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ABSTRACT

Transformers and many other deep learning models are empirically shown to pre-
dictably enhance their performance as a power law in training time, model size,
or the number of training data points, which is termed as the neural scaling law.
This paper studies this intriguing phenomenon particularly for the transformer ar-
chitecture in theoretical setups. Specifically, we propose a framework for linear
self-attention, the underpinning block of transformer without softmax, to learn in
an in-context manner, where the corresponding learning dynamics is modeled as
a non-linear ordinary differential equation (ODE) system. Furthermore, we estab-
lish a procedure to derive a tractable approximate solution for this ODE system by
reformulating it as a Riccati equation, which allows us to precisely characterize
neural scaling laws for linear self-attention with training time, model size, data
size, and the optimal compute. In addition, we reveal that the linear self-attention
shares similar neural scaling laws with several other architectures when the con-
text sequence length of the in-context learning is fixed, otherwise it would exhibit
a different scaling law of training time.

1 INTRODUCTION

Large language models (LLMs) (e.g., GPT (Brown et al., 2020) and Llama (Meta, |2024)) have
made significant achievements across a variety of tasks, ranging from question answering to decision
making. Adopting the transformer architecture (Vaswani et al.,[2017), these LLMs are large in the
sense of both parameters and training data, e.g., the largest Llama 3 model has 405B parameters
and is trained on 15.6T tokens (Meta, 2024). One of the most fantastic phenomena of such LLMs
is their continuing performance gaining as the model size and training steps are scaled up. More
remarkably, their performance can behave predictably as a power law in the number of parameters,
computation or data size (Kaplan et al., 2020; [Hoffmann et al., 2022). This impressive power law
behavior is termed as neural scaling laws.

In particular, for a model with D trainable parameters, neural scaling laws state that the test loss
L(D,t) should obey L(D,t) = E + AD~F 4+ Bt~ (Kaplan et al., 2020; |[Hoffmann et al., 2022)
where t is the number of optimization steps and E captures the loss for a generative process on the
data distribution. Holding across a wide range of orders of magnitude, these neural scaling laws have
led to the fundamental belief that autoregressive transformer language models could successively
improve their performance when scaling up. Interestingly, they also allow practitioners to determine
the trade-off between model size and training time for a fixed compute budget (Hoffmann et al.,
2022)) or design dataset with clever pruning (Sorscher et al., [2022).

Given the significant role of neural scaling laws, the theoretical understanding of their origin and
mechanism such as values of their exponents becomes increasingly important recently. Hutter|(2021)
designed a linear model that can exhibit power laws and showed that not all data distributions lead to
power laws; Maloney et al.[(2022) applied the random matrix theory to identify necessary properties
of scaling laws and proposed a statistical model that captures the neural scaling laws; Bordelon et al.
(2024); Nam et al.|(2024) proposed different solvable models to reveal the existence of scaling laws.
Although these initial attempts made simplifications on model architectures and data for the purpose
of analytical tractability, they largely advanced our understandings of neural scaling laws from the
theoretical perspective.
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On the other hand, one important aspect commonly absent in these works is that they did not consider
the transformer architecture, the universal architecture of current LLMs, which leads the theoretical
understanding for neural scaling laws of modern LLMs to be still underexplored. Transformers are
special not only because they employ self-attention as the primary component, but also because
the way how they perform prediction—an incredible mechanism called in-context learning (Brown
et al.| 2020; |Garg et al.| 2023) that can adapt their predictions based on data given in context.

The uniqueness of transformer definitely gives rise to many intriguing questions from a theoretical
perspective. What are the origins of neural scaling laws of transformer? Does transformer induce
different neural scaling laws compared to other models? Will in-context learning (e.g., context
sequence length) affect neural scaling laws? Due to the importance of transformer and its neural
scaling laws, investigating these questions is of great interest and necessary.

Answering these questions from a theoretical perspective requires a thorough understanding of ex-
plicit forms of model predictions during training, which, however, is hard since it typically requires
solving non-linear ODEs that usually do not admit closed-form solutions. Towards this direction,
Saxe et al.|(2014) modelled the learning dynamics of deep linear networks as the logistic differential
equation that can be solved exactly, |Pinson et al.[(2023)) solved the dynamics of linear convolution
neural networks, and Bordelon et al.| (2024) applied a DMFT approach from statistical physics to
solve random feature models. For transformers, recently Zhang et al.|(2023)); Tarzanagh et al.|(2024)
established the forms of converged parameters in regression and classification settings. However,
explicit forms of parameters along the training trajectory are still unclear, leading to a gap when
investigating neural scaling laws for transformers.

In this paper, we attempt to provide initial answers for the aforementioned questions to fill the gap
in part and take a step towards understanding neural scaling laws of LLMs. To conduct an amenable
analysis, we focus on the self-attention, which stands at the core of the transformer architecture,
in the linear case. We note that linear self-attention has been widely adopted in recent works (von
Oswald et al.| [2023; |Li et al.,|2023b; Zhang et al.| |2023)) to study properties of transformers. Despite
that feature learning is absent, it has the advantage of providing the possibility for a clear theoretical
characterization. We discuss more related works on learning dynamics, neural scaling laws, and the
analysis of in-context learning for (linear) self-attention in Appendix [A]

Our Contributions.

1. We design a multitask sparse feature regression (MSFR) problem for the linear self-
attention block to learn in an in-context manner. More importantly, we derive a tractable
solution for linear self-attention by modelling its in-context learning dynamics in the
MSEFR problem as a non-linear ODE system and reformulating the system to a set of Ric-
cati equations. This is highly nontrivial since non-linear ODE systems are hard to solve,
thus our procedure might be of independent interest.

This solution captures dynamical behaviors of linear self-attention during training explic-
itly. To the best of our knowledge, this is the first closed-form solution of self-attention
along the training trajectory. We highlight that it can be applied as an interesting proxy for
investigating properties of self-attention and transformers due to its analytical tractability.

2. Built upon this solution, we characterize neural scaling laws of linear self-attention by
varying time, the size of model, or the number of training data points when data obeys a
power-law, which then gives us the scaling law in the optimal compute budget. In addition,
we are able to characterize the role of context sequence length in neural scaling laws,
revealing that if it obeys a different power-law then the time scaling law will be affected,
otherwise linear self-attention would share similar neural scaling laws with other models,
which well aligns with empirical observations in Kaplan et al.| (2020).

2 SETUP OF FRAMEWORK

Notations. We use {1,..., N} to denote all integers between 1 and N. For two vectors a, b € R,
we use a; to denote its j-th component, a ® b to denote the elementwise product, a - b to denote
the inner product, and diag(a) to denote the d x d matrix with its diagonal elements equal to a. We
use & to denote the derivative of a with respect to time. We let §, o be 1 if s = s’ and 0 otherwise.
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For a matrix A, we use A; ; to denote its i-th row j-th column component. We use a ~ P to denote
that a is sampled from distribution P. We use 04 € R¢ to denote the zero vector in R,

In Section 2.1} we define the problem setting of MSFR problem, and present the concept of in-
context learning and the generation of in-context learning data for it in Section Finally, in
Section[2.3] we describe details of linear self-attention block.

2.1 MULTITASK SPARSE FEATURE REGRESSION PROBLEM

There are N, different tasks in total. We let S be the random variable of picking a specific task
among N tasks and assume that S follows a power law distribution:

Po(S=s)=2s“ (D

where Z = Z';\[:l 5~ % is the normalization constant and o > 1. Since we focus on linear self-

attention, we assume the existence of a non-linear sparse feature extractor to perform the feature
learning. Specifically, for an input data vector € R? and a task type s € {1, ..., N}, there exists
a unique feature extractor

(s, ) : R x R {—1,0,1}Ms e RN:, (2)

where only the s-th component of ¢(s,x) can be nonzero, i.e., ¢s (s, ) = +ds 5. Furthermore,
given task type s, we let the strength for task s be A; € R. The target y € R is now defined through

N
y(s, ) = Ag Z (s, x). 3
k=1

We elaborate two properties of this problem before moving on. (i) The reason why this problem is
termed as “multitask” is because we have N different tasks such that each has its own task strength
A and feature extractor ¢ (s, x), meaning that the model should learn distinct A4 for each task.
(ii) If we let A € RN+ be the collection of all task strengths, then the target can be written as
y(s,x) = A - ¢(s,x), which is like a linear regression over the feature ¢ (s, ). Since ¢ (s, x) is
like a one-hot vector, the problem is a “regression with sparse feature”. The subtlety lies in that we
must rely on all task types to learn the complete A when compared to standard linear regression.
Therefore, our problem is defined as “multitask sparse feature regression”.

2.2 IN-CONTEXT LEARNING

A remarkable ability of LLMs is that they can perform in-context learning to adapt to a specific
task given a context in the form of instructions (Brown et al., [2020). More specifically, the goal
of in-context learning is to enable a learner (e.g., a transformer) to use the context data to make a
prediction for the query data. To incorporate this ability, we focus on in-context learning in this
paper, and present its details formally for the MSFR problem (Section [2.1)) in this section. We start
with discussing the generation of in-context data.

Generation of in-context data. To inspect the effects of context sequence length 1) € R and
task strengths A, € R on neural scaling laws, we let 1/, = F(s) o s, which is inspired by
the underlying power-law correlations in language sequence (Ebeling & Poschel, |1994; |Altmann
et al.l 2012), and Ay = G(s) o s~ with 3,y > 0, which are fixed given task s € {1,..., N},
1.e., each task s has a constant context sequence length s and a constant task strength A, both of
which also obey power laws. The generation is composed of four parts (see Fig.[I): (i) a task type
s €{1,..., N} is first sampled from the distribution P, (S = s) (Eq. (1)), which also gives us the
corresponding context sequence length 15 and task strength Ag; (ii) we sample 1), different input
vectors £ € R? and a query vector & € R from the input data distribution Py, then these data
vectors are organized to form a matrix X = [z(1) 2@ ... gz g] € R*W:FD; (i) we
apply the feature extractor ¢ to each column x(*) of X to obtain the sparse feature ¢ (s, :c(i)) € RN:
and generate the target y() := y(s, (") and § := y(s, &) according to Eq. (3), then one in-context
data point of the task s can now be generated as

O G G ) ... () .
(s, X) = (5“) f;(ws) ﬂ:{f((j;l))) f((jzw))) d)(%,:c); @)

[OV)
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Sequence Length
s = F(s) s’?

Step (i) _ Step (ii)
s~Po(S=5) —> R~ Px(s,x) — [#® 2@ ... W) 3] e RXWAD

Task Type Data Data Matrix Query Data

As=G(s) x s o(s; @)
Task Strength Feature Extractor

Step (iv)

Repeat N times

Step (iii)
#(s, V) @(s,2@) - @(s,2¥)) @(s, @) No+1 s +1
y® y® y(¥) 0o | € RN+t

In-context data

Figure 1: In-context data generation of multitask sparse feature regression (MSFR).

(iv) repeating the above procedure for NV times can give us an in-context dataset with /N data points,
where the numbers of data points for different tasks obey the power law Eq. (I). Finally, given
in-context data (s, X) € RWN:+1x(®s+1) (Eq. [@)) and loss function L, in-context learning aims
to learn a model f : RN+ x(¥s+1) 5 R such that 0* = arg ming L(f(®; 8), 7).

2.3 LINEAR SELF-ATTENTION BLOCK

Self-attention block stands at the core of the transformer architectures (Vaswani et al., [2017). A
single-head self-attention block (without residual connection) f : Rz — R¥¥L parameterized
by 6 updates an input G € R?*%z to

G = f(G;0) = PVG softmax (W G)" (WoG)] € R4

where @ = {P,V, W, Wy}, P € R?*v ig the projection matrix, V' € R%*? is the value
matrix, and Wy, W € R? <4 are the key matrix and query matrix, respectively. Note that softmax
is applied column-wise.

In this paper, we study a simplified version of the self-attention by removing the softmax operation
and merge the key matrix and query matrix as a single matrix Wk := WEW, € R¥“, which
has been a popular choice in recent works, e.g.,|Zhang et al.|(2023)); von Oswald et al.|(2023)), due to
its analytical tractability as well as the ability of capturing properties of the standard self-attention.

In particular, given the MSFR problem (Section and in-context data ®(s, X) (Eq. @), we study
the in-context learning of linear self-attention block V®®T Wiy o® € RN-*(¥s+1) where Wi €
RWa+1D)x(Na+1)  To obtain the scalar prediction of the query data QAS we adopt the output of the
self-attention as f (®(s,X);0) = [VOOT Wi ®P]s 4. +1. Despite that this formulation makes a
slight change to self-attention, it provides us the convenience to investigate its intricate in-context
learning dynamics. Furthermore, decomposing Wi as (W w_1) where

W= (w - wy) e RWVADN e {11 N}iw e RN (5)
we can write the output of the linear self-attention block for the task s as f(®(s,X);0) =

[V®®T W ¢)|, which will be used in the rest part of this paper.

3 A TRACTABLE SOLUTION OF LINEAR SELF-ATTENTION

Section [2]establishes our in-context learning framework of multitask sparse feature regression prob-
lem for linear self-attention. In this section, we will closely investigate the corresponding learning
dynamics by modelling it as non-linear ODE systems in Section [3.T]and give a tractable solution of
it in Section[3.21
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3.1 IN-CONTEXT LEARNING DYNAMICS

Given the in-context dataset generated according to the procedure described in Section with N
data points {® (s, X(™)}N_ we use the mean-squared error (MSE) loss such that

n=1> 1 N 2
L) = 55 2 (£ (2, X)) 0) — ) ©)
n=1

where L is the empirical loss. The goal of in-context learning now becomes the traditional empirical

loss minimization 8* = argming E(@), which can be solved by various optimization algorithms,
and we focus on the general gradient descent in the continuous time limit, i.e., gradient flow (GF):

V=-VyL(V,W), W=-VwL(V,W).

To further investigate the learning dynamics, considering the formulation of the feature extrac-
tor Eq. and in-context data Eq. @) and denoting the standard basis vector in RN: as e, =

o -~ 010 - ')T € RM: for s € {1,...,N,} such that the only nonzero component of
e, is its s-th component, we find that H, € R+ xWVe+1) defined by (Appendix [C. 1)
_ () ™)\ &7 () w0 _ |diag (s + Des) sAses
HS.—@(S X )@ (s X )_{ bdeT oAz (7

does not change for different n, where 1, is the context sequence length and A is the task strength
for the task s, both of which only depend on the task type s. H is composed of the feature covari-
ance and target (Eq. (23)). In addition, if we further decompose V as VI = (vy -+ wp,), Vi €
{1,..., N5} s v; € RN=+1and recall the decomposition of W Eq. (8), then we can rewrite the
olriginal empirical loss Eq. (6) as (Appendix [C.1)

N
.o e . . T ]- - #s T 2
Empirical loss function: L = 5 ; N (v How, — A,) ®)

where # denotes the number of in-context data points for the task type s in the dataset
{®(sM, XN e, #, = ZnN:1 Js st Eq. (§) indicates that the dynamics of v, and w,
for different s are decoupled: the s-th row of V' and s-th column of W are responsible for learning
and predicting the task strength of the task type s, rendering self-attention adapting itself to different
tasks according to the in-context data. With this empirical loss function, we can now use a set of
non-linear ODE systems Vs € {1,..., N} :

In-context learning dynamics: v, = —% (fs — As) Hywg, ws = —% (fs — As) Hyvs (9)
to describe the in-context learning dynamics by GF where we denote f; = v H,w, for simplicity.
We note that f, is sufficient for us to investigate the dynamical behaviors of the output of self-
attention for task type s and the empirical loss. Thus, by abusing of definition, we refer to the
solution of f5 as the solution of the in-context learning dynamics, which can also be applied to give
solutions of v, and w.

‘We highlight that the ODE systems above are non-linear for both v € RN and wy € RN= , and, ob-
viously, are different from the logistic differential equations obtained from the GF dynamics of deep
linear networks (Saxe et al., 2014;|Nam et al., [2024)) and different from the Lotka-Volterra predator-
prey model (Volterra, [1928)). In this sense, the dynamics of linear self-attention (and transformer)
is different from that of deep linear networks. Meanwhile, we note that non-linear ODE systems,
including Eq. (O) which are non-linear ODE systems for vectors, typically do not admit closed-form
solutions. Therefore we emphasize that solving Eq. (9), which might be of independent interest, to
obtain the explicit dynamical behaviors of linear self-attention is novel as well as intriguing.

3.2 SOLUTION OF IN-CONTEXT LEARNING DYNAMICS

Although it is intractable to give the exact closed-form solution to the in-context learning dynam-
ics Eq. (), in this section, we will provide a solution that can be approximately exact under the
following condition. We defer technical details of this section to Appendix [D]

Assumption 3.1. Vs € {1,..., N}, the context sequence length s > 1.
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Procedure sketch. Before diving into a detailed procedure for deriving the solution, we first
present a rough sketch for it. The first step is to transform ODE systems Eq. (9) to a more sym-
metrical form Eq. (I0) by changing of variables. Then we decompose Eq. (T0) as two sets of ODE
systems by comparing both sides of Eq. (I0) to the zero-th and first orders of €, since H, can be
decomposed as two parts, HY and e, H! with ¢, < 1. We then apply a change of variable again and
derive a new set of ODEs Eq. (1) as Riccati equations Eq. (T2) which admit closed-form solutions
by noticing the existence of an important conserved quantity of the dynamics.

We now discuss the procedure in detail. Our first crucial observation is that the ODE of v, Eq. (9)
is non-linear with respect to w,, which makes it hard to solve. Therefore, we first convert Eq. (9)
into a more symmetrlcal form by changmg of variables: let n; = vs + w, and p; = v; — ws, then
the dynamics of s € R Natl and ps €R Na+1 can be obtained accordlng to Eq. 9

CO #5 N . #s N
="y ( 1 As> Hms, ps = - ( 1 As> H,p;, (10)

where we define g, = n H,ns and hs = p! H,p,.

In this way, by solving Eq. (I0), we can find the solution of the self-attention and the empirical loss
function Eq. (). However, Eq. (T0) is still not directly solvable. Fortunately, recalling the definition
of H in Eq. (7), we can rewrite H as a sum of two matrices Hy = 1), (Hg + eSHSl) where

o _ |diag(es) Ases 1 _ |diag(es) 0
H“‘_{Asef Az | He=10 g

S S
and e, = 1/15 < 1 according to Assumption which allows us to treat e H? as an insignificant
perturbation in the dynamics Eq. (I0) and solve it using the perturbation analysis.

Specifically, suppose that the solutions of Eq. (T0) can be written as s = n° +¢e,n! and p, = p? +
€spl such that n! and p! are treated as perturbations to 1% and p? respectively, then g5 and hg can
also be written in a perturbed form gS = gg + €5 g; and hy = h0 +e,h} accordingly (Appendix.
Now we can obtain ODEs for ns ,nL, p%, and p! by comparing terms to the zero-th and first orders
of €s in both sides of Eq. ( respectlvely (Appendlx [D.1I). This will finally give us ODEs for
g%, 1 gl, and hl, the final ODES that we aim to solve since the output of self-attention for the task
s can be written as fs := fO(t) + es f1(t) = [(¢° — h?) + es(gl — h1)]/4.

Our strategy for finding solutions of f is now composed of two parts using the perturbation analysis:
(i) solve the ODE:s for g¥ and hg exactly and (ii) find n? and p? according to the solved g% and hY,
then put them into ODEs of g and A to find their solutions. As mentioned earlier, f2 (¢ is far less
significant than f0(¢) to the dynam1cal behaviors of self-attention given Assumption (3.1} thus we
defer the discussion of f1(t) to Appendlx@ and only focus on f9(t).

We now discuss the first step for f2(). Our key observation is that H? is like an idempotent matrix:
(H?)? = (A% + 1)H?, which gives us the dynamics of g, and h as a new set of non-linear ODEs:

99 =— (90 — hY —4A,) asg?/2, B2 = (g0 — hY —4A,) ashl/2, (11)

where we let as = #41)s(A% + 1)/N for ease of notation. Though Eq. is still a non-linear
ODE system, it is much more tractable than the original in context learning dynamics Eq. (9). Our
following key observation can drastically simplify Eq. (TT) even further: V¢ > 0 : g%h% = 2C,

where (s is a constant determined by the 1n1t1ahzat10n 1 e., g°h? is conserved for the dynamics,

since d(g0 hY)/dt = 0. In this way, Eq. (IEI) becomes the followmg set of Riccati equations that can
be solved (Appendix [D.2) to give our main results:

30 =2a5A9° — as(2)?/2 + asCs, 70 = —2a5A9° — as(h2)?/2 + a Cs. (12)

Theorem 3.1 (Solution for in-context learning dynamics of linear self-attention: zero-th order). For
MSFR problem and the in-context learning dynamics by GF of the linear self-attention block Eq. (9),
the solution f4(t) can be approximately written as an expansion fO(t) + e, f1(t) at large 15 with

A 1 1
oty =Ag+ =2 - 1
f5(®) + 2 |14 Psexp(ashst) 14 Qsexp(asAst) (13)
where as = #31)s(A2 4+ 1)/N, and
4f9(0)As + 2 VAfI( 2 = s
s = VAAZ +2C,, P, = s (0)As +2Cs + As/4(f7(0))% + C P2Aé As

2(f9(0) — As)(Xs —2A) @ = "2A5 + As
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are determined by the initialization. In addition, when v°(0) = £w?(0), the constant Cs = 0 and,
denoting Ag = (A — £2(0))/£0(0), the solution can be simplified to be a standard logistic function
A,

So(t) = W when 'US(O) = iwg(O) (14)

The closed-form solution f9(t) obtained
in Theorem [3.1] is to the zero-th order of

€s and is a good approximation under As- 0.06 7

sumption 3.1l as, Ps, Qs, and A, jointly o
control the learning process, where P;, @, o 00 1259
and )\, are determined by the initialization 008 roo L

3
and task strength, e.g., when f2(0) = A, =
both Ps, Qs — oo thus f2(t) = A, fort > 0.03
0. as is determined by the dataset, e.g., se-
quence length, and task strength. In Fig.[2]
we compare the loss that is calculated us- o o Tor o
ing fO(t) with that obtained from direct t
empirical simulation for different context Figure 2: Loss L(t) for different context sequence lengths
sequence lengths. It can be seen that when (5 and 100) during training. Solid lines are for theoretical
the context sequence length ) > 1 (blue predictions while dashed lines are for empirical simulations.
lines), the theoretical prediction of the test
loss matches with the empirical results precisely, which validates the accuracy of fO(t).

f2(t) can explicitly characterize the dynamical behaviors of the self-attention block including the
influence of various parameters, suggesting that it could contribute to the understanding of self-
attention in a variety of aspects. In this paper, our focus will be neural scaling laws. For another ex-
ample, fU(t) shows that self-attention learns different tasks in different rates that depend on various
parameters such as the sequence length, task strength, number of data points, and the initialization.
The difference of learning speeds for different tasks might lead to the grokking phenomenon (Power,
et al.,[2022)), since the model can quickly fit a fraction of tasks while learns the rest extremely slowly.

4 NEURAL SCALING LAWS FOR LINEAR SELF-ATTENTION

In this section, we closely examine neural scaling laws for linear self-attention with its special in-
context learning dynamics. We note that this focus is different from those architectures considered
in previous works (Bordelon et al., [2024; Nam et al.l 2024} |Hutter, 2021} [Michaud et al.| 2023
Maloney et al.| |2022), providing us a possibility to compare self-attention with other architectures
regarding neural scaling laws from a theoretical perspective.

In particular, we will investigate the test loss according to the solution obtained in Theorem [3.1]
under Assumption and the relation f,(t) ~ f2(t), which enables us to write the test loss as

N
Test Loss: L(t) = Eqopy sop,, [ (f((5,X): 0),1)] ~ %Zpa(s =9 [0 — A2 (15)
s=1

We note that our results are applicable for any distributions of s and @, while in this paper, we only
study the power law type distributions as specified in Section [2| which well align with empirical
observations according to recent works (Michaud et al.,[2023; Maloney et al., [2022).

Concretely, we consider neural scaling laws of linear self-attention with respect to each one of size
of the model D, training time ¢, and the number of training data N when the other two factors are
not the bottleneck of training. Finally, we consider scaling laws for the optimal compute C. We list
the discussion of these factors as follows and defer details to Appendix [E]

* Size of the model D. To quantify the model size D, inspired by Michaud et al.| (2023);
Bordelon & Pehlevan|(2022); Nam et al.|(2024) which considered different models empir-
ically or theoretically, we assume that there is a cutoff D such that the model cannot learn
any task strength A, with s > D. Specifically, we let Wy € RP*P vV ¢ R(IP-1xD
and apply a new feature extractor such that ¢’ (s, z) € RP~! only extracts the first D — 1
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elements of the original ¢ (s, ). When D is the bottleneck of training, we let t, N — oo
(they are sufficient for the training) to derive scaling laws with respect to D.

* Training time ¢. Training time ¢ is equivalent to the number of optimization steps. To
investigate the scaling law with respect to ¢, we remove the bottleneck caused by the size
of model and the number of data points by letting N — oo and D = N,

* Number of training data N. When the training is bottlenecked by N, we let t — oo and
the cutoff D = N, following the above arguments.

» Optimal compute C. This is the case when the number of data points is sufficient for the
training, while training time ¢ or the size of model D is the bottleneck given the compute
budget C = Dt such that either ¢t or D scales differently with C. Specifically, if L(¢, D) =
ait™“ +apD™*P, then we can derive the optimal test loss as L o C¢~oton/(atap) given
C = tD (Appendix [E.T).

We will investigate two different cases. In the first case (Section [d.1), we assume that v = 3 = 0
in Section such that the context sequence length v and task strength A; do not depend on
the task type s. In this setting, we can compare neural scaling laws of linear self-attention with
other architectures in recent works (Michaud et al.| 2023} Nam et al., 2024} Bordelon et al., 2024)
more closely. In the second case (Section, we let s = F(s) oc s77 and A; = G(s) < s77 as
specified in Section[2.2] which are unique to self-attention due to in-context learning, to inspect their
effects on scaling laws. Details of Section[d.1]andf.2] will be deferred to[E.2]and [E3] respectively.
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Figure 3: Neural scaling laws for linear self-attention with different values of o« = 1.8,2.1. In each figure,
we use solid lines to represent empirical simulation results and dashed lines for power law curves. We also plot
theoretical predictions of test loss in (b) with dotted lines as a comparison. In (d), we set « = 1.8 and use
different levels of transparency to reflect different model sizes D within the range [N /100, N /5].

4.1 FIXED CONTEXT SEQUENCE LENGTH AND TASK STRENGTH

For simplicity we assume that the model is initialized as Cs = C and f°(0) = fy, which implies
that \s = A\, Ps = P,and Qs = Q for s € {1,...,N,} do not depend on the task type s. When
the context sequence length s and task strength A are the same for different task types s, i.e.,
v = B =0, the test loss Eq. (I3) can be written as

2Ns 2
L) ~ 22 s—a< L 1 ) (16)

8 1+ PeasAt 1 4 QeasAt

s=1
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according to Theorem [3.1] To derive neural scaling laws, we plan to find the asymptotic behaviors
of L(t) with respect to each one of ¢, N, and D when the other two are not the bottleneck of training
using Eq. (I6). Then we can use the relation C = Dt to find the scaling law with respect to the
optimal compute budget. We summarize our results in Table[T]and verify them in Fig. 3]

Table 1: Neural scaling laws for linear self-attention when § = v =0

Scaling Law Condition
Size of model D Do+l t—o00,N = o0
Time ¢ = N = 00, D = N,
Number of data N N~ 5+ t— 00,D =N,
Compute budget C c—oFt N—>oo,to<CaL+1,Do<C%+1

Architecture does not matter for scaling laws when context sequence length is fixed. The results
summarized in Table E] reveal that, when data admits a similar power-law structure, linear self-
attention shares the same neural scaling laws with ReLU MLPs (Michaud et al.} 2023)) and diagonal
linear networks (Nam et al., [2024) with respect to ¢, N and D. Linear self-attention also exhibits
a similar time scaling law as the linear models considered in [Bordelon et al.| (2024) and Hutter
(2021)). These similarities indicate that the architecture of model does not affect exponents of neural
scaling laws significantly, which well aligns with the empirical conclusion reached by |[Kaplan et al.
(2020) where they showed that transformers share similar exponents of neural scaling laws with
other models when the power-law structures hold.

4.2 VARIED CONTEXT SEQUENCE LENGTH AND TASK STRENGTH

To further capture how the context sequence length 1), and the task strength A affect neural scaling
laws for the in-context learning of self-attention, we let 15 = F(s) oc s77, Ay = G(s) ox s77 as
in Section Additionally, we assume for simplicity that A2 > 1 such that as ~ #4)sA2/N and
the model is initialized as v2(0) = +w?(0) and f2(0) = O(1) for all s. As a result, we can write
the test loss as

N, 2
AN A exp(—2asAst)
L(t) ~ — =2y . 1
®) 2 Sz:;s [1 + Aexp(—2asAst) {17

Following a similar procedure as in Section[4. 1]} we derive neural scaling laws of linear self-attention
for MSFR problem in Table 2] which gives us the following insights.

Table 2: Neural scaling laws for linear self-attention when both 1, and A depend on s

Scaling Law Condition

Size of model D D=2+l t — oo, N = o0
a42y—1
Time ¢ ¢ avErE N —o0c0,D =N,
Number of data N N~ 75— t— 00, D =N,
at2y-1 a+3~+8

1
Compute budget C C oF37+5+1 N — 00, t oc CoF37+5+1 | D o< CaF3r+5+1

Varied context sequence length affects the scaling law of time. Table [2|reveals that a varied con-
text sequence length makes the learning process slower (Fig. [4a). According to Table[2} a nonzero
positive 3 leads to a larger exponent of time law, thus the test loss will decrease slower than the case
when 8 = 0. This suggests that it is better to balance the context sequence length for different tasks
to obtain a satisfied test loss given a limitation of optimization steps. This conclusion is special to
self-attention compared to other architectures considered in previous theoretical works since they
lack the place for the context sequence length. On the other hand, we also find that 5 does not
appear in scaling laws for the size of model and number of data points, indicating that self-attention
can still admit similar scaling laws for D and NN as other architectures when v = 0.

Varied task strength affects all scaling laws. Table |2| reveals that a varied task strength reduces
the requirements of the size of model (Fig. fd) or the number of data points (Fig. e} in our MSFR
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Figure 4: Neural scaling laws for self-attention with varied sequence length 15 oc s~ and strength Ag o< s77.
In each figure, we set & = 1.8 and use solid lines to represent empirical simulation results while use dashed
lines for power law curves. In addition, we plot the power law curves (black dashed lines) with v, 8 = 0 from
Table|I|as a comparison. In (a) and (b), we set v = 0 to examine effects of ¢s on time and optimal compute
laws only. In (b) and (f), we use different levels of transparency to reflect varying model sizes D.

problem. Specifically, due to the existence of a positive v, exponents of scaling laws for both size of
model and number of data points become smaller, thus the learning requires fewer number of data
points or smaller size of model to achieve a similar test loss when they are the bottleneck according
to the neural scaling laws in Table 2} As a result, the scaling law for optimal compute C also sees a
similar effect (Fig. A1), suggesting that the diversity of task is beneficial for model performance.

5 CONCLUSION

In this paper, we target on understanding neural scaling laws and learning dynamics of self-attention,
which stands at the core of the transformer architectures, from a theoretical perspective. For this
purpose, we first design a multitask sparse feature regression problem for the self-attention to learn
in an in-context manner, whose learning dynamics is then modelled as non-linear ODE systems.
We then give a tractable solution to the ODE systems, which might be of independent interest since
non-linear ODE systems typically do not admit closed-form solutions. We also highlight that this
solution can be employed as an interesting proxy for studying a variety of properties of self-attention
and transformers. Finally, we use the proposed solution to closely investigate neural scaling laws
of self-attention with respect to each one of training time, number of data points, and size of the
model when the other two are not the bottleneck of the learning process, which in turn allows us to
establish the neural scaling law with respect to the optimal compute budget.

10
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APPENDIX

The structure of the Appendix is as follows. In Appendix [A] we introduce additional related works.
In Appendix [B] we present key definitions from the main paper for convenience. Appendix [C] es-
tablishes the in-context learning dynamics as non-linear ODE systems, while we solve them to the
zero-th order of € under Assumption [3.1]in Appendix[D] Appendix [E|focuses on neural scaling laws.
In Appendix [F] we list details for our numerical experiments. In Appendix |G} we construct the com-
plete solution of self-attention for the MSFR problem up to the first order of . We further discuss
the generality of the MSFR problem and our solution by connecting the MSFR problem with other
types of tasks in Appendix[H} Finally, in Appendix[[} we present supplement numerical experiments
to extend our claims on neural scaling laws for linear self-attention to softmax self-attention.

A ADDITIONAL RELATED WORKS

Due to the great success of LLMs, the understanding for the transformer architecture becomes in-
creasingly important. As|Garg et al.| (2023)) proposed the in-context learning for learning particular
functions, besides[Zhang et al.| (2023)), von Oswald et al.| (2023)); [Akyiirek et al| (2023) studied trans-
formers for the linear regression problem, while [Li et al.|(2023a) revealed the similarity between a
single-layer self-attention and gradient descent on a regression problem with softmax. [Edelman
showed that the self-attention is able to learn sparse functions of the input sequence.
For the loss landscape of single-layer transformer without softmax, showed the
existence of solution of the model parameters that can achieve perfect test loss. Furthermore, the

idea of MSFR is also partly inspired by the multitask parity problem proposed by Michaud et al.
(2023)); Barak et al.| (2022) that empirically exhibits neural scaling laws.

For other neural networks, the study of the learning dynamics is always an important topic. There
is a line of research that investigated properties of the converged parameters in both classification
and regression settings, e.g., [Soudry et al| (2024). To characterize the whole training trajectory,
built an exact solution of deep linear networks that depends on time explicitly.
In addition, various tools borrowed from random matrix theory and statistical physics have also
been applied to investigate the learning dynamics of linear models (Spigler et al.,[2020; [Bordelon &/
Pehlevan| Simon et al.} Bahri et al. [2024). There are also a fruitful results (Adlam &

Pennington, 2020} |d” Ascoli et al.,[2020; (Geiger et al., 2020) that analyzed the learning dynamics of
neural networks in the limiting case with the neural tangent kernel (NTK) 2020).

A.1 ADDITION RELATED WORKS ON LEARNING DYNAMICS OF DEEP NEURAL NETWORKS

Besides the aforementioned works on learning dynamics of neural networks or random feature mod-
els, |Pinson et al.| (2023)) studied the learning dynamics of gradient descent for linear convolution
neural networks. Particularly, they discovered an interesting interplay between the data structure
and network structure that determines the phases of the network along the training trajectory. The
learning dynamics is also analyzed by while [Braun et al| (2022); |Atanasov et al.
focused on different initialization regimes. Our focus in this paper is the learning dynamics
of linear self-attention with the in-context learning.

A.2 ADDITIONAL RELATED WORKS ON NEURAL SCALING LAWS

Besides |[Kaplan et al.| (2020); Hoffmann et al.| (2022), there are a number of recent works that ex-

plored scaling laws in deep neural networks empirically (Rosenfeld et al. 2021}, [Hestness et al.
2017} [Rosenfeld et al, 2019). The study of neural scaling laws can be found in some earlier

works (Caponnetto & De Vito|, 2007} [Steinwart et al., 2009} [Ahmad & Tesauro| [1988). From the
theoretical perspective, various works developed solvable models in the context of random feature
models (Bahri et all 2024} [Atanasov et al.| 2022; 2024} [Bordelon et al.| 2024; [Paquette et al., 2024)
to study the neural scaling laws in certain limits. In addition, |Wei et al.| (2022); Bordelon et al.|
(2021); Sharma & Kaplan| (2022)); Bordelon & Pehlevan|(2022)) also conducted theoretical analysis
on linear models to investigate the neural scaling laws. These works improve the theoretical under-
standing for the neural scaling law to a large extent. As a comparison, our focus in this paper is
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particularly on the linear self-attention with the in-context learning, which is not widely discussed
in previous works.

A.3 ADDITIONAL RELATED WORKS ON ANALYSIS OF IN-CONTEXT LEARNING REGRESSION

The success of the transformer architecture (Vaswani et al.| [2017) has encouraged a majority body
of works to investigate its theoretical understanding, especially the intriguing in-context learning
mechanism. A common setup along this direction is the study of linear regression using the linear

self-attention (Duraisamy} 2024} [Ahn et al 2023b; [Wu et all, 2024} [Lu et a1.|-, 2024} [Zhang et al

2023)). Our work also falls into this category as mentioned in Section [2.3] We present a more
extensive comparison and connection to|Zhang et al.| (2023) and |Lu et al.| (2024) in the following.

Comparison and connection toZhang et al|(2023). [Zhang et al.|(2023) considered linear regres-
sion using linear self-attention in the in-context learning manner. By assuming the infinite training

dataset size limit, Zhang et al.| (2023) revealed that the converged linear self-attention can achieve
a competitive performance compared to the best linear predictor over the test data distribution. As
a comparison, our setting is also a regression for the linear self-attention to learn in an in-context
manner, while our problem is a multitask version and the distribution of the task type obeys a power
law. In addition, besides the converged solution of the dynamics, we derive its (approximate) form
along the whole training trajectory, which in turn makes it possible to characterize the neural scaling
laws with respect to time, data size, model size, and the optimal compute. And we note that the
characterization for the time scaling law (and the optimal compute law) cannot be derived solely by
the converged solution.

Comparison and connection to |Lu et al.| (2024). |Lu et al.| (2024) proposed a solvable model
of in-context learning for a linear regression task by linear self-attention. Specifically, assuming a
limit where the input dimension, the context sequence length, the training task diversity, and the
data size are all taken to infinity following certain ratios, they revealed a double-descent learning
curve with respect to the number of examples. As a comparison, our problem is also a multitask
regression for the linear self-attention to learn in an in-context way. In addition, as we will explain
in Appendix [H} our problem can be seen as a limiting case of the multitask in-context regression
under the source-capacity condition, which is also a generalized version of the setup considered in
(2024). Furthermore, our solution (to the first order of €, when the context length is large)
captures the whole training trajectory and we study the neural scaling laws with respect to various
parameters so that we do not assume that all parameters are taken to infinity together.

B NOTATIONS AND DEFINITIONS

We present useful definitions in the main paper here for convenience.
* Feature Extractor Eq. (2)
¢(s,x) R x R {—1,0,1}Vs ¢ RN,
* Target Eq. (3)

N

y(s, ) = Ag Zqﬁk(s,w).

k=1

* An in-context data point Eq. (4)

(1) Ws) 4 1 .
e e 9 ol [o(s, D) o p(s,x¥))  p(s, T)
o(s, X) = L/gl) ) 0] - Lj(s’w(l)) s y(s, @) 0

¢ Empirical loss function
1 & 2
5N n§:1 f®(s ):0) =17
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* gs and h;
gs =ms-Hyns, hs=ps-Hsps.
* In-context learning dynamics Eq. (9)

'bs :*%(fs*AS)st& ws :7%(][;7/\%) Hsvs (18)
* Test loss Eq. (T9)
1 e 2
L(t) = Banpx snp, [0 (f(2(s,X);0),y)] = 527%(5 =s) [f{t) - A" (19
s=1

C IN-CONTEXT LEARNING DYNAMICS

In[C.1] we derive a simpler form of the empirical loss function Eq. (§). In[C.2] we present details of
the learning dynamics Eq. (9).

C.1 FORMULATION OF EMPIRICAL LOSS FUNCTION

By definition, the output of self-attention is

[ (2(5.X):0) = [VOR T Wiod] | = {V@@TWqSL
where W,V are defined by
W= (w, - wp,)eRNMHDNe e {1 N}:w, € RVF1
VI =(vy - o) e RVHDNe tyie £ NG} o € RNFL

Deriving H;. To derive H, (Eq. (7)), we decompose the in-context data point ®(s, X) (Eq. (@)
for the task s as

P, ¢
P(s, X) = 3 . 20
where
yV
Po=[p . g eRV oy = | | e R 1)

and ¢, = ¢(s, ). Then

P, ¢, [P s
o, X)(@(s,X)7 = B 4] |5t
P.PI + ¢,¢T Py ]
— sd'g sPs sds | (22)
[ y. Pl YiYs
There are four terms for us to compute to get the form of Hy in Eq. (22): (i) the first one is
1
(@) ve
PR =g o o] | i | =Y 0P @) = dingleu  @3)
s j=1
(d)gw ))T J
where the standard basis vector in RV is e, = (0 --- 0 1 0 )T € RN for s €
{1,..., N} such that the only nonzero component of e; is its s-th component; (ii) the second
one is ¢,¢1 = diag(e,), which can be easily verified; (iii) the third one is
1
v
Py, = d)gl) T ¢ng)} : = ¢gj)ygj) = Pshses;
ygws) Jj=1
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(iv) the final one is y y, = Z;ﬁ (y$)2 = 1), A2. Combining these terms gives us the form of H,:

o [diag (s + De) o,
s ,(/)SASeZ ’L/)sAi

As a result, the output of self-attention for the in-context data point ®(s(™), X (™)) will be
7 (2, X)) = of Hyor Wby,

which gives us the empirical loss as

2
n=1
1 & N 2
b . o
=N Z [v§n>Hs<n>W¢s<n> Ageny Z¢k(5( ), g ))]
n=1 P
1 L .
= TZ [vZ(")Hs(mws(") Asm)] (¢k(s("),§:(”)))2
n=1k=1
a 1 N T ,
- T Z I:vs(”)Hs(")ws(n) As(’")]
n=1
N,
e 1 #s T 9
=32, (v Hows = A), (24)
2 — N

where we use the definition of empirical loss in a, the definition of target y in b, the decomposition
of W Eq. (®) in ¢, ¢x(s, &) = £0,  according to definition of ¢ Eq. (2) in d, and recall that #,
denotes the number of in-context data points with (™) = s for n € {1,...,N}ine.

C.2 IN-CONTEXT LEARNING DYNAMICS AS ODE SYSTEMS

We adopt the continuous time limit of gradient descent, i.e., gradient flow, to perform the empirical
loss minimization

V=-VyL(V,W), W=—-VwL(V,W). (25)

Specifically, for empirical loss function Eq. (8), we can directly obtain the learning dynamics as
non-linear ODE systems: Vs € {1,..., N}

Vs = _% (fs - Aa) st87
ws = _% (fs —As) Hyv,

where recall that we denote f, = 'vsTH sWy.

D SOLUTION OF SELF-ATTENTION

In[D.I] we derive the ODEs of g5 and h, while we solve the ODEs to the zero-th and first order of
€5 under Assumption [3.1]in[D.2]and[G] respectively.

D.1 ODES OF g; AND hg

There are four steps to derive ODEs for g5 and hg, which will be discussed as follows.
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Step I: change of variable. As discussed earlier, the ODE of v, Eq. (9) is non-linear with respect
to w, thus we transform it to a more symmetrical form by the change of variable: let

ns:vs+wsa Ps = Vs — Wy,

then the dynamics of i, € RN-+1 and pPs € RN>+1 can be obtained according to Eq. (9)

. #s gs_hs R _#s gs_hs
Ns = N 1 AS Hs"757 Ps = N 4 As Hspsa (26)

as a result, the ODE of 7, is non-linear with respect to 17, while that of p, is non-linear to p;.

Step II: deriving ODE:s to different orders of c;. According to the definition of H in Eq. (7),
we can rewrite H as a sum of two matrices

H, =1, (Hso + 6stl—sl)

where

AT A2 <= 0 " o0

and e, = 1/1s < 1 given Assumption Therefore we can treat e H! as an insignificant pertur-
bation in the dynamics Eq. (26). Let the solutions of Eq. be

Ns =m0 +eml,  ps = pL+espy

such that n! and p! are treated as perturbations to 7% and pY, respectively. Then, according to the
definitions of g5 and hg, we can also write g5 and hg in the perturbed form

HO — {diag(es) Ases:| H' - [diag(es) 0}

9s = 9o + €sg; = ns - Homs
=5 (0 +esmy) - (HY + e, Hy) (0] + esmy)
=¥l - Hnd + vses (- Hin +2n; - HnQ) + O(eZ)  (27)
hs = h) + eshy = ps - Hyps
= spl - Hp) + s (00 - Hyp) +2p, - H)p) + O(e2).  (28)
Putting the above perturbation forms back to Eq. (26)) to the first order of €, we have

00l = T [0 B0 e (g} — hl) — 4AL] [HOn) + e (Hng + HOnl)] + O()
Pt eaph = U [ h0 ke (g} — hY) 4N [HOp + o (HLp) + HOpL)] 4+ O()
(29)
Matching both sides of Eq. (29) to the zero-th and first order of €, respectively gives us
.0__1/)3#5 0_ 10 0,.0 ~0_ws#s 0_ 30 0 0
773 - 4N (gs h’s 4AS) Hsns, ps - 4N (gs hs 4AS) Hs Ps (30)
and
= —wjﬁs [(g5 = b = 40s) (HgnS + Hing) + (95 — ho) Hom,]
€1y
ph= U [(g0 —h) — aN,) (HLp) + HOp!) + (g} — ) HOpY).

Step III: deriving ODEs for g, and h to zero-th and first orders of ;. We can now obtain the
ODE:s for g5 and h to the zero-th order of €, by directly applying the definitions and Eq. (30):

1/}8#5772 ) HEHSWQ

_ d
95 = sl - Hinl = =t (95 — hi — 4A,)

2N
0. ;FOnO
é_(gg_hg_@\s)w
Zero-th Order: 0 (32)
0 0 asgs
= — —h] —4A, ,

(99 — R ) =5
ash?

0 = (g0 — H2— 4A.)

2 )
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where we use (H?)? = (A2 + 1)H? in a and derive the equation for h? in a similar way. Suppose
that we obtain the solution to the zero-th order by solving the above ODEs, then, according to the
definition of ¢} in Eq. and the definition of h! in Eq. (28], we only need to find the solutions of

ms = sm, - Hinl and ng = ¢,p, - H)p} (33)

to derive the solution to the first order of ¢, since we can obtain n° - H!n? and p? - H! p? using
the solutions of Eq, (32)(see Appendix [G.T). This means that based on Eq @ we need to solve
the following ODE:s:

s = am  Hg + eny - Hing

V2Hs

=N (92 = h —4A,) [n} - HOHn? +n) - (H)H!n? + H Hn})]
First Order: qu# 1
_ ERIE _ hl OHOHO 0
4N (gS S)ns "7
0 0 AsMs w #s 0gyl,.0 1 1 asgg

= — —h, —4A, H'H — —h

(gS S ) 2 4N 778 S SnS (gs S) 4

(34)
and, similarly,

=p,-H)p+pl - H.p?

1/’.@#3
= (08— he—4A,) [py - HIHDp( + pl - (HJH p{ + HIH p)]
First Order: W24
*(gs — hi)pIHH. p)
+ (g~ ke
0 0 1/’ #s o 071 ,,0 1 1 ashg
= —h, —4A; H/H —h .
(gs S ) 2 4N p@ S sps +(g€ S) 4

(35)
Then we can write the solution of g! and h! as

= wsngHgng + 2ms, h; = wngHsng + 2ns.

We will solve the zero-th order ODEs in the next section and discuss the solution of the first order
ODE:s in[Gl

D.2 SOLUTION OF SELF-ATTENTION: ZERO-TH ORDER

Eq. is still hard to solve. Fortunately, we note that

d 4 as(g2h? — g%n?)
9p0 = 9—h9—4A5¥:0 36
S o0nd = (g0 — 2 — 4n,) I , (36)
which immediately implies that
vt >0:¢°h = 2C, (37)

is a constant, i.e., g°hY is a conserved quantity of the learning dynamics. This important quantity
allows us to rewrite Eq. (32) as

QS = QGSASQS - a8(92)2/2 +asCs,

) (38)
hg = —2a5ASgg — as(hg)2/2 +a,Cs,

which are exactly the Riccati equation. To determine C;, we note that

2
Co = (ng - H{nQ)(p? - HYpL)e—o = (W3 (0)[[ 7, + |wl(0)[[F,)” — 4v2(0) - Howl(0), (39)
where we use ||a||?, = a® Ha for a positive definite matrix H and vector a and we note that Cy = 0

if ¥2(0) = +w?(0). In the following, we adopt a series of change of variable to solve Eq. (38). For
simplicity, we omit the s subscript and recover it in the final solution.
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StepI. Let
ag ah
=2 g=_ 40
p 5 1 5 (40)
then we can transform Eq. (38) to
2
p:——g:2aAp+p2—L
2 2
: , (41)
_ 0 g2 28
q= 5 = qT4q B

StepII. Letp=—%/v,q= —9/9, then
.. . 2

Y Y
Putting it back to Eq. (41I), we can obtain the ODE of ~ and 6 as follows
' e e
ﬁ+2aA<—7>y—“ To0 = 4—2aAy - 27—,
¥ 2 2
200 (43)
6+ 2a06 — 2 =0.

Step III. Eq. {#3) are just the second-order linear ODEs, which can be solved following a standard
approach. Specifically, let

N = ect70 — ebt7
then putting them back into Eq. gives us
2C V4A2a? + 2a2C
02—2Aac—a—=0 - c=Aai$
220 4A222 2a2C' “h
V4A2a? + 2a2C
B+ 20ab— L2 =0 = b:—Aai%.
For ease of notation, we denote
V452 +2a2C
S:Aa,gz%,a+:5‘+§,a_:8—f 45)

then solutions of y and 6 are
v=Ae*" 4+ Be’t, 9 =FEe 7' 4 Fe 7+t (46)

where A, B, F, and F are constants that need to be determined by the initial condition. Now we are
ready to recover the solution to Eq. (32):
2 5 ¥ 204Ae%t" + Bo_e’!
I=T. T ay a Aeo+t 4 Beo-t

o 99 _ i _ 20_Ee " '4o,Fe 7!
2 af a FEeo-t4 Fe-o+t
Recall that f = (g — h)/4 in Eq. (26), we are now able to derive the solution of the zero-th order
solution of self-attention:
g—~h
f="1
1 |:O—+A6pt +Bo_e°-t!  o_Ee -+ 0+Fe"+t]

2a | Ae+!+ Beo-t * Ee=o-t 4 Fe=o+t

(47)

1
=—|oyt+to_+

2a

B(o_ —0y)e?-t  F(oy —o_)e°-!
Aeo+t 4 Beo-t Eeo+t 4 Feo-t

A F B
- 2 | Eeart + F AeaM + B

A= V4A? + 20,

(48)

where we define

in the last equality.
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Step IV. It is now left for us to determine A, B, E and F according to the initial condition, which
can be obtained by noting the conserved quantity gh in Eq. and can be satisfied when

oy Ae’+t + Bo_e%-to_Ee -t 4 g Fe o+

=2C 49
Aeo+t + Beo-t Ee—o-t 4+ Feo+t “49)
2
= 01 AF +0>BE + %(AFqLBE) =0. (50)
Noticing that
0% =S +256+ €&, o =8%-25¢+ ¢,
we can further simplify Eq. (50) to
AFoy = BFo_. 6n
On the other hand, considering the initial condition by letting t = 0 in Eq.
A 1 1
A 52
10) = 3 E/F+1 A/B+1]’ (52)
if we denote 5 A _ 3 2(F(0) — A)
_ o_ — —
P=— =— = D= 53
then one can easily see that A/B = QFE/F and Eq. becomes
D(1+P)(1+PQ)+P—PQ:0
~[D@+1D+1-QI+V[D@+1) +1- QP - 4D*Q 54

= P =

2DQ
Recall that g, h > 0 according to their definitions (H is positive-definite), we only take the minus
sign in the above solution, which can be simplified by conducting some tedious algebra as
4f(0)A +2C + V4A2 +2C/4f(0)2 + 2C
2(f(0) = A)(V4AA2 +2C) — 2A

We can now summarize the solution of self-attention to the zero-th order of ¢, to prove Theorem [3.1]
by recovering the subscript s in Eq. @8)) with solution of P in Eq. (53)):
A 1 1
0 s
t)=As + — — 56
1) + 2 |14 Psexp(asist) 14 Qsexp(asAst) (56)

where a; = #41s(A2 + 1)/N, and

(55)

419(0)A, + 2C, +)\\/W 20 — s
— 2 = 9N, + A\
A = VAN +2C;, P, = 2(79(0) — A) (A, — 2A.,) Q= PR

D.3 ZERO-TH ORDER SOLUTION FOR SPECIAL BALANCED INITIALIZATION

When v?(0) = w?(0), we have C = 0, which implies that ' = o_ = 0 according to Eq. (3) and

Eq. (50), and

s = 2A,.
As a result, we can rewrite the solution as
A, A,
0 S s
fs (@) 1+ A/Beta-it — [ LA (oo 3 ) (57

£2(0)
where we use the initial condition Eq. (32)) in the second equality.

E NEURAL SCALING LAWS OF SELF-ATTENTION

We first present the overall procedure for deriving neural scaling laws in then discuss them in
detail for fixed context sequence length in[E.2] and for varied context length in Weuse a ~ b
to mean that a is approximately equal to b (by neglecting irrelevant coefficients and constants) if
a,beR.
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E.1 PROCEDURE

For convenience, we first present the test loss described in the main paper

N.
1 < 0 2
L(t) ~ 3 Z:; Pa(S =) [£1(t) = A" (58)
Note that as a is determined by the dataset and it satisfies the following relation
sHs (A2 +1
as = w — Pa(S = s)hs(A2 + 1) = Zs~ 9, (A2 + 1) (59)

as the number of training data points N — oo. Furthermore, as long as #, # 0 such that a, # 0, a
crucial property of f0(t) is

tlim 2(t) = Ay, (60)
otherwise it would be
A 1 1
. 0 _ f0 _ s N
A S0 =[50 = A+ 35 (1+PS 1+Qs)’ ©

which means that self-attention cannot learn the task s if there is no data point for it in the training set
and is similar to the one shot learner property of diagonal linear networks inNam et al.|(2024). These
properties will be repeatedly applied in the following sections. And we now discuss procedures for
deriving different neural scaling laws.

Size of the model D. To quantify the model size D, we assume that there is a cutoff D such that
the model cannot learn any task strength A; with s > D. As a result, according to the solution for
the task s in Eq. (36), we have

Vt>0,5>D: fo(t) — A, = f2(0) — As,. (62)
When D is the bottleneck of training, we let ¢, N — oo (they are sufficient for the training) to derive
scaling laws respect to D. Thus the over all test loss will be

N
L(D) ~ 3 3 257 [£2(0) ~ A (©3)
s=D

To derive the neural scaling law of model size D, we only need to find the asymptotic behavior of
Eq. (63) by letting Vs — oo and replacing the summation with an integral.

Training time ¢t. Training time ¢ is equivalent to the number of optimization steps. To investigate
the scaling law respect to ¢, we remove the bottleneck caused by the size of model and the number of
data points by letting N — oo (thus we have Eq. (59)) and D = N (thus Eq. (62)) does not satisty
forany D € {1,..., N }). As aresult, the overall test loss will be

L(t) ~ % / Zs [£0(t) — A,]* ds (64)

where we let N; — oo and replace the summation with integral. We sill study the asymptotic
behavior of Eq. (64) with the Laplace method (Bender & Orszag [1978)) to investigate the time
scaling law.

Number of training data points V. When the training is bottlenecked by IV, we let ¢ — oo (thus
Eq. will be satisfied for all task types s if there exist training data points for them otherwise
Eq. (6I) would be satisfied) and the cutoff D = N (thus Eq. (62) does not satisfy for any D €
{1,...,N,}). As aresult, we conclude that the probability of lim;_,~, fO(t) = f9(0) is exactly the
same as the probability that the training data set {®(s(™), X())}_, does not have any training data
point for the task s, i.e,Vn € {1,...,N}: s(") =£ 5. Therefore, we can rewrite the test loss as

L(N) ~ %/Oo Zs~2 [12(0) — A,)% (1 P(S = s))Vds
e (65)
= %/ﬁl Zs™ ™ [f2(0) — As}z (1—Zs~*)Nds

where, again, we let A, — oo and replace the summation with the integral, and we sill study the
asymptotic behavior of Eq. with the Laplace method to investigate the data scaling law.
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Optimal compute C. This is the case when the number of data points is sufficient for the training
(N — 00), while training time ¢ or the size of model D is the bottleneck given the compute budget
C = Dt such that either ¢ or D scales differently with C. Specifically, if

L(t,D) = at™* +apD™*P,
then we can rewrite the test loss as
L(D)=a,C**D* +apD~*P. (66)
To obtain the optimal loss given D, we let

D oy “oton
aDL(D):O =3 D: (G/DO(D> L cht+ch’ t = <aDaD> L Cat+lgtD.

atOt [e77e77

As a result, we can derive the optimal compute budget test loss as
L(C) & ¢ wen/(astap) (67)

given C = tD, where oy, ap can be obtained from the neural scaling laws for time and model size,
respectively.

E.2 NEURAL SCALING LAWS WITH FIXED SEQUENCE LENGTH AND STRENGTH

In this case, according to Eq. (T6), the test loss can be written as

2 N 2
L(t) ~ Z\ Z o 1 B 1
T8 — 14+ Pexp[s—@Z (A2 +1)t] 1+ Qexp[s—*Z (A2 +1)t])
(68)
In the following, we will investigate neural scaling laws using the above test loss and the procedures
described in[EJl

Model Scaling Law. According to Eq. (63), the model scaling law can be obtained from studying
the behavior of

e} 2
L(D) ~ / Zs—aAj N ds o D™t (69)
=D 8 |[1+P 1+4Q

where D is the cuttoff of the task such that our model will only learn the first D — 1 tasks and we
let t — oo.

Time scaling law. Let N/, — oo and replace the summation with integral in the test loss, we have
(omitting irrelevant coefficients and we denote ¢ = Z (A2 + 1) for ease of notation)

> 1 1 2 e
L(t)N/ < > 6725 awtfalnsds (70)
1

e—s Ut L p st +Q

Now let a
F(s):=s %+ 7 Ins

then, applying the Laplace method (Bender & Orszag| [1978)), for large ¢
L(t) x / e Pt
1
c+e
2/ o~ (FO+F"(©)(s=0)")t g
c—¢E

cte 1" 2
Ne—F(c)t/ e—F (e)t(s—c) ds

>—€

B o~ Flop_ V2T

71
o)t 70
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where we expand F'(s) around its minimal F'(c) in a and b is simply the Gauss integral. We can
solve F’(c) = 0 to determine the value of c:

—ac g+ % =0 = c= (t))=. (72)
This further gives us -
In(yt 1
Fle)=t""'+ W) . rer_ L (73)
t et
and
F// — 1 I =2 i
(¢) = afa+1)de 2 - 5
— o _(a+2) o
= OL(OZ + 1)1/)(t1/}) @ - m
=2 atima, (74)

Putting F'(c) and F"(c) obtained above back to Eq. (7I) immediately gives us the time scaling law:

vV 2 t_1+a—1 a—1

L(t) ~ m Xt e . (75)

Data Scaling Law. In this case the bottleneck of training is the number of data while ¢ — oo and
D = Nj. According to Eq. (63)), the test loss has the form of

e} /\2 1 1 2
LNy~ [ Zs 0 | s — g | (1= Zs7)Nd
()/188[1+P 1+Q]( s
N/ e~ N(alns/N=In(1-Zs")) j¢ (76)
1

We apply the Laplace method again to study the asymptotic behavior of L(N) to derive the data
scaling law. Let

1
F(s) = a% “In(l - Zs™), (77)
then we can expand F'(s) around its minimal F'(c) where the value of ¢ is determined by F’(c) = 0:
Zsfafl
Fl(s) = — — 2% 78
() Ns 1—Zs™@ (78)
— c=((N+1)2)= (79)
The loss function can be written as
V2
L(N) ~ e FON_Y2T_ (80)
VE"(c)N
where
~ In((N+1)2) 1
Foy=——x—"Wmll-§57
~ N7 'In(NZ)+ N1 1)

where we assume that N > 1 in the second line. It is now left for us to find the value of F"'(c),
which is done as follows.

_sa(N+1) ac™2 a Zacol

F// me = — had
($)ls=e = —c N 1—Zeetc—zcop

— ac? A n Zoc™@ _ 1

N 1—Zc~ (1—Zc )2 N

~ala+1)Ze %% ~ ala + 1)Z*%N*(a+2)/o‘

where we use N >> 1 again in the last line. Putting F'(c) and F"”(c) back to Eq. gives us the
scaling law with respect to N:

L(N) L vam N—%

~ x = (82)
NZe 7= \/a(a+ 1)NN-1-2/a
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E.3 NEURAL SCALING LAWS WITH VARIED SEQUENCE LENGTH AND STRENGTH

In general, we can derive neural scaling laws with a similar spirit as in the previous section. The
first step is finding the test loss Eq. (17):

N
7N o A exp(—2asAst)
L(t) < = a=2y :
(t) 2 ;5 [1 + Aexp(—2asAst) |

2

(83)

which can be easily derived using Theorem and 1, oc s77, A, o s~7 and we also initialize
the model such that the initial prediction of the model is equally away from the true strength for
different tasks to exclude influence from other aspects, i.e., As/f0(0) are similar for all s. As we
assume that A2 >> 1in Section we can rewrite a; when N — oo as

as~ ZZs P2 (84)

where we use Z to denote irrelevant normalization constants.

Model scaling law. According to Eq. (63)), the model scaling law can be obtained from studying
the behavior of

o) A 2
~ —a—27y —a—2v+1
L(D) /S:D Zs L—&-A} ds x D (85)

where D is the cuttoff of the task such that our model will only learn the first D — 1 tasks and we
let t — oo.

Time scaling law. With a similar procedure as in previous section, we will apply the Laplace
method to derive the time scaling law. Specifically,

0o exp [— (423"175*3" + %27 lns) t}
L
(t) /1 (5 Ae—zakii) ds (86)

where we use Z to absorb all irrelevant constants. Now we let

= 2
F(s) = 4Zs~oF=37 4 y Ins, (87)
then the asymptotic behaviors of L(t) can be written as
L(t) ~ e Pl V2T (88)
F'"(e)t
where F”(c) = 0 as before. Note that the first derivative of F'(s) is
- _ oa+2
F'(s) = —4Z(a + B + 3y)s~ (@A 4. 77 (89)
1
- . aTATEY
= c:= (Mt)=5 = 427a+6+37t . (90)
a+ 2y
Therefore, we obtain that at s = ¢
a4+ 2y ~ —
F(e) =~ (14 In(a1) ) ¢ 91
()= o575, (LT O
s ——— 1a+2 t s (92)
(eM) ﬁ
Furthermore, the second derivative of F'(s) with respect to s is
- - 2
F'(s) = M(a+29)(a+ 5+ 3y + 1)s~(@rirorin - C020 (93)
s
which gives us
F'(¢) = M~ 5785 ¢~ 5775 (a + 27) (a + B+ 37). (94)
Putting F'(¢) and F"'(c) back to Eq. gives us the time scaling law
L(t) o t~ o (95)
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Data Scaling Law. Similar to previous section, in this case the bottleneck of training is /N and we
lett — oo and D = N;. According to Eq. (63), the test loss will become

L(N) x / 571 — Zs™*)Nds
1

— /OO efN((aJrQ'y) lns/Nfln(les_“))dS. (96)
1
Following a similar procedure, we let
1
F(s) = (a+ 27)% —In(1 - Zs~®) 97)

and we let F’(c) = 0. Then the loss function can be written as

o Flop_ V2T

L(N) ~ . 98
() F'"(c)N ©%)
To obtain ¢, we need to compute
1
a+2y aZs ol Z(N+1+4+2y/a)\*~
F(s) = _ — = . 99
() sN 1-Zs@ ¢ ( 14+ 2y/a ©9)
Note that we need to make sure
Z(N+142y/a) > 1+ 2v/«, (100)

which can be easily satisfied, to apply the Laplace method. By conducting some algebra, we obtain
the following results:

Z(IN+1+2 1+
F(c):a+2’yln< (W + Jra)>—ln<1 Jr"‘)

aN 1+2 CN+1+Z
a+2y
1+l a
—F(c)N «a
— _ &
e oc(NM)

where we use N > 1 in the second line to study the asymptotic behavior. Furthermore, the second
derivative is

N +1) ac™? o Zac et 2

F" — 7204( -
(c) = —c N 1= Zee T =Zeoy N
Zc™ @ Zac™® 2y
-2
~ - — 101
ac (1 —Zeo T (1= Zeop aN) (10n)
which, noting that
1+2
Zem % ~ & 102
¢ N (102)

according to the solution of ¢ Eq. gives us
F"(¢c)x N~a~1, (103)

Combining these results gives us the complete data scaling law

at+~y—1

L(N) x N~ (104)

F NUMERICAL EXPERIMENT DETAILS

For all numerical experiments, we generate the dataset exactly as the process described in Sec-
tion[2.2] The model structure is a linear self-attention as specified in Section [2.3] If not specified,
we set the initialization as

v5(0) = A X 1pn 41, ws(0) =v5(0) + 0.1 X A X L 41. (105)

where A = (.1 is a constant and we use 1; € R? to represent a vector with all elements equal to 1.
For the discrete GD training, we set the learning rate as 10~3 and the number of total optimization
steps as 5000. The theoretical prediction using the solution fJ(¢) is simulated with the forward
Euler method such that ¢ = kn where k is the optimization step and 7 is the learning rate.
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Fig.2l N, = 100 for both ¢ = 5 and 100.
Fig.3l N, = 500. We set the context sequence length as ¢» = 100, and the task strength A = 0.5.

Fig.[z_f} In this case, we set N; = 500, and set the initialization as
v5(0) = ws(0) = A X 1p 41 (106)
where A = 1075,

G COMPLETE SOLUTION OF SELF-ATTENTION UP TO THE FIRST ORDER

We first discuss how to derive the solution of model parameters v?(¢) and w?(t) to the zero-th order
of €5, then present the solution to the first order of €5, which can give us the complete solution
of self-attention up to the first order of €;. In the following sections, we omit the subscript s for

convenience and recover it in the final solution.

G.1 ZERO-TH ORDER SOLUTION OF MODEL PARAMETERS

gives us the solution of the model output f9(t). To obtain the forms of v°(t) and w°(t), we
only need to solve n° and p° since

0_ 0
w()(t) — n 4

0 0
’Uo(t) — n + P 5

2 )

according to their definitions. The ODEs of n° and p° Eq. can be rewritten using the compo-
nents (note that n)? is the s-th component of n°) as:

. V#
== (9% = A —4A) (n + Ay )
AN
: v#
77?\/5+1 = _AW (90 —n - 4A) (nd + AUR/S-H)
Wt 107)
L= (9% =B —4A) () + Apl, 1)
4N
: v#
Pt = Am (9° = h° —4A) (0] + ApRr 41)-
An interesting property of these ODE:s is that
d _ ~
%(Ang - 779\/3+1) =0 = An? - 77?\/5+1 =C, APS - P(J)\/S+1 =C, (108)

which can gives us a relation between 7)2 and 7, , ; and a similar one between p? and p}. ,;. On
the other hand, since we already know the solution of g° from[D.2and ¢° can be written as

9° = (nd + Anje 1)%, (109)

we can solve 11° and p° based on these relations, which will also give us v° and w?.

G.2 SOLUTION UP TO THE FIRST ORDER

We now discuss the solution to the first-order of €,. According to the definition of g} and h! in

Eq. and (28), they can be rewritten as
g'=vn’ H'n’+2m 110)
hl :pr H1p0+2n

where m and n follow the dynamics Eq. (34) and Eq. (33). Therefore, to obtain the formulations
of g' and h', the ODEs of m and n will be the only equations that need to be solved since we can
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obtain n° - H'n° directly from In the following, we focus on how to solve m and n. For
convenience, we first present ODEs for m and n ( Eq. and Eq. without the subscript s)

. am +# ag®
m=—(g° —h®—4A) [2 + z/:UVnO'HOHIWO] — (9 —hl)%,
w P 0 (111)
. a
= (g" — h" — 4A) [ 5 P HH 0} +(g" = h) =

The above equations are too complex, thus we attempt to reformulate them to simpler forms: we
can obtain a new set of ODEs from the above equations

d .
—mh® = h%m + mh°

dt
2 OhO
= (o KO - ) T HOE R (g - h) (112)
4N 4
d
ﬁng =g n—l—ng
2 a OhO
= (¢" —h" - )#;@p H°H1p090+(91—h1)gT, (113)

which implies that
d, 1o 0 40 4a Y
S’ +ng’) = —(¢° — h’ —4N) T

The above equation gives us a relation between mh® and ng®. Fortunately, according to the defi-
nitions of ¢°, h°, H°, and H' (Eq. (7)), we can expand the terms inside the second bracket of the
above equation:

n’ - H'H'n’h’ — p®- H'H'p%¢" = /g°hO [n(p + Ap, 1) — (0 + AnRe 11)p0)]
20(Cpl, 1 — Onie41) (115)

where we use Eq. (TO8) in the second equality. If the model is initialized as C' = C' = 0, then under
this condition, we can immediately conclude that

(n HOHl OhO pO . HOHIPOQO) ) (114)

d .
dt(mho—l—ng)—ozVtZO:th:—ngo—i—C7 (116)

where C' is determined by the initial condition and we let C = 0in the following. Noting that

gt =hl=r+20m—n) =R’ - H'n® — p° - H'p®) + 2(m — n), (117)
Eq. (@ allows us to simplify the ODEs for m and h further by interchangeably using mh® and
—ng":

0 0 2
m:_m<g0_h0_4A+90_’n;fL)_agr_w#(gO_hO_4A)n0HOHl,’,IO

2 4 4N
0 2
= —am (g° —28) - “= - zi]j& (9° — h® —4A)n® - H'H'n" (118)
0 2
i =—an (h° +2A) + C‘Z "4 i]f (¢° —h® —4M)p° - HOH'p°. (119)

Eq. (I118) and (I19) are exactly solvable since they are simply first order linear ODEs. Specifically,

let
o(t) = —a (g —2A),

0 2 120)
ag’r Y # (
It ==~ Ix (" —h®—4A)n° - H°H'n°

then Eq. (TT8) can be rewritten as

1 = o(t)ym + 9(t). (121)
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The standard procedure for solving this is letting @ = —up and multiplying u to both sides of
Eq. (121), then we obtain
d t)9(t)dt st
Zum = wd = um = /u(t)ﬁ(t)dt+const. N TG )u reomst: a9y
Similarly, to solve n, we let
e(t) =a (h®+ 2A)
hO 2
o(t) = YT T 0 0 _any 0 HOH PO (123)
4 4N
Z = ze(t)
then
t)p(t)dt t.
n = J2(B)p(B)dt + const . (124)

z
As a result, the solution of self-attention up to the first order of €, for the task type s under Assump-
tion 3.Ilnow becomes
gO _ hO

4
e [r 49 <f u(T)9(7)dr + const. [ z(7)p(7)dr + const )] a2

Solution: f =

u z

G.3 FORMULATION OF THE FIRST ORDER SOLUTION

We examine each term in Eq. (123)) in the following. Since we let C = C' = 0 in Eq. (108), ¢° and
hO can be written explicitly as

" =A%+ 1)2(n)2, BO = (A +1)2(p?)? (126)

Form of ». Note that r is defined as
r=1v(n" H'n"—p° H'p%) =4 [(n))* = (0))’]
g0 — b (127)
(AZ11)2

Form of v and [ u(7)9(r)dr. We first derive u:

U =—up = u=exp < / Q(t)dt> (128)
where

—/g(t)dt: /a(go —2A)dt = —2aAt+/21dt
Y
= —2aAt +2ln~y (129)

where we use Eq. in the second line. Putting the above integral back to the expression of u, we
obtain

u=(e"y)2 = (Aet' + Be_gt)2 , (130)

where £ = V4A2%a? + 2a2C'/2 is defined in Eq. (#5). We now derive [ uddt. To start, we examine
each term of ¥ first:

_ag’r _ a ((g9)% —2C)

4 4(A% +1)?
(go—h0—4A)770-HOH1 0_ _ 1/}# (go_h0_4A)gO
4(A2+1)N
a((9)? —2C — 4A4°)
4(A2 +1)?
a((g°)* —2C —2A4°)
2(A%2 +1)2

R
4N

(131)

— ¥ =—
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Using this in the integral and considering the form of w in Eq. (I30), we have

/uﬁdt = fﬁ /(Aeét + Be™¢h)?2 [(90)2 —-2C — 2Ag0} dt
2 2 aC
- et ¢t et —ety2
a(AT 1) /(A0+e + Bo_e )" dt + TEESIE /(Ae + Be SY)“dt
+ (1&2241:1)2 / (Ae*' + Be %) (Aojet + Bo_e tt) dt (132)

where we frequently use the solution of ¢g° in Eq. (32).

Form of z and [ z(7)¢(7)dr. By the similar procedure of deriving u and [ uddt, we can also
derive z and [ zpdt.

z=exp (/ sdt) = (™M) = (EeS! + Fe¢)” (133)

where we use Eq. in the second equality. Similar to the derivation of 1J, we can derive ¢ as
follows:

ah®r a ((h°)? —20)

4 4A2+1)2
2
% ( 0_p0 —4A) P’ HH'p® = 4(A2wf1)N (go _po —4A) A0
a ((h°)? — 2C + 4AR0) (134)
4(A2 +1)2
a ((h°)? — 2C + 2Ah°)
YT T Az e

thus

_ a € 4 pe—2 [(R0)2 _ ARC
/zgodt 2(A2+1)2/(Ee + Fe )2 [(h")? — 2C + 2AR°] dt

2 C
T a(ATr 1) / (Bo—ef" + Fore™®) dt + (Az‘a+ 12 /(Eeét + Fem)dt
27
= £t =&t &t —&t
- + )
+(A2+1)2/(Ee +Fe ) (Bo_ef + Foye ) dt (135)

where we frequently use the solution of h° in Eq. (32).

Results of integrals. It is now left for us to solve all the integrals to obtain the complete solution.
We list the results below.

1.
A2 B2o_
/(Aegt + Be ) (04 Aet' + Bo_e ) dt = 2Z+ et — 22 e %' 4 2ABAat
E20_ F2
/ (Bett + Fe ') (Eo_et + Fope h)dt = 22 et — 22* e %t L 2B F Aat
2.
A2 2 32 2
/ (0, Aeft + Bo_e~)2dt = =0t 26t _ 2 0= =26t o5 5 ABY
2¢ 28
E2 2 F2 2
/ (0_Eeft + o, Fe~)2dt = %ew - %e_%t V20,0 EFt
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3.
A? B?
/(Aegt —+ Beigt)2dt = ¥€2§t — ¥€72€t + QABt
E? F?
/(Eeft + Fe$)%dt = Eew - ie*%t +2EFt.

Complete solution. With these integrals, we are now ready to find the explicit forms of the solu-
tion Eq. (I25). In particular, we have

AZe28t , a*C B2e— 2t a’C
SN (v Y 2 (2 Y Ao
/uﬁdt §(A2+1)2a< oy + 3 +a 0’+>+§(A2+1)2a (O’ 7 alo )

ABt

+ m (4A2a2 —+ 2&20 — 4(T+0'_)
AZe%tA Aa B2e 2%6tA Aa 4aABt
= ~orp (4 E) o (1 F) e 0 0) 0%
and
E?e%t , a’C F2e—2¢t , a’C
/ZQDdt— m <—U+2+GA0'> +m <U+ — T —G,AO'JF)
FEFt
+ A2+ 1% (4A%a® + 20°C — doyo_)
E2e26tA Aa F2e728IA Aa 4daEFt
w7 ) e () Yas e 09 A

These equations are sufficient for us to find m and n. For m we have

_Juar_ —@EA(14 ) A (14 42 4 aQt (A4 C)

(138)
u (A2 + 12(QesT + ¢ )2
where (@ has already be determined in Theorem [3.1] For n we have
2 26t _Aa) _ _—2¢t Aa 2
Jeen P A(1-42) -2 (14 42) + 40Pt (A + C) 139

2 (A2 + 1)2(Pet + ¢€1)2

where P has already be determined in Theorem [3.1] Finally, by using the solved m and n above
and r (Eq. (I27)) in Eq. (I25) and recovering the subscript s in all relevant terms, we obtain the
complete solution of self-attention up to the first order of € under Assumption Note that as
t — 0o, we can easily verify that —2A /(A% + 1)% and r = 4A/(A% + 1)%, thus gT — ' = 0. Asa
result, fO(t) + €5 f1(t) = A, as desired.

H GENERALITY OF THE MSFR PROBLEM

In this section, we demonstrate the generality of the MSFR problem. Specifically, we show that
our method can also be applied to (or is a limiting case of) other generalized types of the MSFR
setup considered in Section 2.1 namely multitask in-context regression under the source-capacity
condition (Appendix [H.I), MSFR with approximately sparse feature (Appendix [H.2), and tasks
with idempotent-like H, (Appendix [H.3). We also highlight that our solution can be applied to
study other properties of attention besides the neural scaling laws considered in Section @and@

H.1 MULTITASK IN-CONTEXT REGRESSION UNDER THE SOURCE-CAPACITY CONDITION
Interestingly, the MSFR problem can be seen as a limiting case of the multitask version of the in-

context regression under the source-capacity condition (Cui et al.|[2022)), which is defined as follows
and can be seen as a generalization of the setup in[Lu et al.| (2024)).
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Multitask in-context regression under the source-capacity condition. Following the settings
of the MSFR problem in Section 2] there are N different tasks in total. We let S be the ran-
dom variable of picking a specific task among N, tasks and assume that S follows the power law
distribution Eq. (). In the following, we will show that each task is constructed as an in-context
regression, thus we term this setting as multitask in-context regression. We do not use the sparse

feature extractor ¢(s, ) defined in Eq. @ Instead, following (2022)), we use the feature

extractor J)(s, xT) € RN> such that for data & ~ Px

%, = Eonpy [qﬁ(s, ) (s, a:)T} = diag (@°) = diag (Z; (w)) (140)
where @° = [0 @5 --- dzfv]T ERVM andw = w1 wy -+ wx.] € RN such that w
satisfies the source/capacity condition
wr o< k™7, (141)
and Z is a simple rearrangement of elements of w such that
(:}; = w1
Wiy = w2
WN, = WA, —st1 (142)
(:)f = WN,—s+2

~s o
Ws—1 = WN,

i.e., the s-th eigenvalue of 3 is the largest given task type s. Finally, given task type s, we let the
strength for task s be A, € RV and the target y € R is

y(s,x) = Ay - d(s, ). (143)
The in-context regression data <1~'>(s, X)) is now generated according to the process in Section
~ b @My ... @ @)Y B(s.d
b(s.X) = (s, z') (s, ) P(s, ) 144
(s, X) y(s,xD) o y(s, @) 0 (144)

while we now assume that the sequence length 1), is fixed for each task s.

MSFR is a limit of multitask in-context regression under source-capacity condition. We note
that, a large 7 in Eq. (I41) indicates that the spectrum of the covariance matrix 3, shows a very
fast decay. If 7 is large enough, we can conclude that only the largest eigenvalue of 3, (i.e., ;) is
significant, thus

%, = Eanpy |6(s,2)8(5.2)"| "5 ¢(s,0)p(5, )", (145)

where ¢(s, ) is defined in Eq. (Z). Since Exp, [(Z)(s, w)(;ﬁ(s,:c)T} and ¢(s,z)p(s, )T deter-

mine the in-context learning dynamics (because they are the main component of H according to
Eq. 22) and H, captures the in-context learning dynamics Eq. (9)), we conclude that the MSFR
problem can be seen as a limiting case for the multitask in-context regression under source-capacity
condition with large 7. Therefore, we expect that the neural scaling laws derived in the MSFR
problem can be generalized to the multitask in-context regression under source-capacity condition.

Numerical Experiments. To validate the above claims, we conduct numerical experiments to
investigate neural scaling laws of softmax attention and we use the parameterization W1 W, rather

than merging them as a single matrix W ¢. For the feature ¢ (s, ), we use

P(s,z) ~ N(0,,) (146)
where N (0, X;) is a Gaussian distribution with zero mean and covariance X3 = diag(w?®) as in
Eq. (T40). We let 7 = 3 in Eq. (T41). To make Zj’;l o(s,29))p(s, 20T J4h, close enough to
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3, we let ¢p; = 1000 for all s. The task strength As ~ N(0, I). The softmax attention is trained
by GD with learning rate 2 x 10~!. We report the neural scaling laws with respect to time ¢ and with
respect to the optimal compute in Fig.[5] where one can clearly see that the softmax self-attention for
the multitask in-context regression under the source/capacity condition also displays neural scaling
laws similar to those derived in the MSFR problem (Table[I)). These numerical experiments support
our claims and the generality of the MSFR problem.

— a=18 N,

—_—— el g =18 N
— a=21 s,
—— eV g =21

1072
1072 4

L(t)
L(C)

1073 4 — D =40

- c-la-1at)

10t 102 10% 102 10° 104 10° 108
t C

(a) Time Law with N — co, D = N (b) Optimal Compute with N — co,C = Dt

Figure 5: Neural scaling laws for softmax self-attention in the multitask in-context regression under
the source-capacity condition. In each figure, we use solid lines to represent empirical simulation
results and dashed lines for power law curves. In (b), we set & = 1.8.

H.2 MSFR WITH APPROXIMATELY SPARSE FEATURE

In the MSFR problem in Section 2.1} we let the feature extractor be
(s, x) : R xR — {-1,0,1}Vs e RV (147)
such that the feature ¢ (s, x) is sparse. In fact, our solution to the zero-th order of e, i.e., fO(t), can

still be exact under Assumption [3.1] when the above sparsity condition is relaxed for large sequence
length ;. We give an example as follows.

MSFR with approximately sparse feature. For the MSFR problem in Section 2.1} we now con-
sider a new feature extractor ¢(s, x) such that

é(s,x) = ¢(s,z) + ((s, x), (148)
where ((s,x) € RV: can be a random noise to the first order of e, (¢ does not need to be sparse).
We call this task MSFR with approximately sparse feature. This task will give us the same set of
non-linear ODEs to the zero-th order of €, under Assumption [3.1] as that for the original MSFR
problem in Section Therefore, Theoremcan still be applied in this caseﬂ

Numerical Experiments. In Fig. EI, we let ¢ ~ N(0,€2I) be a Gaussian noise vector for each
task s. We compare the loss calculated according to f0(¢) in Theorem with that obtained from
empirical simulation. It can be seen that our theoretical prediction is still highly exact with the
existence of the noise vector ¢ when the context sequence length 1), is large.

H.3 GENERAL TASKS WITH IDEMPOTENT-LIKE H

From a mathematical perspective, besides the MSFR problem considered in this paper, our strat-
egy for solving the ODEs Eq. () can be applied to any cases when the matrix H; in Eq. @) is
idempotent-like without Assumption

H? = ;u.H, (149)

"We note that our characterization of f2(¢) in Appendix @ is no longer applicable in this case, and we
believe the characterization of f. (¢) and the generalization of our methods to more complicate feature extractor

& (s, x) can be an interesting future direction.
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Figure 6: Loss L(t) of MSFR with approximately sparse feature for different context sequence
lengths ¢(10 and 100) during training. Solid lines are for theoretical predictions while dashed lines
are for empirical simulations.

where 1 € R is a constant. In such cases, the solution of the model prediction is still fO(¢) in
Theorem except for that we now define as = #4¢.us/N and fO(t) is exact as we do not
need Assumption 3.1} We think it will be an interesting future direction to explore other tasks (for
self-attention or other machine learning models) where H; has the idempotent-like structure.

Numerical Experiments. To verify the above claim, we consider a simple example where (we
omit the subscript s and consider the case where we only have one type of task)

3
i=1

and we let E; = 2 for ¢ = 1,2, 3, which will give us ¢ = 2 in Eq. (T49). The learning dynamics
is Eq. (@) with #, = N. In Fig.[]] we compare the loss calculated according to the solution
in Theorem [3.1] with that obtained from empirical simulation. It can be seen that our theoretical
prediction matches with the empirical simulation well because it is an exact solution in this case.

10-1 4

oy
10 —— Theory

= = Simulation

T T T T
10° 10t 102 10°

Figure 7: Loss L(t) for learning dynamics Eq. (9) with idempotent-like H.
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I ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we conduct additional experiments to explore the generality of our conclusion for the
neural scaling laws. In particular, in Appendix [T} we explore the neural scaling laws of softmax
self-attention for the MSFR problem where we train the model with GD, while in Appendix @ we
train the model with AdamW.

1.1 NEURAL SCALING LAWS OF SOFTMAX SELF-ATTENTION FOR MSFR PROBLEM

We replace the linear self-attention with the softmax self-attention in the numerical experiments
of Fig. 3| and Fig. ] to investigate the neural scaling laws for the MSFR problem. For complete-
ness, we adopt the WEW¢, decomposition rather than a single merged Wi, ie., f(G;0) =
VG softmax [GTWEW,G]. All the other settings are the same as those of Section[4.1]and 4.2}

Fixed Context Sequence Length. In Fig.[8] we report the neural scaling laws when the context
sequence length is fixed as in Section[d.1] It can be seen that the scaling laws with respect to time ¢,
model size D, data size N, and the optimal compute C are similar to those reported in Table [T}
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Figure 8: Neural scaling laws for softmax self-attention trained by GD with different values of
a = 1.8, 2.1 when the context sequence length is fixed. In each figure, we use solid lines to represent
empirical simulation results and dashed lines for power law curves. In (d), we set & = 1.8.

Varied Context Sequence Length. For the varied context sequence length, we let s = F(s)
5P as in Section |4.2] while we keep A, fixed. We note that the neural scaling laws with respect to
the model size D and data size IV are not affected by a varied context sequence length as reflected
in Table 2} which is due to the fact that GD can still learn the task strength A, for the task s as
t — oo when the context sequence length is varied. We report the scaling laws with respect to time
t in Fig. 9] where we can see that the softmax self-attention still admits a similar time scaling law
compared to the linear self-attention for varied context sequence length. As a result, the optimal

36



Under review as a conference paper at ICLR 2025

compute scaling law of softmax self-attention will also be similar to that of linear self-attention, as
it is a consequence of the time scaling law and model size scaling law and these laws do not change.

These numerical experiments reveal that our claims regarding neural scaling laws for the linear
self-attention can be generalized to the softmax self-attention.
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Figure 9: Neural scaling laws with respect to time ¢ for softmax self-attention trained by GD with
a = 1.8 when the context sequence length is fixed. We let N — oo, D = Nj. Solid lines represent
empirical simulation results while dashed lines represent power law curves obtained from Table

1.2 NEURAL SCALING LAWS OF SOFTMAX SELF-ATTENTION TRAINED BY ADAMW

To examine the effects of optimization algorithms on neural scaling laws in the MSFR problem,
we train softmax self-attention with AdamW and we also use the WL W, parameterization. We
focus on the case where the context sequence length and the task strength are fixed. We present our
parameters in the following table.

learning rate y | 5 x 1073

3, 0.9
By 0.999

weight decay 1075
eps 1078

Table 3: Parameters for AdamW

Neural scaling laws with respect to model size D and data size N. We expect that AdamW will
show similar neural scaling laws with respect to the model size D and data size N when compared
to GD. This is because AdamW can still learn the task strength A for the task s given sufficient
training time ¢ (Fig. , which is similar to GD. We report the corresponding neural scaling laws
in Fig. [I0a] and @F(_vﬁlbere it can be seen that the softmax self-attention trained by AdamW still
admits similar neural scaling laws with respect to D and NV.

Neural scaling law with respect to time t. However, AdamW typically exhibits a very different
dynamics during training compared to GD, as AdamW has a very different learning dynamics (e.g.,
it converges faster than GD). Thus we expect that AdamW will lead to a very different time scaling
law (Fig. [I0c)), which will further lead to a different neural scaling law for the optimal compute
(Fig. . We additionally note that these observations are similar to the observations in
mann et al.| (2022), where the authors revealed that, when compared to Adam, AdamW shows a
different test loss behavior against the optimization steps (training time), indicating that the type of
optimization algorithm can affect the time scaling laws.
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Figure 10: Neural scaling laws for softmax self-attention trained by AdamW with different values of
o = 1.8,2.1. In each figure, we use solid lines to represent empirical simulation results and dashed
lines for power law curves that are obtained Table |I| (when the self-attention is trained by GD). In
(d), wesetaw = 2.1.
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