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ABSTRACT

As AI models grow larger, the demand for accountability and interpretability has
become increasingly critical for understanding their decision-making processes.
Concept Bottleneck Models (CBMs) have gained attention for enhancing inter-
pretability by mapping inputs to intermediate concepts before making final predic-
tions. However, CBMs often suffer from information leakage, where additional
input data, not captured by the concepts, is used to improve task performance,
complicating the interpretation of downstream predictions. In this paper, we in-
troduce a novel approach for training both joint and sequential CBMs that allows
us to identify and control leakage using decision trees. Our method quantifies
leakage by comparing the decision paths of hard CBMs with their soft, leaky
counterparts. Specifically, we show that soft leaky CBMs extend the decision
paths of hard CBMs, particularly in cases where concept information is incom-
plete. Using this insight, we develop a technique to better inspect and manage
leakage, isolating the subsets of data most affected by this. Through synthetic
and real-world experiments, we demonstrate that controlling leakage in this way
not only improves task accuracy but also yields more informative and transparent
explanations.

1 INTRODUCTION

Deep learning models have demonstrated significant capabilities and been widely adopted in appli-
cations such as image recognition, natural language processing, and disease prediction. However,
their use in high-stakes fields like healthcare, pollution monitoring, credit risk, and criminal justice
has raised concerns about transparency and flawed predictions (Hu et al., 2019). While numerous
methods provide post-hoc analysis of trained neural networks (e.g., Ghorbani et al. (2019); Zhou
et al. (2018)), these explanations do not always align with human understanding (Rudin, 2019).

Several recent studies suggest explicitly aligning intermediate outputs of neural network models with
predefined expert concepts during supervised training processes (e.g Koh et al. (2020); Chen et al.
(2020); Kumar et al. (2009); Lampert et al. (2009)) through the use of Concept Bottleneck Models
(CBMs). Given a high-dimensional input of features (such as the raw pixels of an image), CBMs
first predict a set of human-understandable concepts, which are then used to predict the final task
labels with the help of an interpretable label predictor. Thus, a user is able to follow the decision-
making process of the label predictor, while the task performance can remain close to that of the
black-box model (Koh et al., 2020).

Despite these characteristics, CBMs frequently suffer from information leakage (Mahinpei et al.,
2021; Margeloiu et al., 2021). This occurs where unintentional signal from the data not captured
by the concepts is used for predicting the label and potentially increases its accuracy. If the label
predictions rely on this information, explanations derived from the concepts may be inaccurate and
potentially misleading. Crucially, leakage compromises our ability to intervene on concepts – a key
benefit of CBMs. Recent works have attempted to mitigate leakage in CBMs by allowing a residual
layer or side channel to capture a set of unknown, latent concepts (e.g. Havasi et al. (2022a); Shang
et al. (2024); Zabounidis et al. (2023); Heidemann et al. (2023); Vandenhirtz et al. (2024)). Yet,
while leakage is reduced, the information captured by these latent concepts is difficult to interpret
and not necessarily disentangled from the known concepts, only partially resolving the issue.
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Figure 1: An overview of the Mixed CBM Algorithm (MCBM). Step 1: Two independent networks,
a concept predictor with calibrated probability outputs and a decision tree label predictor (global
tree) are trained. Step 2: A Sequential CBM (sub-tree) with mixed concept representations (Mixed
CBM) further splits the leaf nodes of the global tree that present missing concept information and
are prone to Leakage. Step 3: All trees are merged for global Leakage Inspection.

Given the current limitations, the purpose of this work is provide an interpretable method for inspect-
ing where leakage occurs in CBMs and controlling this leakage using decision trees. We develop a
method called Mixed CBM Training with Trees (MCBM) for better inspecting and managing leak-
age in those subsets, and introduce both sequential (MCBM-Seq) and joint training (MCBM-Joint)
variants of this method for different scenarios of incomplete concept sets. An overview of our ar-
chitecture can be found in Figure 1. Due to their hierarchical nature, trees allow us to first identify
leaf nodes with subsets that are missing concept information, and subsequently control information
leakage to only specialise those decision paths. This is achieved through a 3-step process, where
a Hard CBM (global tree) is first trained, then an individual sub-tree is trained to extend each leaf
node only if it can take advantage of leakage, and finally all trees are merged for global inspection.

Our contributions are as follows: We introduce a tree-based method for inspecting and control-
ling leakage in CBMs. We show that our method enables more interpretable decision-making with
explanations that have higher accuracy and are guaranteed to make faithful predictions (in terms
of fidelity) when concept sets are incomplete. We also demonstrate that our method allows us to
quantify leakage for specific data subsets associated with tree regions where concept information
may be incomplete, while identifying those decision rules most affected by leakage. Finally, we
show that the derived group-based explanations can be very meaningful in real-life decision-making
scenarios, and provide practical recommendations for selecting the appropriate method for training
a CBM, based on the context of a problem and preferences of the user.

2 RELATED WORK

Concept Bottleneck Models and Information Leakage. Concept Bottleneck Models (CBMs)
(Koh et al., 2020; Lampert et al., 2009; Kumar et al., 2009) are trained on data with covariates
x ∈ X , target y ∈ Y , and annotated binary concepts c ∈ C. These models use a neural network
fθ, parameterized by θ and structured as ⟨gψ, hϕ⟩ (Leino et al., 2018), to enforce a concept bottle-
neck ĉ = hϕ(x). The final output depends solely on the predicted concepts ĉ. Soft CBMs (Chen
et al., 2020; Koh et al., 2020) improve prediction by using probabilistic concept values but are prone
to information leakage from the concept predictor to the label predictor (Margeloiu et al., 2021;
Mahinpei et al., 2021). Most CBM research focuses on extending concept representations in the
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embedding space to enhance predictive power (Zarlenga et al., 2024; Oikarinen et al., 2023; Kim
et al., 2023; Semenov et al., 2024), while neglecting information leakage. Some works address leak-
age by allowing missing concept information to bypass concept representations through a Residual
Layer (Yuksekgonul et al., 2023; Shang et al., 2024). Havasi et al. (2022b) tackle missing infor-
mation with a side channel and an auto-regressive concept predictor, but these approaches struggle
with interpretability and disentanglement of residual information (Zabounidis et al., 2023). Another
approach by Marconato et al. (2022) rejects test samples prone to leakage, though it relies on as-
sumptions about the prior distribution. Unlike these approaches, the work we present here enables
both interpretability and leakage inspection, without any prohibitive assumptions on the distribution
that may not hold in practice.

Explainable Label Predictors. According to CBM definitions (Koh et al., 2020), any inter-
pretable machine learning model can serve as a label predictor, such as Logistic Regression (McK-
elvey & Zavoina, 1975), Generalised Additive Models (Hastie & Tibshirani, 1985), or Decision
Trees (Breiman et al., 1984; Kass, 1980). Recent work integrates neural networks with interpretable
decision-making. Wu et al. (2018; 2020) introduce tree-regularization to approximate neural net-
work boundaries with decision trees. Ciravegna et al. (2021) propose the ψ network for logic-based
concept explanations using L1-regularization and pruning to extract interpretable First Order Logic
formulas. Barbiero et al. (2022) enhance this with the Entropy-Net, using Entropy Loss for more
concise logic formulas. Ghosh et al. (2023) further introduce a mixture of Entropy-Net experts
for specialized explanations while maintaining performance. Yet, these concept-based explanations
assume concept probabilities without evaluating potential label information leakage as we propose.

3 PRELIMINARIES

Problem Setting. We consider a classification task with N = {1, ..., n} samples, K = {1, ..., k}
concepts and R = {1, ..., r} classes. We assume a training set Dtrain =

{(
x(i), c(i), y(i)

)}N
i=1

,
where: x(i) is an input feature vector (e.g. an image) of the input spaceX ⊂ Rd; c(i) is a categorical
vector of k concepts of the concept space C ⊂ {0, 1}k; y(i) is a one-hot encoded vector of the target
space Y ⊂ {0, 1}r. A test set Ntest with Xtest ⊂ Rd is also given, without annotated concepts.

Concept Bottleneck Models. The architecture of a CBM first introduces a concept predictor
f(W1) : X → C that maps inputs to concepts. It then uses a label predictor g(W2) : C → Y
that maps concepts to targets. This is typically any interpretable model, such that the relationship
from concepts to targets can be explained e.g linear layer decision trees. CBMs can be classified
into two categories (Havasi et al., 2022a; Koh et al., 2020):

Hard CBMs: At test time, the label predictor only accepts binary (hard) concepts as inputs. The
networks f and g are trained independently on the ground truth data.

LC = LW1
(Ĉ, C) =

∑
i

LW1

(
f(x(i)) ; c(i)

)
=

∑
i,k

LW1

(
f(x(i))[ k ] ; c(i)[ k ]

)
, k ∈ K (1)

LY = LW2(Ŷ , Y ) =
∑
i

LW2

(
g(c(i)) ; y(i)

)
(2)

We use cross-entropy loss as the task loss LY . For the concept loss LC , we use the sum of binary
cross-entropy losses for independent concepts, with the sum of cross-entropy losses for groups of
mutually-exclusive concepts. At test time, we make a prediction for a sample x∗ by first converting
the predicted logits into concept probabilities ĉ = σ(f(x∗)), where σ is either a sigmoid function
for independent concepts or a softmax function for mutually-exclusive concepts. We convert the
probabilities to binary representations ĉbin either through thresholding (sigmoid) or the argmax
operator (softmax), and we pass them to the label predictor: y∗ = g(ĉbin).

Soft CBMs. At test time, the label predictor accepts concept probabilities (soft concepts) as inputs.
These can be trained either independently, sequentially or jointly. Independent training uses a pro-
cedure identical to Hard CBMs, based on Eq. 1, 2. At test time, we use the concept probabilities:
y∗ = g(ĉ), where ĉ = σ(f(x∗)). For sequential training, the network f is trained according to
the objective of Eq. 1, and then the predicted concepts ĉ(i) = ĝ(x(i)) are used as input to train
the network g, minimising the loss: LY = LW2(Ŷ , Y ) =

∑
i LW2

(
g(ĉ(i)) ; y(i)

)
,where ĉ(i) =

3
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σ(f(x(i))). Joint training trains both networks simultaneously. The hyper-parameter λC controls
the relative importance of the two tasks. Assuming ĉ(i) = σ(f(x(i))):

L = LY + λCLC =
∑
i

LW1,W2

(
g(ĉ(i)) ; y(i)

)
+ λC

∑
i

LW1

(
f(x(i)) ; c(i)

)
(3)

Leakage in CBMs. While information leakage is defined by Mahinpei et al. (2021) as a type of
unintended information that the concept representations capture, in this work we propose a more
explicit definition:

Definition 3.1 The amount of unintended information that is used to predict label y with soft con-
cepts ĉ that is not present in hard representation c.

In our work, we measure this as the mutual information of targets y and soft concepts ĉ given the
hard concepts c,

ILeakage = I(y; ĉ |c) = H(y|c)−H(y|ĉ, c) (4)

4 TREE-BASED LEAKAGE INSPECTION AND CONTROL

In what follows, we present the core contribution of our work. Specifically, given both a trained hard
CBM and a trained (either sequentially or jointly) soft CBM, we would like to determine whether it
is possible to inspect any information leakage that the soft model exploits to make its predictions,
and understand how this information was used. Based on Definition 3.1, we know that any additional
information used to predict y that is not contained in concepts c, should be captured by the difference
of conditional mutual information terms in Eq. 4. A naive attempt to answer this question is thus to
first train the same concept predictor for both hard and soft models, and then use separate decision
tree classifiers for each CBM as label predictors and subsequently inspect their trees to observe how
they differ. However, inspecting the corresponding decision tree label predictors for both hard and
soft CBMs is non-trivial as the trees be incomparable and contain very different splits to distinguish
samples (an example is given in Appendix A.3).

Motivated by this challenge, we present a new training method with mixed concept representations.
Our key insight is that any subset of data that cannot be further split by a hard CBM’s decision tree
but can be split by a soft leaky CBM’s tree is vulnerable to information leakage. The method has
three steps, shown in Fig. 1. First, we train a hard, leakage-free CBM with a decision tree as the
global label predictor. This tree is decomposed into decision paths with some concepts, while other
concepts are predicted independently with calibrated probabilities. In the second step, the decision
paths are used to train a mixed CBM, combining hard and soft concepts with a new tree-based label
predictor. Finally, the global tree and sub-trees are merged for complete inspection.

4.1 THE MIXED SEQUENTIAL CBM (MCBM-SEQ) TRAINING ALGORITHM.

Identifying samples corresponding to certain concepts. We train the concept predictor f : X →
C according to Eq. 1 and the label predictor g : C → Y independently. In principle, the concept
predictor could be any deep learning model; we replace the label predictor of a standard CBM by a
decision tree (Breiman et al., 1984; Kass, 1980). Specifically, the tree is constrained to a minimum
number of samples per leaf (msl) to prevent overfitting. We refer to this tree as the ”global” tree
containing decision paths with all the concepts. We then decompose the tree into a set of decision
paths Thard = {P1, ..., PM}, where M is the number of leaf nodes. Each decision path corresponds
to a set of binary decision rules that are not affected by leakage, since the tree was trained on the
ground truth binary concepts. Fig. 2 depicts these rules intuitively as a set of True or False questions
used to distinguish a test sample from other classes.

Calibrating the concept probabilities to prevent overconfident predictions. To overcome the
problem of overconfidence in the predictions of deep neural networks (Guo et al., 2017), we cal-
ibrate the predicted concept probabilities of the trained concept predictor. We perform Platt scal-
ing (PLATT, 1999) for binary (independent) concept predictions, and temperature scaling for multi-
class (mutually-exclusive) concept predictions (Guo et al., 2017). We argue that the calibration step
is crucial for the interpretability of Sequential CBMs (which are trained in the next step), since the
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Figure 2: Summary of the Decision Making Process of The Mixed Sequential CBM Algorithm
(MCBM-Seq) when classifying an image with annotated concepts. The process is described intu-
itively as a conversation between the Tree label predictor and two entities that provide the input
concepts: the Human Annotator and the Concept Predictor. The concept probabilities are used to
specialise the decision process only when the available annotated concepts are not sufficient.

decision rules of the label predictor are based on the true concept probabilities and can often be
human intuitive (see section A.10).

Training a mixed sequential CBM for each decision path. We first isolate the set of all concepts
Km ⊆ K used in the decision splits of each path Pm, and the set of the remaining concepts K ′

m =
K − Km not used in the path. Then, for each decision path in the global tree, we train a mixed
sequential CBM. Specifically, we extract a subset of the dataset {Xm, Cm, Ym} with the training
samples classified by the decision path Pm. We use the already trained network f : X → C as
the concept predictor of the CBM. Then for each sample i, we construct a new concept vector c∗i as
follows: For the concepts appearing in the decision path, we assign the calibrated soft probability
given by the concept predictor: c∗i [k] = ĉi [k] = f(xi)[k], ∀ k ∈ Km. For the remaining concepts,
we assign the hard (binary) value: c∗i [k] = ci [k], ∀ k ∈ K ′

m. Since each concept vector does not
contain exclusively hard (binary) concept values or soft concept probabilities, but a combination
of both, we name this architecture a Mixed CBM. Next, we train a new Decision Tree as the label
predictor of the CBM, however constrained on the same number of minimum samples per leaf as the
global tree (msl). This ensures that the new sub-tree, if found, can further specialise the data only
because of the additional leaky information encoded in the concept probabilities, and not because of
a smaller constraint in the number of samples allowed per leaf.

We should emphasise that the concept predictor is only trained once, and thus our method does
not introduce any computational overhead compared to a Sequential CBM with a single decision
tree as label predictor (see section A.4). A second important detail is that we train a CBM with
mixed concept representations per leaf subset, and not a purely Soft Sequential CBM. This allows
us to investigate if the soft representation of one or more of the concepts that have appeared in the
decision path of this subset in the global tree could further specialise the decision process. This is
crucial in order to quantify leakage in section 4.2 and to approximate our definition of leakage in
Eq. 4, because only the conceptsKm present in the non-leaky decision path of a leafm in the global
tree are those shared by all samples s in the leaf, and thus satisfy the definition of the conditional
entropy for this leaf: H(ys|ck),∀k ∈ Km. Instead, if we trained a purely Soft CBM, some of the
concepts may not be shared by this group. Referring again to the example of Fig. 2, we would like
to observe how a decision rule based on the confidence of the concept predictor (shown in a yellow
box) can specialise one or more binary rules that appeared in the global tree (shown in a white box).

Merging the sub-trees to the global tree. This final step is optional and only used when the size
of the tree is reasonable and the user would like to grasp a global picture of label classifications

5
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Figure 3: The MCBM-Seq algorithm for a reduced Morpho-MNIST dataset with digits 6, 8 and 9
and concepts “length”, “thickness” and “width”. The final tree merged the sub-trees is shown. If a
sub-tree is found, it replaces the leaf node of the hard CBM and is highlighted in a red box. The
remaining leaf nodes are unaffected by leakage. This architecture allows us to both inspect and
restrict leakage only to subsets with missing concept information.

and Leakage. For group-specific explanations, an analysis per individual decision path can be more
informative (see section 5.3). A visualisation of a merged tree after performing the algorithm is
provided in Fig. 3. At test time, we retrieve the decision path that classifies each sample in the
global tree, and make a prediction using the corresponding soft tree. The complete pseudo-code is
provided in Algorithm 1.

4.2 QUANTIFYING INFORMATION LEAKAGE WITH TREES

The MCBM-Seq algorithm allows us to inspect and quantify Information Leakage. Consider a
subset of samples s that end up in one of the leaf nodes of the global tree, and consider a soft
concept ĉk based on which we perform the first split in the Mixed Sequential CBM. Thus, the subset
s is divided into two new subsets, s1 and s2, and the new tree has three nodes in total. We also
assume the target distribution of subsets s, s1 and s2 are ys, ys1 and ys2 respectively. We can use
the Information Gain (Breiman et al., 1984) we achieve when splitting a node with a soft concept ĉk
as a measure of the Information Leakage that the soft concept provides, based on Eq. 4:

ILeakage(ĉk) ≈ H(ys)−
[
|s1|
|s|

H(ys1) +
|s2|
|s|

H(ys2)

]
= IG(ĉk) (5)

This is only valid because of the way we constructed our tree, by first using the hard concepts to
fit the global tree and then specialising the leaf nodes with soft concept splits. Also, this formulation
allows us to inspect and quantify leakage specifically for each split, by adjusting the concept values
cs and ĉk accordingly. Refer to Appendix A.2 for more details.

4.3 MIXED JOINT CBM TRAINING WITH TREES (MCBM-JOINT)

Joint CBMs tend to achieve higher task performance compared to the other forms of CBM Training,
due to the end-to-end optimization procedure of Eq. 3 (Koh et al., 2020). However, this comes at the
expense of interpretability. According to (Mahinpei et al., 2021), they are more prone to Information
Leakage compared to Sequential CBMs because the label predictor can ”shape” the concept proba-
bilities in an unexplainable way in order to improve the task performance while decreasing concept
accuracy. In practice, this trade-off is controlled by the λC parameter of Eq. 3. Unlike Sequential
CBMs, these probabilities do not correspond to the true confidence of the concept predictor, and thus
concept-based explanations based on these probabilities are even less human-intuitive. However, we
could control Information Leakage to only specialise the main decision rules, in order to achieve
better interpretations when higher performance is a priority.
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Algorithm 1 Mixed Sequential CBM Training (MCBM-Seq)

Input: N samples; K concepts; R classes; A dataset Dtrain = {X,C, Y }, where X ⊂ Rd, C ⊂ {0, 1}k,
Y ⊂ {0, 1}r; A set of Ntest samples with Xtest ⊂ Rd; Minimum Samples per leaf (msl).

Output: A hard tree: Thard; a set of soft trees, one for each leaf: Tsoft = {T1, ..., TM}; test predictions Ŷ .

1: procedure TRAINING(Dtrain,msl)
2: Train the concept predictor f : X → Ĉ, where Ĉ ⊂ [0, 1]k (Eq. 1);
3: Define a decision tree constrained on the min samples per leaf Thard = Tree (msl );
4: Train the tree on the hard concept set: Thard.fit(C, Y );
5: Decompose the tree into a set of M decision paths Thard = {P1, ..., PM};
6: Train a sub-Tree per leaf, by calling the procedure: Tsoft = TRAINING SUB-TREE(Dtrain, f, Thard);
7: return Thard, Tsoft

8: end procedure
9:

10: procedure TRAINING SUB-TREE(Dtrain, f, Thard)
11: for each decision path m ∈ M do
12: Collect the data for the samples of Pm: Dm = {Xm, Cm, Ym}, Xm ⊆ X , Cm ⊆ C, Ym ⊆ Y ;
13: Get the concept probabilities for the samples of the path Ĉm = f(Xm);
14: Calibrate the concept probabilities using Platt or Temperature scaling
15: Isolate the set of concepts Km ⊆ K used as splits in the path Pm;
16: Isolate the set of concepts K′

m = K −Km not used as splits in the path Pm;
17: for each sample i ∈ Nm do
18: Initialise a new concept vector for the sample c∗i ;
19: Assign the soft concept values of i for the concepts used in the path: c∗i [k] = ĉi [k], ∀ k ∈ Km

20: Assign the hard concept values of i for the remaining concepts: c∗i [k] = ci [k], ∀ k ∈ K′
m

21: end for
22: Concatenate the concept vectors to create a new concept set for the path: C∗

m =
{
c∗1, ..., c

∗
Nm

}
;

23: Define a decision tree using the same msl constraint: Tm = Tree (msl );
24: Train the new tree: Tm.fit (C∗

m, Ym );
25: end for
26: return Tsoft = {T1, ..., TM}
27: end procedure
28:
29: procedure EVALUATION(Xtest, f, Thard, Tsoft)
30: Predict the concept values Ĉ = f(Xtest);
31: Get the decision paths for the test predictions {P1, ..., PM} = Thard.predict(Ĉ)
32: for each decision path m ∈ M do
33: Isolate the test samples of the path Nm ⊆ Ntest, Ĉm ⊆ Ĉ

34: Predict from the associated tree Ŷm = Tm.predict(Ĉm), Tm ∈ Tsoft

35: end for
36: return Ŷ = {Ŷ1, ..., ŶM}
37: end procedure

For this purpose, we propose the MCBM-Joint algorithm as a post-hoc analysis tool for trained
Joint CBMs. The algorithm is identical with that of MCBM-Seq in section 4.1, but the concept
probabilities are now extracted from the optimised concept predictor of the Joint CBM instead of
an independently trained concept predictor. In contrast to MCBM-Seq, we do not calibrate these
concept probabilities, since they do not correspond to the true confidence of the predictor. A visual
intuition is shown in Appendix 7.

5 EXPERIMENTS

We evaluate the MCBM-Seq and MCBM-Joint methods in challenging image classification and
medical settings, demonstrating the versatility of our approach across different metrics overall, as
well as per decision path.

Baselines. We first compare our MCBM-Seq and MCBM-Joint methods with the standard modes
of CBM training (Hard, Independent, Sequential) described in Koh et al. (2020), and we use a
Decision Tree as the label predictor. For the MCBM-Joint method, we first optimise the concept

7
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encoder with the Joint training objective of Eq. 3 using a simple linear layer as the label encoder.
We also train all CBM methods using the state-of-the-art Entropy-Net Barbiero et al. (2022) as the
label-predictor, which achieves higher task accuracy compared to linear label predictors while also
providing interpretable logic explanations.

Quantitative Metrics. In terms of performance, we evaluate our CBM methods using the a) Task
and b) Concept Accuracy (Koh et al., 2020). To compare the interpretability and reliability of
our methods compared to existing work, we use the following metrics defined by Barbiero et al.
(2022): a) The Explanation Accuracy as the task performance of a method when using its extracted
explanation formulas, and b) the Fidelity of an Explanation which measures how well each formula
matches the model’s predictions. Finally, we provide an estimate of Information Leakage as the
Information Gain of leaky splits according Eq. 5, which is unique to our methods.

5.1 DATASETS AND MODELS

Morpho-MNIST (Castro et al., 2018): The dataset describes MNIST digits in terms of measurable
shape attributes which we use as concepts. These are the thickness, area, length, width, height,
and slant of digits. We categorise each real-valued concept in one of three equally spaced bins,
indicating a ”small”, ”medium”, ”large” or value, resulting in mutually exclusive concept groups
such as ”length::small”, ”length::medium” and ”length::large”. We use a LeNet model Lecun et al.
(1998) as the concept predictor. Hyper-parameter details are given in Appendix A.7.

The CUB Dataset (Koh et al., 2020): The dataset consists of n = 11, 788 pictures of 200 different
bird species. There are 312 annotated binary concepts available. Similarly to Koh et al. (2020);
Yeh et al. (2020), we only select those concepts that appear in at least 10% of the dataset, and thus
we form a reduced set of 112 binary concepts. The data is denoised by converting instance-specific
concepts to class-specific concepts via majority voting. To simulate a scenario of an incomplete
concept set, we choose 45 concepts and denote the rest as missing. We train a ResNet-18 model (He
et al., 2016) as the independently trained concept predictor (see Appendix A.6 and A.7 for pre-
processing and hyperparameter tuning details).

MIMIC: MIMIC-IV (Medical Information Mart for Intensive Care IV) (Johnson et al., 2023) is a
large, freely accessible dataset consisting of de-identified electronic health records from over 70,000
critical care patients. It includes data such as demographics, vital signs, laboratory results, medi-
cations, and clinical notes. Our binary classification task is to identify recovering or dying patients
after ICU admission. Since the dataset does not have annotated concepts, we calculate the six Se-
quential Organ Failure Assessment (SOFA) scores (Lambden et al., 2019) and categorise them into 3
levels of severity, for a total of 18 concepts. We use a 3-layer MLP as the concept predictor. Details
about the concept selection and hyper-parameters are given in Appendix A.6 and A.7.

5.2 OVERALL PERFORMANCE ACROSS BASELINES

Our tree-based label predictor produces more trustworthy explanations compared to existing
solutions when the concept sets are incomplete. In their work, Barbiero et al. (2022) show that the
Explanation Accuracy of the Entropy-Net (measured as the average F1 score across all label classes)
matches the Task Accuracy in most experiments with almost perfect Fidelity scores. However, we
observe in this work that this is not guaranteed for datasets with missing concept information. In Ta-
ble 1, we observe that the fidelity scores of Entropy-Net are lower that 80%, since the logic formulae
are missing concept rules and can thus associate some samples to multiple classes. The Explanation
Accuracy drops for the same reason. On the other hand, Decision Trees are inherently rule-based
models, where no such fidelity issues arise. While their overall Task Accuracy is lower according to
Table 1, they exhibit higher Explanation Accuracy with perfect Fidelity. Our Mixed CBM methods
allow for leakage inspection and control, to further assist the reliability of explanations.

Mixed CBMs achieve higher task accuracy than their respective hard CBMs and less leak-
age than their soft counterparts. This can be observed from the results of Table 2 and is ex-
pected because the MCBM-Seq and MCBM-Joint models are specialised versions of the same
hard/independent CBM, with leaky information concentrated in the subtrees. Soft CBMs gener-
ally achieve better performance because they use the concept probabilities from the very first split
of the root (see Appendix. 6), thus the Decision Tree finds the optimal splits without restrictions in
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Table 1: Explanation Metrics for different Sequential CBMs. Tree-based label predictors achieve
higher Explanation Accuracy for sets with incomplete concept information, and do not pose fidelity
considerations. Our MCBM-Seq also allows for Leakage Inspection, compared to a Decision Tree.

Method Morpho-MNIST CUB MIMIC-III Leakage
Task% Explanation% Fidelity% Task% Explanation% Fidelity% Task% Explanation% Fidelity% Inspection

Seq. (Entropy Net) 52.26 25.01 77.81 65.23 42.37 46.87 83.34 68.94 56.11 ✗
Seq. (Decision Tree) 48.42 48.42 100 55.59 55.59 100 83.05 83.05 100 ✗
MCBM-Seq 49.62 49.62 100 47.39 47.39 100 82.05 82.05 100 ✓

Table 2: Task and Concept Accuracy across different datasets and
CBM training methods. Our Mixed CBM methods are comparable
with current approaches in overall performance.

Method Morpho-MNIST CUB MIMIC-III
Task% Concept% Task% Concept% Task% Concept%

D
ec

is
io

n
Tr

ee

Hard 47.20 89.94 46.51 94.82 81.65 98.67
Independent 47.20 89.94 46.51 94.82 81.65 98.67
MCBM-Seq 49.62 89.94 47.39 94.82 82.05 98.67
Sequential 48.42 89.94 55.59 94.82 83.05 98.67

MCBM-Joint (λC = 0.1) 83.16 83.38 56.55 94.21 82.55 97.15
MCBM-Joint (λC = 1) 67.32 87.92 56.42 94.76 82.05 97.72
MCBM-Joint (λC = 100) 50.72 90.58 56.29 94.99 81.85 97.82

E
nt

ro
py

N
et

Hard 46.31 89.94 56.07 94.82 82.65 98.67
Independent 45.10 89.94 53.74 94.82 82.55 98.67
Sequential 52.26 89.94 65.23 94.82 83.34 98.67

Joint (λC = 0.1) 98.17 83.38 72.26 94.21 83.74 97.15
Joint (λC = 1) 95.02 87.92 69.37 94.76 83.44 97.72
Joint (λC = 100) 56.07 90.58 64.12 94.99 82.85 97.82

Black-Box 99.99 - 84.35 - 92.74 -

Figure 4: Leakage with Con-
cept Completeness (CUB).

the architecture. However, this leads to Information Leakage in the whole tree and has undesirable
effects for interpretability across all decision paths Unlike these, mixed CBMs constrain leakage
only to specific leaf nodes, mitigating these undesirable effects throughout the rest of the tree.

Information Leakage decreases when concepts completeness increases. CBMs are more prone
to Information Leakage as the number of missing concepts increases. While this issue was also
raised by Havasi et al. (2022b), we are able to provide quantitative evidence by measuring the total
Information Gain summed across all leaky splits of our Tree. Since the CUB dataset Wah et al.
(2011) is concept-complete for class-specific explanations, we evaluate our MCBM-Seq method in
Fig. 4 across different levels of completeness, by successively picking more concept groups from the
dataset. In the absence of complete concepts, the global tree is small, with more subtrees containing
leakage hence enabling more of the leaf nodes to be extended to improve the Information Gain.

5.3 PERFORMANCE PER DECISION PATH

Our method enables inspecting Information Leakage per decision path. A unique advantage of
our method compared to existing CBM training methods is that we can extract performance metrics,
inspect and control leakage per individual Decision Paths corresponding to particular groups of data.
In Fig. 5, we decompose the full tree from the reduced Morpho-MNIST example in Fig.. 3 into
fifteen decision paths, measuring the Task Accuracy against the original Hard CBM (global tree) in
Table 3. For the three extended decision paths, the accuracy increased from 44% → 45%, 37% →
41% and 44% → 57% respectively due to leakage. We also report the Information Gain (Leakage)
for each individual leaky split of a sub-tree, if found. We observe that the concept ”length:large”
in the leaky split of path 14 in Fig. 5 provides the largest Information Gain (0.230 bits) out of all
leaky splits, suggesting that this concept could benefit from additional information. Repeating this
for MCBM-Joint, we observe not all the same decision paths are necessarily extended with leakage.
The method yields higher task accuracies but also higher information gain (in terms of leakage)
Eg.In path 14, the respective leaky split of MCBM-Joint yields a very high accuracy of 80.65%, but
the Information Gain (Leakage) from such split is also higher compared to MCBM-Seq (0.968 bits).
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Figure 5: Decomposing the resulting trees of
MCBM-Seq into Decision Paths for the Re-
duced Morpho-MNIST example of Fig. 3.

Table 3: Analysis per path on the Reduced
Morpho-MNIST of Fig. 3. Acc. refers to Task
Accuracy and IG refers to Information Leakage
for each split of the ”leaky” extension.

Path Hard MCBM-Seq MCBM-Joint
Acc.% Acc.% IG Acc.% IG

1 62.39 62.39 - 62.39 -
2 58.53 58.53 - 58.53 -

3 44.82 45.76 [0.054,
0.006] 60.45 [0.191,

0.191]
4 70.48 70.48 - 70.48 -
5 53.92 53.92 - 53.92 -
6 44.20 44.20 - 44.20 -
7 37.39 41.73 [0.111] 37.39 -
8 55.17 55.17 - 55.17 -
9 52.57 52.57 - 90.72 [0.795]

10 58.29 58.29 - 91.49 [0.715]
11 99.29 52.57 - 99.29 -
12 92.00 92.00 - 92.00 -
13 39.18 39.18 - 81.98 [0.931]
14 44.91 57.70 [0.230] 80.65 [0.968]
15 55.14 55.14 - 84.19 [0.911]

Our tree-structure allows for meaningful group-specific explanations. While instance-specific
(Entropy-Net) Barbiero et al. (2022) and class-specific explanations can be too complex or generic,
group-specific explanations are often more useful, especially in fields like healthcare. Our method
allows intuitive control of group size via the minimum samples per leaf (msl) constraint (Ap-
pendix A.8). An example of a group-specific explanation using the MCBM-Seq method on the
CUB dataset(Wah et al., 2011) is shown in Fig. 2. We consider two bird classes: Red Bellied Wood-
pecker and Red Headed Woodpecker. At test time, the method traverses the decision path in the
global tree and identifies the two classes as indistinguishable based on available concepts. After
training a Mixed-Sequential CBM, the label predictor separates the classes using the concept pre-
dictor’s calibrated probability for “has-breast-pattern-solid.” The predictor finds that Red Bellied
Woodpeckers are less than 70% likely to have a solid breast pattern, while Red Headed Woodpeck-
ers are more likely to possess this trait. The full decision path and case-study description are given
in Appendix A.10. The user has three options: a) rely solely on the global tree for the most reliable
prediction using majority voting, b) extend the decision process with MCBM-Seq for more intuitive
and higher-performance results, or c) use MCBM-Joint’s less intuitive probabilities for maximum
accuracy. Importantly, unlike a purely soft CBM, leakage will not impact all decision-making paths
in a mixed CBM and will be isolated to only some leaf nodes that can be extended.

6 CONCLUSION

In this work, we introduce MCBM-Seq and MCBM-Joint methods that use decision trees to inspect
and control information leakage in CBMs. These tree-based approaches maintain high fidelity in the
explanations and achieve better accuracy on datasets with incomplete concept information. Unlike
purely Soft CBMs, the mixed concept representations limit information leakage in data subsets with
insufficient concept information. They also quantify leakage per decision path and rule, producing
more meaningful group-based explanations.

A limitation of our work is that the final, merged trees can be difficult to visualise and inspect for very
large datasets. Yet, we show that a leakage analysis for specific decision paths of interest can also
be meaningful. Also, mixed CBMs allow us to derive more interpretable and reliable explanations
but typically do not match the model accuracy of purely Soft CBMs. A promising avenue for future
work is to further address the problem of missing concept information by combining our approach
with concept discovery strategies. While information leakage makes up for some of the missing
concept information, these discovery strategies could be optimised per decision path in our tree-
structure, to further distinguish groups of samples that cannot take advantage of leakage. Moreover,
our method does not pose any constraint on the architecture of the concept encoder, thus it could
also integrate a more expressive Auto-Regressive Concept encoder or a Stochastic Concept Encoder
to further assist the concept predictions.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

To ensure reproducibility, all experiments described in this paper were conducted with fixed random
seeds, which are explicitly detailed in the provided code. In addition, all scripts necessary to replicate
the main results will be made publicly accessible. Comprehensive instructions for running the exper-
iments and verifying the outcomes will also be included in the repository, alongside the random seed
values for each specific experiment. The anonymous code is given here: https://anonymous.
4open.science/r/ICLR_2025_Controlling_IL_With_Trees-75EA/README.md

A.2 USING TREES TO QUANTIFY INFORMATION LEAKAGE

As in section 4.2, consider again the subset of samples s that end up in one of the leaf nodes of the
global tree, and a soft concept ĉk based on which we perform the first split in the Mixed Sequential
CBM. Consider also the two subsets after the split s1 and s2, and the target distributions ys, ys1 and
ys2 respectively. According to Breiman et al. (1984), the Information Gain of a split in a decision
tree can be defined as the difference of the entropy of the subset s before the split and the weighted
sum of the entropy’s of the two nodes after the split using the concept ĉk:

If cs represents the set of hard concepts that appear in the decision path of the global tree up to the
leaf node of the subset s, then we assume that

H(y|cs) ≈ H(ys) (6)

In other words, we have already taken into account the information present in the concepts cs to
construct the target distribution of this path ys from the initial target distribution of all samples y
when building the global tree. Similarly, given we have the information from the hard concepts of
the path cs and the new soft concept ĉk, we assume that:

H(y|ĉk, cs) ≈
[
|s1|
|s|

H(ys1) +
|s2|
|s|

H(ys2)

]
(7)

Thus, we can approximate the Information Leakage given to the label encoder by the soft concept
ĉk according to Eq. 4:

ILeakage(ĉk) = I(y; ĉk |cs) = H(y|cs)−H(y|ĉk, cs) (8)
equation 6 equation 7

≈ H(ys)−
[
|s1|
|s|

H(ys1) +
|s2|
|s|

H(ys2)

]
(9)

equation 5
= IG(ĉk) (10)

Thus, using Decision Trees, we can use the Information Gain we receive when splitting a node with
a soft concept ĉk as a measure of the Information Leakage that the soft concept provided. This is
only valid because of the way we constructed our tree, by first using the hard concepts to fit the
global tree and then specialising the leaf nodes with soft concept splits.

A.3 LEAKAGE INSPECTION: A NAIVE SOLUTION

A naive attempt to inspect any Information Leakage that the Soft Model exploited compared to a
Hard CBM is to first train the same concept predictor for both models, and then use a separate
Decision Tree classifier for each CBM as label predictor. In the first case, the inputs of the Tree
are binary, ground truth concepts, whereas in the second case the inputs are the predicted concept
probabilities of the concept encoder. To answer the question, we then need to compare two Trees.
For reference, we visualise the Decision Trees trained for the Morpho-MNIST example Castro et al.
(2018) with a constraint on the minimum samples per lead of msl = 150. The trees are shown
side-by-side in Fig. 6.

We immediately observe that the task is not trivial because the structure of the two trees can be very
different. Even if the root node uses the same concept in both trees to perform the primary split (e.g.
”length xlarge”), the different threshold value used in each case may cause the resulting subsets
to be completely different. Thus, the two trees may be incomparable after the first split, since the
respective children nodes may use a completely different structure to distinguish their samples.
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Figure 6: Leakage Inspection: Naive Comparison of a Hard and a Soft Sequential CBM.

A.4 COMPLEXITY ANALYSIS FOR THE LABEL PREDICTOR OF MCBM-SEQ

An advantage of our approach is the limited computational overhead compared to training a standard
independent CBM, because the concept encoder is trained only once. The individual Sequential
CBMs all share the same concept predictor. Thus, the only overhead is that of training a sub-tree for
each leaf of the global tree. In practice, this added computational cost is minimal because each tree
only has access to a small subset ni of the total samples n, where

∑d
i ni = n and d is the number

of leaf nodes in the global tree.

More specifically, the time complexity of a Decision Tree is O(mn log2n) according to Sani et al.
(2018), where n is the total number of samples andm is the number of attributes. This holds because
the computational cost of performing a split based on one attribute follows the recursion formula of
the divide and conquer algorithm O(n log2n), and this process is repeated for all m attributes to
find the best split. Thus, the total cost J of training the label predictor in the Leakage Inspection
algorithm can be written as the cost of training the global tree and all its sub-trees:

J = Jglobal +

d∑
i

Ji −→ O(mn log2n) (11)

The complexity is thus equivalent to that of a purely soft Sequential CBM that uses a single decision
tree as label predictor, since the msl constraint of the global and sub-trees is the same.
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A.5 MCBM-JOINT

Figure 7: The Decision Making Process of The Mixed Joint CBM Algorithm (MCBM-Joint) when
classifying an image with annotated concepts. The concept probabilities of the Joint CBM can be
used to specialise the decision-making process of the label predictor when a) the available annotated
concepts are not sufficient, and b) the concept probabilities of the Sequential CBM are also not
sufficient (The probability numbers shown are constructed only for visualisation purposes).

The Mixed Joint CBM algorithm (MCBM-Joint) is a direct extension to MCBM-Seq and the
underlying logic is presented in Fig. 7. For the given example with annotated concepts, both the
Decision Tree of the Hard CBM and its path extension of MCBM-Seq cannot identify the class of
the bird. If we also have in our disposal a trained Joint CBM, we could repeat the algorithm and find
a new path extension using the concept probabilities from the concept predictor of the Joint CBM.
This time, the updated decision path is able to make the correct distinction.

A.6 DATASETS: ADDITIONAL DETAILS

CUB: The dataset is concept-complete, as all classes can be distinguished based on the ground
truth annotated concepts at training time. To simulate the scenario of missing concept informa-
tion, we select 45 out of the 112 concepts by picking all concepts from the following concept
groups: ”has-bill-shape”, ”has-wing-color”, ”has-upperparts-color”, ”has-underparts-color”, ”has-
breast-pattern”, ”has-back-color”, ”has-upper-tail-color”, ”has-breast-color”.

MIMIC-IV: From the total number of ICU admissions, we extract those patients with only one
reported ICU Admission and whose age is between 18 and 90 years old. Moreover, for our mortality
prediction task, we only select patients that were in the ICU for 48 hours or less. We use the
following measurements as features for the length of their stay: creatinine, urine, norepinephrine,
epinephrine, dobutamine, dopamine, mean blood pressure, P/F ratio, num. plalelets. Using these
features, we calculate the SOFA scores Lambden et al. (2019), which provide an assessment for
the condition of the following systems in the human body: respiratory, coagulation, liver (hepatic),
cardiovascular, neurological (Glasgow coma scale) and renal. To construct concepts, we annotate
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Algorithm 2 Mixed Joint CBM Training (MCBM-Joint)

Input: N = {1, ..., n} samples; K = {1, ..., k} concepts; R = {1, ..., r} classes;
A dataset Dtrain = {X,C, Y }, where X ⊂ Rd, C ⊂ {0, 1}k, Y ⊂ {0, 1}r;
A set of Ntest samples with Xtest ⊂ Rd; Minimum Samples per leaf (msl).

Output: A hard tree: Thard; a set of soft trees using concept probabilities from a
Sequential CBM: Tseq = {T1, ..., TM}; a set of soft trees using concept
probabilities from a Joint CBM: Tjoint = {T1, ..., TM}; test predictions Ŷ .

1: procedure TRAINING(Dtrain,msl)
2: Train the concept predictor f : X → Ĉ, where Ĉ ⊂ [0, 1]

k (Eq. 1);
3: Fine-Tune the predictor fjoint using the Joint-Training objective of Eq .3;
4: ...
5: return Thard, Tseq, Tjoint
6: end procedure
7:
8: procedure TRAINING SUB-TREE(Dtrain, f, Thard)
9: (Same as in Algorithm 1);

10: return Tsoft
11: end procedure
12:
13: procedure EVALUATION(Xtest, f, Thard, Tjoint)
14: (Same as in Algorithm 1);
15: return Ŷ
16: end procedure

SOFA scores 0-1 as concept 0 (normal), 2-3 as concept 1 (moderate), and 4 as concept 2 (severe).
We thus have 18 concepts, 3 per system.

A.7 HYPER-PARAMETER SETTING

We provide the hyper-parameters used for training the independent Concept and Label Predictors
of MCBM-Seq. In the case of MCBM-Joint, an additional fine-tuning step of the concept predictor
is performed using the Joint objective of Eq. 3. We test either the CHAID (Kass, 1980) or the
CART (Breiman et al., 1984) algorithm to train the Decision Trees.

Table 4: Hyperparameter setting of MCBM-Seq, MCBM-Joint used by Morpho-MNIST, CUB-200
and MIMIC-IV

Setting Morpho-MNIST CUB-200 MIMIC-IV
Concept Predictor LeNet ResNet-18 MLP: [128,64,2]
Learning rate (x→ c) 0.001 0.001 0.01
Optimiser Adam Adam Adam
Weight-decay 0.00001 0.00001 0
Epochs 200 300 50
Decision Tree Algorithm used CHAID CART CHAID
Minimum samples per leaf (msl) 1 150 30
Probability Calibration Temperature Platt Temperature

Joint-training epochs 50 100 50
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A.8 CONTROLLING THE GROUP SIZE

A.8.1 MORPHO-MNIST

We test the size of the resulting trees compared to the performance accuracy for the Morpho-MNIST
dataset. We observe that the msl constraint controls the Performance/Interpretability trade-off. As
expected, both the number of Tree nodes and the Task Accuracy increase as the msl constraint is
reduced. However, an msl close to 1 may not improve performance or even result in over-fitting.
The advantage of the msl hyper-parameter is that it is human intuitive, as it directly controls the
minimum size of our desired groups to perform explanations.

msl = 150
MCBM-Seq MCBM-Joint

λC = 100

Task Accuracy 0.496 0.560
Concept Accuracy 0.894 0.905
Num. Tree Nodes 147 155

msl = 20
MCBM-Seq MCBM-Joint

λC = 100

Task Accuracy 0.551 0.595
Concept Accuracy 0.894 0.905
Num. Tree Nodes 795 756

msl = 5
MCBM-Seq MCBM-Joint

λC = 100

Task Accuracy 0.552 0.708
Concept Accuracy 0.894 0.905
Num. Tree Nodes 2455 2406

Table 5: Performance of MCBM-Seq, MCBM-Joint on Morpho-MNIST, with decreasing msl.

A.8.2 MIMIC-IV

In this section we demonstrate that the msl constraint does not only affect the Task Accuracy and
the total size of the MCBM-Seq or MCBM-Joint tree, but also the meaning of our explanations in
terms of the Information Leakage inspected by either method.

In the following figures, the MIMIC-IV trees are shown after the application of the MCBM-Seq
algorithm for low, medium and high msl values. The nodes annotated dark grey show the splits
of the global tree, and the nodes with light grey show those of a leaky extension, if found. When
msl = 150, we observe that the tree is too restricted for this small-sized dataset. Yet, the MCBM-
Seq is able to find a leaky split under this constraint for patients whose renal system is in moderate
condition (SOFA score 2-3). If the concept predictor is more than 80% confident that the condition
of a given patient is indeed moderate, the label predictor is more confident that this patient may live.
When the constraint is slightly relaxed at msl = 70, we observe that the corresponding tree can
split the same group of patients with a second hard concept (condition of the cardiovascular system)
and does not need to use Information Leakage. Thus, this constraint fits better for this dataset. For
medium-sized groups, using an msl = 50, we observe that the predictor can fit the data even better,
without the presence of leakage. However, when msl = 30, the two discovered leaky rules are
very non-intuitive: When the concept predictor is more than 90% confident that the renal system is
in severe condition, it is more likely that a patient may live. When a rule is very non-intuitive, it
indicates a high noise in concept annotations. On the contrary, the leaky rule described in the first
tree aligns with human intuition. This case-study shows that tuning the msl constraint is critical
for the performance and interpretability of our methods. Yet, this is the only single hyper-parameter
that our label-predictor has.
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(a) MCBM-Seq on MIMIC-IV: msl = 150. (b) MCBM-Seq on MIMIC-IV: msl = 70.

Figure 8: MCBM-Seq on MIMIC-IV with groups of large size.

Figure 9: MCBM-Seq on MIMIC-IV with groups of medium size: msl = 50.

Figure 10: MCBM-Seq on MIMIC-IV with groups of small size: msl = 30.
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A.9 MCBM-SEQ ON MORPHO-MNIST: FULL TREES

Figure 11: PART 1: MCBM-Seq - Full Merged Tree on Morpho-MNIST with msl = 150, split in
four images. The dark grey nodes show the decision rules of the global tree, and do not introduce
leakage. The white grey nodes show the leaky splits of the corresponding sub-tree, if found. Indi-
cators in the top of the pictures indicate where the following or previous picture starts. Indicator 1
shows the root of the tree.
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Figure 12: PART 2: MCBM-Seq - Full Merged Tree on Morpho-MNIST with msl = 150, split in
four images. The dark grey nodes show the decision rules of the global tree, and do not introduce
leakage. The white grey nodes show the leaky splits of the corresponding sub-tree, if found. Indi-
cators in the top of the pictures indicate where the following or previous picture starts. Indicator 1
shows the root of the tree.
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A.9.1 DECISION PATHS

Figure 13: PART 1: MCBM-Seq - Full Merged Tree on Morpho-MNIST with msl = 150: All
decision paths of the merged tree. If a sub-tree is found for a decision path, the complete sub-tree is
shown.
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Figure 14: PART 2: MCBM-Seq - Full Merged Tree on Morpho-MNIST with msl = 150: All
decision paths of the merged tree. If a sub-tree is found for a decision path, the complete sub-tree is
shown.
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A.10 CUB

We give the full decision path of the case study described in section 5.3 in Fig. 15 below. As we
described, the label predictor observes that the concept predictor is less than 70% confident that the
Red Bellied Woodpeckers have a solid breast pattern, while it is more confident for the vast majority
of Red Headed Woodpeckers that they possess this attribute. While it is not the main focus of this
work, we provide a visually plausible intuition for this result in Fig. 16, by examining many birds
of the two classes. Our intuition is that the concept predictor generally assigns higher probabilities
to Red Headed Woodpeckers because their breast colour is completely white and thus their pattern
is solid, while that of Red Bellied Woodpeckers often shows orange dots. This is an example which
shows that calibrated input probabilities can often be human-intuitive.

Figure 15: A case study in the CUB Wah et al. (2011) dataset. The Figure shows the corresponding
decision path on the global tree (left) and how this is extended using Information Leakage (right) by
the MCBM-Seq method to improve performance.
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Figure 16: CUB: More birds of the classes ”Red bellied Woodpecker” and ”Red headed Wood-
pecker”. The confidence of the concept predictor is shown per bird for the concepts: ”has-breast-
pattern-solid”, and ”has-underparts-colour-black”.
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A.10.1 CUB:MORE DECISION PATHS

Figure 17: Indicative Decision Paths of the merged MCBM-Seq tree on CUB. For the selected
paths, a leaky sub-tree is found. Each new decision path distinguishes a pair of bird classes that
were previously indistinguihable.
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