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Abstract

We study off-dynamics reinforcement learning (RL), where the policy training and
deployment environments are different. To deal with this environmental perturba-
tion, we focus on learning policies robust to uncertainties in transition dynamics
under the framework of distributionally robust Markov decision processes (DR-
MDPs), where the nominal and perturbed dynamics are linear Markov Decision
Processes. We propose a novel algorithm We-DRIVE-U that enjoys an average sub-
optimality O(dH - min{1/p, H}/v'K), where K is the number of episodes, H is
the horizon length, d is the feature dimension and p is the uncertainty level. This
result improves the state-of-the-art by O(dH/ min{1/p, H}). We also construct a
novel hard instance and derive the first information-theoretic lower bound in this
setting. In stark contrast with standard linear MDPs, our lower bound depends on
the uncertainty level p, revealing the unique feature of DRMDPs. Our algorithm
also enjoys a ‘rare-switching’ design, and thus only requires O(dH log(1+ H*K))
policy switches and O(d?H log(1 + H?K)) calls for oracle to solve dual opti-
mization problems, which significantly improves the computational efficiency of
existing algorithms, whose policy switch and oracle complexities are both O(K).

1 Introduction

In dynamic decision-making and reinforcement learning (RL), Markov decision processes (MDPs)
offer a well-established framework for understanding complex systems and guiding agent behavior
[37]. However, MDPs encounter significant challenges in practical applications due to incomplete
knowledge of model parameters, especially transition probabilities. This sim-to-real gap, representing
the difference between training and testing environments, can lead to failures in fields like infectious
disease control and robotics [8} (60} 21} 22| [33]]. To address these challenges, off-dynamics RL
provides a framework where policies are trained on a source domain and deployed to a distinct
target domain, promoting robust performance across varying environments [7, {17} |42]]. Within
this framework, distributionally robust Markov decision processes (DRMDPs) have emerged as a
promising way to model transition uncertainty. DRMDPs focus on learning robust policies that
perform well under worst-case scenarios [29} [16]. Prior works [56} 52| 32} 135153 134] have proposed
algorithms mainly for tabular DRMDPs with finite number of states and actions, which are infeasible
when facing large state and action spaces.

In environments characterized by large state and action spaces, function approximation techniques
are crucial to overcome the computational burden posed by high dimensionality. Linear function
approximation methods, based on relatively simple function classes, have shown significant theoretical
and practical successes in standard MDP environments [[19}111}110150L12]]. However, their application
in DRMDPs introduces additional complexities. These complexities arise from the nonlinearity
caused by the dual formulation in the worst-case analysis, even when the transition dynamics in the
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source domain are modeled as linear. Recently, [23] provided the first theoretical results in the online
setting of d-rectangular linear DRMDPs, a specific type of DRMDPs where the nominal model is
a linear MDP [19] and the uncertainty set is defined based on the linear structure of the nominal
transition kernel. Apart from this, online DRMDP with linear function approximation is largely
underexplored and it is not clear how far existing algorithms are from optimal. Consequently, two
natural questions arise:

Can we improve the current results for online DRMDPs with linear function approximation?
What is the fundamental limit in this setting?

In this paper, we provide an affirmative answer to the first question and answer the second question
by providing an information theoretic lower bound for d-rectangular linear DRMDPs. In particular,
motivated by the adoption of variance-weighted ridge regression to achieve nearly optimal result
in standard linear MDPs [62] 161}, 158 20, 159, [10, [13], we propose a variance-aware distributionally
robust algorithm to solve the off-dynamics RL problem. Due to the nonlinearity caused by the
dual optimization of DRMDPs, the adoption of variance information in linear DRMDPs is highly
nontrivial. Existing algorithms that incorporate variance information in learning linear DRMDPs
requires coverage assumptions on the offline dataset [24} 41]], which is infeasible in the online setting
where the algorithm needs to interact with the environment to collect data. To be specific, for
online DRMDPs, the adoption of variance-weighted ridge regression causes the following unique
challenges for both algorithm design and theoretical analysis:

* (Fundamental non-linearity induced by the uncertainty) The consideration of uncertainty set
renders that the (robust) Bellman equations are not linear with respect to the nominal kernel, a
key feature in standard MDP. A direct consequence is that though the Q-function remains a linear
representation, its parameters must be estimated element-wisely from d (i.e., parameter dimension)
variance-weighted ridge regressions, instead of one in standard linear MDP. This poses challenges
for algorithm design, as it requires properly incorporating variance information into the estimation
process and quantitatively controlling the estimation uncertainty.

* (Precise control on variance estimation.) Existing theoretical analyses of online linear MDPs rely
heavily on the Elliptical Potential Lemma, showing that the estimation error shrinks rapidly enough
to guarantee the near-optimality of the learned policy within a small number of rounds. However,
this lemma is not applicable in our setting due to the element-wise parameter estimation procedure
mentioned above. Instead, we adopt a large-k regime to control the estimation error, based upon
the intuition that when the sample size is large, the variance estimation should be close to the true

variance (see|Lemma D.7). Finally, we leverage the ‘Range Shrinkage’ property (seeLemma H.10)

for linear DRMDPs to bound the true variance, and thus obtain an improved bound.

Our work poses a distinct algorithm design and calls for different theoretical analysis techniques. Our
main contributions are summarized as follows:

* We propose a novel algorithm, We-DRIVE-U, for d-rectangular linear DRMDPs with total-variation
(TV) divergence uncertainty sets. We-DRIVE-U is designed based on the optimistic principle [[18|
19, [10] to trade off the exploration and exploitation during interacting with the source environment
to learn a robust policy. The key novelty of We-DRIVE-U lies in incorporating the variance
information into the policy learning, by a carefully designed optimistic estimator of the variance of
the optimal robust value function.

* We prove that We-DRIVE-U achieves an average suboptimality of O(dH - min{1/p, H}/VK)
when the number of episode K is large, which improves the state-of-the-art result [23] by

O(dH/min{1/p, H}), We highlight that the average suboptimality of We-DRIVE-U demon-
strates the ‘Range Shrinkage’ property (refer to through the term min{1/p, H}. We
further established an information-theoretic lower bound Q(dH'/? - min{1/p, H}/v/K), which
shows that We-DRIVE-U is near-optimal up to O(v/H) for any uncertainty level p € (0, 1].

* We-DRIVE-U is favorable in applications where policy switching is risky or costly, since We-
DRIVE-U achieves O(dH log(1+ H?K)) global policy switch (refer to . Moreover,
we note that calls for oracle to solve dual optimizations are one of the main sources of
computation complexity in DRMDP with linear function approximation. Thanks to the specifically
designed ‘rare-switching’ regime, We-DRIVE-U achieves O(d? H log(1 + H?K)) oracle complex-

ity (refer to[Definition 4.6). Both results improve exiting online DRMDP algorithms by a factor of
K. Thus, We-DRIVE-U enjoys low switching cost and low computation cost.
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Notations. For any positive integer H € Z,, we denote [H] = {1,2,---, H}. For any set S,
define A(S) as the set of probability distributions over S. For any function V' : § — R, define
PrV](s,a) = Egp, (15,0 [V (s")], and [V (s)]o = min{V (s), a}, where o > 0 is a constant. For a
vector x, define x; as its j-th entry. Moreover, denote [x;];¢[4) as a vector with the i-th entry being
x;. For a matrix A, denote \;(A) as the i-th eigenvalue of A. For two matrices A and B, denote
A = B as the fact that B — A is a positive semi-definite matrix. For any P, Q) € A(S), the total
variation divergence of P and @ is defined as D(P||Q) = 1/2 [ |P(s) — Q(s)|ds.

2 Preliminary

In this section, we introduce the mathematical framework of our setting. We use a tuple
DRMDP(S, A, H,U?(P°),r) to denote a finite horizon DRMDP, where S and A are the state
and action spaces, H € Z. is the horizon length, pPY = {P,?}thl is the nominal transition kernel,
Ur(P% =@, cimYn (P?) denotes an uncertainty set centered around the nominal transition kernel
with an uncertainty level p > 0, 7 = {r;}L | is the reward function. A policy 7 = {7, }L  isa

sequence of decision rules. For a policy 7, we define the robust value function and Q-function for
any (h,s,a) € [H] x § x Aas

H
V™P(s)= inf EF re(se,at)|sn = s, 7|,
h () Pcur(PY) [; t( K t) " ]
H
™P(s,a) = inf EF ri(s¢,a¢)|sn = s,an = a,m|.
n' (s a) peiil oo, > rilse, ar)|sn h

t=h

Moreover, we define the optimal robust value function and optimal robust state-action value function:
for any (h,s,a) € [H] x S x A, V;""(s) = supen V; (), @7 (s,a) = sup,en Q7 (s, a),
where II is the set of all policies. Correspondingly, the optimal robust policy is the policy that
achieves the optimal robust value function 7* = argsup_;V; " (s).

In this paper, we focus on the d-rectangular linear DRMDP [26] 4] 23| 24], where the nominal
environment is a linear MDP [19] with a simplex state space, defined as follows.

Assumption 2.1. Given a known feature mapping ¢ : S x A — R satisfying ijl oi(s,a) =1,
¢i(s,a) >0, for any (i, s,a) € [d] x S x A, we assume the reward functions {r; }/._, and nominal
transition kernels { P} are linearly parameterized. Specifically, for any (h, s,a) € [H] x S x A,
ra(s,a) = (¢(s,a),04), PP (:|s,a) = (p(s,a), ud(-)), where {8} are known vectors with
bounded norm ||6y,||2 < v/d and {p }L | are unknown probability measures over S.

In d-rectangular linear DRMDPs, an uncertainty set of transition dynamics U} (Py) is defined based
on the linear structure of P! satisfying [Assumption 2.1} In particular, for any (h,i) € [H] x [d],
we first define the factor uncertainty set Uy ,(up ;) = {p : p € A(S),D(ullpy,) < p},

where D(:||-) is a probability divergence which we choose as the total variation (TV) diver-
gence in this paper. Then the uncertainty set of transitions for state s and action a is defined

as Ul (s,a; 1) = {0, dil(s, a)pni(-) : pnai(t) € uy (uy ;),vi € [d]}. We also denote
U (P) = @(s.ayesxaUn (s, a; pp)) as the collection of uncertainty sets on the whole state and

action spaces. Built on these definitions, [[23] showed that the following robust Bellman equations
hold for any policy 7

ZYP(& a) =Th (87 (1) + ianh(»\s,a)Eu{Z(s,a;u%) [PhV}ZT-{lq](Sv CL), (213)

Vhﬂ’p(s) = EENWILHS) [Qz’p(s, a)}, (Zlb)
Similarly, we have the robust Bellman optimality equations

;17;7(87 a‘) = rh(sv a‘) + ianh(~|s,a)€Z/{;Z(s,a;u?L) [th}ﬁrpl](s? CL), (2.2a)

V7P (s) = maxaca QJ (s, a). (2.2b)

In the context of online DRMDPs, an agent actively interacts with the nominal environment within
K episodes to learn the optimal robust policy. Specifically, at the start of episode k, an agent chooses
a policy ¥ based on the history information and receives the initial state s¥. Then the agent interacts
with the nominal environment by executing 7% until the end of episode k, and collects a new trajectory.
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The goal of the agent is to minimize the average suboptimalityﬂ after K episodes, which is defined as
k
AveSubopt(K) = 1/K Sor, [Vir(sh) — Vi P (sh)].

[25] recently show that sample efficient learning in online tabular DRMDPs is impossible in the
presence of support shift, i.e., the nominal kernel and target kernel do not share the same support.
Built on the hard instance constructed in their work, we carefully design feature mappings for the
transition kernel to extend their lower bound to the following one for online linear DRMDPs.
Proposition 2.2. (Hardness result) There exists two d-rectangular linear DRMDPs {Mg}ge{o’l},
such that inf 4£g SuPge 0,1} E[AveSubopt™?4£9 (K] > Q(p - H), where AveSubopt’™?4£9 (K)
is the average suboptimality of algorithm ALG in the d-rectangular linear DRMDP M.

Note that the lower bound in [Proposition 2.2]does not converge to zero as K increases, which means
that in general no algorithm can guarantee to learn the optimal robust policy approximately. To
circumvent this problem, in the rest of paper we focus on a tractable subclass of d-rectangular linear
DRMDP following [23| 25], which is formally defined in the following assumption.

Assumption 2.3 (Fail-state). Assume there exists a ‘fail state’ s in the d-rectangular linear DRMDP,
such that for all (h,a) € [H] x A, r4(sf,a) = 0,P)(s¢|sf,a) = 1.

With we follow the framework in [23], where we have the following results on
robust value functions that are helpful in solving the optimization in 2.2).

Proposition 2.4 (Remark 4.2 of [23])). Under|Assumption 2.3| we have Q; " (sf,a) =V, "’ (sf) =0,
Y(m, h,a) € II x [H] x A. Moreover, for any function V" : § — [0, H] that satisfies minges V' (s) =
V(sf) = 0, we have inf ;0 (0) EsnpV (5) = maxaejo, g1{Es~po [V (5)]a — pat.

3 Algorithm design

One prominent property of the d-rectangular DRMDP is that the robust Q-functions possess linear rep-
resentations with respect to the feature mapping ¢. In particular, under[Assumptions 2.1T|and 2.3] [23]
show that for any (7, s, a, h) € II x S x A x [H], the robust Q-function Q" (s, a) has a linear form
as follows Q (s, a) = (rn(s,a) + ¢(s,a) vy ?) U{s # s}, where vy ” = (vp 7, ..., y,’:j)T,
vl = maxaeo,m {z};i(a) - pa}, zii(a) = FHhi [V}fﬁ(s’)]a and a € [0, H] is the dual vari-
able derived from the dual formulation (see for more details). Moreover, the robust
Bellman optimality equation shows that the greedy policy with respect to the optimal robust
Q-function is exactly the optimal robust policy 7*. Therefore, the core idea behind the algorithm
design is to estimate the optimal robust Q-function using linear function approximation, and then
find 7* by the greedy policy derived from the estimated optimal robust Q-function. We present our

algorithm in

3.1 Variance-weighted ridge regression for online DRMDPs

is a value-iteration based algorithm that iteratively estimates the robust Q-function
through variance-weighted ridge regression. Different from the Q-function estimation for standard
linear MDP, we element-wisely estimate the parameters of robust Q-functions. This is a distinct
feature for linear DRMDPs. We next interpret the details of our algorithm design.

From Line [6]to [I3] of we adopt the backward induction procedure to update the robust
Q-function estimation. In particular, for any (k, k) € [K] x [H], suppose we have an estimated
robust value function V,f’ n4+1- By the robust Bellman optimality equation (2.2)) and [Proposition 2.4,

conducting one step backward induction on V2, , leads to the following linear form [23]):
Th(sa a) + ianhGU;’:(Sva;Mo) Ph[vk,h-‘rl](& a’) = ¢(Sa a)T(eh + VhJﬁ) ]1{8 # Sf}7 (3.1

where l/h:f := maxaeo,m{ 7k (@) — pa} and 2} (@) := EFi [Vie a1 (8)] . for any i € [d]. Note
that under |Assumption 2.1} for any « € [0, H], z}’f’i(a) is the i-th element of the parameter of the

'Our ‘average sub-optimality’ differs from standard ‘regret’ as it measures the gap to the optimal policy in
the worst-case target environment, not the nominal one.
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following linear formulation, [P9 [V 11 1]al(s, a) = (é(s, a), 2 (). Thus, we can estimate zJ ()
from data to get estimations of 2} .(«), Vi € [d]. To this end, we introduce the variance-weighted
ridge regression regime to estimate zy () as follows

k—1
. 2
min 6;; (ZT(ﬁ(sZ,a;) — [Veha (3;—1+1)]a) + Allz]l3,

which leads to the following closed-form estimation
25( Za:iqs sy ah) [V pir (sha1)] 3.2)

where X, = AL+ 3021677 ¢(sT, aﬂ)d)(s;,a;)T and &, 5, is a variance estimator that will be

T,h
formally introduced in We then approximate uh’k by solving the optimization problem
element-wisely

~p.k A .

Dy = maxaeo,u) {25 (@) — pa}, i€ l[d. (3.3)
Then we can estimate the Q-function via (3.I). Due to the nature of online RL, the estimation might
be highly uncertain due to the lack of exploration, and thus we incorporate a bonus term I', 1, (s, a) =
Jé] Zle ¢i(s,a),/1] X, } 1; into the robust Q-function estimation, where 3 = 6(H\/ d\ +Vd).
The final estimator is given on Line 8] of We will show in later analysis that the estimated
Q-function is an optimistic estimator for the optimal robust Q-function.
Inspired by [[10], we also establish estimators for the lower bound of robust Q-functions by the same
backward induction procedure, which will be helpful in constructing the variance estimator o,
as shown in the next section. In particular, given V,”, , We obtain the variance weighted regression

estimator 25 (o) = e Zk . o b (sh.a}) [Vkph_H (s741)] .- Then we get the estimation
vyt = maxaeio,m {2 (@) — pa}, i€ [d]. (3.4)

By (3.1) and (3.4), we get another estimation of the robust Q-function, which we aim to show is a
pessimistic estimation of the optimal robust Q-function. Similarly, to quantify the uncertainty caused

by online exploration, we introduce a penalty term 'y 5, (s, a) = Z?Zl oi(s,a)/ 1?2;}111», where
B = O(HVdx+ Vd3H?). The final pessimistic estimator Q% j, is shown on Line@of Algorithm 1
Though [24]] also constructed pessimistic robust Q-function estimations for DRMDPs, our methods
are very different due to 1) they do not update the estimation episodically, 2) their estimators are used

to get the optimal robust policy estimation, while ours are used to construct the variance estimator, as
shown in the next section.

3.2 Estimating the variance of the value function

In this section, we construct the variance weight 5 ;, used in (3.2) and aim to get an optimistic esti-
mator for the variance of the optimal robust value function, Vy, V;fl Due to the distinct element-wise
estimation procedure introduced in the previous section, the coarse variance estimation design in [10]]
for standard linear MDPs does not apply. Instead, we need to carefully design the variance estimators
used in weighted ridge-regressions based upon the unique characteristics of linear DRMDPs.

We desire to design the variance estimator at episode k to be a uniform variance upper bound for
all subsequent episodes. To obtain the optimistic estimator for V, Vh 1> We first solve regression

problems to obtain the estimator for V, Vk which is denoted as V}, Vk ny1- Then we analyze

h+1>
the error between V, Vh +1 and Vy, Vk hy1 tO finish the construction. Different from (5.2) in [24], the

variance estimator here is not trivially constructed from subtracting a specific penalty term because
we should guarantee the monotonicity of estimated variance for the online exploration. The variance

of estimated optimistic value function Vk" n41 can be decomposed into

[thkfjh+1](87a) = []P’% (Vkp,hﬂ)z] (s,a) — ([ngkp,h-i-l} (Sva))2' (3.5
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Algorithm 1 Weighted Distributionally Robust Iterative Value Estimation with UCB (We-DRIVE-U)

1: Initialization: confidence parameters (3, 3, B > 0 and regularization A > 0. kjq = 0. For
each stage h € [H], initialize 3¢ ;, = 31 5, = A1, = AI and the upper and lower estimation

Q45 () = H.Qf, ( ) =0
2: for episode k = 1 , K do
3:  Receive the initial state sk
4:  Set Vk’jHH(-) <—0,kaH+1(~) «~0
5. if there exists a stage h’ € [H] such that det(Xy, ;) > 2det(X,, ») then
6 for stage h=H,--- ,1do
7 Forh = H, ¥ Ap’ « 0, uh’ + 0; otherwise compute Vh’ Vi € [d] according to (3.3)

and V,’ Vi e [d] according to (3.4).

8: Qkh(s a) < min {rh (s,a)+¢(s,a0) ¥ pk—i—Fk n(s,a), Qk 1h(s a), H— h—i—l}l{s #s5}
9: Qkh(s a)(—max{rh s,a)+ @(s, a)T p:k Fkh(s a), Qk Lk (s,a) O} 1{s # s}
10: Set the last updating episode ki, < k
11: Ve, (s) « max, QF ;. (s,a), Vkph(s) + max, QZ (s, a)
12: 7k (s) + argmax,c 4 Q7 , (s,a)
13: end for
14:  else -
15: th’th’ﬂ-h%Vk 1h’Vk LTy 5 Vh € [H]
16:  end if
17:  for stage h=1,---,Hdo
18: Take af < ﬂh(sh) and receive s
19: Calculate the estimated variance oy, j, accordmg to (3:6) and 5, 5, according to (3.7)
T
20: Ekt1,h ¢ Vg + Uk,h‘ﬁ(shvah)‘ﬁ(sha ah) A < A+ o(sh, af) d(sy, af)
21:  end for
22: end for

Under|Assumption 2.1} P9, (V/¢, ,,)* and P, V), , , on the RHS of (33) are linear in ¢(s, a). Thus we

can approximate the variance as [thkfhﬂ} (s,a) = [thk€h+1] (s,a) = [d)(&a)—rﬁ,’j 2] 0,02] ~

T~k 12 ~k - k—1 T V44 2

[p(s,a) wh,ﬂ (0,7 Where Wy | = miny,ega Yo (w(sh.af) — Vk,h+1(‘9;+1)) + Awlz
~ I . k—1 T ~ 2\ 2 .

and Wf, , = mingege Y., (W' @(s7,a7) = (V41 (shy1)))” + Alwll3. Different from the

variance estimation in standard MDPs [10], we construct both w,’g , and Wy | by solving vanilla

ridge regressions, instead of variance-weighted ridge regressions. This specific choice of parameter

estimation will simplify our analysis of the variance estimation error, while fully capture the variance

information. Now we can construct oy, 5, which is the estimated variance of the optimal robust value
function V,f’p in episode k, as follows

O =\ [V ia] (55 08) + Eip + dHDp +1/2, (3.6)

where Ej, ), represents the error between the estimated variance and the true variance of Vkp h +1’

and Dy, j, represents the error between the true variance of Vk hil and the true variance of Vh 11
Formally, we define

B = min {5 (sh, i)l 1, B} +min {2H5]|(sh, o) || o 1 H*,
Dk h = min {4H( (Sh,G,Z)T’ljlfL’l - ¢(slfwa2)-rwh,l + 25”‘25(827@2) }|A;h)’H2}’
where Ay = AT+ 3021 ¢(s7,a}) b (5%, a7) | B = O(HVAN + VBH?), B = O(H2Vdx +

. . ki— - - F o2 :
VAP HS), and @} | = min,,cpa S (wTb(s],af) — Vi1 (8h1))” + Allwl[3. Finally, we
construct weights for the variance-weighted ridge regression problem (3.2): Vk, h € [K] x [H],

G = max o, 1, V2P H? b (s}, af) |5 }- 3.7)
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Compared with the variance estimation for the value function in standard MDPs [10] which is

Orn = max {ox n, H,2d° H?||¢p (s}, a};) le/fl }, our variance estimation is tighter in both the second
k,h

and the third terms. The second term in (3.7) is 1, instead of H. This is important in achieving a
tighter dependence on 1. The intuition is that, when k is large, &, ;, should be close to the variance
of the optimal robust value function. This design is motivated by the ‘Range Shrinkage’ phenomenon
unique to DRMDPs (see the discussion after[Theorem 4.1]for details), which observes that the true
variance is in the order of O(1) when p = O(1). To get a precise variance estimation, &y, », should
be in the same order of the true variance. Moreover, a constant order lower bound on &, 5, will also
ensure the weight will not cause any inflation in the weighted regression (3.2). The third term in
to be also tighter than that of [[10], while maintaining the same theoretical property.

3.3 Algorithm interpretation

Now we provide some discussions to interpret[Algorithm 1}

Remark 3.1. We highlight that [ATgorithm T]is the first algorithm adopting a ‘rare-switching’ update
strategy for distributionally robust RL. Different from [10], the ‘rare-switching’ condition on Line[5]
is set at the beginning of each episode. This is achieved by our variance estimator design, which is
independent of the parameter update for z¥ (). The update rule on Line determines whether to
update robust Q-function estimations and switch to a new policy for the current episode, and leads to
two advantages, 1) the number of times solving the ridge regression (3.2) and dual optimization (3.3)
significantly decreases, which constitute the main computation cost of [Algorithm 1] and 2) in real
application scenarios where policy switching is costly or risky, [Algorithm I|possesses low policy
switching property. We refer the readers to [Proposition 4.7|and [Remark 4.8| for more details.

Remark 3.2. On Line (7| we estimate I/Z’k element-wisely, and thus the estimator ﬁh’k is derived
from d separate variance-weighted ridge regressions (3.2) and dual optimizations (3.3). This leads
to the specific form of bonus term T 5, (s, a) = 8%, ¢i(s,a)y /1] = L 1,, which is actually an
upper bound of the robust estimation error (see and its proof) at episode k. Though
the bonus term resembles that in [23]], we highlight that the sampling covariance matrix X j in
Tk 1 (s, a) is indeed a variance-weighted one. The specific form of the bonus term leads to the new
variance-weighted d-rectangular robust estimation error defined in (4.1).

Remark 3.3. On Line [§]and [9] we adopt a monotonic Q-function update strategy, such that the
estimated optimistic (pessimistic) robust value function is monotonically decreasing (increasing) to
the optimal robust value function. This strategy is to make sure that the variance estimator oy, 5, at
any episode k € [H] is a uniform upper bound for those in the subsequent episodes, which would be
helpful in bounding the estimation error arising from the variance-weighted ridge regression (3.2).
This idea is first introduced by [2] for standard tabular MDPs and then utilized by [10]] for standard
linear MDPs. This is the first time it is utilized in the online linear DRMDP setting, where the
episodic estimation regime proposes additional requirement on the variance estimator construction
compared to the offline setting studied by [24]].

4 Suboptimality upper bound analysis

We now provide theoretical results on the upper bound on the suboptimality of

Theorem 4.1. Under [Assumptions 2.1{and [2.3] set A\ = 1/H?, then for any fixed § € (0,1) and

p € (0, 1], with probability at least 1 — ¢, the average suboptimality of We-DRIVE-U satisfies

4
AveSubopt(K) < 21/2H31og(6/6)/K + ?ﬁ IYRND DD DHINE-STYE B s PR C B )
variance-weighted d-rectangular estimation error

where 8 = O(Vd), ¢} , is the i-th element of ¢(s},af) and 1; is the i-th standard basis vector.

Recall from [Remark 3.2} the quantity 37, ¢f ;1/17 X, )1, in @) comes from solving d separate
variance-weighted ridge regressions at step h in episode k. A similar term also appears in the

Theorem 5.1 of [23]. Differently, the the quantity Zle DF iy /1?2,;211- is based on the variance-
weighted sampling covariance matrix X 5, rather than the vanilla sampling covariance matrix
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Ay, as in [23]. In order to further bound @), we need to take a closer examination of the
variance estimator. Intuitively, when episode k is large, the variance estimator should be close to
the variance of the optimal robust value function. Recent study [24] shows a ‘Range shrinkage’
phenomenon in the d-rectangular linear DRMDP (refer to , stating that the range of any
robust value function satisfies maxscs V' *(s) — minges V, *(s) < min{l/p, H},¥(m, h, p) €
IT x [H] x (0,1]. This implies that the variance of the optimal robust value function is upper

bounded by min{1/p, H}. Thus, when k is large, we can expect 7y, S O(min{1/p, H}) and

hence X}, < O(min{1/p?, H 2})A} .- To this end, next we rigorously bound @.T) under the same
setting as the Corollary 5.3 of [23]], and formally show that the variance information leads to a tighter
dependence on H compared to [23]].

Theorem 4.2. Assume that there exists an absolute constant ¢ > 0, such that for all (7, h) € II x [H]
0
EZ [@(sh, an)d(sh, ah)T] >c/d- 1. 4.2)

Then under the same setting in [Theorem 4.1 and the assumption in @-2), for any fixed § € (0, 1),
with probability at least 1 — 4, the average suboptimality of We-DRIVE-U is upper bounded by
O((dH -min {1/p,H} + H*?)/VK + d"H'¥/K).

Remark 4.3. When d > H and the total number of episodes K is sufficiently large, the average
suboptimality can be simplified as O{dH min{1/p, H}/v/K }. Note that under the same assumption
in (@.2), [23] prove that the average suboptimality of their algorithm DR-LSVI-UCB is of the order
O(d?H?/v/K). Thus, We-DRIVE-U improves the state-of-the-art result by O(dH/min{1/p, H}).
Moreover, we highlight that the upper bound in[Theorem 4.2]depends on the uncertainty level p, which
arises from the ‘Range Shrinkage’ phenomenon. When p increases from O to 1, the suboptimality
decreases up to a factor of O(H).

Remark 4.4. The assumption (@.2) is actually imposed on the DRMDP, requiring that the environ-
ment we encounter is exploratory enough. We would like to note that this assumption is necessary
in deriving our upper bound, since the elliptical potential lemma [1, Lemma 11], which is critical
in deriving upper bounds in linear bandits and linear MDPs, does not apply in the analysis of linear
DRMDPs. We note that the previous work [23]] also used this assumption to get the final upper
bound for their algorithm. Moreover, the assumption can be deemed as an online version of
the well-known full-type coverage assumption on the offline dataset in offline (non-) robust RL.
Specifically, in the context of standard offline RL, [5 44} 47] assume the offline dataset should cover
the distribution measure induced by any policy under the nominal environment. In the context of
offline robust RL, [32] 131} 157] assume that the offline dataset should cover the distribution measure
induced by any policy under any transition kernel in the uncertainty set. It would be an interesting
future research direction to study if assumption {.2)) can be relaxed.

Next, we study the deployment complexity of which constitutes two sources of cost.
The first source is the policy switching cost, say, the total number of changes in the exploration policy.
This might be the main bottleneck in applications where changing the exploration policy is costly
or risky [3} 45]]. The second source is the computation cost in solving the dual optimization in (3.3).

Recall in[Remark 4.8 we discuss that[Algorithm T|adopts the ‘rare-switching’ update strategy, which

significantly reduces the two sources of cost. Next, we formally define them as follows.

Definition 4.5 (Global Switching Cost). We define the global switching cost of an algorithm that
runs for K episodes as N7\ . = Zle L{my # Tpt1}

Definition 4.6 (Dual Oracle). We assume access to a maximization oracle, which takes a function
z : [0, H] — R and a fixed constant p > 0 as input, and outputs the maximum value 2, and the
maximizer cumax defined as zmax = maxaeo, m1{2(a) — pa} and aumax = argmax, o, g{z(a) —
pa}. For an algorithm, we define the oracle complexity as the number of calls of the dual oracle.
Finally, we show that We-DRIVE-U admits low switching cost and low oracle complexity.

Next, we formally present theoretical results on the deployment complexity of

Proposition 4.7. Under the same setting as [Theorem 4.1} the switching cost of We-DRIVE-U is
upper bounded by dH log(1 + H?K), and the oracle complexity of We-DRIVE-U is upper bounded
by 2d*H log(1 + H?K).

Remark 4.8. The switching cost of the state-of-the-art algorithm DR-LSVI-UCB [23]] is K and the
oracle complexity is d K. Thus, We-DRIVE-U improves both the switching and oracle cost by a factor
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of K. Different from standard linear MDPs, where the main computation complexity only comes
from the policy update [10]], in the linear DRMDP setting, the calls of dual oracle, besides policy
updates, are also a main source of computational burden. The update rule on Line 5] guarantees that
We-DRIVE-U calls the dual oracle and updates the policy only when the criterion is met. Actually,
is the first DRMDP algorithm that admits low deployment complexity.

5 Information-theoretic lower bound analysis

According to [Theorem 4.2) when p = (1), the suboptimality of We-DRIVE-U is of order
O(dH/VK). After multiplying K to recover the cumulative suboptimality, it is smaller than

the minimax lower bound for standard linear MDP, Q(dv H3K) [62]. To assess the optimality of
We-DRIVE-U, next we present an information-theoretic lower bound for online linear DRMDPs.

Theorem 5.1. Let uncertainty level p € (0,3/4], H > 6, and K > 9d>H/32. Then for any

algorithm, there exists a d-rectangular linear DRMDP parameterized by € = (&1, -+ , € —1) such
that the expected average suboptimality is lower bounded as follows:
E¢[AveSubopt(Me, K)] > Q( (dHl/2 -min{1/p, H})/\/R), (5.1

where [E¢ denotes the expectation over the randomness of the algorithm and the nominal environment.
Remark 5.2. We highlight that the lower bound (5.1) depends on the uncertainty level p, which
is a distinctive characteristic for DRMDPs. implies We-DRIVE-U is near-optimal up
to a factor of @(\/ﬁ ). Moreover, when p — 0, the linear DRMDP degrades to a standard linear

MDP, and (5.1) matches the information-theoretic lower bound, Q(dv H3K), for standard linear
MDPs [62]] after multiplying K to recover the cumulative regret. When p = O(1), (5.1) reduces to

Q(dH'Y? /\/K), which is O(H) smaller than the lower bound for standard linear MDPs.

Next, we investigate the O(\/ﬁ ) gap between the upper and lower bounds and propose a conjecture
on its origin. In the analysis of non-robust MDPs [2| [18| [10] and tabular DRMDPs [25], a tight
dependence on H is often achieved by exploiting the total variance law of the value function at each
episode. Currently, we bound each term in the variance-weighted d-rectangular estimation error in
(4.1)) separately. A tight upper bound might be achieved by first bounding the variance-weighted
d-rectangular estimation error as a whole by the square root of the total variance and then invoking
the total variance law. In particular, inspired by the total variance law in Lemma C.6 of [25]], the total
variance should be in the order of O(H min{1/p, H}). Together with an additional v/H arising in
the suboptimality analysis, we conjecture the dependence of the upper bound on H could be improved

to O(v/H2min{1/p, H}).

When the uncertainty level is small, i.e., p = O(1/H), the conjectured result leads to an upper bound
on the suboptimality that depends on O(H?/?), matching the current lower bound we present in G.1).
This suggests that our current lower bound is tight and the total variance analysis could improve
our upper bound. When the uncertainty level is relatively large, i.e., p = O(1), the conjectured
upper bound is O(H ), which matches the current upper bound in[Theorem 4.2} This means the total
variance analysis does not further improve the upper bound, and we suspect that a tighter lower bound
is instead necessary. This leaves an interesting open problem for future study.

6 Conclusion

This paper advanced the study of online d-rectangular linear DRMDPs by establishing a tighter
regret upper bound and the first lower regret bound under this setting. We introduced We-
DRIVE-U, a novel variance-aware algorithm that leverages variance-weighted ridge regression
and low policy-switching techniques. Under standard MDP structure assumptions, we proved
We-DRIVE-U achieves an average suboptimality of O(dH min{1/p, H}/v/K), improving the state-
of-the-art by O(dH/min{1/p, H}). We also established an information-theoretic lower bound
of Q(dH"/?min{1/p, H}/v/K), which implies We-DRIVE-U’s near-optimality up to O(v/H).
Furthermore, We-DRIVE-U reduces computational complexity with O(dH log(1 + H?K)) policy
switches and O(d?H log(1 + H?K)) oracle complexity, which outperforms existing methods by
a factor of K. We also conducted numerical experiments to validate the robustness and improved
performance over existing algorithms, which is presented in
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A Related work

Distributionally Robust MDPs There has been a large body of works studying DRMDPs under
various settings, for instance, the setting of planning and control [48} 46\ 54} 27, 9] where the exact
transition model is known, the setting with a generative model [63} 152} 130, 49, 136, 511, the offline
setting [32,135] 14} 38]] and the online setting [0, 23} 25]. Among tabular DRMDPs, the most relevant
studies to ours are [36, 25]]. In particular, [36] studies tabular DRMDPs with TV uncertainty sets.
They provide an information-theoretic lower bound, as well as a matching upper bound on the sample
complexity. The key message is that the sample complexity bounds depend on the uncertainty level,
and when the uncertainty level is of constant order, policy learning in a DRMDP requires less samples
than in a standard MDP. Further, [25] studies the online tabular DRMDPs with TV uncertainty
sets, they provide an algorithm that achieves the near-optimal sample complexity under a vanishing
minimal value assumption to circumvent the curse of support shift.

Online Linear MDPs and Linear DRMDPs The nominal model studied in our paper is assumed
to be a linear MDP with a simplex feature space. There is a line of works studying online linear
MDPs [50, (19, 281,155} 143} [11} 140l [15]], and the minimax optimality of this setting is studied in the
recent work of [[10]. In particular, they adopt the variance-weighted ridge regression scheme and the
‘rare-switching’ policy update strategy in their algorithm design. The setting of online linear DRMDP
is relatively understudied, with both the lower bound and the near-optimal upper bound remain elusive.
Specifically, the only work studies the online linear DRMDP setting is [23]. Under the TV uncertainty
set, their algorithm, DR-LSVI-UCB, achieves an average suboptimality of the order O~(d2 H?/VK).
However, recent evidence from studies [24}41]] on offline linear DRMDPs suggests that this rate is
far from optimality. In particular, [24] proves that their algorithm, VA-DRPVI, achieves an upper
bound on the suboptimality in the order of O(dH min{1/p, H}/v/K). Nonetheless, their algorithm
and analysis are based on a pre-collected offline dataset which satisfies some coverage assumption,
and thus cannot be utilized in the online setting, where a strategy on data collection is required to
deal with the challenge of exploration and exploitation trade-off.

B Experiments on simulated linear DRMDPs

B.1 Simulated linear DRMDPs

We conduct numerical experiments to illustrate the performances of our proposed algorithm, We-
DRIVE-U, and compare it with the state-of-the-art algorithm for d-rectangular linear DRMDPs,
DR-LSVI-UCB [23], as well as their non-robust counterpart, LSVI-UCB [19]. All numerical
experiments were conducted on a MacBook Pro with a 2.6 GHz 6-Core Intel CPU.

We leverage the simulated linear MDP setting proposed by [23]]. For completeness, we recall the
experiment setting as follows. The source and target linear MDP environment are shown in
and[Figure 1(b)} The state space is S = {1, , 25} and action space A = {—1,1}* C RT. At
each episode, the initial state is always x1, and it can transit to x2, x4, x5 with probability defined in
the figures. x- is an intermediate state from which the next state can be 3, x4, 5. 24 is the fail state
with reward O and x5 is an absorbing state with reward 1. For the reward functions and transition
probabilities, they are designed to depend on (£, a), where £ € R? is a hyperparameter controls the
MDP instances. The target environment is constructed by only perturbing the transition probability at
21 of the source domain, and the extend of perturbation is controlled by a hyperparameter ¢ € (0, 1).
We refer more details on the construction of the linear DRMDP to the Supplementary A.1 of [23]].

We set & = (1/[|€||1,1/]|€1,1/|€]l1,1/]|€]1) T and consider different choices of ||£]|; from the
set {0.1,0.2,0.3}. Following the implementation in [23], we use heterogeneous uncertainty level
and set p; 4 = 0.5 and pp,; = O for all other cases. We set the number of interactions with the
nominal environment to 200. We evaluate policies learned by We-DRIVE-U, DR-LSVI-UCB [23]]
and LSVI-UCB [[19] by the accumulative rewards achieved in the target domain, which are illustrated
in[Figure 2] [Figure 2|shows that: 1) policies learned by We-DRIVE-U are robust to environmental
perturbation, and the extent of the robustness depends on the pre-specified parameter p; 2) In most
cases, We-DRIVE-U outperforms DR-LSVI-UCB, meaning it being more robust to environment
perturbation. Moreover, demonstrates the low-switching property of We-DRIVE-U. During
200 interactions of the training process, We-DRIVE-U switches policies only around 24 times,
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(a) The source environment.

1
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5§+ (& a)

1

(b) The target environment.

Figure 1: The source and the target linear MDP environments. The value on each arrow represents
the transition probability. For the source MDP, there are five states and three steps, with the initial
state being x1, the fail state being x4, and x5 being an absorbing state with reward 1. The target MDP
on the right is obtained by perturbing the transition probability at the first step of the source MDP,
with others remaining the same.
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which stands in stark contrast to the 200 policy switches by LSVI-UCB and DR-LSVI-UCB. These
numerical results prove the superiority of our proposed algorithm We-DRIVE-U and align well with
our theoretical findings. All numerical experiments were conducted on a MacBook Pro with a 2.6

GHz

Average reward

Average reward

6-Core Intel CPU.
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Figure 2: Simulation results under different source domains. The x-axis represents the perturbation
level corresponding to different target environments. p; 4 is the input uncertainty level for our
We-DRIVE-U algorithm. ||£]|; is the hyperparameter of the linear DRMDP environment.
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Figure 3: Results for the simulated American put option problem. p is the uncertainty level in

We-DRIVE-U.
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Table 1: Simulation results of the switch complexity of We-DRIVE-U. We present the average policy
switch times of We-DRIVE-U during 200 interactions with the nominal environment, averaged over
10 replications. As a comparison, the policy switch times for LSVI-UCB and DR-LSVI-UCB are
both 200 under each setting.

p=0.1 p=0.2 p=0.3
1€)=0.1 238 240 23.8
1€]1=02 242 244 240
1€]1=03 243 236 248

B.2 Simulated American put option

We additionally conduct a simulation study in the American put option environment (see more details
in Section 6.2 of [1]), which under the hood is not a linear MDP. By manually constructing ¢, we
show in[Figure 3that our algorithm still achieves some degree of robustness.

C Proof of |Proposition 2.2|

Proof. We instantiate the hard example in Example 3.1 of [25] in terms of the formulation of d-
rectangular linear DRMDP satisfying Consider two d-rectangular linear DRMDPs ,
M and M. The state space S = {Sgood, Sbad }» and the action space is A = {0, 1}. We define the
feature mapping as

1 0 0

0 p(1—o) po
?°(8good, @) = | 0 | ,Va € A, ¢?(spaa,0) = qo , @%(Sbad; 1) = q(1—o)

0 (1-p)(1-0) (1-pe

0 (1-qe (1-q)(1—-0)

where ¢ € {0,1} is the index of the d-rectangular linear DRMDP instance. Define the factor
distributions g = (Gs,00qs Gsgon> Osgooas sus> Oseg) | and the reward parameter = (1,0,0,0,0) 7.
Then it is trivial to check that equipped with the d-rectangular TV divergence uncertainty set, this
example recover the hard example in Example 3.1 of [23]. O

D Proof of the Upper Bound on the Suboptimality of We-DRIVE-U

In this section, we present the proofs of our main theoretical results and We start
with presenting the technical lemmas in[Appendix D.1} and then we derive the upper bound on the

suboptimality of We-DRIVE-U in[Appendices D.2|and

D.1 Technical Lemmas

Definition D.1 (Good event). Under and[2.3] then for any fixed § € (0,1), o’ €

[0,H]and p € (0, 1], we define &, be the event that for all episode k € [K], stage h < h/ < H,

<7 D.1)

1
Zk N

T, h’¢h’ [ k h’+1(8h’+1)] []P)O’ [Vkp,h/JrJ a’] (shr a;,)}

where v = 6(\/&)

Lemma D.2. We define € as the event that the following inequalities hold for all (s,a) € S x A,
ke [K], h € [H],

’¢(Sa a>TuA7i’§,1 - [ngkp,h+1] (87 CL)‘ < B\/¢(87 a)TAI;}zd)(& CL),

’¢(Sa a>Twi’§,1 - []P)lgvkp,h+1] (87 CL)‘ < B\/¢(87 a)TAI;}zd)(& CL),
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629

630
631

632

633

634

635

636

637

638
639
640

6(5,0) Tk — (B (V211)7) (5,0)] < By fo(s,0)T A hb(s. ),

where f = (5(H\/d)\ + \/d3H3) and E = (5(H2\/d/\ + \/d3H6). Then event £ holds with
probability at least 1 — 6.

Lemma D.3 (Variance error). On the event £, and &, for all episode k € [K], the estimated
variance satisfies

| [Vth i (527 ah) ViV h+1]( } < B
’ [Vth h+1} (s’,i, ah) (Vi Vi ](sh, ah)} < Epn+ D
Thus we also have
Ten > ViVl i) (skak) + Ben + Din > [VaViy] (sh af).-

Lemma D.4. For any fixed policy 7, on the event &, and &, for all (s, a,k) € S/{ss} x A x [K],
for stage h < h’ < H, we have

T 5Pk P - : Crp
rp(s,a) + od(s,a) %) — Q.0 (s,a) = inf Pn VY, s,a
(o) + 900, 0) ) ~ QI sa) = it ] 000)

— inf P V5P (s, a) + AF. (s, a),
Ph’('lsxa)eui/(&aﬂiz/) [ h +1j| h

where A, (s,a) that satisfies |AF,(s,a)] < Tpp(s,a) = /32?:1 ¢i(s,a)1/112;}1, 1, where
8= (5(\/)\dH + \/3).

Lemma D.5 (Optimism and pessimism). On the event &, and &, for all episode k € [K] and stage
h <h' < H, forall (s,a) € S x A, we have Q7 ;. (s,a) > Q" (s,a) > Qz’h,(s,a). In addition,
we have Vk‘th,(s) > VP (s) > Vkp,,( ).

Lemma D.6. On the event £, event £ = & holds with probability at least 1 — 4.

Lemma D.7. Under the assumption {#.2) and events £ and &, for any h € [H], set A = 1/H? and
€ (0,1]. Then when k > K where K = O(d®H'?), with probability at least 1 — 4, then we have

1
Thn < O(min{?,HQ}).

D.2  Proof of Theorem 4.1]
Proof of[Theorem 4.1] Conditioned on the event € and &, we first do the following decomposition

Vkp,h (3’12) - Vhﬂkm (sﬁ)

= Q0. (shoak) = Q7" (sh.af)
<ru(sh,af) + @ (sk,af) TorFs 1 Ty n(sh ak) — Zk”o(sllfu af)

A . kY A
S P}L(~|s,a)l€nf P (s,a; oy ) [Pth/jh+1j| <s;€“ aﬁ) B Ph(~|s,a)l€rlig(s,a;l—b(}{) [th};—lp] (SZ’ aﬁ) * 2Fk]as“h (Sﬁ’ CLZ)
< inf P, V? koaky — inf PV 2P (5. ak) + AT 5 (sF, a®
- Ph<-|s,a>lelit;j<s,am2)[ WVl (51, an) Ph<-|s,a)lelit;;<s,am2)[ WVt (s an) + 4T (sh o),

where the first equality holds due to the selection of 77, the first inequality holds due to the definition
of Q) ,,, the second inequality hold from the third inequality holds from
Note that

~ k
n P, V! s¥oaf) — inf P,V P (sF af
Pa Ik al ) CUP (s ki) [ k,h+1}( ) Pa Ik al ) CUP (s ki) [PrVii”]( )
ko k i [V .
= <¢>(sh,ah), |:a'irél[%?{H] {EH'”' [Vkp,hﬂ(s)] i Paz}]ie[d]>

_ Kh,i _ .
<¢(sh7 ah [a I?[%XH] {E ! ] a; paz}:| ie[d]>
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IN

a; €[0,H]

(s ab). | mas, (B4 0L, 20Ol )
i€[d
< <¢ 5h7ah) E“ [Vk h+1( ) Vhﬂ+1’p(3)]>
=P, [Vk ht1 Vh+i ?1] (sh- ah)
xk ~ xk ~ k
= [Pg[ khtl Vh+ip]] (sl;“ alfi) - [V)f,h.;_l(slfwrl) - Vh+17p(sﬁ+1)} + [Vkp,h-o—l(SfLJrl) - Vh+ip(sfb+1)]a
e+t where the second inequality holds from[Cemma D.5] Then we have
Vkph (k) — Vﬂ " (sn)
k A k ~ k
= [Vk,h+1(5h+1) - VhWJrip(SZJrl)] + [P?L [Vkp,h+1 - Vhiip]] (527“2) - [Vkp,h+1(8];b+1) - Vhﬂ+17p(5§+1)}
+ 405 (sk, ax), (D.2)

642 Then by applying iteratively and applying Azuma-Hoeffding inequality, with probability at
s43 least 1 — §/3, we have

K
K x AveSubopt(K) = > (V7 (s5) = V7 (s}))
( ,1 p(slf)>
= A~ ~ k
Z ([Ph (Vi1 — Vf::i*ip]] (shrah) = Vi (shar) - V}:T+ip(sﬁ+1)])

K H
+ZZ4FHL sh,ah

k=1h=1

< 24/2H3K log(6/9) +4ﬂzzz¢z Sh,ah 1T2k%1w

k=1h=11=1

e44  where the first inequality holds from | the second inequality holds from (D.2)), the third
645 inequality holds from Azuma-Hoeffding 1nequahty and the definition of T k.h (s p h) Finally, by
e46 taking probability union bound over € and £, with probability at least 1 — &, we can get the result of

647
K H d
AveSubopt(K) < 21/2H310g(6/8)/K +48/K > Y "> " ¢f /1T 5,1,

k=1h=1i=1
648 This completes the proof. O

s49 D.3 Proof of[Theorem 4.2
es0  Proof of[Theorem 4.2} Conditioned on the event £ and &, we first do the decomposition as follows

K
K x AveSubopt(K) = > (V" (s) — V7™ 7 (s}))
k=1
K K
=D (P(sh) =V () + D (W (st) = VTP (st)
k=1 k=K+1
~ K k
SHK+ Y (WP(sh) = Vi *(s1)).
E=K+1

651 Recall from (D.2) in the proof of we have

Vkp,h (SZ) - Vhﬂk’p (52)
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k k k

< [Vlf,hﬂ(sﬁﬂ) - V,f+ip(sﬁ+1)] + [Ph [Vkp,h-H - Vhlip]] (sﬁ,aﬁ) - [Vkp,h-!—l(slfl-‘rl) - Vhw-yip(slfwl)}
+ 4fk,h($’fm alfb)-

652 Then by applying (D.2) iteratively and applying Azuma-Hoeffding inequality, with probability at
653 least 1 — &/4, we have

K
K x AveSubopt(K) < HK + Z (VP (s) = V™ bp (s1))
k=K+1
K
< HK + Z Vkp1 51) %4 p(s’f))
k=R +1
~ K H A
<HE+ 3 3 ([BR V20 ~ Vi) (sh )
k=K+1h=1
K H
_[th+1(3h+1) Vh:-l (5h+1 >+ Z Z4Fk,h(s’,§,a’,§)

k=K+1h=1
_ K H d
< HK +2V/2H3K10g(8/6) +48 > Y > ¢i(sh,a)\/1] Sy 11,
k=K 41h=1i=1

654 where the second inequality holds from [Cemma D.3]| the third inequality holds from (D-2) and the
655 last inequality holds from Azuma-Hoeffding mequallty and the definition of Fk h (sﬁ, ah) Based on

ss6  (#.2) and[Lemma D.7} with probability at least 1 — §/4, we can further have
K H d
RSB AL N

k=K+1h=11=1

K H d
§4cl,8min{l,H} Z ZZQ%(SZWZ)\/HTM
p k:]?_;'_lh:li:l
1 K H d
§401Bmin{7,H} Z 22@(527%) A (A;}L)
p k:[}+1h:1i:1
1 R 1
§4 i {7aH}
CleHl P Z }; )\mln(Ak,h)
k=K+1
K H
ol 2d
§461,8m1n{;,H} Z }; Te
k=K+1h=
< 4eV2d, Lw 1 dk
1 ,6’7 mln{;, } /}N(_H 1
§401\/ﬁ5 mm{ } WK
Ve p’

< (5(dH\/E~min{%7H}),

657 where ¢; > 0 is an absolute constant. The first inequality holds from the third
ess inequality holds because 2?21 ¢i(s,a) = 1 and the fourth inequality holds due to (EI0) with
59 K > 512/n*log(dK H/§). Therefore, we can further bound the regret that

K H d
K x AveSubopt(K) < HK +2y/2H3K 1og(8/0) +48 > > > ¢i(sy,af) /1T ;)1

k=K+1h=11i=1
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660
661

662

663

664

665
666

667
668

669

670
671

672

673

< (5(dH\/E~min{%,H} +HIVE + d15H13).

Finally, by taking probability union bound over £ and &, with probability at least 1 — J, we can bound
the average suboptimality of We-DRIVE-U as follows

_(dH -min {1 HY + HS gi5p13
AveSubopt(K) < O L . D.3
veSubopt(K) < ( Nire + I7a (D.3)
We complete the proof by substituting 7 = O(1/d) into (D3). O

E Proof of the Technical Lemmas

E.1 Proof of[Lemma D.2

Before the proof of we first present a lemma that defines the optimistic value function
class and gives a upper bound for its covering number.

Lemma E.1 (Function class covering number). In [Algorithm 1} for each episode k € [K] and
h € [H], the optimistic value function V}”, belongs to the following function class

d
V), = {V‘V() = max max, min {Th('7 a) + ¢(-,a) 'w; + 8 ;@(v a)y/1/ 14, H},

1>
Iwsll < L. Tl < A-VE}

where ¢ < dH log(1 4+ K /) is the number of value function updates from [Lemma F.I]and L =

20 \/ dK /) from|Lemma F.2| Define N, be the e-covering number of V}, with respect to the distance
dist(V1, V2) = sup, [V1(s) — Va(s)|. Then the covering entropy can be bounded by

log N, < dllog(1 + 4L/e) + d*flog (1 + 8VdB?/\e?).

Proof of[Lemma E7]] For any two function V3, V5 € Vj, we can write V;, V5 as follows

d
Vi) = max Igagzmin {Th(‘a a) + ¢(-,a)Twy; + 5;@(',61)\/ 1Ty 1, H}7

1<5<
d
— i . . T . (. T 1.
Va(-) = mgxlrgjagzmm {rh( ,a) + @(,a) W +ﬂ;¢>z( ,a)\/1; FQ_’]].Z,H},

where ||W17j||7 ||W2,j|| <L, I‘17j,I‘27j < A~ and ||F1,j||F7 ||F2,j||F < )\_1\/&. Then we have

dist(V1,V2) = Slslp [Vi(s) — Va(s)]
d

< sup o |g(s,a) wij+ B ils,a)y/1] Ty 1,
1<j<l,s€8,a€ A i=1
d

— (ﬁ(s,a)TWth — ﬂz¢1(8, a)\/ 1?]:‘27]'11'

=1
d
<B  sup > i(s,a) (\/LTFLJ'L' - \/1iTF2a‘1i)
1<j<t,s€S,acA|
+ sup |B(s,a)T (w1 — w2 ;)|

1<j<l,5€8,a€A

<g sup
1<j<t,s€S,ac€A

d
Z \/¢i(57 a)1] (T1; — Ty ;) ¢i(s, a)l;

i=1
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675
676

677

679

680

681
682

683

684

685

686

687

688

689

690

691

692
693

+ sup |B(s,a)T (w1 —wa;)|
1<j<¢,5€8,a€A

<p Sup \/ Hrl’j — FQJHF + sup HWLJ — W2’jH2 (E.1)
1<j 1<j<¢

where the third inequality holds because |/z — y| > |\/= — /3|, the fourth inequality holds because

Cauchy-Schwarz inequality, ||¢(s,a)|l2 < 1 and Z?=1 b = - || F is the Frobenius

norm.

Now, we denote Cy, as a €/2-cover of the set {w € R%|||w|| < L} and Cr as a € /43%-cover of

the set {T' € R¥™9 | ||| < A~'v/d} with respect to the Frobenius norm. Then according to
we have

Col < (1+4L/6)%, Cp| < (14 8vdB2/Ae2) "

Then for any function V; € Vj;, with parameters w1 ;,I'y ;,1 < 7 < £, we can find parameters
W2 S CW,I‘Q_’]‘ S C]", 1< j < g, such that HWQJ' — W17j|‘2 < 6/2, ||I‘21j — Fl,j”F < 62/452.
Thus we have

dist(V1,V2) < B sup ,V IT1; — Tojllr 4+ sup [|wi; —wajll2 <k
1<5< 1<5<e

where the inequality holds from @) Therefore, the e-covering number of optimistic function class
Vy, is bounded by NV < [Cy | - |Cr|%, thus we have

log N, < dllog(1 + 4L/e) + d*flog (1 + 8VdB?/\eé?),
which completes the proof. O

Now we are ready to prove

Proof of[Lemma D.2) For any stage h € [H] and the optimistic value function V,°, 1> according to
Lemma F.3| there exists a vector w} such that P)V/”, . | (s, a) can be represented by ¢(s,a) T w};

and ||wf||2 < Hv/d. Therefore, the parameter estimation error can be decomposed as

7y = whly,
k-1 ) k-1 .
< HA 5 051 0) s o1s) = Ak (A X (67 ah) o (sh.f) o
=1 =1 Ak, n
k-1 A R
< [ACL X (6T ah) (s (5F) — BV 5T 0) ~ M o
=1 Ak,
||)‘Ak hwhHA HA Z¢’ shvah kh+1(3h+1) _P?zvkp,h—o—l(s;;’a;))
_,_/ Ag.n
I

Iy

Bound term /;:

L= MG willy, , = Mwhll s < VAJwi]l, < HVAA,

where we have Ay, 5 = Al and ||wf |, < HVd.

Bound term 75: we applywith the optimistic value function class Vj, and € = Hv/\ /K,
then for any fixed h € [H ], with probability at least 1 — §/3H, for all episode k € [K], we have

ah k 1 (Sthl) - P(f)bvkﬁ),h+1(57l;a a;))

d k+ X N, 8k2e2
< 2= _ e
_\/4H [210g( \ >—|—log 6}—1— 3

22
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694
695

696

697
698

699

700
701

702

703

704

705

706

< O(Va3H3),
where the first inequality holds because of the second inequality holds from

Thus we have
[@h s —wh|ly, , <D+ 1= O(HVAA + VPH?) =
Therefore, the estimation error can be bounded by
|#(s,0) gy — PRV ] (s, 0)| = [@(s,0) "oy s — (s, a) "]
< ik s b, - l0(s.a)la
< B/ ls,a)T AL (s, ),

where the first inequality holds from Cauchy-Schwarz inequality. Similarly, for the pessimistic
function class V}, (or squared value function class V,QL), we have the similar result as follows

‘d)(Sva)TwZ,l - [P(F)ka,),h+1] (S7a)| S B\/¢(S,G)TA];}1¢(S, a)’
‘d)(& a)T’lE}kL:Q - [P(f)b(vkp,h+1>2] (Sa a)‘ S E\/QS(& a)TAI;}fﬁ(Sa a)v
where 3 = (5(H\/ﬁ + Vd3H?) and B = (5(H2\/ﬁ + Vd3HS). By taking union bound over

h € [H] and three function classes, we have that the event € holds with probability at least 1 — 4.
This completes the proof. O

E.2 Proof of Lemma D.J3)
Proof of[Lemma D.3| First, recall from (3.6)), we have
> S . k12
I:thkp’th]jI (s,a) ~ [th;gp’h+1] (s,a) = [¢(57 a)Tw}li,Q] [0,H2] ~ [(ﬁ(s, a)T'wz,l] [0,H]’

where wy ; and Wy , is the solution of the following ridge regression problems

k—1
N 2\ 2
w;’i 2= argmmz ( (S;-wa‘sz) - (Vkp,h-H (sﬁﬂ)) ) + Awlf3,
weRd
k—1 9
'wh 1= argmlnz (w ¢(Shaah) Vkp,h+1 (5;:+1)) + AJawlf3-
weRd T

Then we have

‘ Whvkp,hﬂ] (wa “lfi) - [Vth'fh+1](sZ,aﬁ)\

< [[®(shs af) Tk 2] g oy — [ Sk ab) T0h ) gy — (PR (VE000) ) (ks ak) + ((PRV ] (sh 0h)?

< |[@(shsah) " h 2] g oy — [PR(VE140) ") (s af) | + M¢<sﬁ7aﬁ>%z T = (BRVE ] (55, ah))’|

< |[@(shs a) "Bk 2l g oy — (B (VEnsn) ) (ks ak) | + 2| [ (sh af) "k 1] ) — [PRVE 4] (51, ah)|
(

(
< min { B¢ (sk,ak) | -1 , 7 | + min {208 @(sh,af) | - . H}

where the last inequality holds from|[Cemma D.2] For the second result, we have

‘[thkph-&—l] (sh»ar) — ViV (sﬁ,aﬁ)’

PR 20)7) o) — (BRVE ] (o) = (PR o)+ (PR o)’
< | (BB (V200) T (58 ) — (B2 (V722) ") (s, ab) |+ | ([BR V] (s 0B)” = ((BRVAES] (o8 b))

< 4H|[BV00] (sh af) — PRV (sk )|
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713
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715

716

77

718

719

720

< 41'-[([]P’(;)LV,C h+1](5§€”ah) [Ph h+1](5 » Ak ))
<4H([]P’2V,C il (sh.an) — [Ph Vi (sh-an ))

]
<m1n{4H( sh,aﬁ)Twhl— (sh, Z)T'w 1+2,BH¢ sh,ah HA 1) H2}
= Di,n.

where the second inequality holds because 0 < V;f 15 Vkp ny1 < H, the third and fourth inequality

holds because of [Lemma D.5] the fifth inequality holds due to]] and the last inequality
holds because the trivial result 0 < [Vth h+1] (sh, ah) [Vth ](sh, ah) < H?. Thus we have

’ Whvkp,hﬂ] (Sﬁ, aﬁ) - [thfjﬁ](sﬁv aﬁ)‘ < Egh + D -
Then we also have
Gon = [VaVil 1] (sk ak) + Exn + Din > [VaVih ] (sh, ar),
where we use the definition of 7y, 5, in (3.6). This completes the proof. O
E.3 Proof of[Lemma D.4

Proof of[Lemma D.4] Forall (s,a) € S/{ss} x A, for stage h < h’ < H (we use h to replace b’ in
this part for simplicity), we have

TP(s,a) = 1h(s,a) + d(s,a) VP =rp(s,a) + inf P,V 5" (s, a).
T a) = (o) + Bl a) W =)tk [T (s,0)

We first decompose the gap ﬁh’k — vy '” into two terms

~0k m™p _ Pk ~pk | ~pk 0
R e e e 7 (E.2)
I Jii
~pk _ [~p,k ~pk _ B TP .
where 7" = [0} il @nd TR} = maXae(o, ) {E#ni [V, 1 (s)],, — pa}. Then we will bound

these two terms separately.
Bound term I'in (E2): we have

8 ’ ’yﬁ’k < { max {’221(60 — B [Vkp,hﬂ(s)}a}}

a€[0,H] ield]
Denote af = argmax,c(o g {2 (@) — EFi.i [Vk‘th+1(s)}a}, i=1,---,d. Then we have
= 0 A~
ot — ot < [(E;i Fond(5h @) [V (5760) ] ar ) = (B*H [Via ()] ) } .,
=1 i/ i/i]icrd
. k-1 A
- [( SRV 6)] )+ (B S o en [V (7))
ot T=1 ¢
- [P% [Vkp,thl]ad(Szva;)]) } . (E.3)
¢ tlield)

For the first term on the RHS of (E3)),

‘<¢(S’ @) K — A3, EM {Vk/ih-&-l(s)} a;v)j ie[d]>’

(s,a)1; (=A)%, HEH {Vkpthl( )}

k
@;

</\Z m B e [894 77000,

a. —1
LD Y
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d
< VA Y \[6i(s,0)1] S hoi(s, )L, (E4)
=1

721 where 1; is the vector with the i-th entry being 1 and else being 0. The first inequality holds due to
722 the Cauchy-Schwarz inequality.

723 For the second term on the RHS of (E-3), given the event &), defined in [Definition D.I| we have
k1 A A
(o (o St mti], - ] o) )]
=1 g R ilie[d]
d k=1

(8 a)lz’TEl;,}L O":}2L¢h H k h+1(5h+1)] ok [PO [Vk h+1] k] (8hs a;)} ‘
r=1

<Z\/¢13a1 3 hqﬁlsa

k—
Z&*i¢h[ VL (sFe)] ox = B[V 0] ] (6T aD)

—1
2:k,h

<33 V(s 1] Sk uls a1, (E5)
=1

724 where the first inequality follows from Cauchy-Schwarz inequality and the second inequality holds
725 from the event £,. Combining (E3), (E-4) and (E.3), we have

d
($(s,a), 50% — 0% < (mH n 7) 3 ils,a)\ /1] Sk L,
i=1

~pk _ ~pk

726 On the other hand, we can similarly do analysis for (¢(s,a), 7, — ©,'"). Then we have

(p(s,a), 00" —op™)| < 52@ s,a)\/1] 2} 15, (E.6)
727 where § = (mH ﬂ) - 6(mH n m).

728 Bound term Ilin (E2): we have

(¢(s,a), 0 Moy )= inf [th/k‘th“] (s,a) — inf [PthH] (s,a).

Py (-ls,a)€Uf (,a;:19) Py (-ls,0) €U (5,059
729 Finally we have
(ru(s,a) + ¢(s,a)"o1") = Q" (s,a)
ok ~k, k
=(p(s,0), 00" = 0,7 + 00 =)
inf P,V s,a) — inf PV (s, a) + A¥ (s, a),
Ph( |s, a)EL{h(s a; uh) [ k’h+1]( ) Ph(~|s,a)61/{;j(s,a;p,9l) [ h+1]( ) h( )

730 where |[AF(s,a)| < BL, dils,a)y/ 1%}, 1;. This completes the proof. O

731 E.4 Proof of[Lemma D.5

732 Proof of[Lemma D.5] We prove this lemma by induction. For last stage H + 1, it is trivial because
733 forall (s,a) € S x A, we have QF, 1, (s,a) = Q1 (s,a) = QF .1 (s,a) = 0.

734 Assume that the lemma holds at stage i’ + 1, now consider the situation at stage h' (we use h to
735 replace A/ in this part for simplicity). For all episode k € [K], we have

rr(s,a) + ¢(s, a)Tﬁﬁ’k + f’k,h(s, a) — Q" (s, a)

> inf P,V (s,a) — inf Pu V58] (s, a) + Af (s, a) + Tron(s, a)
P (-ls,a)€Uf (s,a;n9) [PaVl4a] Py (-Is,a)€UP (5,019 [PaViiia]
> inf [Ph (f/kaH_l — V;_;_pl)] (s,a)

Py, (+|s,a)eUf (s,a;uf)
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750
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755

Z 07
where the first inequality holds from|Lemma D.4] the second inequality holds because |AF (s, a)| <
f‘k, n(s,a), the third inequality holds from induction assumption. Thus we have

Q;’(s,a) < min { znélb% rr(s,a) + @(s, a)Tlﬁ,pl’i +Tin(s,a), H—h+ 1} < szh(s, a).

T'hus for value function V', we have
VAkph(s) = maXQAz h(s,a) > maxQZ”’(s,a) = Vh*’p(s).
3 a ’ a

For the pessimistic value function Qg ,(8,a), we can do the similar analysis. Finally, by induction,
we finish the proof. O

E.5 Proof of[Lemma D.6

Proof of[Lemma D.6] We use backward induction to prove this lemma. For the base case, the stage
H, itis trivial to obtain (D.I) because V" ;; ., = 0. Assume (D.I) hold for the stage /2 + 1, then we
consider the stage h.

For all episode k € [K], we first do the following decomposition

[ Vk h+1(5h+1)] [PO [Vk h+1] }(527 a;)}

—1
Zk,h

k—
Z of [Vith (shen)]o — [BRIVIA] ) (57 b

—1
D2

J1
k—
Z T3 [ D Vi (i) = PR (A V)l GRan)] | o @D

1
Ek h

J2

where Aa’Vkp,hH(Ssz-s-l) = [Vkp,h+1(5i:+1)]a/ - [Vl:ip1(5;+1)]a/

Bound term J; in (E7): For term J;, we apply with x; = 7, ¢(s},a) and
m = 6Z i (Vif(shaD)] = B Vil (shoap)). Note that based on we have
Jk n > [Vth ] (sh, ah) [Vh [Vh-s—l] ] (sh, ah) Then for x; and 7;, we have
1xill2 = ||@ (s, ap) ||, /Tin < 1,
Elni| 7] =0, ni| < |th([ h-’s-p1(5 +1)] - [P} [Vh+1]a/} (sh-an))| < 2H,
E[n7|Fi] = [ ;3([Vhi1(3h+1)} / [PO [Vthl] ](Shaa;i))Q] <l=o0°

" < ) -1 < d>
o i {1l ) < e, {28070l } < VA
where we use the definition of &; 5, in (3.7). Then for all k£ € [K], with probability at least 1 — 6 /2H,
we have

i)l < O(J\/E+ 1%?§k|77i|min{la ||X2H2L—}1L}) = O(\/E)

k,h

Bound term J5 in (E7): To bound term .J5, we need to use e-covering for function class ]7h+1
[ijh] where Vh+1 = { |V S Vh+1, a € [0, H] } is the truncated optimistic value function
class. For any two function V1, Vg S Vh+1, we can write that

Vi = Vilays Va = [Valaa)
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where Vi,V € Vi q1, a1, a0 € [0, H]. Then we have
dist(Vy, V3) = sup [Vi(s) — Va(s)]
= sup | Vi (5) = [Ve]as ()]
< sup | [Vilay (5) = [Viloy ()] + 5up [ [Vi]as () = [VaJay (5)
< a1 — ag| + dist(Vy, Vo). |
This indicates that the e-covering number /\7 . for function class )7h+1 can be bounded by
N, <M g - Noe,

where N 1,5 is the $-covering number for optimistic value function class V11 and Ngé is the
§-covering number for closed interval [0, H]. Then based on|Lemma E.1|and [Lemma H.7, we have

log N < dflog(1 +8L/e) + d*¢log (1 + 32v/dB? /Ae?) + log(6H /e),

where ¢ = dHlog(1 + K/\) and L = 2H\/dK/\. Here we set € = /A\/4H?d>K, then the
covering entropy can be bounded by

logN. < O(d*H).

For simplicity, we denote Aa/Vkp n1 here as AV, then for AV, there exsit a function V in the e-net
satisfies that

dist(AV,V) < e
Then the difference of the variance of AV and V can be bounded by
[VaV] (sh, af) — [VaAV] (s}, af)
= (B V) (sh. af) — [B(AV)?] (s ak) — ([BAT] (s}, b)) + ([BA(AV)] (sh. af))?
< QSEp’AV s) = V(s)] -sgp|AV s)+ V(s)]

< 4Hdist(AV, V)

< 1
= 2d3H"
This indicates that
1
[VaV] (s, ah) < [VaAV] (s ah) + 5777

< [Ph([Akfjh-ﬁ-l]a' [Viti] )2} (st af) + Qd‘%’H

< [Pt~ it ) o) + g

< 2H [P (Vi1 = W) | (ks af) + Z%H

< 2 (BaV L (5ho0) BV (o) + 5

< Din+ 35

< 52,h/d3H’ -

where the fourth inequality holds due to with induction assumption &}, 1, the sixth
inequality holds due to the definition of Dy, ;, and the last inequality holds because of the definition

of o1 1, Then we apply we applywith x; =0, 5 ¢(s},a},) andn; =5, (V(si 1) —
P%V(sz, a,)). For x; and n;, we have

||Xz||2 < ||¢(52aa2)||2/&i,h < 17
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775
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777
778

779

780

781

782

[771|]:] =0, |771| < ‘Uzh( Sh+1) IP’?LIN/(s}z,a}l))] < 2H,
E[n?|F:) = 6,7 [VaV] (s}, a}) < 1/d°H

-1 3
1I£1a<xk{\m\ min {1, ||xl||2 }} < oax {QHO'Zh |XZ||2 } <1/d°H

where we use the construction of ; 5, in (3.7) and (E-8). After taking union probability bound over

e-covering for function class Vi1 — [V,

i), We have

< O(Vd).

—1
Ek‘h,

zam[ (sh2) ~ [BV](sF. af)

For simplicity, we denote that V = AV — V = AoV — V and have sup, |V (s)| < e. Then we
obtain

[ Vi, hﬂ(shﬂ) [P(f)b (Aa'Vkp,h+1)] (sh, aﬁ)}

-1
Ek h

[ (She1) — [PW} (s;,a;)}

-1
Zen

k—1
2| Y720 [V (shan) — [PAV] (57 ah)|
T=1
< O(Vd) + 4ek/VX
< 0O(Vad),
where we use that ¢ = v\ JAH 2PK. Finally, we have

k—1

Z __2¢h [[Vk h+1(sh+1)] [P(i]z [Vkp,h+l]a’] (5;”“;)}

1
=1 Ek h

-1
Ek,h

=J1+ J2 <,

where v = O (\/3) Thus, by induction we complete the proof. O

E.6 Proof of[Lemma D.7|

Proof of[Lemma D.7} Conditioned on the event € and &, to bound the weight 5’,%’ ,» recall from the
definition (3.7), we have

Tkh —max{ak n, 1, V2d3H Hgb(sh,ah)HE 1},
According to (3.6), we have
A 1
orn = VeV 1) (sk,af) + Exn + d°H - Dy, + 2’
where E}, 1, Dy, j, are defined as follows

Epn = min {3l (sh af) [ o . 1 | + min {2H B (sh af) [ o . 2.
D = min {41 (9(sh.af) i = 6 (ok of) "l + 2806k [, ) 7).
where § = O(d?H?), § = O(d? H?) when we set A\ = 1/ H?. Note that
VIB || (s5 af) |3 < V2PE?||g (s}, af) | /A < VO HD.

Also note that

HA 1

- 1
UI%,h = [thkp,h+1] (Slﬁvai) + Epp+d*H - Dy + 3

28



783

784

786
787
788

789
790

791

792

793

794
795

796

797

798

§H2+2H2+d3H~H2+%
<2d*H°.
Then we obtain the trivial upper bound & for &y, ,
Gpn <2VA3H? = @, (E.9)
Based on[Lemma D.3] we have
[VaVihia) (shrak) < B+ D+ VeV (sh, af).-
Then we have

. 1
orn < [VaVih1(sh, af) + 2B, + 2d°H - Dy + 3

Next, we carefully bound a,%’ 5, and &,%’ 5. To this end, we bound term Fj, 5, Dy, j, when k is large

enough. The intuition is that, when the episode k is large enough, all the error terms should be small
under the assumption (E-10).

Bound term E, ;,:  Note that based on (@.2), with the same analysis as the proof of Corollary 5.3 in
[23], with probability at least 1 — §, we have

Amin (Ak.p) > max{c( —1)/d+ X —+/32klog(dKH/9), /\}

Then when we choose k > 512d? log(dK H/§)/c? and note that A = 1/H?, we have

c(k—1)/d+ X\ — \/32klog(dK H/5) > 71{

which indicates that

Amin (Ag,n) > Qdk (E.10)

Then when k > 512d? log(dK H/§)/c?, we can calculate that

¢ (shs ab)lla-2 = HAkh¢ sk, aj; H m \/7 (E.11)

where in the first inequality we use the fact that ||¢(s,a)||2 < 1forall (s,a) € S x A. Then when k
is large enough and also at least k > 512d2 log(dK H/5)/c2, we can have that
Eun < 5(—d2H3>.
ke
This indicates that there exists an absolute constant cg > 0 such that
d?H3
Exn<c .
s E \/E
Bound term Dj, ;,: note that wlﬁ71 and w,’;l have the closed-form expression as follows
k—1
ﬁ;,’j 1 =AM Z ¢ Shs ah)Vk h+1 (5h+1)
T=1
k—1
wili,l =Apn Z o (st ah)vk h41 (8741)-
T=1

Thus we can calculate that

d(sh,af) bl — (sh.af) "),
k—1

T A= T T Orp T ¥ T
= ¢(327a2) Ak,i E :¢(Shvah) (Vkl,thl(Sh-i-l) - Vkp,h+1(3h+1>)v
T=1
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809
810

k—1

Z ¢(SfTw aﬁ) (Vkp,hﬂ (S;-H-l) - Vkp,thl (32+1))

T=1

< [l (sisan)lla - )
' Ak h

< H¢ Sh»ah ||A L ZH¢ shvah HA L kh+1(s§+1) Vk',o,h+1(§li§+1))

\/ kc \/ Vk: h+1 3h+1) kajh+1(§i+1))7

<2d/c- ( kh+1(sh+1) Vk h+1(5§+1)) (E.12)

where 5} | = argmax, g {Vk”, ha1(s) — Vk’j a1 () }, the first inequality holds because of Cauchy-
Schwarz inequality, the third inequality holds due to (EITI). Next, we bound Vkp’ 18 i1) —
Vi 1+1(8F 1) The intuition is that when k is large, both V), and V}?, ., should be close to the

robust optimal value function. Thus, Vkp hal should be close to Vkp and the closeness could be

Jh+12
quantified by the bonus terms, which is of order O(d/+/k) under the assumption (E.10). In particular,
we have

Vi1 G = Vi (Bri)
= Vklthrl(gfL-i-l) — Vi Gh) Vi ) — ‘v/]:jh+1(§]ii+l) : (E.13)

I I

Bound term I'in (E-I3): note that
Vkph( )= Vi ’(s)
=Q; a (s () — Qy" (s, mh(s))
< QF (57 () = Qy7 (s, (9))

< inf P,V () — inf PRV, ;
= Ph,(.|s,a)lerz145(s,a;ug)[ th,h+1](Sv7Th(s)) Ph(-\s,a)le%{;j(s,a;pg)[ th+1] (s’ﬂ—h(s))

+ A% (5,75 (5)) + Dan (5,75 (5))
= [Ph (Vkp,h+1 - V;ﬁ)] (3 (s )) + 21y h(S mh(s ))
where the second inequality holds due to the definition of QZ 4> robust Bellman equation and

Lemma D.4 Ph( |s,a) = arginfp, . a)eUf (s,a:u ) [PhV;_;_pl](s,a),V(s,a) € S x A. By recur-
s

1vely applying it, then we have

Vkp,h(s) —V,)P(s) < [Ph (Vkp,thl — Vi) (Svﬂlﬁ(s)) + Qf‘k,h(saﬂlli(s))

H
<2 Z ]E”E”P[fk,h/(s,aﬂsh/ = s].
h'=h

Note that by (E9) 67, < a?, we have 3 j, = @ *Ay . Similar to the analysis of (ETT), when
k> 512/c*log(dK H/§), we have

Dhn(s,a) = 52@3@\/1:2;211'
Zd)l smah \/lTAk}Ll

< Bay/Amax (A1)
2d
%ﬂa.

30



811 Then we have

2d , - _ 48V daH

VP (s) — VP (s) < 2H/ = Ba
on(s) =V, (s) < Bas N
gi2 Therefore, we can bound I as follows
5 . “p (= 48V daH
I= Vk[ihﬂ(slﬁﬂ) - Vhfl(sﬁ-&-l) < VT

813 Bound term ITin (EJ3): Similar to the analysis above, we can derive the similar result as follows

4BV daH
Vke

=V (3h) — Vkp,hﬂ(gﬁﬂ) <

s14 Now we can bound that

2d 45 daH _ 163d%/2aH
(ﬁ(SZ?ai)T’UA)Z’l . d)(SZ,aZ)T'Uv]i ) S a4 (B‘i’ﬂ)fa < 65 [ .
c

’ c Vke a Vke3

815 Then when k is large enough, we can have that
~/ Q
Dy < o(—d3H%).
VEk
st This indicates that there exists an absolute constant cp > 0 such that

Q
Dk,h S CDidSH% .

Vk

817 When £k is large enough, we have
* 1
oin < VaVih)(shar) + (2Bkp +2d°H - Dip) + 5
_ , _ 1
< ViV (shaf) + 2ep—=d? H? 4+ 2ep—=dS H? + =.

Vi Vi 2

818 When we choose K = ¢ - a2d'2H? where ¢ = O(1). When k > K, then we have

ot = max {o? 5, 1,24 B2 p (s, af) |5 |
< max {[Vi V4] (sh ar) + 1,1}
< 2[ViVit (shoah

(s an)] ey

st9  Based on[Cemma H.10} we have

vl < (S < (AR O00Y o (in [ m2)),

20 Then when k > K , we have
_9 . 1 9
Opn < O(mm {—Q,H })
0
g21  Additionally, note that a? = O(d3H 3) , we have

K =0O(d"H").

g2z This completes the proof. O
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F Supporting Lemmas

Lemma F.1 (Number of value function updates). The number of episodes where the algorithm
updates the value function in|Algorithm 1}is upper bounded by dH log(1 + K/\).

Proof of[Lemma F.1| This proof is the same as [10, Lemma F.1] because of the same rare-switching

condition (Line[5|in [Algorithm T). O
Lemma F.2. For any (k, h) € [K] x [H], the weight Dp’k satisfies

o], < 2H/dk/X.

Proof of[Lemma F.2] Denote a; = argmax ¢, ) {2 ;() — par},i € [d]. Then we have

Lokl _
o ||2| | s k(o) - pa}Le[d]
< pVda + K khszm (sF ah) Wkﬁh“(sg“”“i)]
ilield] ||y
<HVd+H- 2;2}125;,%(82’@2)
T=1 2

k— 2

< HVd+ H\/k/\- <

< HVd + H\/dk/)
< 2H+\/dk/\,

1(‘Th (shoah)) " Si) (o7 (%aﬁ)))

=

where the first inequality holds due to the triangle inequality, the second inequality holds from the
factthat p < 1,0 < o« < H and 0 < [Vkp’hﬂ (S}Tz+1)]a. < H, the third inequality holds because of

and the fourth inequality holds because Xy, 5, = AI and This completes the
proof. O

Lemma F.3. Under a linear MDP, for any stage h € [H] and any bounded function V' : S — [0, H],
there always exists a vector z € R? such that for all (s, a) € S x A, we have

[P%V} (s,a) =z ¢(s,a),
where z satisfies that ||z < H/d.

Proof of[Lemma F3| Based on[Assumption 2.1} we have
[PaV](s,a) = /P%(s’|s,a)V(s')ds’

- / b(5,a) V(") dpaf ()
= ¢(s,a) / ")dp (s

— $(s,0)"
where z = [V (s')dpl (s"). Thus we have
l2lls = H / ()| < max V() [u(S)]], < BV
2
This completes the proof. O
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G Proof of the Minimax Lower Bound

In this section, we prove the minimax lower bound. To this end, we first introduce the construction of
hard instances in[Appendix G.I] and then we prove [Theorem 5.1|in [Appendix G.3]

G.1 Construction of Hard Instances

We construct a family of d-rectangular linear DRMDPs based on the hard-to-learn linear MDP
introduced in [62]. Let § = 1/H, A = /§/K/(4v/2). Each d-rectangular linear DRMDP in
this family is parameterized by a Boolean vector § = {&5 }re[r—1], Where &, € {—A, A}, For
a given £ and uncertainty level p € (0,3/4], the corresponding d-rectangular linear DRMDP Mé’

has the following structure. The state space S = {x1,z2, -

,Zg,xg+1} and the action space

A = {—1,1}9. The first state is always 1. The feature mapping ¢ : S x A — R?9+2 is defined to

depend on the state z;, through &}, as follows:

¢($17a) =

¢(IH—17 @)

‘We assume that

1

d

1 4

5q gt 5q g tnm
1 4 1 4
5d g 51202 5d g 52202
1 4 1 ¢
24 d — &1da4 24 d — §2daq
1 1
2 ad)(’IQaa): 2 y Ty
) )
p +&ar Pl + &1aq
) 0
p + &12a2 Pl + &aza2
) 1)
ot £1daq i §aqaq
0 0
1 4
2d d §H—1,101
1
2d a4 S22 0
: 0
[ s
og g SH-1.dd 0
1 0
= 2 7¢(IH?G‘) = 0 7¢(IH+170’) =
)
p +&a-1,101 0
)
p + EH—1,202
0
. 1
% +&H—1,404

0

K >9d*H/32 and H > 6,
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such that 57 — - — & > 0. Then it can be easily checked that for any s € S, we have ¢;(s,a) > 0
and ZQCH_Q ( ) = 1. The factor distribution p; : S — R24+2 is defined as follows.

=1 i
/”’1(') = (5902(')» T a5I2(')7 612(')7 5517H+1 ()v T ’51’H+1 ()v 6IH('))T'

d terms d terms

Similarly, for h = 2,..., H, we have
/1'2() = (5333()7 T ’6’£3()7 5763()7 53¢H+1 ()7 T ’5-’15H+1 ()7 5$H('))T7

H’H—l(') = /"'H() = (5EH(')7 T aérH(')v 51H(')v 5$H+1 ()v T ’5EH+1 ()a 59611 ('))Tv
Note that for each episode k, the initial state s’f is always ;. In the nominal environment, at step h,

the state sﬁ is either xj, or x4 1. State zzr and x g7 are absorbing states. [Figure 4(a)|illustrates the
nominal MDP.

Now we construct the reward parameters {6}, }1,c[#] as follows.
T
0,=(1,1,---,1,-1,1,1,---,1,0) ', Yh € [H].

We have Vh € [H],

ri(za,a) = ¢plew,a) 6, =0,

T
rr(xh,a) = ¢(zn,a) ' 0, =0,
rh(Z‘H-&-la a) = ¢(33H+17 a)TBh =1.

Thus, only the transition starting from 71 generates a reward of 1, and transitions starting from any
other state generate 0 reward. Next, we consider the model perturbation. An observation is that x g is
the worst state since it is an absorbing state with zero reward. By the definition of the d-rectangular
uncertainty set, the worst case kernel is the linear combination of worst case factor distributions.

Further, by the definition of the factor uncertainty set, the worst case factor distribution is the one that
leads to the highest probability p to the worst state x ;7. Thus, the worst factor distributions are

A1 = ((1 = p)ay + pday, (1 — p)Oas + POz, (1 = p)Oay + POayr, (L — p)Oay + pOayy s
(1= P)0ugy s + POarrs (1= p)Oayy s + p5zH7 o (L= P)Besy gy + POugy Oayy)

fz = ((1 = p)doy + poay, (1 = p)0ay + pOay, -+ s (1 = p)Oay + POy, (1 — p)0ay + POy,
(1= p)darryr + POarr, (1= p)0ayy +p5zH, oo (L= P)Basryy + POagy Onyy)

Per—1 = ((1 = p)0ay_y + pOay, (1 = p)0ay_y + pOays -+ s (1= p)0ay_y + pOoy, (1 = p)0ay_y + pOay,
(1 - p)51H+1 + p61H7 (1 - p)61H+1 + p5IH7 B (1 - p)61H+1 + p(STH ) 5ZH)T
RH-1 = WH.

Figure 4(b)|illustrates the worst case MDP.

G.2 Reduction from d-Rectangular DRMDP to Linear Bandits

)

Note that by construction, at steps h = 1,--- ; H — 2, the probability of transitioning to the worst
case state zy is independent of the action a. Moreover, since x4 is the only rewarding state,
so the optimal action at step h is the one the leads to the largest probability to x4 1, i.e., aj =
argmax, ¢ 4 (&n, @). Further, in the nominal environment, state 2, can only be reached through states
T1,%2, - ,Tp—1. As discussed by [62], knowing the state xj, is equivalent to knowing the entire
history starting from the initial state at current episode. Consequently, policies dictating what actions
to take upon reaching a state at the beginning of an episode are equivalent to policies relying on the
“within episode” history (we refer to the discussion in E.1 of [62] for more details). In the following
lemma, we shows that the average suboptimality of the d-rectangular DRMDP can be lower bounded
by the regret of H/2 bandit instances.

Lemma G.1. With the choice of d, K, H in (G.I), we have 3dA < §. Fix § = {&,}ne[m—1]- Fixa
possibly history dependent policy 7 and define a] = E¢[ay|s, = x3] as the expected action taken
by the policy when it visits state xj, in stage h. Then, there exist a constant ¢ > 0 such that

H/2
Vi) = V() 2 e {21} 5 (magdon b = Gons )
h=1
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1
(a) The nominal MDP environment.

1=-p)A—=6—-(p—1,a))+p OQ
>(zu 1

(1 —=p)(+(€H-1,2))

(1—=p)(6+ (&1,0

1—p
(b) The worst-case MDP environment.

Figure 4: Constructions of the nominal MDP and the worst-case MDP environments.

Proof of[Lemma G.1} For the fixed policy m, we first get the ground truth robust value V;""”(z1) by
induction. Starting from the last step H, we have

Vil(xg) =0, Vif(rpyr)=1.
For step H — 1, we have
Vit (zr) =0, VEli(zu-1)=0—-p)(0+(€n-1,af_1))-1, Vgfi(zmr)=1+1-p) 1
For step H — 2, we have V7”,(xp) = 0 and

Vits(@a) =1+ (1 —p) - Va_1(zg1) =1+ (1= p) + (1 - p)?,
Virly(zm—2) = (1= p)(0 + (€n—2,af_2)) - Vil (1)
+ (1 =p)(1=6—(En—2,a_)) VgL (zn-1)
= [(1=p) + (1 =0)?](6 + (Emr—2,aF_5))
+(1=p)*(1 =6 — (€m—2,aF_5))(0 + (€u-1,aF_1))-
For step H — 3, we have V};”;(zy) = 0 and
ViZls(@mi) =1+ (1= p) - Vio(zpp) =14 (1= p) + (1= p)* + (1 = p)°,
Virls(@m—s) = (1= p)(0 + (€n—3,af_3)) - VirLo(zm41)
+(1=p) (1 =0~ (n-3.af_3)) Vg 'y(xm—2)
=[1=p)+ A =p)*+ 1 =p)°] (6 + (€n—3.aF_3))
+ [ =0+ (1 =p)°J(1 =6 = (En—3,a7_3))(0 + (€n—2,aF; )
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+(1=p?(1—=0—(€n-s,af 3)(1 —6— (€n—2,aF 2))(0+ (En—1,a%_1)).

Keep performing the backward induction until step h = 1, we have
VTP (z1)
= Vgt (H— 1)( 1)
=[A=p) ++ 1 =p)" )6+ (&r,aD))+
[(A=p)* 4+ (=)A= 6~ (&1,a])) (0 + (€2, a5))+
[(L=p)* -+ (1= p)"1(1 =6 = (&1,a7))(1 = 6 — (62,a3))(3 + (€3, @5))+

(1=p)" (1 =6~ (&1,a7))(1 = 6 — (€2,a3)) -~ (1 — 6 — (Er—2,a% 2)) (6 + (€mr—1,aF 1))
H-1 H-1 h—1
=3 (> a-p)on+o T -0 -5, G2
h=1 " i=h =1
where o, = (£n,a7),Vh € [H|. Recall that the optimal robust action at step h is a} =
argmax, ¢ 4 (&n, @), and hence maxqe 4 (&r, a) = Ad. Thus, we have
H-1 H-1 ' h—1
Vi) = Y (2(1 —p)’)(dA—&—é) [ —da-o). (G.3)
h=1  i=h j=1

For k € [H — 1], we define

H-1 H—-E

Z (> a-») H (1—0; —8)(on + ), (G4)
=k i=h—k+1 j=k
-1 H—k h—1
Z Z )H (1 - dA — §)(dA +5). (G.5)
h=Fk —k+ j=k

Then by (G.2), (G3), (G-4) and @ we know V;*?(z1) — V" (x1) = Ty — Si. Next, we aim to

lower bound 77 — 5. Inspired by the backward 1nduct10n process, we have

H—k

Sk = (l—p)i (ok +9) + Sk11(1 — o — 9),
(Z0-0)

©
Il
s

T, — ( (1- p)i)(dA +0) + Thoyr (1 — dA — 6).
Then, we have

Ty — S = ( (1 —p)i)(dA—ok) S (1l — 0p — 8) + Thsr (1 — dA — 6)

<.
[

T
£

- ( (1-p)i— Tk+1> (dA — o) + (1 — o — O)(Tepr — Skar).  (G6)

=1

Define Ty = Sy = 0, then by the recursive formula (G-6), we have

H-1 H—h ) h—1
751:Z(dAth)(Z(I*P)Z*Thﬂ)l—[(l*%’*&- (G.7)
h=1 i=1 j=1

I

To further bound (G.7), we first study the term I. Next we derive a close form expression of 7. In
specific, we have

H-1

H—k -
T, = ( 3« )Hl—dA 8)(dA + )
i=h—k+1 j=k

h=Ek
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Hk Hk:

( )dA+5 ( )1—dA 8)(dA + 0)
i:l =2
H—k
+(Z (1—dA — 6)? dA+5))+---+(1—p)H—k(l_dA_a)H—k—l(dA+5).
=3
(G.8)
ss6  Multiply T} by (1 — dA — §), we have
(1—dA — 8T},
H-—k H-— k
:(Z(l—p)i)(dA—i—é)(l—dA 8) + ( )1—dA 8)2(dA + 6)
i=1 1:2
H—k
+ ( D (1 dA - 6)*(dA + 5)) otk (1= p)IF1 —dA — 6T F(dA +6). (G.9)
1=3
g7 Then we have
G3) - (GI
= (dA + 0)Ty

H-k
- ( (1— p)i)(dA +6) — (1= p)(1 — dA — 8)(dA +6) — (1 — p)2(1 — dA — §)*(dA + §)
i=1
— = (1= p) R (1 —dA = )T F(dA + 6). (G.10)
s9s  Divide both side of equation (G.10) by (dA~+4) and then apply the formula for the sum of a geometric
899 series, we know T} has the following closed form expression
H—k

) N (L= o)1= dA — 8)(1 — (1 - p)PF(1 - dA — §)FH)
Tk_(;(l_p))_ = (1= p)(1—dA—9) '

900 Then, for any h < H/2, we have the following bound on the term I of (G.7),

H-h
Z (1=p)" = Tht1

H—h H—h-1
_ i ;1 =p) (A —dA—=0)(1— (1 —p)H=r=1(1—dA - §)H-I1)
,i:1(1*P)* 2 (1-p)+ T 0 —dA 3
_1 ey A= —dA =9 - (1 - pT (1 —dA - )T

1—(1—p)(1-dA—0)
=(1=p)""+ 1= p) A =dA=8) -+ (1= )1 —dA = 5

> (1 —dA =) (L =p) 4+ (1 =p)T " (1= p)") (G.11)
> (1= 2) (@ -p) 4+ 0= 4 (1= )T

1 H—h ‘
> 35 2 (=0, (G.12)

901 where (G.I1)) holds due to 3dA < § = 1/H and (G.12) holds due to H > 6. Next, we carefully
902 bound the LHS of (G.12) with respect to p. For any h < H/2 and p € (0, 3/4], we have

H—h
LS gz 10-p-0-p" 11-(-p""
12 ~ — 12 0 250 P .
903 Given the fact that
1—(1—p)H/2 1
P p
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there exist a constant ¢ > 0, such that
1—(1—p)H/2 1
== S in (1.0).
p P

Then we have

H—h 1
— Thy1 > ¢ -min (H 7), (G.13)
: p
=1

where ¢’ = ¢/50. Moreover, with the choice of parameter 3dA < 6,0 = 1/H, and H > 6, we have

h—1
1—o0;,—06)>(1—-46/3)" >1/3. (G.14)
H( ;i —0) = ( /3) /

Jj=1

Therefore, by (G.7), (G:13) and (G-14), we have
Vi (@) = VP (an) =Th = S

H/2
> " -min{H,1/p} - Z(dA —op)
h=1
H/2
— /! . = H 1 . ( _ =T )
" -min{H,1/p} }; max{pn, a) — {pn, ag) ),
where ¢’ = ¢’ /3. This completes the proof. O

G.3 Proof of[Theorem 5.11

Next, we present an existing result on lower bounding the regret of linear bandits induced by
This result is useful in deriving the lower bound in[Theorem 5.1}

Lemma G.2. [62, Lemma 25] Fix a positive real 0 < § < 1/3, and positive integers K, d and
assume that K > d?/(20). Let A = /§/K/(4+/2) and consider the linear bandit problems £,
parameterized with a parameter vector g € {—A, A}? and action set A = {—1,1}% so that the
reward distribution for taking action a € A is a Bernoulli distribution Bernoulli(é + (i, a)). Then

for any bandit algorithm B, there exists a pu* € {—A, A}¥ such that the expected pseudo-regret of B
over first K steps on bandit £, is lower bounded as follows:

dVKS
82

Note that the expectation is with respect to a distribution that depends both on B and p*, but since B
is fixed, this dependence is hidden.

Now we are ready to prove the lower bound in

E,«Regret(K) >

Proof of[Theorem 5.1] By[Lemma G.I| we have

e AveSubopt(Me, K) = e [i[v:’%xl) — V()|
k=1
H/2
S o it 1/py mln{H 1/p} ZE [Z (maj((Sha a) — <£h,62k>>:|.

h=1 k=1

Note that the learning process is conducted on the nominal environment, which is exactly the MDP in
[62]], thus the rest proof of [Theorem 4.2]follows the argument in the proof of Theorem 8 in [62]]. In
particular, define £ " = (5 1 &1, Shﬂ, .-+, &p), then every MDP policy 7 induces a bandit
algorithm B, ;, ¢—n for the hnear bandit of Moreover, our choice of parameters in
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(G.I) satisfy the requirement of Denote the regret of this bandit problem on L¢ as
BanditRegret(B, j, ¢-», &r), then we have

H/2
Z BanditRegret(B,; j, ¢, &n)
h=1
H/2

E inf BanditRegret(B,_ ;, s n,&r)
2 h,
h=1

. H/2
H 1
—c- %,/p} >~ sup inf BanditRegret(B, , s &n)
- ¢ & o
h=1

< min{H,1/p}dHV K6
>c-

in{H,1
sup E¢ AveSubopt(Me, K) > supc - w
£ 3

min{H,1/p}
>supec- ——————
¢ K

16v2- K
¢ dVH-min{H,1/p}
T 16v2 VK '
This completes the proof. O

H Auxiliary Lemmas

In this section, we present some standard technical results in the literature that our proofs are built on.

Proposition H.1. (Strong duality for TV [36, Lemma 4]). Given any probability measure . over
S, a fixed uncertainty level p, the uncertainty set U” (1) = {u : p € A(S), Dry (u||pu°) < p}, and
any function V : § — [0, H], we obtain

inf,cro (o) EsmpV (8) = MaXae[viim, Vinas] {ESNHO V(s)]a — p(a — ming [V(s’)]a) }, (H.1)

where [V (s)]o = min{V(s), a}, Vinin = mins V(s) and Vi,ax = max, V(s). Notably, the range of
« can be relaxed to [0, H] without impacting the optimization.

Lemma H.2. [1, Lemma 12] Let A, B and C be positive semi-definite matrices such that A =
B + C. Then we have that

 xTAx < det(A)
o XTBx — det(B)’

Lemma H.3. [1| Confidence Ellipsoid, Theorem 2] Let {G}32 , be a filtration, and {xy, 7% }x>1
be a stochastic process such that x;, € R< is G,-measurable and Mk € Ris Gi41-measurable. Let L,
0,3,e>0,u* € R¢. For k > 1, let yr = (W*, Xx) + 1 and suppose that 7y, X, also satisfy

Elnk [ Ge] = 0, || < R, [Ixkll2 < L.

Fork > 1,let Zj, = NI+ 3F xix; by = S°F | yix, i, = Zi; *by, and

kL? 1
Br = R\/dlog (1 + d)\) + 2log 5

Then, for any 0 < § < 1, we have with probability at least 1 — ¢ that,

k
Z XM

i=1

vk > 1,

< B, e — ¥z < B + VA" 2
z. "

Lemma H.4. [[19, Lemma D.1] Let A; = A\ + 22:1 qbi(;SiT, where ¢; € R? and A > 0. Then we

have
t

Yool (M) i< d

=1

39



945
946

947
948

949
950
951
952
953
954

955

956
957

958
959

960
961

962
963

964
965

Lemma H.5. [14, Lemma D.5] Let A € R?*9 be a positive definite matrix where its largest
eigenvalue \ax(A) < A Let X1, ..., Xy be k vectors in R, Then it holds that

k k 1/2
Ay x| < var( L)
i=1 =1

Lemma H.6. [39, Covering number of Euclidean ball] For any € > 0, ¢, the e-covering number
of the Euclidean ball of radius B > 0 in R satisfies

d d
2B 3B
e ) (%)
€ €
Lemma H.7. [39, Covering number of an interval] Denote the e-covering number of the closed
interval [a, b] for some real number b > a with respect to the distance metric d(oy, az) = |1 — o]
as N¢([a, b]). Then we have N ([a,b]) < 3(b — a)/e.

Lemma H.8. [6I] Theorem 4.3] Let {Gy, } 72 ; be a filtration, and {x, 7y }x>1 be a stochastic process

such that x;, € R? is Gi-measurable and 7, € R is Gy 1-measurable. Let L, o > 0, u* € R%. For
k> 1, lety, = (u*,xx) + 1 and suppose that 7, X, also satisfy

Elni | Gl = 0,Elng | Gi] < 0%, k| < R, [|xil2 < L.

7

For k > 1, let 8, = 6(0\/3 + maxy<;<g |7;| min {1, HXinijl}) and Z;, = \I + Z§:1 x; X!

b, = Zle YiXi, b = Z,;lbk. Then, for any 0 < § < 1, with probability at least 1 — 4, for all
k € [K], we have

k
E XiMi
i=1

Lemma H.9. [19] Lemma D.4] Let {s;}32; be a stochastic process on state space S with corre-
sponding filtration {F;}5°,. Let {¢;}52, be an R%-valued stochastic process where ¢; € F;_1, and
@il <1.Let Ay = NI+ Zle @i, . Then for any § > 0, with probability at least 1 — 4, for all
k>0,and any V € V with sup,c5 |V (s)| < H, we have

2

d k4 A N, 8k2e?
< 2 — - ve
s [210g< X ) loga} N

k

. < By 1 — p¥ ||z, < B + VA 1* |2
z,

k
Dl Visi) —E[V(s:) | Fial}
i=1

where N is the e-covering number of V with respect to the distance dist(V, V') = sup,cs |V (s)—
V'(s)|.

Lemma H.10. [24] Lemma 5.1 (Range Shrinkage)] For any (p, 7, h) € (0, 1] x II x [H], we have
maxses Vi ¥ (s) — minges V7 (s) < (1 — (1 — p)I=h+1) /p.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. This work focus on the theoretical side of online learning
of linear DRMDP. A tight upper bound and the first lower bound is provided, both of which
depend on non-trivial algorithm and hard instance design, as well as technical analysis.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: There is a O(\/ﬁ ) gap between our upper bound and lower bound. We discuss
this limitation in

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide detailed discussion and justification of assumptions used in the
main context and rigorous proof of theorems in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details on experiment setup and implementation are provided in[Appendix B]
They are enough for reproduction of all experiment results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experiment results can be reproduced by the code in this link:
https://anonymous.4open.science/t/We-Drive-U-9EC3

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on experiment setup and implementation are provided in[Appendix B}
More details can be found in the released code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Not applicable to our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All numerical experiments were conducted on a MacBook Pro with a 2.6 GHz
6-Core Intel CPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have checked that the research conducted in the paper conform, in every
respect, with the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. This work focuses on the
theoretical side of robust RL, and methods in this paper do not lead to a direct path to any
negative applications.
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11.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1276 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1277 may be required for any human subjects research. If you obtained IRB approval, you
1278 should clearly state this in the paper.

1279 * We recognize that the procedures for this may vary significantly between institutions
1280 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1281 guidelines for their institution.

1282 * For initial submissions, do not include any information that would break anonymity (if
1283 applicable), such as the institution conducting the review.

1284 16. Declaration of LLLM usage

1285 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1286 non-standard component of the core methods in this research? Note that if the LLM is used
1287 only for writing, editing, or formatting purposes and does not impact the core methodology,
1288 scientific rigorousness, or originality of the research, declaration is not required.

1289 Answer: [NA]

1290 Justification: The core method development in this research does not involve LLMs as any
1291 important, original, or non-standard components.

1292 Guidelines:

1293 * The answer NA means that the core method development in this research does not
1294 involve LLMs as any important, original, or non-standard components.

1295 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1296 for what should or should not be described.
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