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1 Introduction1

Differential equations play an essential role in a wide range of mathematical modeling processes. In2

cases where analytical solutions are nonexistent, numerical methods (finite difference, finite volume,3

finite element, spectral method) have been studied. Recently, massive attention has been paid to4

solving differential equations with neural networks. These networks are trained to minimize the5

squared residual of some differential equations. However, there is little interpretation for the loss6

functions (squared residuals) except that it should be as close to zero as possible. Little effort has7

been made to quantify the error of network solution based on the residuals. As a result, the reliability8

of neural network solutions remain questionable.9

With mathemetical proof, we propose here an algorithm for fast error bound evaluation based only on10

residuals of linear ODEs. The method makes no assumption on the network architecture or whether11

the network is sufficiently trained. Apart from the characteristics and structure of the dynamical12

systems in question, the error bound yielded by the algorithm (O(εtm)) only depends on time t13

and the largest differential equation residual (ε) (infinity norm) over the domain of interest. We14

further present that, for strictly stable systems, one can derive a bound (O(ε)) that is independent of15

time t. Finally, we present a technique to tighten the error bound by dividing the time domain into16

subintervals and evaluating the maximum residual on each one.17

2 Background and Previous Work18

Lagaris et al. [1] first proposed solving differential equations using neural networks [2] due to
differentiability of neural networks with appropriate activation functions. To train a network solution
u(t) for a differential equation Lu = f , one essentially minimizes an approximation of the L2 norm
of differential equation residual on a domain Ω∫

I

(Lu− f)
2
dt ≈ |I|

N

N∑
i=1
ti∈I

(Lu(ti)− f(ti))
2
:= Loss.

where L is a (possibly nonlinear) differential operator.19

Little effort has been to study the failure modes and absolute error of network solutions until recent20

years [3] [4] [5]. In [6], Ryck and Mishra established a foundation and rationale for error of PINNs in21

approximating PDEs. Making Kolmogorov PDEs as an example, they have shown that there exists22

PINNs, approximating these PDEs such that the resulting generalization error and the total error23

can be made arbitrarily small. However, the existence of such neural networks does not guarantee24

network training converges in practice. A more practical concern is how to evaluate the error given25

any network (possibly illy trained) on certain equations. In our work, we derive the error bound for a26

class of linear ODEs, which can be efficiently computed using only ODE residuals.27

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.



Equation Forcing f(t) u(0) u′(0) Exact Solution u(t)
u′′ + u = f 2et 2.0 2.0 sin t+ cos t+ et

u′′ + u = f t2 + t+ 3 2.0 2.0 sin t+ cos t+ t2 + t+ 1
u′′ + u = f ln(t+ 1)− (t+ 1)−2 1.0 2.0 sin t+ cos t+ ln(t+ 1)
u′′ + u = f 2 cos t2 + (1− 4t2) sin t2 1.0 1.0 sin t+ cos t+ sin t2

u′′ + 4u′ + 3u = f 8et 3.0 −3.0 e−t + e−3t + et

u′′ + 4u′ + 3u = f 3t2 + 11t+ 9 3.0 −3.0 e−t + e−3t + t2 + t+ 1
u′′ + 4u′ + 3u = f 3 ln(t+ 1) + 4(t+ 1)−1 − (t+ 1)−2 2.0 −3.0 e−t + e−3t + ln(t+ 1)
u′′ + 4u′ + 3u = f 6 cos t− 2 sin t 3.0 −3.0 e−t + e−3t + sin t+ cos t

Table 1: Experiment Setup for Section 4.1

3 Approach for Evaluating Error Bound28

For any ODE (or system of ODEs) discussed in Appendix A, we are able to bound the error of29

any network by simply evaluating its infinite norm (maximum residual). This is true for any neural30

network solution, regardless of how well it is trained or trained at all. Tthe process is straightforward.31

First, we compute the residual of the network over sampled points {t1, t2, . . . } (usually 1k – 10k32

points will suffice) from a domain I using automatic differentiation. This only take milliseconds33

due to GPU’s power of parallel computation. Then, we compute the maximum absolute value of the34

residuals evaluated, which we denote as ε. In the case of ODE systems, ε will be the maximum norm35

of residual vectors.36

Finally, a loose error bound is given by
∥∥unet − utrue

∥∥ ≤ Kεtm assuming the initial condition is met37

(i.e., no error at t = 0), where t is the time and m and K are constants depending on the structure of38

the ODE. For strictly stable ODE systems, m = 0, and the error bound is proportional to ε. For a39

single linear ODE, constant K =
∏

k

∣∣λk

∣∣ where λk + iωk are roots to its characteristic polynomial40

with nonzero λk. For a system of linear ODEs, constant K is determined by its eigenvectors and41

eigenvalues (as well as their multiplicity). An exact formula is given by Eq. 37 in Appendix A.3.42

Note that the above bound Kεtm is a loose estimation which can be tightened when domain I is43

bounded as shown in Appendix A. Furthermore, an even tighter bound is discussed in Appendix A.544

by partitioning domain I into subintervals I = I1 ∪ I2 ∪ . . . and compute an εk for each Ik.45

4 Experimental Results46

We run the following experiments with the NeuroDiffEq library [7], which provides a convenient47

and flexible framework for training neural networks to solve differential equations. Unless otherwise48

specified, we use an Adam optimizer with a learning rate of 1.0× 10−3 and (β1, β2) = (0.9, 0.999)49

for training the networks. The neural networks are simple fully-connected neural networks, with two50

32-unit hidden layers and tanh activation function. The loss function we use is the L2-norm of the51

ODE residuals at sampled points in the domain. The solution we choose is the one from the epoch52

with the lowest validation loss. We apply the reparametrization u(t) = u0 +
(
1− e−(t−t0)

)
ANN(t)53

to enforce the initial conditions u(t0) = u0 and, where required, u(t) = u0 + (t− t0)u
′
0 +54 (

1− e−(t−t0)
2
)
ANN(t) to enforce d

dtu(t0) = u′
0 in addition to u(t0) = u0.55

4.1 Higher-Order Linear ODE with Constant Coefficients56

Here we consider two types of second-order differential equation, u′′+u = f and u′′+4u′+3u = f57

where the solution space of the the associated homogeneous solution has basis {sin t, cos t} and58

{e−t, e−3t} respectively. By Eq. 23 and 20 the error bounds for a single interval are εt2/2 and59

ε
(
2 + e−3t − 3e−t

)
/6 respectively, where ε is the largest absolute residual over the interval.60

We pick the forcing terms and initial conditions as described in Table 1. We train the network61

on I = [0, 3] for 100 and 1000 epochs. The ODE residual and error bound with n = 1, 10, 10062

subintervals are plotted in Figures 1 and 2.63
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Figure 1: Residuals and Error Bounds of Harmonic Oscillator Under Various Forcing
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Figure 2: Residuals and Error Bounds of Stable 2nd Order Equation Under Various Forcing

4.2 System of First-Order Linear ODEs with Constant Coefficients64

We consider a system of linear ODEs, u′ + MJM−1u = f , under the initial condition u(t0) =65

M (1 1 1 1 1 1)
T where J ∈ R6×6 is the Jordan canonical form

(
J1

J2
J3

)
with66

Jordan blocks J1 =

(
4 1

4 1
4

)
, J2 =

(
3 1

3

)
, and J3 = 2, and the forcing is determined by67

f(t) = M
(
cos t+ 4 sin t+ et − 1 5et − 4 + t2 4t2 + 2t 3t3 + 3t2 + e2t − 1 5e2t − 3 1

t+1 + 2 ln(t+ 1)
)T

We randomly sample orthogonal 6 × 6 matrices M = M−T to ensure cond(M) = 1. By Eq.68

34 and 37, the error bound is ε
√
H2

3 (t; 4) +H2
2 (t; 4) +H2

1 (t; 4) +H2
2 (t; 3) +H2

1 (t; 3) +H2
1 (t; 2)69

≤
√
6ε/2 for a single interval where ε is the largest residual norm over the interval. The system is70

solved for t ∈ I = [0, 3] for 1000 epochs with 1024 uniformly resampled points from the expanded71

domain [−1, 4] at each epoch. We use networks with two 512-unit (instead of 32-unit) hidden layers72

due to the coupled nature of the system. However, it should be pointed out that, the error bound73

holds true regardless of the network size or how well the network is trained. Again, we divide I into74

n = 1, 10, 100 subintervals for increasingly tighter bounds. Figure 3 shows the system residual norm,75

network solution, as well as error bounds.76

4.3 First-Order Linear ODE with Nonconstant Coefficients77

In this section, we consider linear ODE with time-dependent coefficients, with p(t), f(t), initial78

condition and derived error bound for a single interval according to Eq. 40 tabulated in Table 2.79

u′ + p(t)u = f(t) t ∈ I = [0, 3] (1)

We train the network for 1000 epochs with 1024 points uniformly resampled from I = [0, 3].80

According to Appendix A.4, the absolute error bound is O(εt). By evenly dividing I into n =81

1, 10, 100 subintervals, we obtain the error bounds in Figure 4.82

5 Conclusion83

In this work, we have ascertained the link between ODE residuals and error bound. We have proven,84

that for stable ODE systems discussed above, the bound only depends on characteristics of the ODE85
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Figure 3: ODE Residuals and Absolute Error of ANN solution (System of Linear ODEs)

Forcing f(t) Coefficient p(t) IC u(0) Exact Solution u(t) Bound
(2t+ 1)(t+ 1)−1 cos t− t sin t (t+ 1)−1 1.0 (t+ 1)−1 + t cos t ε t2/2+t

t+1

(t+ 1)2
(
t2 + 1

)−1
et 2t

(
t2 + 1

)−1
2.0 (t2 + 1)−1 + et ε t3/3+t

t2+1

2t+ t2 cos t (1 + sin t)
−1

cos t (1 + sin t)
−1

1.0 (1 + sin t)
−1

+ t2 ε t−cos t
sin t+1

(1 + (t+ 2) ln(t+ 1)) (t+ 1)
−1

(t+ 2)(t+ 1)−1 1.0 e−t (t+ 1)
−1

+ ln(t+ 1) ε et

et+1

Table 2: Experiment Setup u′+p(t)u = f(t) for Section 4.2, where ε in derived bounds is the largest
absolute residual over a single interval

(or system of ODEs) and the maximum residual norm. There are efficient ways to evaluate the bound86

over the interval, as we did in Section 4.87

In our experiments, we have shown that while these bounds are sometimes too loose using only the88

global maximum residual norm, they are usually asymptotically bounded by some constant. One can89

further tighten the bound by dividing the domain into smaller subintervals. In our experiments, the90

subintervals are linearly divided, but one can also use an adaptive quadrature for this task [8].91

6 Future Work92

In this work, we tie linear ODEs residuals to the absolute error and showed the error can be bounded93

by a function of residuals. A subsequent research topic is what strategy can be used to ensure a low94

residual, which in turn guarantees a low absolute error.95

As another future extension, our proposed method may be generalizable to system of linear ODEs96

with time-dependent coefficients. It is also interesting to study if this method is applicable to local97

linear approximation of nonlinear ODEs. Furthermore, spatial or spatiotemporal PDEs with Dirichlet98

boundary conditions is also worth exploring.99
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Figure 4: ODE Residuals and Absolute Error of ANN solution (Nonconstant Coefficients)
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A Error Bound Proof and Methodology124

Throughout this section, we use u : I → Cn to denote the neural network solution to Lu = f where125

I can be any of the forms (t0, t1], (t0, t1) or (t0,∞), and L is a linear differential operator. In the126

one-dimensional case, we use non-bold font u and f instead of u and f . The solution residual is127

defined as Ru(t) := Lu(t) − f(t). The exact solution u∗(t) satisfies Ru∗(t) ≡ 0 and the exact128

natural response u∗
n(t) is defined to satisfy the associated homogeneous equation Lu∗

n(t) = 0. Both129

u∗ and u∗
n satisfy the same initial condition u∗(t0) = u∗

n(t0) = u∗
0.130

A.1 First-Order Linear ODE with Constant Coefficients131

It is well known that the most general form of first-order linear ODE with constant coefficients is132

u′(t) + cu(t) = f(t) where c ∈ C is a constant and u′ is the derivative of u.133

Proposition If the residual Ru(t) of equation u′ + (λ+ iω)u = f , where λ, ω ∈ R, is bounded134

by ε ≥ 0 on I , namely,135

|u′ + (λ+ iω)u− f | ≤ ε ∀t ∈ I, (2)

and the network solution u satisfies initial condition with u(t0) = u∗
0 ̸= 0, then,136

a) The absolute error is bounded by |u− u∗| ≤
ε

λ
≤ O(ε) on I if the natural response u∗

n is137

convergent (λ > 0);138

b) The relative error w.r.t. u∗
n is bounded by

∣∣∣∣u− u∗

u∗
n

∣∣∣∣ ≤ ε

−λ|u∗
0|

≤ O(ε) on I if the natural139

response u∗
n is divergent (λ < 0); and140

c) The absolute and relative errors are bounded by |u− u∗| ≤ O(εt) and
∣∣∣∣u− u∗

u∗
n

∣∣∣∣ ≤ O(εt)141

on I if λ = 0.142
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Proof Multiply the integrating factor eλt+iωt on both sides of Eq. 2 and evaluate the integral on143

(t0, t) ⊆ I ,144

∣∣∣∣∫ t

t0

eλτ+iωτ
(
u′(τ) + (λ+ ωi)u(τ)− f(τ)

)
dτ

∣∣∣∣
≤
∫ t

t0

∣∣∣eλτ+iωτ
(
u′(τ) + (λ+ ωi)u(τ)− f(τ)

)∣∣∣dτ ≤
∫ t

t0

∣∣eλτ+iωτ
∣∣ εdτ (3)

The first part of inequality holds because modulus of integral is smaller than integral of modulus. The145

second part holds by multiplying eλt+iωt on both sides of Eq. 2 and taking the integral on (t0, t),146

both of which preserve inequality property.147 ∣∣∣∣eλt+iωtu(t)− eλt0+iωt0u(t0)−
∫ t

t0

eλτ+iωτf(τ)dτ

∣∣∣∣ ≤ ε

∫ t

t0

eλτdτ (4)

L.H.S. is reduced using
∫ t

t0

eλτ+iωτ (u′ + (λ+ iω)u) dτ =

∫ t

t0

d
(
eλτ+iωτu(τ)

)
=
[
eλτ+iωτu(τ)

]t
t0

148

and R.H.S. is reduced using
∣∣eλτ+iωτ

∣∣ ≡ eλτ .149 ∣∣∣∣u(t)− eλ(t0−t)+iω(t0−t)u(t0)− e−λt−iωt

∫ t

t0

eλτ+iωτf(τ)dτ

∣∣∣∣ ≤ εe−λt

∫ t

t0

eλτdτ (5)

Both sides are divided by
∣∣eλt+iωt

∣∣.150

Notice that the analytical solution is given by

u∗(t) = eλ(t0−t)+iω(t0−t)u∗
0 + e−λt−iωt

∫ t

t0

eλτ+iωτf(τ)dτ.

Define the alternative solution to Eq. 2 under perturbed initial condition, u(t0) as

ũ(t) := eλ(t0−t)+iω(t0−t)u(t0) + e−λt−iωt

∫ t

t0

eλτ+iωτf(τ)dτ.

With this, Eq. 4 can be rewritten as151

|u(t)− ũ(t)| ≤ εe−λt

∫ t

t0

eλτdτ. (6)

By the triangle inequality,152

|u(t)− u∗(t)| ≤ |u(t)− ũ(t)|+ |ũ(t)− u∗(t)| ≤ εe−λt

∫ t

t0

eλτdτ + |ũ(t)− u∗(t)| . (7)

As ũ = u∗ when u(t0) = u∗
0, Eq. 7 is reduced to153

|u(t)− u∗(t)| ≤ εe−λt

∫ t

t0

eλτdτ. (8)

If λ > 0, Eq. 8 gives rise to the absolute error bound154

|u(t)− u∗(t)| ≤ ε
1− eλ(t0−t)

λ
≤ ε

λ
= O(ε) (λ > 0). (9)

If λ < 0, dividing Eq. 8 by |u∗
n(t)| =

∣∣eλ(t0−t)+iω(t0−t)u∗
0

∣∣ = eλ(t0−t)|u∗
0| yields the relative error155

bound156 ∣∣∣∣u(t)− u∗(t)

u∗
n(t)

∣∣∣∣ ≤ ε
e−|λ|(t−t0) − 1

−|λ||u∗
0|

= ε
1− e−|λ|(t−t0)

|λ||u∗
0|

≤ ε

|λ||u∗
0|

= O(ε) (λ < 0). (10)

If λ = 0, the integral on R.H.S. of Eq. 8 is reduced to (t− t0), and therefore the absolute error bound157

is158

|u(t)− u∗(t)| ≤ ε(t− t0) = O(εt) (λ = 0). (11)
Since the natural response has constant modulus |u∗

n(t)| =
∣∣eiω(t0−t)u∗

0

∣∣ ≡ |u∗
0| when λ = 0, the159

relative error with respect to the natural response is bounded by O(εt) as well.160
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A.2 Higher-Order Linear ODE with Constant Coefficients161

Proposition Let the residual Ru(t) of the higher-order equation u(n)+an−1u
(n−1)+· · ·+a0u = f162

be bounded by some ε ≥ 0 on I , where u(n) is the n-th order derivative of u, namely,163 ∣∣∣u(n) + an−1u
(n−1) + · · ·+ a0u− f

∣∣∣ ≤ ε ∀t ∈ I. (12)

Let the network solution u satisfy initial conditions u(k)(t0) = u
∗(k)
0 (k = 0, . . . , n − 1). By the164

fundamental theorem of algebra, the characteristic polynomial pc(x) can be uniquely factorized as165

pc(x) := xn + an−1x
n−1 + · · ·+ a0 =

n−1∏
k=0

(x+ λk + iωk). (13)

It is well-known that the exact solution has the form u∗(t) = u∗
p(t)

n−1∑
k=0

ck exp(λkt+ iωkt), where166

u∗
p is any particular solution to the original equation and c0, . . . , cn−1 are constants chosen to satisfy167

the initial conditions.168

Let m be the total number of k in Eq. 13 such that λk = 0, then the absolute error is bounded by:169

|u− u∗| ≤ O(εtm) if λk ≥ 0 for all k. (14)

Proof For brevity, we prove the second-order case here to provide an intuition of the complete170

proof, which is presented in Appendix C.171

In the second-order case, Eq. 12 can be reduced to172

|u′′ + (λ1 + iω1 + λ2 + iω2)u
′ + (λ1 + iω1) (λ2 + iω2)u− f | ≤ ε (λ1 ≥ λ2), (15)

or, equivalently,173 ∣∣∣∣(u′ + (λ1 + iω1)u
)′

+ (λ2 + iω2)
(
u′ + (λ1 + iω1)u

)
− f

∣∣∣∣ ≤ ε. (16)

Let v = u′ + (λ1 + iω1)u, Eq. 16 is then reduced to a first-order inequality w.r.t. v174

|v′ + (λ2 + iω2) v − f | ≤ ε. (17)

By Eq. 8,175

|v(t)− v∗(t)| ≤ εe−λ2t

∫ t

t0

eλ2τdτ, (18)

where v∗(t) = u∗′(t) + (λ1 + iω1)u
∗(t). Substituting v = u′ + (λ1 + iω1)u into Eq. 18 yields176

|u′(t) + (λ1 + iω1)u(t)− v∗(t)| ≤ εe−λ2t

∫ t

t0

eλ2τdτ = ε
1− eλ2(t0−t)

λ2
(19)

Multiplying Eq. 19 by eλ1t+iω1t, taking the integral on (t0, t) ⊆ I , and dividing by
∣∣eλ1t+iω1t

∣∣, we177

have178

|u(t)− u∗(t)| ≤ ε
1

λ1λ2

(
1− λ1e

−λ2t − λ2e
−λ1t

λ1 − λ2

)
=: εϕ(t;λ1, λ2) (20)

If λ1, λ2 > 0, it can be verified that ϕ(t;λ1, λ2) is strictly increasing on I and is bounded by179 [
0,

1

λ1λ2

)
. Therefore180

|u(t)− u∗(t)| ≤
ε

λ1λ2
= O(ε) (21)

If λ1 > λ2 = 0, taking the limit λ2 → 0 in Eq. 20, there is181

|u(t)− u∗(t)| ≤ lim
λ2→0

εϕ(t;λ1, λ2) =
ε

λ2
1

(
e−λ1t + λ1t− 1

)
≤

εt

λ1
= O(εt). (22)
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If λ1 = λ2 = 0, taking the double limit λ1, λ2 → 0 in Eq. 20, there is182

|u(t)− u∗(t)| ≤ lim
λ1,λ2→0

εϕ(t;λ1, λ2) =
εt2

2
= O(εt2). (23)

A detailed derivation of Eq. 22 and Eq. 23 can be found in Appendex B.183

A.3 System of First-Order Linear ODEs with Constant Coefficients184

Proposition Let the p-norm of the residual ∥Ru(t)∥ of the linear system u′ +Au = f (u, f ∈ Cn185

and A ∈ Cn×n) be bounded by some ε ≥ 0 on I , namely,186

∥u′ +Au− f∥ ≤ ε ∀t ∈ I, (24)

and the network solution satisfy the initial condition u(t0) = u∗
0. Denote the Jordan canonical form187

of A as188

J = M−1AM =


J1

J2
. . .

Jm

 where Jk =


λk + iωk 1

. . . . . .
λk + iωk 1

λk + iωk

 k = 1, . . . ,m

(25)
where M is composed of generalized eigenvectors and Jk (1 ≤ k ≤ m ≤ n) is a nk × nk Jordan189

block (n1 + · · ·+ nm = n). Then, the absolute error is bounded by ∥u− u∗∥ ≤ O(ε) if λk > 0 for190

all k.191

Proof With the substitution v := M−1u, g := M−1f , Eq. 24 can be transformed into192

∥v′ + Jv − g∥ =
∥∥M−1u′ +M−1Au−M−1f

∥∥ ≤
∥∥M−1

∥∥ ∥u′ +Au− f∥ ≤
∥∥M−1

∥∥ ε (26)

where
∥∥M−1

∥∥ is the induced p-norm of M−1. Each entry in (v′ + Jv − g) must be no greater than193 ∥∥M−1
∥∥ ε in order for Eq. 26 to hold. To bound the error for each Jordan chain, we first define two194

auxiliary sequence of functions {hk} and {Hk}, which will be useful in following derivations.195

hk(t;λ) :=
1

λk

1−
k−1∑
j=0

λj(t− t0)
j

j!
eλ(t0−t)

 and Hk(t;λ) :=

k∑
j=1

hk(t;λ). (27)

Notice the property that, if λ > 0

0 ≤ hk(t;λ) <
1

λk
0 ≤ Hk(t;λ) <

k∑
j=1

1

λj
∀t ∈ I.

Now, consider the first Jordan chain,196

|v′1 + (λ1 + iω1)v1 + v2 − g1| ≤
∥∥M−1

∥∥ ε (28)
...∣∣v′n1−1 + (λ1 + iω1)vn1−1 + vn1

− gn1−1

∣∣ ≤ ∥∥M−1
∥∥ ε (29)∣∣v′n1

+ (λ1 + iω1)vn1 − gn1

∣∣ ≤ ∥∥M−1
∥∥ ε (30)

If λ1 > 0, Eq. 30 implies (by section A.1) the absolute error bound on vn1197 ∣∣vn1
− v∗n1

∣∣ ≤ ∥∥M−1
∥∥ ε1− eλ1(t0−t)

λ1
= H1(t;λ1)

∥∥M−1
∥∥ ε (31)

Plugging Eq. 29 and Eq. 31 into the following triangle inequality yields198 ∣∣v′n1−1 + (λ1 + iω1)vn1−1 + v∗n1
− gn1−1

∣∣ ≤ ∣∣v′n1−1 + (λ1 + iω1)vn1−1 + vn1
− gn1−1

∣∣+ ∣∣v∗n1
− vn1

∣∣
≤
∥∥M−1

∥∥ ε+H1(t;λ1)
∥∥M−1

∥∥ ε (32)
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Apply the integrating factor technique again, there is199 ∣∣vn1−1 − v∗n1−1

∣∣ ≤ H2(t;λ)
∥∥M−1

∥∥ ε (33)

Repeating the above procedure, there is200

|v1 − v∗1 | ≤ Hn1
(t;λ1)

∥∥M−1
∥∥ ε, |v2 − v∗2 | ≤ Hn1−1(t;λ1)

∥∥M−1
∥∥ ε, . . . ,

∣∣vn1
− v∗n1

∣∣ ≤ H1(t;λ1)
∥∥M−1

∥∥ ε
(34)

If λ1 = 0, it can be proven (see Appendix D) that201

|v1 − v∗1 | ≤
∥∥M−1

∥∥ ε n1∑
j=1

(t−t0)
j

j! , |v2 − v∗2 | ≤
∥∥M−1

∥∥ ε n1−1∑
j=1

(t−t0)
j

j! , . . . ,
∣∣vn1

− v∗n1

∣∣ ≤ ∥∥M−1
∥∥ ε(t− t0)

(35)

Similarly, if λk > 0 for the k-th Jordan chain, then202 ∣∣∣vn1+···+nk−1+1 − v∗n1+···+nk−1+1

∣∣∣ ≤ Hnk
(t;λ)

∥∥M−1
∥∥ ε∣∣∣vn1+···+nk−1+2 − v∗n1+···+nk−1+2

∣∣∣ ≤ Hnk−1(t;λ)
∥∥M−1

∥∥ ε
...∣∣∣vn1+···+nk−1+nk

− v∗n1+···+nk−1+nk

∣∣∣ ≤ H1(t;λ)
∥∥M−1

∥∥ ε
It can be shown that, if λk > 0 for all k, then203

∥v − v∗∥ ≤ p
√
n

max
k

nk∑
j=1

1

λj
k

∥∥M−1
∥∥ ε. (36)

Substituting u = Mv into Eq. 36, we have the absolute error bound on u,204

∥u− u∗∥ = ∥Mv −Mv∗∥ ≤ ∥M∥ ∥v − v∗∥ ≤ p
√
n

max
k

nk∑
j=1

1

λj
k

 cond(M)ε = O(ε) (37)

where cond(M) = ∥M∥
∥∥M−1

∥∥ is the condition number of M . Note that the matrix of generalized
eigenvectors, M , can be replaced with MD where D ∈ Cn×n is a diagonal matrix. The infimum of
condition number under right multiplication

condR(M) := inf
D diagonal

cond(MD) = inf
D diagonal

∥MD∥
∥∥D−1M−1

∥∥
has been studied for induced 1-norm, 2-norm, and ∞-norm in [9], [10], and [11].205

A.4 First-Order Linear ODE with Nonconstant Coefficients206

Proposition Let the residual |Ru(t)| of u′ + (p(t) + iq(t))u = f(t) (p, q : I → R, f : I → C)207

be bounded by some ε ≥ 0 on I , namely,208

|u′ + (p(t) + iq(t))u− f(t)| ≤ ε ∀t ∈ (t0,∞), (38)

and the network satisfy the initial condition u(t0) = u∗
0, then the absolute error is bounded by209

|u− u∗| ≤ O(εt) (39)

if p(t) ≥ 0 for sufficiently large t on I .210

Proof Denote the antiderivatives of p(t) and q(t) as

P (t) =

∫ t

t0

p(τ)dτ Q(t) =

∫ t

t0

q(τ)dτ.

Applying the integrating factor technique again, there is211
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∣∣∣∣∫ t

t0

eP (τ)+iQ(τ)
(
u′(τ) +

(
p(τ) + iq(τ)

)
u(τ)− f(τ)

)
dτ

∣∣∣∣
≤
∫ t

t0

∣∣∣eP (τ)+iQ(τ)
∣∣∣ ∣∣u′(τ) +

(
p(τ) + iq(τ)

)
u(τ)− f(τ)

∣∣dτ
212 ∣∣∣∣eP (t)+iQ(t)u(t)− u(t0)−

∫ t

t0

eP (τ)+iQ(τ)f(τ)dτ

∣∣∣∣ ≤ ε

∫ t

t0

eP (τ)dτ∣∣∣∣u(t)− e−P (t)−iQ(t)u∗
0 − e−P (t)−iQ(t)

∫ t

t0

eP (τ)+iQ(τ)f(τ)dτ

∣∣∣∣ ≤ εe−P (t)

∫ t

t0

eP (τ)dτ

|u(t)− u∗(t)| ≤ εe−P (t)

∫ t

t0

eP (τ)dτ. (40)

Rewriting the R.H.S. of of Eq. 40, there is213

|u(t)− u∗(t)| ≤ εt

(
1 +

ϕ(t)

teP (t)

)
, (41)

where214

ϕ(t) =

∫ t

t0

eP (τ)dτ − teP (t) =

∫ t

t0

(
eP (τ) − eP (t)

)
dτ. (42)

Let p(t) ≥ 0 for t > t′. Subsequently, P (t) is nondecreasing for t > t′. Therefore,215

ϕ(t) =

∫ t′

t0

(
eP (τ) − eP (t)

)
dτ+

∫ t

t′

(
eP (τ) − eP (t)

)
dτ ≤

∫ t′

t0

(
eP (τ) − eP (t)

)
dτ = ϕ(t′) t > t′.

(43)

Consequently,216

ϕ(t)

teP (t)
≤ max

τ∈[t0,t′]

[
ϕ(τ)

τeP (τ)

]
=: M, (44)

and finally,217

|u(t)− u∗(t)| ≤ εt (1 +M) = O(εt). (45)

A.5 Dividing the Intervals for a Tightened Error Bound218

In Sections A.1 to A.4, we only consider the global maximum residual norm ε on I . However, one219

can also partition I into subintervals I = I1 ∪ I2 ∪ . . . and consider the local maximum residual220

norm εk on Ik. This leads to an even tighter error bound since εk ≤ ε for all k.221

For instance, in the case for first-order linear ODE with constant coefficients, the bound in Eq. 9222

becomes223

|u− u∗| ≤ e−λt

∫ t

t0

eλτ |Ru(τ)|dτ (46)

as max
k

ρ(Ik) → 0, where ρ(Ik) is the diameter of interval Ik.224
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B Derivation of Eq. 22 and Eq. 23225

Consider the case when λ1 > 0, λ2 → 0, we have the following limit226

|u− u∗| ≤ lim
λ2→0

ε

λ1λ2

(
1− λ1e

−λ2 − λ2e
−λ1

λ1 − λ2

)
= lim

λ2→0

ε

λ1λ2

λ1 − λ2 −
(
λ1e

−λ2 − λ2e
−λ1
)

λ1 − λ2

= lim
λ2→0

ε

λ1λ2

λ1

(
1− e−λ2t

)
− λ2

(
1− e−λ1t

)
λ1 − λ2

= lim
λ2→0

ε

λ1 (λ1 − λ2)

λ1

(
1− e−λ2t

)
− λ2

(
1− e−λ1t

)
λ2

= lim
λ2→0

ε

λ1 (λ1 − λ2)

(
λ1

(
1− e−λ2t

)
λ2

−
(
1− e−λ1t

))

=
ε

λ2
1

lim
λ2→0

(
λ1

(
1− e−λ2t

)
λ2

−
(
1− e−λ1t

))
=

ε

λ2
1

(
λ1t− 1 + e−λ1t

)
(47)

≤ ε

λ2
1

(λ1t) =
εt

λ1

If we take the limit λ1 → 0 on top of λ2 → 0, step 47 can be simplified using Taylor expansion,227

|u− u∗| ≤ lim
λ1→0

ε

λ2
1

(
λ1t− 1 + e−λ1t

)
= lim

λ1→0

ε

λ2
1

(
λ1t− 1 + 1− λ1t+

1

2
λ2
1t

2 + t3O
(
λ3
1

))
=

εt2

2

C General Case Proof of Section A.2228

Define the following sequence of auxiliary functions {ϕn}∞n=1 on I ,229

ϕn(t;λ1:n) =
1

n∏
j=1

λj

−
n∑

k=1

e−λk(t−t0)

λk

n∏
j=1,j ̸=k

(λj − λk)
,

where λ1:n is a tuple (λ1, λ2, . . . , λn). Note that with ϕ0(t) = 1, it can be demonstrated that230

{ϕn}∞n=1 satisfies the recurrence relation231

ϕn+1(t;λ1:n+1) = e−λn+1t

∫ t

t0

eλn+1τϕn(τ ;λ1:n+1)dτ for n ≥ 0. (48)

It can also be proven that ϕn(t;λ1:n) is monotonically increasing on I if λ1, . . . , λn ≥ 0 because232

d

dt
ϕn(t, λ1:n) =

n∑
k=1

e−λk(t−t0)

n∏
j=1,j ̸=k

(λj − λk)
≥ 0. (49)

Also, if λ1, . . . , λn > 0, there is lim
t→∞

ϕn(t, λ1:n) =
n∏

j=1

λ−1
j .233
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Let u0(t) := u(t), u1(t) := u′
0(t) + (λn + iωn)u0(t), u2(t) := u′

1(t) + (λn−1 + iωn−1)u1(t), . . . ,234

un−1(t) = u′
n−2(t) + (λ2 + iω2)un−2(t), Eq. 12 can be written as235 ∣∣u′

n−1 + (λ1 + iω1)un−1 − f
∣∣ ≤ ε, (50)

which is a first-order inequality in terms of un−1 as discussed in Section A.1. By Eq. 8,236 ∣∣un−1 − u∗
n−1

∣∣ ≤ εe−λ1t

∫ t

t0

eλ1τdτ = εϕ1(t;λ1). (51)

Substitute un−1(t) = u′
n−2(t) + (λ2 + iω2)un−2(t) back into Eq. 51, we have237 ∣∣un−2 + (λ2 + iω2)− u∗

n−1

∣∣ ≤ εϕ1(t;λ1),

which is a first order inequality in terms of un−2. Applying the integrating factor trick again, we have238 ∣∣un−2 − u∗
n−2

∣∣ ≤ εe−λ2t

∫ t

t0

eλ2tϕ1(τ, λ1)dτ = εϕ2(t;λ1:2). (52)

Repeating the above process yields239

|u− u∗| = |u0 − u∗
0| ≤ εϕn(t;λ1:n) (53)

D Proof of Equation 35240

Take the limit λ → 0 in Eq. 27, and applying Taylor expansions where necessary, we have241

hk(t; 0) = lim
λ→0

1

λk

1−
k−1∑
j=0

λj(t− t0)
j

j!
eλ(t0−t)


= lim

λ→0

eλ(t0−t)

λk

eλ(t−t0) −
k−1∑
j=0

λj(t− t0)
j

j!


= lim

λ→0

eλ(t0−t)

λk

∞∑
j=k

λj(t− t0)
j

j!

= lim
λ→0

1

λk

( ∞∑
l=0

λl(t0 − t)l

l!

) ∞∑
j=k

λj(t− t0)
j

j!



Notice the lowest order term w.r.t. λ in

( ∞∑
l=0

λl(t0 − t)l

l!

) ∞∑
j=k

λj(t− t0)
j

j!

 is λk, which is

attained only when l = 0 and j = k. The coefficient for the λk term is given by

(t0 − t)0

0!
·
(t− t0)

k

k!
=

(t− t0)
k

k!
.

Consequently,242

hk(t; 0) = lim
λ→0

1

λk

(
(t− t0)

k

k!
λk +O

(
λk+1

))
=

(t− t0)
k

k!

Hk(t; 0) =

k∑
j=1

hk(t; 0) =

k∑
j=1

(t− t0)
j

j!

Eq. 35 is attained by plugging the above equality into Eq. 34.243
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E Examples of dividing domain into subintervals244

In Section A.5, we show that the error bound on I = [0, t] can be further tightened by evaluating the245

maximum absolute residuals on a sequence of subintervals Ii = [ti−1, ti]. We apply this technique246

for the experiments in Section 4.247

E.1 Second Order Linear Equation with Constant Coefficients248

Consider a second-order linear equation with constant coefficients (assuming λ1, λ2 ≥ 0,249

u′′(t) + (λ1 + iω1 + λ2 + iω2)u
′(t) + (λ1 + iω1)(λ2 + iω2)u(t) = f(t) (54)

An approximated solution yielded by a neural network does not exactly satisfy the Eq. 54, but instead250

incurs what we call a residual term r(t)251

u′′(t) + (λ1 + iω1 + λ2 + iω2)u
′(t) + (λ1 + iω1)(λ2 + iω2)u(t) = f(t) + r(t) (55)

Solutions of Eq. 55 and 54 differ by252

∆(t) = e−λ1t

∫ s=t

s=0

eλ1se−λ2s

(∫ τ=s

τ=0

eλ2τr(τ)dτ

)
ds

= e−λ1t

∫ s=t

s=0

e(λ1−λ2)s

(∫ τ=s

τ=0

eλ2τr(τ)dτ

)
ds

= e−λ1t

∫ s=t

s=0

∫ τ=s

τ=0

e(λ1−λ2)seλ2τr(τ)dτds

Therefore253

|∆(t)| ≤ e−λ1t

∫ s=t

s=0

∫ τ=s

τ=0

e(λ1−λ2)seλ2τ |r(τ)|dτds

= e−λ1t

∫ τ=t

τ=0

∫ s=t

s=τ

e(λ1−λ2)seλ2τ |r(τ)|dsdτ

= e−λ1t

∫ τ=t

τ=0

eλ2τ |r(τ)|
(∫ s=t

s=τ

e(λ1−λ2)sds

)
dτ

= e−λ1t

∫ τ=t

τ=0

eλ2τ |r(τ)|e
(λ1−λ2)t − e(λ1−λ2)τ

λ1 − λ2
dτ

=

∫ τ=t

τ=0

|r(τ)|e
λ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ

Notice that
eλ2(τ−t) − eλ1(τ−t)

λ1 − λ2
≥ 0 for τ < t. Let M(a, b) = max

a≤τ≤b
|r(τ)|, we have254

|∆(t)| ≤
n∑

i=1

M(ti−1, ti)

∫ τ=ti

τ=ti−1

eλ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ (56)

≤ M(0,t)

∫ τ=t

τ=0

eλ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ. (57)

where 0 = t0 < t1 < · · · < tn = t.255

Eq. 56 sheds light on how to evaluate the error bound by subdividing interval [0, t] into n subintervals.256

Namely, we first evaluate the maximum absolute residual M(ti−1, ti) on [ti−1, ti] as well as the257

integral
∫ τ=t

τ=0

eλ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ , which always has a closed-form expression depending λ1 and258

λ2. The absolute error at any t is then bounded by the sum of the products. In particular, Eq. 57 is259

the special case where we do not divide [0, t] into subintervals (n = 1), which is discussed in Section260

A.2.261

13



In the special case where max
1≤i≤n

(ti − ti−1) → 0, there is262

∫ τ=t

τ=0

|r(τ)|e
λ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ =

n∑
i=1

M(ti−1, ti)

∫ τ=ti

τ=ti−1

eλ2(τ−t) − eλ1(τ−t)

λ1 − λ2
dτ. (58)

E.2 System of ODEs263

Consider a Jordan chain of length 3 and eigenvalue (λ+ iω).264

u′
1(t) + (λ+ iω)u1(t) + u2(t) = f1(t)

u′
2(t) + (λ+ iω)u2(t) + u3(t) = f2(t)

u′
3(t) + (λ+ iω)u3(t) = f3(t)

The approximated solution given by the neural network incurs residuals r1(t), r2(t), r3(t), namely,265

u′
1(t) + (λ+ iω)u1(t) + u2(t) = f1(t) + r1(t) (59)

u′
2(t) + (λ+ iω)u2(t) + u3(t) = f2(t) + r2(t) (60)

u′
3(t) + (λ+ iω)u3(t) = f3(t) + r3(t) (61)

Eq. 61 implies that266

|u3 − u∗
3| ≤ e−λt

∫ τ=t

τ=0

eλτ |r3(τ)|dτ

By triangle inequality, Eq. 60 becomes267

|u′
2 + λu2 + u∗

3| ≤ |u′
2 + λu2 + u3|+ |u3 − u∗

3| ≤ |r2(t)|+ e−λt

∫ τ=t

τ=0

eλt|r3(τ)|dτ

|u2 − u∗
2| ≤ e−λt

∫ τ=t

τ=0

eλτ |r2(τ)|dτ + e−λt

∫ s=t

s=0

(∫ τ=s

τ=0

eλτ |r3(τ)|dτ
)
ds

= e−λt

∫ τ=t

τ=0

eλτ |r2(τ)|dτ + e−λt

∫ τ=t

τ=0

(∫ s=t

s=τ

eλτ |r3(τ)|ds
)
dτ

= e−λt

∫ τ=t

τ=0

eλτ |r2(τ)|dτ + e−λt

∫ τ=t

τ=0

(t− τ)eλτ |r3(τ)|dτ

Apply the same procedure for Eq. 59, there is268

|u′
1 + λu1 + u∗

2| ≤ |u′
1 + λu1 + u2|+ |u2 − u∗

2|

≤ |r1(t)|+ e−λt

∫ τ=t

τ=0

eλτ |r2(τ)|dτ + e−λt

∫ τ=t

τ=0

(t− τ)eλτ |r3(τ)|dτ

|u1 − u∗
1| ≤ e−λt

∫ τ=t

τ=0

eλτ |r1(τ)|dτ + e−λt

∫ s=τ

s=0

(∫ τ=s

τ=0

eλτ |r2(τ)|dτ
)
ds

+ e−λt

∫ s=τ

s=0

(∫ τ=s

τ=0

(s− τ)eλτ |r3(τ)|dτ
)
ds

= e−λt

∫ τ=t

τ=0

eλτ |r1(τ)|dτ + e−λt

∫ τ=t

τ=0

(∫ s=t

s=τ

eλτ |r2(τ)|ds
)
dτ

+ e−λt

∫ τ=t

τ=0

(∫ s=t

s=τ

(s− τ)eλτ |r3(τ)|ds
)
dτ

= e−λt

∫ τ=t

τ=0

eλτ |r1(τ)|dτ + e−λt

∫ τ=t

τ=0

(t− τ)eλτ |r2(τ)|dτ + e−λt

∫ τ=t

τ=0

(t− τ)2

2
eλτ |r3(τ)|dτ

=

∫ τ=t

τ=0

eλ(τ−t)|r1(τ)|dτ +

∫ τ=t

τ=0

(t− τ)eλ(τ−t)|r2(τ)|dτ +

∫ τ=t

τ=0

(t− τ)2

2
eλ(τ−t)|r3(τ)|dτ
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Note that, with Mk(a, b) = max
a≤τ≤b

|rk(τ)| (k = 1, 2, 3) and 0 = t0 ≤ t1 ≤ · · · ≤ tn = t,269

0 ≤
∫ t

0

(t− τ)k

k!
eλ(τ−t)|r(τ)|dτ ≤

n∑
i=1

Mk(ti−1, ti)

∫ ti

ti−1

(t− τ)k

k!
eλ(τ−t)dτ (62)

≤ Mk(0, t)

∫ t

0

(t− τ)k

k!
eλ(τ−t)dτ (63)

Again, Eq. 62 shows one can evaluate the absolute error bound by dividing n subintervals. For270

each interval, one evaluates the maximum residual as well as the integral (which has a closed-form271

expression). Eq. 63 is the special case as discussed in Section A.3, where subintervals are not used272

(n = 1).273
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