
Truncated Variance-Reduced Value Iteration

Yujia Jin
Stanford University

yujiajin@stanford.edu

Ishani Karmarkar
Stanford University

ishanik@stanford.edu

Aaron Sidford
Stanford University

sdiford@stanford.edu

Jiayi Wang
Stanford University
jyw@stanford.edu

Abstract

We provide faster randomized algorithms for computing an ε-optimal policy in a
discounted Markov decision process withAtot-state-action pairs, bounded rewards,
and discount factor γ. We provide an Õ(Atot[(1 − γ)−3ε−2 + (1 − γ)−2])-
time algorithm in the sampling setting, where the probability transition matrix is
unknown but accessible through a generative model which can be queried in Õ(1)-
time, and an Õ(s+Atot(1− γ)−2)-time algorithm in the offline setting where the
probability transition matrix is known and s-sparse. These results improve upon
the prior state-of-the-art which either ran in Õ(Atot[(1− γ)−3ε−2 + (1− γ)−3])

time ([1, 2]) in the sampling setting, Õ(s + Atot(1 − γ)−3) time ([3]) in the
offline setting, or time at least quadratic in the number of states using interior
point methods for linear programming. We achieve our results by building upon
prior stochastic variance-reduce value iteration methods [1, 2]. We provide a
variant that carefully truncates the progress of its iterates to improve the variance
of new variance-reduced sampling procedures that we introduce to implement the
steps. Our method is essentially model-free and can be implemented in Õ(Atot)-
space when given generative model access. Consequently, our results take a step in
closing the sample-complexity gap between model-free and model-based methods.

1 Introduction

Markov decision processes (MDPs) are a fundamental mathematical model for decision making
under uncertainty. They play a central role in reinforcement learning and prominent problems in
computational learning theory (see e.g., [4, 5, 6, 7]). MDPs have been studied extensively for
decades ([8, 9]), and there have been numerous algorithmic advances in efficiently optimizing them
([3, 1, 2, 10, 11, 12, 13, 14]).

In this paper, we consider the standard problem of optimizing a discounted Markov Decision Process
(DMDP)M = (S,A,P , r, γ). We consider the tabular setting where there is a known finite set of
states S and at each state s ∈ S there is a finite, non-empty, set of actions, As for an agent to choose
from; A = {(s, a) : s ∈ S, a ∈ As} denotes the full set of state action pairs and Atot := |A| ≥ |S| .
The agent proceeds in rounds t = 0, 1, 2, In each round t, the agent is in state st ∈ S; chooses
action at ∈ Ast , which yields a known reward rt = rst,a ∈ [0, 1]; and transitions to random state
st+1 sampled (independently) from a (potentially) unknown distribution pa(st) ∈ ∆S for round
t+ 1, where pa(st)

⊤ is the (st, a)-th row of P ∈ [0, 1]A×S . The goal is to compute an ε-optimal
policy, where a (deterministic) policy π, is a mapping from each state s ∈ S to an action π(s) ∈ As

and is ε-optimal if for every initial s0 ∈ S the expected discounted reward of π E[
∑

t≥0 rtγ
t] is at

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

least v∗
s0 − ε. Here, v∗

s0 is the maximum expected discounted reward of any policy applied starting
from initial state s0 and v∗ ∈ RS is called the optimal value of the MDP.

Excitingly, a line of work [15, 16, 2, 3, 17, 18] recently resolved the query complexity for solving
DMDPs (up to polylogarithmic factors) in what we call the sample setting where the transitions pa(s)
are accessible only through a generative model ([16]). A generative model is an oracle which when
queried with any s ∈ S and a ∈ As returns a random s′ ∈ S sampled independently from pa(s)
[19]. It was shown in [18] that for all ε ∈ (0, (1− γ)−1] there is an algorithm which computes an
ε-optimal policy with probability 1−δ using Õ(Atot(1−γ)−3ε−2) queries where we use Õ(·) to hide
polylogarithmic factors in Atot, ε−1, (1− γ)−1, and δ−1. This result improved upon a prior result of
[17] which achieved the same query complexity for ε ∈ [0, (1− γ)−1/2], of [2] which achieved this
query complexity for ε ∈ [0, 1], and of [16] which achieved it for ε ∈ [0, (|S| (1 − γ))−1/2]. This
query complexity is known to be optimal in the worst case (up to polylogarithmic factors) due to
lower bounds of [16] (and extensions of [20]), which established that the optimal query complexity
for finding ε-optimal policies with probability 1− δ is Ω(Atot(1− γ)−3ε−2 log(Atotδ

−1)).

Interestingly, recent state-of-the-art results [17, 18] (as well as [16]) are model-based: they query the
oracle for every state-action pair, use the resulting samples to build an empirical model of the MDP,
and then solve this empirical model. State-of-the-art computational complexities for the methods are
then achieved by applying high-accuracy, algorithms for optimizing MDPs in what we call the offline
setting, when the transition probabilities are known [2, 17].

Correspondingly, obtaining optimal query complexities for large ε, e.g., ε≫ 1, comes with certain
costs. This setting is of interest when the goal is to efficiently compute a coarse approximation of the
optimal policy. Model-based methods use space Ω(Atot ·min((1− γ)−3ε−2, |S|))–rather than the
Õ(Atot) memory used by model-free methods (e.g., [2, 3, 21]), which run stochastic, low memory
analogs of classic popular algorithms for solving DMDPs (e.g., value iteration). Moreover, although
state-of-the-art model-based methods use Ω(Atot(1− γ)−3ε−2) samples, the state-of-the-art runtime
to compute the optimal policy is either Õ(Atot(1− γ)−3 max{1, ε−2}) (using [2]) or has a larger
larger polynomial dependence on Atot and |S| by using interior point methods (IPMs) for linear
programming (see Section 1.1). Consequently, in the worst case, the runtime cost per sample is more
than polylogarithmic for ε sufficiently larger than 1, and it is natural to ask if this can be improved.

These costs are connected to the state-of-the-art runtimes for optimizing DMDPs in the offline setting.
Ignoring IPMs (discussed in Section 1.1), the state-of-the-art runtime for optimizing a DMDP is
Õ(nnz(P) +Atot(1− γ)−3) due to [2] where nnz(P) denotes the number of non-zero entries in
P , i.e., the number of triplets (s, s′, a) where taking action a ∈ As at state s ∈ S has a non-zero
probability of transitioning to s′ ∈ S. This method is essentially model-free; it simply performs a
variant of stochastic value iteration where passes on P are used to reduce the variance of sampling
and can be implemented in Õ(A)-space given access to a generative model and the ability to multiply
P with vectors. The difficulty in further improving the runtimes in the sample setting and improving
the performance of model-free methods seems connected to the difficulty in improving the additive
Atot(1− γ)−3-term in this runtime (see the discussion in Section 1.2.)

In this paper, we ask whether these complexities can be improved. Is it possible to lower the
memory requirements of near-optimal query algorithms for large ε? Can we improve the runtime
for optimizing MDPs in the offline setting and can we improve the computational cost per sample in
computing optimal policies in DMDPs? More broadly, is it possible to close the sample-complexity
gap between model-free and model-based methods for optimizing DMDPs?

1.1 Our results
In this paper, we show how to answer each of these motivating questions in the affirmative. We
provide faster algorithms for optimizing DMDPs in both the sample and offline setting that are
implementable in Õ(Atot)-space provided suitable access to the input. In addition to computing
ε-optimal policies, these methods also compute ε-optimal values: we call any v ∈ RS a value vector
and say that it is ε-optimal if ∥v − v∗∥∞ ≤ ε.

Here we present our main results on algorithms for solving DMDPs in sample setting and in the
offline setting and compare to prior work. For simplicity of comparison, we defer any discussion and
comparison of DMDP algorithms that use general IPMs for linear program to the end of this section.
The state-of-the-art such IPM methods obtain improved running times but use Ω(|S|2) space and

2

Ω(|S|2) time and use general-purpose linear system solvers. As such they are perhaps qualitatively
different from the more combinatorial or dyanmic-programming based methods, e.g., value iteration
and stochastic value iteration, more commonly discussed in this introduction.

In the sample setting, our main result is an algorithm that uses Õ(Atot[(1− γ)−3ε−2 + (1− γ)−2])
samples and time and O(Atot)-space. It improves upon the prior, non-IPM, state-of-the-art which
uses Õ(Atot[(1− γ)−3ε−2 + (1− γ)−3]) time [3] and nearly matches the state-of-the-art sample
complexity for all ε = O((1− γ)−1/2). See Table 2 for a more complete comparison.

Theorem 1.1. In the sample setting, there is an algorithm that uses Õ(Atot[(1−γ)−3ε−2+(1−γ)−2])
samples and time and O(Atot) space, and computes an ε-optimal policy and ε-optimal values with
probability 1− δ.

Particularly excitingly, the algorithm in Theorem 1.1 runs in time nearly-linear in the number of
samples whenever ε = O((1− γ)−1/2) and therefore, provided querying the oracle costs Ω(1), has
a near-optimal runtime for such ε! Prior to this work such a near-optimal, non-IPM, runtime (for
non-trivially small γ) was only known for ε = Õ(1) ([2]). Similarly, Theorem 1.1 shows that there are
model-free algorithms (which for our purposes we define as an Õ(Atot) space algorithm) which are
nearly-sample optimal whenever ε = O((1− γ)−1/2). Previously this was only known for ε = Õ(1).
As discussed in prior-work ([18, 17]), this large ε regime is potentially of particular importance in
large-scale learning settings, where one would like to quickly compute a coarse approximation of the
optimal policy.

In the offline setting, our main result is an algorithm that uses Õ(nnz(P) +Atot(1 − γ)−2) time.
It improves upon the prior, non-IPM, state-of-the-art which use Õ(nnz(P) +Atot(1− γ)−3) time
([2]). See Table 1 for a more complete comparison with prior work.

Theorem 1.2. In the offline setting, there is an algorithm that uses Õ(nnz(P) + Atot(1 − γ)−2)
time, and computes an ε-optimal policy and ε-optimal values with probability 1− δ.

The method of Theorem 1.2 runs in nearly-linear time when (1− γ)−1 ≤ (nnz(P)/Atot)
1/2, i.e.,

the discount factor is not too small relative to the average sparsity of rows of the transition matrix.
Prior to this paper, such nearly-linear, non-IPM, runtimes (for non-trivially small γ) were only known
for (1− γ)−1 ≤ (nnz(P)/Atot)

1/3 ([2]). Thus, Theorem 1.2 expands the set of DMDPs which can
be solved in nearly-linear time. The space usage and input access for this offline algorithm differs
from the algorithm in Theorem 1.1 in that the algorithm in Theorem 1.2 assumes that access to the
transition P is provided as input and uses this to compute matrix-vector products with value vectors.
The algorithm in Theorem 1.2 also requires access to samples from the generative model; if access to
the generative model is not provided as input, then using the access to P , the algorithm can build a
Õ(nnz(P)) data-structure so that queries to the generative model can be implemented in Õ(1) time
(e.g., see discussion in [2]). Hence, if matrix-vector products and queries to the generative model can
be implemented in Õ(Atot)-space then so can the algorithm in Theorem 1.2.

Table 1: Running times to compute ε-optimal policies in the offline setting. In this table, E denotes
an upper bound on the ergodicity of the MDP.

Algorithm Runtime Space
Value Iteration [22, 11] Õ

(
nnz(P)(1− γ)−1

)
Õ(nnz(P))

Empirical QVI [16] Õ
(
nnz(P) +Atot(1− γ)−3ε−2

)
Õ(nnz(P))

Randomized Primal-Dual Method [23] Õ
(
nnz(P) + EAtot(1− γ)−4ε−2

)
Õ(Atot)

High Precision Variance-
Reduced Value Iteration [2] Õ

(
nnz(P) +Atot(1− γ)−3

)
Õ(Atot)

Algorithm 4 This Paper Õ
(
nnz(P) +Atot(1− γ)−2

)
Õ(Atot)

3

Exact DMDP Algorithms. In our our comparison of offline DMDP algorithms in Table 1, we
ignored poly(log(ε−1))-factors. Consequently, we did not distinguish between algorithms which
solve DMDPs to high accuracy, i.e., only depend on ε polylogarithmically, and those which solve it
exactly, e.g., have no dependence on ε. There is a line of work on designing such exact methods and
the current state-of-the-art is policy iteration, which can be implemented in Õ(|S|2A2

tot(1− γ)−1)

time ([13, 14]) and a combinatorial interior point method that can be implemented in Õ(A4
tot) time

([10] with no dependence on ε. Note that these methods obtain improved runtime dependence on ε at
the cost of larger dependencies on |S| and Atot.

Table 2: Query complexities to compute ε-optimal policy in the sample setting. Merg denotes an
upper bound on the MDP’s ergodicity. Here, model-free refers to Õ(Atot) space methods.

Algorithm Queries ε range Model-Free

Phased Q-learning [15] Õ
(

Atot

(1−γ)7ε2

)
(0, (1− γ)−1] Yes

Empirical QVI [16] Õ
(

Atot

(1−γ)3ε2

)
(0, ((1− γ) |S|)−1/2] No

Sublinear Variance-Reduced
Value Iteration [2] Õ

(
Atot

(1−γ)4ε2

)
(0, (1− γ)−1/2] Yes

Sublinear Variance-Reduced
Q Value Iteration [3] Õ

(
Atot

(1−γ)3ε2

)
(0, 1] Yes

Randomized Primal-
Dual Method [23] Õ

(
MergAtot

(1−γ)4ε2

)
(0, (1− γ)

−1 Yes

Empirical MDP
+ Planning [17] Õ

(
Atot

(1−γ)3ε2

)
(0, (1− γ)

−1/2
] No

Perturbed Empirical MDP,
Conservative Planning [18] Õ

(
Atot

(1−γ)3ε2

)
(0, (1− γ)−1] No

Algorithm 5 This Paper Õ
(

Atot

(1−γ)3ε2

)
(0, (1− γ)−1/2] Yes

Comparison with IPM Approaches. In the offline setting, [2] showed how to reduce solving
DMDPs to an ℓ1-regression problem in P ∈ RA×S . For ℓ1 regression in a matrix A ∈ Rn×d

for n > d, [12] provides an algorithm that runs in Õ(d0.5(nnz(A) + d2))-time, [24] provides an
algorithm that runs in Õ(nd+ d2.5), and [25, 26, 27] yields an algorithm that runs in Õ(Aω

tot) time
for the current value of the fast matrix multiplication exponent ω < 2.371552 [28]. These offline
IPM approaches can be coupled with model-based approaches to yield algorithms in the sample
setting. [18] shows that given a DMDPM, with Õ

(
Atot(1− γ)−2ε−3

)
queries to the generative

model and time, one can construct a DMDP M̂ such that an optimal policy in M̂ is an ε-optimal
forM. Consequently, provided polynomial accuracy in computing the policy suffices, applying the
IPMs to M̂ yields runtimes of Õ(nnz(P)

√
|S| + |S|2.5) ([12]), Õ(Atot |S| + |S|2.5) ([24]), and

Õ(Aω
tot) time [25]. This combination of model-based and IPM-based approaches use super-quadratic

time and space, but they may yield better runtimes than Theorem 1.2 in certain regimes where γ is
sufficiently large relative to S and Atot in the offline setting, or when, additionally, ε is sufficiently
small relative to S and Atot in the sample setting.

1.2 Overview of approach
Here we provide an overview of our approach to proving Theorem 1.1 and Theorem 1.2. We motivate
our approach from previous methods and discuss the main obstacles and insights needed to obtain
our results. For simplicity, we focus on the problem of computing ε-optimal values and discuss
computing ε-optimal policies at the end of this section.

4

Value iteration. Our approach stems from classic value-iteration method ([22, 11]) for computing
ε-optimal and its more modern Q-value and stochastic counterparts ([16, 3, 29, 30, 31, 32]). As
the name suggests, value iteration proceeds in iterations t = 0, 1, . . . computing values, v(t) ∈ RS .
Starting from initial v(0) ∈ RS , in iteration t ≥ 1, the value vector v(t) is computed as the result of
applying the (Bellman) value operator T : RS 7→ RS , i.e.,

v(t) ← T (v(t−1) where T (v)(s) := max
a∈As

(ra(s) + γpa(s)
⊤v) for all s ∈ S and v ∈ RS . (1)

It is well-known that the value operator is γ-contractive and therefore, ∥T (v)− v∗∥∞ ≤
γ ∥v − v∗∥∞ for all v ∈ RS ([11, 22, 2]). If we initialize v(0) = 0 then since ∥v∗∥∞ ≤ (1− γ)−1

[22, 11], we see that ∥v(t)−v∗∥∞ ≤ γt∥v(0)−v∗∥∞ ≤ γt(1−γ)−1 ≤ (1−γ)−1 exp(−t(1−γ)).
Thus, v(t) are ε-optimal values for any t ≥ (1 − γ)−1 log(ε−1(1 − γ)−1). This yields an
Õ(nnz(P)(1− γ)−1) time algorithm in the offline setting.

Stochastic value iteration and variance reduction. To improve on the runtime of value iteration
and apply it in the sample setting, a line of work implements stochastic variants of value iteration
([16, 2, 3, 23, 17, 18]). Those methods take approximate value iteration steps where the expected
utilities pa(s)

⊤v in (1) for each state-action pair are replaced by a stochastic estimate of the expected
utilities. In particular, note that pa(s)

⊤v = Ei∼pa(s) vi, i.e., the expected value of vi where i is
drawn from the distribution given by pa(s). This is compatible in the sample setting, as computing
vi for i drawn from pa(s) yields an unbiased estimate of pa(s)

⊤v with 1 query and O(1) time.

State-of-the-art model-free methods in the sample setting ([3]) and non-IPM runtimes in the offline
setting ([3]) improve further by more carefully approximating the expected utilities pa(s)

⊤v of
each state-action pair (s, a) ∈ A. Broadly, given an arbitrary v(0) they first compute x ∈ RA

that approximates Pv(0), i.e., xa(s) approximates [Pv(0)](s,a) = pa(s)
⊤v(0) for all (s, a) ∈ A.

In the offline setting, x = Pv(0) can be computed directly in O(nnz(P))-time. In the sample
setting, x ≈ Pv(0) can be approximated to sufficient accuracy using multiple queries for each
state-action pair. Then, in each iteration t ≥ 1 of the algorithm, fresh samples are taken to compute
g(t) ≈ P (v(t−1) − v(0)) and perform the following update:

v(t)(s)← max
a∈As

(ra(s) + γ(xa(s) + ga(s)
(t)) for all s ∈ S and v ∈ RS . (2)

This approach is advantageous because sampling errors for estimating P (v(t−1) − v(0)) depend on
the magnitude of v(t−1) − v(0). After approximately computing x, the remaining task of computing
g(t) ≈ P (v(t−1)−v(0)) so that x+g(t) ≈ Pv(t−1) may be easier than the task of directly estimating
Pv(t) (since v(t−1) − v(0) is smaller in magnitude than v(t) entrywise.) Due to similarities of this
approach to variance-reduced optimization methods, e.g. ([33, 34]), this technique is called variance
reduction [2].

The works [2, 3], showed that if x is computed sufficiently accurately and v(0) are α-optimal values
then applying (2) for t = Θ((1 − γ)−1) yields v(t) that is α/2-optimal in just Õ(Atot(1 − γ)−3)
time and samples! [2] leverages this technique to compute ε-optimal values in the offline setting
in Õ(nnz(P) +Atot(1− γ)−3) time. [3] uses a similar approach to compute ε-optimal values in
Õ(Atot[(1− γ)−3ε−2 + (1− γ)−3) time and samples in the sample setting. A key difference in [2]
and [3] is the accuracy to which they must approximate the initial utility x ≈ Pv(0).

Recursive variance reduction. To improve upon the prior model-free approaches of [2, 3] we
improve how exactly the variance reduction is performed. We perform a similar scheme as in (2) and
use essentially the same techniques as in [3, 2] towards estimating x. Where we differ from prior
work is in how we estimate the change in approximate utilities g(t) ≈ P (v(t−1) − v(0)). Rather
than directly sampling to estimate this difference we instead sample to estimate each individual
P (v(t−1) − v(t)) and maintain the sum. Concretely, for t ≥ 1, we compute ∆(t) such that

∆(t) ≈ P (v(t) − v(t−1)) (3)

so that these recursive approximations telescope. More precisely, setting g(0) = 0, for t ≥ 1, we set

g(t) ← g(t−1) +∆(t−1) ≈ P (v(t−2) − v(0)) + P (v(t−1) − v(t−2)) = P (v(t−1) − v(0)). (4)

5

This difference is perhaps similar to how methods such as SARAH ([34]) differ from SVRG ([33]).
Consequently, we similarly call this approximation scheme recursive variance reduction. Interestingly,
in constrast to the finite sum setting considered in [33, 34], in our setting, recursive variance reduction
for solving DMDPs ultimately leads to direct quantitative improvements on worst case complexity.

To analyze this recursive variance reduction method, we treat the error in g(t) ≈ P (v(t−1)− v(0)) as
a martingale and analzye it using Freedman’s inequality [35] (as stated in [36]). The hope in applying
this approach is that by better bounding and reasoning about the changes in v(t), better bounds on the
error of the sampling could be obtained by leveraging structural properties of the iterates.

Unfortunately, without further information about the change in v(t) or larger change to the analysis
of variance reduced value iteration, in the worst case, the variance can be too large for this approach
to work naively. Concretely, prior work ([2]) showed that it sufficed to maintain that ∥g(t+1) −
Pv(t)∥∞ ≤ O((1 − γ)α). However, imagine that v∗ = α1, v(0) = 0, and in each iteration t
one coordinate of v(t) − v(t−1) is Ω(α). If |S| ≈ (1− γ)−1 and ∥pa(s)∥∞ = O(1/|S|) for some
(s, a) ∈ A then the variance of each sample used to estimate pa(s)

⊤(v(t) − v(t−1)) = Ω(1/|S|) =
Ω((1− γ)). Applying Freedman’s inequality, e.g., [36], and taking b samples for each O((1− γ)−1)

iteration would yield, roughly, ∥g(t+1)−P (v(t)−v(0))∥∞ = O((1−γ)−1(1−γ)/
√
b) = O(1/

√
b).

Consequently b = Ω((1− γ)−2) and Ω((1− γ)−3) samples would be needed in total, i.e., there is
no improvement. Next, we will discuss how we circumvent this obstacle by combining recursive
variance reduction with a second algorithm technique, which we call truncation.

Truncated-value iteration. The key insight to make our new recursive variance reduction scheme
for value iteration yield faster runtimes is to modify the value iteration scheme itself. Recall that in
the previous paragraph, we described that the case challenging case for recursive variance reduction
occurs when, for example, in every iteration, a single coordinate of v changes by Ω(α). We observe
that there is a simple modification that one could make to value iteration to ensure that there is not
such a large change between each iteration; simply truncate the change in each iteration so that no
coordinate of v(t) changes too much! To motivate our algorithm, consider the following truncated
variant of value iteration where

v(t) = median(v(t−1) − (1− γ)α, T (v(t−1)),v(t−1) + (1− γ)α) (5)

Where median applies the median of the arguments entrywise. In other words, suppose we apply
value iteration where we decrease or truncate the change from v(t−1) to v(t) so that it is no more
than (1 − γ)α in absolute value in any coordinate. Then, provided that v(t) is α-optimal, we
can show that it is still the case that ∥v(t) − v∗∥∞ ≤ γ∥v(t−1) − v∗∥∞. In other words, the
worst-case progress of value iteration is unaffected! This follows immediatly from the fact that
∥v(t) − v∗∥∞ ≤ γ∥v(t−1) − v∗∥∞ in value iteration and the following simple technical lemma.

Lemma 1.3. For a, b,x ∈ Rn and γ, α > 0, let c := median{a− (1− γ)α1, b,a+ (1− γ)α1},
where median is applied entrywise. Then, if ∥b− x∥∞ ≤ γ ∥a− x∥∞ and ∥a− x∥∞ ≤ α, then
∥c− x∥∞ ≤ γ ∥a− x∥∞.

Applying truncated value iteration, we know that ∥v(t) − v(t−1)∥∞ ≤ (1− γ)α. In other words, the
worst-case change in a coordinate has decreased by a factor of (1− γ)! We show that this smaller
movement bound does indeed decrease the variance in the martingale when using the aforementioned
averaging scheme. We show this truncation scheme, when combined with our recursive variance
reduction scheme (4) for estimating P (v(t) − v(0)), reduces the total samples required to estimate
this and halve the error from Õ((1− γ)−3) to just Õ((1− γ)−2 per state-action pair.

Our method. Our algorithm applies stochastic truncated value iteration using sampling to estimate
each g(t) ≈ P (v(t) − v(0)) as described. Some minor additional modifications are needed, however,
to obtain our results. Perhaps the most substantial is our use of the monotonicity technique, as in prior
work ([2, 3]). That is, we modify our method so that each v(t) is always an underestimate of v∗ and
the v(t) increase monotonically as t increases. Thus, we only truncate the increase in the v(t) (since
they do not decrease, and the median operation in (5) reduces to a minimum in Lemma 1.3).

Beyond simplifying this aspect of the algorithm, as in prior work, this monotonicity technique allows
us to simultaneously compute an ε-approximate policy as well as an ε-optimal value vector. We do
this by tracking the actions associated with changed v(t) values, i.e., the argmax in (2) in a variable

6

Algorithm 1: Sample(u,p,M, η)

Input: Value vector u ∈ RS ,p ∈ ∆S ,
sample size M , and offset parameter
η ≥ 0.

1 for each n ∈ [M] do
2 Choose in ∈ S independently with

P {in = t} = p(t);

3 x = 1
M

∑
n∈[M] u(in);

4 σ̂ = 1
M

∑
n∈[M](u(in))

2 − x2;
5 x̃← x−

√
2ησ̂−4η3/4 ∥u∥∞−(2/3)η ∥u∥∞;

6 return x̃

Algorithm 2: ApxUtility(u,M, η)

Input: Value vector u ∈ RS , sample
size M , and offset parameter
η ≥ 0.

1 for each (s, a) ∈ A do
// In the sample setting,

pa(s) is passed
implicitly.

2 xa(s) = Sample(u,pa(s),M, η);

3 return x

π(t), which denotes the current estimated policy in iteration t of value iteration. Concretely, the
monotonicity technique allows us to maintain the invariant that at each iteration t, the current value
estimate and policy estimate π(t), v(t) satisfy the relation v(t) ≤ T [v(t)]. Note that this ensures that
the value of π(t) (denoted vπ(t)

) is at least v(t) because

v(t) ≤ T [v(t)] ≤ T 2[v(t)] ≤ · · · T ∞[v(t)] = vπ(t)

Thus, whenever v(t) is an ε-optimal value, π(t) is an at least ε-optimal policy.

By computing initial expected utilities x = Pv(0) exactly, we obtain our offline results. By carefully
estimating x ≈ Pv(0) as in [3] we obtain our sampling results. Finally, building off of the analysis
of [37] for deterministic or highly-mixing MDPs, we also show our method obtains even faster
convergence guarantees under additional non-worst-case assumptions on the MDP structure.

1.3 Notation and paper outline
General notation. Caligraphic upper case letters denote sets and operators, lowercase boldface
letters denote vectors, and uppercase boldface letters (e.g., P , I) denote matrices. 0 and 1 denote the
all-ones and all-zeros vectors, [m] := {1,,m}, and ∆n := {x ∈ Rn : 0 ≤ x and ∥x∥1 = 1} is
the simplex. For v ∈ RS , we use vi or v(i) for the i-th entry of vector v. For vectors v ∈ RA, we use
va(s) to denote the (s, a)-th entry of v, where (s, a) ∈ A. We use

√
v,v2, |v| ∈ Rn for the element-

wise square root, square, and absolute value of v respectively and max{u,v} and median{u,v,w}
for element-wise maximum and median respectively. For v,x ∈ Rn, v ≤ x denotes that v(i) ≤ x(i)
for each i ∈ [n] (analogously for <,≥, >.) We call x ∈ Rn an α-underestimate of y ∈ Rn if
y − α1 ≤ x ≤ y for α ≥ 0 (see the discussion of monotonicity in Section 1.2 for motivation).

DMDP. As discussed, the objective in optimizing a DMDP is to find an ε-approximate policy π and
values. For a policy π, we use Tπ(u) : RS 7→ RS to denote the value operator associated with π, i.e.,
Tπ(u)(s) := rπ(s)(s) + γpπ(s)(s)

⊤u for all value vectors u ∈ RS and s ∈ S . We let vπ denote the
unique value vector such that Tπ(vπ) = vπ and define its variance as σuπ := P π(uπ)2− (P πuπ)2,
where P π ∈ RS×S is the matrix such that P π

s,s′ = Ps,π(s)(s
′). The optimal value vector v⋆ ∈ RS

of the optimal policy π⋆ is the unique vector with T (v⋆) = v⋆, and P ⋆ ∈ RS×S := P π⋆

.

Outline. Section 2 presents our offline setting results and Section 3 our sample setting results.
Section A discusses specialized settings where we can obtain even faster convergence guarantees.
Omitted proofs are deferred to Appendix B.

2 Offline algorithm
In this section, we present our high-precision algorithm for finding an approximately optimal policy
in the offline setting. We first define Sample (Algorithm 1), which approximately computes products
between p ∈ ∆S and a value vector u ∈ RS using samples from a generative model. The following
lemma states some immediate estimation bounds on Sample using linearity and the fact that p ∈ ∆S .

Lemma 2.1. Let x = Sample(u,p,M, 0) for p ∈ ∆n, M ∈ Z>0, ε > 0, and u ∈ RS . Then,
E [x] = p⊤u, |x| ≤ ∥u∥∞, and Var [x] ≤ 1/M ∥u∥2∞.

7

We can naturally apply Sample to each state-action pair inM as in the subroutine ApxUtility (Al-
gorithm 2). If x = ApxUtility(u,M, η), then x(s, a) is an estimate of the expected utility of
taking action a ∈ As from state s ∈ S (as discussed in Section 1.2). When η > 0, this estimate may
potentially be shifted to increase the probability that x underestimates the true changes in utilities;
we leverage this in Section 3 (see also the discussion of monotonicity in Section 1.2). The terms
arising in the definition of x̃ arise from applying Bernstein’s inequality (Theorem B.2) to guarantee
that x̃ ≤ x− η with high probability.

The following algorithm TVRVI (Algorithm 3) takes as input an initial value vector v(0) and policy
π(0) such that v(0) is an α-underestimate of v⋆ along with an approximate offset vector x, which is a
β-underestimate of Pv(0). It runs runs L = Õ((1− γ)−1) iterations of approximate value iteration,
making one call to Sample(Algorithm 1) with a sample size of M = Õ((1− γ)−1) in each iteration.
The algorithm outputs vL which we show is an α/2-underestimate of v⋆ (Corollary 2.5).

TVRVI (Algorithm 3) is similar to variance reduced value iteration [2], in that each iteration, we
draw M samples and use Sample to maintain underestimates of pa(s)

⊤(v(ℓ) − v(ℓ−1)) for each
sate-action pair (s, a). However, there are two key distinctions between TVRVIand variance-reduced
value iteration [2] that enable our improvement. First, we use the recursive variance reduction
technique, as described by (3) and (4), and second we apply truncation (Line 7), which essentially
implements the truncation described in Lemma 1.3. Lemma 2.2 below illustrates how these two
techniques can be combined to bound the necessary sample complexity for maintaining approximate
transitions pa(s)

⊤(w(t) − w(0)) for a general sequence of ℓ∞-bounded vectors {w(i)}Ti=1. The
analysis leverages Freedman’s Inequality [35] as stated in [36] and restated in Theorem B.1.

Lemma 2.2. Let T ∈ Z>0 and w(0),w(1), ...,w(T) ∈ RS such that
∥∥w(i) −w(i−1)

∥∥
∞ ≤ τ for

all i ∈ [T]. Then, for any p ∈ ∆S , δ ∈ (0, 1), and M ≥ 28T log(2/δ) with probability 1 − δ,∣∣p⊤(w(t) −w(0))−
∑

i∈[t]

∑
j∈[M] Sample(w

(i) −w(i−1),p, 1, 0) · 1/M
∣∣ ≤ τ/8 for all t ∈ [T].

Algorithm 3: TVRVI(v(0), π(0),x, α, δ)

Input: Initial values v(0) ∈ RS , which is an α-underestimate of v⋆.
Input: Initial policy π(0) such that v(0) ≤ Tπ(0)(v(0)).
Input: Accuracy α ∈ [0, (1− γ)−1] and failure probability δ ∈ (0, 1).
Input: Offsets x ∈ RA ; // entrywise underestimate of Pv(0)

1 Initialize g(1) ∈ RA and ĝ(1) ∈ RA to 0;
2 L = ⌈log(8)(1− γ)−1⌉ and M = ⌈L · 28 log(2Atot/δ)⌉ ;
3 for each iteration ℓ ∈ [L] do
4 Q̃ = r + γ(x+ ĝ(ℓ));
5 v(ℓ) = v(ℓ−1) and π(ℓ) = π(ℓ−1) ;
6 for each state i ∈ S do

// Compute truncated value update (and associated action)
7 ṽ(ℓ)(i) = min{maxa∈Ai

Q̃i,a,v
(ℓ−1) + (1− γ)α} and π̃

(ℓ)
i = argmaxa∈Ai

Q̃i,a;

// Update value and policy if it improves
8 if ṽ(ℓ)(i) ≥ v(ℓ)(i) then v(ℓ)(i) = ṽ(ℓ)(i) and π

(ℓ)
i = π̃

(ℓ)
i ;

// Update for maintaining estimates of P (v(l) − v0).
9 ∆(ℓ) = ApxUtility(v(ℓ) − v(ℓ−1),M, 0) and g(ℓ+1) = g(ℓ) +∆(ℓ) ;

// Shift estimates so that ĝ(ℓ+1) always underestimates pa(s)
⊤v(ℓ) .

10 ĝ(ℓ+1) = g(ℓ+1) − (1−γ)α
8 1;

11 return (v(L), π(L))

While it is unclear how to significantly improve the constant of 28 = 256 appearing in Lemma 2.2 (and
consequently Algorithm 3), we note that tightening these constants in the application of Freedman’s
inequality could be of practical interest. By applying Lemma 2.2 to the iterates v(ℓ) in TVRVI, the
following Corollary 2.3 shows that we can maintain additive O((1 − γ)α)-underestimates of the

8

transitions pa(s)
⊤(v(ℓ)−v(0)) using only Õ(L) samples (as opposed to the Õ(L2) samples required

in [2]) per state-action pair.

Corollary 2.3. In TVRVI (Algorithm 3), with probability 1 − δ, in Lines 9, 10 and 2, for all
s ∈ S, a ∈ As, and ℓ ∈ [L], we have

∣∣∣g(ℓ)
a (s)− pa(s)

⊤(v(ℓ−1) − v(0))
∣∣∣ ≤ (1 − γ)α/8 and

therefore ĝ
(ℓ)
a is a (1− γ)α/4-underestimate of pa(s)

⊤(v(ℓ−1) − v(0)).

The following Lemma 2.4 shows that whenever the event in Corollary 2.3 holds, TVRVI (Algorithm 3)
is approximately contractive and maintains monotonicity of the approximate values. By accumulating
the error bounds in Lemma 2.4, we also obtain the following Corollary 2.5, which guarantees that
TVRVI halves the error in the initial estimate v(0).

Lemma 2.4. Suppose that for some β ∈ RA
≥0, Pv(0)−β ≤ x ≤ Pv(0) and let βπ⋆ ∈ RS be defined

as βπ⋆(s) := βπ⋆(s)(s) for each s ∈ S. Then, with probability 1− δ, at the end of every iteration
ℓ ∈ [L] (Line 3) in TVRVI(v(0), π(0),x, α, δ), the following hold for ξ := γ((1− γ)α/41+ βπ⋆):

v(ℓ−1) ≤ v(ℓ) ≤ Tπ(ℓ)(v(ℓ)), (6)

0 ≤ v⋆ − v(ℓ) ≤ max
(
γP ⋆(v⋆ − v(ℓ−1)) + ξ, γ(v⋆ − v(ℓ−1))

)
. (7)

Corollary 2.5. Suppose that for some α ≥ 0 and β ∈ RA
≥0, Pv(0) − β ≤ x ≤ Pv(0); v(0) is an

α-underestimate of v⋆; and v(0) ≤ Tπ(0)(v(0)). Let βπ⋆ ∈ RS be defined as βπ⋆(s) := βπ⋆(s)(s)

for each s ∈ S. Let (v(L), π(L)) = TVRVI(v(0), π(0), α, δ), and L,M be as in Line 2. Define ξ :=
γ ((1− γ)α/4 · 1+ βπ⋆). Then, with probability 1− δ, 0 ≤ v⋆−v(L) ≤ γLα ·1+(I−γP ⋆)−1ξ,
and v(L) ≤ Tπ(L)(v(L)). In particular, if β = 0, then for L > log(8)(1− γ)−1 we can reduce the
error in v(0) by half: 0 ≤ v⋆ − v(L) ≤ (v⋆ − v(0))/2. Additionally, TVRVI is implementable with
Õ(AtotML) sample queries to the generative model and time and O(Atot) space.

Theorem 1.2 now follows by recursively applying Corollary 2.5. OfflineTVRVI (Algorithm 4)
provides the pseudocode for the algorithm guaranteed by Theorem 1.2.

Algorithm 4: OfflineTVRVI(ε, δ)
Input: Target precision ε and failure probability δ ∈ (0, 1)

1 K = ⌈log2(ε−1(1− γ)−1)⌉, v0 = 0, π0 is an arbitrary policy, and α0(1− γ)−1;
2 for each iteration k ∈ [K] do
3 αk = αk−1/2 = 2−k(1− γ)−1;
4 x = Pvk−1 ;
5 (vk, πk) = TVRVI(vk−1, πk−1,x, αk−1, 0, δ/K);
6 return (vK , πK)

3 Sample setting algorithm

In this section, we show how to extend the analysis in the previous section in the sample setting,
where we do not have explicit access to P . We follow a similar framework as in [3] to show
that we can instead estimate the offsets x in OfflineTVRVI by taking additional samples from
the generative model. The pseudocode is shown in SampleTVRVI(Algorithm 5.) To analyze the
algorithm, we first bound the error incurred when approximating the exact offsets x in Line 4 of
OfflineTVRVI (Algorithm 4) with approximate offsets x̃ ≈ Pvk−1 computed by sampling from
the generative model. The proof leverages Hoeffding’s and Bernstein’s inequality, and follows a
similar structure as the proof of Lemma 5.1 of [3].

9

Algorithm 5: SampleTVRVI(ε, δ)
Input: Target precision ε and failure probability δ ∈ (0, 1)

1 K = ⌈log2(ε−1(1− γ)−1)⌉ ;
2 v0 = 0, π0 is an arbitrary policy, and α0 = (1− γ)−1;
3 for each iteration k ∈ [K] do
4 αk = αk−1/2 = 2−k(1− γ)−1 ;
5 N = 6500(1− γ)−3 log(8AtotKδ−1);
6 Nk−1 = N max((1− γ), α−2

k−1) ;
7 ηk−1 = N−1

k−1 log(8AtotKδ−1) ;
8 xk = ApxUtility(vk−1, Nk−1, ηk−1);
9 (vk, πk) = TVRVI(vk−1, πk−1,xk, αk−1, δ/K) ;

10 return (vK , πK)

Lemma 3.1. Consider u ∈ RS . Let x = ApxUtility(u,m · Atot, η), m ≥ log(1/2δ−1), and
η = (mAtot)

−1 log(1/2δ−1). Then, with probability 1− δ,

Pu− 2
√
2ησv⋆ +

(
2
√

2η ∥u− v⋆∥∞ + 18η3/4 ∥u∥∞
)
≤ x ≤ Pu.

Finally, to obtain our main result Theorem 1.1, we utilize worst-case bounds on σv⋆ from prior work
[1] (see Lemma B.3, Lemma B.4) and inductively apply Lemma 3.1 and Corollary 2.5.

The constant of 6500 appearing in the initialization of N in Algorithm 5 arises due to technical
reasons, from applying Bernstein’s inequality, Hoeffding’s inequality, union bound over all K outer
loop iterations, and bounds on σv⋆ from prior work [3] to prove Lemma 3.1. While it is unclear
how to directly further tighten this constant, the proof of Lemma 3.1 shows that in the expression
N = 6500(1− γ)−3 log(8AtotKδ−1) there is a natural trade-off between the leading constant (in
this case 6500) and the number of outer loop iterations K. By increasing the number of outer-loop
iterations K by constants, one can relax the error requirements of each iteration (i.e., decrease N by
constants at the cost of increased logarithmic dependence on |S| ,Atot). Although not the primary
focus of our work, such trade-offs might be of practical importance.

4 Conclusion
We provided faster and more space-efficient algorithms for solving DMDPs. We showed how to apply
truncation and recursive variance reduction to improve upon prior variance-reduced value iterations
methods. Ultimately, these techniques reduced an additive Õ((1− γ)−3) term in the time and sample
complexity of prior variance-reduced value iteration methods to Õ((1− γ)−2).

Natural open problems left by our work include exploring the practical implications of our techniques
and exploring whether further runtime improvements are possible. For example, it may be of practical
interest to explore whether there exist other analogs of truncation that do not need to limit the progress
in individual steps of value iteration. Additionally, the question of whether the Õ((1− γ)−2) term
in our time and sample complexities can be further improved to Õ((1 − γ)−1) is a natural open
problem; an affirmative answer to this question would yield the first near-optimal running times
for solving a DMDP with a generative model for all ε and fully bridge the sample complexity gap
between model-based and model-free methods. We hope this paper supports further studying these
questions and establishing the optimal runtime for solving MDPs.

Acknowledgements
Thank you to Yuxin Chen for interesting and motivating discussion about model-based methods in RL.
Thank you to the anonymous reviewers for their helpful feedback. Yujia Jin and Ishani Karmarkar
were funded in part by NSF CAREER Award CCF-1844855, NSF Grant CCF-1955039, and a PayPal
research award. Aaron Sidford was funded in part by a Microsoft Research Faculty Fellowship, NSF
CAREER Award CCF-1844855, NSF Grant CCF1955039, and a PayPal research award. Part of this
work was conducted while visiting the Simons Institute for the Theory of Computing. Yujia Jin’s
contributions to the project occurred while she was a graduate student at Stanford.

10

References
[1] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and

faster algorithms for solving markov decision processes. Naval Research Logistics (NRL), 70,
2023.

[2] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and
faster algorithms for solving markov decision processes. 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2018.

[3] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and
sample complexities for solving markov decision processes with a generative model. Advances
in Neural Information Processing Systems 31 (NeurIPS), 2018.

[4] Qiying Hu and Wuyi Yue. Markov decision processes with their applications, volume 14.
Springer Science & Business Media, 2007.

[5] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Reinforcement learning to rank
with markov decision process. Proceedings of the 40th international ACM SIGIR conference on
research and development in information retrieval, 2017.

[6] Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the structure of factored
markov decision processes in reinforcement learning problems. 23rd International Conference
on Machine Learning (ICML), 2006.

[7] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial intelligence. John
Wiley & Sons, 2013.

[8] Martijn Van Otterlo and Marco Wiering. Reinforcement learning and markov decision processes.
Reinforcement learning: State-of-the-art, 2012.

[9] Martijn Van Otterlo. Markov decision processes: Concepts and algorithms. Course on ‘Learning
and Reasoning, 2009.

[10] Yinyu Ye. A new complexity result on solving the markov decision problem. Mathematics of
Operations Research, 30, 2005.

[11] Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the complexity of solving
markov decision problems. 11th Annual Conference on Uncertainty in Artificial Intelligence
(UAI), 1995.

[12] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. 55th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2014.

[13] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for the markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36, 2011.

[14] Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration.
Advances in Neural Information Processing Systems 26 (NeurIPS)), 2013.

[15] Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect
algorithms. Advances in Neural Information Processing Systems 11 (NeurIPS), 11, 1998.

[16] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on
the sample complexity of reinforcement learning with a generative model. Machine Learning,
91, 2013.

[17] Alekh Agarwal, Sham M. Kakade, and Lin F. Yang. Model-based reinforcement learning with a
generative model is minimax optimal. 33rd Annual Conference on Computational Learning
Theory (COLT), 2020.

[18] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample size
barrier in model-based reinforcement learning with a generative model. Advances in Neural
Information Processing Systems 33 (NeurIPS), 2020.

[19] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University
of London, University College London (United Kingdom), 2003.

11

[20] Fei Feng, Wotao Yin, and Lin F Yang. How does an approximate model help in reinforcement
learning? arXiv preprint arXiv:1912.02986, 2019.

[21] Yujia Jin and Aaron Sidford. Efficiently solving MDPs with stochastic mirror descent. In 37th
International Conference on Machine Learning (ICML), 2020.

[22] Paul Tseng. Solving h-horizon, stationary markov decision problems in time proportional to log
(h). Operations Research Letters, 9, 1990.

[23] Mengdi Wang. Randomized linear programming solves the discounted markov decision problem
in nearly-linear (sometimes sublinear) running time. Mathematics of Operations Research, 42,
2019.

[24] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and l1-regression in nearly linear time for
dense instances. In 53rd Annual ACM Symposium on Theory of Computing (STOC), 2021.

[25] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM, 2020.

[26] Jan van den Brand. A deterministic linear program solver in current matrix multiplication time.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
259–278. SIAM, 2020.

[27] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for
solving general lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 823–832, 2021.

[28] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In 35th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2024.

[29] Pengqian Yu, William B Haskell, and Huan Xu. Approximate value iteration for risk-aware
markov decision processes. IEEE Transactions on Automatic Control, 63, 2018.

[30] Mohand Hamadouche, Catherine Dezan, David Espes, and Kalinka Branco. Comparison of
value iteration, policy iteration and q-learning for solving decision-making problems. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS), 2021.

[31] Christopher W Zobel and William T Scherer. An empirical study of policy convergence in
markov decision process value iteration. Computers & operations research, 32, 2005.

[32] Dileep Kalathil, Vivek S Borkar, and Rahul Jain. Empirical q-value iteration. Stochastic Systems,
11, 2021.

[33] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems 26 (NeurIPS), 2013.

[34] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. 34th International Conference
on Machine Learning (ICML), 2017.

[35] David A Freedman. On tail probabilities for martingales. pages 100–118, 1975.

[36] Joel A. Tropp. Freedman’s inequality for matrix martinglaes. Electronic Communications in
Probability, 16, 2011.

[37] Andrea Zanette and Emma Brunskill. Problem dependent reinforcement learning bounds which
can identify bandit structure in mdps. In International Conference on Machine Learning, pages
5747–5755. PMLR, 2018.

[38] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. 36th International Conference
on Machine Learning (ICML), 2019.

12

A Faster problem-dependent convergence
In this section, we propose a modified version of the SampleTVRVI algorithm, named
ProblemDependentTVRVI. This algorithm adjusts the number of required samples based on the
structure of the MDP under consideration. Inspired by [38], we then consider MDPs with small
ranges of optimal values and the extreme case of highly mixing MDPs in which state transitions are
sampled from a fixed distribution.

Note that in the proof of Theorem 1.1, the error during convergence caused by approximations of val-
ues is bounded by (I−γP ⋆)−1ξk for ξk ≤ (1−γ)αk

4 1+2
√
2ηkσv⋆+(2

√
2ηkαk+18η

3/4
k

∥∥v(0)
∥∥
∞)1.

In its proof, we upper bound the variance term
∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞ by 3(1 − γ)−1.5 using

Lemma B.4. However, as αk decreases and the variance term becomes dominant, a number of
samples proportional to the size of the variance term suffices to control the error during each iteration.
Given V which upper bounds

∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞, we can further refine SampleTVRVI to re-

duce the number of samples taken after an initial burn-in phase and obtain improved complexities
when V is signficantly small. Hence, we obtain the following Algorithm 6 and Theorem A.1.

Algorithm 6: ProblemDependentTVRVI(ε, δ, V)

Input: Target precision ε, failure probability δ ∈ (0, 1), and V ≥
∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞.

1 K = ⌈log2(ε−1(1− γ)−1)⌉ ;
2 v0 = 0, π0 is an arbitrary policy, and α0 = 1

1−γ ;
3 for each iteration k ∈ [K] do
4 αk = αk−1/2 = 2−k(1− γ)−1 ;

5 if k < ⌈log2
(

128(1−γ)−5

V 3

)
⌉ then

6 Nk−1 = 6500 · (1− γ)−3 max((1− γ), α−2
k−1) log(8AtotKδ−1) ; // Burn-in

phase
7 else
8 Nk−1 = 1024 · α−2

k−1V
2 log(8AtotKδ−1) ; // Variance-dependent phase

9 ηk−1 = N−1
k−1 log(8AtotKδ−1) ;

10 xk = ApxUtility(vk−1, Nk−1, ηk−1);
11 (vk, πk) = TVRVI(vk−1, πk−1,xk, αk−1, δ/K);
12 return (vK , πK)

Theorem A.1. In the sample setting, there is an algorithm (Algorithm 6) that, given 3(1− γ)−1.5 ≥
V ≥

∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞, uses Õ

(
Atot

(
ε−2V 2 + (1− γ)−2

))
samples and time and O(Atot)

space, and computes an ε-optimal policy and ε-optimal values with probability 1− δ.

Proof. Let K, αk, and (vk, πk) be as defined in Lines 1, 4, and 11 of
ProblemDependentTVRVI(ε, δ, V).

For the correctness of the algorithm, we first induct on k to show that for each k ∈ [K], with
probability 1− kδ/K,

0 ≤ v⋆ − vπk ≤ v⋆ − vk ≤ αk, and vk ≤ Tπk
(vk).

The base case is trivial, as 0 ≤ v⋆ − vπ0 ≤ v⋆ − v0 ≤ (1− γ)−11.

For the inductive step, observe that by Lemma 3.1, we see that with probability 1− δ/K,

Pvk−1 −
[
2
√
2ηk−1σv⋆ +

(
2
√
2ηk−1αk−1 + 18η

3/4
k−1 ∥vk−1∥∞

)
1
]
≤ xk ≤ Pvk−1. (8)

Additionally, by the inductive hypothesis, with probability 1− (k − 1)δ/K,

0 ≤ v⋆ − vπk−1 ≤ v⋆ − vk ≤ γLαk−1 · 1+ (I − γP ⋆)−1ξk−1 ≤ αk1, and vk ≤ Tπk
(vk).

(9)

Thus, by union bound, with probability 1− kδ/K, both (8) and (9) hold. We condition on this event
in the remainder of the inductive step.

13

Now, we apply Corollary 2.5 with

β = 2
√

2ηk−1σv⋆ +
(
2
√
2ηk−1αk−1 + 18η

3/4
k−1 ∥vk−1∥∞

)
1.

Consequently, we have

0 ≤ v⋆ − vk ≤ γLαk−1 · 1+ (I − γP ⋆)−1ξk−1 ≤
αk−1

8
1+ (I − γP ⋆)−1ξk−1,

for ξk−1 ≤ (1−γ)αk−1

4 1 + 2
√
2ηk−1σv⋆ +

(
2
√
2ηk−1αk−1 + 18η

3/4
k−1 ∥vk−1∥∞

)
1, and vk ≤

Tπk
(vk).

Note that (I − γP ⋆)−11 ≤ 1
1−γ1. Hence, if k < ⌈log2(1− γ)−5/V 3⌉, we use Lemma B.4 along

with the facts that (I − γP ⋆)−11 = 1/(1− γ)1 and the choice of ηk−1 to obtain (identical to the
proof of Theorem 1.1):

(I− γP ⋆)−1ξk−1 ≤

αk−1

4
+ 2

√
6

ηk−1

(1− γ)3
+ 2

√
2(1− γ)3 min((1− γ)−1, α2

k−1)

6500(1− γ)2
αk−1

1

+

[
18

(
((1− γ)3 min((1− γ)−1, α2

k−1)

6500(1− γ)8/3

)3/4
]
1

≤ [αk−1/4 + 2
√
6/6500 · αk−1 + 2

√
2/6500(1− γ)1/2 min((1− γ)−1/2, αk−1)αk−1

+ 18 · (10−3)(1− γ)1/4 min((1− γ)−3/4, α
3/2
k−1)]1

≤ [αk−1/4 + 4
√
6/6500 · αk−1 + 18 · (10−3)αk−1]1 ≤

3

8
αk−11.

If instead k ≥ ⌈log2(1 − γ)−5/V 3⌉, then αk ≤ 1
128 (1 − γ)4V 3, and ηk−1 = α2

k−1/(1024 · V 2).
Consequently,

(I − γP ⋆)−1ξk−1 ≤ 2
√
2ηk−1(I− γP ⋆)−1√σv⋆

+
[αk−1

4
+ 2
√
2ηk−1(I − γP ⋆)−1αk−1 + 18η

3/4
k−1(I − γP ⋆)−1 ∥vk−1∥∞

]
1

≤ αk−1

4
1+

2
√
2αk−1

4(1− γ)
√
1024V

V 1+
18

(1− γ)2

(
α2
k−1

1024 · V 2

)3/4

1

≤
[αk−1

8
+

αk−1

4

]
1 ≤ 3

8
αk−11.

Therefore in either case,

v⋆ − vk−1 ≤
αk−1

2
1 = αk1.

Moreover, we can use that vk ≤ Tπk
(vk) to see that

vk ≤ Tπk
(vk) ≤ T 2

πk
(vk) ≤ · · · ≤ T ∞

πk
(vk) = vπk ≤ v⋆.

This completes the inductive step.

Consequently, taking k = K = ⌈log2(ε−1(1− γ)−1)⌉ iterations of the outer loop, with probability
1− δ, we have that 0 ≤ v⋆ − vπK ≤ v⋆ − vK ≤ αK ≤ ε and

vk ≤ Tπk
(vk) ≤ T 2

πk
(vk) ≤ · · · ≤ T ∞

πk
(vk) = vπk ≤ v⋆,

that is, vk is an ε-optimal value and πK is an ε-optimal policy.

The total number of samples and time required is Õ
(
Atot

(
ε−2V 2 + (1− γ)−2

))
. For the space

complexity, note that the algorithm can be implemented to maintain only O(1) vectors in RAtot . ■

Theorem A.1 yields improved complexities for solving MDPs when
∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞ is

nontrivially bounded. Following [37] we mention two particular such settings where we can apply
Theorem A.1 to obtain better problem-dependent sample and runtime bounds than Theorem 1.1.

14

Deterministic MDPs For a deterministic MDP, each action deterministically transitions to a
single state. That is, for all (s, a) ∈ A, pa(s) = 1s′ (the indicator vector of s′ ∈ S) for some
s′ ∈ S. In this case, σv⋆ = 0. Consequently, if the MDP is deterministic, the algorithm converges
with just Õ((1 − γ)3) samples to the generative model and time. We note that in this setting of
deterministic MDPs, there may be alternative approaches to obtain the same or better runtime and
sample complexity.

Small range. Define the range of optimal values for a MDP as rng(v∗)
def
= maxs∈S v∗

s−mins∈S v∗
s .

Note that σv⋆ ≤ rng(v∗)21. So,
∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞ ≤ (1 − γ)−1rng(v∗). Therefore, by

Theorem A.1, given an approximate upper bound of
∥∥(I − γP ⋆)−1√σv⋆

∥∥
∞ our algorithm is

implementable with Õ(Atot(ε
−2(1− γ)−2rng(v⋆)2 + (1− γ)−2)) samples and time.

Highly mixing domains. [37] showed that a contextual bandit problem can be modeled as an MDP
where the next state is sampled from a fixed stationary distribution. Using the fact that the transition
function is independent of the prior state and action, the authors of [38] show that rng(v∗) ≤ 1
with a simple proof in its Appendix A.2. Hence, by the argument in the preceding paragraph
Õ
(
Atot

(
ε−2(1− γ)−2 + (1− γ)−2

))
samples and time suffice in this setting.

B Omitted proofs from the main body
B.1 Omitted proof of Lemma 1.3

Lemma 1.3. For a, b,x ∈ Rn and γ, α > 0, let c := median{a− (1− γ)α1, b,a+ (1− γ)α1},
where median is applied entrywise. Then, if ∥b− x∥∞ ≤ γ ∥a− x∥∞ and ∥a− x∥∞ ≤ α, then
∥c− x∥∞ ≤ γ ∥a− x∥∞.

Proof. Consider the i-th entry (c− x)i. There are three cases.

First, suppose ai − (1− γ)α ≤ bi ≤ ai + (1− γ)α. Then, |ci − xi| = |bi − xi| ≤ γ ∥a− x∥∞
Second, suppose bi ≤ ai − (1− γ)α ≤ ai + (1− γ)α. Then, ci − xi ≥ bi − xi ≥ −∥b− x∥∞ ≥
−γ ∥a− x∥∞ . Meanwhile, ci − xi = ai − (1− γ)α− xi ≤ ∥a− x∥∞ − (1− γ)α. Now, because
∥a− x∥∞ ≤ α, we have that (1 − γ) ∥a− x∥∞ ≤ (1 − γ)α. So, ∥a− x∥∞ − (1 − γ)α ≤
γ ∥a− x∥∞ .

Lastly, suppose ai − (1 − γ)α ≤ ai + (1 − γ)α ≤ bi. Then, ci − xi ≤ bi − xi ≤ ∥b− x∥∞ ≤
γ ∥a− x∥∞ . Meanwhile, ci − xi = ai + (1− γ)α− xi ≥ −∥a− x∥∞ + (1− γ)α. Now, because
∥a− x∥∞ ≤ α, we have that (1 − γ) ∥a− x∥∞ ≤ (1 − γ)α. So, −∥a− x∥∞ + (1 − γ)α ≥
γ ∥a− x∥∞ . ■

B.2 Omitted proofs from Section 2
First, we prove Lemma 2.1.

Lemma 2.1. Let x = Sample(u,p,M, 0) for p ∈ ∆n, M ∈ Z>0, ε > 0, and u ∈ RS . Then,
E [x] = p⊤u, |x| ≤ ∥u∥∞, and Var [x] ≤ 1/M ∥u∥2∞.

Proof. The first statement follows from linearity of expectation and the second from definitions. The
third statement follows from independence and that

Var [vim] =
∑
i∈S

piv
2
i − (p⊤v)2 ≤

∑
i∈S

pi ∥v∥2∞ = ∥v∥2∞ for any m ∈ [M] .

■

Next, we state Freedman’s inequality [35], which we use to prove the following Lemma 2.2.

Theorem B.1 (Freedman’s Inequality, restated from [36]). Consider a real-valued martingale
{Yk : k = 0, 1, . . .} with difference sequence {Xk : k = 1, 2, . . .} given by Xk = Yk − Yk−1.
Assume that Xk ≤ R almost surely for k = 1, 2, Define the predictable quadratic variation
process of the martingale: Wk :=

∑k
j=1 E

[
X2

j |X1, ..., Xj−1

]
. Then, for all t ≥ 0 and σ2 > 0,

P
{
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

}
≤ exp

(
−t2/(2(σ2 +Rt/3))

)
15

Lemma 2.2. Let T ∈ Z>0 and w(0),w(1), ...,w(T) ∈ RS such that
∥∥w(i) −w(i−1)

∥∥
∞ ≤ τ for

all i ∈ [T]. Then, for any p ∈ ∆S , δ ∈ (0, 1), and M ≥ 28T log(2/δ) with probability 1 − δ,∣∣p⊤(w(t) −w(0))−
∑

i∈[t]

∑
j∈[M] Sample(w

(i) −w(i−1),p, 1, 0) · 1/M
∣∣ ≤ τ/8 for all t ∈ [T].

Proof. For each i ∈ [T], j ∈ [M], let

Xi,j :=
(
Sample(w(i) −w(i−1),p, 1, 0)− p⊤(w(i) −w(i−1))

)
/M.

Since p ∈ ∆S , Lemma 2.1 yields that |Xi,j | ≤ 2τ
M . Next, define Yt,k :=

∑
i∈[t−1]

∑
j∈[M] Xi,j +∑k

j=1 Xt,j . The predictable quadratic variation process (as defined in Theorem B.1) is given by

Wt,k =
∑

i∈[t−1]

∑
j∈[M]

E
[
X2

i,j |X1,1:M , ..., Xi−1,1:M , Xi,1:j−1

]
+
∑
j∈[k]

E
[
X2

t,j |X1,1:M , ..., Xt−1,1:M , Xt,1:j−1

]
=

∑
i∈[t−1]

∑
j∈[M]

Var
[
Sample(w(i) −w(i−1),p, 1, 0)

M

]
+
∑
j∈[k]

Var
[
Sample(w(t) −w(t−1),p, 1, 0)

M

]

≤
∑
i∈[t]

∑
j∈[M]

τ2

M2
=

Tτ2

M

where, in the last line we used Lemma 2.1 to bound the variance. Now, by telescoping,

Yt,M =

∑
i∈[t]

∑
j∈[M]

Sample(w(i) −w(i−1),p, 1, 0)

M

− p⊤(w(t) −w(0)) for all t ∈ [T]

Consequently, applying Theorem B.1 twice (once to Yt,M and once to −Yt,M yields

P
{
∃t ∈ [T] : |Yt,M | ≥

τ

8

}
≤ 2 exp

(
− (τ/8)2

2(Tτ2

M + 2τ
M ·

τ
8 ·

1
3

)
= 2 exp

(
−M

27
(
T + 1

12

)) ≤ δ .

■

As an immediate corollary of Lemma 2.2, we obtain Corollary 2.3.

Corollary 2.3. In TVRVI (Algorithm 3), with probability 1 − δ, in Lines 9, 10 and 2, for all
s ∈ S, a ∈ As, and ℓ ∈ [L], we have

∣∣∣g(ℓ)
a (s)− pa(s)

⊤(v(ℓ−1) − v(0))
∣∣∣ ≤ (1 − γ)α/8 and

therefore ĝ
(ℓ)
a is a (1− γ)α/4-underestimate of pa(s)

⊤(v(ℓ−1) − v(0)).

Proof. Consider some s ∈ S and a ∈ As. Note that g(ℓ)
a (s) is equal in distribution to ∑

i∈[ℓ−1]

∑
j∈[M]

Sample(v(i) − v(i−1),pa(s), 1, 0)

M

− pa(s)
⊤(v(ℓ−1) − v(0)).

Then, by Lemma 2.2 and union bound, whenever M ≥ L · 28 log(2Atot/δ) we have that with
probability 1− δ, for all (s, a) ∈ A,

∣∣∣g(ℓ)
a (s)− pa(s)

⊤(v(ℓ−1) − v(0))
∣∣∣ ≤ 1−γ

8 α and conditioning

on this event, we have pa(s)
⊤(v(ℓ−1) − v(0))− 1−γ

4 α ≤ ĝ
(ℓ)
a (s) ≤ pa(s)

⊤(v(ℓ−1) − v(0)) due to
the shift in Line 10. ■

Conditioning on the event that the implication of Corollary 2.3 holds, we can prove the following
Lemma 2.4

Lemma 2.4. Suppose that for some β ∈ RA
≥0, Pv(0)−β ≤ x ≤ Pv(0) and let βπ⋆ ∈ RS be defined

as βπ⋆(s) := βπ⋆(s)(s) for each s ∈ S. Then, with probability 1− δ, at the end of every iteration
ℓ ∈ [L] (Line 3) in TVRVI(v(0), π(0),x, α, δ), the following hold for ξ := γ((1− γ)α/41+ βπ⋆):

v(ℓ−1) ≤ v(ℓ) ≤ Tπ(ℓ)(v(ℓ)), (6)

0 ≤ v⋆ − v(ℓ) ≤ max
(
γP ⋆(v⋆ − v(ℓ−1)) + ξ, γ(v⋆ − v(ℓ−1))

)
. (7)

16

Proof. In the remainder of this proof, condition on the event that the implications of Corollary 2.3
hold (as they occur with probability 1− δ). By Line 7 and 8 of Algorithm 3, for all ℓ ∈ [L],

v(ℓ−1) ≤ v(ℓ) ≤ v(ℓ−1) + (1− γ)α1.

This immediately implies the lower bound in (6).

We prove the upper bound in (6) by induction. In the base case when ℓ = 0, v(0) ≤ Tπ(0)(v(0)) holds
by assumption. For the ℓ-th iteration, there are two cases. If v(ℓ)(s) > v(ℓ−1)(s) for s ∈ S then

v(ℓ)(s) = rπ(ℓ)(s) + γ
(
x(s) + ĝ

(ℓ)

π(ℓ)(s)
)
≤ rπ(ℓ)(s) + γpπ(ℓ)(s)⊤v(ℓ−1)(s) (10)

≤ Tπ(ℓ)(v(ℓ−1)) ≤ Tπ(ℓ)(v(ℓ)).

Otherwise, if v(ℓ)(s) = v(ℓ−1)(s), then by the inductive hypothesis,

v(ℓ)(s) = v(ℓ−1)(s) ≤ Tπ(ℓ−1)(v(ℓ−1))(s) = Tπ(ℓ)(v(ℓ))(s) .

This completes the proof of (6).

Next, we prove (7). For the lower bound, by induction and (10), we have that for each s ∈ S

ṽ(ℓ)(s) ≤ max
a∈As

{ra(s) + γpa(s)
⊤v(ℓ−1)(s)} ≤ max

a∈As

{ra(s) + γpa(s)
⊤v⋆(s)} = v⋆,

so min(ṽ(ℓ),v(ℓ−1) + (1− γ)α) ≤ v⋆.

Next, we prove the upper bound of (7). For each (s, a) ∈ A and ℓ ∈ [L], let

ξ(ℓ)a (s) := pa(s)
⊤v(ℓ−1) − (xa(s) + ĝ(ℓ)

a)(s)),

and observe that

ξ(ℓ)a (s) = [pa(s)
⊤v(0) − xa(s)] + [pa(s)

⊤(v(ℓ−1) − v(0))− ĝ(ℓ)
a)(s))] ≤ βa(s) +

(1− γ)α

4
.

Note that for any s ∈ S,

(v⋆ − ṽ(ℓ))(s) = max
a∈Ai

[ra(s) + γpa(s)
⊤v⋆(s)]− max

a∈As

[ra(s) + γ(xa(s) + ĝ(ℓ)
a)(s))]

≤ [rπ⋆(s)(s) + γ (P ⋆v⋆) (s)]− max
a∈As

[ra(s) + γpa(s)
⊤v(ℓ−1) − γξ(ℓ)a (s)]

≤ [rπ⋆(s)(s) + γ (P ⋆v⋆) (s)]− [rπ⋆(s)(s) + γ(P ⋆v(ℓ−1))(s)− γξ
(ℓ)
π⋆(s)(s)]

≤ γ
(
P ⋆(v⋆ − v(ℓ−1))

)
(s) + ξ(s),

Consequently, for all s ∈ S,

(v⋆ − ṽ(ℓ))(s) ≤ γP ⋆(v⋆ − v(ℓ−1))(s) + ξ(s).

Consider two cases for v(ℓ)(s). First, if v(ℓ)(s) = ṽ(ℓ)(s) for some s ∈ S then(
v⋆ − v(ℓ)

)
(s) ≤ γ

(
P ⋆
(
v⋆ − v(ℓ−1)

))
(s) + ξ(s)

holds immediately. If not, v(ℓ)(s) = v(ℓ−1)(s) + (1− γ)α ≤ ṽ(ℓ)(s) and (6) guarantees that∥∥∥v⋆ − v(ℓ−1)
∥∥∥
∞
≤
∥∥∥v⋆ − v(0)

∥∥∥
∞
≤ α,

which ensures that (1− γ)(v⋆ − v(ℓ−1))(s) ≤ (1− γ)α and yields the results as,(
v⋆ − v(ℓ)

)
(s) =

(
v⋆ − v(ℓ−1)

)
(s)− (1− γ)α ≤ γ

(
v⋆ − v(ℓ−1)

)
(s) .

■

We now inductively apply Lemma 2.4 to obtain Corollary 2.5, which allows us to bound the number
of iterates required to halve the initial error in TVRVI.

17

Corollary 2.5. Suppose that for some α ≥ 0 and β ∈ RA
≥0, Pv(0) − β ≤ x ≤ Pv(0); v(0) is an

α-underestimate of v⋆; and v(0) ≤ Tπ(0)(v(0)). Let βπ⋆ ∈ RS be defined as βπ⋆(s) := βπ⋆(s)(s)

for each s ∈ S. Let (v(L), π(L)) = TVRVI(v(0), π(0), α, δ), and L,M be as in Line 2. Define ξ :=
γ ((1− γ)α/4 · 1+ βπ⋆). Then, with probability 1− δ, 0 ≤ v⋆−v(L) ≤ γLα ·1+(I−γP ⋆)−1ξ,
and v(L) ≤ Tπ(L)(v(L)). In particular, if β = 0, then for L > log(8)(1− γ)−1 we can reduce the
error in v(0) by half: 0 ≤ v⋆ − v(L) ≤ (v⋆ − v(0))/2. Additionally, TVRVI is implementable with
Õ(AtotML) sample queries to the generative model and time and O(Atot) space.

Proof. Condition on the event that the implication of Lemma 2.4 holds. First, we observe that
0 ≤ v⋆ − vπ(L) ≤ v⋆ − v(L) follows by monotonicity (Equation (6) of Lemma 2.4). Next, we show
that

v⋆ − v(L) ≤ γLα · 1+ (I − γP ⋆)−1ξ,

by induction. We will show that for all i ∈ S,

v⋆ − v(ℓ) ≤

[
γℓα1+

ℓ∑
k=0

γkP ⋆kξ

]
.

In the base case when ℓ = 0, this is trivially true, as v⋆ − v(ℓ) ≤ α1 by assumption. Assume that the
statement is true up to v(ℓ−1). Now, by Lemma 2.4, we have two cases for [v⋆ − v(ℓ)](i).

First, suppose that [v⋆ − v(ℓ)](i) ≤ γ[v⋆ − v(ℓ−1)](i). Then, note that P ⋆ and ξ are entrywise
non-negative, so [γℓP ⋆ℓξ](i) ≥ 0. By inductive hypothesis, and the fact that γ ∈ (0, 1) we have

[v⋆ − v(ℓ)](i) ≤ γ

(
γ(ℓ−1)α+

[
ℓ−1∑
k=0

γkP ⋆kξ

]
(i)

)

= γℓα+ γ

[
ℓ−1∑
k=0

γkP ⋆kξ

]
(i) ≤ γℓα+

[
ℓ−1∑
k=0

γkP ⋆kξ

]
(i) ≤ γℓα+

[
ℓ∑

k=0

γkP ⋆kξ

]
(i)

=

[
γℓα1+

ℓ∑
k=0

γkP ⋆kξ

]
(i).

Second, suppose that instead, [v⋆ − v(ℓ)](i) ≤
[
γP ⋆

(
v⋆ − v(ℓ−1)

)]
(i) + ξ(i). By monotonicity

(equation (6) of Lemma 2.4) we know that v⋆ − v(ℓ−1) ≥ 0. Moreover, P ⋆ is non-negative, and
consequently, we can use the inductive hypothesis as follows:(
v⋆ − v(ℓ−1)

)
≤

[
γℓ−1α1+

ℓ−1∑
k=0

γkP ⋆kξ

]
, hence P ⋆

(
v⋆ − v(ℓ−1)

)
≤ P ⋆

[
γℓ−1α1+

ℓ−1∑
k=0

γkP ⋆kξ

]
.

We can rearrange terms to obtain the following bound:

[v⋆ − v(ℓ)](i) ≤

[
γP ⋆

(
γ(ℓ−1)α1+

ℓ−1∑
k=0

γkP ⋆kξ

)]
(i) + ξ(i)

= γℓα[P ⋆1](i) +

[
ℓ−1∑
k=0

γk+1P ⋆k+1ξ

]
(i) + ξ(i) ≤

[
γℓα1+

ℓ∑
k=0

γkP ⋆kξ

]
(i).

Consequently, by induction, the bound holds. When L > log(8)(1− γ)−1 , γL ≤ 1/8 and we have

v⋆ − vk ≤ γLα · 1+ (I − γP ⋆)−1 γ(1− γ)

4
α1 ≤ γLα+ γ

α

4
≤ α

2
.

Finally, the sample complexity and runtime follow from the algorithm pseudocode. For the space
complexity, at each iteration ℓ of the outer for loop in TVRVI, the algorithm needs only to maintain
ĝ(ℓ), g(ℓ) ∈ RAtot , v(ℓ) ∈ RS , π(L), and at most MAtot samples in invoking Sample.

■

18

Finally, we are ready to prove Theorem 1.2.

Theorem 1.2. In the offline setting, there is an algorithm that uses Õ(nnz(P) + Atot(1 − γ)−2)
time, and computes an ε-optimal policy and ε-optimal values with probability 1− δ.

Proof. To run OfflineTVRVI, we can implement a generative model from which we can draw
samples in O(nnz(P)) pre-processing time, so that each query to the generative model requires
Õ(1) time. For the correctness, we induct on k to show that after each iteration k, 0 ≤ v⋆ − vπK

≤
v⋆ − vK ≤ αk with probability 1 − kδ/K. In the base case when k = 0, the bound is trivially
true as ∥v⋆∥∞ ≤ (1− γ)−1. Now, by Applying Corollary 2.5 and a union bound, we see that with
probability 1− kδ/K, v⋆ − vk ≤ αk−1

2 = αk, whenever L > log(8)(1− γ)−1. Thus, vK satisfies
the required guarantee whenever αK ≤ ε, which is guaranteed by our choice of K. To see that πk is
an ε-optimal policy, we observe that Corollary 2.5 ensures

vk ≤ Tπk
(vk) ≤ T 2

πk
(vk) ≤ · · · ≤ T ∞

πk
(vk) = vπk ≤ v⋆.

For the runtime, the algorithm completes only K = Õ(1) iterations, and can be implemented with
Õ(1) calls to the offset oracle. Each inner loop iteration can be implemented with Õ(AtotL

2) =

Õ
(
Atot(1− γ)

−2
)

additional time and queries to the generative model. The algorithm only requires
O(Atot) space in order to store offsets, values, and approximate utilities. ■

B.3 Omitted proofs from Section 3

Theorem B.2 (Hoeffding’s Inequality and Bernstein’s Inequality, restated from Lemma E.1 and E.2
of [3]). Let p ∈ ∆S be a probability vector, v ∈ Rn, and let y := 1

m

∑m
j=1 v(ij) where ij are

random indices drawn such that ij = k with probability p(k). Define σ := (p⊤v2 − (p⊤v)2). For
any δ ∈ (0, 1), the following hold, each with probability 1− δ:

(Hoeffding’s Inequality)
∣∣p⊤v − y

∣∣ ≤ ∥v∥∞ ·√2m−1 log(2δ−1),

(Bernstein’s Inequality)
∣∣p⊤v − y

∣∣ ≤√2m−1σ · log(2δ−1) + (2/3)m−1 ∥v∥∞ · log(2δ
−1).

Theorem B.2 illustrates that the error in estimating Pu for some value vector u depends on the
variance σu := Pu2 − (Pu)2 ∈ RA. To bound this variance term, we appeal to the following two
lemmas from [3].

Lemma B.3 (Lemma 5.2 of ([3]), restated).
√
σv ≤

√
σv⋆ + ∥v⋆ − v∥∞ 1.

Lemma B.4 (Lemma C.1 of ([3]), restated). For any π, we have∥∥(I − γP π)−1√σvπ

∥∥2
∞ ≤

1 + γ

γ2(1− γ)3
.

We can now bound the error in estimating Pu using ApxUtility(u, N, η). The following
Lemma 3.1 obtains such a bound by following a similar argument to that of Lemma 5.1 of [3].

Lemma 3.1. Consider u ∈ RS . Let x = ApxUtility(u,m · Atot, η), m ≥ log(1/2δ−1), and
η = (mAtot)

−1 log(1/2δ−1). Then, with probability 1− δ,

Pu− 2
√
2ησv⋆ +

(
2
√

2η ∥u− v⋆∥∞ + 18η3/4 ∥u∥∞
)
≤ x ≤ Pu.

Proof. For s ∈ S and a ∈ As. Let i1, ..., iN ∈ S be random indices such that P {ij = t} =
(pa(s))(t) for each j ∈ [N]. Define the vectors x̃ and σ̂ as follows.

x̃a(s) :=
1

N

N∑
j=1

u(ij) and σ̂a(s) :=
1

N

N∑
j=1

(u(ij))
2 − (x̃a(s))

2.

19

From the pseudocode of ApxUtility (Algorithm 1), we see that that x = x̃−
√
2ησ̂−4η3/4 ∥u∥∞−

(2/3)η ∥u∥∞ . Now, by union bound over all state-action pairs (s, a) and Theorem B.2, we have that
with probability 1− δ/2 for each sate-action pair (s, a),∥∥∥x− Pu∞ ≤

√
2ησu

∥∥∥+ 2

3
η ∥u∥∞ 1. (11)

and with probability 1− δ/2 for each sate-action pair (s, a),∥∥∥∥∥∥ 1

N

∑
j∈[N]

(σ̂a(s))
2 − pa(s)

⊤u2

∥∥∥∥∥∥ ≤ ∥u∥2∞√2η∞.

Consequently, by union bound and triangle inequality and (11), we have that with probability 1− δ
both of the following hold.

∥x̃− Pu∥∞ ≤
√
2ησu +

2

3
η ∥u∥∞ 1, and ∥σ̂ − σu∥∞ ≤ 4 ∥u∥2∞ ·

√
2η1. (12)

We condition on (12) in the remainder of the proof. Now,

|x̃− Pu| ≤
√
2ησ̂ +

(
4η3/4 ∥u∥∞ +

2

3
η ∥u∥∞

)
1,

and we have that

Pu− 2
√
2ησ̂ −

(
8η3/4 ∥u∥∞ +

4

3
η ∥u∥∞

)
1 ≤ x ≤ Pu.

By (12) and Lemma B.3, we have that for α := ∥u− v⋆∥∞,
√
σ̂ ≤

√
σu + 2 ∥u∥∞ (2η)1/41 ≤

√
σv⋆ + α1+ 2 ∥u∥∞ (2η)1/41,

which implies that

x ≥ Pu− 2
√
2ησv⋆ − 2

√
2ηα1− 16η3/4 ∥u∥∞ 1− 4

3
η ∥u∥∞ 1.

Since η ≤ 1,

2
√

2ησv⋆ +

(
2
√
2ηα+ 16η3/4 ∥u∥∞ +

4

3
η ∥u∥∞

)
1 ≤ 2

√
2ησv⋆ +

(
2
√
2ηα+ 18η3/4 ∥u∥∞

)
1.

■

Theorem 1.1. In the sample setting, there is an algorithm that uses Õ(Atot[(1−γ)−3ε−2+(1−γ)−2])
samples and time and O(Atot) space, and computes an ε-optimal policy and ε-optimal values with
probability 1− δ.

Proof. Let K, αk, (vk, πk), and Nk be as defined in Lines 1, 4, 9, and 6 of SampleTVRVI(ε, δ).
First, we show, by induction that for each k ∈ [K], with probability 1− kδ/K,

0 ≤ v⋆ − vπk ≤ v⋆ − vk ≤ αk1 and vk ≤ Tπk
(vk).

In the base case when k = 0, the bound is trivially true because 0 ≤ v⋆−vπ0
≤ v⋆−v0 ≤ (1−γ)−1.

Now, for the inductive step, by Lemma 3.1 we see that with probability 1− δ/K,

Pvk−1 −
[
2
√
2ηk−1σv⋆ +

(
2
√

2ηk−1αk−1 + 18η
3/4
k−1 ∥vk−1∥∞

)
1
]
≤ xk ≤ Pvk−1 (13)

and, by inductive hypothesis, with probability 1− (k − 1)δ/K,

0 ≤ v⋆ − vπk−1 ≤ v⋆ − vk−1 ≤ αk−11, and vk ≤ Tπk−1
(vk−1). (14)

Consequently, by a union bound, with probability 1− kδ/K, both (13) and (14) hold. Condition on
this event for the remainder of the inductive step.

20

Next, we can apply Corollary 2.5 with

β = 2
√

2ηk−1σv⋆ +
(
2
√
2ηk−1αk−1 + 18η

3/4
k−1 ∥vk−1∥∞

)
1.

Therefore,

0 ≤ v⋆ − vk ≤ γLαk−1 · 1+ (I − γP ⋆)−1ξk−1 ≤
αk−1

8
1+ (I − γP ⋆)−1ξk−1

for ξk−1 ≤ (1−γ)αk−1

4 1+2
√
2ηk−1σv⋆ +

(
2
√
2ηk−1αk−1 + 18η

3/4
k−1 ∥vk−1∥∞

)
1. By Lemma B.4

and the facts that ηk−1 ≤ (6500·(1−γ)−3 max((1−γ), α−2
k−1))

−1 and (I−γP ⋆)−11 = 1/(1−γ)1,
we obtain

(I− γP ⋆)−1ξk−1 ≤

αk−1

4
+ 2

√
6ηk−1

(1− γ)3
+ 2

√
2(1− γ)3 min((1− γ)−1, α2

k−1)

6500(1− γ)2
αk−1

1

+

[
18

(
((1− γ)3 min((1− γ)−1, α2

k−1)

6500(1− γ)8/3

)3/4
]
1

≤ [αk−1/4 + 2
√
6/6500 · αk−1 + 2

√
2/6500(1− γ)1/2 min((1− γ)−1/2, αk−1)αk−1

+ 18 · (10−3)(1− γ)1/4 min((1− γ)−3/4, α
3/2
k−1)]1

≤ [αk−1/4 + 4
√
6/6500 · αk−1 + 18 · (10−3)αk−1]1 ≤

3

8
αk−11.

Consequently, v⋆ − vk ≤ α/21. To see that πk is also an αk-optimal policy, we observe that
Corollary 2.5 also ensures that

vk ≤ Tπk
(vk) ≤ T 2

πk
(vk) ≤ · · · ≤ T ∞

πk
(vk) = vπk ≤ v⋆.

This completes the inductive step.

Consequently, for k = K = ⌈log2(ε−1(1− γ)−1)⌉ iterations, ε ≥ αK ≥ ε/4 and with probability
1− δ, vK is an ε-optimal value and πK is an ε-optimal policy.

For runtime and sample complexity, note that the algorithm can be implemented using only Õ(NK) =

Õ((1− γ)−3ε−2 + (1− γ)3)-samples and time per state-action pair. For the space complexity, note
that the algorithm can be implemented to maintain only O(1) vectors in RAtot . ■

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction state our main results and improvements
over previous work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss regimes where our result is optimal and where it may be
suboptimal in the introduction. In the conclusion we also discuss directions for future work
and open problems left open by our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [Yes]
Justification: Sections 2 and 3 of our paper give a sketch of how we obtain our main
theorems, and full proofs of all intermediate results as well as the full theorems can be found
in the supplemental material/appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper focuses on theoretical results and mathematical analysis and does
not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

23

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper focuses on theoretical results and mathematical analysis and does
not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper focuses on theory and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper focuses on theoretical results and mathematical analysis and does
not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper focuses on theoretical results and mathematical analysis and does
not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have read and conformed to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on foundational theory for solving MDPs and is not directly
tied to any specific societal impacts (positive or negative). We do not expect any direct,
immediate, substantial societal impacts.

Guidelines:

25

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on foundational theory and does not pose any such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing code/data/model assets because we do not have any
experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper did not involve crowdsourcing or research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

27

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Our results
	Overview of approach
	Notation and paper outline

	Offline algorithm
	Sample setting algorithm
	Conclusion
	Faster problem-dependent convergence
	Omitted proofs from the main body
	Omitted proof of Lemma 1.3
	Omitted proofs from Section 2
	Omitted proofs from Section 3

