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ABSTRACT

Transformers and many other deep learning models are empirically shown to pre-
dictably enhance their performance as a power law in training time, model size,
or the number of training data points, which is termed as the neural scaling law.
This paper studies this intriguing phenomenon particularly for the transformer ar-
chitecture in theoretical setups. Specifically, we propose a framework for linear
self-attention, the underpinning block of transformer without softmax, to learn in
an in-context manner, where the corresponding learning dynamics is modeled as
a non-linear ordinary differential equation (ODE) system. Furthermore, we estab-
lish a procedure to derive a tractable approximate solution for this ODE system by
reformulating it as a Riccati equation, which allows us to precisely characterize
neural scaling laws for linear self-attention with training time, model size, data
size, and the optimal compute. In addition, we reveal that the linear self-attention
shares similar neural scaling laws with several other architectures when the con-
text sequence length of the in-context learning is fixed, otherwise it would exhibit
a different scaling law of training time.

1 INTRODUCTION

Large language models (LLMs) (e.g., GPT (Brown et al., 2020) and Llama (Meta, 2024)) have
made significant achievements across a variety of tasks, ranging from question answering to decision
making. Adopting the transformer architecture (Vaswani et al., 2017), these LLMs are large in the
sense of both parameters and training data, e.g., the largest Llama 3 model has 405B parameters
and is trained on 15.6T tokens (Meta, 2024). One of the most fantastic phenomena of such LLMs
is their continuing performance gaining as the model size and training steps are scaled up. More
remarkably, their performance can behave predictably as a power law in the number of parameters,
computation or data size (Kaplan et al., 2020; Hoffmann et al., 2022). This impressive power law
behavior is termed as neural scaling laws.

In particular, for a model with D trainable parameters, neural scaling laws state that the test loss
L(D, t) should obey L(D, t) = E + AD−β + Bt−γ (Kaplan et al., 2020; Hoffmann et al., 2022)
where t is the number of optimization steps and E captures the loss for a generative process on the
data distribution. Holding across a wide range of orders of magnitude, these neural scaling laws have
led to the fundamental belief that autoregressive transformer language models could successively
improve their performance when scaling up. Interestingly, they also allow practitioners to determine
the trade-off between model size and training time for a fixed compute budget (Hoffmann et al.,
2022) or design dataset with clever pruning (Sorscher et al., 2022).

Given the significant role of neural scaling laws, the theoretical understanding of their origin and
mechanism such as values of their exponents becomes increasingly important recently. Hutter (2021)
designed a linear model that can exhibit power laws and showed that not all data distributions lead to
power laws; Maloney et al. (2022) applied the random matrix theory to identify necessary properties
of scaling laws and proposed a statistical model that captures the neural scaling laws; Bordelon et al.
(2024); Nam et al. (2024) proposed different solvable models to reveal the existence of scaling laws.
Although these initial attempts made simplifications on model architectures and data for the purpose
of analytical tractability, they largely advanced our understandings of neural scaling laws from the
theoretical perspective.
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On the other hand, one important aspect commonly absent in these works is that they did not consider
the transformer architecture, the universal architecture of current LLMs, which leads the theoretical
understanding for neural scaling laws of modern LLMs to be still underexplored. Transformers are
special not only because they employ self-attention as the primary component, but also because
the way how they perform prediction—an incredible mechanism called in-context learning (Brown
et al., 2020; Garg et al., 2023) that can adapt their predictions based on data given in context.

The uniqueness of transformer definitely gives rise to many intriguing questions from a theoretical
perspective. What are the origins of neural scaling laws of transformer? Does transformer induce
different neural scaling laws compared to other models? Will in-context learning (e.g., context
sequence length) affect neural scaling laws? Due to the importance of transformer and its neural
scaling laws, investigating these questions is of great interest and necessary.

Answering these questions from a theoretical perspective requires a thorough understanding of ex-
plicit forms of model predictions during training, which, however, is hard since it typically requires
solving non-linear ODEs that usually do not admit closed-form solutions. Towards this direction,
Saxe et al. (2014) modelled the learning dynamics of deep linear networks as the logistic differential
equation that can be solved exactly, Pinson et al. (2023) solved the dynamics of linear convolution
neural networks, and Bordelon et al. (2024) applied a DMFT approach from statistical physics to
solve random feature models. For transformers, recently Zhang et al. (2023); Tarzanagh et al. (2024)
established the forms of converged parameters in regression and classification settings. However,
explicit forms of parameters along the training trajectory are still unclear, leading to a gap when
investigating neural scaling laws for transformers.

In this paper, we attempt to provide initial answers for the aforementioned questions to fill the gap
in part and take a step towards understanding neural scaling laws of LLMs. To conduct an amenable
analysis, we focus on the self-attention, which stands at the core of the transformer architecture,
in the linear case. We note that linear self-attention has been widely adopted in recent works (von
Oswald et al., 2023; Li et al., 2023b; Zhang et al., 2023) to study properties of transformers. Despite
that feature learning is absent, it has the advantage of providing the possibility for a clear theoretical
characterization. We discuss more related works on learning dynamics, neural scaling laws, and the
analysis of in-context learning for (linear) self-attention in Appendix A.

Our Contributions.

1. We design a multitask sparse feature regression (MSFR) problem for the linear self-
attention block to learn in an in-context manner. More importantly, we derive a tractable
solution for linear self-attention by modelling its in-context learning dynamics in the
MSFR problem as a non-linear ODE system and reformulating the system to a set of Ric-
cati equations. This is highly nontrivial since non-linear ODE systems are hard to solve,
thus our procedure might be of independent interest.
This solution captures dynamical behaviors of linear self-attention during training explic-
itly. To the best of our knowledge, this is the first closed-form solution of self-attention
along the training trajectory. We highlight that it can be applied as an interesting proxy for
investigating properties of self-attention and transformers due to its analytical tractability.

2. Built upon this solution, we characterize neural scaling laws of linear self-attention by
varying time, the size of model, or the number of training data points when data obeys a
power-law, which then gives us the scaling law in the optimal compute budget. In addition,
we are able to characterize the role of context sequence length in neural scaling laws,
revealing that if it obeys a different power-law then the time scaling law will be affected,
otherwise linear self-attention would share similar neural scaling laws with other models,
which well aligns with empirical observations in Kaplan et al. (2020).

2 SETUP OF FRAMEWORK

Notations. We use {1, . . . , N} to denote all integers between 1 andN . For two vectors a, b ∈ Rd,
we use aj to denote its j-th component, a ⊙ b to denote the elementwise product, a · b to denote
the inner product, and diag(a) to denote the d× d matrix with its diagonal elements equal to a. We
use ȧ to denote the derivative of a with respect to time. We let δs,s′ be 1 if s = s′ and 0 otherwise.
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For a matrix A, we use Ai,j to denote its i-th row j-th column component. We use a ∼ P to denote
that a is sampled from distribution P . We use 0d ∈ Rd to denote the zero vector in Rd.

In Section 2.1, we define the problem setting of MSFR problem, and present the concept of in-
context learning and the generation of in-context learning data for it in Section 2.2. Finally, in
Section 2.3, we describe details of linear self-attention block.

2.1 MULTITASK SPARSE FEATURE REGRESSION PROBLEM

There are Ns different tasks in total. We let S be the random variable of picking a specific task
among Ns tasks and assume that S follows a power law distribution:

Pα(S = s) = Zs−α (1)

where Z =
∑Ns

s=1 s
−α is the normalization constant and α > 1. Since we focus on linear self-

attention, we assume the existence of a non-linear sparse feature extractor to perform the feature
learning. Specifically, for an input data vector x ∈ Rd and a task type s ∈ {1, . . . ,Ns}, there exists
a unique feature extractor

ϕ(s,x) : R× Rd 7→ {−1, 0, 1}Ns ∈ RNs , (2)

where only the s-th component of ϕ(s,x) can be nonzero, i.e., ϕs′(s,x) = ±δs′,s. Furthermore,
given task type s, we let the strength for task s be Λs ∈ R. The target y ∈ R is now defined through

y(s,x) = Λs

Ns∑
k=1

ϕk(s,x). (3)

We elaborate two properties of this problem before moving on. (i) The reason why this problem is
termed as “multitask” is because we have Ns different tasks such that each has its own task strength
Λs and feature extractor ϕ(s,x), meaning that the model should learn distinct Λs for each task.
(ii) If we let Λ ∈ RNs be the collection of all task strengths, then the target can be written as
y(s,x) = Λ · ϕ(s,x), which is like a linear regression over the feature ϕ(s,x). Since ϕ(s,x) is
like a one-hot vector, the problem is a “regression with sparse feature”. The subtlety lies in that we
must rely on all task types to learn the complete Λ when compared to standard linear regression.
Therefore, our problem is defined as “multitask sparse feature regression”.

2.2 IN-CONTEXT LEARNING

A remarkable ability of LLMs is that they can perform in-context learning to adapt to a specific
task given a context in the form of instructions (Brown et al., 2020). More specifically, the goal
of in-context learning is to enable a learner (e.g., a transformer) to use the context data to make a
prediction for the query data. To incorporate this ability, we focus on in-context learning in this
paper, and present its details formally for the MSFR problem (Section 2.1) in this section. We start
with discussing the generation of in-context data.

Generation of in-context data. To inspect the effects of context sequence length ψs ∈ R and
task strengths Λs ∈ R on neural scaling laws, we let ψs = F(s) ∝ s−β , which is inspired by
the underlying power-law correlations in language sequence (Ebeling & Pöschel, 1994; Altmann
et al., 2012), and Λs = G(s) ∝ s−γ with β, γ > 0, which are fixed given task s ∈ {1, . . . ,Ns},
i.e., each task s has a constant context sequence length ψs and a constant task strength Λs, both of
which also obey power laws. The generation is composed of four parts (see Fig. 1): (i) a task type
s ∈ {1, . . . ,Ns} is first sampled from the distribution Pα(S = s) (Eq. (1)), which also gives us the
corresponding context sequence length ψs and task strength Λs; (ii) we sample ψs different input
vectors x ∈ Rd and a query vector x̂ ∈ Rd from the input data distribution PX , then these data
vectors are organized to form a matrix X =

[
x(1) x(2) · · · x(ψs) x̂

]
∈ Rd×(ψs+1); (iii) we

apply the feature extractor ϕ to each column x(i) of X to obtain the sparse feature ϕ(s,x(i)) ∈ RNs

and generate the target y(i) := y(s,x(i)) and ŷ := y(s, x̂) according to Eq. (3), then one in-context
data point of the task s can now be generated as

Φ(s,X) :=

[
ϕ(1) · · · ϕ(ψs) ϕ̂
y(1) · · · y(ψs) 0

]
=

[
ϕ(s,x(1)) · · · ϕ(s,x(ψs)) ϕ(s, x̂)
y(s,x(1)) · · · y(s,x(ψs)) 0

]
; (4)

3
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Figure 1: In-context data generation of multitask sparse feature regression (MSFR).

(iv) repeating the above procedure for N times can give us an in-context dataset with N data points,
where the numbers of data points for different tasks obey the power law Eq. (1). Finally, given
in-context data Φ(s,X) ∈ R(Ns+1)×(ψs+1) (Eq. (4)) and loss function L, in-context learning aims
to learn a model f : R(Ns+1)×(ψs+1) → R such that θ∗ = argminθ L(f(Φ;θ), ŷ).

2.3 LINEAR SELF-ATTENTION BLOCK

Self-attention block stands at the core of the transformer architectures (Vaswani et al., 2017). A
single-head self-attention block (without residual connection) f : Rd×dL 7→ Rd×dL parameterized
by θ updates an input G ∈ Rd×dL to

Ĝ := f(G;θ) = PV G softmax
[
(WKG)T (WQG)

]
∈ Rd×dL

where θ = {P ,V ,WK ,WQ}, P ∈ Rd×dv is the projection matrix, V ∈ Rdv×d is the value
matrix, and WK ,WQ ∈ Rde×d are the key matrix and query matrix, respectively. Note that softmax
is applied column-wise.

In this paper, we study a simplified version of the self-attention by removing the softmax operation
and merge the key matrix and query matrix as a single matrix WKQ := W T

KWQ ∈ Rd×d, which
has been a popular choice in recent works, e.g., Zhang et al. (2023); von Oswald et al. (2023), due to
its analytical tractability as well as the ability of capturing properties of the standard self-attention.

In particular, given the MSFR problem (Section 2.1) and in-context data Φ(s,X) (Eq. (4)), we study
the in-context learning of linear self-attention block V ΦΦTWKQΦ ∈ RNs×(ψs+1) where WKQ ∈
R(Ns+1)×(Ns+1). To obtain the scalar prediction of the query data ϕ̂, we adopt the output of the
self-attention as f (Φ(s,X);θ) = [V ΦΦTWKQΦ]s,ψs+1. Despite that this formulation makes a
slight change to self-attention, it provides us the convenience to investigate its intricate in-context
learning dynamics. Furthermore, decomposing WKQ as (W w−1) where

W = (w1 · · · wNs) ∈ R(Ns+1)×Ns , ∀i ∈ {−1, 1, . . . ,Ns} : wi ∈ RNs+1, (5)

we can write the output of the linear self-attention block for the task s as f (Φ(s,X);θ) =

[V ΦΦTWϕ̂]s which will be used in the rest part of this paper.

3 A TRACTABLE SOLUTION OF LINEAR SELF-ATTENTION

Section 2 establishes our in-context learning framework of multitask sparse feature regression prob-
lem for linear self-attention. In this section, we will closely investigate the corresponding learning
dynamics by modelling it as non-linear ODE systems in Section 3.1 and give a tractable solution of
it in Section 3.2.
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3.1 IN-CONTEXT LEARNING DYNAMICS

Given the in-context dataset generated according to the procedure described in Section 2.2 with N
data points {Φ(s(n),X(n))}Nn=1, we use the mean-squared error (MSE) loss such that

L̃(θ) =
1

2N

N∑
n=1

(
f
(
Φ(s(n),X(n));θ

)
− ŷ(n)

)2
(6)

where L̃ is the empirical loss. The goal of in-context learning now becomes the traditional empirical
loss minimization θ∗ = argminθ L̃(θ), which can be solved by various optimization algorithms,
and we focus on the general gradient descent in the continuous time limit, i.e., gradient flow (GF):
V̇ = −∇V L̃(V ,W ), Ẇ = −∇W L̃(V ,W ).

To further investigate the learning dynamics, considering the formulation of the feature extrac-
tor Eq. (2) and in-context data Eq. (4) and denoting the standard basis vector in RNs as es =

(0 · · · 0 1 0 · · ·)T ∈ RNs for s ∈ {1, . . . ,Ns} such that the only nonzero component of
es is its s-th component, we find that Hs ∈ R(Ns+1)×(Ns+1) defined by (Appendix C.1)

Hs := Φ
(
s(n),X(n)

)
ΦT
(
s(n),X(n)

)
=

[
diag ((ψs + 1)es) ψsΛses

ψsΛse
T
s ψsΛ

2
s

]
(7)

does not change for different n, where ψs is the context sequence length and Λs is the task strength
for the task s, both of which only depend on the task type s. Hs is composed of the feature covari-
ance and target (Eq. (23)). In addition, if we further decompose V as V T = (v1 · · · vNs) , ∀i ∈
{1, . . . ,Ns} : vi ∈ RNs+1, and recall the decomposition of W Eq. (5), then we can rewrite the
olriginal empirical loss Eq. (6) as (Appendix C.1)

Empirical loss function: L̃ =
1

2

Ns∑
s=1

#s

N

(
vTs Hsws − Λs

)2
(8)

where #s denotes the number of in-context data points for the task type s in the dataset
{Φ(s(n),X(n))}Nn=1, i.e., #s =

∑N
n=1 δs,s(n) . Eq. (8) indicates that the dynamics of vs and ws

for different s are decoupled: the s-th row of V and s-th column of W are responsible for learning
and predicting the task strength of the task type s, rendering self-attention adapting itself to different
tasks according to the in-context data. With this empirical loss function, we can now use a set of
non-linear ODE systems ∀s ∈ {1, . . . ,Ns} :

In-context learning dynamics: v̇s = −#s

N
(fs − Λs)Hsws, ẇs = −#s

N
(fs − Λs)Hsvs (9)

to describe the in-context learning dynamics by GF where we denote fs = vTs Hsws for simplicity.
We note that fs is sufficient for us to investigate the dynamical behaviors of the output of self-
attention for task type s and the empirical loss. Thus, by abusing of definition, we refer to the
solution of fs as the solution of the in-context learning dynamics, which can also be applied to give
solutions of vs and ws.

We highlight that the ODE systems above are non-linear for both vs ∈ RNs and ws ∈ RNs , and, ob-
viously, are different from the logistic differential equations obtained from the GF dynamics of deep
linear networks (Saxe et al., 2014; Nam et al., 2024) and different from the Lotka-Volterra predator-
prey model (Volterra, 1928). In this sense, the dynamics of linear self-attention (and transformer)
is different from that of deep linear networks. Meanwhile, we note that non-linear ODE systems,
including Eq. (9) which are non-linear ODE systems for vectors, typically do not admit closed-form
solutions. Therefore we emphasize that solving Eq. (9), which might be of independent interest, to
obtain the explicit dynamical behaviors of linear self-attention is novel as well as intriguing.

3.2 SOLUTION OF IN-CONTEXT LEARNING DYNAMICS

Although it is intractable to give the exact closed-form solution to the in-context learning dynam-
ics Eq. (9), in this section, we will provide a solution that can be approximately exact under the
following condition. We defer technical details of this section to Appendix D.
Assumption 3.1. ∀s ∈ {1, . . . ,Ns}, the context sequence length ψs ≫ 1.
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Procedure sketch. Before diving into a detailed procedure for deriving the solution, we first
present a rough sketch for it. The first step is to transform ODE systems Eq. (9) to a more sym-
metrical form Eq. (10) by changing of variables. Then we decompose Eq. (10) as two sets of ODE
systems by comparing both sides of Eq. (10) to the zero-th and first orders of ϵs since Hs can be
decomposed as two parts, H0

s and ϵsH1
s with ϵs ≪ 1. We then apply a change of variable again and

derive a new set of ODEs Eq. (11) as Riccati equations Eq. (12) which admit closed-form solutions
by noticing the existence of an important conserved quantity of the dynamics.

We now discuss the procedure in detail. Our first crucial observation is that the ODE of vs Eq. (9)
is non-linear with respect to ws, which makes it hard to solve. Therefore, we first convert Eq. (9)
into a more symmetrical form by changing of variables: let ηs = vs +ws and ρs = vs −ws, then
the dynamics of ηs ∈ RNs+1 and ρs ∈ RNs+1 can be obtained according to Eq. (9)

η̇s = −#s

N

(
gs − hs

4
− Λs

)
Hsηs, ρ̇s =

#s

N

(
gs − hs

4
− Λs

)
Hsρs, (10)

where we define gs = ηTs Hsηs and hs = ρTsHsρs.

In this way, by solving Eq. (10), we can find the solution of the self-attention and the empirical loss
function Eq. (8). However, Eq. (10) is still not directly solvable. Fortunately, recalling the definition
of Hs in Eq. (7), we can rewrite Hs as a sum of two matrices Hs = ψs

(
H0
s + ϵsH

1
s

)
where

H0
s =

[
diag(es) Λses
Λse

T
s Λ2

s

]
, H1

s =

[
diag(es) 0

0 0

]
and ϵs = 1/ψs ≪ 1 according to Assumption 3.1, which allows us to treat ϵH1

s as an insignificant
perturbation in the dynamics Eq. (10) and solve it using the perturbation analysis.

Specifically, suppose that the solutions of Eq. (10) can be written as ηs = η0
s + ϵsη

1
s and ρs = ρ0

s+
ϵsρ

1
s such that η1

s and ρ1
s are treated as perturbations to η0

s and ρ0
s respectively, then gs and hs can

also be written in a perturbed form gs = g0s+ϵsg
1
s and hs = h0s+ϵsh

1
s accordingly (Appendix D.1).

Now we can obtain ODEs for η0
s ,η

1
s ,ρ

0
s, and ρ1

s by comparing terms to the zero-th and first orders
of ϵs in both sides of Eq. (10), respectively (Appendix D.1). This will finally give us ODEs for
g0s , h

0
s, g

1
s , and h1s, the final ODEs that we aim to solve since the output of self-attention for the task

s can be written as fs := f0s (t) + ϵsf
1
s (t) = [(g0s − h0s) + ϵs(g

1
s − h1s)]/4.

Our strategy for finding solutions of fs is now composed of two parts using the perturbation analysis:
(i) solve the ODEs for g0s and h0s exactly and (ii) find η0

s and ρ0
s according to the solved g0s and h0s,

then put them into ODEs of g1s and h1s to find their solutions. As mentioned earlier, f1s (t) is far less
significant than f0s (t) to the dynamical behaviors of self-attention given Assumption 3.1, thus we
defer the discussion of f1s (t) to Appendix G and only focus on f0s (t).

We now discuss the first step for f0s (t). Our key observation is that H0
s is like an idempotent matrix:

(H0
s )

2 = (Λ2
s + 1)H0

s , which gives us the dynamics of gs and hs as a new set of non-linear ODEs:

ġ0s = −
(
g0s − h0s − 4Λs

)
asg

0
s/2, ḣ

0
s =

(
g0s − h0s − 4Λs

)
ash

0
s/2, (11)

where we let as = #sψs(Λ
2
s + 1)/N for ease of notation. Though Eq. (11) is still a non-linear

ODE system, it is much more tractable than the original in-context learning dynamics Eq. (9). Our
following key observation can drastically simplify Eq. (11) even further: ∀t ≥ 0 : g0sh

0
s = 2Cs

where Cs is a constant determined by the initialization, i.e., g0sh
0
s is conserved for the dynamics,

since d(g0sh
0
s)/dt = 0. In this way, Eq. (11) becomes the following set of Riccati equations that can

be solved (Appendix D.2) to give our main results:

ġ0s = 2asΛsg
0
s − as(g

0
s)

2/2 + asCs, ḣ
0
s = −2asΛsg

0
s − as(h

0
s)

2/2 + asCs. (12)
Theorem 3.1 (Solution for in-context learning dynamics of linear self-attention: zero-th order). For
MSFR problem and the in-context learning dynamics by GF of the linear self-attention block Eq. (9),
the solution fs(t) can be approximately written as an expansion f0s (t) + ϵsf

1
s (t) at large ψs with

f0s (t) = Λs +
λs
2

[
1

1 + Ps exp(asλst)
− 1

1 +Qs exp(asλst)

]
(13)

where as = #sψs(Λ
2
s + 1)/N , and

λs =
√

4Λ2
s + 2Cs, Ps =

4f0s (0)Λs + 2Cs + λs
√

4(f0s (0))
2 + 2Cs

2(f0s (0)− Λs)(λs − 2Λs)
, Qs = Ps

2Λs − λs
2Λs + λs

6
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are determined by the initialization. In addition, when v0
s(0) = ±w0

s(0), the constant Cs = 0 and,
denoting ∆s = (Λs−f0s (0))/f0s (0), the solution can be simplified to be a standard logistic function

f0s (t) =
Λs

1 + ∆se−2asΛst
when v0

s(0) = ±w0
s(0). (14)
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Figure 2: Loss L(t) for different context sequence lengths
ψ(5 and 100) during training. Solid lines are for theoretical
predictions while dashed lines are for empirical simulations.

The closed-form solution f0s (t) obtained
in Theorem 3.1 is to the zero-th order of
ϵs and is a good approximation under As-
sumption 3.1. as, Ps, Qs, and λs jointly
control the learning process, where Ps, Qs,
and λs are determined by the initialization
and task strength, e.g., when f0s (0) = Λs
both Ps, Qs → ∞ thus f0s (t) = Λs for t ≥
0. as is determined by the dataset, e.g., se-
quence length, and task strength. In Fig. 2,
we compare the loss that is calculated us-
ing f0s (t) with that obtained from direct
empirical simulation for different context
sequence lengths. It can be seen that when
the context sequence length ψ ≫ 1 (blue
lines), the theoretical prediction of the test
loss matches with the empirical results precisely, which validates the accuracy of f0s (t).

f0s (t) can explicitly characterize the dynamical behaviors of the self-attention block including the
influence of various parameters, suggesting that it could contribute to the understanding of self-
attention in a variety of aspects. In this paper, our focus will be neural scaling laws. For another ex-
ample, f0s (t) shows that self-attention learns different tasks in different rates that depend on various
parameters such as the sequence length, task strength, number of data points, and the initialization.
The difference of learning speeds for different tasks might lead to the grokking phenomenon (Power
et al., 2022), since the model can quickly fit a fraction of tasks while learns the rest extremely slowly.

4 NEURAL SCALING LAWS FOR LINEAR SELF-ATTENTION

In this section, we closely examine neural scaling laws for linear self-attention with its special in-
context learning dynamics. We note that this focus is different from those architectures considered
in previous works (Bordelon et al., 2024; Nam et al., 2024; Hutter, 2021; Michaud et al., 2023;
Maloney et al., 2022), providing us a possibility to compare self-attention with other architectures
regarding neural scaling laws from a theoretical perspective.

In particular, we will investigate the test loss according to the solution obtained in Theorem 3.1
under Assumption 3.1 and the relation fs(t) ≈ f0s (t), which enables us to write the test loss as

Test Loss: L(t) = Ex∼PX ,s∼Pα
[ℓ (f(Φ(s,X);θ), y)] ≈ 1

2

Ns∑
s=1

Pα(S = s)
[
f0s (t)− Λs

]2
. (15)

We note that our results are applicable for any distributions of s and x, while in this paper, we only
study the power law type distributions as specified in Section 2 which well align with empirical
observations according to recent works (Michaud et al., 2023; Maloney et al., 2022).

Concretely, we consider neural scaling laws of linear self-attention with respect to each one of size
of the model D, training time t, and the number of training data N when the other two factors are
not the bottleneck of training. Finally, we consider scaling laws for the optimal compute C. We list
the discussion of these factors as follows and defer details to Appendix E.

• Size of the model D. To quantify the model size D, inspired by Michaud et al. (2023);
Bordelon & Pehlevan (2022); Nam et al. (2024) which considered different models empir-
ically or theoretically, we assume that there is a cutoff D such that the model cannot learn
any task strength Λs with s ≥ D. Specifically, we let WKQ ∈ RD×D,V ∈ R(D−1)×D

and apply a new feature extractor such that ϕ′(s,x) ∈ RD−1 only extracts the first D − 1

7
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elements of the original ϕ(s,x). When D is the bottleneck of training, we let t,N → ∞
(they are sufficient for the training) to derive scaling laws with respect to D.

• Training time t. Training time t is equivalent to the number of optimization steps. To
investigate the scaling law with respect to t, we remove the bottleneck caused by the size
of model and the number of data points by letting N → ∞ and D = Ns.

• Number of training data N . When the training is bottlenecked by N , we let t → ∞ and
the cutoff D = Ns following the above arguments.

• Optimal compute C. This is the case when the number of data points is sufficient for the
training, while training time t or the size of model D is the bottleneck given the compute
budget C = Dt such that either t or D scales differently with C. Specifically, if L(t,D) =
att

−αt +aDD
−αD , then we can derive the optimal test loss as L ∝ C−αtαD/(αt+αD) given

C = tD (Appendix E.1).

We will investigate two different cases. In the first case (Section 4.1), we assume that γ = β = 0
in Section 2.2 such that the context sequence length ψs and task strength Λs do not depend on
the task type s. In this setting, we can compare neural scaling laws of linear self-attention with
other architectures in recent works (Michaud et al., 2023; Nam et al., 2024; Bordelon et al., 2024)
more closely. In the second case (Section 4.2), we let ψs = F(s) ∝ s−β and Λs = G(s) ∝ s−γ as
specified in Section 2.2, which are unique to self-attention due to in-context learning, to inspect their
effects on scaling laws. Details of Section 4.1 and 4.2 will be deferred to E.2 and E.3, respectively.
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D + 1, = 2.1

(a) Model Size Law with N, t→ ∞
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(b) Time Law with N → ∞, D = Ns
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(c) Data Size Law with t→ ∞, D = Ns
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L(
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( 1)/( + 1)

(d) Optimal Compute with N → ∞, C = Dt

Figure 3: Neural scaling laws for linear self-attention with different values of α = 1.8, 2.1. In each figure,
we use solid lines to represent empirical simulation results and dashed lines for power law curves. We also plot
theoretical predictions of test loss in (b) with dotted lines as a comparison. In (d), we set α = 1.8 and use
different levels of transparency to reflect different model sizes D within the range [Ns/100,Ns/5].

4.1 FIXED CONTEXT SEQUENCE LENGTH AND TASK STRENGTH

For simplicity we assume that the model is initialized as Cs = C and f0s (0) = f0, which implies
that λs = λ, Ps = P , and Qs = Q for s ∈ {1, . . . ,Ns} do not depend on the task type s. When
the context sequence length ψs and task strength Λs are the same for different task types s, i.e.,
γ = β = 0, the test loss Eq. (15) can be written as

L(t) ≈ Zλ2

8

Ns∑
s=1

s−α
(

1

1 + Peasλt
− 1

1 +Qeasλt

)2

(16)
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according to Theorem 3.1. To derive neural scaling laws, we plan to find the asymptotic behaviors
of L(t) with respect to each one of t,N, and D when the other two are not the bottleneck of training
using Eq. (16). Then we can use the relation C = Dt to find the scaling law with respect to the
optimal compute budget. We summarize our results in Table 1 and verify them in Fig. 3.

Table 1: Neural scaling laws for linear self-attention when β = γ = 0

Scaling Law Condition

Size of model D D−α+1 t→ ∞, N → ∞
Time t t−

α−1
α N → ∞, D = Ns

Number of data N N−α−1
α t→ ∞, D = Ns

Compute budget C C−α−1
α+1 N → ∞, t ∝ C

α
α+1 , D ∝ C

1
α+1

Architecture does not matter for scaling laws when context sequence length is fixed. The results
summarized in Table 1 reveal that, when data admits a similar power-law structure, linear self-
attention shares the same neural scaling laws with ReLU MLPs (Michaud et al., 2023) and diagonal
linear networks (Nam et al., 2024) with respect to t,N and D. Linear self-attention also exhibits
a similar time scaling law as the linear models considered in Bordelon et al. (2024) and Hutter
(2021). These similarities indicate that the architecture of model does not affect exponents of neural
scaling laws significantly, which well aligns with the empirical conclusion reached by Kaplan et al.
(2020) where they showed that transformers share similar exponents of neural scaling laws with
other models when the power-law structures hold.

4.2 VARIED CONTEXT SEQUENCE LENGTH AND TASK STRENGTH

To further capture how the context sequence length ψs and the task strength Λs affect neural scaling
laws for the in-context learning of self-attention, we let ψs = F(s) ∝ s−β , Λs = G(s) ∝ s−γ as
in Section 2.2. Additionally, we assume for simplicity that Λ2

s ≫ 1 such that as ≈ #sψsΛ
2
s/N and

the model is initialized as v0
s(0) = ±w0

s(0) and f0s (0) = O(1) for all s. As a result, we can write
the test loss as

L(t) ≈ Z

2

Ns∑
s=1

s−α−2γ

[
∆exp(−2asΛst)

1 + ∆exp(−2asΛst)

]2
. (17)

Following a similar procedure as in Section 4.1, we derive neural scaling laws of linear self-attention
for MSFR problem in Table 2, which gives us the following insights.

Table 2: Neural scaling laws for linear self-attention when both ψs and Λs depend on s

Scaling Law Condition

Size of model D D−α−2γ+1 t→ ∞, N → ∞
Time t t−

α+2γ−1
α+β+3γ N → ∞, D = Ns

Number of data N N−α+2γ−1
α t→ ∞, D = Ns

Compute budget C C− α+2γ−1
α+3γ+β+1 N → ∞, t ∝ C

1
α+3γ+β+1 , D ∝ C

α+3γ+β
α+3γ+β+1

Varied context sequence length affects the scaling law of time. Table 2 reveals that a varied con-
text sequence length makes the learning process slower (Fig. 4a). According to Table 2, a nonzero
positive β leads to a larger exponent of time law, thus the test loss will decrease slower than the case
when β = 0. This suggests that it is better to balance the context sequence length for different tasks
to obtain a satisfied test loss given a limitation of optimization steps. This conclusion is special to
self-attention compared to other architectures considered in previous theoretical works since they
lack the place for the context sequence length. On the other hand, we also find that β does not
appear in scaling laws for the size of model and number of data points, indicating that self-attention
can still admit similar scaling laws for D and N as other architectures when γ = 0.

Varied task strength affects all scaling laws. Table 2 reveals that a varied task strength reduces
the requirements of the size of model (Fig. 4d) or the number of data points (Fig. 4e) in our MSFR

9
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Figure 4: Neural scaling laws for self-attention with varied sequence lengthψs ∝ s−β and strength Λs ∝ s−γ .
In each figure, we set α = 1.8 and use solid lines to represent empirical simulation results while use dashed
lines for power law curves. In addition, we plot the power law curves (black dashed lines) with γ, β = 0 from
Table 1 as a comparison. In (a) and (b), we set γ = 0 to examine effects of ψs on time and optimal compute
laws only. In (b) and (f), we use different levels of transparency to reflect varying model sizes D.

problem. Specifically, due to the existence of a positive γ, exponents of scaling laws for both size of
model and number of data points become smaller, thus the learning requires fewer number of data
points or smaller size of model to achieve a similar test loss when they are the bottleneck according
to the neural scaling laws in Table 2. As a result, the scaling law for optimal compute C also sees a
similar effect (Fig. 4f), suggesting that the diversity of task is beneficial for model performance.

5 CONCLUSION

In this paper, we target on understanding neural scaling laws and learning dynamics of self-attention,
which stands at the core of the transformer architectures, from a theoretical perspective. For this
purpose, we first design a multitask sparse feature regression problem for the self-attention to learn
in an in-context manner, whose learning dynamics is then modelled as non-linear ODE systems.
We then give a tractable solution to the ODE systems, which might be of independent interest since
non-linear ODE systems typically do not admit closed-form solutions. We also highlight that this
solution can be employed as an interesting proxy for studying a variety of properties of self-attention
and transformers. Finally, we use the proposed solution to closely investigate neural scaling laws
of self-attention with respect to each one of training time, number of data points, and size of the
model when the other two are not the bottleneck of the learning process, which in turn allows us to
establish the neural scaling law with respect to the optimal compute budget.
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APPENDIX

The structure of the Appendix is as follows. In Appendix A, we introduce additional related works.
In Appendix B, we present key definitions from the main paper for convenience. Appendix C es-
tablishes the in-context learning dynamics as non-linear ODE systems, while we solve them to the
zero-th order of ϵ under Assumption 3.1 in Appendix D. Appendix E focuses on neural scaling laws.
In Appendix F, we list details for our numerical experiments. In Appendix G, we construct the com-
plete solution of self-attention for the MSFR problem up to the first order of ϵ. We further discuss
the generality of the MSFR problem and our solution by connecting the MSFR problem with other
types of tasks in Appendix H. Finally, in Appendix I, we present supplement numerical experiments
to extend our claims on neural scaling laws for linear self-attention to softmax self-attention.

A ADDITIONAL RELATED WORKS

Due to the great success of LLMs, the understanding for the transformer architecture becomes in-
creasingly important. As Garg et al. (2023) proposed the in-context learning for learning particular
functions, besides Zhang et al. (2023), von Oswald et al. (2023); Akyürek et al. (2023) studied trans-
formers for the linear regression problem, while Li et al. (2023a) revealed the similarity between a
single-layer self-attention and gradient descent on a regression problem with softmax. Edelman
et al. (2022) showed that the self-attention is able to learn sparse functions of the input sequence.
For the loss landscape of single-layer transformer without softmax, Ahn et al. (2023a) showed the
existence of solution of the model parameters that can achieve perfect test loss. Furthermore, the
idea of MSFR is also partly inspired by the multitask parity problem proposed by Michaud et al.
(2023); Barak et al. (2022) that empirically exhibits neural scaling laws.

For other neural networks, the study of the learning dynamics is always an important topic. There
is a line of research that investigated properties of the converged parameters in both classification
and regression settings, e.g., Soudry et al. (2024). To characterize the whole training trajectory,
Saxe et al. (2014) built an exact solution of deep linear networks that depends on time explicitly.
In addition, various tools borrowed from random matrix theory and statistical physics have also
been applied to investigate the learning dynamics of linear models (Spigler et al., 2020; Bordelon &
Pehlevan, 2022; Simon et al., 2023; Bahri et al., 2024). There are also a fruitful results (Adlam &
Pennington, 2020; d’Ascoli et al., 2020; Geiger et al., 2020) that analyzed the learning dynamics of
neural networks in the limiting case with the neural tangent kernel (NTK) (Jacot et al., 2020).

A.1 ADDITION RELATED WORKS ON LEARNING DYNAMICS OF DEEP NEURAL NETWORKS

Besides the aforementioned works on learning dynamics of neural networks or random feature mod-
els, Pinson et al. (2023) studied the learning dynamics of gradient descent for linear convolution
neural networks. Particularly, they discovered an interesting interplay between the data structure
and network structure that determines the phases of the network along the training trajectory. The
learning dynamics is also analyzed by Gidel et al. (2019) while Braun et al. (2022); Atanasov et al.
(2021) focused on different initialization regimes. Our focus in this paper is the learning dynamics
of linear self-attention with the in-context learning.

A.2 ADDITIONAL RELATED WORKS ON NEURAL SCALING LAWS

Besides Kaplan et al. (2020); Hoffmann et al. (2022), there are a number of recent works that ex-
plored scaling laws in deep neural networks empirically (Rosenfeld et al., 2021; Hestness et al.,
2017; Rosenfeld et al., 2019). The study of neural scaling laws can be found in some earlier
works (Caponnetto & De Vito, 2007; Steinwart et al., 2009; Ahmad & Tesauro, 1988). From the
theoretical perspective, various works developed solvable models in the context of random feature
models (Bahri et al., 2024; Atanasov et al., 2022; 2024; Bordelon et al., 2024; Paquette et al., 2024)
to study the neural scaling laws in certain limits. In addition, Wei et al. (2022); Bordelon et al.
(2021); Sharma & Kaplan (2022); Bordelon & Pehlevan (2022) also conducted theoretical analysis
on linear models to investigate the neural scaling laws. These works improve the theoretical under-
standing for the neural scaling law to a large extent. As a comparison, our focus in this paper is
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particularly on the linear self-attention with the in-context learning, which is not widely discussed
in previous works.

A.3 ADDITIONAL RELATED WORKS ON ANALYSIS OF IN-CONTEXT LEARNING REGRESSION

The success of the transformer architecture (Vaswani et al., 2017) has encouraged a majority body
of works to investigate its theoretical understanding, especially the intriguing in-context learning
mechanism. A common setup along this direction is the study of linear regression using the linear
self-attention (Duraisamy, 2024; Ahn et al., 2023b; Wu et al., 2024; Lu et al., 2024; Zhang et al.,
2023). Our work also falls into this category as mentioned in Section 2.3. We present a more
extensive comparison and connection to Zhang et al. (2023) and Lu et al. (2024) in the following.

Comparison and connection to Zhang et al. (2023). Zhang et al. (2023) considered linear regres-
sion using linear self-attention in the in-context learning manner. By assuming the infinite training
dataset size limit, Zhang et al. (2023) revealed that the converged linear self-attention can achieve
a competitive performance compared to the best linear predictor over the test data distribution. As
a comparison, our setting is also a regression for the linear self-attention to learn in an in-context
manner, while our problem is a multitask version and the distribution of the task type obeys a power
law. In addition, besides the converged solution of the dynamics, we derive its (approximate) form
along the whole training trajectory, which in turn makes it possible to characterize the neural scaling
laws with respect to time, data size, model size, and the optimal compute. And we note that the
characterization for the time scaling law (and the optimal compute law) cannot be derived solely by
the converged solution.

Comparison and connection to Lu et al. (2024). Lu et al. (2024) proposed a solvable model
of in-context learning for a linear regression task by linear self-attention. Specifically, assuming a
limit where the input dimension, the context sequence length, the training task diversity, and the
data size are all taken to infinity following certain ratios, they revealed a double-descent learning
curve with respect to the number of examples. As a comparison, our problem is also a multitask
regression for the linear self-attention to learn in an in-context way. In addition, as we will explain
in Appendix H, our problem can be seen as a limiting case of the multitask in-context regression
under the source-capacity condition, which is also a generalized version of the setup considered in
Lu et al. (2024). Furthermore, our solution (to the first order of ϵs when the context length is large)
captures the whole training trajectory and we study the neural scaling laws with respect to various
parameters so that we do not assume that all parameters are taken to infinity together.

B NOTATIONS AND DEFINITIONS

We present useful definitions in the main paper here for convenience.

• Feature Extractor Eq. (2)

ϕ(s,x) : Rd × R 7→ {−1, 0, 1}Ns ∈ RNs ,

• Target Eq. (3)

y(s,x) = Λs

Ns∑
k=1

ϕk(s,x).

• An in-context data point Eq. (4)

Φ(s,X) :=

[
ϕ

(1)
s · · · ϕ

(ψs)
s ϕ̂

y
(1)
s · · · y

(ψs)
s 0

]
=

[
ϕ(s,x(1)) · · · ϕ(s,x(ψs)) ϕ(s, x̂)
y(s,x(1)) · · · y(s,x(ψs)) 0

]
.

• Empirical loss function

L̃ =
1

2N

N∑
n=1

[
f
(
Φ(s(n),X(n));θ

)
− ŷ(n)

]2
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• gs and hs
gs = ηs ·Hsηs, hs = ρs ·Hsρs.

• In-context learning dynamics Eq. (9)

v̇s = −#s

N
(fs − Λs)Hsws, ẇs = −#s

N
(fs − Λs)Hsvs (18)

• Test loss Eq. (15)

L(t) = Ex∼PX ,s∼Pα [ℓ (f(Φ(s,X);θ), y)] ≈ 1

2

Ns∑
s=1

Pα(S = s)
[
f0s (t)− Λs

]2
. (19)

C IN-CONTEXT LEARNING DYNAMICS

In C.1, we derive a simpler form of the empirical loss function Eq. (8). In C.2 we present details of
the learning dynamics Eq. (9).

C.1 FORMULATION OF EMPIRICAL LOSS FUNCTION

By definition, the output of self-attention is

f (Φ(s,X);θ) =
[
V ΦΦTWKQΦ

]
s,ψs+1

=
[
V ΦΦTWϕ̂

]
s

where W ,V are defined by

W = (w1 · · · wNs) ∈ R(Ns+1)×Ns ,∀i ∈ {1, . . . ,Ns} : wi ∈ RNs+1,

V T = (v1 · · · vNs) ∈ R(Ns+1)×Ns , ∀i ∈ {1, . . . ,Ns} : vi ∈ RNs+1.

Deriving Hs. To derive Hs (Eq. (7)), we decompose the in-context data point Φ(s,X) (Eq. (4))
for the task s as

Φ(s,X) =

[
Ps ϕ̂s
yTs 0

]
(20)

where

Ps =
[
ϕ

(1)
s · · · ϕ

(ψs)
s

]
∈ RNs×ψs , ys =

 y
(1)
s

...
y
(ψs)
s

 ∈ Rψs , (21)

and ϕ̂s = ϕ(s, x̂). Then

Φ(s,X)(Φ(s,X))T =

[
Ps ϕ̂s
yTs 0

] [
P T
s ys

ϕ̂Ts 0

]
=

[
PsP

T
s + ϕ̂sϕ̂

T
s Psys

yTs P
T
s yTs ys

]
. (22)

There are four terms for us to compute to get the form of Hs in Eq. (22): (i) the first one is

PsP
T
s =

[
ϕ

(1)
s · · · ϕ

(ψs)
s

] (ϕ
(1)
s )T

...
(ϕ

(ψs)
s )T

 =

ψs∑
j=1

ϕ(j)
s (ϕ(j)

s )T = diag(es)ψs (23)

where the standard basis vector in RNs is es = (0 · · · 0 1 0 · · ·)T ∈ RNs for s ∈
{1, . . . ,Ns} such that the only nonzero component of es is its s-th component; (ii) the second
one is ϕ̂sϕ̂Ts = diag(es), which can be easily verified; (iii) the third one is

Psys =
[
ϕ

(1)
s · · · ϕ

(ψs)
s

] y
(1)
s

...
y
(ψs)
s

 =

ψs∑
j=1

ϕ(j)
s y(j)s = ψsΛses;
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(iv) the final one is yTs ys =
∑ψs

j (y
(j)
s )2 = ψsΛ

2
s. Combining these terms gives us the form of Hs:

Hs =

[
diag ((ψs + 1)es) ψsΛses

ψsΛse
T
s ψsΛ

2
s

]
.

As a result, the output of self-attention for the in-context data point Φ(s(n),X(n)) will be

f
(
Φ(s(n),X(n))

)
= vTs Hs(n)Wϕ̂s(n) ,

which gives us the empirical loss as

L̃
a
=

1

2N

N∑
n=1

[
f
(
Φ(s(n),X(n));θ

)
− ŷ(n)

]2
b
=

1

2N

N∑
n=1

[
vTs(n)Hs(n)Wϕ̂s(n) − Λs(n)

Ns∑
k=1

ϕk(s
(n), x̂(n))

]2
c
=

1

2N

N∑
n=1

Ns∑
k=1

[
vTs(n)Hs(n)ws(n) − Λs(n)

]2
(ϕk(s

(n), x̂(n)))2

d
=

1

2N

N∑
n=1

[
vTs(n)Hs(n)ws(n) − Λs(n)

]2
e
=

1

2

Ns∑
s=1

#s

N

(
vTs Hsws − Λs

)2
, (24)

where we use the definition of empirical loss in a, the definition of target y in b, the decomposition
of W Eq. (5) in c, ϕk(s, x̂) = ±δs,k according to definition of ϕ Eq. (2) in d, and recall that #s

denotes the number of in-context data points with s(n) = s for n ∈ {1, . . . , N} in e.

C.2 IN-CONTEXT LEARNING DYNAMICS AS ODE SYSTEMS

We adopt the continuous time limit of gradient descent, i.e., gradient flow, to perform the empirical
loss minimization

V̇ = −∇V L̃(V ,W ), Ẇ = −∇W L̃(V ,W ). (25)

Specifically, for empirical loss function Eq. (8), we can directly obtain the learning dynamics as
non-linear ODE systems: ∀s ∈ {1, . . . ,Ns}

v̇s = −#s

N
(fs − Λs)Hsws,

ẇs = −#s

N
(fs − Λs)Hsvs

where recall that we denote fs = vTs Hsws.

D SOLUTION OF SELF-ATTENTION

In D.1, we derive the ODEs of gs and hs, while we solve the ODEs to the zero-th and first order of
ϵs under Assumption 3.1 in D.2 and G, respectively.

D.1 ODES OF gs AND hs

There are four steps to derive ODEs for gs and hs, which will be discussed as follows.
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Step I: change of variable. As discussed earlier, the ODE of vs Eq. (9) is non-linear with respect
to ws, thus we transform it to a more symmetrical form by the change of variable: let

ηs = vs +ws, ρs = vs −ws,

then the dynamics of ηs ∈ RNs+1 and ρs ∈ RNs+1 can be obtained according to Eq. (9)

η̇s = −#s

N

(
gs − hs

4
− Λs

)
Hsηs, ρ̇s =

#s

N

(
gs − hs

4
− Λs

)
Hsρs, (26)

as a result, the ODE of ηs is non-linear with respect to ηs while that of ρs is non-linear to ρs.

Step II: deriving ODEs to different orders of ϵs. According to the definition of Hs in Eq. (7),
we can rewrite Hs as a sum of two matrices

Hs = ψs
(
H0
s + ϵsH

1
s

)
where

H0
s =

[
diag(es) Λses
Λse

T
s Λ2

s

]
,H1

s =

[
diag(es) 0

0 0

]
and ϵs = 1/ψs ≪ 1 given Assumption 3.1. Therefore we can treat ϵH1

s as an insignificant pertur-
bation in the dynamics Eq. (26). Let the solutions of Eq. (26) be

ηs = η0
s + ϵsη

1
s , ρs = ρ0

s + ϵsρ
1
s

such that η1
s and ρ1

s are treated as perturbations to η0
s and ρ0

s, respectively. Then, according to the
definitions of gs and hs, we can also write gs and hs in the perturbed form

gs := g0s + ϵsg
1
s = ηs ·Hsηs

= ψs
(
η0
s + ϵsη

1
s

)
·
(
H0
s + ϵsH

1
s

) (
η0
s + ϵsη

1
s

)
= ψsη

0
s ·H0

sη
0
s + ψsϵs

(
η0
s ·H1

sη
0
s + 2η1

s ·H0
sη

0
s

)
+O(ϵ2s) (27)

hs := h0s + ϵsh
1
s = ρs ·Hsρs

= ψsρ
0
s ·H0

sρ
0
s + ψsϵs

(
ρ0
s ·H1

sρ
0
s + 2ρ1

s ·H0
sρ

0
s

)
+O(ϵ2s). (28)

Putting the above perturbation forms back to Eq. (26) to the first order of ϵs, we have

η̇0
s + ϵsη̇

1
s = −ψs#s

4N

[
g0s − h0s + ϵs

(
g1s − h1s

)
− 4Λs

] [
H0
sη

0
s + ϵs

(
H1
sη

0
s +H0

sη
1
s

)]
+O(ϵ2s),

ρ̇0
s + ϵsρ̇

1
s =

ψs#s

4N

[
g0s − h0s + ϵs

(
g1s − h1s

)
− 4Λs

] [
H0
sρ

0
s + ϵs

(
H1
sρ

0
s +H0

sρ
1
s

)]
+O(ϵ2s).

(29)
Matching both sides of Eq. (29) to the zero-th and first order of ϵs respectively gives us

η̇0
s = −ψs#s

4N

(
g0s − h0s − 4Λs

)
H0
sη

0
s , ρ̇0

s =
ψs#s

4N

(
g0s − h0s − 4Λs

)
H0
sρ

0
s (30)

and
η̇1
s = −ψs#s

4N

[(
g0s − h0s − 4Λs

) (
H1
sη

0
s +H0

sη
1
s

)
+ (g1s − h1s)H

0
sη

0
s

]
,

ρ̇1
s =

ψs#s

4N

[(
g0s − h0s − 4Λs

) (
H1
sρ

0
s +H0

sρ
1
s

)
+ (g1s − h1s)H

0
sρ

0
s

]
.

(31)

Step III: deriving ODEs for gs and hs to zero-th and first orders of ϵs. We can now obtain the
ODEs for gs and hs to the zero-th order of ϵs by directly applying the definitions and Eq. (30):

Zero-th Order:

ġ0s = ψs
d

dt
η0
s ·H0

sη
0
s = −ψs

(
g0s − h0s − 4Λs

) ψs#sη
0
s ·H0

sH
0
sη

0
s

2N

a
= −

(
g0s − h0s − 4Λs

) asψsη0
s ·H0

sη
0
s

2

= −
(
g0s − h0s − 4Λs

) asg0s
2

,

ḣ0s =
(
g0s − h0s − 4Λs

) ash0s
2

,

(32)
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where we use (H0
s )

2 = (Λ2
s + 1)H0

s in a and derive the equation for h0s in a similar way. Suppose
that we obtain the solution to the zero-th order by solving the above ODEs, then, according to the
definition of g1s in Eq. (27) and the definition of h1s in Eq. (28), we only need to find the solutions of

ms = ψsη
1
s ·H0

sη
0
s and ns = ψsρ

1
s ·H0

sρ
0
s (33)

to derive the solution to the first order of ϵs, since we can obtain η0
s ·H1

sη
0
s and ρ0

s ·H1
sρ

0
s using

the solutions of Eq, (32)(see Appendix G.1). This means that based on Eq. (31), we need to solve
the following ODEs:

First Order:

ṁs = ψsη
1
s ·H0

s η̇
0
s + ψsη̇

1
s ·H0

sη
0
s

= −ψ
2
s#s

4N

(
g0s − h0s − 4Λs

) [
η1
s ·H0

sH
0
sη

0
s + η0

s ·
(
H0
sH

1
sη

0
s +H0

sH
0
sη

1
s

)]
− ψ2

s#s

4N
(g1s − h1s)η

0
sH

0
sH

0
sη

0
s

= −
(
g0s − h0s − 4Λs

) [asms

2
+
ψ2
s#s

4N
η0
s ·H0

sH
1
sη

0
s

]
− (g1s − h1s)

asg
0
s

4
(34)

and, similarly,

First Order:

ṅs = ρ1
s ·H0

s ρ̇
0
s + ρ̇1

s ·H0
sρ

0
s

=
ψ2
s#s

4N

(
g0s − h0s − 4Λs

) [
ρ1
s ·H0

sH
0
sρ

0
s + ρ0

s ·
(
H0
sH

1
sρ

0
s +H0

sH
0
sρ

1
s

)]
+
ψ2
s#s

4N
(g1s − h1s)ρ

0
sH

0
sH

0
sρ

0
s

=
(
g0s − h0s − 4Λs

) [asns
2

+
ψ2
s#s

4N
ρ0
s ·H0

sH
1
sρ

0
s

]
+ (g1s − h1s)

ash
0
s

4
.

(35)
Then we can write the solution of g1s and h1s as

g1s = ψsη
0
sH

1
sη

0
s + 2ms, h

1
s = ψsρ

0
sH

1
sρ

0
s + 2ns.

We will solve the zero-th order ODEs in the next section and discuss the solution of the first order
ODEs in G.

D.2 SOLUTION OF SELF-ATTENTION: ZERO-TH ORDER

Eq. (32) is still hard to solve. Fortunately, we note that

d

dt
g0sh

0
s =

(
g0s − h0s − 4Λs

) as(g0sh0s − g0sh
0
s)

2
= 0, (36)

which immediately implies that
∀t ≥ 0 : g0sh

0
s = 2Cs (37)

is a constant, i.e., g0sh
0
s is a conserved quantity of the learning dynamics. This important quantity

allows us to rewrite Eq. (32) as

ġ0s = 2asΛsg
0
s − as(g

0
s)

2/2 + asCs,

ḣ0s = −2asΛsg
0
s − as(h

0
s)

2/2 + asCs,
(38)

which are exactly the Riccati equation. To determine Cs, we note that

Cs = (η0
s ·H0

sη
0
s)(ρ

0
s ·H0

sρ
0
s)t=0 =

(
∥v0

s(0)∥2Hs
+ ∥w0

s(0)∥2Hs

)2 − 4v0
s(0) ·Hsw

0
s(0), (39)

where we use ∥a∥2H = aTHa for a positive definite matrix H and vector a and we note that Cs = 0
if v0

s(0) = ±w0
s(0). In the following, we adopt a series of change of variable to solve Eq. (38). For

simplicity, we omit the s subscript and recover it in the final solution.
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Step I. Let

p = −ag
2
, q = −ah

2
, (40)

then we can transform Eq. (38) to

ṗ = −aġ
2

= 2aΛp+ p2 − a2C

2

q̇ = −aḣ
2

= −2aΛq + q2 − a2C

2
.

(41)

Step II. Let p = −γ̇/γ, q = −θ̇/θ, then

ṗ = − γ̈γ − γ̇2

γ2
= − γ̈

γ
+ p2. (42)

Putting it back to Eq. (41), we can obtain the ODE of γ and θ as follows

γ̈ + 2aΛ

(
− γ̇
γ

)
γ − a2Cγ

2
= 0 =⇒ γ̈ − 2aΛγ̇ − a2Cγ

2
= 0,

θ̈ + 2aΛθ̇ − a2Cθ

2
= 0.

(43)

Step III. Eq. (43) are just the second-order linear ODEs, which can be solved following a standard
approach. Specifically, let

γ = ect, θ = ebt,

then putting them back into Eq. (43) gives us

c2 − 2Λac− a2C

2
= 0 =⇒ c = Λa±

√
4Λ2a2 + 2a2C

2

b2 + 2Λab− a2C

2
= 0 =⇒ b = −Λa±

√
4Λ2a2 + 2a2C

2
.

(44)

For ease of notation, we denote

S = Λa, ξ =

√
4S2 + 2a2C

2
, σ+ = S + ξ, σ− = S − ξ (45)

then solutions of γ and θ are
γ = Aeσ+t +Beσ−t, θ = Ee−σ−t + Fe−σ+t (46)

where A,B,E, and F are constants that need to be determined by the initial condition. Now we are
ready to recover the solution to Eq. (32):

g = −2p

a
= 2

γ̇

aγ
=

2

a

σ+Ae
σ+t +Bσ−e

σ−t

Aeσ+t +Beσ−t

h = −qa
2

= 2
θ̇

aθ
= −2

a

σ−Ee
−σ−t + σ+Fe

−σ+t

Ee−σ−t + Fe−σ+t
.

(47)

Recall that f = (g − h)/4 in Eq. (26), we are now able to derive the solution of the zero-th order
solution of self-attention:

f =
g − h

4

=
1

2a

[
σ+Ae

ρt +Bσ−e
σ−t

Aeσ+t +Beσ−t
+
σ−Ee

−σ−t + σ+Fe
−σ+t

Ee−σ−t + Fe−σ+t

]
=

1

2a

[
σ+ + σ− +

B(σ− − σ+)e
σ−t

Aeσ+t +Beσ−t
+
F (σ+ − σ−)e

σ−t

Eeσ+t + Feσ−t

]
= Λ+

λ

2

[
F

Eeaλt + F
− B

Aeaλt +B

]
(48)

where we define
λ =

√
4Λ2 + 2C,

in the last equality.
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Step IV. It is now left for us to determine A,B,E and F according to the initial condition, which
can be obtained by noting the conserved quantity gh in Eq. (37) and can be satisfied when

σ+Ae
σ+t +Bσ−e

σ−t

Aeσ+t +Beσ−t

σ−Ee
−σ−t + σ+Fe

−σ+t

Ee−σ−t + Fe−σ+t
= 2C (49)

=⇒ σ2
+AF + σ2

−BE +
a2C

2
(AF +BE) = 0. (50)

Noticing that
σ2
+ = S2 + 2Sξ + ξ2, σ2

− = S2 − 2Sξ + ξ2,

we can further simplify Eq. (50) to
AFσ+ = BEσ−. (51)

On the other hand, considering the initial condition by letting t = 0 in Eq. (48)

f(0) = Λ +
λ

2

[
1

E/F + 1
− 1

A/B + 1

]
, (52)

if we denote

P =
E

F
, Q̄ =

σ−
σ+

=
2Λ− λ

2Λ + λ
, D =

2(f(0)− Λ)

λ
, (53)

then one can easily see that A/B = Q̄E/F and Eq. (52) becomes

D(1 + P )(1 + PQ̄) + P − PQ̄ = 0

=⇒ P =
−[D(Q̄+ 1) + 1− Q̄]±

√
[D(Q̄+ 1) + 1− Q̄]2 − 4D2Q̄

2DQ̄
.

(54)

Recall that g, h > 0 according to their definitions (H is positive-definite), we only take the minus
sign in the above solution, which can be simplified by conducting some tedious algebra as

P =
4f(0)Λ + 2C +

√
4Λ2 + 2C

√
4f(0)2 + 2C

2(f(0)− Λ)(
√
4Λ2 + 2C)− 2Λ

(55)

We can now summarize the solution of self-attention to the zero-th order of ϵs to prove Theorem 3.1
by recovering the subscript s in Eq. (48) with solution of P in Eq. (55):

f0s (t) = Λs +
λs
2

[
1

1 + Ps exp(asλst)
− 1

1 +Qs exp(asλst)

]
(56)

where as = #sψs(Λ
2
s + 1)/N , and

λs =
√

4Λ2
s + 2Cs, Ps =

4f0s (0)Λs + 2Cs + λs
√
4(f0s (0))

2 + 2Cs
2(f0s (0)− Λs)(λs − 2Λs)

, Qs = Ps
2Λs − λs
2Λs + λs

.

D.3 ZERO-TH ORDER SOLUTION FOR SPECIAL BALANCED INITIALIZATION

When v0
s(0) = w0

s(0), we have Cs = 0, which implies that F = σ− = 0 according to Eq. (45) and
Eq. (50), and

λs = 2Λs.

As a result, we can rewrite the solution as

f0s (t) = Λs −
Λs

1 +A/Be2asΛst
=

Λs

1 +
Λs−f0

s (0)
f0
s (0)

exp(−2asλst)
(57)

where we use the initial condition Eq. (52) in the second equality.

E NEURAL SCALING LAWS OF SELF-ATTENTION

We first present the overall procedure for deriving neural scaling laws in E.1, then discuss them in
detail for fixed context sequence length in E.2 and for varied context length in E.3. We use a ∼ b
to mean that a is approximately equal to b (by neglecting irrelevant coefficients and constants) if
a, b ∈ R.
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E.1 PROCEDURE

For convenience, we first present the test loss described in the main paper

L(t) ≈ 1

2

Ns∑
s=1

Pα(S = s)
[
f0s (t)− Λs

]2
. (58)

Note that as as is determined by the dataset and it satisfies the following relation

as =
ψs#s(Λ

2
s + 1)

N
→ Pα(S = s)ψs(Λ

2
s + 1) = Zs−αψs(Λ

2
s + 1) (59)

as the number of training data points N → ∞. Furthermore, as long as #s ̸= 0 such that as ̸= 0, a
crucial property of f0s (t) is

lim
t→∞

f0s (t) = Λs, (60)

otherwise it would be

lim
t→∞

f0s (t) = f0s (0) = Λs +
λs
2

(
1

1 + Ps
− 1

1 +Qs

)
, (61)

which means that self-attention cannot learn the task s if there is no data point for it in the training set
and is similar to the one shot learner property of diagonal linear networks in Nam et al. (2024). These
properties will be repeatedly applied in the following sections. And we now discuss procedures for
deriving different neural scaling laws.

Size of the model D. To quantify the model size D, we assume that there is a cutoff D such that
the model cannot learn any task strength Λs with s ≥ D. As a result, according to the solution for
the task s in Eq. (56), we have

∀t ≥ 0, s ≥ D : f0s (t)− Λs = f0s (0)− Λs. (62)
WhenD is the bottleneck of training, we let t,N → ∞ (they are sufficient for the training) to derive
scaling laws respect to D. Thus the over all test loss will be

L(D) ∼ 1

2

Ns∑
s=D

Zs−α
[
f0s (0)− Λs

]2
(63)

To derive the neural scaling law of model size D, we only need to find the asymptotic behavior of
Eq. (63) by letting Ns → ∞ and replacing the summation with an integral.

Training time t. Training time t is equivalent to the number of optimization steps. To investigate
the scaling law respect to t, we remove the bottleneck caused by the size of model and the number of
data points by letting N → ∞ (thus we have Eq. (59)) and D = Ns (thus Eq. (62) does not satisfy
for any D ∈ {1, . . . ,Ns}). As a result, the overall test loss will be

L(t) ∼ 1

2

∫ ∞

s=1

Zs−α
[
f0s (t)− Λs

]2
ds (64)

where we let Ns → ∞ and replace the summation with integral. We sill study the asymptotic
behavior of Eq. (64) with the Laplace method (Bender & Orszag, 1978) to investigate the time
scaling law.

Number of training data points N . When the training is bottlenecked by N , we let t→ ∞ (thus
Eq. (60) will be satisfied for all task types s if there exist training data points for them otherwise
Eq. (61) would be satisfied) and the cutoff D = Ns (thus Eq. (62) does not satisfy for any D ∈
{1, . . . ,Ns}). As a result, we conclude that the probability of limt→∞ f0s (t) = f0s (0) is exactly the
same as the probability that the training data set {Φ(s(n),X(n))}Nn=1 does not have any training data
point for the task s, i.e, ∀n ∈ {1, . . . , N} : s(n) ̸= s. Therefore, we can rewrite the test loss as

L(N) ∼ 1

2

∫ ∞

s=1

Zs−α
[
f0s (0)− Λs

]2
(1− P(S = s))Nds

=
1

2

∫ ∞

s=1

Zs−α
[
f0s (0)− Λs

]2
(1− Zs−α)Nds

(65)

where, again, we let Ns → ∞ and replace the summation with the integral, and we sill study the
asymptotic behavior of Eq. (64) with the Laplace method to investigate the data scaling law.
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Optimal compute C. This is the case when the number of data points is sufficient for the training
(N → ∞), while training time t or the size of model D is the bottleneck given the compute budget
C = Dt such that either t or D scales differently with C. Specifically, if

L(t,D) = att
−αt + aDD

−αD ,

then we can rewrite the test loss as

L(D) = atC−αtDαt + aDD
−αD . (66)

To obtain the optimal loss given D, we let

∂DL(D) = 0 =⇒ D =

(
aDαD
atαt

) 1
αt+αD

C
αt

αt+αD , t =

(
aDαD
atαt

)− 1
αt+αD

C
αD

αt+αD .

As a result, we can derive the optimal compute budget test loss as

L(C) ∝ C−αtαD/(αt+αD) (67)

given C = tD, where αt, αD can be obtained from the neural scaling laws for time and model size,
respectively.

E.2 NEURAL SCALING LAWS WITH FIXED SEQUENCE LENGTH AND STRENGTH

In this case, according to Eq. (16), the test loss can be written as

L(t) ≈ Zλ2

8

Ns∑
s=1

s−α
(

1

1 + P exp [s−αZλψ(Λ2 + 1)t]
− 1

1 +Q exp [s−αZλψ(Λ2 + 1)t]

)2

.

(68)
In the following, we will investigate neural scaling laws using the above test loss and the procedures
described in E.1.

Model Scaling Law. According to Eq. (63), the model scaling law can be obtained from studying
the behavior of

L(D) ∼
∫ ∞

s=D

Zs−α
λ2

8

[
1

1 + P
− 1

1 +Q

]2
ds ∝ D−α+1 (69)

where D is the cuttoff of the task such that our model will only learn the first D − 1 tasks and we
let t→ ∞.

Time scaling law. Let Ns → ∞ and replace the summation with integral in the test loss, we have
(omitting irrelevant coefficients and we denote ψ̄ = Zλψ(Λ2 + 1) for ease of notation)

L(t) ∼
∫ ∞

1

(
1

e−s−αψ̄t + P
− 1

e−s−αψ̄t +Q

)2

e−2s−αψ̄t−α ln sds (70)

Now let
F (s) := s−αψ̄ +

α

t
ln s

then, applying the Laplace method (Bender & Orszag, 1978), for large t

L(t) ∝
∫ ∞

1

e−F (s)tds

a∼
∫ c+ε

c−ε
e−(F (c)+F ′′(c)(s−c)2)tds

∼ e−F (c)t

∫ c+ε

c−ε
e−F

′′(c)t(s−c)2ds

b∼ e−F (c)t

√
2π√

F ′′(c)t
(71)
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where we expand F (s) around its minimal F (c) in a and b is simply the Gauss integral. We can
solve F ′(c) = 0 to determine the value of c:

−αc−α−1ψ̄ +
α

ct
= 0 =⇒ c = (tψ̄)

1
α . (72)

This further gives us

F (c) = t−1 +
ln(ψ̄t)

t
=⇒ e−F (c)t =

1

eψ̄t
(73)

and

F ′′(c) = α(α+ 1)ψ̄c−α−2 − α

c2t

= α(α+ 1)ψ̄(tψ̄)−
(α+2)

α − α

ψ̄
2
α t1+

2
α

= α2ψ̄− 2
α t−1− 2

α . (74)
Putting F (c) and F ′′(c) obtained above back to Eq. (71) immediately gives us the time scaling law:

L(t) ∼
√
2π

eαψ̄1− 2
α

t−1+α−1

∝ t−
α−1
α . (75)

Data Scaling Law. In this case the bottleneck of training is the number of data while t → ∞ and
D = Ns. According to Eq. (65), the test loss has the form of

L(N) ∼
∫ ∞

1

Zs−α
λ2

8

[
1

1 + P
− 1

1 +Q

]2
(1− Zs−α)Nds

∼
∫ ∞

1

e−N(α ln s/N−ln(1−Zs−α))ds. (76)

We apply the Laplace method again to study the asymptotic behavior of L(N) to derive the data
scaling law. Let

F (s) = α
ln s

N
− ln(1− Zs−α), (77)

then we can expand F (s) around its minimal F (c) where the value of c is determined by F ′(c) = 0:

F ′(s) =
α

Ns
− αZs−α−1

1− Zs−α
(78)

=⇒ c = ((N + 1)Z)
1
α (79)

The loss function can be written as

L(N) ∼ e−F (c)N

√
2π√

F ′′(c)N
, (80)

where

F (c) =
ln((N + 1)Z)

N
− ln

(
1− 1

N + 1

)
∼ N−1 ln(NZ) +N−1 (81)

where we assume that N ≫ 1 in the second line. It is now left for us to find the value of F ′′(c),
which is done as follows.

F ′′(s)|s=c = −c−2α(N + 1)

N
+

αc−2

1− Zc−α
+
α

c

Zαc−α−1

(1− Zc−α)2

= αc−2

(
Zc−α

1− Zc−α
+

Zαc−α

(1− Zc−α)2
− 1

N

)
∼ α(α+ 1)Zc−αc−2 ∼ α(α+ 1)Z− 2

αN−(α+2)/α

where we use N ≫ 1 again in the last line. Putting F (c) and F ′′(c) back to Eq. (80) gives us the
scaling law with respect to N :

L(N) ∼ 1

NZe

√
2π

Z− 1
α

√
α(α+ 1)NN−1−2/α

∝ N−α−1
α . (82)
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E.3 NEURAL SCALING LAWS WITH VARIED SEQUENCE LENGTH AND STRENGTH

In general, we can derive neural scaling laws with a similar spirit as in the previous section. The
first step is finding the test loss Eq. (17):

L(t) ∝ Z

2

Ns∑
s=1

s−α−2γ

[
∆exp(−2asΛst)

1 + ∆exp(−2asΛst)

]2
, (83)

which can be easily derived using Theorem 3.1 and ψs ∝ s−β , Λs ∝ s−γ and we also initialize
the model such that the initial prediction of the model is equally away from the true strength for
different tasks to exclude influence from other aspects, i.e., Λs/f0s (0) are similar for all s. As we
assume that Λ2

s ≫ 1 in Section 4.2, we can rewrite as when N → ∞ as

as ∼ ZZ̄s−α−β−2γ (84)
where we use Z̄ to denote irrelevant normalization constants.

Model scaling law. According to Eq. (63), the model scaling law can be obtained from studying
the behavior of

L(D) ∼
∫ ∞

s=D

Zs−α−2γ

[
∆

1 +∆

]2
ds ∝ D−α−2γ+1 (85)

where D is the cuttoff of the task such that our model will only learn the first D − 1 tasks and we
let t→ ∞.

Time scaling law. With a similar procedure as in previous section, we will apply the Laplace
method to derive the time scaling law. Specifically,

L(t) ∝
∫ ∞

1

exp
[
−
(
4Z̃s−α−β−3γ + α+2γ

t ln s
)
t
]

(1 + ∆e−2asΛst)2
ds (86)

where we use Z̃ to absorb all irrelevant constants. Now we let

F (s) = 4Z̃s−α−β−3γ +
α+ 2γ

t
ln s, (87)

then the asymptotic behaviors of L(t) can be written as

L(t) ∼ e−F (c)t

√
2π√

F ′′(c)t
(88)

where F ′(c) = 0 as before. Note that the first derivative of F (s) is

F ′(s) = −4Z̃(α+ β + 3γ)s−(α+β+3γ+1) +
α+ 2γ

st
(89)

=⇒ c := (M̃t)
1

α+β+3γ =

(
4Z̃

α+ β + 3γ

α+ 2γ
t

) 1
α+β+3γ

. (90)

Therefore, we obtain that at s = c

F (c) =
α+ 2γ

α+ β + 3γ

(
1 + ln(M̃t)

)
t−1 (91)

=⇒ e−F (c)t =
1

(eM̃)
α+2γ

α+β+3γ

t−
α+2γ

α+β+3γ . (92)

Furthermore, the second derivative of F (s) with respect to s is

F ′′(s) = M̃(α+ 2γ)(α+ β + 3γ + 1)s−(α+β+3γ+2) − α+ 2γ

s2t
, (93)

which gives us

F ′′(c) = M̃− 2
α+β+3γ t−1− 2

α+β+3γ (α+ 2γ) (α+ β + 3γ) . (94)
Putting F (c) and F ′′(c) back to Eq. (86) gives us the time scaling law

L(t) ∝ t−
α+2γ−1
α+β+3γ . (95)
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Data Scaling Law. Similar to previous section, in this case the bottleneck of training is N and we
let t→ ∞ and D = Ns. According to Eq. (65), the test loss will become

L(N) ∝
∫ ∞

1

s−α−2γ(1− Zs−α)Nds

=

∫ ∞

1

e−N((α+2γ) ln s/N−ln(1−Zs−α))ds. (96)

Following a similar procedure, we let

F (s) = (α+ 2γ)
ln s

N
− ln(1− Zs−α) (97)

and we let F ′(c) = 0. Then the loss function can be written as

L(N) ∼ e−F (c)t

√
2π√

F ′′(c)N
. (98)

To obtain c, we need to compute

F ′(s) =
α+ 2γ

sN
− αZs−α−1

1− Zs−α
=⇒ c =

(
Z(N + 1 + 2γ/α)

1 + 2γ/α

) 1
α

. (99)

Note that we need to make sure
Z(N + 1 + 2γ/α) > 1 + 2γ/α, (100)

which can be easily satisfied, to apply the Laplace method. By conducting some algebra, we obtain
the following results:

F (c) =
α+ 2γ

αN
ln

(
Z(N + 1 + 2γ

α )

1 + 2γ
α

)
− ln

(
1−

1 + 2γ
α

N + 1 + 2γ
α

)

=⇒ e−F (c)N ∝
(
1 + γ

α

NM

)α+2γ
α

where we use N ≫ 1 in the second line to study the asymptotic behavior. Furthermore, the second
derivative is

F ′′(c) = −c−2α(N + 1)

N
+

αc−2

1− Zc−α
+
α

c

Zαc−α−1

(1− Zc−α)2
− c−2 2γ

N

∼ αc−2

(
Zc−α

1− Zc−α
+

Zαc−α

(1− Zc−α)2
− 2γ

αN

)
(101)

which, noting that

Zc−α ∼
1 + 2γ

α

N
(102)

according to the solution of c Eq. (99) gives us

F ′′(c) ∝ N− 2
α−1. (103)

Combining these results gives us the complete data scaling law

L(N) ∝ N−α+γ−1
α . (104)

F NUMERICAL EXPERIMENT DETAILS

For all numerical experiments, we generate the dataset exactly as the process described in Sec-
tion 2.2. The model structure is a linear self-attention as specified in Section 2.3. If not specified,
we set the initialization as

vs(0) = A× 1Ns+1, ws(0) = vs(0) + 0.1×A× 1Ns+1. (105)
where A = 0.1 is a constant and we use 1d ∈ Rd to represent a vector with all elements equal to 1.
For the discrete GD training, we set the learning rate as 10−3 and the number of total optimization
steps as 5000. The theoretical prediction using the solution f0s (t) is simulated with the forward
Euler method such that t = kη where k is the optimization step and η is the learning rate.
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Fig. 2. Ns = 100 for both ψ = 5 and 100.

Fig. 3. Ns = 500. We set the context sequence length as ψ = 100, and the task strength Λ = 0.5.

Fig. 4. In this case, we set Ns = 500, and set the initialization as

vs(0) = ws(0) = A× 1Ns+1 (106)

where A = 10−5.

G COMPLETE SOLUTION OF SELF-ATTENTION UP TO THE FIRST ORDER

We first discuss how to derive the solution of model parameters v0
s(t) and w0

s(t) to the zero-th order
of ϵs, then present the solution to the first order of ϵs, which can give us the complete solution
of self-attention up to the first order of ϵs. In the following sections, we omit the subscript s for
convenience and recover it in the final solution.

G.1 ZERO-TH ORDER SOLUTION OF MODEL PARAMETERS

D.2 gives us the solution of the model output f0s (t). To obtain the forms of v0(t) and w0(t), we
only need to solve η0 and ρ0 since

v0(t) =
η0 + ρ0

2
, w0(t) =

η0 − ρ0

2

according to their definitions. The ODEs of η0 and ρ0 Eq. (30) can be rewritten using the compo-
nents (note that η0s is the s-th component of η0) as:

η̇0s = −ψ#
4N

(
g0 − h0 − 4Λ

)
(η0s + Λη0Ns+1)

η̇0Ns+1 = −Λ
ψ#

4N

(
g0 − h0 − 4Λ

)
(η0s + Λη0Ns+1)

ρ̇0s =
ψ#

4N

(
g0 − h0 − 4Λ

)
(ρ0s + Λρ0Ns+1)

ρ̇0Ns+1 = Λ
ψ#

4N

(
g0 − h0 − 4Λ

)
(ρ0s + Λρ0Ns+1).

(107)

An interesting property of these ODEs is that

d

dt
(Λη0s − η0Ns+1) = 0 =⇒ Λη0s − η0Ns+1 = C̄, Λρ0s − ρ0Ns+1 = C̃, (108)

which can gives us a relation between η0s and η0Ns+1 and a similar one between ρ0s and ρ0Ns+1. On
the other hand, since we already know the solution of g0 from D.2 and g0 can be written as

g0 = (η0s + Λη0Ns+1)
2, (109)

we can solve η0 and ρ0 based on these relations, which will also give us v0 and w0.

G.2 SOLUTION UP TO THE FIRST ORDER

We now discuss the solution to the first-order of ϵs. According to the definition of g1s and h1s in
Eq. (27) and (28), they can be rewritten as

g1 = ψη0 ·H1η0 + 2m

h1 = ψρ0 ·H1ρ0 + 2n
(110)

where m and n follow the dynamics Eq. (34) and Eq. (35). Therefore, to obtain the formulations
of g1 and h1, the ODEs of m and n will be the only equations that need to be solved since we can
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obtain η0 · H1η0 directly from G.1. In the following, we focus on how to solve m and n. For
convenience, we first present ODEs for m and n ( Eq. (34) and Eq. (35) without the subscript s)

ṁ = −
(
g0 − h0 − 4Λ

) [am
2

+
ψ2#

4N
η0 ·H0H1η0

]
− (g1 − h1)

ag0

4
,

ṅ =
(
g0 − h0 − 4Λ

) [an
2

+
ψ2#

4N
ρ0 ·H0H1ρ0

]
+ (g1 − h1)

ah0

4
.

(111)

The above equations are too complex, thus we attempt to reformulate them to simpler forms: we
can obtain a new set of ODEs from the above equations

d

dt
mh0 = ḣ0m+ ṁh0

= −(g0 − h0 − 4Λ)
#ψ2

4N
η0 ·H0H1η0h0 − (g1 − h1)

ag0h0

4
(112)

d

dt
ng0 = ġ0n+ ṅg0

= (g0 − h0 − 4Λ)
#ψ2

4N
ρ0 ·H0H1ρ0g0 + (g1 − h1)

ag0h0

4
, (113)

which implies that

d

dt
(mh0 + ng0) = −(g0 − h0 − 4Λ)

#ψ2

4N

(
η0 ·H0H1η0h0 − ρ0 ·H0H1ρ0g0

)
. (114)

The above equation gives us a relation between mh0 and ng0. Fortunately, according to the defi-
nitions of g0, h0, H0, and H1 (Eq. (7)), we can expand the terms inside the second bracket of the
above equation:

η0 ·H0H1η0h0 − ρ0 ·H0H1ρ0g0 =
√
g0h0

[
η0s(ρ

0
s + Λρ0Ns+1)− (η0s + Λη0Ns+1)ρ

0
s

]
=

√
2C(C̄ρ0Ns+1 − C̃η0Ns+1) (115)

where we use Eq. (108) in the second equality. If the model is initialized as C̄ = C̃ = 0, then under
this condition, we can immediately conclude that

d

dt
(mh0 + ng0) = 0 =⇒ ∀t ≥ 0 : mh0 = −ng0 + Ĉ, (116)

where Ĉ is determined by the initial condition and we let Ĉ = 0 in the following. Noting that

g1 − h1 := r + 2(m− n) = ψ(η0 ·H1η0 − ρ0 ·H1ρ0) + 2(m− n), (117)

Eq. (116) allows us to simplify the ODEs for m and h further by interchangeably using mh0 and
−ng0:

ṁ = −am
2

(
g0 − h0 − 4Λ + g0 − ng0

m

)
− ag0r

4
− ψ2#

4N

(
g0 − h0 − 4Λ

)
η0 ·H0H1η0

= −am
(
g0 − 2Λ

)
− ag0r

4
− ψ2#

4N

(
g0 − h0 − 4Λ

)
η0 ·H0H1η0 (118)

ṅ = −an
(
h0 + 2Λ

)
+
ah0r

4
+
ψ2#

4N
(g0 − h0 − 4Λ)ρ0 ·H0H1ρ0. (119)

Eq. (118) and (119) are exactly solvable since they are simply first order linear ODEs. Specifically,
let

ϱ(t) = −a
(
g0 − 2Λ

)
,

ϑ(t) = −ag
0r

4
− ψ2#

4N

(
g0 − h0 − 4Λ

)
η0 ·H0H1η0

(120)

then Eq. (118) can be rewritten as

ṁ = ϱ(t)m+ ϑ(t). (121)
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The standard procedure for solving this is letting u̇ = −uϱ and multiplying u to both sides of
Eq. (121), then we obtain

d

dt
um = uϑ =⇒ um =

∫
u(t)ϑ(t)dt+ const . =⇒ m =

∫
u(t)ϑ(t)dt+ const .

u
. (122)

Similarly, to solve n, we let

ε(t) = a
(
h0 + 2Λ

)
φ(t) =

ah0r

4
+
ψ2#

4N
(g0 − h0 − 4Λ)ρ0 ·H0H1ρ0

ż = zε(t)

(123)

then

n =

∫
z(t)φ(t)dt+ const .

z
. (124)

As a result, the solution of self-attention up to the first order of ϵs for the task type s under Assump-
tion 3.1 now becomes

Solution: f =
g0 − h0

4

+ ϵ

[
r + 2

(∫
u(τ)ϑ(τ)dτ + const .

u
−
∫
z(τ)φ(τ)dτ + const .

z

)]
. (125)

G.3 FORMULATION OF THE FIRST ORDER SOLUTION

We examine each term in Eq. (125) in the following. Since we let C̄ = C̃ = 0 in Eq. (108), g0 and
h0 can be written explicitly as

g0 = ψ(Λ2 + 1)2(η0s)
2, h0 = ψ(Λ2 + 1)2(ρ0s)

2 (126)

Form of r. Note that r is defined as
r = ψ(η0 ·H1η0 − ρ0 ·H1ρ0) = ψ

[
(η0s)

2 − (ρ0s)
2
]

=
g0 − h0

(Λ2 + 1)2
(127)

Form of u and
∫
u(τ)ϑ(τ)dτ . We first derive u:

u̇ = −uϱ =⇒ u = exp

(
−
∫
ϱ(t)dt

)
(128)

where

−
∫
ϱ(t)dt =

∫
a(g0 − 2Λ)dt = −2aΛt+

∫
2
γ̇

γ
dt

= −2aΛt+ 2 ln γ (129)
where we use Eq. (47) in the second line. Putting the above integral back to the expression of u, we
obtain

u = (e−aΛtγ)2 =
(
Aeξt +Be−ξt

)2
, (130)

where ξ =
√
4Λ2a2 + 2a2C/2 is defined in Eq. (45). We now derive

∫
uϑdt. To start, we examine

each term of ϑ first:

−ag
0r

4
= −

a
(
(g0)2 − 2C

)
4(Λ2 + 1)2

−ψ
2#

4N

(
g0 − h0 − 4Λ

)
η0 ·H0H1η0 = − ψ#

4(Λ2 + 1)N

(
g0 − h0 − 4Λ

)
g0

= −
a
(
(g0)2 − 2C − 4Λg0

)
4(Λ2 + 1)2

=⇒ ϑ = −
a
(
(g0)2 − 2C − 2Λg0

)
2(Λ2 + 1)2

.

(131)
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Using this in the integral and considering the form of u in Eq. (130), we have∫
uϑdt = − a

2(Λ2 + 1)2

∫
(Aeξt +Be−ξt)2

[
(g0)2 − 2C − 2Λg0

]
dt

= − 2

a(Λ2 + 1)2

∫ (
Aσ+e

ξt +Bσ−e
−ξt)2 dt+ aC

(Λ2 + 1)2

∫
(Aeξt +Be−ξt)2dt

+
2Λ

(Λ2 + 1)2

∫
(Aeξt +Be−ξt)

(
Aσ+e

ξt +Bσ−e
−ξt) dt (132)

where we frequently use the solution of g0 in Eq. (32).

Form of z and
∫
z(τ)φ(τ)dτ . By the similar procedure of deriving u and

∫
uϑdt, we can also

derive z and
∫
zφdt.

z = exp

(∫
εdt

)
= (eaΛtθ)2 =

(
Eeξt + Fe−ξt

)2
(133)

where we use Eq. (47) in the second equality. Similar to the derivation of ϑ, we can derive φ as
follows:

ah0r

4
= −

a
(
(h0)2 − 2C

)
4(Λ2 + 1)2

ψ2#

4N

(
g0 − h0 − 4Λ

)
ρ0 ·H0H1ρ0 =

ψ#

4(Λ2 + 1)N

(
g0 − h0 − 4Λ

)
h0

= −
a
(
(h0)2 − 2C + 4Λh0

)
4(Λ2 + 1)2

=⇒ φ = −
a
(
(h0)2 − 2C + 2Λh0

)
2(Λ2 + 1)2

(134)

thus∫
zφdt = − a

2(Λ2 + 1)2

∫
(Eeξt + Fe−ξt)2

[
(h0)2 − 2C + 2Λh0

]
dt

= − 2

a(Λ2 + 1)2

∫ (
Eσ−e

ξt + Fσ+e
−ξt)2 dt+ aC

(Λ2 + 1)2

∫
(Eeξt + Fe−ξt)2dt

+
2Λ

(Λ2 + 1)2

∫
(Eeξt + Fe−ξt)

(
Eσ−e

ξt + Fσ+e
−ξt) dt, (135)

where we frequently use the solution of h0 in Eq. (32).

Results of integrals. It is now left for us to solve all the integrals to obtain the complete solution.
We list the results below.

1. ∫
(Aeξt +Be−ξt)(σ+Ae

ξt +Bσ−e
−ξt)dt =

A2σ+
2ξ

e2ξt − B2σ−
2ξ

e−2ξt + 2ABΛat∫
(Eeξt + Fe−ξt)(Eσ−e

ξt + Fσ+e
−ξt)dt =

E2σ−
2ξ

e2ξt − F 2σ+
2ξ

e−2ξt + 2EFΛat

2. ∫
(σ+Ae

ξt +Bσ−e
−ξt)2dt =

A2σ2
+

2ξ
e2ξt −

B2σ2
−

2ξ
e−2ξt + 2σ+σ−ABt∫

(σ−Ee
ξt + σ+Fe

−ξt)2dt =
E2σ2

−
2ξ

e2ξt −
F 2σ2

+

2ξ
e−2ξt + 2σ+σ−EFt
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3. ∫
(Aeξt +Be−ξt)2dt =

A2

2ξ
e2ξt − B2

2ξ
e−2ξt + 2ABt∫

(Eeξt + Fe−ξt)2dt =
E2

2ξ
e2ξt − F 2

2ξ
e−2ξt + 2EFt.

Complete solution. With these integrals, we are now ready to find the explicit forms of the solu-
tion Eq. (125). In particular, we have∫

uϑdt =
A2e2ξt

ξ(Λ2 + 1)2a

(
−σ2

+ +
a2C

2
+ aΛσ+

)
+

B2e−2ξt

ξ(Λ2 + 1)2a

(
σ2
− − a2C

2
− aΛσ−

)
+

ABt

(Λ2 + 1)2a

(
4Λ2a2 + 2a2C − 4σ+σ−

)
= − A2e2ξtΛ

(Λ2 + 1)2

(
1 +

Λa

ξ

)
+
B2e−2ξtΛ

(Λ2 + 1)2

(
−1 +

Λa

ξ

)
+

4aABt

(Λ2 + 1)2
(
Λ2 + C

)
(136)

and∫
zφdt =

E2e2ξt

ξ(Λ2 + 1)2a

(
−σ2

− +
a2C

2
+ aΛσ−

)
+

F 2e−2ξt

ξ(Λ2 + 1)2a

(
σ2
+ − a2C

2
− aΛσ+

)
+

EFt

(Λ2 + 1)2a

(
4Λ2a2 + 2a2C − 4σ+σ−

)
=

E2e2ξtΛ

(Λ2 + 1)2

(
1− Λa

ξ

)
− F 2e−2ξtΛ

(Λ2 + 1)2

(
1 +

Λa

ξ

)
+

4aEFt

(Λ2 + 1)2
(
Λ2 + C

)
. (137)

These equations are sufficient for us to find m and n. For m we have

m =

∫
uϑdt

u
=

−Q2e2ξtΛ
(
1 + Λa

ξ

)
+ e−2ξtΛ

(
−1 + Λa

ξ

)
+ 4aQt

(
Λ2 + C

)
(Λ2 + 1)2(Qeξt + e−ξt)2

(138)

where Q has already be determined in Theorem 3.1. For n we have

n =

∫
zφdt

z
=
P 2e2ξtΛ

(
1− Λa

ξ

)
− e−2ξtΛ

(
1 + Λa

ξ

)
+ 4aPt

(
Λ2 + C

)
(Λ2 + 1)2(Peξt + e−ξt)2

(139)

where P has already be determined in Theorem 3.1. Finally, by using the solved m and n above
and r (Eq. (127)) in Eq. (125) and recovering the subscript s in all relevant terms, we obtain the
complete solution of self-attention up to the first order of ϵ under Assumption 3.1. Note that as
t → ∞, we can easily verify that −2Λ/(Λ2 + 1)2 and r = 4Λ/(Λ2 + 1)2, thus g1 − h1 = 0. As a
result, f0s (t) + ϵsf

1
s (t) = Λs as desired.

H GENERALITY OF THE MSFR PROBLEM

In this section, we demonstrate the generality of the MSFR problem. Specifically, we show that
our method can also be applied to (or is a limiting case of) other generalized types of the MSFR
setup considered in Section 2.1, namely multitask in-context regression under the source-capacity
condition (Appendix H.1), MSFR with approximately sparse feature (Appendix H.2), and tasks
with idempotent-like Hs (Appendix H.3). We also highlight that our solution can be applied to
study other properties of attention besides the neural scaling laws considered in Section 4.1 and 4.2.

H.1 MULTITASK IN-CONTEXT REGRESSION UNDER THE SOURCE-CAPACITY CONDITION

Interestingly, the MSFR problem can be seen as a limiting case of the multitask version of the in-
context regression under the source-capacity condition (Cui et al., 2022), which is defined as follows
and can be seen as a generalization of the setup in Lu et al. (2024).
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Multitask in-context regression under the source-capacity condition. Following the settings
of the MSFR problem in Section 2.1, there are Ns different tasks in total. We let S be the ran-
dom variable of picking a specific task among Ns tasks and assume that S follows the power law
distribution Eq. (1). In the following, we will show that each task is constructed as an in-context
regression, thus we term this setting as multitask in-context regression. We do not use the sparse
feature extractor ϕ(s,x) defined in Eq. 2. Instead, following Cui et al. (2022), we use the feature
extractor ϕ̃(s,x) ∈ RNs such that for data x ∼ PX

Σs = Ex∼PX

[
ϕ̃(s,x)ϕ̃(s,x)T

]
= diag (ω̃s) = diag (Ps (ω)) (140)

where ω̃s =
[
ω̃s1 ω̃s2 · · · ω̃sNs

]T ∈ RNs and ω = [ω1 ω2 · · · ωNs ]
T ∈ RNs such that ω

satisfies the source/capacity condition
ωk ∝ k−τ , (141)

and Ps is a simple rearrangement of elements of ω such that

ω̃ss = ω1

ω̃ss+1 = ω2

...
ω̃sNs

= ωNs−s+1

ω̃s1 = ωNs−s+2

...
ω̃ss−1 = ωNs

(142)

i.e., the s-th eigenvalue of Σs is the largest given task type s. Finally, given task type s, we let the
strength for task s be Λs ∈ RNs and the target y ∈ R is

y(s,x) = Λs · ϕ̃(s,x). (143)

The in-context regression data Φ̃(s,X) is now generated according to the process in Section 2.2:

Φ̃(s,X) =

[
ϕ̃(s,x(1)) · · · ϕ̃(s,x(ψs)) ϕ̃(s, x̂)
y(s,x(1)) · · · y(s,x(ψs)) 0

]
(144)

while we now assume that the sequence length ψs is fixed for each task s.

MSFR is a limit of multitask in-context regression under source-capacity condition. We note
that, a large τ in Eq. (141) indicates that the spectrum of the covariance matrix Σs shows a very
fast decay. If τ is large enough, we can conclude that only the largest eigenvalue of Σs (i.e., ω̃ss) is
significant, thus

Σs = Ex∼PX

[
ϕ̃(s,x)ϕ̃(s,x)T

]
large τ−→ ϕ(s,x)ϕ(s,x)T , (145)

where ϕ(s,x) is defined in Eq. (2). Since Ex∼PX

[
ϕ̃(s,x)ϕ̃(s,x)T

]
and ϕ(s,x)ϕ(s,x)T deter-

mine the in-context learning dynamics (because they are the main component of Hs according to
Eq. (22) and Hs captures the in-context learning dynamics Eq. (9)), we conclude that the MSFR
problem can be seen as a limiting case for the multitask in-context regression under source-capacity
condition with large τ . Therefore, we expect that the neural scaling laws derived in the MSFR
problem can be generalized to the multitask in-context regression under source-capacity condition.

Numerical Experiments. To validate the above claims, we conduct numerical experiments to
investigate neural scaling laws of softmax attention and we use the parameterization W T

KWQ rather
than merging them as a single matrix WKQ. For the feature ϕ̃(s,x), we use

ϕ̃(s,x) ∼ N (0,Σs) (146)

where N (0,Σs) is a Gaussian distribution with zero mean and covariance Σs = diag(ω̃s) as in
Eq. (140). We let τ = 3 in Eq. (141). To make

∑ψs

j=1 ϕ(s,x
(j))ϕ(s,x(j))T /ψs close enough to
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Σs, we let ψs = 1000 for all s. The task strength Λs ∼ N (0, I). The softmax attention is trained
by GD with learning rate 2×10−1. We report the neural scaling laws with respect to time t and with
respect to the optimal compute in Fig. 5, where one can clearly see that the softmax self-attention for
the multitask in-context regression under the source/capacity condition also displays neural scaling
laws similar to those derived in the MSFR problem (Table 1). These numerical experiments support
our claims and the generality of the MSFR problem.
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(a) Time Law with N → ∞, D = Ns
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(b) Optimal Compute with N → ∞, C = Dt

Figure 5: Neural scaling laws for softmax self-attention in the multitask in-context regression under
the source-capacity condition. In each figure, we use solid lines to represent empirical simulation
results and dashed lines for power law curves. In (b), we set α = 1.8.

H.2 MSFR WITH APPROXIMATELY SPARSE FEATURE

In the MSFR problem in Section 2.1, we let the feature extractor be

ϕ(s,x) : R× Rd → {−1, 0, 1}Ns ∈ RNs (147)
such that the feature ϕ(s,x) is sparse. In fact, our solution to the zero-th order of ϵs, i.e., f0s (t), can
still be exact under Assumption 3.1 when the above sparsity condition is relaxed for large sequence
length ψs. We give an example as follows.

MSFR with approximately sparse feature. For the MSFR problem in Section 2.1, we now con-
sider a new feature extractor ϕ̃(s,x) such that

ϕ̃(s,x) = ϕ(s,x) + ζ(s,x), (148)
where ζ(s,x) ∈ RNs can be a random noise to the first order of ϵs (ζ does not need to be sparse).
We call this task MSFR with approximately sparse feature. This task will give us the same set of
non-linear ODEs to the zero-th order of ϵs under Assumption 3.1 as that for the original MSFR
problem in Section 2.1. Therefore, Theorem 3.1 can still be applied in this case.1.

Numerical Experiments. In Fig. 6, we let ζ ∼ N (0, ϵ2sI) be a Gaussian noise vector for each
task s. We compare the loss calculated according to f0s (t) in Theorem 3.1 with that obtained from
empirical simulation. It can be seen that our theoretical prediction is still highly exact with the
existence of the noise vector ζ when the context sequence length ψs is large.

H.3 GENERAL TASKS WITH IDEMPOTENT-LIKE Hs

From a mathematical perspective, besides the MSFR problem considered in this paper, our strat-
egy for solving the ODEs Eq. (9) can be applied to any cases when the matrix Hs in Eq. (9) is
idempotent-like without Assumption 3.1:

H2
s = µsHs (149)

1We note that our characterization of f1
s (t) in Appendix G is no longer applicable in this case, and we

believe the characterization of f1
s (t) and the generalization of our methods to more complicate feature extractor

ϕ̃(s,x) can be an interesting future direction.
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Figure 6: Loss L(t) of MSFR with approximately sparse feature for different context sequence
lengths ψ(10 and 100) during training. Solid lines are for theoretical predictions while dashed lines
are for empirical simulations.

where µs ∈ R is a constant. In such cases, the solution of the model prediction is still f0s (t) in
Theorem 3.1 except for that we now define as = #sψsµs/N and f0s (t) is exact as we do not
need Assumption 3.1. We think it will be an interesting future direction to explore other tasks (for
self-attention or other machine learning models) where Hs has the idempotent-like structure.

Numerical Experiments. To verify the above claim, we consider a simple example where (we
omit the subscript s and consider the case where we only have one type of task)

H =

3∑
i=1

Eiuiu
T
i , ui · uj = δi,j (150)

and we let Ei = 2 for i = 1, 2, 3, which will give us µ = 2 in Eq. (149). The learning dynamics
is Eq. (9) with #s = N . In Fig. 7, we compare the loss calculated according to the solution
in Theorem 3.1 with that obtained from empirical simulation. It can be seen that our theoretical
prediction matches with the empirical simulation well because it is an exact solution in this case.
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Figure 7: Loss L(t) for learning dynamics Eq. (9) with idempotent-like H .
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I ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we conduct additional experiments to explore the generality of our conclusion for the
neural scaling laws. In particular, in Appendix I.1, we explore the neural scaling laws of softmax
self-attention for the MSFR problem where we train the model with GD, while in Appendix I.2 we
train the model with AdamW.

I.1 NEURAL SCALING LAWS OF SOFTMAX SELF-ATTENTION FOR MSFR PROBLEM

We replace the linear self-attention with the softmax self-attention in the numerical experiments
of Fig. 3 and Fig. 4 to investigate the neural scaling laws for the MSFR problem. For complete-
ness, we adopt the W T

KWQ decomposition rather than a single merged WKQ, i.e., f(G;θ) =
V G softmax

[
GTW T

KWQG
]
. All the other settings are the same as those of Section 4.1 and 4.2.

Fixed Context Sequence Length. In Fig. 8, we report the neural scaling laws when the context
sequence length is fixed as in Section 4.1. It can be seen that the scaling laws with respect to time t,
model size D, data size N , and the optimal compute C are similar to those reported in Table 1.
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Figure 8: Neural scaling laws for softmax self-attention trained by GD with different values of
α = 1.8, 2.1 when the context sequence length is fixed. In each figure, we use solid lines to represent
empirical simulation results and dashed lines for power law curves. In (d), we set α = 1.8.

Varied Context Sequence Length. For the varied context sequence length, we let ψs = F(s) ∝
s−β as in Section 4.2 while we keep Λs fixed. We note that the neural scaling laws with respect to
the model size D and data size N are not affected by a varied context sequence length as reflected
in Table 2, which is due to the fact that GD can still learn the task strength Λs for the task s as
t → ∞ when the context sequence length is varied. We report the scaling laws with respect to time
t in Fig. 9, where we can see that the softmax self-attention still admits a similar time scaling law
compared to the linear self-attention for varied context sequence length. As a result, the optimal
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compute scaling law of softmax self-attention will also be similar to that of linear self-attention, as
it is a consequence of the time scaling law and model size scaling law and these laws do not change.

These numerical experiments reveal that our claims regarding neural scaling laws for the linear
self-attention can be generalized to the softmax self-attention.
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t ( 1)/( + )

t ( 1)/ , = 0

Figure 9: Neural scaling laws with respect to time t for softmax self-attention trained by GD with
α = 1.8 when the context sequence length is fixed. We let N → ∞, D = Ns. Solid lines represent
empirical simulation results while dashed lines represent power law curves obtained from Table 2.

I.2 NEURAL SCALING LAWS OF SOFTMAX SELF-ATTENTION TRAINED BY ADAMW

To examine the effects of optimization algorithms on neural scaling laws in the MSFR problem,
we train softmax self-attention with AdamW and we also use the W T

KWQ parameterization. We
focus on the case where the context sequence length and the task strength are fixed. We present our
parameters in the following table.

learning rate η 5× 10−3

β1 0.9
β2 0.999

weight decay 10−5

eps 10−8

Table 3: Parameters for AdamW

Neural scaling laws with respect to model size D and data size N . We expect that AdamW will
show similar neural scaling laws with respect to the model size D and data size N when compared
to GD. This is because AdamW can still learn the task strength Λs for the task s given sufficient
training time t (Fig. 10c), which is similar to GD. We report the corresponding neural scaling laws
in Fig. 10a and 10b, where it can be seen that the softmax self-attention trained by AdamW still
admits similar neural scaling laws with respect to D and N .

Neural scaling law with respect to time t. However, AdamW typically exhibits a very different
dynamics during training compared to GD, as AdamW has a very different learning dynamics (e.g.,
it converges faster than GD). Thus we expect that AdamW will lead to a very different time scaling
law (Fig. 10c), which will further lead to a different neural scaling law for the optimal compute
(Fig. 10d). We additionally note that these observations are similar to the observations in Hoff-
mann et al. (2022), where the authors revealed that, when compared to Adam, AdamW shows a
different test loss behavior against the optimization steps (training time), indicating that the type of
optimization algorithm can affect the time scaling laws.
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Figure 10: Neural scaling laws for softmax self-attention trained by AdamW with different values of
α = 1.8, 2.1. In each figure, we use solid lines to represent empirical simulation results and dashed
lines for power law curves that are obtained Table 1 (when the self-attention is trained by GD). In
(d), we set α = 2.1.
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