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Abstract

We study off-dynamics reinforcement learning (RL), where the policy training and1

deployment environments are different. To deal with this environmental perturba-2

tion, we focus on learning policies robust to uncertainties in transition dynamics3

under the framework of distributionally robust Markov decision processes (DR-4

MDPs), where the nominal and perturbed dynamics are linear Markov Decision5

Processes. We propose a novel algorithm We-DRIVE-U that enjoys an average sub-6

optimality Õ
(
dH ·min{1/ρ,H}/

√
K
)
, where K is the number of episodes, H is7

the horizon length, d is the feature dimension and ρ is the uncertainty level. This8

result improves the state-of-the-art by O(dH/min{1/ρ,H}). We also construct a9

novel hard instance and derive the first information-theoretic lower bound in this10

setting. In stark contrast with standard linear MDPs, our lower bound depends on11

the uncertainty level ρ, revealing the unique feature of DRMDPs. Our algorithm12

also enjoys a ‘rare-switching’ design, and thus only requiresO(dH log(1+H2K))13

policy switches and O(d2H log(1 + H2K)) calls for oracle to solve dual opti-14

mization problems, which significantly improves the computational efficiency of15

existing algorithms, whose policy switch and oracle complexities are both O(K).16

1 Introduction17

In dynamic decision-making and reinforcement learning (RL), Markov decision processes (MDPs)18

offer a well-established framework for understanding complex systems and guiding agent behavior19

[37]. However, MDPs encounter significant challenges in practical applications due to incomplete20

knowledge of model parameters, especially transition probabilities. This sim-to-real gap, representing21

the difference between training and testing environments, can lead to failures in fields like infectious22

disease control and robotics [8, 60, 21, 22, 33]. To address these challenges, off-dynamics RL23

provides a framework where policies are trained on a source domain and deployed to a distinct24

target domain, promoting robust performance across varying environments [7, 17, 42]. Within25

this framework, distributionally robust Markov decision processes (DRMDPs) have emerged as a26

promising way to model transition uncertainty. DRMDPs focus on learning robust policies that27

perform well under worst-case scenarios [29, 16]. Prior works [56, 52, 32, 35, 53, 34] have proposed28

algorithms mainly for tabular DRMDPs with finite number of states and actions, which are infeasible29

when facing large state and action spaces.30

In environments characterized by large state and action spaces, function approximation techniques31

are crucial to overcome the computational burden posed by high dimensionality. Linear function32

approximation methods, based on relatively simple function classes, have shown significant theoretical33

and practical successes in standard MDP environments [19, 11, 10, 50, 12]. However, their application34

in DRMDPs introduces additional complexities. These complexities arise from the nonlinearity35

caused by the dual formulation in the worst-case analysis, even when the transition dynamics in the36
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source domain are modeled as linear. Recently, [23] provided the first theoretical results in the online37

setting of d-rectangular linear DRMDPs, a specific type of DRMDPs where the nominal model is38

a linear MDP [19] and the uncertainty set is defined based on the linear structure of the nominal39

transition kernel. Apart from this, online DRMDP with linear function approximation is largely40

underexplored and it is not clear how far existing algorithms are from optimal. Consequently, two41

natural questions arise:42

Can we improve the current results for online DRMDPs with linear function approximation?43

What is the fundamental limit in this setting?44

In this paper, we provide an affirmative answer to the first question and answer the second question45

by providing an information theoretic lower bound for d-rectangular linear DRMDPs. In particular,46

motivated by the adoption of variance-weighted ridge regression to achieve nearly optimal result47

in standard linear MDPs [62, 61, 58, 20, 59, 10, 13], we propose a variance-aware distributionally48

robust algorithm to solve the off-dynamics RL problem. Due to the nonlinearity caused by the49

dual optimization of DRMDPs, the adoption of variance information in linear DRMDPs is highly50

nontrivial. Existing algorithms that incorporate variance information in learning linear DRMDPs51

requires coverage assumptions on the offline dataset [24, 41], which is infeasible in the online setting52

where the algorithm needs to interact with the environment to collect data. To be specific, for53

online DRMDPs, the adoption of variance-weighted ridge regression causes the following unique54

challenges for both algorithm design and theoretical analysis:55

• (Fundamental non-linearity induced by the uncertainty) The consideration of uncertainty set56

renders that the (robust) Bellman equations are not linear with respect to the nominal kernel, a57

key feature in standard MDP. A direct consequence is that though the Q-function remains a linear58

representation, its parameters must be estimated element-wisely from d (i.e., parameter dimension)59

variance-weighted ridge regressions, instead of one in standard linear MDP. This poses challenges60

for algorithm design, as it requires properly incorporating variance information into the estimation61

process and quantitatively controlling the estimation uncertainty.62

• (Precise control on variance estimation.) Existing theoretical analyses of online linear MDPs rely63

heavily on the Elliptical Potential Lemma, showing that the estimation error shrinks rapidly enough64

to guarantee the near-optimality of the learned policy within a small number of rounds. However,65

this lemma is not applicable in our setting due to the element-wise parameter estimation procedure66

mentioned above. Instead, we adopt a large-k regime to control the estimation error, based upon67

the intuition that when the sample size is large, the variance estimation should be close to the true68

variance (see Lemma D.7). Finally, we leverage the ‘Range Shrinkage’ property (see Lemma H.10)69

for linear DRMDPs to bound the true variance, and thus obtain an improved bound.70

Our work poses a distinct algorithm design and calls for different theoretical analysis techniques. Our71

main contributions are summarized as follows:72

• We propose a novel algorithm, We-DRIVE-U, for d-rectangular linear DRMDPs with total-variation73

(TV) divergence uncertainty sets. We-DRIVE-U is designed based on the optimistic principle [18,74

19, 10] to trade off the exploration and exploitation during interacting with the source environment75

to learn a robust policy. The key novelty of We-DRIVE-U lies in incorporating the variance76

information into the policy learning, by a carefully designed optimistic estimator of the variance of77

the optimal robust value function.78

• We prove that We-DRIVE-U achieves an average suboptimality of Õ(dH ·min{1/ρ,H}/
√
K)79

when the number of episode K is large, which improves the state-of-the-art result [23] by80

Õ(dH/min{1/ρ,H}), We highlight that the average suboptimality of We-DRIVE-U demon-81

strates the ‘Range Shrinkage’ property (refer to Lemma H.10) through the term min{1/ρ,H}. We82

further established an information-theoretic lower bound Ω(dH1/2 ·min{1/ρ,H}/
√
K), which83

shows that We-DRIVE-U is near-optimal up to O(
√
H) for any uncertainty level ρ ∈ (0, 1].84

• We-DRIVE-U is favorable in applications where policy switching is risky or costly, since We-85

DRIVE-U achievesO(dH log(1+H2K)) global policy switch (refer to Definition 4.5). Moreover,86

we note that calls for oracle to solve dual optimizations (3.3) are one of the main sources of87

computation complexity in DRMDP with linear function approximation. Thanks to the specifically88

designed ‘rare-switching’ regime, We-DRIVE-U achievesO(d2H log(1+H2K)) oracle complex-89

ity (refer to Definition 4.6). Both results improve exiting online DRMDP algorithms by a factor of90

K. Thus, We-DRIVE-U enjoys low switching cost and low computation cost.91
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Notations. For any positive integer H ∈ Z+, we denote [H] = {1, 2, · · · , H}. For any set S,92

define ∆(S) as the set of probability distributions over S. For any function V : S → R, define93

[PhV ](s, a) = Es′∼Ph(·|s,a)[V (s′)], and [V (s)]α = min{V (s), α}, where α > 0 is a constant. For a94

vector x, define xj as its j-th entry. Moreover, denote [xi]i∈[d] as a vector with the i-th entry being95

xi. For a matrix A, denote λi(A) as the i-th eigenvalue of A. For two matrices A and B, denote96

A ⪯ B as the fact that B − A is a positive semi-definite matrix. For any P,Q ∈ ∆(S), the total97

variation divergence of P and Q is defined as D(P ||Q) = 1/2
∫
S |P (s)−Q(s)|ds.98

2 Preliminary99

In this section, we introduce the mathematical framework of our setting. We use a tuple100

DRMDP(S,A, H,Uρ(P 0), r) to denote a finite horizon DRMDP, where S and A are the state101

and action spaces, H ∈ Z+ is the horizon length, P 0 = {P 0
h}Hh=1 is the nominal transition kernel,102

Uρ(P 0) =
⊗

h∈[H] U
ρ
h(P

0
h ) denotes an uncertainty set centered around the nominal transition kernel103

with an uncertainty level ρ ≥ 0, r = {rh}Hh=1 is the reward function. A policy π = {πh}Hh=1 is a104

sequence of decision rules. For a policy π, we define the robust value function and Q-function for105

any (h, s, a) ∈ [H]× S ×A as106

V π,ρ
h (s) = inf

P∈Uρ(P0)
EP

[ H∑
t=h

rt(st, at)
∣∣∣sh = s, π

]
,

Qπ,ρ
h (s, a) = inf

P∈Uρ(P0)
EP

[ H∑
t=h

rt(st, at)
∣∣∣sh = s, ah = a, π

]
.

Moreover, we define the optimal robust value function and optimal robust state-action value function:107

for any (h, s, a) ∈ [H] × S × A, V ⋆,ρ
h (s) = supπ∈Π V π,ρ

h (s), Q⋆,ρ
h (s, a) = supπ∈Π Qπ,ρ

h (s, a),108

where Π is the set of all policies. Correspondingly, the optimal robust policy is the policy that109

achieves the optimal robust value function π⋆ = argsupπ∈ΠV
π,ρ
h (s).110

In this paper, we focus on the d-rectangular linear DRMDP [26, 4, 23, 24], where the nominal111

environment is a linear MDP [19] with a simplex state space, defined as follows.112

Assumption 2.1. Given a known feature mapping ϕ : S ×A → Rd satisfying
∑d

i=1 ϕi(s, a) = 1,113

ϕi(s, a) ≥ 0, for any (i, s, a) ∈ [d]× S ×A, we assume the reward functions {rh}Hh=1 and nominal114

transition kernels {P 0
h}Hh=1 are linearly parameterized. Specifically, for any (h, s, a) ∈ [H]×S ×A,115

rh(s, a) = ⟨ϕ(s, a),θh⟩, P 0
h (·|s, a) = ⟨ϕ(s, a),µ0

h(·)⟩, where {θh}Hh=1 are known vectors with116

bounded norm ∥θh∥2 ≤
√
d and {µh}Hh=1 are unknown probability measures over S.117

In d-rectangular linear DRMDPs, an uncertainty set of transition dynamics Uρ
h(P

0
h ) is defined based118

on the linear structure of P 0
h satisfying Assumption 2.1. In particular, for any (h, i) ∈ [H] × [d],119

we first define the factor uncertainty set Uρ
h,i(µ

0
h,i) = {µ : µ ∈ ∆(S), D(µ||µ0

h,i) ≤ ρ},120

where D(·||·) is a probability divergence which we choose as the total variation (TV) diver-121

gence in this paper. Then the uncertainty set of transitions for state s and action a is defined122

as Uρ
h(s, a;µ

0
h) = {

∑d
i=1 ϕi(s, a)µh,i(·) : µh,i(·) ∈ Uρ

h,i(µ
0
h,i),∀i ∈ [d]}. We also denote123

Uρ
h(P

0
h ) =

⊗
(s,a)∈S×A U

ρ
h(s, a;µ

0
h) as the collection of uncertainty sets on the whole state and124

action spaces. Built on these definitions, [23] showed that the following robust Bellman equations125

hold for any policy π126

Qπ,ρ
h (s, a) = rh(s, a) + infPh(·|s,a)∈Uρ

h
(s,a;µ0

h
)[PhV

π,ρ
h+1](s, a), (2.1a)

V π,ρ
h (s) = Ea∼πh(·|s)

[
Qπ,ρ

h (s, a)
]
, (2.1b)

Similarly, we have the robust Bellman optimality equations127

Q⋆,ρ
h (s, a) = rh(s, a) + infPh(·|s,a)∈Uρ

h
(s,a;µ0

h
)[PhV

⋆,ρ
h+1](s, a), (2.2a)

V ⋆,ρ
h (s) = maxa∈A Q⋆

h(s, a). (2.2b)

In the context of online DRMDPs, an agent actively interacts with the nominal environment within128

K episodes to learn the optimal robust policy. Specifically, at the start of episode k, an agent chooses129

a policy πk based on the history information and receives the initial state sk1 . Then the agent interacts130

with the nominal environment by executing πk until the end of episode k, and collects a new trajectory.131
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The goal of the agent is to minimize the average suboptimality1 after K episodes, which is defined as132

AveSubopt(K) = 1/K
∑K

k=1

[
V ⋆,ρ
1 (sk1)− V πk,ρ

1 (sk1)
]
.133

[25] recently show that sample efficient learning in online tabular DRMDPs is impossible in the134

presence of support shift, i.e., the nominal kernel and target kernel do not share the same support.135

Built on the hard instance constructed in their work, we carefully design feature mappings for the136

transition kernel to extend their lower bound to the following one for online linear DRMDPs.137

Proposition 2.2. (Hardness result) There exists two d-rectangular linear DRMDPs {Mθ}θ∈{0,1},138

such that infALG supθ∈{0,1} E[AveSuboptMθ,ALG(K)] ≥ Ω(ρ ·H), where AveSuboptMθ,ALG(K)139

is the average suboptimality of algorithm ALG in the d-rectangular linear DRMDPMθ.140

Note that the lower bound in Proposition 2.2 does not converge to zero as K increases, which means141

that in general no algorithm can guarantee to learn the optimal robust policy approximately. To142

circumvent this problem, in the rest of paper we focus on a tractable subclass of d-rectangular linear143

DRMDP following [23, 25], which is formally defined in the following assumption.144

Assumption 2.3 (Fail-state). Assume there exists a ‘fail state’ sf in the d-rectangular linear DRMDP,145

such that for all (h, a) ∈ [H]×A, rh(sf , a) = 0, P0
h(sf |sf , a) = 1.146

With Assumption 2.3, we follow the framework in [23], where we have the following results on147

robust value functions that are helpful in solving the optimization in (2.2).148

Proposition 2.4 (Remark 4.2 of [23]). Under Assumption 2.3, we have Qπ,ρ
h (sf , a) = V π,ρ

h (sf ) = 0,149

∀(π, h, a) ∈ Π× [H]×A. Moreover, for any function V : S → [0, H] that satisfies mins∈S V (s) =150

V (sf ) = 0, we have infµ∈Uρ(µ0) Es∼µV (s) = maxα∈[0,H]{Es∼µ0 [V (s)]α − ρα}.151

3 Algorithm design152

One prominent property of the d-rectangular DRMDP is that the robust Q-functions possess linear rep-153

resentations with respect to the feature mapping ϕ. In particular, under Assumptions 2.1 and 2.3, [23]154

show that for any (π, s, a, h) ∈ Π×S ×A× [H], the robust Q-function Qπ,ρ
h (s, a) has a linear form155

as follows Qπ,ρ
h (s, a) =

(
rh(s, a) + ϕ(s, a)⊤νπ,ρ

h

)
1{s ̸= sf}, where νπ,ρ

h =
(
νπ,ρh,1 , . . . , ν

π,ρ
h,d

)⊤
,156

νπ,ρh,i = maxα∈[0,H]

{
zπh,i(α) − ρα

}
, zπh,i(α) = Eµ0

h,i
[
V π,ρ
h+1(s

′)
]
α

and α ∈ [0, H] is the dual vari-157

able derived from the dual formulation (see Proposition H.1 for more details). Moreover, the robust158

Bellman optimality equation (2.2) shows that the greedy policy with respect to the optimal robust159

Q-function is exactly the optimal robust policy π⋆. Therefore, the core idea behind the algorithm160

design is to estimate the optimal robust Q-function using linear function approximation, and then161

find π⋆ by the greedy policy derived from the estimated optimal robust Q-function. We present our162

algorithm in Algorithm 1.163

3.1 Variance-weighted ridge regression for online DRMDPs164

Algorithm 1 is a value-iteration based algorithm that iteratively estimates the robust Q-function165

through variance-weighted ridge regression. Different from the Q-function estimation for standard166

linear MDP, we element-wisely estimate the parameters of robust Q-functions. This is a distinct167

feature for linear DRMDPs. We next interpret the details of our algorithm design.168

From Line 6 to 13 of Algorithm 1, we adopt the backward induction procedure to update the robust169

Q-function estimation. In particular, for any (k, h) ∈ [K] × [H], suppose we have an estimated170

robust value function V̂ ρ
k,h+1. By the robust Bellman optimality equation (2.2) and Proposition 2.4,171

conducting one step backward induction on V̂ ρ
k,h+1 leads to the following linear form [23]:172

rh(s, a) + infPh∈Uρ
h(s,a;µ

0) Ph[V̂k,h+1](s, a) = ϕ(s, a)⊤(θh + νρ,k
h )1{s ̸= sf}, (3.1)

where νρ,kh,i := maxα∈[0,H]{zkh,i(α)− ρα} and zkh,i(α) := Eµ0
h,i [V̂k,h+1(s

′)]α, for any i ∈ [d]. Note173

that under Assumption 2.1, for any α ∈ [0, H], zkh,i(α) is the i-th element of the parameter of the174

1Our ‘average sub-optimality’ differs from standard ‘regret’ as it measures the gap to the optimal policy in
the worst-case target environment, not the nominal one.
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following linear formulation, [P0
h[V̂k,h+1]α](s, a) = ⟨ϕ(s, a), zk

h(α)⟩. Thus, we can estimate zk
h(α)175

from data to get estimations of zkh,i(α),∀i ∈ [d]. To this end, we introduce the variance-weighted176

ridge regression regime to estimate zk
h(α) as follows177

min
z∈Rd

k−1∑
τ=1

σ̄−2
τ,h

(
z⊤ϕ

(
sτh, a

τ
h

)
−

[
V̂ ρ
k,h+1

(
sτh+1

)]
α

)2

+ λ∥z∥22,

which leads to the following closed-form estimation178

ẑk
h(α) = Σ−1

k,h

k−1∑
τ=1

σ̄−2
τ,hϕ

(
sτh, a

τ
h

)[
V̂ ρ
k,h+1

(
sτh+1

)]
α
, (3.2)

where Σk,h = λI +
∑k−1

τ=1 σ̄
−2
τ,hϕ

(
sτh, a

τ
h

)
ϕ
(
sτh, a

τ
h

)⊤ and σ̄τ,h is a variance estimator that will be179

formally introduced in Section 3.2. We then approximate νρ,k
h by solving the optimization problem180

element-wisely181

ν̂ρ,kh,i = maxα∈[0,H]

{
ẑkh,i(α)− ρα

}
, i ∈ [d]. (3.3)

Then we can estimate the Q-function via (3.1). Due to the nature of online RL, the estimation might182

be highly uncertain due to the lack of exploration, and thus we incorporate a bonus term Γ̂k,h(s, a) =183

β
∑d

i=1 ϕi(s, a)
√
1⊤
i Σ

−1
k,h1i into the robust Q-function estimation, where β = Õ

(
H
√
dλ +

√
d
)
.184

The final estimator is given on Line 8 of Algorithm 1. We will show in later analysis that the estimated185

Q-function is an optimistic estimator for the optimal robust Q-function.186

Inspired by [10], we also establish estimators for the lower bound of robust Q-functions by the same187

backward induction procedure, which will be helpful in constructing the variance estimator σ̄τ,h188

as shown in the next section. In particular, given V̌ ρ
k,h, We obtain the variance weighted regression189

estimator žk
h(α) = Σ−1

k,h

∑k−1
τ=1 σ̄

−2
τ,hϕ

(
sτh, a

τ
h

)[
V̌ ρ
k,h+1

(
sτh+1

)]
α

. Then we get the estimation190

ν̌ρ,kh,i = maxα∈[0,H]

{
žkh,i(α)− ρα

}
, i ∈ [d]. (3.4)

By (3.1) and (3.4), we get another estimation of the robust Q-function, which we aim to show is a191

pessimistic estimation of the optimal robust Q-function. Similarly, to quantify the uncertainty caused192

by online exploration, we introduce a penalty term Γ̌k,h(s, a) = β̄
∑d

i=1 ϕi(s, a)
√
1⊤
i Σ

−1
k,h1i, where193

β̄ = Õ
(
H
√
dλ+

√
d3H3

)
. The final pessimistic estimator Q̌ρ

k,h is shown on Line 9 of Algorithm 1.194

Though [24] also constructed pessimistic robust Q-function estimations for DRMDPs, our methods195

are very different due to 1) they do not update the estimation episodically, 2) their estimators are used196

to get the optimal robust policy estimation, while ours are used to construct the variance estimator, as197

shown in the next section.198

3.2 Estimating the variance of the value function199

In this section, we construct the variance weight σ̄τ,h used in (3.2) and aim to get an optimistic esti-200

mator for the variance of the optimal robust value function, VhV
∗,ρ
h+1. Due to the distinct element-wise201

estimation procedure introduced in the previous section, the coarse variance estimation design in [10]202

for standard linear MDPs does not apply. Instead, we need to carefully design the variance estimators203

used in weighted ridge-regressions based upon the unique characteristics of linear DRMDPs.204

We desire to design the variance estimator at episode k to be a uniform variance upper bound for205

all subsequent episodes. To obtain the optimistic estimator for VhV
∗,ρ
h+1, we first solve regression206

problems to obtain the estimator for VhV̂
ρ
k,h+1, which is denoted as V̄hV̂

ρ
k,h+1. Then we analyze207

the error between VhV
∗,ρ
h+1 and V̄hV̂

ρ
k,h+1 to finish the construction. Different from (5.2) in [24], the208

variance estimator here is not trivially constructed from subtracting a specific penalty term because209

we should guarantee the monotonicity of estimated variance for the online exploration. The variance210

of estimated optimistic value function V̂ ρ
k,h+1 can be decomposed into211 [

VhV̂
ρ
k,h+1

]
(s, a) =

[
P0
h

(
V̂ ρ
k,h+1

)2]
(s, a)−

([
P0
hV̂

ρ
k,h+1

]
(s, a)

)2
. (3.5)
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Algorithm 1 Weighted Distributionally Robust Iterative Value Estimation with UCB (We-DRIVE-U)

1: Initialization: confidence parameters β, β̄, β̃ > 0 and regularization λ > 0. klast = 0. For
each stage h ∈ [H], initialize Σ0,h = Σ1,h = Λ1,h = λI and the upper and lower estimation
Q̂ρ

0,h(·, ·) = H, Q̌ρ
0,h(·, ·) = 0

2: for episode k = 1, · · · ,K do
3: Receive the initial state sk1
4: Set V̂ ρ

k,H+1(·)← 0, V̌ ρ
k,H+1(·)← 0

5: if there exists a stage h′ ∈ [H] such that det(Σk,h′) ≥ 2det(Σklast,h′) then
6: for stage h = H, · · · , 1 do
7: For h = H , ν̂ρ,k

h ← 0, ν̌ρ,k
h ← 0; otherwise compute ν̂ρ,kh,i ,∀i ∈ [d] according to (3.3)

and ν̌ρ,kh,i ,∀i ∈ [d] according to (3.4).
8: Q̂ρ

k,h(s, a)← min
{
rh(s, a)+ϕ(s, a)⊤ν̂ρ,k

h +Γ̂k,h(s, a), Q̂
ρ
k−1,h(s, a), H−h+1

}
1{s ̸= sf}

9: Q̌ρ
k,h(s, a)← max

{
rh(s, a) +ϕ(s, a)⊤ν̌ρ,k

h − Γ̌k,h(s, a), Q̌
ρ
k−1,h(s, a), 0

}
1{s ̸= sf}

10: Set the last updating episode klast ← k

11: V̂ ρ
k,h(s)← maxa Q̂

ρ
k,h(s, a), V̌ ρ

k,h(s)← maxa Q̌
ρ
k,h(s, a)

12: πk
h(s)← argmaxa∈A Q̂ρ

k,h(s, a)
13: end for
14: else
15: V̂ ρ

k,h, V̌
ρ
k,h, π

k
h ← V̂ ρ

k−1,h, V̌
ρ
k−1,h, π

k−1
h ,∀h ∈ [H]

16: end if
17: for stage h = 1, · · · , H do
18: Take akh ← πk

h(s
k
h) and receive skh+1

19: Calculate the estimated variance σk,h according to (3.6) and σ̄k,h according to (3.7)
20: Σk+1,h ← Σk,h + σ̄−2

k,hϕ
(
skh, a

k
h

)
ϕ
(
skh, a

k
h

)⊤
, Λk+1,h ← Λk,h + ϕ

(
skh, a

k
h

)
ϕ
(
skh, a

k
h

)⊤
21: end for
22: end for

Under Assumption 2.1, P0
h

(
V̂ ρ
k,h+1

)2 and P0
hV̂

ρ
k,h+1 on the RHS of (3.5) are linear in ϕ(s, a). Thus we212

can approximate the variance as
[
VhV̂

ρ
k,h+1

]
(s, a) ≈

[
V̄hV̂

ρ
k,h+1

]
(s, a) =

[
ϕ(s, a)⊤w̃k

h,2

]
[0,H2]

−213 [
ϕ(s, a)⊤ŵk

h,1

]2
[0,H]

, where ŵk
h,1 = minw∈Rd

∑k−1
τ=1

(
w⊤ϕ

(
sτh, a

τ
h

)
− V̂ ρ

k,h+1

(
sτh+1

))2
+ λ∥w∥22214

and w̃k
h,2 = minw∈Rd

∑k−1
τ=1

(
w⊤ϕ

(
sτh, a

τ
h

)
−
(
V̂ ρ
k,h+1

(
sτh+1

))2)2
+ λ∥w∥22. Different from the215

variance estimation in standard MDPs [10], we construct both w̃k
h,2 and ŵk

h,1 by solving vanilla216

ridge regressions, instead of variance-weighted ridge regressions. This specific choice of parameter217

estimation will simplify our analysis of the variance estimation error, while fully capture the variance218

information. Now we can construct σk,h, which is the estimated variance of the optimal robust value219

function V ∗,ρ
h in episode k, as follows220

σk,h =
√[

V̄hV̂
ρ
k,h+1

]
(skh, a

k
h) + Ek,h + d3HDk,h + 1/2, (3.6)

where Ek,h represents the error between the estimated variance and the true variance of V̂ ρ
k,h+1,221

and Dk,h represents the error between the true variance of V̂ ρ
k,h+1 and the true variance of V ∗,ρ

h+1.222

Formally, we define223

Ek,h = min
{
β̃
∥∥ϕ(skh, ak

h

)∥∥
Λ−1

k,h
, H2}+min

{
2Hβ̄

∥∥ϕ(skh, ak
h

)∥∥
Λ−1

k,h
, H2},

Dk,h = min
{
4H

(
ϕ
(
skh, a

k
h

)⊤
ŵk

h,1 − ϕ
(
skh, a

k
h

)⊤
w̌k

h,1 + 2β̄
∥∥ϕ(skh, ak

h

)∥∥
Λ−1

k,h

)
, H2},

where Λk,h = λI +
∑k−1

τ=1 ϕ
(
sτh, a

τ
h

)
ϕ
(
sτh, a

τ
h

)⊤
, β̄ = Õ

(
H
√
dλ +

√
d3H3

)
, β̃ = Õ

(
H2
√
dλ +224 √

d3H6
)
, and w̌k

h,1 = minw∈Rd

∑k−1
τ=1

(
w⊤ϕ

(
sτh, a

τ
h

)
− V̌ ρ

k,h+1

(
sτh+1

))2
+ λ∥w∥22. Finally, we225

construct weights for the variance-weighted ridge regression problem (3.2): ∀k, h ∈ [K]× [H],226

σ̄k,h = max
{
σk,h, 1,

√
2d3H2

∥∥ϕ(skh, akh)∥∥1/2Σ−1
k,h

}
. (3.7)
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Compared with the variance estimation for the value function in standard MDPs [10] which is227

σ̄k,h = max
{
σk,h, H, 2d3H2

∥∥ϕ(skh, ak
h

)∥∥1/2

Σ−1
k,h

}
, our variance estimation is tighter in both the second228

and the third terms. The second term in (3.7) is 1, instead of H . This is important in achieving a229

tighter dependence on H . The intuition is that, when k is large, σ̄k,h should be close to the variance230

of the optimal robust value function. This design is motivated by the ‘Range Shrinkage’ phenomenon231

unique to DRMDPs (see the discussion after Theorem 4.1 for details), which observes that the true232

variance is in the order of O(1) when ρ = O(1). To get a precise variance estimation, σ̄k,h should233

be in the same order of the true variance. Moreover, a constant order lower bound on σ̄k,h will also234

ensure the weight will not cause any inflation in the weighted regression (3.2). The third term in (3.7)235

to be also tighter than that of [10], while maintaining the same theoretical property.236

3.3 Algorithm interpretation237

Now we provide some discussions to interpret Algorithm 1.238

Remark 3.1. We highlight that Algorithm 1 is the first algorithm adopting a ‘rare-switching’ update239

strategy for distributionally robust RL. Different from [10], the ‘rare-switching’ condition on Line 5240

is set at the beginning of each episode. This is achieved by our variance estimator design, which is241

independent of the parameter update for zk
h(α). The update rule on Line 5 determines whether to242

update robust Q-function estimations and switch to a new policy for the current episode, and leads to243

two advantages, 1) the number of times solving the ridge regression (3.2) and dual optimization (3.3)244

significantly decreases, which constitute the main computation cost of Algorithm 1, and 2) in real245

application scenarios where policy switching is costly or risky, Algorithm 1 possesses low policy246

switching property. We refer the readers to Proposition 4.7 and Remark 4.8 for more details.247

Remark 3.2. On Line 7, we estimate νρ,k
h element-wisely, and thus the estimator ν̂ρ,k

h is derived248

from d separate variance-weighted ridge regressions (3.2) and dual optimizations (3.3). This leads249

to the specific form of bonus term Γ̂k,h(s, a) = β
∑d

i=1 ϕi(s, a)
√
1⊤
i Σ

−1
k,h1i, which is actually an250

upper bound of the robust estimation error (see Lemma D.4 and its proof) at episode k. Though251

the bonus term resembles that in [23], we highlight that the sampling covariance matrix Σk,h in252

Γ̂k,h(s, a) is indeed a variance-weighted one. The specific form of the bonus term leads to the new253

variance-weighted d-rectangular robust estimation error defined in (4.1).254

Remark 3.3. On Line 8 and 9, we adopt a monotonic Q-function update strategy, such that the255

estimated optimistic (pessimistic) robust value function is monotonically decreasing (increasing) to256

the optimal robust value function. This strategy is to make sure that the variance estimator σk,h at257

any episode k ∈ [H] is a uniform upper bound for those in the subsequent episodes, which would be258

helpful in bounding the estimation error arising from the variance-weighted ridge regression (3.2).259

This idea is first introduced by [2] for standard tabular MDPs and then utilized by [10] for standard260

linear MDPs. This is the first time it is utilized in the online linear DRMDP setting, where the261

episodic estimation regime proposes additional requirement on the variance estimator construction262

compared to the offline setting studied by [24].263

4 Suboptimality upper bound analysis264

We now provide theoretical results on the upper bound on the suboptimality of Algorithm 1.265

Theorem 4.1. Under Assumptions 2.1 and 2.3, set λ = 1/H2, then for any fixed δ ∈ (0, 1) and266

ρ ∈ (0, 1], with probability at least 1− δ, the average suboptimality of We-DRIVE-U satisfies267

AveSubopt(K) ≤ 2
√
2H3 log(6/δ)/K +

4β

K

∑K
k=1

∑H
h=1

∑d
i=1 ϕ

k
h,i

√
1⊤
i Σ

−1
k,h1i︸ ︷︷ ︸

variance-weighted d-rectangular estimation error

, (4.1)

where β = Õ(
√
d), ϕk

h,i is the i-th element of ϕ(skh, a
k
h) and 1i is the i-th standard basis vector.268

Recall from Remark 3.2, the quantity
∑d

i=1 ϕ
k
h,i

√
1⊤
i Σ

−1
k,h1i in (4.1) comes from solving d separate269

variance-weighted ridge regressions at step h in episode k. A similar term also appears in the270

Theorem 5.1 of [23]. Differently, the the quantity
∑d

i=1 ϕ
k
h,i

√
1⊤
i Σ

−1
k,h1i is based on the variance-271

weighted sampling covariance matrix Σk,h, rather than the vanilla sampling covariance matrix272
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Λk,h as in [23]. In order to further bound (4.1), we need to take a closer examination of the273

variance estimator. Intuitively, when episode k is large, the variance estimator should be close to274

the variance of the optimal robust value function. Recent study [24] shows a ‘Range shrinkage’275

phenomenon in the d-rectangular linear DRMDP (refer to Lemma H.10), stating that the range of any276

robust value function satisfies maxs∈S V π,ρ
h (s) − mins∈S V π,ρ

h (s) ≤ min{1/ρ,H},∀(π, h, ρ) ∈277

Π × [H] × (0, 1]. This implies that the variance of the optimal robust value function is upper278

bounded by min{1/ρ,H}. Thus, when k is large, we can expect σ̄k,h ≲ Õ(min{1/ρ,H}) and279

hence Σ−1
k,h ⪯ Õ(min{1/ρ2, H2})Λ−1

k,h. To this end, next we rigorously bound (4.1) under the same280

setting as the Corollary 5.3 of [23], and formally show that the variance information leads to a tighter281

dependence on H compared to [23].282

Theorem 4.2. Assume that there exists an absolute constant c > 0, such that for all (π, h) ∈ Π× [H]283

EP 0

π

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] ≥ c/d · I. (4.2)

Then under the same setting in Theorem 4.1 and the assumption in (4.2), for any fixed δ ∈ (0, 1),284

with probability at least 1 − δ, the average suboptimality of We-DRIVE-U is upper bounded by285

Õ
((
dH ·min

{
1/ρ,H

}
+H3/2

)
/
√
K + d15H13/K

)
.286

Remark 4.3. When d ≥ H and the total number of episodes K is sufficiently large, the average287

suboptimality can be simplified as Õ{dHmin{1/ρ,H}/
√
K}. Note that under the same assumption288

in (4.2), [23] prove that the average suboptimality of their algorithm DR-LSVI-UCB is of the order289

Õ(d2H2/
√
K). Thus, We-DRIVE-U improves the state-of-the-art result by O(dH/min{1/ρ,H}).290

Moreover, we highlight that the upper bound in Theorem 4.2 depends on the uncertainty level ρ, which291

arises from the ‘Range Shrinkage’ phenomenon. When ρ increases from 0 to 1, the suboptimality292

decreases up to a factor of O(H).293

Remark 4.4. The assumption (4.2) is actually imposed on the DRMDP, requiring that the environ-294

ment we encounter is exploratory enough. We would like to note that this assumption is necessary295

in deriving our upper bound, since the elliptical potential lemma [1, Lemma 11], which is critical296

in deriving upper bounds in linear bandits and linear MDPs, does not apply in the analysis of linear297

DRMDPs. We note that the previous work [23] also used this assumption to get the final upper298

bound for their algorithm. Moreover, the assumption (4.2) can be deemed as an online version of299

the well-known full-type coverage assumption on the offline dataset in offline (non-) robust RL.300

Specifically, in the context of standard offline RL, [5, 44, 47] assume the offline dataset should cover301

the distribution measure induced by any policy under the nominal environment. In the context of302

offline robust RL, [32, 31, 57] assume that the offline dataset should cover the distribution measure303

induced by any policy under any transition kernel in the uncertainty set. It would be an interesting304

future research direction to study if assumption (4.2) can be relaxed.305

Next, we study the deployment complexity of Algorithm 1, which constitutes two sources of cost.306

The first source is the policy switching cost, say, the total number of changes in the exploration policy.307

This might be the main bottleneck in applications where changing the exploration policy is costly308

or risky [3, 45]. The second source is the computation cost in solving the dual optimization in (3.3).309

Recall in Remark 4.8 we discuss that Algorithm 1 adopts the ‘rare-switching’ update strategy, which310

significantly reduces the two sources of cost. Next, we formally define them as follows.311

Definition 4.5 (Global Switching Cost). We define the global switching cost of an algorithm that312

runs for K episodes as Ngl
switch :=

∑K
k=1 1{πk ̸= πk+1}.313

Definition 4.6 (Dual Oracle). We assume access to a maximization oracle, which takes a function314

z : [0, H]→ R and a fixed constant ρ > 0 as input, and outputs the maximum value zmax and the315

maximizer αmax defined as zmax = maxα∈[0,H]{z(α)− ρα} and αmax = argmaxα∈[0,H]{z(α)−316

ρα}. For an algorithm, we define the oracle complexity as the number of calls of the dual oracle.317

Finally, we show that We-DRIVE-U admits low switching cost and low oracle complexity.318

Next, we formally present theoretical results on the deployment complexity of Algorithm 1.319

Proposition 4.7. Under the same setting as Theorem 4.1, the switching cost of We-DRIVE-U is320

upper bounded by dH log(1 +H2K), and the oracle complexity of We-DRIVE-U is upper bounded321

by 2d2H log(1 +H2K).322

Remark 4.8. The switching cost of the state-of-the-art algorithm DR-LSVI-UCB [23] is K and the323

oracle complexity is dK. Thus, We-DRIVE-U improves both the switching and oracle cost by a factor324
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of K. Different from standard linear MDPs, where the main computation complexity only comes325

from the policy update [10], in the linear DRMDP setting, the calls of dual oracle, besides policy326

updates, are also a main source of computational burden. The update rule on Line 5 guarantees that327

We-DRIVE-U calls the dual oracle and updates the policy only when the criterion is met. Actually,328

Algorithm 1 is the first DRMDP algorithm that admits low deployment complexity.329

5 Information-theoretic lower bound analysis330

According to Theorem 4.2, when ρ = O(1), the suboptimality of We-DRIVE-U is of order331

O(dH/
√
K). After multiplying K to recover the cumulative suboptimality, it is smaller than332

the minimax lower bound for standard linear MDP, Ω(d
√
H3K) [62]. To assess the optimality of333

We-DRIVE-U, next we present an information-theoretic lower bound for online linear DRMDPs.334

Theorem 5.1. Let uncertainty level ρ ∈ (0, 3/4], H ≥ 6, and K ≥ 9d2H/32. Then for any335

algorithm, there exists a d-rectangular linear DRMDP parameterized by ξ = (ξ1, · · · , ξH−1) such336

that the expected average suboptimality is lower bounded as follows:337

Eξ[AveSubopt(Mξ,K)] ≥ Ω
((
dH1/2 ·min{1/ρ,H}

)
/
√
K
)
, (5.1)

where Eξ denotes the expectation over the randomness of the algorithm and the nominal environment.338

Remark 5.2. We highlight that the lower bound (5.1) depends on the uncertainty level ρ, which339

is a distinctive characteristic for DRMDPs. Theorem 5.1 implies We-DRIVE-U is near-optimal up340

to a factor of Õ(
√
H). Moreover, when ρ → 0, the linear DRMDP degrades to a standard linear341

MDP, and (5.1) matches the information-theoretic lower bound, Ω(d
√
H3K), for standard linear342

MDPs [62] after multiplying K to recover the cumulative regret. When ρ = O(1), (5.1) reduces to343

Ω(dH1/2/
√
K), which is O(H) smaller than the lower bound for standard linear MDPs.344

Next, we investigate the Õ(
√
H) gap between the upper and lower bounds and propose a conjecture345

on its origin. In the analysis of non-robust MDPs [2, 18, 10] and tabular DRMDPs [25], a tight346

dependence on H is often achieved by exploiting the total variance law of the value function at each347

episode. Currently, we bound each term in the variance-weighted d-rectangular estimation error in348

(4.1) separately. A tight upper bound might be achieved by first bounding the variance-weighted349

d-rectangular estimation error as a whole by the square root of the total variance and then invoking350

the total variance law. In particular, inspired by the total variance law in Lemma C.6 of [25], the total351

variance should be in the order of O(Hmin{1/ρ,H}). Together with an additional
√
H arising in352

the suboptimality analysis, we conjecture the dependence of the upper bound on H could be improved353

to O(
√

H2 min{1/ρ,H}).354

When the uncertainty level is small, i.e., ρ = O(1/H), the conjectured result leads to an upper bound355

on the suboptimality that depends onO(H3/2), matching the current lower bound we present in (5.1).356

This suggests that our current lower bound is tight and the total variance analysis could improve357

our upper bound. When the uncertainty level is relatively large, i.e., ρ = O(1), the conjectured358

upper bound is O(H), which matches the current upper bound in Theorem 4.2. This means the total359

variance analysis does not further improve the upper bound, and we suspect that a tighter lower bound360

is instead necessary. This leaves an interesting open problem for future study.361

6 Conclusion362

This paper advanced the study of online d-rectangular linear DRMDPs by establishing a tighter363

regret upper bound and the first lower regret bound under this setting. We introduced We-364

DRIVE-U, a novel variance-aware algorithm that leverages variance-weighted ridge regression365

and low policy-switching techniques. Under standard MDP structure assumptions, we proved366

We-DRIVE-U achieves an average suboptimality of Õ(dHmin{1/ρ,H}/
√
K), improving the state-367

of-the-art by Õ(dH/min{1/ρ,H}). We also established an information-theoretic lower bound368

of Ω(dH1/2 min{1/ρ,H}/
√
K), which implies We-DRIVE-U’s near-optimality up to O(

√
H).369

Furthermore, We-DRIVE-U reduces computational complexity with O(dH log(1 +H2K)) policy370

switches and O(d2H log(1 +H2K)) oracle complexity, which outperforms existing methods by371

a factor of K. We also conducted numerical experiments to validate the robustness and improved372

performance over existing algorithms, which is presented in Appendix B.373
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A Related work542

Distributionally Robust MDPs There has been a large body of works studying DRMDPs under543

various settings, for instance, the setting of planning and control [48, 46, 54, 27, 9] where the exact544

transition model is known, the setting with a generative model [63, 52, 30, 49, 36, 51], the offline545

setting [32, 35, 4, 38] and the online setting [6, 23, 25]. Among tabular DRMDPs, the most relevant546

studies to ours are [36, 25]. In particular, [36] studies tabular DRMDPs with TV uncertainty sets.547

They provide an information-theoretic lower bound, as well as a matching upper bound on the sample548

complexity. The key message is that the sample complexity bounds depend on the uncertainty level,549

and when the uncertainty level is of constant order, policy learning in a DRMDP requires less samples550

than in a standard MDP. Further, [25] studies the online tabular DRMDPs with TV uncertainty551

sets, they provide an algorithm that achieves the near-optimal sample complexity under a vanishing552

minimal value assumption to circumvent the curse of support shift.553

Online Linear MDPs and Linear DRMDPs The nominal model studied in our paper is assumed554

to be a linear MDP with a simplex feature space. There is a line of works studying online linear555

MDPs [50, 19, 28, 55, 43, 11, 40, 15], and the minimax optimality of this setting is studied in the556

recent work of [10]. In particular, they adopt the variance-weighted ridge regression scheme and the557

‘rare-switching’ policy update strategy in their algorithm design. The setting of online linear DRMDP558

is relatively understudied, with both the lower bound and the near-optimal upper bound remain elusive.559

Specifically, the only work studies the online linear DRMDP setting is [23]. Under the TV uncertainty560

set, their algorithm, DR-LSVI-UCB, achieves an average suboptimality of the order Õ(d2H2/
√
K).561

However, recent evidence from studies [24, 41] on offline linear DRMDPs suggests that this rate is562

far from optimality. In particular, [24] proves that their algorithm, VA-DRPVI, achieves an upper563

bound on the suboptimality in the order of Õ(dHmin{1/ρ,H}/
√
K). Nonetheless, their algorithm564

and analysis are based on a pre-collected offline dataset which satisfies some coverage assumption,565

and thus cannot be utilized in the online setting, where a strategy on data collection is required to566

deal with the challenge of exploration and exploitation trade-off.567

B Experiments on simulated linear DRMDPs568

B.1 Simulated linear DRMDPs569

We conduct numerical experiments to illustrate the performances of our proposed algorithm, We-570

DRIVE-U, and compare it with the state-of-the-art algorithm for d-rectangular linear DRMDPs,571

DR-LSVI-UCB [23], as well as their non-robust counterpart, LSVI-UCB [19]. All numerical572

experiments were conducted on a MacBook Pro with a 2.6 GHz 6-Core Intel CPU.573

We leverage the simulated linear MDP setting proposed by [23]. For completeness, we recall the574

experiment setting as follows. The source and target linear MDP environment are shown in Figure 1(a)575

and Figure 1(b). The state space is S = {x1, · · · , x5} and action space A = {−1, 1}4 ⊂ R4. At576

each episode, the initial state is always x1, and it can transit to x2, x4, x5 with probability defined in577

the figures. x2 is an intermediate state from which the next state can be x3, x4, x5. x4 is the fail state578

with reward 0 and x5 is an absorbing state with reward 1. For the reward functions and transition579

probabilities, they are designed to depend on ⟨ξ, a⟩, where ξ ∈ R4 is a hyperparameter controls the580

MDP instances. The target environment is constructed by only perturbing the transition probability at581

x1 of the source domain, and the extend of perturbation is controlled by a hyperparameter q ∈ (0, 1).582

We refer more details on the construction of the linear DRMDP to the Supplementary A.1 of [23].583

We set ξ = (1/∥ξ∥1, 1/∥ξ∥1, 1/∥ξ∥1, 1/∥ξ∥1)⊤ and consider different choices of ∥ξ∥1 from the584

set {0.1, 0.2, 0.3}. Following the implementation in [23], we use heterogeneous uncertainty level585

and set ρ1,4 = 0.5 and ρh,i = 0 for all other cases. We set the number of interactions with the586

nominal environment to 200. We evaluate policies learned by We-DRIVE-U, DR-LSVI-UCB [23]587

and LSVI-UCB [19] by the accumulative rewards achieved in the target domain, which are illustrated588

in Figure 2. Figure 2 shows that: 1) policies learned by We-DRIVE-U are robust to environmental589

perturbation, and the extent of the robustness depends on the pre-specified parameter ρ; 2) In most590

cases, We-DRIVE-U outperforms DR-LSVI-UCB, meaning it being more robust to environment591

perturbation. Moreover, Table 1 demonstrates the low-switching property of We-DRIVE-U. During592

200 interactions of the training process, We-DRIVE-U switches policies only around 24 times,593
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x1 x2 x3

x4

x5

(1 − p)(1 − δ − ⟨ξ, a⟩)

p(1 − δ − ⟨ξ, a⟩)

δ + ⟨ξ, a⟩

(1 − p)(1 − δ − ⟨ξ, a⟩)

p(1 − δ − ⟨ξ, a⟩)

δ + ⟨ξ, a⟩

1 − δ − ⟨ξ, a⟩

δ + ⟨ξ, a⟩

1

1

(a) The source environment.

x1 x2 x3

x4

x5

(1 − δ − ⟨ξ, a⟩)

q(δ + ⟨ξ, a⟩)

(1 − q)(δ + ⟨ξ, a⟩)

(1 − p)(1 − δ − ⟨ξ, a⟩)

p(1 − δ − ⟨ξ, a⟩)

δ + ⟨ξ, a⟩

1 − δ − ⟨ξ, a⟩

δ + ⟨ξ, a⟩

1

1

(b) The target environment.

Figure 1: The source and the target linear MDP environments. The value on each arrow represents
the transition probability. For the source MDP, there are five states and three steps, with the initial
state being x1, the fail state being x4, and x5 being an absorbing state with reward 1. The target MDP
on the right is obtained by perturbing the transition probability at the first step of the source MDP,
with others remaining the same.
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which stands in stark contrast to the 200 policy switches by LSVI-UCB and DR-LSVI-UCB. These594

numerical results prove the superiority of our proposed algorithm We-DRIVE-U and align well with595

our theoretical findings. All numerical experiments were conducted on a MacBook Pro with a 2.6596

GHz 6-Core Intel CPU.597
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(i) ∥ξ∥1 = 0.3, ρ1,4 = 0.3

Figure 2: Simulation results under different source domains. The x-axis represents the perturbation
level corresponding to different target environments. ρ1,4 is the input uncertainty level for our
We-DRIVE-U algorithm. ∥ξ∥1 is the hyperparameter of the linear DRMDP environment.
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(b) ρ = 0.3

Figure 3: Results for the simulated American put option problem. ρ is the uncertainty level in
We-DRIVE-U.
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Table 1: Simulation results of the switch complexity of We-DRIVE-U. We present the average policy
switch times of We-DRIVE-U during 200 interactions with the nominal environment, averaged over
10 replications. As a comparison, the policy switch times for LSVI-UCB and DR-LSVI-UCB are
both 200 under each setting.

ρ=0.1 ρ=0.2 ρ=0.3

∥ξ∥1=0.1 23.8 24.0 23.8
∥ξ∥1=0.2 24.2 24.4 24.0
∥ξ∥1=0.3 24.3 23.6 24.8

B.2 Simulated American put option598

We additionally conduct a simulation study in the American put option environment (see more details599

in Section 6.2 of [1]), which under the hood is not a linear MDP. By manually constructing ϕ, we600

show in Figure 3 that our algorithm still achieves some degree of robustness.601

C Proof of Proposition 2.2602

Proof. We instantiate the hard example in Example 3.1 of [25] in terms of the formulation of d-603

rectangular linear DRMDP satisfying Assumption 2.1. Consider two d-rectangular linear DRMDPs ,604

M0 andM1. The state space S = {sgood, sbad}, and the action space is A = {0, 1}. We define the605

feature mapping as606

ϕϱ(sgood, a) =


1

0

0

0

0

 ,∀a ∈ A, ϕϱ(sbad, 0) =


0

p(1− ϱ)

qϱ

(1− p)(1− ϱ)

(1− q)ϱ

 , ϕϱ(sbad, 1) =


0

pϱ

q(1− ϱ)

(1− p)ϱ

(1− q)(1− ϱ)

 ,

where ϱ ∈ {0, 1} is the index of the d-rectangular linear DRMDP instance. Define the factor607

distributions µ = (δsgood , δsgood , δsgood , δsbad , δsbad)
⊤ and the reward parameter θ = (1, 0, 0, 0, 0)⊤.608

Then it is trivial to check that equipped with the d-rectangular TV divergence uncertainty set, this609

example recover the hard example in Example 3.1 of [25].610

D Proof of the Upper Bound on the Suboptimality of We-DRIVE-U611

In this section, we present the proofs of our main theoretical results Theorems 4.1 and 4.2. We start612

with presenting the technical lemmas in Appendix D.1, and then we derive the upper bound on the613

suboptimality of We-DRIVE-U in Appendices D.2 and D.3.614

D.1 Technical Lemmas615

Definition D.1 (Good event). Under Assumptions 2.1 and 2.3, then for any fixed δ ∈ (0, 1), α′ ∈616

[0, H] and ρ ∈ (0, 1], we define Eh be the event that for all episode k ∈ [K], stage h ≤ h′ ≤ H ,617 ∥∥∥∥ k−1∑
τ=1

σ̄−2
τ,h′ϕ

τ
h′

[[
V̂ ρ
k,h′+1(s

τ
h′+1)

]
α′ −

[
P0
h′

[
V̂ ρ
k,h′+1

]
α′

]
(sτh′ , aτh′)

]∥∥∥∥
Σ−1

k,h′

≤ γ, (D.1)

where γ = Õ
(√

d
)
.618

Lemma D.2. We define Ē as the event that the following inequalities hold for all (s, a) ∈ S × A,619

k ∈ [K], h ∈ [H],620 ∣∣ϕ(s, a)⊤ŵk
h,1 −

[
P0
hV̂

ρ
k,h+1

]
(s, a)

∣∣ ≤ β̄
√
ϕ(s, a)⊤Λ−1

k,hϕ(s, a),∣∣ϕ(s, a)⊤w̌k
h,1 −

[
P0
hV̌

ρ
k,h+1

]
(s, a)

∣∣ ≤ β̄
√
ϕ(s, a)⊤Λ−1

k,hϕ(s, a),
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∣∣ϕ(s, a)⊤w̃k
h,2 −

[
P0
h

(
V̂ ρ
k,h+1

)2]
(s, a)

∣∣ ≤ β̃
√
ϕ(s, a)⊤Λ−1

k,hϕ(s, a),

where β̄ = Õ
(
H
√
dλ +

√
d3H3

)
and β̃ = Õ

(
H2
√
dλ +

√
d3H6

)
. Then event Ē holds with621

probability at least 1− δ.622

Lemma D.3 (Variance error). On the event Eh+1 and Ē , for all episode k ∈ [K], the estimated623

variance satisfies624 ∣∣[V̄hV̂
ρ
k,h+1

](
skh, a

k
h

)
− [VhV̂

ρ
k,h+1]

(
skh, a

k
h

)∣∣ ≤ Ek,h,∣∣[V̄hV̂
ρ
k,h+1

](
skh, a

k
h

)
− [VhV

∗,ρ
h+1]

(
skh, a

k
h

)∣∣ ≤ Ek,h +Dk,h.

Thus we also have625

σ̄2
k,h ≥

[
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
+ Ek,h +Dk,h ≥

[
VhV

∗,ρ
h+1

](
skh, a

k
h

)
.

Lemma D.4. For any fixed policy π, on the event Eh and Ē , for all (s, a, k) ∈ S/{sf} × A× [K],626

for stage h ≤ h′ ≤ H , we have627 (
rh′(s, a) + ϕ(s, a)⊤ν̂ρ,k

h′

)
−Qπ,ρ

h′ (s, a) = inf
Ph′ (·|s,a)∈Uρ

h′ (s,a;µ
0
h′ )

[
Ph′ V̂ ρ

k,h′+1

]
(s, a)

− inf
Ph′ (·|s,a)∈Uρ

h′ (s,a;µ
0
h′ )

[
Ph′V π,ρ

h′+1

]
(s, a) + ∆k

h′(s, a),

where ∆k
h′(s, a) that satisfies |∆k

h′(s, a)| ≤ Γ̂k,h′(s, a) = β
∑d

i=1 ϕi(s, a)
√
1⊤
i Σ

−1
k,h′1i where628

β = Õ
(√

λdH +
√
d
)

.629

Lemma D.5 (Optimism and pessimism). On the event Eh and Ē , for all episode k ∈ [K] and stage630

h ≤ h′ ≤ H , for all (s, a) ∈ S × A, we have Q̂ρ
k,h′(s, a) ≥ Q∗,ρ

h′ (s, a) ≥ Q̌ρ
k,h′(s, a). In addition,631

we have V̂ ρ
k,h′(s) ≥ V ∗,ρ

h′ (s) ≥ V̌ ρ
k,h′(s).632

Lemma D.6. On the event Ē , event E = E1 holds with probability at least 1− δ.633

Lemma D.7. Under the assumption (4.2) and events E and Ē , for any h ∈ [H], set λ = 1/H2 and634

ρ ∈ (0, 1]. Then when k ≥ K̃ where K̃ = Õ
(
d15H12

)
, with probability at least 1− δ, then we have635

σ̄2
k,h ≤ O

(
min

{ 1

ρ2
, H2

})
.

D.2 Proof of Theorem 4.1636

Proof of Theorem 4.1. Conditioned on the event E and Ē , we first do the following decomposition637

V̂ ρ
k,h

(
skh

)
− V πk,ρ

h

(
skh

)
= Q̂ρ

k,h

(
skh, a

k
h

)
−Qπk,ρ

h

(
skh, a

k
h

)
≤ rh

(
skh, a

k
h

)
+ ϕ

(
skh, a

k
h

)⊤
ν̂ρ,klast
h + Γ̂klast,h

(
skh, a

k
h

)
−Qπk,ρ

h

(
skh, a

k
h

)
≤ inf

Ph(·|s,a)∈Uρ
h
(s,a;µ0

h
)

[
PhV̂

ρ
k,h+1

](
skh, a

k
h

)
− inf

Ph(·|s,a)∈Uρ
h
(s,a;µ0

h
)

[
PhV

πk,ρ
h+1

](
skh, a

k
h

)
+ 2Γ̂klast,h

(
skh, a

k
h

)
≤ inf

Ph(·|s,a)∈Uρ
h
(s,a;µ0

h
)

[
PhV̂

ρ
k,h+1

](
skh, a

k
h

)
− inf

Ph(·|s,a)∈Uρ
h
(s,a;µ0

h
)

[
PhV

πk,ρ
h+1

](
skh, a

k
h

)
+ 4Γ̂k,h

(
skh, a

k
h

)
,

where the first equality holds due to the selection of πk
h, the first inequality holds due to the definition638

of Q̂ρ
k,h, the second inequality hold from Lemma D.4, the third inequality holds from Lemma H.2.639

Note that640

inf
Ph(·|sk

h
,ak

h
)∈Uρ

h
(sk

h
,ak

h
;µ0

h
)

[
PhV̂

ρ
k,h+1

](
skh, a

k
h

)
− inf

Ph(·|sk
h
,ak

h
)∈Uρ

h
(sk

h
,ak

h
;µ0

h
)

[
PhV

πk,ρ
h+1

](
skh, a

k
h

)
=

〈
ϕ(skh, a

k
h),

[
max

αi∈[0,H]

{
Eµ0

h,i
[
V̂ ρ
k,h+1(s)

]
αi
− ραi

}]
i∈[d]

〉
−

〈
ϕ(skh, a

k
h),

[
max

αi∈[0,H]

{
Eµ0

h,i
[
V πk,ρ
h+1 (s)

]
αi
− ραi

}]
i∈[d]

〉
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≤
〈
ϕ(skh, a

k
h),

[
max

αi∈[0,H]

{
Eµ0

h,i
[
V̂ ρ
k,h+1(s)

]
αi
− Eµ0

h,i
[
V πk,ρ
h+1 (s)

]
αi

}]
i∈[d]

〉
≤

〈
ϕ(skh, a

k
h),Eµ0

h
[
V̂ ρ
k,h+1(s)− V πk,ρ

h+1 (s)
]〉

= P0
h

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
=

[
P0
h

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
−

[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]
+

[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]
,

where the second inequality holds from Lemma D.5. Then we have641

V̂ ρ
k,h

(
skh

)
− V πk,ρ

h

(
skh

)
≤

[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]
+

[
P0
h

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
−

[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]

+ 4Γ̂k,h

(
skh, a

k
h

)
, (D.2)

Then by applying (D.2) iteratively and applying Azuma-Hoeffding inequality, with probability at642

least 1− δ/3, we have643

K × AveSubopt(K) =

K∑
k=1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))

≤
K∑

k=1

(
V̂ ρ
k,1

(
sk1
)
− V πk,ρ

1

(
sk1
))

≤
K∑

k=1

H∑
h=1

([
Ph

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
−
[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
])

+

K∑
k=1

H∑
h=1

4Γ̂k,h

(
skh, a

k
h

)
≤ 2
√
2H3K log(6/δ) + 4β

K∑
k=1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Σ

−1
k,h1i,

where the first inequality holds from Lemma D.5, the second inequality holds from (D.2), the third644

inequality holds from Azuma-Hoeffding inequality and the definition of Γ̂k,h

(
skh, a

k
h

)
. Finally, by645

taking probability union bound over E and Ē , with probability at least 1− δ, we can get the result of646

Theorem 4.2,647

AveSubopt(K) ≤ 2
√
2H3 log(6/δ)/K + 4β/K

K∑
k=1

H∑
h=1

d∑
i=1

ϕk
h,i

√
1⊤
i Σ

−1
k,h1i.

This completes the proof.648

D.3 Proof of Theorem 4.2649

Proof of Theorem 4.2. Conditioned on the event E and Ē , we first do the decomposition as follows650

K × AveSubopt(K) =

K∑
k=1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))

=

K̃∑
k=1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))

+

K∑
k=K̃+1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))

≤ HK̃ +

K∑
k=K̃+1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))
.

Recall from (D.2) in the proof of Theorem 4.1, we have651

V̂ ρ
k,h

(
skh

)
− V πk,ρ

h

(
skh

)
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≤
[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]
+

[
Ph

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
−

[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
]

+ 4Γ̂k,h

(
skh, a

k
h

)
.

Then by applying (D.2) iteratively and applying Azuma-Hoeffding inequality, with probability at652

least 1− δ/4, we have653

K × AveSubopt(K) ≤ HK̃ +

K∑
k=K̃+1

(
V ∗,ρ
1

(
sk1
)
− V πk,ρ

1

(
sk1
))

≤ HK̃ +

K∑
k=K̃+1

(
V̂ ρ
k,1

(
sk1
)
− V πk,ρ

1

(
sk1
))

≤ HK̃ +

K∑
k=K̃+1

H∑
h=1

([
P0
h

[
V̂ ρ
k,h+1 − V πk,ρ

h+1

]](
skh, a

k
h

)
−
[
V̂ ρ
k,h+1(s

k
h+1)− V πk,ρ

h+1 (skh+1)
])

+

K∑
k=K̃+1

H∑
h=1

4Γ̂k,h

(
skh, a

k
h

)
≤ HK̃ + 2

√
2H3K log(8/δ) + 4β

K∑
k=K̃+1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Σ

−1
k,h1i,

where the second inequality holds from Lemma D.5, the third inequality holds from (D.2) and the654

last inequality holds from Azuma-Hoeffding inequality and the definition of Γ̂k,h

(
skh, a

k
h

)
. Based on655

(4.2) and Lemma D.7, with probability at least 1− δ/4, we can further have656

4β

K∑
k=K̃+1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Σ

−1
k,h1i

≤ 4c1βmin
{1
ρ
,H
}
·

K∑
k=K̃+1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Λ

−1
k,h1i

≤ 4c1βmin
{1
ρ
,H
}
·

K∑
k=K̃+1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
λmax

(
Λ−1

k,h

)
≤ 4c1βmin

{1
ρ
,H
}
·

K∑
k=K̃+1

H∑
h=1

√
1

λmin
(
Λk,h

)
≤ 4c1βmin

{1
ρ
,H
}
·

K∑
k=K̃+1

H∑
h=1

√
2d

k · c

≤ 4c1
√
2dβ

H√
c
·min

{1
ρ
,H
}
·
∫ K

K̃+1

1√
k − 1

dk

≤ 4c1
√
2dβ

H√
c
·min

{1
ρ
,H
}
· 2
√
K

≤ Õ
(
dH
√
K ·min

{1
ρ
,H
})

,

where c1 > 0 is an absolute constant. The first inequality holds from Lemma D.7, the third657

inequality holds because
∑d

i=1 ϕi(s, a) = 1 and the fourth inequality holds due to (E.10) with658

K̃ > 512/η2 log(dKH/δ). Therefore, we can further bound the regret that659

K × AveSubopt(K) ≤ HK̃ + 2
√

2H3K log(8/δ) + 4β

K∑
k=K̃+1

H∑
h=1

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Σ

−1
k,h1i
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≤ Õ
(
dH
√
K ·min

{1
ρ
,H
}
+H

3
2

√
K + d15H13

)
.

Finally, by taking probability union bound over E and Ē , with probability at least 1− δ, we can bound660

the average suboptimality of We-DRIVE-U as follows661

AveSubopt(K) ≤ Õ

(
dH ·min

{
1
ρ , H

}
+H

3
2

√
K

+
d15H13

K

)
. (D.3)

We complete the proof by substituting η = O(1/d) into (D.3).662

E Proof of the Technical Lemmas663

E.1 Proof of Lemma D.2664

Before the proof of Lemma D.2, we first present a lemma that defines the optimistic value function665

class and gives a upper bound for its covering number.666

Lemma E.1 (Function class covering number). In Algorithm 1, for each episode k ∈ [K] and667

h ∈ [H], the optimistic value function V̂ ρ
k,h belongs to the following function class668

Vh =

{
V
∣∣∣V (·) = max

a
max
1≤j≤ℓ

min
{
rh(·, a) + ϕ(·, a)⊤wj + β

d∑
i=1

ϕi(·, a)
√

1⊤
i Γj1i, H

}
,

∥wj∥ ≤ L, ∥Γj∥F ≤ λ−1
√
d

}
,

where ℓ ≤ dH log(1 + K/λ) is the number of value function updates from Lemma F.1 and L =669

2H
√
dK/λ from Lemma F.2. DefineNϵ be the ϵ-covering number of Vh with respect to the distance670

dist(V1, V2) = sups |V1(s)− V2(s)|. Then the covering entropy can be bounded by671

logNϵ ≤ dℓ log(1 + 4L/ϵ) + d2ℓ log
(
1 + 8

√
dβ2/λϵ2

)
.

Proof of Lemma E.1. For any two function V1, V2 ∈ Vh, we can write V1, V2 as follows672

V1(·) = max
a

max
1≤j≤ℓ

min
{
rh(·, a) + ϕ(·, a)⊤w1,j + β

d∑
i=1

ϕi(·, a)
√

1⊤
i Γ1,j1i, H

}
,

V2(·) = max
a

max
1≤j≤ℓ

min
{
rh(·, a) + ϕ(·, a)⊤w2,j + β

d∑
i=1

ϕi(·, a)
√

1⊤
i Γ2,j1i, H

}
,

where ∥w1,j∥, ∥w2,j∥ ≤ L, Γ1,j ,Γ2,j ≼ λ−1I and ∥Γ1,j∥F , ∥Γ2,j∥F ≤ λ−1
√
d. Then we have673

dist(V1, V2) = sup
s
|V1(s)− V2(s)|

≤ sup
1≤j≤ℓ,s∈S,a∈A

∣∣∣∣ϕ(s, a)⊤w1,j + β

d∑
i=1

ϕi(s, a)
√
1⊤
i Γ1,j1i

− ϕ(s, a)⊤w2,j − β

d∑
i=1

ϕi(s, a)
√
1⊤
i Γ2,j1i

∣∣∣∣
≤ β sup

1≤j≤ℓ,s∈S,a∈A

∣∣∣∣ d∑
i=1

ϕi(s, a)
(√

1⊤
i Γ1,j1i −

√
1⊤
i Γ2,j1i

)∣∣∣∣
+ sup

1≤j≤ℓ,s∈S,a∈A

∣∣ϕ(s, a)⊤(w1,j −w2,j)
∣∣

≤ β sup
1≤j≤ℓ,s∈S,a∈A

∣∣∣∣ d∑
i=1

√
ϕi(s, a)1⊤

i

(
Γ1,j − Γ2,j

)
ϕi(s, a)1i

∣∣∣∣
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+ sup
1≤j≤ℓ,s∈S,a∈A

∣∣ϕ(s, a)⊤(w1,j −w2,j)
∣∣

≤ β sup
1≤j≤ℓ

√∥∥Γ1,j − Γ2,j

∥∥
F
+ sup

1≤j≤ℓ

∥∥w1,j −w2,j

∥∥
2

(E.1)

where the third inequality holds because |
√
x− y| ≥ |

√
x−√y|, the fourth inequality holds because674

Cauchy-Schwarz inequality, ∥ϕ(s, a)∥2 ≤ 1 and
∑d

i=1 ϕi = 1. Moreover, ∥ · ∥F is the Frobenius675

norm.676

Now, we denote Cw as a ϵ/2-cover of the set
{
w ∈ Rd|∥w∥2 ≤ L

}
and CΓ as a ϵ2/4β2-cover of677

the set {Γ ∈ Rd×d | ∥Γ∥F ≤ λ−1
√
d} with respect to the Frobenius norm. Then according to678

Lemma H.6, we have679

|Cw| ≤ (1 + 4L/ϵ)d, |CΓ| ≤
(
1 + 8

√
dβ2/λϵ2

)d2

.

Then for any function V1 ∈ Vh with parameters w1,j ,Γ1,j , 1 ≤ j ≤ ℓ, we can find parameters680

w2,j ∈ Cw,Γ2,j ∈ CΓ, 1 ≤ j ≤ ℓ, such that ∥w2,j − w1,j∥2 ≤ ϵ/2, ∥Γ2,j − Γ1,j∥F ≤ ϵ2/4β2.681

Thus we have682

dist(V1, V2) ≤ β sup
1≤j≤ℓ

√
∥Γ1,j − Γ2,j∥F + sup

1≤j≤ℓ
∥w1,j −w2,j∥2 ≤ ϵ,

where the inequality holds from (E.1). Therefore, the ϵ-covering number of optimistic function class683

Vh is bounded by Nϵ ≤ |Cw|ℓ · |CΓ|ℓ, thus we have684

logNϵ ≤ dℓ log(1 + 4L/ϵ) + d2ℓ log
(
1 + 8

√
dβ2/λϵ2

)
,

which completes the proof.685

Now we are ready to prove Lemma D.2.686

Proof of Lemma D.2. For any stage h ∈ [H] and the optimistic value function V̂ ρ
k,h+1, according to687

Lemma F.3, there exists a vector wk
h such that P0

hV̂
ρ
k,h+1(s, a) can be represented by ϕ(s, a)⊤wk

h688

and ∥wk
h∥2 ≤ H

√
d. Therefore, the parameter estimation error can be decomposed as689 ∥∥ŵk

h,1 −wk
h

∥∥
Λk,h

≤
∥∥∥∥Λ−1

k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)
V̂ ρ
k,h+1

(
sτh+1

)
−Λ−1

k,h

(
λI+

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)
ϕ
(
sτh, a

τ
h

)⊤)
wk

h

∥∥∥∥
Λk,h

≤
∥∥∥∥Λ−1

k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)(
V̂ ρ
k,h+1

(
sτh+1

)
− P0

hV̂
ρ
k,h+1(s

τ
h, a

τ
h)
)
− λΛ−1

k,hw
k
h

∥∥∥∥
Λk,h

≤
∥∥λΛ−1

k,hw
k
h

∥∥
Λk,h︸ ︷︷ ︸

I1

+

∥∥∥∥Λ−1
k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)(
V̂ ρ
k,h+1

(
sτh+1

)
− P0

hV̂
ρ
k,h+1(s

τ
h, a

τ
h)
)∥∥∥∥

Λk,h︸ ︷︷ ︸
I2

.

Bound term I1:690

I1 =
∥∥λΛ−1

k,hw
k
h

∥∥
Λk,h

= λ
∥∥wk

h

∥∥
Λ−1

k,h

≤
√
λ
∥∥wk

h

∥∥
2
≤ H
√
dλ,

where we have Λk,h ≽ λI and ∥wk
h∥2 ≤ H

√
d.691

Bound term I2: we apply Lemma H.9 with the optimistic value function class Vh and ϵ = H
√
λ/K,692

then for any fixed h ∈ [H], with probability at least 1− δ/3H , for all episode k ∈ [K], we have693

I2 =

∥∥∥∥ k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)(
V̂ ρ
k,h+1

(
sτh+1

)
− P0

hV̂
ρ
k,h+1(s

τ
h, a

τ
h)
)∥∥∥∥

Λ−1
k,h

≤

√
4H2

[
d

2
log

(
k + λ

λ

)
+ log

Nε

δ

]
+

8k2ε2

λ
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≤ Õ
(√

d3H3
)
,

where the first inequality holds because of Lemma H.9, the second inequality holds from Lemma E.1.694

Thus we have695 ∥∥ŵk
h,1 −wk

h

∥∥
Λk,h

≤ I1 + I2 = Õ
(
H
√
dλ+

√
d3H3

)
= β̄.

Therefore, the estimation error can be bounded by696 ∣∣ϕ(s, a)⊤ŵk
h,1 −

[
P0
hV̂

ρ
k,h+1

]
(s, a)

∣∣ = ∣∣ϕ(s, a)⊤ŵk
h,1 − ϕ(s, a)⊤wk

h

∣∣
≤
∥∥ŵk

h,1 −wk
h

∥∥
Λk,h
· ∥ϕ(s, a)∥Λ−1

k,h

≤ β̄
√
ϕ(s, a)⊤Λ−1

k,hϕ(s, a),

where the first inequality holds from Cauchy-Schwarz inequality. Similarly, for the pessimistic697

function class V̌h (or squared value function class V2
h), we have the similar result as follows698 ∣∣ϕ(s, a)⊤w̌k

h,1 −
[
P0
hV̌

ρ
k,h+1

]
(s, a)

∣∣ ≤ β̄
√

ϕ(s, a)⊤Λ−1
k,hϕ(s, a),∣∣ϕ(s, a)⊤w̃k

h,2 −
[
P0
h

(
V̂ ρ
k,h+1

)2]
(s, a)

∣∣ ≤ β̃
√
ϕ(s, a)⊤Λ−1

k,hϕ(s, a),

where β̄ = Õ
(
H
√
dλ +

√
d3H3

)
and β̃ = Õ

(
H2
√
dλ +

√
d3H6

)
. By taking union bound over699

h ∈ [H] and three function classes, we have that the event Ē holds with probability at least 1 − δ.700

This completes the proof.701

E.2 Proof of Lemma D.3702

Proof of Lemma D.3. First, recall from (3.6), we have703 [
VhV̂

ρ
k,h+1

]
(s, a) ≈

[
V̄hV̂

ρ
k,h+1

]
(s, a) =

[
ϕ(s, a)⊤w̃k

h,2

]
[0,H2]

−
[
ϕ(s, a)⊤ŵk

h,1

]2
[0,H]

,

where ŵk
h,1 and w̃k

h,2 is the solution of the following ridge regression problems704

w̃k
h,2 = argmin

w∈Rd

k−1∑
τ=1

(
w⊤ϕ

(
sτh, a

τ
h

)
−
(
V̂ ρ
k,h+1

(
sτh+1

))2)2
+ λ∥w∥22,

ŵk
h,1 = argmin

w∈Rd

k−1∑
τ=1

(
w⊤ϕ

(
sτh, a

τ
h

)
− V̂ ρ

k,h+1

(
sτh+1

))2
+ λ∥w∥22.

Then we have705 ∣∣[V̄hV̂
ρ
k,h+1

](
skh, a

k
h

)
− [VhV̂

ρ
k,h+1]

(
skh, a

k
h

)∣∣
≤

∣∣∣[ϕ(skh, ak
h

)⊤
w̃k

h,2

]
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−
[
ϕ
(
skh, a

k
h

)⊤
ŵk
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]2
[0,H]

−
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h

(
V̂ ρ
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)2](
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k
h

)
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hV̂

ρ
k,h+1

](
skh, a

k
h

))2∣∣∣
≤

∣∣∣[ϕ(skh, ak
h

)⊤
w̃k

h,2

]
[0,H2]

−
[
P0
h

(
V̂ ρ
k,h+1

)2](
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k
h

)∣∣∣+ ∣∣∣[ϕ(skh, ak
h

)⊤
ŵk
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]2
[0,H]

−
([
P0
hV̂

ρ
k,h+1

](
skh, a

k
h

))2∣∣∣
≤

∣∣∣[ϕ(skh, ak
h

)⊤
w̃k

h,2

]
[0,H2]

−
[
P0
h

(
V̂ ρ
k,h+1

)2](
skh, a

k
h

)∣∣∣+ 2H
∣∣∣[ϕ(skh, ak

h

)⊤
ŵk

h,1

]
[0,H]

−
[
P0
hV̂

ρ
k,h+1

](
skh, a

k
h

)∣∣∣
≤ min

{
β̃
∥∥ϕ(skh, ak

h

)∥∥
Λ−1

k,h
, H2

}
+min

{
2Hβ̄

∥∥ϕ(skh, ak
h

)∥∥
Λ−1

k,h
, H2

}
= Ek,h,

where the last inequality holds from Lemma D.2. For the second result, we have706 ∣∣[VhV̂
ρ
k,h+1

](
skh, a

k
h

)
− [VhV

∗,ρ
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k
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h
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k
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)
−
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ρ
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](
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k
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P0
h

(
V ∗,ρ
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k
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)
+
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hV
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k
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))2∣∣∣
≤
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h

(
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k
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)
−
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h

(
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)2](
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k
h
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hV̂

ρ
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](
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k
h

))2 − ([
P0
hV

∗,ρ
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](
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k
h
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hV̂

ρ
k,h+1

](
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k
h

)
−

[
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hV

∗,ρ
h+1

](
skh, a

k
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)∣∣∣
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≤ 4H
([

P0
hV̂

ρ
k,h+1

](
skh, a

k
h

)
−

[
P0
hV

∗,ρ
h+1

](
skh, a

k
h
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≤ 4H

([
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hV̂

ρ
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k
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)
−

[
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hV̌

ρ
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](
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k
h
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(
ϕ
(
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k
h
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ŵk
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(
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k
h

)⊤
w̌k

h,1 + 2β̄
∥∥ϕ(skh, ak

h

)∥∥
Λ−1

k,h

)
, H2

}
= Dk,h.

where the second inequality holds because 0 ≤ V ∗,ρ
h+1, V̂

ρ
k,h+1 ≤ H , the third and fourth inequality707

holds because of Lemma D.5, the fifth inequality holds due to Lemma D.2 and the last inequality708

holds because the trivial result 0 ≤
[
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
, [VhV

∗,ρ
h+1]

(
skh, a

k
h

)
≤ H2. Thus we have709 ∣∣[V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
− [VhV

∗,ρ
h+1]

(
skh, a

k
h

)∣∣ ≤ Ek,h +Dk,h.

Then we also have710

σ̄2
k,h ≥

[
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
+ Ek,h +Dk,h ≥

[
VhV

∗,ρ
h+1

](
skh, a

k
h

)
,

where we use the definition of σ̄k,h in (3.6). This completes the proof.711

E.3 Proof of Lemma D.4712

Proof of Lemma D.4. For all (s, a) ∈ S/{sf} ×A, for stage h ≤ h′ ≤ H (we use h to replace h′ in713

this part for simplicity), we have714

Qπ,ρ
h (s, a) = rh(s, a) + ϕ(s, a)⊤νπ,ρ

h = rh(s, a) + inf
Ph(·|s,a)∈Uρ

h(s,a;µ
0
h)

[
PhV

π,ρ
h+1

]
(s, a).

We first decompose the gap ν̂ρ,k
h − νπ,ρ

h into two terms715

ν̂ρ,k
h − νπ,ρ

h = ν̂ρ,k
h − ν̃ρ,k

h︸ ︷︷ ︸
I

+ ν̃ρ,k
h − νπ,ρ

h︸ ︷︷ ︸
II

, (E.2)

where ν̃ρ,k
h =

[
ν̃ρ,kh,i

]
i∈[d]

, and ν̃ρ,kh,i = maxα∈[0,H]

{
Eµ0

h,i
[
V̂ ρ
k,h+1(s)

]
α
− ρα

}
. Then we will bound716

these two terms separately.717

Bound term I in (E.2): we have718

ν̂ρ,k
h − ν̃ρ,k

h ≤
[
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α∈[0,H]

{
ẑkh,i(α)− Eµ0
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[
V̂ ρ
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α

}]
i∈[d]

.

Denote αk
i = argmaxα∈[0,H]

{
ẑkh,i(α)− Eµ0

h,i
[
V̂ ρ
k,h+1(s)

]
α

}
, i = 1, · · · , d. Then we have719

ν̂ρ,k
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h ≤
[(

Σ−1
k,h

k−1∑
τ=1

σ̄−2
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(
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τ
h
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(
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i

)
i
−

(
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h
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)
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i∈[d]

=

[(
− λΣ−1

k,hE
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i
+
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k−1∑
τ=1

σ̄−2
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τ
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τ
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]
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h
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V̂ ρ
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]
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]
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τ
h)
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i

]
i∈[d]

. (E.3)

For the first term on the RHS of (E.3),720 ∣∣∣∣〈ϕ(s, a), [(− λΣ−1
k,hE

µ0
h

[
V̂ ρ
k,h+1(s)

]
αk

i

)
i

]
i∈[d]

〉∣∣∣∣
=

∣∣∣∣ d∑
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i (−λ)Σ−1

k,hE
µ0

h

[
V̂ ρ
k,h+1(s)

]
αk

i

∣∣∣∣
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≤
√
λdH

d∑
i=1

√
ϕi(s, a)1⊤

i Σ
−1
k,hϕi(s, a)1i, (E.4)

where 1i is the vector with the i-th entry being 1 and else being 0. The first inequality holds due to721

the Cauchy-Schwarz inequality.722

For the second term on the RHS of (E.3), given the event Eh defined in Definition D.1, we have723 ∣∣∣∣〈ϕ(s, a),

[(
Σ−1

k,h
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i
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τ
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τ
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i Σ
−1
k,hϕi(s, a)1i, (E.5)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality holds724

from the event Eh. Combining (E.3), (E.4) and (E.5), we have725

〈
ϕ(s, a), ν̂ρ,k

h − ν̃ρ,k
h

〉
≤
(√

λdH + γ
) d∑

i=1

ϕi(s, a)
√

1⊤
i Σ

−1
k,h1i,

On the other hand, we can similarly do analysis for ⟨ϕ(s, a), ν̃ρ,k
h − ν̂ρ,k

h ⟩. Then we have726

∣∣⟨ϕ(s, a), ν̂ρ,k
h − ν̃ρ,k

h ⟩
∣∣ ≤ β

d∑
i=1

ϕi(s, a)
√

1⊤
i Σ

−1
k,h1i, (E.6)

where β =
(√

λdH + γ
)
= Õ

(√
λdH +

√
d
)

.727

Bound term II in (E.2): we have728 〈
ϕ(s, a), ν̃ρ,k

h − νπ,ρ
h

〉
= inf

Ph(·|s,a)∈Uρ
h
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ρ
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]
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[
PhV
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]
(s, a).

Finally we have729 (
rh(s, a) + ϕ(s, a)⊤ν̂ρ,k

h

)
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h ⟩
= inf

Ph(·|s,a)∈Uρ
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0
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[
PhV
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where |∆k
h(s, a)| ≤ β

∑d
i=1 ϕi(s, a)

√
1⊤
i Σ

−1
k,h1i. This completes the proof.730

E.4 Proof of Lemma D.5731

Proof of Lemma D.5. We prove this lemma by induction. For last stage H + 1, it is trivial because732

for all (s, a) ∈ S ×A, we have Q̂ρ
k,H+1(s, a) = Q∗,ρ

H+1(s, a) = Q̌ρ
k,H+1(s, a) = 0.733

Assume that the lemma holds at stage h′ + 1, now consider the situation at stage h′ (we use h to734

replace h′ in this part for simplicity). For all episode k ∈ [K], we have735

rh(s, a) + ϕ(s, a)⊤ν̂ρ,k
h + Γ̂k,h(s, a)−Q∗,ρ

h (s, a)
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h
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(
V̂ ρ
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≥ 0,

where the first inequality holds from Lemma D.4, the second inequality holds because |∆k
h(s, a)| ≤736

Γ̂k,h(s, a), the third inequality holds from induction assumption. Thus we have737

Q∗,ρ
h (s, a) ≤ min

{
min
i∈[k]

rh(s, a) + ϕ(s, a)⊤ν̂ρ,i
h + Γ̂i,h(s, a), H − h+ 1

}
≤ Q̂ρ

k,h(s, a).

Thus for value function V , we have738

V̂ ρ
k,h(s) = max

a
Q̂ρ

k,h(s, a) ≥ max
a

Q∗,ρ
h (s, a) = V ∗,ρ

h (s).

For the pessimistic value function Q̌ρ
k,h(s, a), we can do the similar analysis. Finally, by induction,739

we finish the proof.740

E.5 Proof of Lemma D.6741

Proof of Lemma D.6. We use backward induction to prove this lemma. For the base case, the stage742

H , it is trivial to obtain (D.1) because V̂ ρ
k,H+1 = 0. Assume (D.1) hold for the stage h+ 1, then we743

consider the stage h.744

For all episode k ∈ [K], we first do the following decomposition745 ∥∥∥∥ k−1∑
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, (E.7)

where ∆α′ V̂ ρ
k,h+1(s

τ
h+1) =
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V̂ ρ
k,h+1(s

τ
h+1)

]
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[
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τ
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]
α′ .746

747

Bound term J1 in (E.7): For term J1, we apply Lemma H.8 with xi = σ̄−1
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i
h

)
and748
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. Then for xi and ηi, we have750
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where we use the definition of σ̄i,h in (3.7). Then for all k ∈ [K], with probability at least 1− δ/2H ,751

we have752

J1 =

∥∥∥∥ k−1∑
i=1

xiηi
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k,h

≤ Õ
(
σ
√
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1≤i≤k
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(√
d
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.

Bound term J2 in (E.7): To bound term J2, we need to use ϵ-covering for function class Ṽh+1 −753 [
V ∗,ρ
h+1

]
α′ where Ṽh+1 =

{
[V ]α|V ∈ Vh+1, α ∈ [0, H]

}
is the truncated optimistic value function754

class. For any two function Ṽ1, Ṽ2 ∈ Ṽh+1, we can write that755

Ṽ1 = [V1]α1
, Ṽ2 = [V2]α2

,
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where V1, V2 ∈ Vh+1, α1, α2 ∈ [0, H]. Then we have756

dist(Ṽ1, Ṽ2) = sup
s

∣∣Ṽ1(s)− Ṽ2(s)
∣∣

= sup
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∣∣

≤ |α1 − α2|+ dist(V1, V2).

This indicates that the ϵ-covering number Ñϵ for function class Ṽh+1 can be bounded by757

Ñϵ ≤ N1, ϵ2
· N2, ϵ2

,

where N1, ϵ2
is the ϵ

2 -covering number for optimistic value function class Vh+1 and N2, ϵ2
is the758

ϵ
2 -covering number for closed interval [0, H]. Then based on Lemma E.1 and Lemma H.7, we have759

log Ñϵ ≤ dℓ log(1 + 8L/ϵ) + d2ℓ log
(
1 + 32

√
dβ2/λϵ2

)
+ log(6H/ϵ),

where ℓ = dH log(1 + K/λ) and L = 2H
√
dK/λ. Here we set ϵ =

√
λ/4H2d3K, then the760

covering entropy can be bounded by761

log Ñϵ ≤ Õ(d3H).

For simplicity, we denote ∆α′ V̂ ρ
k,h+1 here as ∆V , then for ∆V , there exsit a function Ṽ in the ϵ-net762

satisfies that763

dist
(
∆V, Ṽ

)
≤ ϵ.

Then the difference of the variance of ∆V and Ṽ can be bounded by764 [
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This indicates that765 [
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where the fourth inequality holds due to Lemma D.5 with induction assumption Eh+1, the sixth766

inequality holds due to the definition of Dk,h and the last inequality holds because of the definition767

of σk,h. Then we apply we apply Lemma H.8 with xi = σ̄−1
i,hϕ

(
sih, a

i
h

)
and ηi = σ̄−1

i,h

(
Ṽ (sih+1)−768
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hṼ
(
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i
h

))
. For xi and ηi, we have769

∥xi∥2 ≤
∥∥ϕ(sih, aih)∥∥2/σ̄i,h ≤ 1,
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E[ηi|Fi] = 0, |ηi| ≤
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hṼ
(
sih, a

i
h

))∣∣ ≤ 2H,

E[η2i |Fi] = σ̄−2
i,h

[
VhṼ
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where we use the construction of σ̄i,h in (3.7) and (E.8). After taking union probability bound over770

ϵ-covering for function class Ṽh+1 −
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V ∗,ρ
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α′ , we have771 ∥∥∥∥ k−1∑
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For simplicity, we denote that V̄ = ∆V − Ṽ = ∆α′ V̂ ρ
k,h+1 − Ṽ and have sups |V̄ (s)| ≤ ϵ. Then we772

obtain773

J2 =

∥∥∥∥ k−1∑
τ=1

σ̄−2
τ,hϕ

τ
h

[
∆α′ V̂ ρ

k,h+1(s
τ
h+1)−

[
P0
h

(
∆α′ V̂ ρ

k,h+1

)]
(sτh, a

τ
h)
]∥∥∥∥

Σ−1
k,h

≤ 2

∥∥∥∥ k−1∑
τ=1

σ̄−2
τ,hϕ

τ
h

[
Ṽ (sτh+1)−

[
P0
hṼ
]
(sτh, a

τ
h)
]∥∥∥∥

Σ−1
k,h

+ 2

∥∥∥∥ k−1∑
τ=1

σ̄−2
τ,hϕ

τ
h

[
V̄ (sτh+1)−

[
P0
hV̄
]
(sτh, a

τ
h)
]∥∥∥∥

Σ−1
k,h

≤ Õ
(√

d
)
+ 4ϵk/

√
λ

≤ Õ
(√

d
)
,

where we use that ϵ =
√
λ/4H2d3K. Finally, we have774 ∥∥∥∥ k−1∑

τ=1

σ̄−2
τ,hϕ

τ
h

[[
V̂ ρ
k,h+1(s

τ
h+1)

]
α′ −

[
P0
h

[
V̂ ρ
k,h+1

]
α′

]
(sτh, a

τ
h)
]∥∥∥∥

Σ−1
k,h

= J1 + J2 ≤ γ,

where γ = Õ
(√

d
)
. Thus, by induction we complete the proof.775

E.6 Proof of Lemma D.7776

Proof of Lemma D.7. Conditioned on the event E and Ē , to bound the weight σ̄2
k,h, recall from the777

definition (3.7), we have778

σ̄k,h = max
{
σk,h, 1,

√
2d3H2

∥∥ϕ(skh, akh)∥∥ 1
2

Σ−1
k,h

}
,

According to (3.6), we have779

σ2
k,h =

[
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
+ Ek,h + d3H ·Dk,h +

1

2
,

where Ek,h, Dk,h are defined as follows780

Ek,h = min
{
β̃
∥∥ϕ(skh, akh)∥∥Λ−1

k,h

, H2
}
+min

{
2Hβ̄

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

, H2
}
,

Dk,h = min
{
4H
(
ϕ
(
skh, a

k
h

)⊤
ŵk

h,1 − ϕ
(
skh, a

k
h

)⊤
w̌k

h,1 + 2β̄
∥∥ϕ(skh, akh)∥∥Λ−1

k,h

)
, H2

}
,

where β̄ = Õ
(
d

3
2H

3
2

)
, β̃ = Õ

(
d

3
2H3

)
when we set λ = 1/H2. Note that781

√
2d3H2

∥∥ϕ(skh, akh)∥∥ 1
2

Λ−1
k,h

≤
√
2d3H2

∥∥ϕ(skh, akh)∥∥ 1
2

2
/λ

1
4 ≤
√
2d3H3.

Also note that782

σ2
k,h =

[
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
+ Ek,h + d3H ·Dk,h +

1

2
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≤ H2 + 2H2 + d3H ·H2 +
1

2

≤ 2d3H3.

Then we obtain the trivial upper bound ᾱ for σ̄k,h783

σ̄k,h ≤ 2
√
d3H3 = ᾱ, (E.9)

Based on Lemma D.3, we have784 [
V̄hV̂

ρ
k,h+1

](
skh, a

k
h

)
≤ Ek,h +Dk,h + [VhV

∗,ρ
h+1]

(
skh, a

k
h

)
.

Then we have785

σ2
k,h ≤ [VhV

∗,ρ
h+1]

(
skh, a

k
h

)
+ 2Ek,h + 2d3H ·Dk,h +

1

2
.

Next, we carefully bound σ2
k,h and σ̄2

k,h. To this end, we bound term Ek,h, Dk,h when k is large786

enough. The intuition is that, when the episode k is large enough, all the error terms should be small787

under the assumption (E.10).788

Bound term Ek,h: Note that based on (4.2), with the same analysis as the proof of Corollary 5.3 in789

[23], with probability at least 1− δ, we have790

λmin(Λk,h) ≥ max
{
c(k − 1)/d+ λ−

√
32k log(dKH/δ), λ

}
.

Then when we choose k > 512d2 log(dKH/δ)/c2 and note that λ = 1/H2, we have791

c(k − 1)/d+ λ−
√
32k log(dKH/δ) ≥ c

2d
k,

which indicates that792

λmin(Λk,h) ≥
c

2d
k. (E.10)

Then when k > 512d2 log(dKH/δ)/c2, we can calculate that793 ∥∥ϕ(skh, akh)∥∥Λ−1
k,h

=
∥∥∥Λ− 1

2

k,hϕ
(
skh, a

k
h

)∥∥∥
2
≤
√

λmax
(
Λ−1

k,h

)
≤
√

2d

kc
, (E.11)

where in the first inequality we use the fact that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A. Then when k794

is large enough and also at least k > 512d2 log(dKH/δ)/c2, we can have that795

Ek,h ≤ Õ
( 1√

kc
d2H3

)
.

This indicates that there exists an absolute constant cE > 0 such that796

Ek,h ≤ cE
d2H3

√
k

.

Bound term Dk,h: note that ŵk
h,1 and w̌k

h,1 have the closed-form expression as follows797

ŵk
h,1 = Λ−1

k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)
V̂ ρ
k,h+1

(
sτh+1

)
,

w̌k
h,1 = Λ−1

k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)
V̌ ρ
k,h+1

(
sτh+1

)
.

Thus we can calculate that798

ϕ
(
skh, a

k
h

)⊤
ŵk

h,1 − ϕ
(
skh, a

k
h

)⊤
w̌k

h,1

= ϕ
(
skh, a

k
h

)⊤
Λ−1

k,h

k−1∑
τ=1

ϕ
(
sτh, a

τ
h

)(
V̂ ρ
k,h+1

(
sτh+1

)
− V̌ ρ

k,h+1

(
sτh+1

))
,
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≤
∥∥ϕ(skh, akh)∥∥Λ−1

k,h

·
∥∥∥∥ k−1∑

τ=1

ϕ
(
sτh, a

τ
h

)(
V̂ ρ
k,h+1

(
sτh+1

)
− V̌ ρ

k,h+1

(
sτh+1

))∥∥∥∥
Λ−1

k,h

≤
∥∥ϕ(skh, akh)∥∥Λ−1

k,h

·
k−1∑
τ=1

∥∥ϕ(sτh, aτh)∥∥Λ−1
k,h

·
(
V̂ ρ
k,h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1)

)
≤
√

2d

kc

k−1∑
τ=1

√
2d

kc
·
(
V̂ ρ
k,h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1)

)
,

≤ 2d/c ·
(
V̂ ρ
k,h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1)

)
, (E.12)

where s̃kh+1 = argmaxs∈S

{
V̂ ρ
k,h+1(s)− V̌ ρ

k,h+1(s)
}

, the first inequality holds because of Cauchy-799

Schwarz inequality, the third inequality holds due to (E.11). Next, we bound V̂ ρ
k,h+1(s̃

k
h+1) −800

V̌ ρ
k,h+1(s̃

k
h+1). The intuition is that when k is large, both V̂ ρ

k,h+1 and V̌ ρ
k,h+1 should be close to the801

robust optimal value function. Thus, V̂ ρ
k,h+1 should be close to V̌ ρ

k,h+1, and the closeness could be802

quantified by the bonus terms, which is of order Õ(d/
√
k) under the assumption (E.10). In particular,803

we have804

V̂ ρ
k,h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1)

= V̂ ρ
k,h+1(s̃

k
h+1)− V ∗,ρ

h+1(s̃
k
h+1)︸ ︷︷ ︸

I

+V ∗,ρ
h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1)︸ ︷︷ ︸

II

. (E.13)

Bound term I in (E.13): note that805

V̂ ρ
k,h(s)− V ∗,ρ

h (s)

= Q̂ρ
k,h

(
s, πk

h(s)
)
−Q∗,ρ

h

(
s, π∗

h(s)
)

≤ Q̂ρ
k,h

(
s, πk

h(s)
)
−Q∗,ρ

h

(
s, πk

h(s)
)

≤ inf
Ph(·|s,a)∈Uρ

h(s,a;µ
0
h)

[
PhV̂

ρ
k,h+1

](
s, πk

h(s)
)
− inf

Ph(·|s,a)∈Uρ
h(s,a;µ

0
h)

[
PhV

∗,ρ
h+1

](
s, πk

h(s)
)

+∆k
h

(
s, πk

h(s)
)
+ Γ̂k,h

(
s, πk

h(s)
)

≤
[
P̂h

(
V̂ ρ
k,h+1 − V ∗,ρ

h+1

)](
s, πk

h(s)
)
+ 2Γ̂k,h

(
s, πk

h(s)
)
,

where the second inequality holds due to the definition of Q̂ρ
k,h, robust Bellman equation and806

Lemma D.4, P̂h(·|s, a) = arginfPh(·|s,a)∈Uρ
h(s,a;µ

0
h,i)

[
PhV

∗,ρ
h+1

]
(s, a),∀(s, a) ∈ S × A. By recur-807

sively applying it, then we have808

V̂ ρ
k,h(s)− V ∗,ρ

h (s) ≤
[
P̂h

(
V̂ ρ
k,h+1 − V ∗,ρ

h+1

)](
s, πk

h(s)
)
+ 2Γ̂k,h

(
s, πk

h(s)
)

≤ 2

H∑
h′=h

Eπk
h′ ,P̂

[
Γ̂k,h′(s, a)|sh′ = s

]
.

Note that by (E.9) σ̄2
k,h ≤ ᾱ2, we have Σk,h ≽ ᾱ−2Λk,h. Similar to the analysis of (E.11), when809

k > 512/c2 log(dKH/δ), we have810

Γ̂k,h(s, a) = β

d∑
i=1

ϕi(s, a)
√
1⊤
i Σ

−1
k,h1i

≤ βᾱ

d∑
i=1

ϕi

(
skh, a

k
h

)√
1⊤
i Λ

−1
k,h1i

≤ βᾱ
√
λmax

(
Λ−1

k,h

)
≤
√

2d

kc
βᾱ.
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Then we have811

V̂ ρ
k,h(s)− V ∗,ρ

h (s) ≤ 2H

√
2d

kc
βᾱ ≤ 4β

√
dᾱH√
kc

.

Therefore, we can bound I as follows812

I = V̂ ρ
k,h+1(s̃

k
h+1)− V ∗,ρ

h+1(s̃
k
h+1) ≤

4β
√
dᾱH√
kc

.

Bound term II in (E.13): Similar to the analysis above, we can derive the similar result as follows813

II = V ∗,ρ
h+1(s̃

k
h+1)− V̌ ρ

k,h+1(s̃
k
h+1) ≤

4β̄
√
dᾱH√
kc

.

Now we can bound that814

ϕ
(
skh, a

k
h

)⊤
ŵk

h,1 − ϕ
(
skh, a

k
h

)⊤
w̌k

h,1 ≤
2d

c
· 4(β̄ + β)

√
dᾱH√

kc
≤ 16β̄d3/2ᾱH√

kc3
.

Then when k is large enough, we can have that815

Dk,h ≤ Õ
( ᾱ√

k
d3H

7
2

)
.

This indicates that there exists an absolute constant cD > 0 such that816

Dk,h ≤ cD
ᾱ√
k
d3H

7
2 .

When k is large enough, we have817

σ2
k,h ≤ [VhV

∗,ρ
h+1]

(
skh, a

k
h

)
+ (2Ek,h + 2d3H ·Dk,h) +

1

2

≤ [VhV
∗,ρ
h+1]

(
skh, a

k
h

)
+ 2cE

ᾱ√
k
d2H3 + 2cD

ᾱ√
k
d6H

9
2 +

1

2
.

When we choose K̃ = c̃ · ᾱ2d12H9 where c̃ = Õ(1). When k > K̃, then we have818

σ̄2
k,h = max

{
σ2
k,h, 1, 2d

3H2
∥∥ϕ(skh, akh)∥∥Σ−1

k,h

}
≤ max

{[
VhV

∗,ρ
h+1

](
skh, a

k
h

)
+ 1, 1

}
≤ 2
[
VhV

∗,ρ
h+1

(
skh, a

k
h

)]
[1,H2]

.

Based on Lemma H.10, we have819

[
VhV

∗,ρ
h+1

]
(s, a) ≤

(1− (1− ρ)H−h+1

ρ

)2
≤
(1− (1− ρ)H

ρ

)2
= Θ

(
min

{ 1

ρ2
, H2

})
.

Then when k > K̃, we have820

σ̄2
k,h ≤ O

(
min

{ 1

ρ2
, H2

})
.

Additionally, note that ᾱ2 = O
(
d3H3

)
, we have821

K̃ = Õ
(
d15H12

)
.

This completes the proof.822
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F Supporting Lemmas823

Lemma F.1 (Number of value function updates). The number of episodes where the algorithm824

updates the value function in Algorithm 1 is upper bounded by dH log(1 +K/λ).825

Proof of Lemma F.1. This proof is the same as [10, Lemma F.1] because of the same rare-switching826

condition (Line 5 in Algorithm 1).827

Lemma F.2. For any (k, h) ∈ [K]× [H], the weight ν̂ρ,k
h satisfies828 ∥∥ν̂ρ,k

h

∥∥
2
≤ 2H

√
dk/λ.

Proof of Lemma F.2. Denote αi = argmaxα∈[0,H]

{
ẑkh,i(α)− ρα

}
, i ∈ [d]. Then we have829

∥∥ν̂ρ,k
h

∥∥
2
=

∥∥∥∥∥
[

max
α∈[0,H]

{ẑkh,i(α)− ρα}
]
i∈[d]

∥∥∥∥∥
2

≤ ρ
√
dα+

∥∥∥∥∥
[(

Σ−1
k,h

k−1∑
τ=1

σ̄−2
τ,hϕ

(
sτh, a

τ
h

)[
V̂ ρ
k,h+1

(
sτh+1

)]
αi

)
i

]
i∈[d]

∥∥∥∥∥
2

≤ H
√
d+H ·

∥∥∥∥∥Σ−1
k,h

k−1∑
τ=1

σ̄−2
τ,hϕ

(
sτh, a

τ
h

)∥∥∥∥∥
2

≤ H
√
d+H

√
k/λ ·

(
k−1∑
τ=1

(
σ̄−1
τ,hϕ

(
sτh, a

τ
h

))⊤
Σ−1

k,h

(
σ̄−1
τ,hϕ

(
sτh, a

τ
h

))) 1
2

≤ H
√
d+H

√
dk/λ

≤ 2H
√
dk/λ,

where the first inequality holds due to the triangle inequality, the second inequality holds from the830

fact that ρ ≤ 1, 0 ≤ α ≤ H and 0 ≤
[
V̂ ρ
k,h+1

(
sτh+1

)]
αi
≤ H , the third inequality holds because of831

Lemma H.5 and the fourth inequality holds because Σk,h ≽ λI and Lemma H.4. This completes the832

proof.833

Lemma F.3. Under a linear MDP, for any stage h ∈ [H] and any bounded function V : S → [0, H],834

there always exists a vector z ∈ Rd such that for all (s, a) ∈ S ×A, we have835 [
P0
hV
]
(s, a) = z⊤ϕ(s, a),

where z satisfies that ∥z∥2 ≤ H
√
d.836

Proof of Lemma F.3. Based on Assumption 2.1, we have837 [
P0
hV
]
(s, a) =

∫
P0
h(s

′|s, a)V (s′)ds′

=

∫
ϕ(s, a)⊤V (s′)dµ0

h(s
′)

= ϕ(s, a)⊤
∫

V (s′)dµ0
h(s

′)

= ϕ(s, a)⊤z,

where z =
∫
V (s′)dµ0

h(s
′). Thus we have838

∥z∥2 =

∥∥∥∥∫ V (s′)dµ0
h(s

′)

∥∥∥∥
2

≤ max
s′

V (s′) ·
∥∥µ0

h(S)
∥∥
2
≤ H
√
d.

This completes the proof.839
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G Proof of the Minimax Lower Bound840

In this section, we prove the minimax lower bound. To this end, we first introduce the construction of841

hard instances in Appendix G.1, and then we prove Theorem 5.1 in Appendix G.3.842

G.1 Construction of Hard Instances843

We construct a family of d-rectangular linear DRMDPs based on the hard-to-learn linear MDP844

introduced in [62]. Let δ = 1/H , ∆ =
√
δ/K/(4

√
2). Each d-rectangular linear DRMDP in845

this family is parameterized by a Boolean vector ξ = {ξh}h∈[H−1], where ξh ∈ {−∆,∆}d. For846

a given ξ and uncertainty level ρ ∈ (0, 3/4], the corresponding d-rectangular linear DRMDP Mρ
ξ847

has the following structure. The state space S = {x1, x2, · · · , xH , xH+1} and the action space848

A = {−1, 1}d. The first state is always x1. The feature mapping ϕ : S ×A → R2d+2 is defined to849

depend on the state xh through ξh as follows:850

ϕ(x1, a) =


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d
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d
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...
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d
+ ξ1dad

0



, ϕ(x2, a) =


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...
1
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1
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δ

d
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δ

d
+ ξ22a2

...
δ

d
+ ξ2dad

0



, · · · ,

ϕ(xH−1, a) =



1

2d
− δ

d
− ξH−1,1a1

1

2d
− δ

d
− ξH−1,2a2

...
1

2d
− δ

d
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1

2
δ

d
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δ

d
+ ξH−1,2a2

...
δ

d
+ ξH−1,dad

0



,ϕ(xH , a) =



0

0

...
0

0

0

0

...
0

1



,ϕ(xH+1, a) =



0

0

...
0

0

1

d
1

d
...
1

d
0



.

We assume that851

K ≥ 9d2H/32 and H ≥ 6, (G.1)
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such that 1
2d −

1
dH − δ ≥ 0. Then it can be easily checked that for any s ∈ S , we have ϕi(s, a) ≥ 0852

and
∑2d+2

i=1 ϕi(s, a) = 1. The factor distribution µ1 : S → R2d+2 is defined as follows.853

µ1(·) = (δx2(·), · · · , δx2(·)︸ ︷︷ ︸
d terms

, δx2(·), δxH+1
(·), · · · , δxH+1

(·)︸ ︷︷ ︸
d terms

, δxH
(·))⊤.

Similarly, for h = 2, . . . ,H , we have854

µ2(·) = (δx3
(·), · · · , δx3

(·), δx3
(·), δxH+1

(·), · · · , δxH+1
(·), δxH

(·))⊤,
· · ·

µH−1(·) = µH(·) = (δxH
(·), · · · , δxH

(·), δxH
(·), δxH+1

(·), · · · , δxH+1
(·), δxH

(·))⊤,
Note that for each episode k, the initial state sk1 is always x1. In the nominal environment, at step h,855

the state skh is either xh or xH+1. State xH and xH+1 are absorbing states. Figure 4(a) illustrates the856

nominal MDP.857

Now we construct the reward parameters {θh}h∈[H] as follows.858

θh = (1, 1, · · · , 1,−1, 1, 1, · · · , 1, 0)⊤, ∀h ∈ [H].

We have ∀h ∈ [H],859

rh(xH , a) = ϕ(xH ,a)⊤θh = 0,

rh(xh, a) = ϕ(xh,a)
⊤θh = 0,

rh(xH+1, a) = ϕ(xH+1,a)
⊤θh = 1.

Thus, only the transition starting from xH+1 generates a reward of 1, and transitions starting from any860

other state generate 0 reward. Next, we consider the model perturbation. An observation is that xH is861

the worst state since it is an absorbing state with zero reward. By the definition of the d-rectangular862

uncertainty set, the worst case kernel is the linear combination of worst case factor distributions.863

Further, by the definition of the factor uncertainty set, the worst case factor distribution is the one that864

leads to the highest probability ρ to the worst state xH . Thus, the worst factor distributions are865

µ̌1 = ((1− ρ)δx2 + ρδxH , (1− ρ)δx2 + ρδxH , · · · , (1− ρ)δx2 + ρδxH , (1− ρ)δx2 + ρδxH ,

(1− ρ)δxH+1 + ρδxH , (1− ρ)δxH+1 + ρδxH , · · · , (1− ρ)δxH+1 + ρδxH , δxH )⊤,

µ̌2 = ((1− ρ)δx3 + ρδxH , (1− ρ)δx3 + ρδxH , · · · , (1− ρ)δx3 + ρδxH , (1− ρ)δx3 + ρδxH ,

(1− ρ)δxH+1 + ρδxH , (1− ρ)δxH+1 + ρδxH , · · · , (1− ρ)δxH+1 + ρδxH , δxH )⊤,

· · ·
µ̌H−1 = ((1− ρ)δxH−1 + ρδxH , (1− ρ)δxH−1 + ρδxH , · · · , (1− ρ)δxH−1 + ρδxH , (1− ρ)δxH−1 + ρδxH ,

(1− ρ)δxH+1 + ρδxH , (1− ρ)δxH+1 + ρδxH , · · · , (1− ρ)δxH+1 + ρδxH , δxH )⊤,

µ̌H−1 = µH .

Figure 4(b) illustrates the worst case MDP.866

G.2 Reduction from d-Rectangular DRMDP to Linear Bandits867

Note that by construction, at steps h = 1, · · · , H − 2, the probability of transitioning to the worst868

case state xH is independent of the action a. Moreover, since xH+1 is the only rewarding state,869

so the optimal action at step h is the one the leads to the largest probability to xH+1, i.e., a⋆
h =870

argmaxa∈A⟨ξh,a⟩. Further, in the nominal environment, state xh can only be reached through states871

x1, x2, · · · , xh−1. As discussed by [62], knowing the state xh is equivalent to knowing the entire872

history starting from the initial state at current episode. Consequently, policies dictating what actions873

to take upon reaching a state at the beginning of an episode are equivalent to policies relying on the874

“within episode” history (we refer to the discussion in E.1 of [62] for more details). In the following875

lemma, we shows that the average suboptimality of the d-rectangular DRMDP can be lower bounded876

by the regret of H/2 bandit instances.877

Lemma G.1. With the choice of d,K,H in (G.1), we have 3d∆ ≤ δ. Fix ξ = {ξh}h∈[H−1]. Fix a878

possibly history dependent policy π and define āπ
h = Eξ[ah|sh = xh] as the expected action taken879

by the policy when it visits state xh in stage h. Then, there exist a constant c > 0 such that880

V ⋆,ρ
1 (x1)− V π,ρ

1 (x1) ≥ cmin
{1
ρ
,H
}H/2∑

h=1

(
max
a∈A
⟨µh,a⟩ − ⟨µh, ā

π
h⟩
)
.
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x1 x2 · · · xH−1 xH

xH+1

1 − δ − ⟨ξ1,a⟩

δ + ⟨ξ1, a⟩

1 − δ − ⟨ξ2,a⟩

δ + ⟨ξ2,a⟩

1 − δ − ⟨ξH−1,a⟩

δ + ⟨ξH−1,a⟩

1

1
(a) The nominal MDP environment.

x1 x2 · · · xH−1 xH

xH+1

(1 − ρ)(1 − δ − ⟨ξ1,a⟩)

(1 − ρ)(δ + ⟨ξ1,a⟩)

(1 − ρ)(1 − δ − ⟨ξ2,a⟩)

(1 − ρ)(δ + ⟨ξ2,a⟩)

(1 − ρ)(1 − δ − ⟨ξH−1,a⟩) + ρ

(1 − ρ)(δ + ⟨ξH−1,a⟩)

1

1 − ρ

ρ

ρ

ρ

(b) The worst-case MDP environment.

Figure 4: Constructions of the nominal MDP and the worst-case MDP environments.

Proof of Lemma G.1. For the fixed policy π, we first get the ground truth robust value V π,ρ
1 (x1) by881

induction. Starting from the last step H , we have882

V π,ρ
H (xH) = 0, V π,ρ

H (xH+1) = 1.

For step H − 1, we have883

V π,ρ
H−1(xH) = 0, V π,ρ

H−1(xH−1) = (1− ρ)(δ + ⟨ξH−1,a
π
H−1⟩) · 1, V π,ρ

H−1(xH+1) = 1 + (1− ρ) · 1.

For step H − 2, we have V π,ρ
H−2(xH) = 0 and884

V π,ρ
H−2(xH+1) = 1 + (1− ρ) · VH−1(xH+1) = 1 + (1− ρ) + (1− ρ)2,

V π,ρ
H−2(xH−2) = (1− ρ)(δ + ⟨ξH−2, ā

π
H−2⟩) · V

π,ρ
H−1(xH+1)

+ (1− ρ)(1− δ − ⟨ξH−2, ā
π
H−2⟩) · V

π,ρ
H−1(xH−1)

=
[
(1− ρ) + (1− ρ)2

]
(δ + ⟨ξH−2, ā

π
H−2⟩)

+ (1− ρ)2(1− δ − ⟨ξH−2, ā
π
H−2⟩)(δ + ⟨ξH−1, ā

π
H−1⟩).

For step H − 3, we have V π,ρ
H−3(xH) = 0 and885

V π,ρ
H−3(xH+1) = 1 + (1− ρ) · VH−2(xH+1) = 1 + (1− ρ) + (1− ρ)2 + (1− ρ)3,

V π,ρ
H−3(xH−3) = (1− ρ)(δ + ⟨ξH−3, ā

π
H−3⟩) · V

π,ρ
H−2(xH+1)

+ (1− ρ)(1− δ − ⟨ξH−3, ā
π
H−3⟩) · V

π,ρ
H−2(xH−2)

=
[
(1− ρ) + (1− ρ)2 + (1− ρ)3

]
(δ + ⟨ξH−3, ā

π
H−3⟩)

+
[
(1− ρ)2 + (1− ρ)3

]
(1− δ − ⟨ξH−3, ā

π
H−3⟩)(δ + ⟨ξH−2, ā

π
H−2⟩)
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+ (1− ρ)3(1− δ − ⟨ξH−3, ā
π
H−3⟩)(1− δ − ⟨ξH−2, ā

π
H−2⟩)(δ + ⟨ξH−1, ā

π
H−1⟩).

Keep performing the backward induction until step h = 1, we have886

V π,ρ
1 (x1)

= V π,ρ
H−(H−1)(x1)

=
[
(1− ρ) + · · ·+ (1− ρ)H−1](δ + ⟨ξ1, āπ

1 ⟩)+[
(1− ρ)2 + · · ·+ (1− ρ)H−1](1− δ − ⟨ξ1, āπ

1 ⟩)(δ + ⟨ξ2, āπ
2 ⟩)+

[(1− ρ)3 + · · ·+ (1− ρ)H−1](1− δ − ⟨ξ1, āπ
1 ⟩)(1− δ − ⟨ξ2, āπ

2 ⟩)(δ + ⟨ξ3, āπ
3 ⟩)+

+ · · ·+

(1− ρ)H−1(1− δ − ⟨ξ1, āπ
1 ⟩)(1− δ − ⟨ξ2, āπ

2 ⟩) · · · (1− δ − ⟨ξH−2, ā
π
H−2⟩)(δ + ⟨ξH−1, ā

π
H−1⟩)

=

H−1∑
h=1

(H−1∑
i=h

(1− ρ)i
)
(oh + δ)

h−1∏
j=1

(1− oj − δ), (G.2)

where oh = ⟨ξh, āπ
h⟩,∀h ∈ [H]. Recall that the optimal robust action at step h is a⋆

h =887

argmaxa∈A⟨ξh,a⟩, and hence maxa∈A⟨ξh,a⟩ = ∆d. Thus, we have888

V ⋆,ρ
1 (x1) =

H−1∑
h=1

(H−1∑
i=h

(1− ρ)i
)
(d∆+ δ)

h−1∏
j=1

(1− d∆− δ). (G.3)

For k ∈ [H − 1], we define889

Sk =

H−1∑
h=k

( H−k∑
i=h−k+1

(1− ρ)i
) h−1∏

j=k

(1− oj − δ)(oh + δ), (G.4)

Tk =

H−1∑
h=k

( H−k∑
i=h−k+1

(1− ρ)i
) h−1∏

j=k

(1− d∆− δ)(d∆+ δ). (G.5)

Then by (G.2), (G.3), (G.4) and (G.5), we know V ⋆,ρ
1 (x1)− V π,ρ

1 (x1) = T1 − S1. Next, we aim to890

lower bound T1 − S1. Inspired by the backward induction process, we have891

Sk =
(H−k∑

i=1

(1− ρ)i
)
(ok + δ) + Sk+1(1− ok − δ),

Tk =
(H−k∑

i=1

(1− ρ)i
)
(d∆+ δ) + Tk+1(1− d∆− δ).

Then, we have892

Tk − Sk =
(H−k∑

i=1

(1− ρ)i
)
(d∆− ok)− Sk+1(1− ok − δ) + Tk+1(1− d∆− δ)

=
(H−k∑

i=1

(1− ρ)i − Tk+1

)
(d∆− ok) + (1− ok − δ)(Tk+1 − Sk+1). (G.6)

Define TH = SH = 0, then by the recursive formula (G.6), we have893

T1 − S1 =

H−1∑
h=1

(d∆− oh)
(H−h∑

i=1

(1− ρ)i − Th+1︸ ︷︷ ︸
I

) h−1∏
j=1

(1− oj − δ). (G.7)

To further bound (G.7), we first study the term I. Next we derive a close form expression of Tk. In894

specific, we have895

Tk =

H−1∑
h=k

( H−k∑
i=h−k+1

(1− ρ)i
) h−1∏

j=k

(1− d∆− δ)(d∆+ δ)
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=
(H−k∑

i=1

(1− ρ)i
)
(d∆+ δ) +

(H−k∑
i=2

(1− ρ)i
)
(1− d∆− δ)(d∆+ δ)

+
(H−k∑

i=3

(1− d∆− δ)2(d∆+ δ)
)
+ · · ·+ (1− ρ)H−k(1− d∆− δ)H−k−1(d∆+ δ).

(G.8)

Multiply Tk by (1− d∆− δ), we have896

(1− d∆− δ)Tk

=
(H−k∑

i=1

(1− ρ)i
)
(d∆+ δ)(1− d∆− δ) +

(H−k∑
i=2

(1− ρ)i
)
(1− d∆− δ)2(d∆+ δ)

+
(H−k∑

i=3

(1− d∆− δ)2(d∆+ δ)
)
+ · · ·+ (1− ρ)H−k(1− d∆− δ)H−k(d∆+ δ). (G.9)

Then we have897

(G.8)− (G.9)
= (d∆+ δ)Tk

=
(H−k∑

i=1

(1− ρ)i
)
(d∆+ δ)− (1− ρ)(1− d∆− δ)(d∆+ δ)− (1− ρ)2(1− d∆− δ)2(d∆+ δ)

− · · · − (1− ρ)H−k(1− d∆− δ)H−k(d∆+ δ). (G.10)

Divide both side of equation (G.10) by (d∆+δ) and then apply the formula for the sum of a geometric898

series, we know Tk has the following closed form expression899

Tk =
(H−k∑

i=1

(1− ρ)i
)
− (1− ρ)(1− d∆− δ)(1− (1− ρ)H−k(1− d∆− δ)H−k)

1− (1− ρ)(1− d∆− δ)
.

Then, for any h ≤ H/2, we have the following bound on the term I of (G.7),900

H−h∑
i=1

(1− ρ)i − Th+1

=

H−h∑
i=1

(1− ρ)i −
H−h−1∑

i=1

(1− ρ)i +
(1− ρ)(1− d∆− δ)(1− (1− ρ)H−h−1(1− d∆− δ)H−h−1)

1− (1− ρ)(1− d∆− δ)

= (1− ρ)H−h +
(1− ρ)(1− d∆− δ)(1− (1− ρ)H−h−1(1− d∆− δ)H−h−1)

1− (1− ρ)(1− d∆− δ)

= (1− ρ)H−h + (1− ρ)(1− d∆− δ) + · · ·+ (1− ρ)H−h−1(1− d∆− δ)H−h−1

≥ (1− d∆− δ)H
(
(1− ρ) + · · ·+ (1− ρ)H−h−1 + (1− ρ)H−h

)
(G.11)

≥
(
1− 2

H

)H(
(1− ρ) + · · ·+ (1− ρ)H−h−1 + (1− ρ)H−h

)
≥ 1

12

H−h∑
i=1

(1− ρ)i, (G.12)

where (G.11) holds due to 3d∆ ≤ δ = 1/H and (G.12) holds due to H ≥ 6. Next, we carefully901

bound the LHS of (G.12) with respect to ρ. For any h ≤ H/2 and ρ ∈ (0, 3/4], we have902

1

12

H−h∑
i=1

(1− ρ)i ≥ 1

12

(1− ρ)(1− (1− ρ)H/2)

ρ
≥ 1

50

1− (1− ρ)H/2

ρ
.

Given the fact that903

1− (1− ρ)H/2

ρ
= Θ

(
min

(
H,

1

ρ

))
,
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there exist a constant c > 0, such that904

1− (1− ρ)H/2

ρ
≥ c ·min

(
H,

1

ρ

)
.

Then we have905

H−h∑
i=1

(1− ρ)i − Th+1 ≥ c′ ·min
(
H,

1

ρ

)
, (G.13)

where c′ = c/50. Moreover, with the choice of parameter 3d∆ ≤ δ, δ = 1/H , and H ≥ 6, we have906

h−1∏
j=1

(1− oj − δ) ≥ (1− 4δ/3)H ≥ 1/3. (G.14)

Therefore, by (G.7), (G.13) and (G.14), we have907

V ⋆,ρ
1 (x1)− V π,ρ

1 (x1) = T1 − S1

≥ c′′ ·min{H, 1/ρ} ·
H/2∑
h=1

(d∆− oh)

= c′′ ·min{H, 1/ρ} ·
H/2∑
h=1

(
max
a∈A
⟨µh,a⟩ − ⟨µh, ā

π
h⟩
)
,

where c′′ = c′/3. This completes the proof.908

G.3 Proof of Theorem 5.1909

Next, we present an existing result on lower bounding the regret of linear bandits induced by910

Lemma G.1. This result is useful in deriving the lower bound in Theorem 5.1.911

Lemma G.2. [62, Lemma 25] Fix a positive real 0 ≤ δ ≤ 1/3, and positive integers K, d and912

assume that K ≥ d2/(2δ). Let ∆ =
√
δ/K/(4

√
2) and consider the linear bandit problems Lµ913

parameterized with a parameter vector µ ∈ {−∆,∆}d and action set A = {−1, 1}d so that the914

reward distribution for taking action a ∈ A is a Bernoulli distribution Bernoulli(δ + ⟨µ,a⟩). Then915

for any bandit algorithm B, there exists a µ⋆ ∈ {−∆,∆}d such that the expected pseudo-regret of B916

over first K steps on bandit Lµ⋆ is lower bounded as follows:917

Eµ⋆Regret(K) ≥ d
√
Kδ

8
√
2

.

Note that the expectation is with respect to a distribution that depends both on B and µ⋆, but since B918

is fixed, this dependence is hidden.919

Now we are ready to prove the lower bound in Theorem 5.1.920

Proof of Theorem 5.1. By Lemma G.1, we have921

EξAveSubopt(Mξ,K) =
1

K
Eξ

[ K∑
k=1

[V ⋆,ρ
1 (x1)− V π,ρ

1 (x1)]
]

≥ c · min{H, 1/ρ}
K

H/2∑
h=1

Eξ

[ K∑
k=1

(
max
a∈A
⟨ξh,a⟩ − ⟨ξh, āπk

h ⟩
)]

.

Note that the learning process is conducted on the nominal environment, which is exactly the MDP in922

[62], thus the rest proof of Theorem 4.2 follows the argument in the proof of Theorem 8 in [62]. In923

particular, define ξ−h = (ξ1, · · · , ξh−1, ξh+1, · · · , ξH), then every MDP policy π induces a bandit924

algorithm Bπ,h,ξ−h for the linear bandit of Lemma G.2. Moreover, our choice of parameters in925
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(G.1) satisfy the requirement of Lemma G.2. Denote the regret of this bandit problem on Lξ as926

BanditRegret(Bπ,h,ξ−h , ξh), then we have927

sup
ξ

EξAveSubopt(Mξ,K) ≥ sup
ξ

c · min{H, 1/ρ}
K

H/2∑
h=1

BanditRegret(Bπ,h,ξ−h , ξh)

≥ sup
ξ

c · min{H, 1/ρ}
K

H/2∑
h=1

inf
ξ̃−h

BanditRegret(Bπ,h,ξ̃−h , ξh)

= c · min{H, 1/ρ}
K

H/2∑
h=1

sup
ξ

inf
ξ̃−h

BanditRegret(Bπ,h,ξ̃−h , ξh)

≥ c · min{H, 1/ρ}dH
√
Kδ

16
√
2 ·K

=
c

16
√
2
· d
√
H ·min{H, 1/ρ}√

K
.

This completes the proof.928

H Auxiliary Lemmas929

In this section, we present some standard technical results in the literature that our proofs are built on.930

Proposition H.1. (Strong duality for TV [36, Lemma 4]). Given any probability measure µ0 over931

S , a fixed uncertainty level ρ, the uncertainty set Uρ(µ0) = {µ : µ ∈ ∆(S), DTV (µ||µ0) ≤ ρ}, and932

any function V : S → [0, H], we obtain933

infµ∈Uρ(µ0) Es∼µV (s) = maxα∈[Vmin,Vmax]

{
Es∼µ0 [V (s)]α − ρ

(
α−mins′ [V (s′)]α

)}
, (H.1)

where [V (s)]α = min{V (s), α}, Vmin = mins V (s) and Vmax = maxs V (s). Notably, the range of934

α can be relaxed to [0, H] without impacting the optimization.935

Lemma H.2. [1, Lemma 12] Let A, B and C be positive semi-definite matrices such that A =936

B+C. Then we have that937

sup
x̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

Lemma H.3. [1, Confidence Ellipsoid, Theorem 2] Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1938

be a stochastic process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L,939

σ,Σ, ϵ > 0,µ∗ ∈ Rd. For k ≥ 1, let yk = ⟨µ∗,xk⟩+ ηk and suppose that ηk,xk also satisfy940

E[ηk | Gk] = 0, |ηk| ≤ R, ∥xk∥2 ≤ L.

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi,µk = Z−1

k bk, and941

βk = R

√
d log

(
1 +

kL2

dλ

)
+ 2 log

1

δ
.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,942

∀k ≥ 1,

∥∥∥∥ k∑
i=1

xiηi

∥∥∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma H.4. [19, Lemma D.1] Let Λt = λI+
∑t

i=1 ϕiϕ
⊤
i , where ϕi ∈ Rd and λ > 0. Then we943

have944

t∑
i=1

ϕ⊤
i (Λt)

−1ϕi ≤ d.
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Lemma H.5. [14, Lemma D.5] Let A ∈ Rd×d be a positive definite matrix where its largest945

eigenvalue λmax(A) ≤ λ. Let x1, ...,xk be k vectors in Rd. Then it holds that946 ∥∥∥∥A k∑
i=1

xi

∥∥∥∥ ≤ √λk( k∑
i=1

∥xi∥2A
)1/2

.

Lemma H.6. [39, Covering number of Euclidean ball] For any ε > 0, Nε, the ε-covering number947

of the Euclidean ball of radius B > 0 in Rd satisfies948

Nε ≤
(
1 +

2B

ε

)d

≤
(
3B

ε

)d

.

Lemma H.7. [39, Covering number of an interval] Denote the ϵ-covering number of the closed949

interval [a, b] for some real number b > a with respect to the distance metric d(α1, α2) = |α1 − α2|950

as Nϵ([a, b]). Then we have Nϵ([a, b]) ≤ 3(b− a)/ϵ.951

Lemma H.8. [61, Theorem 4.3] Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic process952

such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ > 0, µ∗ ∈ Rd. For953

k ≥ 1, let yk = ⟨µ∗,xk⟩+ ηk and suppose that ηk,xk also satisfy954

E[ηk | Gk] = 0,E[η2k | Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L.

For k ≥ 1, let βk = Õ
(
σ
√
d + max1≤i≤k |ηi|min

{
1, ∥xi∥Z−1

i−1

})
and Zk = λI +

∑k
i=1 xix

⊤
i ,955

bk =
∑k

i=1 yixi, µk = Z−1
k bk. Then, for any 0 < δ < 1 , with probability at least 1 − δ, for all956

k ∈ [K], we have957 ∥∥∥∥ k∑
i=1

xiηi

∥∥∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma H.9. [19, Lemma D.4] Let {si}∞i=1 be a stochastic process on state space S with corre-958

sponding filtration {Fi}∞i=1. Let {ϕi}∞i=1 be an Rd-valued stochastic process where ϕi ∈ Fi−1, and959

∥ϕi∥ ≤ 1. Let Λk = λI+
∑k

i=1 ϕiϕ
⊤
i . Then for any δ > 0, with probability at least 1− δ, for all960

k ≥ 0, and any V ∈ V with sups∈S |V (s)| ≤ H , we have961 ∥∥∥∥ k∑
i=1

ϕi{V (si)− E[V (si) | Fi−1]}
∥∥∥∥2
Λ−1

k

≤ 4H2

[
d

2
log

(
k + λ

λ

)
+ log

Nε

δ

]
+

8k2ε2

λ
,

where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = sups∈S |V (s)−962

V ′(s)|.963

Lemma H.10. [24, Lemma 5.1 (Range Shrinkage)] For any (ρ, π, h) ∈ (0, 1]×Π× [H], we have964

maxs∈S V π,ρ
h (s)−mins∈S V π,ρ

h (s) ≤ (1− (1− ρ)H−h+1)/ρ.965
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depend on non-trivial algorithm and hard instance design, as well as technical analysis.974

Guidelines:975

• The answer NA means that the abstract and introduction do not include the claims976

made in the paper.977

• The abstract and/or introduction should clearly state the claims made, including the978

contributions made in the paper and important assumptions and limitations. A No or979

NA answer to this question will not be perceived well by the reviewers.980

• The claims made should match theoretical and experimental results, and reflect how981

much the results can be expected to generalize to other settings.982

• It is fine to include aspirational goals as motivation as long as it is clear that these goals983

are not attained by the paper.984

2. Limitations985

Question: Does the paper discuss the limitations of the work performed by the authors?986

Answer: [Yes]987

Justification: There is a O(
√
H) gap between our upper bound and lower bound. We discuss988

this limitation in Section 5.989
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• The answer NA means that the paper has no limitation while the answer No means that991

the paper has limitations, but those are not discussed in the paper.992

• The authors are encouraged to create a separate "Limitations" section in their paper.993

• The paper should point out any strong assumptions and how robust the results are to994

violations of these assumptions (e.g., independence assumptions, noiseless settings,995

model well-specification, asymptotic approximations only holding locally). The authors996

should reflect on how these assumptions might be violated in practice and what the997

implications would be.998

• The authors should reflect on the scope of the claims made, e.g., if the approach was999

only tested on a few datasets or with a few runs. In general, empirical results often1000

depend on implicit assumptions, which should be articulated.1001

• The authors should reflect on the factors that influence the performance of the approach.1002

For example, a facial recognition algorithm may perform poorly when image resolution1003

is low or images are taken in low lighting. Or a speech-to-text system might not be1004

used reliably to provide closed captions for online lectures because it fails to handle1005

technical jargon.1006

• The authors should discuss the computational efficiency of the proposed algorithms1007

and how they scale with dataset size.1008

• If applicable, the authors should discuss possible limitations of their approach to1009

address problems of privacy and fairness.1010

• While the authors might fear that complete honesty about limitations might be used by1011

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1012

limitations that aren’t acknowledged in the paper. The authors should use their best1013

judgment and recognize that individual actions in favor of transparency play an impor-1014

tant role in developing norms that preserve the integrity of the community. Reviewers1015

will be specifically instructed to not penalize honesty concerning limitations.1016

3. Theory assumptions and proofs1017
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Question: For each theoretical result, does the paper provide the full set of assumptions and1018

a complete (and correct) proof?1019

Answer: [Yes]1020

Justification: We provide detailed discussion and justification of assumptions used in the1021

main context and rigorous proof of theorems in the supplementary material.1022

Guidelines:1023

• The answer NA means that the paper does not include theoretical results.1024

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1025

referenced.1026

• All assumptions should be clearly stated or referenced in the statement of any theorems.1027

• The proofs can either appear in the main paper or the supplemental material, but if1028

they appear in the supplemental material, the authors are encouraged to provide a short1029

proof sketch to provide intuition.1030

• Inversely, any informal proof provided in the core of the paper should be complemented1031

by formal proofs provided in appendix or supplemental material.1032

• Theorems and Lemmas that the proof relies upon should be properly referenced.1033

4. Experimental result reproducibility1034

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1035

perimental results of the paper to the extent that it affects the main claims and/or conclusions1036

of the paper (regardless of whether the code and data are provided or not)?1037

Answer: [Yes]1038

Justification: Details on experiment setup and implementation are provided in Appendix B.1039

They are enough for reproduction of all experiment results.1040

Guidelines:1041

• The answer NA means that the paper does not include experiments.1042

• If the paper includes experiments, a No answer to this question will not be perceived1043

well by the reviewers: Making the paper reproducible is important, regardless of1044

whether the code and data are provided or not.1045

• If the contribution is a dataset and/or model, the authors should describe the steps taken1046

to make their results reproducible or verifiable.1047

• Depending on the contribution, reproducibility can be accomplished in various ways.1048

For example, if the contribution is a novel architecture, describing the architecture fully1049

might suffice, or if the contribution is a specific model and empirical evaluation, it may1050

be necessary to either make it possible for others to replicate the model with the same1051

dataset, or provide access to the model. In general. releasing code and data is often1052

one good way to accomplish this, but reproducibility can also be provided via detailed1053

instructions for how to replicate the results, access to a hosted model (e.g., in the case1054

of a large language model), releasing of a model checkpoint, or other means that are1055

appropriate to the research performed.1056

• While NeurIPS does not require releasing code, the conference does require all submis-1057

sions to provide some reasonable avenue for reproducibility, which may depend on the1058

nature of the contribution. For example1059

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1060

to reproduce that algorithm.1061

(b) If the contribution is primarily a new model architecture, the paper should describe1062

the architecture clearly and fully.1063

(c) If the contribution is a new model (e.g., a large language model), then there should1064

either be a way to access this model for reproducing the results or a way to reproduce1065

the model (e.g., with an open-source dataset or instructions for how to construct1066

the dataset).1067

(d) We recognize that reproducibility may be tricky in some cases, in which case1068

authors are welcome to describe the particular way they provide for reproducibility.1069

In the case of closed-source models, it may be that access to the model is limited in1070

some way (e.g., to registered users), but it should be possible for other researchers1071

to have some path to reproducing or verifying the results.1072
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5. Open access to data and code1073

Question: Does the paper provide open access to the data and code, with sufficient instruc-1074

tions to faithfully reproduce the main experimental results, as described in supplemental1075

material?1076

Answer: [Yes]1077

Justification: All experiment results can be reproduced by the code in this link:1078

https://anonymous.4open.science/r/We-Drive-U-9EC31079
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public/guides/CodeSubmissionPolicy) for more details.1083

• While we encourage the release of code and data, we understand that this might not be1084

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1085

including code, unless this is central to the contribution (e.g., for a new open-source1086

benchmark).1087

• The instructions should contain the exact command and environment needed to run to1088

reproduce the results. See the NeurIPS code and data submission guidelines (https:1089

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1090

• The authors should provide instructions on data access and preparation, including how1091

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1092

• The authors should provide scripts to reproduce all experimental results for the new1093

proposed method and baselines. If only a subset of experiments are reproducible, they1094

should state which ones are omitted from the script and why.1095

• At submission time, to preserve anonymity, the authors should release anonymized1096

versions (if applicable).1097

• Providing as much information as possible in supplemental material (appended to the1098

paper) is recommended, but including URLs to data and code is permitted.1099

6. Experimental setting/details1100

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1101

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1102

results?1103

Answer: [Yes]1104

Justification: Details on experiment setup and implementation are provided in Appendix B.1105

More details can be found in the released code.1106

Guidelines:1107

• The answer NA means that the paper does not include experiments.1108

• The experimental setting should be presented in the core of the paper to a level of detail1109

that is necessary to appreciate the results and make sense of them.1110

• The full details can be provided either with the code, in appendix, or as supplemental1111

material.1112

7. Experiment statistical significance1113

Question: Does the paper report error bars suitably and correctly defined or other appropriate1114

information about the statistical significance of the experiments?1115

Answer: [No]1116

Justification: Not applicable to our experiments.1117

Guidelines:1118

• The answer NA means that the paper does not include experiments.1119

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1120

dence intervals, or statistical significance tests, at least for the experiments that support1121

the main claims of the paper.1122
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• The factors of variability that the error bars are capturing should be clearly stated (for1123

example, train/test split, initialization, random drawing of some parameter, or overall1124

run with given experimental conditions).1125

• The method for calculating the error bars should be explained (closed form formula,1126

call to a library function, bootstrap, etc.)1127

• The assumptions made should be given (e.g., Normally distributed errors).1128

• It should be clear whether the error bar is the standard deviation or the standard error1129

of the mean.1130

• It is OK to report 1-sigma error bars, but one should state it. The authors should1131

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1132

of Normality of errors is not verified.1133

• For asymmetric distributions, the authors should be careful not to show in tables or1134

figures symmetric error bars that would yield results that are out of range (e.g. negative1135

error rates).1136

• If error bars are reported in tables or plots, The authors should explain in the text how1137

they were calculated and reference the corresponding figures or tables in the text.1138

8. Experiments compute resources1139

Question: For each experiment, does the paper provide sufficient information on the com-1140

puter resources (type of compute workers, memory, time of execution) needed to reproduce1141

the experiments?1142

Answer: [Yes]1143

Justification: All numerical experiments were conducted on a MacBook Pro with a 2.6 GHz1144

6-Core Intel CPU.1145

Guidelines:1146

• The answer NA means that the paper does not include experiments.1147

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1148

or cloud provider, including relevant memory and storage.1149

• The paper should provide the amount of compute required for each of the individual1150

experimental runs as well as estimate the total compute.1151

• The paper should disclose whether the full research project required more compute1152

than the experiments reported in the paper (e.g., preliminary or failed experiments that1153

didn’t make it into the paper).1154

9. Code of ethics1155

Question: Does the research conducted in the paper conform, in every respect, with the1156

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1157

Answer: [Yes]1158

Justification: We have checked that the research conducted in the paper conform, in every1159

respect, with the NeurIPS Code of Ethics.1160

Guidelines:1161

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1162

• If the authors answer No, they should explain the special circumstances that require a1163

deviation from the Code of Ethics.1164

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1165

eration due to laws or regulations in their jurisdiction).1166

10. Broader impacts1167

Question: Does the paper discuss both potential positive societal impacts and negative1168

societal impacts of the work performed?1169

Answer: [NA]1170
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theoretical side of robust RL, and methods in this paper do not lead to a direct path to any1172

negative applications.1173
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Guidelines:1174

• The answer NA means that there is no societal impact of the work performed.1175

• If the authors answer NA or No, they should explain why their work has no societal1176

impact or why the paper does not address societal impact.1177

• Examples of negative societal impacts include potential malicious or unintended uses1178

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1179

(e.g., deployment of technologies that could make decisions that unfairly impact specific1180
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to particular applications, let alone deployments. However, if there is a direct path to1183
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to point out that an improvement in the quality of generative models could be used to1185

generate deepfakes for disinformation. On the other hand, it is not needed to point out1186

that a generic algorithm for optimizing neural networks could enable people to train1187

models that generate Deepfakes faster.1188

• The authors should consider possible harms that could arise when the technology is1189

being used as intended and functioning correctly, harms that could arise when the1190

technology is being used as intended but gives incorrect results, and harms following1191

from (intentional or unintentional) misuse of the technology.1192
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strategies (e.g., gated release of models, providing defenses in addition to attacks,1194

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1195

feedback over time, improving the efficiency and accessibility of ML).1196

11. Safeguards1197

Question: Does the paper describe safeguards that have been put in place for responsible1198

release of data or models that have a high risk for misuse (e.g., pretrained language models,1199

image generators, or scraped datasets)?1200

Answer: [NA]1201

Justification: The paper poses no such risks.1202

Guidelines:1203

• The answer NA means that the paper poses no such risks.1204

• Released models that have a high risk for misuse or dual-use should be released with1205

necessary safeguards to allow for controlled use of the model, for example by requiring1206

that users adhere to usage guidelines or restrictions to access the model or implementing1207

safety filters.1208

• Datasets that have been scraped from the Internet could pose safety risks. The authors1209

should describe how they avoided releasing unsafe images.1210

• We recognize that providing effective safeguards is challenging, and many papers do1211

not require this, but we encourage authors to take this into account and make a best1212

faith effort.1213

12. Licenses for existing assets1214

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1215

the paper, properly credited and are the license and terms of use explicitly mentioned and1216

properly respected?1217
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Justification: The paper does not use existing assets.1219
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Answer: [NA]1239

Justification: The paper does not release new assets.1240
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• The answer NA means that the paper does not release new assets.1242

• Researchers should communicate the details of the dataset/code/model as part of their1243

submissions via structured templates. This includes details about training, license,1244

limitations, etc.1245

• The paper should discuss whether and how consent was obtained from people whose1246

asset is used.1247

• At submission time, remember to anonymize your assets (if applicable). You can either1248

create an anonymized URL or include an anonymized zip file.1249

14. Crowdsourcing and research with human subjects1250

Question: For crowdsourcing experiments and research with human subjects, does the paper1251

include the full text of instructions given to participants and screenshots, if applicable, as1252

well as details about compensation (if any)?1253

Answer: [NA]1254

Justification: The paper does not involve crowdsourcing nor research with human subjects.1255
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• The answer NA means that the paper does not involve crowdsourcing nor research with1257

human subjects.1258

• Including this information in the supplemental material is fine, but if the main contribu-1259

tion of the paper involves human subjects, then as much detail as possible should be1260

included in the main paper.1261
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• The answer NA means that the paper does not involve crowdsourcing nor research with1274
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1276

may be required for any human subjects research. If you obtained IRB approval, you1277

should clearly state this in the paper.1278

• We recognize that the procedures for this may vary significantly between institutions1279

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1280

guidelines for their institution.1281

• For initial submissions, do not include any information that would break anonymity (if1282

applicable), such as the institution conducting the review.1283

16. Declaration of LLM usage1284

Question: Does the paper describe the usage of LLMs if it is an important, original, or1285

non-standard component of the core methods in this research? Note that if the LLM is used1286

only for writing, editing, or formatting purposes and does not impact the core methodology,1287

scientific rigorousness, or originality of the research, declaration is not required.1288

Answer: [NA]1289

Justification: The core method development in this research does not involve LLMs as any1290

important, original, or non-standard components.1291

Guidelines:1292

• The answer NA means that the core method development in this research does not1293

involve LLMs as any important, original, or non-standard components.1294

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1295

for what should or should not be described.1296
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