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Abstract

The rapid proliferation of Internet of Things (IoT) technologies has transformed numer-
ous sectors by enabling real-time monitoring, automation, and data-driven insights. IoT
systems still struggle with challenges stemming from raw, heterogeneous data, limited con-
textual understanding, and rigid, rule-based analytics. Meanwhile, Large Language Models
(LLMs) have demonstrated remarkable capabilities in natural language understanding, rea-
soning, and human-machine interaction. Integrating large-language models with the Inter-
net of Things (IoT) represents a rapidly evolving research area with significant potential to
enhance the adaptability, intelligence, and user experience of multi-user connected IoT sys-
tems. This survey paper aims to explore the various applications of LLMs in IoT, including
reviewing their role in recent advancements that integrate LLMs into IoT workflows from
edge intelligence and smart interfaces to dynamic task execution and generative interaction.
Furthermore, the study will examine key challenges, such as computational overhead, la-
tency, and data privacy concerns associated with deploying LLMs in resource-constrained
IoT environments. Through a comprehensive review of the existing literature and recent
advancements, this paper seeks to highlight emerging trends and provide insights into the
future development of LLM-driven IoT applications. We analyze prominent use cases, ar-
chitectural trends, and optimization techniques, and we discuss the technical, ethical, and
operational challenges that arise. Finally, we outline promising future directions for devel-
oping scalable, efficient, and context-aware IoT systems empowered by LLM agents.

1 Introduction

The Internet of Things (IoT) has significantly impacted various sectors, facilitating real-time monitoring,
automation, and extensive data collection from diverse interconnected devices across healthcare, manufac-
turing, smart cities, and personal computing environments. Despite these advancements, loT-generated data
is typically raw, heterogeneous, and challenging to analyze, limiting the actions that automated IoT systems
can perform. Traditional IoT systems often rely on rule-based analytics or domain-specific models, restrict-
ing their adaptability and contextual understanding in dynamic environments, thus limiting scalability and
responsiveness (Zhao et al., |2025; |[De Vito et al., [2025).

Recently, Large Language Models (LLMs) such as GPT-4 and BERT have significantly advanced their
abilities in sophisticated natural language processing, contextual reasoning, and extensive knowledge inter-
pretation (Zhao et al.l [2025; |Zong et all |2024). These models have demonstrated exceptional proficiency
in language-centric tasks, significantly improving data interpretability, summarization, and interaction (Li
et al.| [2024)). Notably, implementing agentic workflows using LLMs (LLM agents) enables complex task exe-
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cution and intelligent interactions through natural language instructions, making them particularly suitable
for IoT domains (Cui et all, 2024; |Zong et al., [2024).

This intersection between LLMs and IoT is timely and crucial, driven by the complexity of modern IoT envi-
ronments, the urgent need for efficient edge intelligence, and demands for intuitive human-machine interfaces
(De Vito et al., 2025; |Guan et al., 2024). For example, specialized prompting methods for generative IoT
demonstrate significant efficiency improvements in constrained edge devices (Xiao et al., |2024). Addition-
ally, recent research output indicates growing interest in using LLMs to address IoT-specific challenges like
data management, interoperability, security, and scalability, identifying methods to optimize computational
resource usage and conform to ethical considerations in IoT applications (De Vito et al., 2025; |[Zong et al.|
2024]).

Motivated by these opportunities and challenges, this survey reviews recent strategies, advancements, and
limitations for integrating LLM agents into IoT domains. In particular, we explore the capability for LLM
agents to autonomously in their IoT environments and the extent of human assistance required. We analyze
key use cases, provide system architecture considerations, outline challenges and limitations, and propose
future directions to facilitate robust, efficient, and intelligent IoT LLM agents.

2 Background

2.1 Large Language Models (LLMs)

LLMs have advanced considerably due to transformer architectures, instruction tuning, and effective tool-use
mechanisms. Transformers utilize self-attention to process text, significantly improving the understanding of
context and semantics (Naveed et al., 2024). Fine-tuning methods, such as instruction tuning, allow models
to perform specific tasks effectively, enhancing their reasoning and interaction capabilities with limited
additional training data (Parthasarathy et al. 2024). Recent advancements in tool use demonstrate LLMs’
ability to interact with external APIs or software, enabling them to perform practical tasks beyond mere
text generation (Zhao et al., 2025).

2.2 Internet of Things (loT)

ToT architectures typically comprise three primary layers: edge, fog, and cloud (Dominguez-Bolafio et al.)
2022). Edge computing involves processing data near the data source, reducing latency, and improving
efficiency for real-time applications (Ahmed et al., |2023). Fog computing acts as an intermediary, handling
computation closer to end devices to balance the computational load and improve responsiveness. Cloud
computing serves as a central repository and powerful analytical engine, managing extensive computational
tasks and data storage (Dominguez-Bolano et al., 2022)).

Sensors and actuators are fundamental IoT components, providing real-time environmental monitoring and
enabling responsive actions based on data-driven decisions. IoT networks commonly use various commu-
nication protocols, including MQTT, HTTP, and CoAP, which facilitate effective communication between
sensors, actuators, and central processing units (Dominguez-Bolano et al., 2022)).

2.3 Integration of LLM Agents in loT

Integrating LLM agents within IoT architectures offers substantial improvements in data interpretation,
predictive analytics, and system control. LLM agents can process raw sensor data, converting it into human-
readable summaries and actionable insights, enhancing decision-making processes (Guan et al., |2024; |Cui
et al., 2024). Additionally, the multimodal capabilities of LLMs, which combine textual, numerical, and
sensory inputs, significantly enrich contextual understanding, vital for effective IoT applications such as
anomaly detection, predictive maintenance, and intelligent interfaces (Zong et al.| [2024).

Moreover, IoT provides LLMs with real-time, multimodal data inputs, refining their context sensitivity and
specificity. Examples include energy management recommendations in smart buildings based on occupancy
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and temperature data, and patient monitoring systems in healthcare that utilize real-time physiological data
to detect health anomalies (Guan et al., [2024).

Overall, this survey comprehensively addresses these integrations, synthesizing recent research and analyzing
optimal approaches for the practical deployment of LLM agents into IoT systems.

3 Related Work

Existing surveys focus on how LLMs can be integrated into existing paradigms for IoT systems to improve
their performance and enable greater interactivity. Kok et al.| (2024) investigate how LLMs can be integrated
at the edge, fog, and cloud deployment levels of IoT systems to enhance functionalities such as by optimizing
resource usage and enhancing real-time processing abilities. They focus on how this integration transforms
the LLM into more perceptive systems by giving them access to IoT sensors, enabling their generative ability
for IoT-specific prompts and leveraging their reasoning capabilities for IoT tasks. [Zong et al.| (2024) explore
how LLMs can make IoT networks more intelligent and responsive for enhancing the system’s security,
enabling macroprogramming frameworks that treat the system of devices as a single entity, and overcoming
hardware limitations for storing IoT data. Our survey builds on these works by exploring the capability for
fully autonomous LLM agents that can not only improve current IoT systems, but introduce novel paradigms
as well for solving IoT problems by delegating tasks to the agents.

Other surveys have investigated the capability for LLM agents tailored for specialized IoT domains. |Li et al.
(2024) explore the the capability for Personal LLM Agents, which have access to a user’s personal devices
such as smartphones and smart watches to help users obtain information and achieve goals. They focus on
architectures and capabilities of these agents as well as addressing security concerns that arise from working
with personal data. [Ferraral (2024)) covers trends and challenges for implementing LLM agents in systems of
wearable sensors, covering the capability for personalized health-related applications such as coaching and
physiotherapist agents. Our survey expands on these works by examining the potential for LLM agents in
other IoT ecosystems that may use different types of devices and have different levels of stakes involved,
introducing the unique considerations different domains incur while also synthesizing broader conclusions.

4 LLM Agents in loT: Applications

In this section we examine and compare how LLMs can be effectively integrated into systems for different
ToT domains. We focus on agentized solutions that provide automation and improved decision-making for a
variety of IoT tasks.

4.1 Smart Homes

Smart homes make a natural domain for implementing LLM agents due to the existing paradigm of voice-
controlled smart home assistants that act as agents by controlling various IoT devices such as smart lights
and televisions to satisfy user commands.

The smart home LLM assistant Sasha leverages the natural language proficiency of LLMs to better interpret
imprecise commands such as “help me sleep better,” utilizing a framework for decomposing the task to clarify
goals, determine appropriate devices, and produce action plans in JSON format (King et al.l 2024). Sasha
leverages planning and reasoning frameworks to significantly improve the raw performance of the LLM,
allowing it to support complex multi-part task commands. Sasha’s incorporated mechanism for iteratively
improving plans from user feedback suggests that the human-in-the-loop paradigm may actually be a rea-
sonable expectation for LLM agents in smart homes, as unlike in other domains, the human is typically near
the agent and requires little effort to supervise its generated actions for new commands.

Progressing beyond generating action plans, the centralized smart home LLM assistant SAGE executes tasks
using API calls to control any smart device’s full functionality without needing to know device-specific code
(Rivkin et all [2025). SAGE dynamically constructs a tree framework to determine which action to take
next, whether the action was successful, and determine when the task is completed. SAGE uses a long-term
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memory mechanism to infer user preferences over time for handling commands such as “put the game on
the TV over the dresser” and generates condition code to handle persistent tasks such as “remind me to
throw out the milk when I open the fridge.” Coupled with its generalization for different smart devices,
SAGE’s multi-modal capability for recognizing devices from photos of the room demonstrates the LLM
agent’s enhanced ability to not only perform tasks, but ease the integration of new devices and setups with
minimal user configuration.

In addition to handling direct user commands, |Khelifi & Morris| (2024)’s framework for LLM agents in smart
spaces can use context from sensors to infer user desires to provide services autonomously without human
direction (Khelifi & Morris, [2024). Rather than a centralized agent for the smart space, each smart device
acts as its own agent, distributing the workload for detecting when an action should be performed. A benefit
of having the agents infer their own tasks is the automatic implementation of universal values, such as energy
conversation by turning off the lights when on one is in the room. Furthermore, the agents can act in hybrid
smart spaces implemented with augmented reality and virtual reality, synchronizing between the different
realities and providing more immersive user experiences. Though further away from being deployed in the
real world, these agents show the potential for smart home LLM agents that do not require humans for task
recognition.

4.2 Industrial loT

Delegating industrial IoT tasks such as data analysis, energy optimization, and real-time monitoring and
decision-making to LLM agents has less precedence due to the lack of non-LLM agent parallels, requiring
creativity in designing multi-agent systems for domain-specific solutions.

CityGPT can perform user-requested spatiotemporal data learning and analysis tasks by employing multiple
LLM agents that are given access to specialized models tailored for their tasks|Guan et al.| (2024)). A benefit of
agentizing these tasks is to enable interactivity with complex models, broadening the range of applications
the system can be used for. CityGPT’s conversational interface helps bridge the gap between complex
ToT-generated data and human-interpretable knowledge, enabling the agents to work alongside humans to
improve the efficacy of crucial tasks such as evaluating and predicting air quality.

Beyond collaboration with humans, CASIT facilitates a system of LLM agents that can run by itself for
assessing abnormalities in IoT sensor data, enabling automation for tasks such as maintaining livable con-
ditions in natural habitats (Zhong et all |2024). CASIT’s multiple agent framework significantly reduces
data transmission volumes from the environment’s sensors to the data servers by using a Chairman Agent
to choose the necessary information from Data Analyst agents to transmit and the appropriate means for
transmission, reducing costs and alleviating bandwidth limitations for massive IoT data. This reveals the
capacity for fully autonomous LLM agents in distant environments from humans, as the agents can make
remote communication more manageable.

More progress toward fully autonomous industrial IoT agents can be achieved using the GPT-in-the-loop
approach for drawing from environmental feedback to enhance decision making and adaptability (Nascimentol
et al., 2023). The iterative improvements from GPT-in-the-loop enables streetlight agents to make decisions
for optimizing energy usage while providing adequate lighting at a human-level performance after a few
attempts without the need for extensive training. Thus, the integration of LLM agents for industrial IoT
applications can have varying levels of reliance on humans and is highly task-dependent, but ultimately
supports working alongside humans as well as executing remote tasks.

4.3 Task Scheduling and Smart Devices

LLMs have achieved impressive results in textual and visual domains, but still struggle to replicate those
results in the physical world, revealing a gap in their understanding of specific outputs that follow physical
constraints. To replicate human cognition in complex tasks where perception is fundamental to reasoning,
LLMs can be augmented with enhanced perception abilities using IoT sensor data and pertinent knowledge
for ToT task reasoning in the physical domain. (An et al., |2024])
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Figure 1: Augmenting LLMs with physical world perception from IOT data
(An et al. 2024)

Goal-oriented communication is an important aspect of existing smart IoT devices, which have become
limited in their capacity to handle complex tasks, and especially in their interactions with humans. LLMind
is an LLM-based task-oriented AI agent framework that enables effective collaboration among IoT devices,
with humans communicating high-level verbal instructions to perform complex tasks. (Cui et al.l 2024)
The exceptional logical reasoning and linguistic capabilities of LLMs can be leveraged to achieve seamless
coordination among diverse IoT devices and perform complex tasks in an overall advanced intelligence IoT
system, thus enabling human users to control multiple IoT devices simultaneously through various media,
including text, voice, video, and virtual reality.

In the case of smart devices, the LLM agent engages in conversation with users by means of a chatting
interface or verbal commands to generate contextual information regarding the tasks for the system. The
LLM takes over the planning tasks and generates control scripts utilizing specialized Al models and interact-
ing with IoT devices by sending control commands over network connections. To ensure efficient control of
diverse IoT devices in LLMind across multi-modal inputs, manufacturers must provide well-documented API
functions. These functions should encapsulate the necessary functionality, enabling the AI agent to initiate
specific actions or retrieve information from the IoT devices. (Cui et al.||2024)) This design then enables the
system to adapt to different AT modules and IoT devices without requiring extensive modifications to the
LLM itself, enhancing scalability and interoperability.

The rise of LLMs has also led to an increase in deployment of LLMs-based agents on personal IoT devices.
These agents perform daily tasks by understanding user intentions, gathering information, making decisions,
and taking autonomous actions. On smart devices, these agents could autonomously operate mobile ap-
plications, call different APIs, and use various sensors to perform tasks. However, this integration poses a
challenge in effectively displaying information during task execution and ensuring users are informed about
the operations and the outcomes of the tasks they desire. [Wen et al.[(2024) proposes a system consisting of a
task planning agent, a UI navigating agent, and a Ul reassembling agent. Given the high level task that may
involve several applications, the task planner agent divides it into sub-tasks. Then the Ul navigating agent
can complete each sub-task on one application, and record the important Ul elements for display. Finally,
the UI reassemble agent constructs a user-friendly Ul layout based on these recorded UI elements. Thus,
LLM agents here can be utilized as a personalization agent to customize UI elements for apps on your own
smartphone.

LLM’s reasoning ability can also be enhanced using IoT data, into the novel unified framework IoT-LLM for
task reasoning (An et al., [2024)). IoT-LLM is composed of three steps tailored for IoT reasoning: designing
an LLM-friendly data format, activating knowledge by chain-of-thought prompting, and automatic IoT-
oriented Retrieval-Augmented Generation (RAG) based on LLMs’ in-context learning capability. We can
also determine if LLMs truly understand and solve the task they were assigned to by generating analytical
processes and analyzing the reasonableness of the analytics. The analysis generated by IoT-LLM indicates
that LLMs can provide a reasonable process of solving simple tasks, but their efficacy diminishes in more
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specialized domains like heartbeat anomaly detection. This performance disparity is attributable to the
complexity of data and the limited domain-specific knowledge inherent in LLMs.
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Figure 2: Smart Workspace Scenario
(Khelifi & Morris| |2024)

[Khelifi & Morris| (2024) explore the opportunity to design Smart Space (SS) systems that combine Extended
Reality-based human-computer interactions with IoT and LLM-based task planning and control, and using
contextual information to adapt to both the physical and virtual world’s behavior and objects. The solution
in this framework usually consists of several components as shown in Figure 2. The user which has several
states, tasks, and goals; the Context Engine, which is the environment; and then the Goal-Driven Embodied
Agents.

This framework shows how the intersection of Extended Reality, LLMs, and IoT technologies can provide
intelligent, context-aware, and immersive interactions between the user and IoT devices that also take into
account the user contexts and enhance user experience within Smart Spaces.

4.4 Healthcare

ToT-based sensors play a crucial role in continuous health monitoring, enabling the early detection of medical
conditions and the management of chronic diseases. These sensors utilize advanced technologies to detect
potential health issues and trigger timely alerts, operating on the principle of preventive healthcare, ensuring
patient safety and improved health management. Further, by analyzing data from wearable motion and
physiological sensors, systems can classify various physical activities, which is valuable in fitness tracking
(especially for athlete training progress and preventing injuries), rehabilitation, and elder care.

LLMs trained on diverse datasets exhibit potential for handling complex health wearables sensor data,
transforming raw sensor data into structured information to extract meaningful insights for analysis. This
process is critical in Human Activity Recognition (HAR), health monitoring, and behavior analysis (Ferrara
. The raw data, particularly in the case of multiple and combinations of physiological sensors, tends
to be high dimensional. Dimensionality reduction techniques, such as Principal Component Analysis (PCA)
and feature selection methods, are employed to manage this complexity and make the data more manageable
for analysis.
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Recent promising applications of LLMs in the analysis of wearable sensor data involve the models processing
and analyzing multi-modal data, including text, audio, and sensor signals, offering a more comprehensive
understanding essential for generating accurate healthcare decisions. |[Ferrara (2024)) introduces the health
monitoring system PhysioLLM, which integrates physiological data from wearables with contextual infor-
mation to provide personalized health insights. It has been instrumental in chronic disease management,
enhancing users’ understanding of health data, supporting actionable health goals by continuously monitor-
ing vital signs and alerting users and healthcare providers about potential health issues, thus facilitating
early intervention and improving patient outcomes. In the case of HAR, HARGPT leverages LLMs in clas-
sifying human activities based on sensor data collected about the user’s movements, body positions, and
physiological responses, and outperforms traditional machine learning models in recognizing activities from
raw IMU data, achieving high accuracy, even on unseen data.

Additional improvements in real-time feedback and intervention mechanisms in wearable devices, such as
biofeedback-enabled wearables that monitor physiological parameters, can provide immediate feedback to
users and promote healthier behaviors and overall well-being. LLMs are also used to improve the accuracy
of activity recognition systems by detecting small variations in movement patterns, which is crucial in
applications like rehabilitation and physical therapy.

Xin Liu| (2023) presents the Health-LLM framework, which evaluates various LLM architectures for health
prediction tasks using wearable sensor data. The study highlights the effectiveness of LLMs in predicting
health-related outcomes such as heart rate variability, stress levels, and sleep patterns. Health-LLM utilizes
prompting and fine-tuning techniques to adapt the models to specific health tasks, providing comprehensive
and personalized insights.
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Figure 3: Architecture of the proposed LLM-HAS framework
(Gao et al.l 2024])

Gao et al.[(2024) introduces LLM-HAS, a framework that incorporates large language models into healthcare
alert systems to improve accuracy, ensure user privacy, and enhance personalized health service, while
maintaining the subjective quality of experience (QoE) of users. Healthcare Alert Systems take advantage of
LLMs like GPT-4 on the user side and incorporate an LLM-enabled Mixture of Experts (MoE) framework
on the edge server, specifically to reduce the probability of missed alerts (MA) and false alerts (FA).

LLM agents integrate deep reinforcement learning (DRL) in these healthcare alert systems to analyze exten-
sive datasets and learn from diverse inputs, including patient behaviorial patterns, enabling the models to
not only be reactive, but also predictive, thus providing a more nuanced decision-making approach by ana-
lyzing previous alert outcomes to reduce inaccuracies and personalize health management strategies. (Gao
et al.l [2024))

Since privacy protection and integrity of user health data is an important aspect of LLM-enabled Healthcare
Alerts, the LLM-HAS utilizes a robust approach of collecting data from the wearable sensors, uploading
mixed-content data to the edge server (the hub node), and then discerning which data should be recon-
structed - such as sensitive health data (removing any personal identifying markers) by GPT-4 from prompts
(Gao et al.l [2024). Healthcare alert systems like LLM-HAS can also process conversational user feedback,
enhancing the accuracy of health alert decisions by finetuning the algorithm based on conversational user
feedback.
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Building on this foundation, future goals of development could be an autonomous LLM-enabled smart
healthcare system that can leverage advanced capabilities of LLMs to more efficiently understand user
intentions. This model would retain its ability to make informed decisions about health alerts, adapt to
new data, deliver timely health interventions, and also align with the evolving needs of smart healthcare
infrastructure.

4.5 Cybersecurity and Privacy

The integration of LLMs within IoT systems presents significant advancements for cybersecurity and privacy,
effectively addressing increasingly sophisticated and dynamic threats. Recent research highlights innovative
methods employing transformer-based architectures, notably leveraging BERT, to enhance cybersecurity
management and data privacy in IoT ecosystems.

[Ferrag et al.| (2024) introduces SecurityBERT, a lightweight, privacy-preserving BERT-based model specif-
ically tailored for IoT and Industrial IoT (IIoT) environments. SecurityBERT utilizes a novel Privacy-
Preserving Fixed-Length Encoding (PPFLE) technique alongside Byte-level Byte-Pair Encoding (BBPE)
for tokenization, significantly enhancing detection accuracy and reducing computational overhead. The
model was validated against the Edge-IToTset cybersecurity dataset, achieving an accuracy of 98.2%. A
notable benefit of SecurityBERT is its suitability for deployment on resource-constrained edge devices, ow-
ing to its reduced model size and efficient inference time. However, a limitation is the trade-off between
model complexity and computational requirements, particularly impacting the depth of anomaly detection
capabilities when compared with larger, more resource-intensive models.

[Worae et al.| (2024) presents a comprehensive framework combining context-driven LLMs for IoT manage-
ment with a fine-tuned anomaly detection component based on BERT. This unified framework leverages
Retrieval-Augmented Generation (RAG) to dynamically integrate contextual knowledge from IoT adminis-
trative documents, significantly enhancing the precision and reliability of responses to IoT administrative
queries. The anomaly detection module demonstrated exceptional accuracy (99.87%) using the Edge-IToTset
dataset, effectively identifying subtle network anomalies and potential security threats. The primary benefit
of this approach lies in its ability to provide contextually accurate and reliable administrative support while
proactively managing cybersecurity threats. Nevertheless, its dependence on external knowledge repositories
for context augmentation introduces potential latency issues and raises concerns about data consistency and
availability.
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2021).

Further advancing predictive capabilities in IoT cybersecurity, Diaf et al.| (2024) explores the use of BERT-
based models for the prediction of cyber-attacks within IoT networks. Their predictive approach enhances
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proactive cybersecurity strategies by recognizing and forecasting cyber-attack patterns, enabling preemptive
measures against threats. The main benefit of their method is the substantial reduction in response latency
during cyber-incidents, significantly enhancing system resilience. However, the predictive accuracy heavily
depends on historical data availability and quality, potentially limiting its effectiveness in rapidly evolving
or entirely novel threat scenarios. The workflow of their predictive model, shown in Figure [4] illustrates
the integration of fine-tuned GPT and BERT models to predict network traffic and classify packet pairs,
respectively.

Adjewa et al| (2024) proposes an optimized federated intrusion detection system employing a BERT-based
architecture designed specifically for 5G IoT ecosystems. This federated approach facilitates decentralized
learning among edge devices, ensuring data privacy compliance while achieving robust accuracy (97.79%).
One key advantage is the method’s compatibility with resource-limited devices due to linear quantization
techniques, leading to substantial model size reductions. Nevertheless, federated learning introduces complex-
ity in managing heterogeneous and non-identically distributed (non-I1ID) data, potentially affecting model
convergence and overall performance.

Hasan et al.| (2024) investigates distributed threat intelligence at the edge using large language models,
showcasing the benefits of decentralizing security threat detection across edge devices. Their approach
significantly improved real-time responsiveness and reduced network traffic by processing threat intelligence
locally. However, a notable limitation is the inherent variability in edge device capabilities, which can result
in inconsistent threat detection performance across different devices.

Collectively, these studies underscore pivotal advancements in the use of LLMs for cybersecurity and privacy
within the IoT, emphasizing efficient, contextually aware, and privacy-preserving methodologies. Despite the
limitations described, the ability of these models to dynamically integrate contextual information, predict
threats proactively, and operate within decentralized frameworks represents a critical evolution toward secure
and resilient IoT ecosystems.

4.6 Edge Computing

LLMs are resource-intensive and pose significant challenges for deployment on constrained edge devices.
Recently, several works have explored strategies to efficiently run LLMs on edge devices by distributing
workloads and optimizing model deployments.

Zhang et al,| (2024a)) introduces EdgeShard, a framework designed to optimize the inference of LLMs by
partitioning models into shards deployed across heterogeneous edge devices and cloud servers. EdgeShard
employs adaptive device selection and dynamic model partitioning algorithms based on device capabilities
and network conditions. Their approach significantly reduces inference latency and improves throughput by
strategically leveraging device heterogeneity and parallel computation (Fig. [5). Experimentally, EdgeShard
achieved up to 50% latency reduction and a two-fold throughput improvement compared to baseline methods.
Despite these advantages, the system’s effectiveness relies heavily on stable network connectivity between
edge and cloud components, which may introduce challenges in environments with highly variable network
conditions.

To facilitate efficient cross-domain knowledge transfer at the edge, [Zhou et al.| (2024) proposes GenG, a
generic time-series data generation method leveraging LLMs and diffusion models for edge intelligence. GenG
decomposes the generation task into abstract textual understanding via fine-tuned LLMs and detailed time-
series synthesis via diffusion models. It employs a two-stage generation process, ensuring consistency and
controllability of generated data through abstract and detailed guidance signals. This method significantly
enhances data fidelity and generation efficiency in resource-constrained edge scenarios. Nevertheless, GenG’s
complexity, including dual-stage processes and cross-domain transfers, may pose additional computational
overhead, potentially restricting real-time applicability on extremely constrained edge nodes.

In addressing cybersecurity at edge devices, Hasan et al.[(2024)) developed a decentralized threat intelligence
approach leveraging LLM-driven lightweight models deployed directly onto edge devices. These models
analyze local network traffic and system logs in real-time, detecting and mitigating cybersecurity threats
efficiently. The decentralized framework enhances privacy by processing data locally and improves responsive-
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Figure 5: Collaborative edge computing integrating geo-distributed edge devices and cloud servers for efficient
LLM inference (Zhang et al., 2024a)).

ness by reducing latency. Additionally, the system incorporates peer-to-peer secure communication among
devices, facilitating dynamic threat mitigation. However, one significant limitation is the variability in the
capabilities of edge devices, potentially leading to inconsistent threat detection and mitigation effectiveness
across devices.

Collectively, these studies highlight critical advancements toward effective deployment and utilization of
LLMs in edge environments. They illustrate methods for overcoming resource limitations, enhancing real-
time performance, and improving security and privacy. Nonetheless, achieving a balance between computa-
tional efficiency, real-time responsiveness, and robustness remains a persistent challenge, particularly given
the inherent constraints and heterogeneity of edge computing environments.

5 System Architecture Considerations

The integration of LLM agents into IoT systems necessitates careful consideration of deployment architec-
tures, tool integrations, model optimization techniques, communication protocols, and performance trade-
offs.

5.1 Deployment Architectures: Edge, Cloud, and Hybrid Approaches

LLM agents can be deployed across various architectures:

e Edge Computing: Deploying LLMs directly on IoT devices ensures low latency and real-time
responsiveness. However, this approach is constrained by the limited computational resources and
energy availability of edge devices (Rondanini et al., 2025)).

e Cloud Computing: Utilizing cloud servers offers substantial computational power and storage, fa-
cilitating the deployment of large-scale LLMs. The trade-off includes increased latency and potential
privacy concerns due to data transmission over networks (Kok et al., 2024)).

e Hybrid Models: Combining edge and cloud computing leverages the strengths of both approaches.

Lightweight models can handle immediate tasks on the edge, while more complex processing is
offloaded to the cloud, optimizing resource utilization and performance. (Kok et al., [2024)

5.2 Integration of APIs and Tools

The deployment of LLM agents in IoT systems is facilitated by various tools and frameworks:
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Figure 6: Integration of LLMs within IoT architectures encompassing edge, fog, and cloud computing
paradigms (Kok et al. 2024).

e LangChain: An open-source framework that enables the development of applications powered
by LLMs through composability. It allows for the integration of various data sources and APIs,
streamlining the creation of complex applications.

e« OpenAgents: A platform that provides a suite of tools for building and managing LLM-based
agents, offering functionalities such as memory management, tool usage, and multi-agent collabora-
tion (Xie et al., [2023]).

5.3 Model Optimization: Lightweight Models and Quantization

To accommodate the resource constraints of edge devices, model optimization techniques are employed:

o Quantization: Reducing the precision of model parameters (e.g., from 32-bit to 8-bit) decreases
model size and computational requirements, enabling deployment on devices with limited re-
sources. EdgeQAT introduces entropy and distribution-guided quantization-aware training to opti-
mize lightweight LLMs for edge deployment (Shen et al., [2024).

o Pruning and Distillation: Removing redundant parameters (pruning) and transferring knowledge
from larger models to smaller ones (distillation) help in creating efficient models suitable for edge
deployment (Zheng et all 2025)).

5.4 Communication Protocols: MQTT, RESTful APIs, and Federated Learning

Effective communication is vital for the functionality of LLM agents in IoT systems:

« MQTT (Message Queuing Telemetry Transport): A lightweight, publish-subscribe network
protocol that transports messages between devices, ideal for low-bandwidth, high-latency, or unre-
liable networks. The SDFLMQ framework utilizes MQTT to facilitate semi-decentralized federated
learning at the edge (Ali-Pour & Gascon-Samson) [2025)).

o« RESTful APIs: Representational State Transfer (REST) APIs provide a standardized way for
LLM agents to interact with web services, facilitating interoperability and scalability.

e Federated Learning: A decentralized approach where models are trained across multiple devices

without exchanging data, enhancing privacy and reducing communication overhead (Ali-Pour &
Gascon-Samson, [2025)).
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5.5 Performance Trade-offs

Deploying LLM agents in IoT environments involves balancing various performance aspects:

e Latency vs. Accuracy: Edge deployments offer low latency but may compromise on model
complexity and accuracy. Cloud deployments provide higher accuracy at the cost of increased
latency (Kok et al., [2024).

e Energy Consumption vs. Computational Power: Edge devices have limited energy resources,
necessitating efficient models, whereas cloud servers can handle energy-intensive computations (Ron-
danini et al., [2025)).

e Privacy vs. Data Accessibility: Processing data on the edge enhances privacy but limits the
availability of comprehensive datasets that can be leveraged in the cloud for improved model per-
formance (Kok et al., |2024]).

6 Challenges and Limitations

Challenges for LLMs, specifically in the context of IoT, include biases in the lack of up-to-date information,
privacy concerns, high computational power and memory consumption requirements, and the need for task
specificity. (Zong et al., 2024)

6.1 Need for Task Specificity

Currently, a general LLM cannot handle highly specialized tasks like object detection or facial recognition,
which can already be performed well by AI models in these domains. (Cui et al., 2024)) Thus, there exist
challenges in combining the power of specialized but fragmented AI models within the overall general LLM
to perform complex tasks. It is also extremely difficult to build IoT-specific LLM architecture that efficiently
utilizes domain-specific data while managing the unique dynamic states of the environment and addressing
the constraints of the IoT devices (Kok et al., 2024]). An architecture such as this could enhance performance
by improving both the accuracy and efficiency of data processing and decision-making within IoT systems.

6.2 Performance in Dynamic Environment

IoT environments are also inherently dynamic, and models must be able to adjust to fluctuating data, device
conditions, and network states. Kok et al| (2024)) As discussed in the survey paper, LLMs have shown
strong performance in real-world IoT datasets and virtual representations with domain-specific knowledge,
but struggle to adapt to rapidly changing environments and states. A significant challenge in these domains
involve efficient control of IoT devices through task-oriented communications by the LLM agent based on
verbal user commands.(Cui et al. 2024) The LLM must accurately learn all the diverse functionalities and
operational characteristics of various IoT devices, to better analyze and predict device behavior according
to user-specified and environment constraints.

6.3 Computational Power and Memory Cost

One of the biggest challenges in integrating LLMs in smart devices is hardware limitations, which make it
difficult to handle the large model size (Kok et al., |2024). Current solutions like edge-cloud collaborative
devices for model partitioning introduce latency issues which affect real-time effectiveness. In addition, there
are limited applications of advanced intelligence algorithms applied to edge devices, likely due to hardware
limitations and computational costs.

According to [Li et al.| (2024), in the context of LLMs for sensor macro-processing, the significant computa-
tional cost of processing large amounts of raw and complex sensor data interferes with the limited capacity
of the LLM to understand prompts which guide sensor data in plain text. |Cui et al.| (2024)) suggests that
due to LLMs’ slow inference speed and high computational costs, future research needs to focus on figuring
out methods to enhance the system response speed and overall efficiency.
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6.4 Security and Privacy Concerns

Despite significant progress in deploying LLM-based systems for cybersecurity within IoT environments, mul-
tiple challenges remain, particularly concerning latency, real-time responsiveness, and resource constraints.
Intrusion detection systems and predictive security models leveraging large language models often encounter
difficulties in maintaining real-time threat detection and response due to the high computational demands
inherent LLM inference (Ferrag et al.l [2024; |Adjewa et al.| |2024)). These latency concerns become especially
pronounced in resource-limited edge devices, which may lack sufficient memory and processing capabilities
to execute computationally intensive models efficiently, potentially compromising responsiveness and leaving
systems vulnerable during critical security incidents (Hasan et all 2024} |Zhang et al., |2024a).

Deploying LLM-based cybersecurity at the edge faces major energy and memory constraints, as most models
demand significant resources for continuous threat detection (Zhou et al., 2024} |Zhang et al.;2024al). These
limitations restrict model complexity and degrade performance across heterogeneous devices, especially in
federated settings (Adjewa et al., 2024).

Security and privacy risks also persist. LL.Ms are prone to adversarial attacks, hallucinations, and data leaks,
which threaten system trust and reliability. Federated learning, while privacy-friendly, increases complexity
and risk of data exposure due to distributed data handling (Ferrag et al., |2024; Diaf et al. 2024; [Hasan
et al., 2024).

7 Open Problems and Future Directions

7.1 Edge-Native LLMs

Deploying LLMs at or near the source of data generation is a crucial paradigm for achieving effective LLM
agents for IoT. Relying on centralized cloud servers for LLM procedures typically does not meet the latency
requirements for many applications, especially for industrial IoT systems that have distributed multi-agent
frameworks, are computationally intensive, and need real-time decision-making. Another potential benefit is
the increased security and privacy that is enabled by processing data locally, which is particularly important
for healthcare and personal LLM agents that work with sensitive data. The main challenge of deploying
LLMs closer to the sensors is limited resources of smaller devices in contrast to the massive amount of
parameters in traditional LLMs. Current implementations of LLM agents for smaller devices employ edge-
cloud collaboration techniques for distributing model resources, however this approach lessens the capacity
for real-time responsiveness (Kok et al,, [2024). Developing edge-native LLMs can provide a more effective
and robust solution. One ongoing attempt at a compact LLM that can run on edge devices is the open-source
TinyLlama project, which aims to pretrain a 1.1 billion parameter Llama model (Zhang et al., [2024b)).

7.2 Standard Evaluation Protocols

Developing standard methods for evaluating the performance of LLM agents in various IoT domains is
ambitious due to the specific nature of the tasks current agents are designed for. However, some domains
such as smart homes lend more natural opportunities for creating evaluation methods due the universal
requirements of different implementations, leading to new benchmarks being created for challenging smart
home tasks (Rivkin et al., [2025). Creating standard benchmarks for other IoT domains can help accelerate
unified progress in the field by clearly defining end goals for the capabilities of the agents and enabling
the assessment of different frameworks and techniques. Additionally, standard evaluation protocols may
encourage the development of more general agents that can adapt to different IoT tasks, which could be a
more robust paradigm.

7.3 Cost-Effective Agent Implementations

Current implementations of LLM agents often leverage frameworks for dividing tasks into sub-tasks to
improve performance on complex tasks, however this significantly increases the amount of LLM inferences
required. Additionally, several implementations leverage API calls to avoid needing to learn device-specific

13



CS5H98 JY2-Topics in LLM Agents

code for each device in the system, incurring additional costs. These costs add up quickly, especially for agents
that need to persistently execute tasks and perform real-time monitoring. One solution being explored is
finetuning the LLM for learning more specific tasks within the appropriate loT domain to reduce the amount
of tokens needed for in-context learning, which has the additional benefit of alleviating current failure modes
of the agent failing to respect given instructions due to lengthy prompts (Rivkin et al., [2025)).

7.4 LLM Agents for Smart Cities

An additional IoT domain that has gained recent traction is integrating LLM agents into smart cities. For
instance, LLM agents have the potential to act as dispatcher agents to plan and coordinate the paths of
autonomous vehicles, such as firetrucks and goods transportation |Chen et al.[(2024). These implementations
are inherently more difficult to develop due to the infeasibility of testing real-world applications outside of
lower-stake simulations, which cannot entirely emulate logistic and safety concerns. However, findings from
LLM agents in other IoT domains suggest that integrating them into real-world smart cities can also improve
energy efficiency improve traffic flow through real-time monitoring and predicting.

8 Conclusion

The emergence of LLMs presents new opportunities for enhancing IoT applications, displaying the potential
to revolutionize the way IoT tasks are executed through the introduction of LLM agents. In this paper,
we investigate key applications of LLMs into different IoT domains by comprehensively reviewing recent
literature to understand the current capability of LLM agents to transform paradigms for solving IoT tasks.
By exploring use cases in different IoT environments such as smart homes, industries, personal devices, and
healthcare, we provide a comprehensive comparison of key implementation strategies as well as the unique
challenges each domain introduces. In addition, we summarize common system architecture considerations
across the different domains to reveal broader trends for LLM agents in IoT. Finally, we conclude the paper
by identfying current challenges and limitations for deploying LLM agents in IoT and suggest open problems
and directions for future research.
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