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Abstract

Goal-conditioned reinforcement learning (GCRL) enables agents to learn to achieve
different goals. However, it is often limited by the need for a pre-defined goal
sampling distribution. Prior works attempted to lift this limitation by training addi-
tional components that propose goals for the agent at the frontier of its capabilities,
by fitting goal coverage density estimators, or by training additional goal samplers.
These approaches are difficult to scale for relatively higher-dimensional goals due
to the additional challenge of modeling or sampling high-dimensional variables.
To address this problem, we introduce Unsupervised Contrastive Goal Reaching
(UCGR), a simple algorithm that enables the agent to propose its own training goals
without the need for additional networks or density estimators. UCGR leverages
the learned critic in the contrastive reinforcement learning framework [13] as an
implicit dynamics-aware model of reachability. Our experiments show that UCGR
outperforms strong prior methods in a variety of tasks, particularly when goals are
complex and high-dimensional.'

1 Introduction

Pretraining models on large-scale datasets with self-supervised objectives has become a cornerstone
of modern machine learning. While these supervised models have achieved significant successes
from natural language processing to scientific discovery, their reliance on human-collected data
is a bottleneck for problems that humans aren’t capable of solving — from unsolved theorems to
unprecedented engineering feats. Reinforcement learning provides us with the machinery to develop
agents that can collect their own data and solve novel problems.

Goal-conditioned reinforcement learning (GCRL) [22, 24] promises to combine these two strong
paradigms. It enables developing agents that collect their own data and learn to reach goals in a
self-supervised manner, without relying on human designed reward functions [35, 12, 13]. In GCRL,
agents try to reach a set of pre-specified goals by maximizing a simple objective — the probability of
reaching those goals in the future. GCRL algorithms collect data to reach these pre-specified goals,
and use this data to improve their policy and collect better data.

There is still one assumption in GCRL which requires human supervision — a set of prespecified goals
to reach. This can be limiting in many important problems where good outcomes are unclear or even
unimaginable — for example, the synthesis of novel drugs or constructing novel architectures. Several
algorithms have been developed to address this limitation, providing an automatic curriculum of goals
for the agent. One class of methods suggested generating goals that maximize state space coverage
by fitting density estimators over the set of visited states, while another class of methods proposed
training additional networks to generate goals with medium difficulty. However, incorporating these
additional components into the RL training makes it challenging to scale for environments with
high-dimensional spaces or long-horizon tasks.
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We propose Unsupervised Contrastive Goal-Reaching, or UCGR, an algorithm based on a simple
autonomous goal-selection strategy enabling the agent to propose its own goals during training
without requiring additional components. Our work builds on the contrastive reinforcement learning
framework introduced by Eysenbach et al. [13] and makes the realization that this framework learns
an implicit dynamics model of the environment. We propose choosing goals from the past achieved
goal distribution that are maximally difficult based on the learned contrastive RL representations.

Our contributions include developing a novel algorithm for solving the GCRL problem based on a
simple goal-selection strategy utilizing the contrastive RL framework. We compare our algorithm
against strong prior methods: the original contrastive RL algorithm and an algorithm based on MEGA
(Maximum Entropy Goal Achievement) [32]. We conduct experiments on AntMaze and Navix
environments and our results show that for tasks with high-dimensional goals, UCGR is the only
method to learn.

2 Related Work

Traditionally, RL assumes the existence of a reward function, defined as part of the problem [39]. In
contrast, our work builds upon prior research trying to make RL self-supervised. Self-supervised RL
can be broadly categorized into pure exploration [4, 6, 19, 28, 31, 40, 42], skill learning [1, 11, 18,
21, 25, 38], or goal conditioned RL [2, 3, 12, 22].

In this paper, we focus on the GCRL problem. GCRL can be thought of as an RL problem with a
sparse reward function [20, 36] which is equal to 1 at the goal and O otherwise. Although this works
for discrete problems [9, 10, 15], one needs to define some metric for defining “closeness” of the
agent to the goal in continuous cases [2, 26, 27]. To lift this assumption and bridge the gap between
GCRL and self-supervised learning, prior work unifies both the discrete and continuous cases by
treating GCRL as the problem of maximizing probability densities instead [12, 23, 30, 37].

Based on this principle of maximizing probability densities, a large amount of progress has been
made on the GCRL problem [13, 16, 34, 43]. These papers typically assume the existence of a desired
goal distribution, which can be queried to collect data during training, as a part of the GCRL problem.
Similar to the reliance on a reward function in standard RL, this assumption limits the applicability of
GCRL: the distribution might provide goals that are beyond the agent’s reach. This, in turn, hinders
progress toward a fully self-supervised RL paradigm.

As a result, prior work has realized the need for self-supervised goal generation [14, 7, 32]. One line
of work prioritized exploration-aware goals, maximizing state space coverage. Maximum Entropy
Gain Exploration (MEGA) [32] fits a kernel density estimator (KDE) to the set of achieved goals
and then selects new targets from the lowest-density areas, maximizing the entropy of the achieved
goal distribution. Pong et al. [33] trains a generative model to propose goals that are skewed so
that less-visited states gain a higher probability when fitting a generative model. Warde-Farley
et al. [41] sampled goals from a diversified replay buffer in a way that stored goals have as far
distance as possible. However, these methods do not necessarily account for the environment’s
temporal dynamics. Our experiments show that maximizing state coverage is not effective in complex
long-horizon environments.

Our work is more similar to autonomous goal-selection methods that seek medium difficulty goals.
The intuition is that generating goals that are neither difficult nor naive is most effective for learning,
and the curriculum should continuously adapt to the agent’s growing skills. Building on this intuition,
Florensa et al. [14] suggested scoring the difficulty of goals based on rewards received when achieving
them. They then trained a GAN [17] to generate goals with increasing difficulty. Campero et al. [7]
introduced a teacher-student framework, where the teacher is responsible for proposing goals and is
rewarded based on the performance of the student on those goals, while the student is rewarded based
on both the external reward and the intrinsic reward provided by the teacher. Zhang et al. [44] used
the epistemic uncertainty of the (Q—function to estimate difficulty. They then fitted a distribution to
the sample goals based on these estimates. While these methods might implicitly consider temporal
dynamics of the environment, they all involve training additional components. Optimizing all of these
components simultaneously can be challenging. We aim to address these limitations by proposing a
new method that accounts for the environment’s temporal dynamics, and does so without training
additional components or networks.



3 Preliminaries

3.1 Goal-Conditioned Reinforcement Learning

A goal-conditioned MDP is defined by a tuple <S, A, G, T, o, r 7, po, pg> [29] where
S, A, G, v, po, and p, denote the state space, action space, goal space, discount factor, initial
state distribution, and the desired goal distribution. 7 : S x A x § — [0, 1] represents the dynamics
transition function, ¢ : S — § is a function mapping from states to goals. Finally, 7 : Sx AxG — R
is the reward function. Unlike the standard MDP, it additionally depends on the desired goal the agent
is seeking.

Similar to prior work [5, 8, 12, 35], we define the reward as the probability of reaching the goal at
the following time step. However, as we show in 3.2, we adopt the contrastive RL framework which
maximizes this reward only implicitly not explicitly.
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For a goal-conditioned policy 7(a | s, g), we define p”( 9) (s) as the distribution of states visited by
the agent after ¢ time steps. We deﬁne the discounted state visitation distribution or for simplicity, the
future state distribution as:
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3.2 Contrastive Reinforcement Learning

Our work is built on the contrastive RL framework proposed by Eysenbach et al. [13]. It provided
a new perspective for self-supervised RL by demonstrating that contrastive representation learning
methods can be directly used as GCRL algorithms. This framework hinges on learning representations
whose inner product corresponds to a goal-conditioned value function. The Q-function (corresponding
to the reward function in Eq. 1) is equivalent to the state occupancy measure:
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The framework learns two encoders: First, a state-action encoder ¢(s, a) that maps a state-action pair
(s, a) to a d-dimensional representation vector. Second, a goal encoder 1(s,) that maps a goal state
4 (or a future state sy) to the same d-dimensional latent space. A critic function (or similarity score)
f(s,a,sy) is defined as the inner product of these representations: f(s,a,ss) = ¢(s,a) ¥(s¢).
The objective is to train these encoders such that f(s, a, s¢) is high if the future state s is likely
to be reached after taking action « in state s, and low otherwise. The main idea of this framework
is that optimizing a contrastive objective based on these encoders, corresponds to maximizing the
Q-function.

For a future state s* sampled from the trajectory of a state action pair (s, a), and a batch of (K — 1)
random states s~ sampled from the marginal distribution of future states, we define our contrastive
objective based on the InfoNCE loss as:
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The regularizer R is defined as
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Finally, we learn an actor that chooses actions whose representations are close to the representations
of the desired goals:

max  Erajs,s,) p(s) pisy) [F (5 @ 87 = 5g)]- @

m(als,sq)

4 Unsupervised Contrastive Goal Reaching

In this section, we introduce the main contribution of this paper, UCGR, a simple method for
unsupervised goal sampling for GCRL. Our method extends the original contrastive RL framework
to the unsupervised setting, where an agent must learn to achieve a wide range of goals without being
told which goals to practice. We first explain our Min-LogSumExp (MinLSE) goal-selection strategy
in detail, then explain our proposed algorithm.

4.1 The MinLSE Goal Selection Strategy

A central challenge in unsupervised GCRL is defining a curriculum of goals for the agent to practice.
An effective curriculum should guide the agent towards the frontier of its capabilities, goals that are
reachable but not yet mastered. That’s exactly the intuition behind UCGR. Unlike prior methods,
UCGR does not require training additional networks, nor fitting an external density model. It leverages
the contrastive critic function as an implicit density model over the space of reachable goals. For
any given candidate goal g, we can estimate its reachability from the agent’s collected experience
stored in the replay buffer B. We form a score for g by aggregating its critic values over a batch of
state-action pairs {(s;,a;)}2, C B. We define this score using the LogSumExp operator:

K
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Recalling that f(s;, a;, g) is the similarity between ¢(s;, a;) and 1)(g), which encodes the reachability
of the goal ¢ from the state-action pair (s;, a;). Therefore, to find goals on the frontier of exploration,
we seek those with the lowest reachability within our collected experience. UCGR implements this
by selecting the goal g* that minimizes the MinLSE score over a set of candidate goals Gcona C By,
where B, is the set of achieved goals in the replay buffer.

K
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4.2 A Complete GCRL Algorithm

We can now move forward and construct a complete GCRL algorithm. We integrate our proposed
goal-selection strategy into the Contrastive RL (CPC) algorithm [13] to build an unsupervised GCRL
algorithm, where the agent autonomously proposes its own learning goals during training, instead of
relying on an external goal distribution. We provide the pseudocode in Algorithm 1.



Algorithm 1 Unsupervised Contrastive Goal-Reaching (UCGR)

1: Initialize actor 7y, state-action encoder ¢, goal encoder v, and replay buffer 5.
2: Collect initial experience with a random policy and add to B.
3: for each training step do
4:  // Phase 1: Critic and Actor Updates
5. Sample a batch of state-action pairs {(s;, a;)}[£, from B.
6:  For each (s;, a;), sample a positive future goal gf from its trajectory using the state occupancy
measure.
7. Update critic encoders ¢ and ¢ by minimizing Eq. 4 using the batch {(s;, a;, g;" )} ;.
8:  Update actor my by minimizing Eq. 7.
9:  // Phase 2: MinLSE Goal Selection K
10: ~ Foreach g € {(s;, ai, 9] )}/<,, compute the score S(g;) = log >_;2; exp(f(si, ai, g;))-
11:  Select the exploratory goal g* = arg ming;re{(shai’g;f)} S(gh).
12:  // Phase 3: Experience Collection
13:  Collect a new trajectory 7 by executing policy mp(a | s, ¢*) in the environment.
14:  Add 7 to the replay buffer B.
15: end for=0

5 Experiments

The aim of our experiments is to answer three main questions. First, does incorporating UCGR into a
contrastive RL algorithm improve its learning efficacy? Second, how does UCGR compare against
prior unsupervised goal sampling strategies? Third, how does UCGR perform in high-dimensional
spaces? In this section, we detail the experiments performed to answer these questions. We explain
our choices for the baselines, the tasks we experimented on, and the results we found.

Baselines. We compared against two baselines. For answering the first question, we compared
against the original contrastive RL (CPC) that was proposed by Eysenbach et al. [13]. Let’s refer
to it as "CRL". In this algorithm, goals are sampled directly from the desired goal distribution,
without any unsupervised goal generation strategy. Testing against this baseline shows us the absolute
improvement added by UCGR alone. The second baseline is "MEGA", which is an unsupervised
goal sampling strategy introduced by Pitis et al. [32]. It suggests sampling goals from low-density
areas of the previously achieved goal distribution. This method is a representative of a large class of
prior work on unsupervised goal sampling. Testing against this baseline helps us answer our second
question about the performance of UCGR against prior unsupervised goal sampling methods.

Since we only compare different goal-sampling methods, we use contrastive RL for all experiments
as the backbone algorithm, while only changing the goal sampling procedure. We also ensure that
common hyperparameters have the same value for different algorithms.

Tasks. We used two main types of environments to
perform our experiments. Two examples are shown
in Fig. 1. The AntMaze environment involves an
ant with four legs that should learn how to navigate a
maze and reach a commanded goal. There are three
increasingly challenging mazes, all with easy and
hard evaluation settings: AntMaze-U, AntMaze-Big,
and AntMaze-Hardest. This is a standard locomo-
tion task in the literature that was widely used to test
GCRL algorithms. Its 29-dimensional observation .
space helps us observe how UCGR performs in high- Figure 1: The AntMaze-U (left) and Navix-
dimensional spaces and answer our third research KeyCorridor (right) environments. ~ Vi-
question. The second environment is Navix environ- suals adapted from the Farama Foundation’s
ment, which is a reimplementation of the MiniGrid ~documentation at robotics.farama.org and mini-
environment suite in JAX. It is a standard environ- grid.farama.org, respectively.

ment for testing exploration for reinforcement learn-

ing algorithms, and it involves a triangle-like agent that needs to solve goal-oriented tasks. We used
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(b) Hard goal evaluation.

Figure 2: Performance comparison of UCGR, CRL, and MEGA in Ant Maze environments using
substate goals. The shaded regions represent one standard deviation over three random seeds.

five different tasks in this environment: Empty, Four Rooms, DoorKey, KeyCorrridor-S3R2, and
KeyCorridor-S3R3.

For AntMaze environments, we performed two types of experiments based on two different ways of
defining goals. "Sub-state goals" are defined by the x-y coordinates components of the 29-dimensional
state space, testing the ability of the agent in only reaching a target location. This case is the most
common in the literature. To test the algorithms’ ability in understanding the temporal relationships
between goals, we also defined the goals to be full states in "Full-state goals". In this case, the
agent receives a full description of a state that it should match, including a target location, a target
orientation, target joint angles, and target velocities.

Evaluation Metrics. To evaluate the performance of the three algorithms in the different tasks,
we used three evaluation metrics. Success Rate is the proportion of parallel agents that succeed in
reaching the goal at least once during an episode. Goal Maintenance is the proportion of the episode’s
time that was spent by the agent at the goal, averaged across all parallel agents. Average Distance is
the average distance from the goal during an episode, averaged across all parallel agents.

5.1 Results and Discussion

AntMaze - Sub-state Goals. In the AntMaze-U environment with sub-state goals as shown in Fig. 2,
both the unsupervised goal sampling methods, UCGR, and MEGA, achieved better sample efficiency
than the supervised CRL, especially in the hard evaluation setting (Fig. 2b), showing the effectiveness
of unsupervised goal sampling. However, the performance of both of them is very comparable. In
the AntMaze-Big, the three algorithms achieved similar performance with negligible differences. In
the AntMaze-Hardest, the most difficult maze, our method clearly outperformed the two baselines
in both the easy and hard evaluation settings. CRL completely failed in the hard evaluation setting,
showing its inability to learn in long-horizon environments.
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Figure 3: Performance comparison of UCGR, CRL, and MEGA in Ant Maze environments using

full-state goals. The shaded regions represent one standard deviation over three random seeds.
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Figure 4: Performance comparison of UCGR, CRL, and MEGA across five Navix environments. The
shaded regions represent one standard deviation over three random seeds.

AntMaze - Full-state Goals. The superiority of our method is clear in the case of Full-state goals
(Fig. 3), where it significantly outperformed the two baselines by large margins. In the AntMaze-U
environment, our method was able to achieve almost a perfect success rate after only about SOM
environment steps, while baselines were stuck below 0.4 success rate in the easy evaluation setting
(Fig. 3a) and were not able to show any progress in the hard evaluation setting (Fig. 3b). Similarly,
our method was the only algorithm to show success in the hard evaluation of AntMaze-Big and
AntMaze-Hardest (Fig. 3b). We believe this strong performance is due to UCGR’s ability to account
for the temporal structure of the environment.

Navix. Similar pattern appeared with the Navix environments (Fig. 4). Only in the easiest Navix-
Empty task, CRL was able to learn faster than UCGR and MEGA, as it was trained directly on
achieving the evaluation goal, which is simple in this task. The performance of UCGR and Mega
is comparable in this task. In the Navix-Four-Rooms and Navix-Door-Key, the performance of



UCGR and MEGA is comparable without significant differences, while both of them achieved higher
sample efficiency than the supervised CRL. The differences between the three algorithms appeared
clearly in the Navix-Key-Corridor tasks that involve long-horizon exploration challenges. UCGR
significantly outperformed the two baselines, showing its ability to understand the temporal structure
of the environment.

6 Conclusion

In this paper, we introduced UCGR, a novel algorithm for unsupervised GCRL. Utilizing the learned
critic by Contrastive RL algorithms, UCGR empowers the agent with an autonomous goal-generation
ability, based on its own understanding of the environment. We showed that prior methods that seek
to maximize goal-space coverage fail in tasks with complex temporal structure, highlighting UCGR
as a strong GCRL algorithm.

One limitation of UCGR is that goal generation is restricted to previously achieved goals from the
buffer. This makes UCGR undefined in the case of dynamical environments that are changing over
time. Future research should tackle this challenge by designing algorithms that are simple and are not
restricted to generating goals from the buffer.
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