021
analysis conducted on two benchmarks show022
that postEdit surpasses all baselines and ex-023
hibits robust generalization, notably enhancing024
style retention by an average of +20.82%.1025

1 Introduction026

As large language models (LLMs) are widely ap-027

plied to knowledge-intensive tasks and the world’s028

state evolves, the requirements of updating LLMs029

to rectify obsolete information or incorporate new030

knowledge to maintain their relevance is constantly031

emerging (Zhao et al., 2023; Liu et al., 2023a; Bian032

et al., 2023; Wang et al., 2023a). Frequent retrain-033

ing is impractical due to intensive computational034

overload and time consumption. To address this035

issue, the concept of knowledge editing (KE) has036

been proposed, aiming to efficiently and precisely037

modify the behavior of LLMs to update specific038

knowledge without negatively influencing other039

1We will release our code after blind review.

Who is the president of the US? 

Joe Biden is the current
President of the US. 

Donald Trump is the current
President of the US. 

Knowledge Editing: <President of the US, is, Donald Trump→Joe Biden>

Who is the president of the US? 

(a)  An example of knowledege editing for fixing and updating LLMs. 

… …

(b) Editing of open-source white box LLMs (c) Editing of closed-source black box LLMs

Figure 1: Illustration of Knowledge Editing and compar-
ison of two editing scenarios, where black-box LLMs
editing constrains LLMs to only obtain textual output.

knowledge (Yao et al., 2023; Wang et al., 2023b; 040

Zhang et al., 2024), as illustrated in Fig. 1(a). 041

A prevalent approach to KE involves manipu- 042

lating the internals of LLMs through gradients or 043

causal analysis (De Cao et al., 2021; Mitchell et al., 044

2021; Meng et al., 2022a,b; Huang et al., 2023), 045

as depicted in Fig. 1(b). While these methods 046

have shown promise, they require LLMs to be lo- 047

cally deployed and parameter-transparent, termed 048

white-box LLMs editing. In more typical scenarios, 049

LLMs are provided via APIs by upstream manu- 050

facturers (e.g., OpenAI, Google) for downstream 051

services, with inaccessible internal workings and 052

text-only output. We refer to KE on such LLMs as 053

black-box LLMs editing, as shown in Fig. 1(c). 054

This raises a key question: how can we edit "black- 055

box" models when undesired outputs or errors oc- 056

cur? Furthermore, existing KE evaluation proto- 057

cols rely on changes in the model’s logits before 058

and after editing, and are unattainable for black-box 059

LLMs, prompting another question: how can we 060

comprehensively evaluate black-box KE methods? 061

There are some studies based on external mem- 062

ory that can be applied to black-box LLM editing 063

scenarios. SERAC (Mitchell et al., 2022) utilizes 064

an surrogate model to generate edited responses 065

when queries are classified within the editing scope 066

(INS), while relying on the base LLM for queries 067

out of the editing scope (OOS). IKE (Zheng et al., 068
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Figure 2: Comparison of different KE frameworks for black-box LLM editing. IKE operates on LLM input, and
SERAC performs editing using a surrogate model parallel to LLM, while our postEdit edits after the output of LLM
and achieves both privacy protection and style retention.

2023) facilitates in-context learning (Dong et al.,069

2022) of LLM itself by demonstrating exemplars070

to learn the ability to discern the need of edit-071

ing and how to edit. However, as depicted in072

Fig. 2(a)(b), these methods encounter two crucial073

drawbacks: (1) Privacy leakage of editing data.074

IKE inputs recall data from the demonstration li-075

brary and edit memory to LLMs, inevitably disclos-076

ing downstream private editing data to upstream077

LLM providers. (2) Style over-editing.2 One of078

the core objectives of KE is to ensure localized079

editing, whereby KE methods should only edit the080

knowledge of LLMs while keeping the original081

output style unchanged. Specifically, the differ-082

ent scales or types between the surrogate model083

and base LLM result in stylistic differences for084

SERAC, while LLM’s sensitivity to prompts and085

demonstrations (Chen et al., 2023) leads to style086

over-editing in IKE. Therefore, even though their087

edited responses both target the new object "Eu-088

rope", they exhibit a pronounced departure in style089

from the original responses. An ideal black-box090

editing method should preserve downstream data091

privacy while achieving commendable editing per-092

formance and style retention.093

In this paper, we firstly revisit the existing eval-094

uation of KE and formulate an improved general095

evaluation framework for black-box LLM editing.096

In addition to the traditional lexical evaluation of097

knowledge editing, our framework incorporates the098

assessment of style retention for the first time and099

conducts a comprehensive evaluation from both tex-100

tual and semantic perspectives. (see Section 3). To101

solve the problems of existing methods mentioned102

above, we propose a novel post-editing approach103

termed postEdit, applied after the output of LLMs,104

as illustrated in Fig. 2(c). Diverging from previous105

approaches, on the one hand, the post-processing106

mechanism allows postEdit to be deployed as a107

post-plugin at the downstream end, safeguarding108

2In this paper, the style extensively covers the expressive
forms, conciseness, length, information, etc., of the text.

the privacy of editing data. On the other hand, an 109

expert model called post-editor, guided by editing 110

knowledge, makes fine-grained modifications to 111

original responses generated by LLM, thereby ef- 112

fectively preserving the original style. As the role 113

of post-editor is to discern and precisely edit the 114

original response rather than storing new knowl- 115

edge, we integrate edit memory and a retriever into 116

postEdit, like IKE and SERAC, for efficient knowl- 117

edge injection. We leave the detailed exposition in 118

Section 4. Finally, we conduct comprehensive ex- 119

periments and analysis to demonstrate that postEdit 120

achieves outstanding performance in both editing 121

and style retention, exhibiting robust generalization 122

across various aspects, including LLMs, data, and 123

scales in Section 5 and 6. 124

Our contributions are three-fold: (1) We offi- 125

cially introduce knowledge editing on black-box 126

LLMs and propose a comprehensive KE evalua- 127

tion framework, incorporating the assessment of 128

style retention for the first time. (2) We propose 129

a novel postEdit method to post-edit the output of 130

LLMs through an expert model in a plug-in man- 131

ner. Our postEdit can both maintain the privacy of 132

downstream editing data and achieve commendable 133

editing performance and style retention. (3) Exper- 134

iments and analysis on two benchmarks demon- 135

strate that our postEdit outperforms all baselines in 136

both editing and style retention (Retention Score 137

+20.82% ↑), showing robust generalization. 138

2 Related Work 139

2.1 Knowledge Editing 140

White-box LLMs Editing. The initial KE methods 141

involve updating parameters using constrained fine- 142

tuning (Sinitsin et al., 2020; Zhu et al., 2020). Re- 143

cent studies center around hyper-network and attri- 144

bution. Hyper-network-based approaches (De Cao 145

et al., 2021; Mitchell et al., 2021) train a hyper- 146

network to capture gradient changes for edits, while 147

attribute-based methods (Dai et al., 2022; Meng 148
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et al., 2022a,b; Wu et al., 2023; Li et al., 2024)149

locate neuron activation in networks for targeted150

parameter updates. However, these methods exclu-151

sively focus on editing white-box LLMs, overlook-152

ing concerns on black-box LLMs editing.153

Memory-based Editing. In addition to inject-154

ing edits as parameters into LLM, memory-based155

KE methods store edits in explicit memory and156

utilize retrieval-augmented methods to adjust the157

model’s final predictions based on relevant edits.158

Although they can be considered a branch of broad159

retrieval-augmented generation (RAG), unlike con-160

ventional RAG (Es et al., 2023; Gao et al., 2024;161

Chen et al., 2024), KE methods focus on modify-162

ing the knowledge of INS queries and maintain163

output consistency for OOS queries. Therefore,164

SERAC (Mitchell et al., 2022) introduces an IN-165

S/OOS judge model, while IKE (Zheng et al., 2023)166

uses demonstrations with INS and OOS examples167

to determine whether to edit or maintain knowl-168

edge. Although applicable to black-box editing169

scenarios, these methods face challenges related to170

privacy and style over-editing.171

2.2 Post-processing Methods172

Some post-processing methods have been applied173

to other tasks. Cao et al. (2020) fine-tune a BART174

model to improve factual consistency in abstrac-175

tive summarization by using summaries with errors176

as input and original or gold summaries as train-177

ing targets. Thorne and Vlachos (2021) fine-tune178

a T5 model to correct factual errors by recover-179

ing masked statements based on retrieved evidence.180

RARR (Gao et al., 2023) employs PaLM with few-181

shot demonstrations for error correction and attribu-182

tion report generation. Different from these studies,183

postEdit applies post-processing to the knowledge184

editing task, fine-tuning a post-editor to simultane-185

ously determine query relevance within the editing186

scope and make fine-grained modifications.187

3 Evaluation Framework188

3.1 Problem Formulation189

A knowledge entry is typically shown as a triple190

(subject, relationship, object). Following Wang191

et al. (2023b), an edit can be defined as e =192

(t, t∗) = (s, r, o → o∗), denoting the update of193

an old knowledge triple t to the new one t∗. As194

multiple input-output pairs can be associated with195

the same tuple, the input set associated with edit196

e is denoted as Xe = I(s, r), referred to as in-197

scope (INS) input space, the target output set asso- 198

ciated with o∗ is denoted as Y∗
e = O∗(s, r, o∗), and 199

the corresponding original output set is denoted as 200

Ye = O(s, r, o). For a base LLM fbase : X → Y , 201

given an edit e, the goal of KE is to modify the orig- 202

inal output yo ∈ Ye to ye ∈ Y∗
e for input x ∈ Xe, 203

while keeping the output unaffected for out-of- 204

scope (OOS) queries, i.e., ye = yo if x /∈ Xe. 205

Furthermore, we define KE on black-box LLMs 206

as the editing on a certain class of LLMs, where we 207

have no access to anything other than textual out- 208

puts of LLMs. It should be noted that this scenario 209

only restricts the base LLM to be edited, with no 210

limitations imposed on auxiliary models or tools. 211

3.2 Evaluation Protocol 212

3.2.1 Existing Logit-based Evaluation 213

Previous studies (Meng et al., 2022a; Mitchell et al., 214

2022; Zheng et al., 2023) primarily assess KE 215

based on three metrics: Efficacy, Generalization, 216

and Specifity, by calculating the change in logits 217

of the model before and after editing.3 On the one 218

hand, the inaccessibility of logits for black-box 219

LLMs renders these metrics ineffective. On the 220

other hand, KE should only modify spans in the 221

response involving the edit, while keeping the rest 222

and style unchanged to minimize negative impacts 223

of editing. However, this aspect has been fully 224

overlooked, leading to incomplete evaluation. 225

3.2.2 Improved Multi-perspective Evaluation 226

For black-box LLMs editing, the evaluation of KE 227

focuses on what changes and what remains in the 228

edited output ye compared to original output yo. 229

Therefore, we formulate the evaluation framework 230

from both the aspects of editing and retention. 231

Editing. The Editing metric is designed to evalu- 232

ate the editing for INS input and non-editing for 233

OOS input. When x ∈ Xe, the expected output 234

space of fbase transitions from Ye to Y∗
e . From the 235

perspective of textual editing (TE), Y∗
e discards 236

the old target o and incorporates the new target o∗. 237

From the perspective of semantic editing (SE), the 238

joint text composed of Xe and Y∗
e implies the new 239

knowledge t∗ and contradicts the old knowledge 240

t. When x /∈ Xe, the situation is reversed. We 241

formalize TE as follows: 242

TE =

{
1
2{ctn(ye, o

∗) + (1− ctn(ye, o))} x ∈ Xe

1
2{ctn(ye, o) + (1− ctn(ye, o

∗))} x /∈ Xe

(1) 243

3We provide details of these metrics in Appendix A.4.
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Figure 3: The overall architecture of postEdit. The post-editor is trained to learn: (1) distinguish between INS and
OOS queries; (2) edit the output of INS queries while preserving style. Pseudo-code is provided in Appendix B.1.

where ctn(a, b) = 1 if a contains b, otherwise 0.244

Similarly, SE is formalized as follows:245

SE =

{
1
2{ent([x, ye], t

∗) + (1− ent([x, ye], t))} x ∈ Xe

1
2{ent([x, ye], to) + (1− ent([x, ye], t

∗))} x /∈ Xe

(2)246

where ent(a, b) = 1 if a entails b, otherwise 0247

by using the Natural Language Inference (NLI)248

model, [x, ye] denotes the concatenation of input-249

output pair , and to indicates the knowledge tuple250

associated with OOS input-output pair [x, yo].251

Retention. To assess the extent to which the edited252

output preserves the original style, we introduce Re-253

tention as an adversarial metric for Editing. We sep-254

arately evaluate textual retention (TR) and seman-255

tic retention (SR) using ROUGE scores (Lin, 2004)256

and the SBERT model (Reimers and Gurevych,257

2019), formalized as follows:258

TR =

{
ROUGE(M(ye, o

∗),M(yo, o)) x ∈ Xe

ROUGE(ye, yo) x /∈ Xe

(3)259260

SR =

{
sim(M(ye, o

∗),M(yo, o)) x ∈ Xe

sim(ye, yo) x /∈ Xe

(4)261

where M(a, b) denotes masking the span relevant to262

b in a. For x ∈ Xe, we employ a masking operation263

to extract text unrelated to editing.264

It is worth emphasizing that our evaluation265

framework does not require the gold label of the266

edited response or internal information from the267

base LLM. This enables its applicability to a wide268

range of scenarios beyond black-box LLM editing.269

Due to space limitations, we further elaborate270

on the proposed evaluation framework and provide271

pseudo-code in Appendix A.1 and A.2. Subse-272

quently, A.3 demonstrates the high consistency273

between these metrics and human ratings, while 274

A.5 compares the scores of the same method un- 275

der existing and proposed metrics, experimentally 276

proving the rationality of the proposed metrics. 277

4 Methodology 278

4.1 Overall Architecture 279

To solve the problems of privacy leakage of edit- 280

ing data and style over-editing, as illustrated in 281

Fig. 3, postEdit is deployed downstream and post- 282

processes the output of base LLM, comprising 283

three components: an edit-memory Me = {ei} 284

for storing editing knowledge, a retriever fretr for 285

recalling an edit, and a trained generative model 286

named post-editor fedit for executing the edit4. 287

The memory-based storage mechanism ensures ef- 288

ficiency and flexibility in injecting new knowledge. 289

During the inference phase, the retriever first re- 290

calls the edit with the highest similarity to user in- 291

put from Me. Following IKE, we directly employ 292

a pre-trained SBERT model without fine-tuning to 293

maintain the generalization. Finally, the post-editor 294

performs the editing guided by recalled edit. 295

4.2 Train post-editor 296

Original Response Augment. The training dataset 297

of KE typically consists of editing knowledge, 298

along with queries covering both INS and OOS 299

input, denoted as Dtrain = {(ei, xi)}. Previous 300

studies (Mitchell et al., 2022; Zheng et al., 2023) 301

usually directly use the new object o∗i in ei as the 302

target output for editing, resulting in stylistic differ- 303

4In the main experiment, we fine-tune LLaMA 2-7B (Tou-
vron et al., 2023) as the post-editor and conduct an analysis of
performance at various scales in Section 6.5.
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ences between the editor and base LLM. To address304

this gap, we first construct the original response305

yaugi,o = fbase(xi) via base LLM for each sample.306

Edited Response Augmentation. In order to con-307

struct the training output targets for post-editor, we308

utilize both GPT-4 and rules to further augment the309

training dataset. For INS inputs, the objective is to310

modify the original response. Thus, given edit ei,311

input xi, and original output yaugi,o are aggregated312

using an editing template T aug5 and fed into GPT-4313

to obtain the edited output yaugi,e . For OOS inputs,314

the goal is to maintain the original response with-315

out modification. Therefore, we introduce a special316

token ⟨Retain⟩ as the target output, denoting no317

need for editing. We formulate this process as:318

yaugi,e =

{
fgpt4(T

aug(ei, xi, y
aug
i,o )) xi ∈ Xe

⟨Retain⟩ xi /∈ Xe

(5)319

Recent studies (Zhou et al., 2023; Lu et al., 2023;320

Liu et al., 2023b) have proven that the quality of321

training data is often more crucial than quantity. To322

further enhance the quality of augmented data and323

alleviate training burden, we evaluate and filter the324

edited responses obtained through GPT-4 augment.325

Based on the joint evaluation using the Editing met-326

rics TE and SE, formalized as 1{TE=1&SE=1}y
aug
i,e ,327

augmented samples with poor quality are discarded.328

Ultimately, we obtain the augmented training set329

Daug
train = {(ei, xi, yaugi,o , yaugi,e )}.330

Supervised Fine-tuning (SFT). After data aug-331

ment and filtering, the post-editor is trained in a332

supervised fine-tuning manner, where the query,333

edit, and original response are aggregated as in-334

put using an editing template T edit (distinct from335

T aug), with yaugi,e as the output target. After to-336

kenizing yaugi,e as {yaugi,e1
, yaugi,e2

, . . . , yaugi,eT
}, the loss337

function of SFT can be formalized as follows:338

Lsft = −
|Daug

train|∑
i=1

T−1∑
t=0

logP (yaugi,et+1
|xediti , yi,e≤t

)

(6)339

where xediti = T edit(ei, xi, y
aug
i,o ).340

4.3 Inference of PostEdit341

Once the initial training is completed, postEdit does342

not require re-finetuning during deployment. In-343

stead, it follows a simple workflow of retrieval344

followed by editing. For a user query x ∈ Dtest345

5All templates mentioned are shown in Appendix B.2.

and it original response yo = fbase(x), the retriever 346

recalls the most similar edit ei∗ to x from Me: 347

i∗ = argmax0≤i<|Me| sim(x, ei) (7) 348

Next, we obtain the input xedit = T edit(ei∗ , x, yo) 349

by populating the editing template T edit and 350

transmit it to the post-editor to yield the out- 351

put fedit(xedit). Finally, by discerning whether 352

f(xedit) contains the special token ⟨Retain⟩, we 353

determine the ultimate output: 354

ye =

{
fedit(x

edit) fedit(x
edit) ̸= ⟨Retain⟩

yo fedit(x
edit) = ⟨Retain⟩

(8) 355

We leave the discussion on the editing and in- 356

ference efficiency of postEdit and the baselines 357

to Appendix B.3. Additionally, we experimentally 358

verified in Appendix B.4 and B.5 that there is no 359

data leakage or content bias with the extra train- 360

ing phase and GPT data augmentation. 361

5 Experiments 362

5.1 Experiment Setting 363

Datasets. We conduct experiments on two widely- 364

used KE datasets, CounterFact (Meng et al., 2022a) 365

and zsRE (Levy et al., 2017), where edits in the 366

training and test sets don’t overlap. Each entry 367

comprises an edit and three types of queries: Sim- 368

ple queries to validate the success of knowledge 369

injection, Rephrase queries to assess the general- 370

ization of the edit, and out-of-scope (OOS) queries 371

to verify the local effect of the edit. Differing from 372

zsRE, where OOS queries are randomly chosen, 373

CounterFact’s OOS queries share the same relation 374

and object with the edit but differ in subjects, pos- 375

ing a greater challenge for distinction. We provide 376

details and processing procedures in Appendix C.1. 377

Baselines. We employ ChatGPT (gpt-3.5-turbo) as 378

the base LLM and extensively compare postEdit 379

with methods applicable to black-box LLM edit- 380

ing, including PROMPT (Zheng et al., 2023), IKE 381

(Zheng et al., 2023), SERAC (Mitchell et al., 2022), 382

and SERAC(ChatGPT). The PROMPT method 383

only prompts the LLM with the edit and the query, 384

while IKE provides diverse exemplars for demon- 385

stration learning. SERAC employs a fine-tuned 386

surrogate model6 to respond to queries within the 387

editing scope, and SERAC(ChatGPT) is a variant 388

6For a fair comparison, the surrogate model uses the same
pre-trained model and training data as the post-editor.
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Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

PROMPT 85.17 86.73 63.8 78.57 (76.62) 83.1 84.57 61.97 76.54 (74.65) 21.42 21.54 18.11 20.36 (20.19) 53.14 54.86 51.37 53.13 (53.05)

IKE 94.2 85.8 85.4 88.47 (88.29) 93.2 84.5 85.3 87.67 (87.5) 24.14 18.98 22.81 21.97 (21.75) 53.45 48.94 57.69 53.36 (53.12)

SERAC 95.4 87.4 96.1 92.97 (92.79) 94.6 87.3 96.2 92.7 (92.53) 35.66 37.62 96.01 56.43 (46.13) 65.51 64.64 97.04 75.73 (73.1)

SERAC (ChatGPT) 95.23 85.8 98.6 93.2 (92.87) 95.3 86 98.6 93.31 (92.98) 23.43 26.71 96.41 48.85 (33.08) 55.04 56.88 97.91 69.95 (65.26)

postEdit (ours) 96.8 94.7 99.4 96.97 (96.93) 92.5 92.1 99.4 94.67 (94.55) 88.65 89.66 99.64 92.65 (92.39) 93.9 94.02 99.82 95.91 (95.84)

Table 1: Performance comparison on CounterFact. AVG is the direct average, while HM is the harmonic mean. We
bold the best and underline the second-best results. Results are averaged over three random runs.

Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

PROMPT 88.83 86.87 58.37 78.02 (74.53) 86.5 84.97 60.27 77.24 (74.29) 47.76 45.35 34.93 42.68 (41.51) 73.4 74.62 61.29 69.77 (69)

IKE 98.1 97.6 78 91.23 (90.2) 97.7 94.7 83.1 91.83 (91.38) 19.72 16.36 27.83 21.3 (20.3) 42.26 38.67 58.53 46.49 (45.04)

SERAC 98.7 95.1 100 97.93 (97.89) 97.6 93.3 100 96.97 (96.89) 68.02 66.06 100 78.03 (75.3) 86.84 85.91 100 90.92 (90.48)

SERAC (ChatGPT) 94.7 87.5 100 94.07 (93.77) 96.17 88.53 100 94.9 (94.61) 52.22 52.01 100 68.08 (61.75) 75.2 77.56 100 84.25 (82.69)

postEdit (ours) 98.4 98.6 100 99 (98.99) 96.2 95.4 100 97.2 (97.16) 95.76 96.13 100 97.3 (97.26) 97.69 97.89 100 98.53 (98.52)

Table 2: Performance comparison on zsRE.

where the surrogate model is changed to ChatGPT.389

Detailed introduction of baselines are shown in Ap-390

pendix C.2 and more baselines from other tasks are391

compared in Appendix D.1.392

Implementation. We use ChatGPT (gpt-3.5) as the393

base LLM, employ Llama2-7B as the post-editor,394

and fine-tune it using LORA for 5 epochs with a395

rank of 8 (Hu et al., 2021). For the retriever, we em-396

ploy all-MiniLM-L6-v2 (SBERT, 2021) to encode397

queries and edit entries, using dot product as the398

similarity function. We detail the implementation399

of postEdit and baselines in Appendix C.3.400

Test Procedure. The default test procedure of KE401

involves editing a single knowledge entry, assess-402

ing it, and then rolling back the system to original403

state before the next edit. This setting keeps the edit404

memory size at 1, turning the retriever into an "ora-405

cle" to encourage methods to prioritize editing and406

locality capabilities. We compare methods under407

various memory sizes in Section 6.4 and multi-hop408

reasoning scenarios in Appendix D.2.409

5.2 Main Results410

As shown in Tab. 1 and Tab. 2, in general, our411

postEdit method consistently outperforms all base-412

lines with a large margin, both in terms of Editing413

and Retention scores. Next, we analyze the results414

from three aspects:415

(1) Comparison of different methods. We can416

see that postEdit achieves nearly all optimal Editing417

scores, along with a significant surpassing of base-418

lines in Retention scores. On CounterFact, postE-419

dit outperforms the suboptimal baselines by 3.77%420

(TE), 1.36% (SE), 36.22% (TR), and 20.18% (SR)421

in average scores. On zsRE, postEdit surpasses the422

suboptimal baselines by 1.07% (TE), 0.23% (SE),423

19.27% (TR), and 7.61% (SR). This shows that424

postEdit can accurately locates and modifies spans 425

in the text related to editing, while maintaining 426

other content, thereby achieving high performance 427

in both Editing and Retention. 428

(2) Comparison of different query types. For 429

queries within the editing scope, the Rephrase type 430

involves the paraphrasing of editing knowledge, 431

making it more challenging compared to the Sim- 432

ple type. Concerning CounterFact, discernible 433

decrements in Rephrase performance are observed 434

for IKE and SERAC in contrast to the Simple 435

type (e.g., TE score, IKE: 94.2→85.8, SERAC: 436

95.5→87.4), whereas postEdit performance re- 437

mains stable (96.8→94.7), indicating its robust gen- 438

eralization proficiency in paraphrasing edits. For 439

OOS queries, while SERAC and postEdit excel 440

on the zsRE dataset, postEdit surpasses SERAC 441

on more challenging CounterFact, showcasing its 442

precise differentiation of queries requiring editing 443

without additional editing judge module. 444

(3) Comparison of different metrics. Com- 445

paring the Editing and Retention of baselines re- 446

veals a serious issue of style over-editing. For ex- 447

ample, the Editing performance of IKE surpasses 448

that of PROMPT, while the Retention lags behind 449

PROMPT, indicating a negative impact of demon- 450

stration on IKE’s style retention. Despite achieving 451

commendable Editing scores, SERAC and SERAC 452

(ChatGPT) still fall short in terms of Retention. 453

This highlights that effective editing does not guar- 454

antee good retention, emphasizing the need for a 455

comprehensive evaluation of knowledge editing. 456

6 Analysis 457

6.1 Generalization of PostEdit 458

In Section 4.1, we fine-tune the post-editor to ac- 459

quire the ability of discriminating and executing 460
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ID Edit Query Original Response
Edited Response

IKE SERAC postEdit

1 The nationality of Marcel
Maupi was what? French → Italian

What was Marcel
Maupi’s nationality?

Marcel Maupi was a
French national. Italian. Marcel Maupi

was Italian.
Marcel Maupi was an

Italian national.

2
Football Association of

Malaysia is affiliated
with the FIFA → Avengers

Football Association
of Malaysia is

affiliated with _

- Asian Football Confederation (AFC)
- FIFA (Fédération Internationale

de Football Association)
Avengers. Avengers. - Asian Football Confederation (AFC)

- Avengers

3
What is the programming
language for CLPython?

Lisp → JavaScript

What is the
programming language

for CLPython?

CLPython is an implementation
of Python language in

Common Lisp, which means
that the programming language

used for CLPython is Common Lisp.

JavaScript.

The programming
language for
CLPython is
JavaScript.

CLPython is an implementation
of Python language in

JavaScript,which means
that the programming language

used for CLPython is JavaScript.

4 Howard Glacier is located
in Antarctica → Europe

Howard Glacier
is located in

the continent _

of Antarctica. Specifically, it is
located in the northern part
of the Antarctic Peninsula.

Europe. of Europe.
of Europe. Specifically, it is
located in the northern part

of the continent.

5
In what city or state did

the formation of I Am Kloot
occur? Manchester → Bilbao

In which city or state
was the formation

of I Am Kloot?

I Am Kloot was formed
in Manchester, England. Bilbao. I Am Kloot was

formed in Bilbao.
I Am Kloot was formed

in Bilbao, Spain.

Table 3: Editing cases sampled from CounterFact and zsRE under different methods.
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Figure 4: Performance under different base LLMs and
datasets, where Editing Score is the average of TE and
SE, and Retention Score is the average of TR and SR.

edits. Therefore, it is imperative to validate the461

generalization of post-editor’s abilities. For postE-462

dit and baselines, we initially utilize ChatGPT as463

the base LLM and CounterFact as the training set464

or demonstration library. Subsequently, we con-465

duct testing under different base LLMs and datasets466

without re-training, as illustrated in Fig. 4. We467

can see that whether generalizing from Counter-468

Fact to zsRE or from ChatGPT to PaLM2 (Google,469

2023) and LLaMA2-70B-chat (meta, 2023), postE-470

dit consistently demonstrates optimal performance471

in Editing and Retention. The robust generaliza-472

tion of post-editor highlights its plug-and-play ap-473

plicability across diverse scenarios, requiring no474

retraining when faced with a new set of editing re-475

quests or when replacing the base LLM. In contrast,476

both IKE and SERAC exhibit performance fluctua-477

tions, particularly evident in a significant decline478

when IKE is applied to LLaMA2-70B-chat. Fur-479

ther analysis reveals that conflicts between editing480

data and the intrinsic knowledge of LLaMA2-70B-481

chat lead to frequent refusals to generate responses482

based on edits. However, postEdit successfully mit-483

igated the impact of knowledge conflicts through484

Method
Semantic Editing (SE) Semantic Retention (SR)

Simple Rephrase OOS AVG Simple Rephrase OOS AVG

postEdit 92.5 92.1 99.4 94.67 93.9 94.02 99.82 95.91

-w/o data fillter 90.6 90.6 99.4 93.53 94.19 93.76 99.82 95.92
post-editor→ChatGPT 89.73 87.8 70.77 82.54 89.39 88.78 83.27 86.26
GPT4→ChatGPT 93.2 91.8 99.4 94.80 90.04 89.54 99.81 93.13
SBERT Judgement 92.2 85.2 96.3 91.23 94.47 92.49 98.97 95.31

Table 4: Ablation Study on CounterFact.

post-processing. We further verify the excellent ro- 485

bustness of postEdit for base LLM output formats 486

and architectures in Appendix D.3 and D.4. 487

6.2 Case Study 488

To visually demonstrate the editing and style re- 489

tention of postEdit and baselines, we conduct the 490

case study in Tab. 3. In Case 1, postEdit accurately 491

identifies and modifies "French" to "Italian" while 492

maintaining the rest of the text unchanged to keep 493

the style to the greatest extent. In contrast, IKE only 494

responds with "Italian" and SERAC replies with 495

"Marcel Maupi was Italian" without referencing 496

the original response, revealing serious style over- 497

editing. In Cases 2 and 3, postEdit respectively 498

replaces "FIFA (Fédération Internationale de Foot- 499

ball Association)" with "Avengers" and modifies 500

"Common Lisp" to "JavaScript". This demonstrates 501

that postEdit can locate and edit spans semantically 502

related to editing knowledge, going beyond a rudi- 503

mentary replacement of old objects with new ones. 504

Furthermore, it is evident that postEdit can han- 505

dle spans logically associated with the editing. In 506

Case 4, the location changes from "Antarctica" to 507

"Europe", and the span in the original response, 508

describing the location as "the northern part of the 509

Antarctic Peninsula", is correspondingly adjusted 510

to "the northern part of the continent". Similarly, in 511

Case 5, as "Manchester" is changed to "Bilbao", the 512

country is also edited from "England" to "Spain". 513

6.3 Ablation Study 514

To understand each component’s role in postEdit, 515

we conduct ablation study in Tab. 4. In our postEdit 516
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Figure 5: Performance of methods under different Edit
Memory size on CounterFact.

framework, we utilize GPT-4 to generate edited re-517

sponses and subsequently perform data filtering.518

After removing data filtering, the SE score for519

INS queries exhibits a decline (Simple -1.9 and520

Rephrase -1.5), indicating that data filtering effec-521

tively enhances the quality of training data. Replac-522

ing the post-editor with ChatGPT results in a notice-523

able decline in performance across different types.524

This suggests that LLMs like ChatGPT are not pro-525

ficient performing such editing tasks, highlighting526

the need for fine-tuning the post-editor. Substi-527

tuting GPT-4 with ChatGPT for edited response528

augmentation results in a slight SE score increase529

(avg +0.13) but a significant SR score decrease530

(avg -2.78). This indicates that ChatGPT lacks531

the fine-grained granularity in editing compared to532

GPT-4, thereby resulting in a coarser-grained post-533

editor. Finally, we introduce the editing judging534

module, the same as SERAC, through comparing535

the SBERT semantic similarity with a threshold.536

The observed decrease in Rephrase and OOS scores537

demonstrates the superior discriminative capability538

of the post-editor. We leave the ablation experi-539

ments on training data in Appendix D.5.540

6.4 Effect of Memory Size541

In real-world scenarios, as the world evolves, edited542

knowledge should be continuously infused and pre-543

served, i.e., the size of Edit Memory will continue544

to expand7. For the edit retrieved from Edit Mem-545

ory, IKE utilizes the base LLM itself, SERAC ap-546

plies a similarity threshold, and postEdit employs547

the post-editor to determine whether the query is548

within the scope of editing. We evaluate the per-549

formance of these methods under varying memory550

sizes in Fig. 5. With the same retriever, postEdit551

exhibits the highest robustness among methods in552

both Editing and Retention scores, substantiating553

the superiority of the postEdit mechanism in dis-554

cerning the necessity of editing.555

7In some studies, this corresponds to Batch Editing and
Sequence Editing.
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Figure 6: Performance curves of the post-editor at dif-
ferent scales on CounterFact.

6.5 Effect of Post-editor Scale 556

To investigate the effect of post-editor scale on per- 557

formance, we compare evaluation scores across 558

models ranging from 460M to 13B in size. As illus- 559

trated in Fig. 6, it is evident that with the increase 560

in post-editor scale, editing scores gradually im- 561

prove (significant from 460M to 1.8B, followed by 562

slower gains beyond 1.8B), while retention score 563

remains stable after reaching 1.3B. This suggests 564

that editing ability is more influenced by the model 565

scale, and a larger post-editor can enhance edit- 566

ing performance while maintaining the retention. 567

We also compare the effectiveness of post-editor 568

with zero-shot ChatGPT and GPT-4. Similar to the 569

findings in Section 6.3, LLMs like ChatGPT are 570

not proficient in executing the editing task. There- 571

fore, on CounterFact, the performance of the 460M 572

post-editor is comparable to ChatGPT, and the 1.8B 573

post-editor surpasses GPT-4. This indicates that the 574

postEdit framework does not rely on a large-scale 575

post-editor, and small-sized editors can achieve sat- 576

isfactory performance and high efficiency. 577

7 Conclusion 578

In this paper, we firstly introduce a comprehen- 579

sive evaluation framework for knowledge editing 580

under black-box LLMs, incorporating multiple per- 581

spectives and considering the style retention. Next, 582

we propose a novel postEdit framework to address 583

existing issues in privacy leakage of editing data 584

and style over-editing in current methods by post- 585

processing the output of LLMs. Finally, experi- 586

ments on two benchmarks and thorough analysis 587

demonstrate that postEdit outperforms all baselines 588

and achieves strong generalization. 589
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Limitations590

This paper primarily investigates the assessment591

and methodology of knowledge editing in black-592

box LLM scenarios. The proposed evaluation593

framework can comprehensively assess edited re-594

sponses from multiple perspectives, and the postE-595

dit method effectively addresses issues related to596

privacy concerns of editing data and style over-597

editing. However, our work also has several limita-598

tions: (1) Although our proposed evaluation frame-599

work and postEdit method mainly focus on knowl-600

edge editing in black-box LLM scenarios, they can601

be equally applied to editing in white-box LLM sce-602

narios. Due to constraints in length and the focus603

of the paper, we haven’t thoroughly explored this604

in the paper. (2) Although the postEdit framework605

does not require retraining when injecting editing606

knowledge, it still necessitates an initial fine-tuning607

phase to enable the post-editor to learn the ability608

to discern whether a query is within the editing609

scope and how to perform the editing, resulting in a610

certain computational load. (3) Our study primarily611

investigates the application of knowledge editing612

in knowledge question answering tasks, similar to613

previous research. We believe that our framework614

can be extended to other scenarios, such as fact-615

checking and sentiment editing. We leave these616

explorations for future research.617

Ethic Consideration618

In this paper, we propose a knowledge editing ap-619

proach that can be flexibly applied downstream to620

post-process the outputs of LLMs, effectively safe-621

guarding the privacy of downstream private editing622

data and maintaining consistency in the style of the623

LLM. While the purpose of knowledge editing is624

to rectify errors or outdated knowledge in LLMs,625

malicious knowledge editing may lead to the gen-626

eration of harmful or inappropriate outputs by the627

model. Therefore, ensuring secure and responsi-628

ble practices in knowledge editing is of paramount629

importance. The application of these techniques630

should be guided by ethical considerations, with631

safeguard measures in place to prevent misuse and632

mitigate the potential for harmful outcomes. Ad-633

ditionally, due to the difficulty in obtaining contin-634

uously up-to-date knowledge, some KE datasets635

such as CounterFact use counterfactual knowledge636

to validate the effectiveness of methods. Further-637

more, the base LLM, such as ChatGPT used in this638

work, merely serves as a demonstration of research639

on knowledge editing in black-box model scenar- 640

ios. We emphasize that these datasets and LLMs 641

are solely for academic exploration and do not in- 642

volve actual applications in real-world scenarios, 643

nor do they include content modification or attacks 644

on commercially used LLMs. 645
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A Details of Evaluation917

In this section, we first discuss in detail the design918

motivations of the proposed evaluation framework919

and its differences from other existing evaluations920

in A.1. Next, we provide the pseudo-code of the921

evaluation framework in A.2, and validate its ra-922

tionality in A.3 through the consistency between923

the proposed metrics and human scores. Finally,924

we introduce the existing evaluation metrics for925

knowledge editing in A.4 and compare the scores926

of postEdit under the proposed and existing metrics927

in A.5 to elucidate the similarities and differences.928

A.1 Elaboration and Discussion of Evaluation 929

Framework 930

While some knowledge-related fields, including 931

Hallucination (Zhang et al., 2023) and Retrieval- 932

Augmented Generation (RAG) (Es et al., 2023; 933

Gao et al., 2024; Chen et al., 2024), involve met- 934

rics related to fact-checking or validation, such 935

as FactScore (Min et al., 2023) and AlignScore 936

(Zha et al., 2023), it is important to emphasize 937

that Knowledge Editing assessment involves a gen- 938

erated text and two conflicting knowledge refer- 939

ences: the pre-editing old knowledge and the post- 940

editing new knowledge, which fundamentally dis- 941

tinguishes the evaluation from metrics in these 942

fields. For INS, the goal is to thoroughly re- 943

place old knowledge and introduce new knowledge, 944

whereas for OOS, it is the opposite. This distinc- 945

tion renders the motivation and formulation of the 946

proposed metrics (TE, SE) markedly different from 947

those in other fields, although they may also utilize 948

NLI or Contain function as the basic component. 949

Additionally, one of the core demands of KE is 950

to maintain locality. Previous works focused solely 951

on whether edited knowledge preserves the pre- 952

vious state for OOS queries, neglecting whether 953

information in other segments of the output re- 954

mains consistent or is disrupted, which we term 955

as Style Retention/Over-editing. To measure the 956

extent of style retention in edited output compared 957

to the original output, we introduce TR and SR 958

metrics. The design of TR and SR is inspired by 959

the widespread use of N-gram/semantic overlap in 960

the NLP community to measure consistency be- 961

tween generated text and reference text (Papineni 962

et al., 2002; Lin, 2004; Chandrasekaran and Mago, 963

2021). For INS, we calculate the consistency of 964

the remaining text before and after masking new 965

entities, while for OOS, it is calculated directly. 966

A.2 Pseudo-code of Evaluation Framework 967

We summarize the pseudo-code of our proposed 968

evaluation framework in Algorithm 1. 969

A.3 Consistency with Human Evaluation 970

In Section 3.2.2, we proposed a comprehensive 971

evaluation framework, incorporating editing met- 972

rics (TE, SE) and retention metrics (TR, SR) to 973

evaluate the quality of output text after knowl- 974

edge editing. Prior to employing these metrics 975

for evaluation, it was imperative to ensure their va- 976

lidity and necessity. To address this, we sample 977
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Human Score Auto Metric Pearson Correlation

Editing
TE 0.7644
SE 0.7784

Editing 0.8074

Retention
TR 0.9195
SR 0.8868

Retention 0.9255

Overall
Editing 0.5356

Retention 0.7612
Overall 0.839

Table 5: The Pearson correlation coefficient between
auto metrics and manual scores. For the auto metrics,
Editing is the average of TE and SE; Retention is the
average of TR and SR; Overall is the average of Editing
and Retention.

300 data points from the test set (comprising Sim-978

ple, Rephrase, and OOS examples in a 1:1:1 ratio)979

and enlist human evaluators to independently score980

them from the perspectives of editing, retention,981

and overall assessment.982

The rules for human scorers scoring the effective-983

ness of knowledge editing are as follows: in terms984

of editing, for INS queries, scoring is as follows:985

0 points if there is no editing at all; 0.5 points if986

there are partial edits, and the sentence still retains987

old knowledge or exhibits logical inconsistencies; 1988

point for perfect knowledge editing with no issues.989

For OOS queries, the scoring rules are reversed. In990

the retention aspect, after disregarding content re-991

lated to the edited knowledge in the sentence, for re-992

sponses within the editing scope: 0 points for very993

poor consistency between new and old responses;994

0.5 points for ordinary consistency; 1 point for ex-995

cellent consistency. In the overall aspect, human996

scorers are required to consider the overall impact997

of knowledge editing and assign scores within the998

range of 0, 1, 2, 3, 4 to the edited outputs. Then,999

we conduct Pearson correlation analyses between1000

these human scores and our automated metrics.1001

As shown in Tab. 5, both textual metrics (TE,1002

TR) and semantic metrics (SE, SR) demonstrate1003

commendable consistency scores with human rat-1004

ings, affirming the effectiveness of the proposed1005

metrics. Moreover, Whether for editing or reten-1006

tion, the consistency score of the joint assessment1007

of textual and semantic dimensions surpasses that1008

of any individual metric. This underscores the ne-1009

cessity of incorporating both textual and semantic1010

metrics in the evaluation process. Finally, the Pear-1011

son correlation coefficient between auto editing and1012

human overall score is a mere 0.5356. However, a 1013

combined evaluation of editing and retention met- 1014

rics yield a significantly higher consistency score 1015

of 0.839 with human judgments. This suggests that 1016

effective alignment with human preferences cannot 1017

rely solely on editing scores but requires a com- 1018

prehensive assessment integrating both editing and 1019

retention metrics. 1020

A.4 Details of Existing Metrics 1021

There are three metrics based on logits mainly used 1022

to evaluate the performance of knowledge editing 1023

in previous work, namely Efficacy, Generalization, 1024

and Specificity. 1025

• Efficacy measures the accuracy of knowledge 1026

editing using ES (Efficacy Score) and EM (Effi- 1027

cacy Magnitude). For Simple type queries, the 1028

meaning of ES is E [I [P (o∗) > P (o)]] , and EM 1029

is obtained by E[P (o∗)− P (o)] . 1030

• Generalization measures the accuracy of knowl- 1031

edge editing on Rephrase queries by using RS 1032

(Rephrase Score) and RM (Rephrase Magnitude). 1033

For Rephrase type queries, RS and RM are ac- 1034

tually calculated to derive ES and EM under the 1035

condition of rephrasing queries. 1036

• Specificity uses NS (Neighborhood Score) and 1037

NM (Neighborhood Magnitude) to measure the 1038

ability of knowledge editing to preserve un- 1039

related knowledge. When dealing with OOS 1040

queries beyond the editing scope, no editing 1041

should take place, and the original facts should 1042

be preserved. Therefore, NS is obtained by 1043

E [I [P (o) > P (o∗)]], and NM is obtained by 1044

E[P (o)− P (o∗)] . 1045

A.5 Performance of PostEdit under Existing 1046

Metrics 1047

To further elucidate the similarities and differences 1048

between the proposed metrics and the existing ones, 1049

we present in Tab. 6 the scores of postEdit for both 1050

the proposed and existing metrics. 1051

As shown in Tab. 6 (Beginning), postEdit still 1052

achieve nearly perfect scores for ES (Efficacy 1053

Score), RS (Rephrase Score), NS (Neighborhood 1054

Score), and NM (Neighborhood Magnitude) under 1055

existing metrics. However, the EM (Efficacy Mag- 1056

nitude) and RM (Rephrase Magnitude) scores are 1057

not significant. This is mainly because, to achieve 1058

stylistic consistency, the post-editor does not di- 1059

rectly predict the new object but maintains the orig- 1060

inal output until it encounters the spans that needs 1061
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postEdit Simple Rephrase OOS

Proposed Metric
TE SE TE SE TE SE

96.8 92.5 94.7 92.1 99.4 99.4

Existing Metric ES EM RS RM NS NM

Beginning 94.4 4.46 94.47 4.55 99.39 99.24
Edited Span 97.6 82.64 97.45 84.5 99.39 99.24

Table 6: Scores of postEdit on CounterFact under dif-
ferent evaluation metrics. “Beginning” denotes calcu-
lating existing metrics based on tokens at the start of
post-editor’s output. “Edited Span” denotes calculating
thems in the token spans that need to be edited within
post-editor’s output. It should be noted that TE, SE, and
ES/RS/NS, EM/RM/NM do not correspond one-to-one.

modification. For example, in Case 1 of Tab. 3,1062

for the edit: “The nationality of Marcel Maupi was1063

what? French→Italian”, the post-editor retains the1064

original output at the beginning, “Marcel Maupi1065

was an”, until the fifth word where the modification1066

is executed. This also highlights the shortcomings1067

of previous metrics, as indicated in Section 3.2.1.1068

Therefore, when applying traditional metrics to1069

postEdit, for INS-type data, we should focus more1070

on the changes in logits at the span that needs edit-1071

ing. As shown in Tab. 6 (Edited Span), postEdit1072

achieved significant scores across all metrics, simi-1073

lar to the significant TE and SE scores it attained.1074

For TR and SR metrics, we omit this part of the1075

comparison due to the lack of prior evaluations1076

from this perspective.1077

B Details of Method1078

In this Section, we first present the pseudo-code1079

for postEdit training and inference in B.1. Next,1080

we list all the prompts used by postEdit in B.2.1081

Finally, in B.4 and B.5, we ensure the fairness1082

of the training process, avoiding data leakage and1083

introducing bias.1084

B.1 Pseudo-code of PostEdit1085

We summarize the pseudo-code for training post-1086

editor and inference of postEdit in Algorithm 2 and1087

Algorithm 3, respectively.1088

B.2 Details of Prompts1089

We demonstrate the two prompt templates T aug1090

and T edit used in the postEdit method as follows:1091

Prompt Template T aug

For the following query and original re-
sponse, you need to follow in order:
Firstly, locate all spans related to the old
fact:{s} {r} {o} in original reply;
Secondly, modify these spans according to
new fact: {s} {r} {o∗}.
Thirdly, output the edited response based
on the modified spans (Do not output other
content).
### The query:
{x}
### Original response:
{yo}
### Edited response:

1092

Prompt Template T edit

### Instruction:
You will assume the role of an editor. For
the following query and original response,
if the new fact impacts the query or original
response, incorporate the new fact into the
original response. If not, simply output the
following word: retain.
### New fact:
The answer of {s} {r} has been updated
from {o} to {o∗}.
### The query:
{x}
### Original response:
{yo}
### Edited response:

1093

B.3 Discussion on Efficiency 1094

One of the core objectives of KE is efficient editing. 1095

Apart from Editing and Retention performance, KE 1096

methods should strive to minimize storage and com- 1097

putational costs. 1098

For memory-based black-box LLM editing, in 1099

addition to Edit Memory and the retriever, stor- 1100

age overhead also encompasses the demonstration 1101

library for IKE, the judge model and surrogate 1102

model for SERAC, and the post-editor for postE- 1103

dit. Furthermore, although memory-based meth- 1104

ods do not incur computational overhead beyond 1105

vectorizing knowledge entries for editing , they 1106

do introduce inference expenses. Specifically, for 1107

IKE, the inference cost increases from fbase(x) to 1108

fretr(x,Me)+fbase(demos, e, x); for SERAC, the 1109
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Dataset Data Type Train Number Test Number Length of Original Response (mean/max)

CounterFact

ALL 30000 1500 51.34/436
Simple 10000 500 50.40/436

Rephrase 10000 500 53.03/374
OOS 10000 500 50.59/367

zsRE

ALL 30000 1500 22.39/406
Simple 10000 500 14.84/119

Rephrase 10000 500 18.38/257
OOS 10000 500 33.96/406

Table 7: Statistical information on the sampled datasets.

additional cost is fretr(x,Me) + fjudge(x, eretr);1110

and for postEdit, it is fretr(x,Me)+fedit(e, x, yo).1111

Taking the base LLM as Llama2-70B and the post-1112

editor as Llama2-7B as an example, considering1113

that the computational cost of each token in the1114

7B model is approximately 1/10 of that in the 70B1115

model (a conservative estimate which might actu-1116

ally be lower) (Kaplan et al., 2020), the inference1117

cost introduced by post-editor for queries within1118

the editing scope (INS) does not surpass 1/10. For1119

a substantial number of queries out of the editing1120

scope (OOS) in real-world scenarios, post-editor1121

merely outputs a special token ⟨Retain⟩, thereby1122

notably reducing inference costs.1123

To further reduce post-editing overhead, one ap-1124

proach is to improve the reasoning efficiency of1125

the post-editor. As highlighted in Section 6.5, a1126

small-scale post-editor can also achieve commend-1127

able performance. Another potential option is to1128

employ white-box parameter-editing methods to1129

directly integrate editing knowledge into the post-1130

editor. The post-editor can then use its knowledge1131

to modify the original response of base LLM, ex-1132

changing editing costs for memory storage and1133

retrieval expenses.1134

B.4 Does Training Data Cause Data Leakage1135

for Testing?1136

In the experiment setup of KE, the edits in the1137

training set and the test set are completely non-1138

overlapping. Therefore, the post-editor can not1139

rely on edits seen during training for testing. To1140

further investigate this, we conduct an experiment1141

as shown in Tab. 8, where we test postEdit’s per-1142

formance on test set samples without passing any1143

editing information to the post-editor. If some of1144

the editing knowledge used for testing leaks during1145

training, postEdit successfully edits a portion of1146

the INS test samples. However, the editing suc-1147

cess rates for both Simple and Rephrase types are1148

Types
CounterFact zsRE

TE SE TE SE

Simple 0.0 0.0 0.0 0.67
Rephrase 0.0 0.0 0.0 0.33
OOS 100.0 98.59 100.0 100.0

AVG 33.33 32.86 33.33 33.67

Table 8: Test results for CounterFact and zsRE when
Edit Memory is empty. We simulate this scenario by
replacing the recalled edit with an empty string "".

(approximately) 0% on both datasets, thereby prov- 1149

ing that no potential data leakage occurs. This 1150

also demonstrates that post-editor relies on edit 1151

knowledge guidance for INS/OOS judgment and 1152

revisions, rather than memorizing patterns from the 1153

training data. 1154

B.5 Does Using GPT for Data Augmentation 1155

Introduce Bias? 1156

In the training stage, we incorporate data augmen- 1157

tation from both ChatGPT and GPT-4 to construct 1158

high-quality editing training data. Although GPT 1159

models are well-aligned, we further detect and ad- 1160

dress potential data bias through the following two 1161

aspects: 1162

• Bias in generation quality. We perform data 1163

filtering based on TE and SE metrics for the gen- 1164

erated data by GPT-4, discarding low-quality bi- 1165

ased data, as shown in Section 4.2 (Edited Re- 1166

sponse Augmentation). 1167

• Bias in ethics and safety. We use the Llama- 1168

Guard model (Inan et al., 2023) to evaluate the 1169

generated content. Since the datasets used in 1170

this work are knowledge-based rather than re- 1171

lated to sensitive fields like safety and ethics, we 1172

achieve a 100% safety judgment result. This 1173

demonstrates that our approach does not intro- 1174

duce ethical or bias issues. 1175
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C Details of Experiments Setup1176

In this section, we provide detailed descriptions1177

of the experimental datasets, baselines, and imple-1178

mentation processes in Appendix C.1, C.2, and C.3,1179

respectively.1180

C.1 Details of Datasets1181

In this work, we mainly used two datasets: zsRE1182

and CounterFact.1183

• zsRE (Levy et al., 2017) is one of the most pop-1184

ular question answering (QA) datasets which use1185

question rephrasing as the equivalence neighbor-1186

hood. These queries of Rephrase type are gener-1187

ated by back-translation. In zsRE, the relation-1188

ship between entities is associated with a set of1189

crowd-sourced generated questions. Addition-1190

ally, zsRE associates questions with randomly1191

generated sentences to add out-of-editing scope1192

examples.1193

• CounterFact (Meng et al., 2022a) is a more chal-1194

lenging dataset than zsRE, the expected output1195

of which is contradictory to the fact. It is built1196

to distinguish superficial alterations in the word1197

selections and significant, generalized modifica-1198

tions in its foundational factual knowledge. In1199

CounterFact, the edited answer to the question1200

can sometimes be counterfactual to real world,1201

which makes it harder for the model to predict de-1202

sired answer and avoid the effects of pre-trained1203

LLMs knowing these desired facts before editing.1204

Following the previous work (Zheng et al.,1205

2023), for CounterFact, we designate data with1206

edit id numbers ranging from 0 to 2000 as the test1207

set for knowledge edit, while the remaining data1208

constitute the training set. As we adopt ChatGPT as1209

our base LLM in main experiments, in order to con-1210

trol the dataset size, we randomly sampled 30,0001211

examples (10,000 each for Simple, Rephrase, and1212

OOS) from the original training set. These sam-1213

ples constitute our training set. Additionally, we1214

randomly selected 1,500 examples (500 each for1215

Simple, Rephrase, and OOS) from the original test1216

set to create our query test set. The original re-1217

sponse for INS test queries are ensured to hit the1218

old knowledge object before editing, and the OOS1219

are ensured to have no wrong knowledge before1220

editing. We present the statistical information of1221

the datasets after sampling in Tab. 7, and show a1222

training sample and test sample from zsRE respec-1223

tively as follows:1224

Sample From zsRE Training Set

{
"edit_id": 15000,
"edit": "Denis Dyack » Denys de La

Tour || Who is the designer of Too Human?",
"query": "Who is the designer from

Too Human?",
"query_type": "rephrase",
"original_response_by_gpt3.5": "The

designer of Too Human is Denis Dyack.",
"edited_response_by_gpt4": "The de-

signer of Too Human is Denys de La Tour."
}

1225

Sample From zsRE Test Set

{
"edit_id": 70,
"edit": "Serpens » Andromeda || Which

constellation is NGC 6604 in?",
"query": "Which constellation does

NGC 6604 belong to?",
"query_type": "rephrase",
"original_response": "NGC 6604 be-

longs to the constellation of Serpens."
}

1226

C.2 Details of Baselines 1227

• IKE (Zheng et al., 2023) is a method of knowl- 1228

edge editing that does not involve modifying 1229

the parameters of LLMs. It defines three types 1230

of demonstration formatting templates includ- 1231

ing copy, update, and retain. These templates 1232

serve distinct functions and act as guiding prin- 1233

ciples for the language model, enabling it to edit 1234

knowledge through in-context learning, allowing 1235

IKE to maintain both efficiency and excellent 1236

generalization and specificity. This opens up 1237

the possibility of employing IKE for the task of 1238

knowledge editing even in scenarios involving 1239

black-box models. 1240

• PROMPT (Zheng et al., 2023) is similar to 1241

IKE, as a method of knowledge editing through 1242

in-context learning. However, unlike IKE, 1243

PROMPT doesn’t require constructing three 1244

types of demonstrations but directly provides new 1245

knowledge to the LLM for knowledge editing. 1246

• SERAC (Mitchell et al., 2022) is a memory- 1247

based method of knowledge editing. This method 1248

stores edits in explicit memory and learns to rea- 1249
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son about these edits as needed to adjust the1250

predictions of the base LLM without modifying1251

parameters. SERAC uses an explicit cache of1252

user-provided edit descriptors, alongside a scope1253

classifier and surrogate model. When presented1254

with a query, SERAC uses the scope classifier1255

to determine if the query falls within the editing1256

scope. If it does, the output is predicted via the1257

surrogate model; otherwise, it defers to the base1258

LLM for the output.1259

• SERAC (ChatGPT) In SERAC, the surrogate1260

model is obtained by fine-tuning a smaller lan-1261

guage model compared to the base LLM. We1262

utilize ChatGPT as the surrogate model to de-1263

rive a SERAC variant that requires no additional1264

training.1265

C.3 Details of Implementation1266

As described in Section 3.2.2, our evalua-1267

tion framework employs a NLI model for1268

computing SE, ROUGE scores for comput-1269

ing TR, and a SBERT model for computing1270

SR. In details, SE utilizes albert-xxlarge-v2-1271

snli_mnli_fever_anli_R1_R2_R3-nli8 as the NLI1272

model; ROUGE score is implemented through the1273

rouge library9, using the F1 score of ROUGE-1;1274

SR uses all-MiniLM-L6-v210 as the SBERT model.1275

For training of post-editor, we employ Chat-1276

GPT (gpt-3.5-turbo-0301) for original response1277

augment and GPT-4 (gpt-4-0613) for edited re-1278

sponse augment 11, with the default tempera-1279

ture coefficient (t = 0.1). In order to en-1280

hance training efficiency and reduce the num-1281

ber of updated parameters, we adopt the LoRA1282

strategy (Hu et al., 2021) to finetune LLaMA 2-1283

7B. Specifically, the rank of LoRA is set to 8,1284

with lora_alpha at 16 and lora_dropout at 0.05.1285

The LoRA update matrix is applied to the self-1286

attention and FFN layers, with target_modules as1287

["q_proj","k_proj","v_proj","o_proj","gate_proj",1288

"down_proj","up_proj"]. We train 5 epochs to opti-1289

mize post-editor, employing a batch size of 128 and1290

a learning rate of 5e-2. We also use the warmup1291

and cosine annealing strategy, with a warmup ratio1292

of 0.1 and the Adam optimizer (Kingma and Ba,1293

2017).1294

8https://huggingface.co/ynie/albert-xxlarge-v2-
snli_mnli_fever_anli_R1_R2_R3-nli

9https://pypi.org/project/rouge
10https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2
11https://platform.openai.com/docs/models

For retriever of postEdit, consistent with all base- 1295

lines, we use all-MiniLM-L6-v2 to encode queries 1296

and edit knowledge, while employing dot prod- 1297

uct as the similarity function. For base LLM, we 1298

use ChatGPT (gpt-3.5-turbo-0301) in main experi- 1299

ments, with a temperature coefficient of 0.1. Dur- 1300

ing inference of post-editor, we set the temperature 1301

coefficient of 0.1 and use beam search to decode 1302

the output, where num_beams is set to 4. To fur- 1303

ther improve the inference speed, we apply 8-bit 1304

quantization when loading post-editor. 1305

In terms of baselines, for SERAC, we fine-tune 1306

the surrogate model using the same LLAMA2- 1307

7B as post-editor and the similarity discrimination 1308

threshold is set at 0.7, determined through hyper- 1309

parameter search on the training set (ranging from 1310

0.1 to 0.9 with a step size of 0.1). To better main- 1311

tain consistency between baselines and postEdit 1312

implementations, we adopt training output targets 1313

consistent with postEdit for the surrogate model 1314

of SERAC, i.e., GPT-4 augmented edited response, 1315

rather than new objects of editing knowledge, aim- 1316

ing to achieve higher stylistic retention. For IKE, 1317

we set the number of demonstration examples to 1318

32. The rest of the hyperparameter settings for 1319

the baselines follow the default configurations in 1320

their original papers. All experiments use a single 1321

Nvidia A100 GPU (80 GB of memory). 1322

D More Experiments 1323

In this section, we compare postEdit with other 1324

task baselines in D.1. In D.2, we investigate postE- 1325

dit’s performance in multi-hop reasoning scenarios 1326

regarding edited knowledge. In D.3 and D.4, we 1327

further verify postEdit’s robustness across different 1328

output formats and architectures of the base LLM. 1329

Finally, in D.5, we conduct ablation experiments on 1330

the training data to thoroughly examine postEdit. 1331

D.1 Comparison with More Baselines 1332

In Section 5, we compared methods that have the 1333

same scenario as postEdit. For a comprehensive 1334

comparison, we transfer some methods from other 1335

task scenarios as baselines to further enrich the 1336

experiments: 1337

• MeLLo (Zhong et al., 2023) is a method specifi- 1338

cally designed for multi-hop reasoning scenarios 1339

in knowledge editing, storing edited facts exter- 1340

nally and iteratively prompts LLMs to generate 1341

answers consistent with the edited facts. 1342

• DeepEdit (Wang et al., 2024) designs decoding 1343
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Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

MeLLo 42.42 32.87 37.07 37.55 (37.05) 43.61 35.11 44.3 41.11 (40.55) 16.42 11.22 15.59 14.47 (14.01) 38.5 31.61 41.58 37.32 (36.74)

DeepEdit 47.0 40.0 27.03 38.03 (36.03) 52.2 44.57 39.02 45.31 (44.63) 19.51 16.22 15.65 17.16 (16.97) 39.24 35.41 39.14 37.97 (37.84)

RARR 53.9 49.47 85.67 63.17 (59.48) 55.9 50.96 86.48 64.6 (61.13) 54.18 54.9 63.19 57.44 (57.15) 62 62.98 71.13 65.39 (65.12)

RAG-8shot 99.7 99.79 9.35 69.32 (23.62) 98.9 95.64 11.79 68.54 (28.47) 26.2 23.98 4.57 18.21 (10.04) 55.32 53.5 25.01 44.54 (39.09)

postEdit (ours) 96.8 94.7 99.4 96.97 (96.93) 92.5 92.1 99.4 94.67 (94.55) 88.65 89.66 99.64 92.65 (92.39) 93.9 94.02 99.82 95.91 (95.84)

Table 9: Performance comparison on CounterFact.

constraints to "regulate" LLMs’ reasoning, en-1344

hancing logical coherence when incorporating1345

new knowledge for scenarios requiring multi-hop1346

reasoning regarding edited knowledge.1347

• RARR (Gao et al., 2023) aims to reduce hallu-1348

cinations in LLM outputs by scrutinizing and1349

revising. It initially uses search engines for1350

evidence and attribution, then corrects unsup-1351

ported content while preserving the original out-1352

put, achieved through few-shot demonstrations.1353

We replace the search engine with edit memory.1354

• In addition to PROMPT and IKE, similar to the1355

conventional RAG approach, we utilize few-shot1356

<query, edit, edited output> prompts to enhance1357

the base LLM’s utilization of editing knowledge,1358

where all demonstration samples belong to the1359

INS type, referred to as RAG-8shot. 121360

The results are shown in Tab. 9. Overall, postE-1361

dit still outperforms all baselines. We can fur-1362

ther observe that: Firstly, since MeLLo, DeepEdit,1363

and RARR are not designed specifically for gen-1364

eral knowledge editing scenarios, they perform1365

poorly on CounterFact. Secondly, leveraging the1366

impressive in-context learning capabilities of Chat-1367

GPT, RAG-8shot achieves near-perfect INS Edit-1368

ing scores, but faces significant challenges on OOS1369

Editing due to the lack of OOS demonstrations.1370

This emphasizes the need for a INS/OOS judgment1371

mechanism on top of RAG. Lastly, post-processing1372

methods (postEdit, RARR) achieve higher Reten-1373

tion scores compared to pre-processing methods1374

(MeLLo, RAG-8shot) , highlighting the advantage1375

of post-processing for style retention.1376

D.2 Performance of PostEdit in Multi-hop1377

Knowledge Editing1378

It is important to emphasize that this paper primar-1379

ily focuses on general knowledge editing scenarios,1380

rather than scenarios requiring multi-hop reasoning1381

for edited knowledge . Nonetheless, more diverse1382

12Since in the standard KE experimental setup, the size of
edit memory is set to 1, serving as an "oracle" retrieval setting
to encourage methods to focus more on editing and locality
capabilities. Therefore, we don’t compare with some RAG
methods that focus on improving retrieval recall.

Method MeLLo DeepEdit PostEdit

ACC 35.8 61.00 64.26

Table 10: The performance of methods under a single
group of edits in MQuAKE-CF-3K.

scenarios are indeed beneficial for understanding 1383

postEdit. Therefore, we use the multi-hop editing 1384

dataset MQuAKE-CF-3K (Zhong et al., 2023) as 1385

the test set and the remain in MQuAKE-CF as the 1386

training set. To solve the scenario where one query 1387

might correspond to multiple edits in MQuAKE, 1388

we modify Prompt T aug and T edit (Appendix B.2) 1389

to accommodate multiple edits. We test under 1390

single-group editing and follow DeepEdit’s settings 1391

(testing only the first question of each instance and 1392

evaluating via ACC) to align with baselines. 1393

It can be seen in Tab. 10 that under a single- 1394

group of edits, postEdit still outperforms the base- 1395

lines. As shown in Section 6.2, the high-quality 1396

training data enables the post-editor to handle spans 1397

logically associated to edits. It is worth emphasiz- 1398

ing that postEdit achieves this solely through a 1399

single-pass base LLM and editor inference, unlike 1400

MeLLo and DeepEdit, which rely on iterative in- 1401

ference and modifications, resulting in high costs. 1402

An case of postEdit is shown in Tab. 11. However, 1403

under the multi-group editing settings in MQuAKE 1404

(e.g., 100 edits), postEdit should be coupled with a 1405

retriever proficient in multi-hop question retrieval 1406

to tackle the retrieval challenges encountered in 1407

multi-hop editing. Since improving retrieval is not 1408

the focus of this study, we omit this part and leave 1409

it for future work. 1410

D.3 Robustness of PostEdit to Original 1411

Response Format 1412

Given the diverse output formats of base LLM, 1413

which may differ from the training data format, it is 1414

crucial to investigate the robustness of postEdit for 1415

different original output formats during inference. 1416

To explore this, we utilize GPT-4 to rewrite the 1417

original output (Origin) of the base LLM, includ- 1418

ing more concise outputs (Simplification), more 1419
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Type Content

Edits
1. Lalu Prasad Yadav is married to Rabri Devi → Victoria Nuland
2. Victoria Nuland is a citizen of United States of America → Germany
3. Germany is located in the continent of Europe → Antarctica

Query What continent is the country of citizenship of the spouse of the founder of the
Rashtriya Janata Dal party located in?

Original response The founder of the Rashtriya Janata Dal (RJD) party is Lalu Prasad Yadav. His spouse,
Rabri Devi, is a citizen of India. India is located on the continent of Asia.

Edited response The founder of the Rashtriya Janata Dal (RJD) party is Lalu Prasad Yadav. His spouse,
Victoria Nuland, is a citizen of Germany. Germany is located on the continent of Antarctica.

Table 11: An example of postEdit on MQuAKE-CF-3K.

Format TE SE TR SR

Origin 96.97 94.67 92.65 95.91
Simplification 96.45 94.95 93.43 96.53
Verbose 92.07 91.57 96.17 96.9
Humor 95.56 93.2 97.42 97.28

Table 12: Performance of postEdit in different original
output formats on CounterFact.

Base LLM Architecture TE SE TR SR

GPT-3.5 Unknown 96.97 94.67 92.65 95.91
PaLM2 Causal Decoder 95.49 92.79 95.64 97.49
Llama2-70B-chat Causal Decoder 95.7 94.73 91.06 94.78
Mixtral-8×7B Mixture of Experts 96.25 94.4 93.94 96.89
GLM-4 Prefix Decoder 93.77 92.08 97.64 98.17

Table 13: Performance of PostEdit in different original
output formats under CounterFact.

verbose outputs (Verbose), and outputs presented1420

in a humorous manner (Humor). Since the rewrites1421

are only done during the testing phase, they can be1422

considered out-of-domain formats for the training1423

data. The experimental results on CounterFact are1424

shown in Tab. 12. It can be seen that the three out-1425

put variants do not significantly affect the results,1426

demonstrating postEdit’s robustness to different1427

output formats. The worst performance is under1428

the Verbose format, primarily because the longer1429

original output poses a higher challenge to the post-1430

editor, resulting in slight decreases in TE and SE.1431

However, it also led to higher style consistency.1432

D.4 Robustness of PostEdit to Base LLM1433

Architecture1434

Methodologically, postEdit only requires the text1435

output from the base LLM, without needing to ac-1436

cess any internal information of base LLM. This1437

not only allows postEdit to be applied in black-1438

box LLM scenarios but also decouples the editing1439

process from the base LLM. As a result, it can1440

Method
Semantic Editing (SE) Semantic Retention (SR)

Simple Rephrase OOS AVG Simple Rephrase OOS AVG

postEdit 92.5 92.1 99.4 94.67 93.9 94.02 99.82 95.91

-w/o Simple 91.8 91.2 99.5 94.17 93.96 94.21 99.89 96.02
-w/o Rephrase 92 12.9 99.8 68.23 94.37 71.67 99.95 88.66

-w/o OOS 92.2 91.5 4.7 62.8 94.47 94.12 75.01 87.86

Table 14: Ablation study on training data under Coun-
terFact.

be reused with different base LLMs as a down- 1441

stream plugin without the need for retraining. To 1442

experimentally verify this, we present the results 1443

of directly reusing the post-editor initially trained 1444

for ChatGPT on other base LLMs in Tab. 13. The 1445

results show that postEdit exhibits strong general- 1446

ization across the current mainstream architectures, 1447

confirming its flexibility as a post-processing plu- 1448

gin for various base LLMs. 1449

D.5 Ablation Study on Training Data 1450

To understand the role of each training data type 1451

in postEdit, we further conduct data ablation by re- 1452

moving each type of data from the training set. In 1453

Tab. 14, we observe that removing Simple data has 1454

no notable impact, while the removal of Rephrase 1455

data leads to a significant drop (-79.2) in the SE 1456

metric. This indicates that Rephrase data plays a 1457

crucial role in improving the post-editor’s ability 1458

for editing knowledge injection and generalization, 1459

while relying solely on Simple data doesn’t suffice 1460

for achieving the post-editor’s generalization. After 1461

removing OOS data, although there is a noticeable 1462

decline in OOS metrics, the metrics for Simple and 1463

Rephrase do not show a discernible improvement. 1464

This indicates that post-editor doesn’t excessively 1465

compromise its ability to perform edits when learn- 1466

ing to discriminate editing. 1467
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Algorithm 1: Pseudo-code of Evaluation Framework in a Python-like style.

# x: the input of LLM (All text is processed in lowercase, the same below.)
# x_label: "INS" if x in editing scope else "OOS"
# y_o, y_e: the original and edited output of LLM
# o_old, o_new: the object of old knowledge t and new knowledge t∗ for editing
# k_old, k_new: text format of t and t∗

# k_self: text format of LLM’s self-knowledge to and is equivalent to [x, y_o]
# func_entail(a,b): return True if a entails b else False by using a NLI model
# func_rouge(a,b): return the ROUGE socre of a and b
# func_sim(a,b): return the similarity of a and b using a SBERT model

def TE(y_e, x_label, o_old, o_new):
ctn_old=1 if o_old in y_e else 0
ctn_new=1 if o_new in y_e else 0
if x_label=="INS":

TE_score=0.5*ctn_new + 0.5*(1-ctn_old)
else:

TE_score=0.5*ctn_old + 0.5*(1-ctn_new)
return TE_score

def SE(x_label, x, y_e, k_old, k_new, k_self, func_entail):
ent_new=1 if func_entail(x+" "+y_e,k_new) else 0
if x_label=="INS":

ent_old=1 if func_entail(x+" "+y_e,k_old) else 0
SE_score=0.5 * ent_new + 0.5 * (1-ent_old)

else:
ent_old=1 if func_entail(x+" "+y_e,k_self) else 0
SE_score=0.5*ent_old + 0.5*(1-ent_new)

return SE_score

def TR(x_label, y_o, y_e, o_old, o_new, func_rouge):
if x_label=="INS":

TR_score=func_rouge(y_o.replace(o_old,"mask"), y_e.replace(o_new,"mask"))
else:

TR_score=func_rouge(y_o,y_e)
return TR_score

def SR(x_label, y_o, y_e, o_old, o_new, func_sim):
if x_label=="INS":

SR_score=func_sim(y_o.replace(o_old,"mask"), y_e.replace(o_new,"mask"))
else:

SR_score=func_sim(y_o,y_e)
return SR_score
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Algorithm 2: Train post-editor
Data: training dataset Dtrain = {(ei, xi)}
Require: base LLM fbase, GPT-4 fgpt4, trainable generative model fedit, training epoch E, batch

size B
for i in 1, · · · , |Dtrain| do

yaugi,o = fbase(xi) ▷Original Response Augment
if xi ∈ Xe then

yaugi,e = fgpt4(T
aug(ei, xi, y

aug
i,o )) ▷Edited Response Augment

if TE(yaugi,e ) ̸= 1 or SE(yaugi,e ) ̸= 1 then
delete (ei, xi, y

aug
i,o , yaugi,e )

end
else

yaugi,e = ⟨Retain⟩
end

end
Daug

train = {(ei, xi, yaugi,o , yaugi,e )}
for epoch in 1, · · · ,E do

for iter=0, 1, 2, · · · do
sample a mini-batch B from Daug

train ▷Supervised Fine-tuning
compute Lsft by equation 6 and optimize fedit

end
end
Output: trained post-editor fedit

Algorithm 3: Inference of PostEdit
Input: use query x
Require: Edit Memory Me, base LLM fbase, post-editor fedit, SBERT retriever fretr
get original response: yo = fbase(x)
retrieve the most similar edit index: i∗ = argmax0≤i<|Me| sim(x, ei)

get post-editor’s output: fedit(xedit) = fedit(T
edit(ei∗ , x, yo))

if fedit(xedit) ̸= ⟨Retain⟩ then
ye = fedit(xedit)

else
ye = yo

end
Output: final response ye
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