
Enhancing Time Series Forecasting through Selective
Representation Spaces: A Patch Perspective

Xingjian Wu, Xiangfei Qiu, Hanyin Cheng, Zhengyu Li,
Jilin Hu, Chenjuan Guo, Bin Yang∗

East China Normal University
{xjwu,xfqiu,hycheng,lizhengyu}@stu.ecnu.edu.cn,

{jlhu,cjguo,byang}@dase.ecnu.edu.cn

Abstract

Time Series Forecasting has made significant progress with the help of Patching
technique, which partitions time series into multiple patches to effectively retain
contextual semantic information into a representation space beneficial for modeling
long-term dependencies. However, conventional patching partitions a time series
into adjacent patches, which causes a fixed representation space, thus resulting in
insufficiently expressful representations. In this paper, we pioneer the exploration
of constructing a selective representation space to flexibly include the most informa-
tive patches for forecasting. Specifically, we propose the Selective Representation
Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic
Reassembly techniques to adaptively select and shuffle the patches from the contex-
tual time series, aiming at fully exploiting the information of contextual time series
to enhance the forecasting performance of patch-based models. To demonstrate
the effectiveness of SRS module, we propose a simple yet effective SRSNet con-
sisting of SRS and an MLP head, which achieves state-of-the-art performance on
real-world datasets from multiple domains. Furthermore, as a novel plug-and-play
module, SRS can also enhance the performance of existing patch-based models.
The resources are available at https://github.com/decisionintelligence/SRSNet.

1 Introduction

Time series organize data points chronologically and are either univariate or multivariate depending
on the number of variables in each data point. Among the diverse tasks in time series analysis, time
series forecasting (TSF) stands out as a critical and widely studied task. It plays a crucial role in
various fields such as economics, traffic, energy, and AIOps, providing insights for early warnings
and proactive decision-making [Qiu et al., 2024, 2025a, Chen et al., 2024, Wu et al., 2024a,b].

In recent years, significant progress has been made in TSF with the advancement of deep learning
technologies. Among these techniques, the method of dividing time series into patches [Cirstea et al.,
2022a, Zhang and Yan, 2022, Nie et al., 2023] has gradually gained attention. The significance of
dividing time series into patches lies in the fact that a single time step often lacks clear semantic
meaning, while the semantic information between adjacent time points tends to be highly similar.
Therefore, by performing patch division on the time series, local features and intrinsic patterns can
be captured more effectively. In other words, the patching technique introduces an effective way to
construct the representation space for a contextual time series, which first picks the patches adjacent,
then projects them to form the representations of the contextal time series. Working upon such
representations not only enhances the models’ ability to understand temporal dependencies but also
significantly reduces computational complexity, thereby improving overall prediction efficiency.

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/decisionintelligence/SRSNet

Contextual Series Forecasting Horizon

Loss of
Information

Out of
distribution

Disturbance
from noise

C
ha

ng
ea

bl
e

 P
er

io
ds

S
hi

fti
ng

A
no

m
al

ie
s

Adjacent Patching

Selective Patching

C
ha

ng
ea

bl
e

 P
er

io
ds

S
hi

fti
ng

A
no

m
al

ie
s

Retainment of
periodicity

In distribution

Avoid
anomalies

Figure 1: Adjacent vs. Selective Patching (both
using 4 patches). Adjacent patching partitions time
series into adjacent patches, lacking flexibility. Se-
lective patching automatically select most relevant
sub-series as patches. The upper part shows ex-
amples that conventional adjacent patching may
include harmful information, thus hindering the
forecasting performance. The lower part shows the
selected patches that are more relevant for making
the corresponding forecasting, demonstrating the
flexibility that selective patches offer.

However, the commonly-used adjacent patching
technique, i.e., with fixed stride, divides patches
on different contextual time series with the same
positions, which results in a fixed representa-
tion space. Though multi-scale modeling [Chen
et al., 2024, Tang and Zhang, 2025a] may cre-
ate several representation spaces with different
patch sizes, the fixed strides also limit the po-
tential. Because fixed representation spaces as-
sume that all information useful for forecasting
is evenly distributed in the contextual time se-
ries. As shown in the upper part of Figure 1, the
assumption is broken due to the phenomenons of
changeable periods, shifting, and anomalies. In
such cases, the conventional adjacent patching
may break the semantics of periods or include
anomalies and the shifting processes, which re-
tains information that may be harmful for fore-
casting into the representation space. Since the
purpose of patching technique is to construct
appropriate representations for contextual time
series, allowing models to adaptively include
useful information for forecasting is a more rea-
sonable solution. Therefore, this calls for a selec-
tive representation space to mitigate the above
phenomenons, which relies on a more flexible
and adaptive patching paradigm.

Inspired by the aboved motivations, we propose
SRS, a plug-and-play module to efficiently con-
struct the Selective Representation Space for
contextual time series. Technically, we propose
the Selective Patching to select the patches from
the contextual time series, and utilize the Dynamic Reassembly to determine the sequence of patches.
Both the Selective Patching and Dynamic Reassembly are designed through a gradient-friendly
paradigm and optimized by the objective of forecasting tasks to pursue better prediction accuracy,
thus fully exploiting the information in the contextual time series in an adaptive way. We also
propose a simple yet effective SRSNet composed of SRS and an MLP head. Through comprehensive
experiments on datasets from multiple domains, SRSNet achieves state-of-the-art performance to
demonstrate the SRS’s strong capability of information integration. The contributions are summarized
as follows:

• We propose a modular SRS, which efficiently and adaptively constructs the selective representa-
tion space to fully exploit the information in the contextual time series, and is able to improve
the performance of patch-based models in a simple plug-and-play paradigm.

• Technically, we devise the Selective Patching and Dynamic Reassembly techniques, which are
able to constitute a selective representation space at the patch perspective. And they are easily to
be optimized through gradient-based strategies.

• Applying SRS with an MLP forms a simple-yet-effective method, called SRSNet. SRSNet
achieves state-of-the-art performance across multiple real-world datasets, demonstrating the
effectiveness of SRS module.

2 Related works

2.1 Development of Time Series Forecasting

Time series forecasting (TSF) predicts future observations based on historical observations. Early pro-
posals primarily employed statistical learning methods. ARIMA [Box and Pierce, 1970], ETS [Hyn-
dman et al., 2008], and VAR [Godahewa et al., 2021] are classical and widely utilized methods.With

2

the rapid progress in machine learning technologies, new methods for TSF leveraging machine
learning have been developed [Fischer et al., 2020]. Notably, XGBoost [Chen and Guestrin, 2016],
Random Forests [Breiman, 2001] and LightGBM [Ke et al., 2017] have been applied extensively
to better accommodate nonlinear relationships and complex patterns. However, these methods still
require manual feature engineering and model design. Taking advantage of the representation learning
capabilities offered by deep neural networks (DNNs) on rich data, numerous deep learning-based
methods have been proposed. TimesNet [Wu et al., 2023a] and SegRNN [Lin et al., 2023] treat time
series data as sequences of vectors and utilize CNNs or RNNs to capture temporal dependencies.
Transformer architectures, including Informer [Zhou et al., 2021], FEDformer [Zhou et al., 2022],
Autoformer [Wu et al., 2021], Triformer [Cirstea et al., 2022b], and PatchTST [Nie et al., 2023] can
capture complex relationships between time points more accurately, significantly improving forecast-
ing performance. MLP-based methods, including SparseTSF [Lin et al., 2024a], CycleNet [Lin et al.,
2024b], DUET [Qiu et al., 2025a], NLinear [Zeng et al., 2023], and DLinear [Zeng et al., 2023],
utilize relatively straightforward architectures with a reduced number of parameters. Nevertheless,
they have demonstrated highly competitive performance in forecasting accuracy.

2.2 Progress in Patch-based Time Series Forecastng Methods

Patching is a technique originally inspired by the Vision Transformer [Dosovitskiy et al., 2021] and
was first introduced in the context of time series forecasting by Triformer [Cirstea et al., 2022a] and
PatchTST [Nie et al., 2023]. In Triformer and PatchTST, time series are segmented into subseries-
level patches, which are then treated as input tokens to the Transformer, allowing for modeling
temporal dependencies at the patch level. Crossformer [Zhang and Yan, 2022] further extends this
idea by segmenting each time series into patches and employing self-attention mechanisms to model
dependencies across both variables and time dimensions. xPatch [Stitsyuk and Choi, 2025a] adopts
the same patch segmentation strategy as PatchTST but introduces a dual-flow architecture consisting
of an MLP-based linear stream and a CNN-based nonlinear stream. This design explores the
advantages of combining patching with channel-independence techniques within a non-transformer
framework. Pathformer [Chen et al., 2024] and PatchMLP [Tang and Zhang, 2025b] delve deeper
into the effectiveness of patches in time series forecasting and adopt Multi-Scale Patch Embedding.
This method effectively captures multiscale relationships within input sequences, providing a more
enriched representation for downstream forecasting tasks. Nevertheless, current methods overlook
issues related to fixed patch strides, which results in fixed representation spaces and may lead
to information loss or include unhelpful information. In this paper, we introduce the Selective
Representation Space (SRS) module for time series data, which adaptively selects patches and
determines their sequences to fully exploit the information in the contextual time series.

3 Methodology

Given a contextual time series X ∈ RN×T with N channels and T observations, the objective of time
series forecasting is to predict the target future horizon Y ∈ RN×L with L steps. The Representation
Space is constructed through the patching & embedding operations upon the contextual time series,
which first choose the representative subsequences, i.e., patches, and then obtain their embeddings.
Recent methods adopt adjacent patching technique [Nie et al., 2023, Zhang and Yan, 2022, Stitsyuk
and Choi, 2025b, Tang and Zhang, 2025a, Chen et al., 2024, Sun et al., 2025a, Niu et al., 2025],
which leads to fixed representation spaces for different contextual time series by retrieving patches
from the same indices. Our proposed Selective Representation Space (SRS) Module (Figure 2), as a
plug-and-play technique, aims at making full use of the contextual time series by constructing flexible
Selective Representation Spaces to enhance the performance of patch-based models.

3.1 Structure Overview

Note that the time series data is always first processed through the Instance Normalization to mitigate
the statistical differences between training and testing parts, which reduces the difficulty of model
generalization. We then describe the overall pipeline of the Selective Representation Space (SRS)
module in Figure 2 by considering the data flow of an input contextual time series X ∈ RN×T .

We first reintroduce the conventional patching [Cirstea et al., 2022a, Nie et al., 2023], i.e., the
adjacent patching. Given the patch size p and stride length s, the contextual time series X ∈ RN×T

3

Patch
Embedding

① × 1 ② × 1 ③ × 2 ④ × 2 ① ②③ ③ ④ ④

① × 2 ② × 3 ③ × 1

③ × 4① ① ②③ ③ ③ ③

① ①② ② ② ③

Selective
Patching Dynamic

Reassembly

Adaptive Fusion

Adaptive Fusion

Adaptive Fusion

Position
Embedding

Patch
Embedding

Adjacent
Patching

Patch-based
models

Adjacent
Patching

Adjacent
Patching

Dynamic
Reassembly

Dynamic
Reassembly

Selective
Patching

Selective
Patching

Patch
Embedding

Patch
Embedding

Patch
Embedding

Patch
Embedding

Position
Embedding

Position
Embedding

②

Channel 1

Channel 2

Channel 3

Figure 2: The overall pipeline of the SRS module. The multivariate time series is processed with
Channel Independent strategy, the Selective Patching first adaptively chooses proper patches from all
potential candidate patches. Then the Dynamic Reassembly dertermines the order of the selected
patches. Both the Selective Patching and Dynamic Reassembly are gradient-based and learnable.
Finally, the Adaptive Fusion integrates the embeddings from Conventional Patching and Dynamic
Reassembly, adds the position embeddings to construct the final representations. The subsequent
backbones can be used directly without changes, so that the SRS module is a modular plugin.

is first padded as X ′ ∈ RN×[p+(n−1)·s], and then reorganized as n = ⌈(T − p)/s⌉ + 1 patches
P ∈ RN×n×p. The Conventional Patching stably fetches the patches of fixed indices in different
contextual time series, while SRS module aims at automatically selecting patches for each contextual
time series.

Considering all potential patch candidates in the padded contextual time series X ′ ∈ RN×[p+(n−1)·s],
there totally exists K = (n− 1) · s+ 1 patches. Instead of selecting n fixed ones with equal space,
our proposed Selective Patching technique is able to adaptively choose n patches to spontaneously
utilize the information from the contextual time series, which is continously optimized during
backpropagation. The Selective Patching also allows repeated selection, which means that beneficial
patches can be selected more than one time. This helps the SRS module “imagine” a more suitable
and useful representation space for forecasting. Statistically, there exists Cn

K+n−1 potential options
to construct a representation space. We introduce the details of the Selective Patching in Section 3.2.

Since the essence of SRS module is to reorganize the contextual series which treats the patches as the
basic units. We study to what extent the order of selected patches matters, because most methods
adopt permutation-variant components which are sensitive to the order. To this end, the Dynamic
Reassembly tenchnique is designed to adaptively determine the order of the n selected patches of each
contextual time series, which statistically provides n! potential options. The Dynamic Reassembly is
also learnable, and the details are introduced in Section 3.3.

In summary, the Selective Patching and Dynamic Reassembly jointly construct a search space with
the size of Cn

K+n−1 · n!, and they are optimized efficiently through a gradient-based strategy to
explore such huge search space. Finally, we conduct an Adaptive Fusion during the embedding phase
to adaptively fuse the embeddings from the Conventional Patching and our method, making them
complement each other. We introduce it in Section 3.4. Working as a plug-and-play technique, SRS
Module can be easily integrated into patch-based backbones.

3.2 Selective Patching

The objective of Selective Patching is to adaptively choose n patches with size p from the padded
contextual time series X ′ ∈ RN×[p+(n−1)·s], to align with the Conventional Patching. As shown in
Figure 3 left, we scan the contextual time series with stride equals 1, where all potential patches are
represented as P ′ ∈ RN×K×p,K = (n− 1) · s+ 1.

To adaptively choose n patches from the total K ones, we devise an MLP-based Scorers to score
each patch, and then select the one with the highest score based on the ranking. The sample-wised

4

Selective Patching Dynamic Reassembly

…

scan with stride = 1

Generate scores of all
patches for each sampling

argmax

selected indices (just an example)

22 116 58 120 71

Generate scores of
selected patches

Embedding

Sort the patches
by the scores

Patch
Embedding

Position
Embedding

Selected
Representation

Fused with the
embedding from

Adjacent Patching

Legend
Learnable
Parts

PatchesSa
m

pl
eN

um
=

PatchNum =
(stride = 1)

PatchNum =
(stride = 1)

Sa
m

pl
eN

um
=

Figure 3: The detailed architecture of the SRS module. The Selective Patching allows sampling with
replacement. It scans all the potential patches with stride equals 1, generates n scores for each, then
retrieves the patches with max scores in each sampling. Then the Dynamic Reassembly generates
scores for selected patches, and sorts them based on the scores to determine the sequence. In the
Embedding phase, both the embeddings from the Dynamic Reassembly and Conventional Patching
are adaptively fused to form the representations.

process is inspired by Selective State Space Models such as Mamba [Dao and Gu, 2024], which
maintains real-time scores based on the data characteristics. Furthermore, to support selection with
replacement, we generate n scores for each patch, denoting the scores of n times of sampling:

Scorers := RN×K×p → RN×K×n, (1)

Ss = Scorers(P ′), Is = Argmax(Ss), (2)

where Ss ∈ RN×K×n denotes the scores of n times of sampling, and Is ∈ RN×1×n dentoes the
indices of patches with maximal scores. However, the Argmax operation interrupts the gradient
propagation, and existing soft sorting methods [Cuturi et al., 2019, Blondel et al., 2020] keep gradient
propagation but introduce noise and inaccuracies, making the sorting non-intuitive. To mitigate this,
we devise a method to achieve differentiable sorting and keep accurate as the traditional methods.
Note that gradients are attached to Ss, we intuitively reuse it with a simple yet effective method:

Ss
max = Ss[Is],Ss

inv = detach(1/Ss
max), (3)

Ps
max = P ′[Is], Es = Ss

max ⊙ Ss
inv, (4)

P̃s
max = Ps

max ⊙ Es, (5)

where [·] means retrieving values based on the indices, Ss
max,Ss

inv ∈ RN×n denote the maximum
scores and their reciprocal. We take the Hadamard product of the selected patches Ps

max ∈ RN×n×p

with Es ∈ RN×n to attach the gradients to P̃s
max ∈ RN×n×p through tensor broadcast along the

dimension of patch size. Obviously, Es is an all-one matrix with gradients, because we detach Ss
inv

from the calculation graph to make a hard connection to create the paths of gradients.

3.3 Dynamic Reassembly

After obtaining the selected patches P̃s
max ∈ RN×n×p, the order of them is further considered to

enhance the construction of the representation space. As shown in Figure 3 middle, the Dynamic
Reassembly is devised to adaptively learn an order to reorganize the selected patches.

Following the design of Selective Patching, we also utilize an MLP-based Scorerr to score the selected
patches P̃s

max ∈ RN×n×p. Different from Selective Patching, the Dynamic Reassembly processes
the permutation problem so that the Scorerr only generates one score for each selected patch:

Scorerr := RN×n×p → RN×n, (6)

Sr = Scorerr(P̃s
max), Ir = Argsort(Sr), (7)

where Sr ∈ RN×n denotes the scores of selected patches, Ir ∈ RN×n denotes the indices sorted
by the scores Sr. We then sort the patches according the indices Ir and use the same technique in

5

Selective Patching to keep gradient propagation:

Sr
sort = Sr[Ir],Sr

inv = detach(1/Sr
sort), (8)

Pr
sort = P̃s

max[Ir], Er = Sr
sort ⊙ Sr

inv, (9)

P̃ = Pr
sort ⊙ Er, (10)

where Sr
sort,Sr

inv ∈ RN×n denote the sorted scores and their reciprocal. The Pr
sort ∈ RN×n×p

denotes the sorted patches, and P̃ ∈ RN×n×p denotes the sorted patches attached with gradients.
Er ∈ RN×n is obtained by the same way as Es.

3.4 Embedding

Through Selective Patching and Dynamic Reassembly, P̃ ∈ RN×n×p are the finally determined
patches to represent the contextual time series X ∈ RN×T , which also determines the structure of
the representation space. We then manage to obtain the embeddings of these patches to feed the
patch-based backbones.

To fully utilize the information from both the constructed patches P̃ ∈ RN×n×p and the conventional
adjacent patches P ∈ RN×n×p, we design the Adaptive Fusion to fuse their patch embeddings.
Technically, we construct a convex combination between their patch embeddings:

PatchEmbedding1,PatchEmbedding2 := RN×n×p → RN×n×d, (11)

Ec = PatchEmbedding1(P), Es = PatchEmbedding2(P̃), (12)

Ẽ = α⊙ Ec + (1− α)⊙ Es, (13)

where PatchEmbedding denotes a linear projection and is commonly used in time series analysis
to encode the patches as embeddings. For embeddings from conventional patching Ec ∈ RN×n×d

and our proposed method Es ∈ RN×n×d, they are balanced with α ∈ [0, 1]n×d (broadcast) to work
in a complementary manner. Note that α ∈ [0, 1]n×d is the most suitable case beacuse the channel
dimension N may be vague in some special circumstances such as pretraining. Finally, we add the
PositionEmbedding such as Sinusoidal Embedding [Vaswani et al., 2017] to supplement location
information.

E = Ẽ + PositionEmbedding(P̃), (14)

where the E ∈ RN×n×d are the embeddings generated by our proposed SRS Module. Subsequently,
they are fed into the patch-based backbones [Tang and Zhang, 2025a, Nie et al., 2023, Zhang and
Yan, 2022, Stitsyuk and Choi, 2025b] to extract the interrelationship. These backbones often consist
of an Encoder to further extract the representaions of these embeddings, and a Decoder (linear heads
or autoregressive heads) to make forecasts based on the representations. SRS Module directly affects
the representation space of Encoders through an adaptive way, so that it is named as “Selective
Representation Space”.

4 SRSNet

To demonstrate the strong ability of the SRS module to fully utilize contextual time series at a Patch
Perspective, we design a simple yet effective model named SRSNet. It consists of SRS module and a
Linear/MLP Head (≤ 2 layers), which can theoretically fit any continuous function according to the
universal approximation theorem [Lu et al., 2021]. SRSNet is trained through Mean Squared Error
(MSE) for forecasting tasks:

Flatten := RN×n×d → RN×(n×d),MLP := RN×(n×d) → RN×L, (15)

Ŷ = MLP(Flatten(E)),Loss = ||Y − Ŷ ||22 (16)

As shown in Section 5, the strong performance of SRSNet demonstrates that SRS module makes full
use of the contextual time series, and performs well without a complex backbone.

6

5 Experiments

5.1 Experimental Details

Datasets To conduct comprehensive and fair comparisons for different models, we conduct experi-
ments on eight well-known forecasting benchmarks as the target datasets, including ETT (4 subsets),
Weather, Electricity, Solar, and Traffic, which cover multiple domains–see Table 1.

Table 1: Statistics of datasets.

Dataset Domain Frequency Lengths Dim Split Description

ETTh1 Electricity 1 hour 14,400 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Electricity Electricity 1 hour 26,304 321 7:1:2 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Solar Energy 10 mins 52,560 137 6:2:2 Solar production records collected from 137 PV plants in Alabama
Traffic Traffic 1 hour 17,544 862 7:1:2 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways

Baselines We compare SRSNet against state-of-the-art models in recent years, including
TimeKAN [Huang et al., 2025a], Amplifier [Fei et al., 2025], iTransformer [Liu et al., 2024],
TimeMixer [Wang et al., 2024], PatchTST [Nie et al., 2023], Crossformer [Zhang and Yan, 2022],
TimesNet [Wu et al., 2023a], DLinear [Zeng et al., 2023], Non-stationary Transformer (Station-
ary) [Liu et al., 2022], and Fedformer [Zhou et al., 2022].

Implementation Details To keep consistent with previous works, we adopt Mean Squared Error
(mse) and Mean Absolute Error (mae) as evaluation metrics. We consider four forecasting horizon
F : {96, 192, 336, 720} for all datasets. Since the size of the look-back window can affect the
performance of different models, we choose the look-back window size in {96, 336, 512} for all
datasets and report each method’s best results for fair comparisons.

5.2 Main Results

Comprehensive forecasting results are listed in Table 2 with the best in red bold and the second blue
underlined. We have the following observations: 1) Compared with forecasters of different structures
(Transformer, CNN, KAN, MLP, Linear), SRSNet achieves an excellent predictive performance. It
achieves most first rankings in average results and results of different forecastings horizons (Table 8
in Appendix A). 2) Compared to other methods with fixed representation space constructed through
conventional adjacent patching (such as PatchTST and Crossformer), SRSNet introduces an adaptive
patching mechanism to construct selective representation spaces, demonstrating superior performance
across a wider range of datasets. To demonstrate the selective representation spaces that are more
helpful for forecasting, we offer intuitive visualization results in Figure 5-7 in Appendix 5, which
demonstrates the capability of SRS in selecting most relevant patches for subsequent forecasting. In
summary, with the innovative design of SRS Module, even the simple SRSNet (SRS + MLP) can
flexibly handle datasets with diverse characteristics, thus standing out in various scenarios.

Table 2: Multivariate forecasting average results with forecasting horizons F ∈ {96, 192, 336, 720}
for the datasets. Red: the best, Blue: the 2nd best. Full results are available in Table 8 of Appendix A.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Solar Traffic

Metrics mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

FEDformer [2022] 0.433 0.454 0.406 0.438 0.567 0.519 0.335 0.380 0.312 0.356 0.219 0.330 0.641 0.628 0.620 0.382

Stationary [2022] 0.667 0.568 0.377 0.419 0.531 0.472 0.384 0.390 0.287 0.310 0.194 0.295 0.390 0.387 0.622 0.340

DLinear [2023] 0.430 0.443 0.470 0.468 0.356 0.378 0.259 0.324 0.242 0.295 0.167 0.264 0.224 0.286 0.418 0.287

TimesNet [2023] 0.468 0.459 0.390 0.417 0.408 0.415 0.292 0.331 0.255 0.282 0.190 0.284 0.211 0.281 0.617 0.327

Crossformer [2023] 0.439 0.461 0.894 0.680 0.464 0.456 0.501 0.505 0.232 0.294 0.171 0.263 0.205 0.232 0.522 0.282

PatchTST [2023] 0.419 0.436 0.351 0.395 0.349 0.381 0.256 0.314 0.224 0.262 0.171 0.270 0.200 0.284 0.397 0.275

TimeMixer [2024] 0.427 0.441 0.347 0.394 0.356 0.380 0.257 0.318 0.225 0.263 0.185 0.284 0.203 0.261 0.410 0.279

iTransformer [2024] 0.440 0.445 0.359 0.396 0.347 0.378 0.258 0.318 0.232 0.270 0.163 0.258 0.202 0.260 0.397 0.281

Amplifier [2025] 0.421 0.433 0.356 0.402 0.353 0.379 0.256 0.318 0.223 0.264 0.163 0.256 0.202 0.256 0.417 0.290

TimeKAN [2025] 0.409 0.427 0.350 0.397 0.344 0.380 0.260 0.318 0.226 0.268 0.164 0.258 0.198 0.263 0.420 0.286

SRSNet 0.404 0.424 0.334 0.385 0.351 0.378 0.252 0.314 0.226 0.266 0.161 0.254 0.183 0.239 0.392 0.270

7

5.3 Ablation Study and Analysis

To investigate the effectiveness of SRS, we conduct comprehensive experiments on four datasets
from multiple domains with different lengths and numbers of variables: ETTh1, ETTm2, Solar, and
Traffic. The experiments include two parts, one is to analyze the effectiveness of SRS to enhance
the prediction accuracy of patch-based models, and the other is to analyze the influences of different
components in SRS, i.e., Selective Patching, Dynamic Reassembly, and Adaptive Fusion.

Ablation study of SRS To demonstrate the SRS’s capablities of working as a modular plugin to
enhance the prediction accuracy of patch-based models, we combine SRS with naive MLP, i.e.,
SRSNet, classic models Crossformer [Zhang and Yan, 2022] and PatchTST [Nie et al., 2023], and
recent state-of-the-art models xPatch [Stitsyuk and Choi, 2025b] and PatchMLP [Tang and Zhang,
2025a]. The average results of different horizons are shown in Table 3.

Table 3: Ablation study of SRS. Five models are
considered to show the effectiveness of SRS to
work as a plugin. Black: the improvement. Full
results are available in Table 11–12 of Appendix A.

Datasets ETTh1 ETTm2 Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

MLP 0.430 0.451 0.273 0.336 0.219 0.277 0.413 0.284

+ SRS 0.404 0.424 0.252 0.315 0.183 0.239 0.392 0.270

Improve 6.05% 6.06% 7.70% 6.31% 16.08% 13.47% 5.26% 4.88%
PatchTST 0.419 0.436 0.256 0.314 0.200 0.284 0.397 0.275

+ SRS 0.404 0.426 0.249 0.307 0.182 0.251 0.386 0.266

Improve 3.48% 2.20% 3.00% 2.33% 8.87% 11.13% 2.74% 3.34%
Crossformer 0.439 0.461 0.501 0.505 0.205 0.232 0.522 0.282

+ SRS 0.432 0.455 0.454 0.462 0.193 0.225 0.512 0.274

Improve 1.55% 1.45% 9.83% 8.22% 5.66% 2.92% 1.85% 2.84%
PatchMLP 0.435 0.443 0.261 0.322 0.193 0.250 0.413 0.287

+ SRS 0.422 0.436 0.253 0.315 0.179 0.242 0.402 0.277

Improve 2.99% 1.55% 2.94% 2.31% 7.00% 3.11% 2.57% 3.41%
xPatch 0.416 0.429 0.253 0.308 0.186 0.210 0.398 0.248

+ SRS 0.406 0.422 0.244 0.303 0.179 0.204 0.389 0.240

Improve 2.38% 1.66% 3.59% 1.86% 4.01% 2.61% 2.17% 3.38%

First, when combining SRS with a naive MLP,
a significant improvement of prediction accu-
racy (approximately 5% to 15%) is observed.
This demonstrates the impressive performance
of SRSNet comes from the SRS module, which
helps fully exploit the information of contextual
time series by adaptively constructing a selec-
tive representation space with Selective Patching
and Dynamic Reassembly. It also indicates that
consitituting a superio representation space is
somewhat more efficient and easier than design-
ing complex models to refine representations in
a mediocre representation space. Because the
former aims at lightening the burden on mod-
els by providing more effective representations,
thus especially effective for simple MLPs due to
the universal approximation theorem [Lu et al.,
2021], while the latter hopes model itself to ex-
tract the intricate inductive bias in data, thus unstable to different scenarios, e.g., Crossformer
performs well on Solar while poorly on ETTm2. This may be the main reason why SRSNet gains the
most improvements than other models.

Second, we further demonstrate that SRS is also useful for other patch-based models by providing
a better representation space. It is observed that incoperporating SRS still improves the predic-
tion accuarcy of existing patch-based models, with an average approximately 5% improvement on
PatchTST, Crossformer, xPatch, and PatchMLP. And it is also orthogonal to multi-scale techniques.
For PatchMLP which utilizes different sizes of patches to capture the multi-scale structural informa-
tion, SRS can be incorporated in the patch embedding part of each scale to pursue a more flexible
construction of representation spaces.

Ablation study of key components in SRS As SRS consists of Selective Patching, Dynamic
Reassembly, and Adaptive Fusion, it is important to analyze the influences of these components.

Table 4: Ablation Study of key components in
SRS. Four key components in SRS are verified as
to whether they are effective. Red: the best. Full
results are available in Table 9–10 of Appendix A.

Datasets ETTh1 ETTm2 Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

w/o SRS 0.430 0.451 0.273 0.336 0.219 0.277 0.413 0.284

w/o Selective
Patching 0.423 0.441 0.267 0.331 0.215 0.271 0.408 0.277

w/o Dynamic
Reassembly 0.413 0.428 0.261 0.324 0.193 0.246 0.407 0.278

w/o Adaptive
Fusion 0.412 0.429 0.263 0.326 0.196 0.251 0.402 0.277

SRSNet 0.404 0.424 0.252 0.314 0.183 0.239 0.392 0.270

As shown in Table 4, we conduct experiments
on four variants, eliminating the three key com-
ponents respectively (w/o Selective Patching,
w/o Dynamic Reassembly, and w/o Adaptive
Fusion) to verify their effectiveness, analyzing
their collaboration capability by comparing with
the naive MLP (w/o SRS).

Experimental results show that the Selective
Patching consistently has the greatest impact.
Theoretically, Selective Patching determines
which patches to be chosen to represent a contex-
tual time series, mainly affecting the construc-
tion of the representation spaces. The Dynamic
Reassembly and Adaptive Fusion are also effec-
tive. The Dynamic Reassembly supports SRS to adaptively reassemble the selected patches to provide

8

more potentially useful candidates of representation space. The Adaptive Fusion makes a convex
combination of the embeddings from both the conventional patching and SRS, providing complemen-
tary enhancement. Additionally, all these components cooperate with each other to construct the SRS
Module, producing positive impact on forecasting performance.

5.4 Efficiency Analysis

Our proposed SRS, as a modular plugin, mainly consists of two MLPs: Scorers and Scorerr. The
SRSNet consists of SRS and an MLP layer, is also significantly lightweight compared to other
multi-layer stacked neural networks. Table 5–6 report the efficiency of SRSNet the SRS module.

Table 5: Efficiency comparison between SRSNet
and other baselines on ETTh1 and Solar datasets
with look-back length equals 512, forecasting
horizon equals 720, and batch size equals 32.
The Max GPU Memory (MB) and Training Time
(s) per batch are reported as the main metrics.

Datasets ETTh1 Solar

Metrics Memory (MB) Training Time (s) Memory (MB) Training Time (s)

Linear DLinear 828 1.28 815 15.66

Amplifer 596 1.78 715 14.38

CNN TimesNet 2,846 14.95 13,141 1812.46

FEDformer 8,190 64.83 3,751 227.45

Stationary 18,386 40.22 18,529 156.27

Transformer Crossformer 3,976 17.13 16,375 205.60

PatchTST 1,404 2.49 26,777 137.60

iTransformer 722 4.14 1,015 20.66

TimeMixer 1,394 7.49 20,602 107.15

MLP TimeKAN 1,456 5.50 13,109 326.38

SRSNet 1,012 2.27 6,301 56.149

Table 6: Efficiency analysis of the SRS mod-
ule (the same settings as in Table 5). The Max
GPU Memory (MB), Inference Time (s) per
batch, Training Time (s) per batch, and Multiply-
Accumulate Operations (MACs) are reported as
the main metrics.

Datasets Variants Memory (MB) Inference (s) Training (s) MACs (G)

E
T

T
h1

PatchTST 2,837 5.076 5.131 16.214
+SRS 2,907 5.722 5.763 16.905

Overhead +2.47% +12.73% +12.31% +4.26%

Crossformer 4,011 27.503 32.613 56.280
+SRS 4,159 30.311 35.276 56.625

Overhead +3.69% +10.21% +8.17% +0.61%

So
la

r

PatchTST 27,822.08 84.231 88.714 600.261
+SRS 29,767.68 95.200 101.981 613.790

Overhead +6.99% +13.02% +14.95% +2.25%

Crossformer 17,355 79.031 82.472 61.822
+SRS 18,978 86.674 90.268 62.174

Overhead +9.35% +9.67% +9.45% +0.57%

The results in Table 5 show that SRSNet has significant advantages when compared with Transformer-
based models such as Crossformer, FEDformer, and PatchTST. For iTransformer, though it performs
more efficiently due to its embedding of the whole series, it consistently performs worse that SRSNet
under all the scenarios. When compared with recent state-of-the-art baselines TimeMixer and
TimeKAN, SRSNet also shows better efficiency. Though DLinear and Amplifer are the most efficienct
model due to their non-patch design and simple structures, they perform poorly on large datasets such
as Solar and Traffic, reflecting an insufficient capability in modeling long-term dependencies and
nonlinear learning. In summary, SRSNet achives a good balance between efficiency and performance,
demonstrating the SRS module organizes effective representation spaces for pattern learning.

In Table 6, the results further reveal the overhead introduced by the SRS module. Integrated like a
plugin into classical patch-based models PatchTST and Crossformer, the SRS module only introduces
about 10% increasement of Max GPU Memory, Inference Time, and Training Time, and under 5%
increasement of MACs, demonstarting the strong practicality in real-world applications.

5.5 Parameter Sensitivity

8 16 24 32
Patch Size

0.20

0.25

0.30

0.35

0.40

M
SE

ETTh1
ETTm2
Solar
Traffic

(a) Patch Size

96 336 512 720
Look Back Window

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

ETTh1
ETTm2
Solar
Traffic

(b) Look Back Window

1 2 3 4
Hidden Layer

0.20

0.25

0.30

0.35

0.40

M
SE

ETTh1
ETTm2
Solar
Traffic

(c) Hidden Layer

32 64 128 256
Hidden Dimension

0.20

0.25

0.30

0.35

0.40

M
SE

ETTh1
ETTm2
Solar
Traffic

(d) Hidden Dimension

Figure 4: Parameter sensitivity studies of main hyper-parameters in SRSNet.

We study the parameter sensitivity of SRSNet. Figure 4a shows the performance of SRSNet under
different patch sizes. Since the SRS module adaptively selects useful patches to contruct the represen-
tation space, it shows robust performance and we often choose 16 or 24 as common configurations.

9

Figure 4b demonstrates the capability of SRSNet to fully utilize the historical information. As the
length of Look Back Window extends, the performance becomes better. Figure 4c and Figure 4c
show the influences of the hidden layer and hidden dimension in the Scorers and Scorerr of SRS,
which determine the capacity of constructing the Selective Representation Space. The common
configurations of Scorers and Scorerr are 2 hidden layers with hidden dimension equals 128.

6 Discussion

Potential limitations The SRS module demonstrates its efficacy on SRSNet and other patch-based
models in LTSF scenarios. However, there are several potential limitations of SRS that warrant
discussion here:

• Impractical to non-patch models: The SRS module may not be suitable for those state-of-
the-art models which dose not adopt patching techniques. If it is used compulsorily, it can
be regarded as the case where the patch size equals 1. However, this will lose the semantics
of the patch itself and cause additional computational complexity overhead, which is not
practical. Luckily, current works about expert models and foundation models mainly focus
on patch-based modeling, thus providing more application prospects for the SRS module.

• Scaling law: We observe that the SRS module works stably with fixed hyperparameters
such as the hidden size and layer number on end-to-end scenarios. In the pretrain scenarios,
which adopt foundation models with billion-scale time series corpus, the effectiveness and
generalization of the SRS module need to be furtherly verified. Whether the SRS module
obeys the scaling law also needs more practical evidence.

• Interpretability: Since the SRS module is also optimized through gradient descent and the
gradient flow is coupled with the subsequent patch-based models, we can only ensure the
selected patches are useful for forecasting, but not all of them are interpretable. Therefore,
we choose to allow maximum freedom of the SRS module to adaptively dertermine which
patches to choose and the order of them.

• Initialization: The initialization of the weights α seems to be important. Although a
random initialization of α can also lead to best forecasting performance under a few epochs,
we recommend to manually initialize it when the prior knowledge of datasets is acquired,
such as increasing it when the datasets are periodic and stationary, and decreasing it when
the datasets are non-stationary and shifting. This can help enchance the convergence and
stability of the SRS module.

Future work The current SRS module is purely data-driven, which preserves lightweight but lacks
interpretability. In the future, we hope to devise an environment-aware mechanism to perceive the
patch-wise data distributions and patterns more explictly, which provides a potential solution for
designing the representation spaces adaptively and explainably. To further enhance the practical value
of SRS in Time Series Foundation Models, we think its capacity needs to be expanded to memorize
and distinguish heterogeneous data patterns, where the Mixture-of-Experts (MoE) with a strong
enough router can be a good solution. To solve the initialization problem in the SRS modlue, a more
efficient update mechanism for α deserves exploration. A potential solution is to design a module to
supervise the sample-wise data patterns, constructing a more explict optimization objective between
data patterns and α, which can also enhance the interpretability of the SRS module.

7 Conclusion

In this paper, we propose a modular SRS mainly composed of the Selective Patching and Dynamic
Reassembly, which adaptively select the patches and then reassemble them to fully exploit the infor-
mation in the contextual time series, thus mitigating the adverse effects from special phenomenons
like changable periods, anomalies, and shifting. The SRS module is gradient-based and works in a
plug-and-play paradigm to enhance the patch-based models in forecasting tasks. We also proposes
a simple yet effective SRSNet composed of the SRS module and an MLP head. Comprehensive
experiments on real-world datasets demonstrate that SRSNet achieves state-of-the-art performance,
and the SRS module can effectively improve the performance of patch-based models.

10

Acknowledgments and Disclosure of Funding

This work was partially supported by the National Natural Science Foundation of China (62472174,
62372179), and ECNU Multifunctional Platform for Innovation (001). Bin Yang is the corresponding
author of the work.

References
Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying

Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and fair
benchmarking of time series forecasting methods. In Proc. VLDB Endow., pages 2363–2377, 2024.

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
enhanced multivariate time series forecasting. In SIGKDD, 2025a.

Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In ICLR, 2024.

Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli Sheng,
and Christian S Jensen. Autocts++: zero-shot joint neural architecture and hyperparameter search
for correlated time series forecasting. The VLDB Journal, 33(5):1743–1770, 2024a.

Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S Jensen.
Fully automated correlated time series forecasting in minutes. arXiv preprint arXiv:2411.05833,
2024b.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Tri-
former: Triangular, variable-specific attentions for long sequence multivariate time series forecast-
ing. In IJCAI, pages 1994–2001, 2022a.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In ICLR, 2022.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In ICLR, 2023.

Peiwang Tang and Weitai Zhang. Unlocking the power of patch: Patch-based mlp for long-term time
series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, 2025a.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association, 65
(332):1509–1526, 1970.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. 2008.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. arXiv preprint arXiv:2105.06643, 2021.

Jan Alexander Fischer, Philipp Pohl, and Dietmar Ratz. A machine learning approach to univariate
time series forecasting of quarterly earnings. Review of Quantitative Finance and Accounting, 55:
1163–1179, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD, pages
785–794, 2016.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, 30, 2017.

11

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In ICLR, 2023a.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint
arXiv:2308.11200, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI,
volume 35, pages 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, pages 27268–27286,
2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. In NeurIPS, pages 22419–22430, 2021.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Tri-
former: Triangular, variable-specific attentions for long sequence multivariate time series forecast-
ing. In IJCAI, pages 1994–2001, 2022b.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with 1k parameters. In ICML, pages 30211–30226, 2024a.

Shengsheng Lin, Weiwei Lin, HU Xinyi, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
Enhancing time series forecasting through modeling periodic patterns. In NeurIPS, 2024b.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, volume 37, pages 11121–11128, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR. OpenReview.net, 2021.

Artyom Stitsyuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
seasonal-trend decomposition. In AAAI, 2025a.

Peiwang Tang and Weitai Zhang. Unlocking the power of patch: Patch-based mlp for long-term time
series forecasting. In AAAI, 2025b.

Artyom Stitsyuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
seasonal-trend decomposition. In Proceedings of the AAAI Conference on Artificial Intelligence,
2025b.

Yanru Sun, Zongxia Xie, Dongyue Chen, Emadeldeen Eldele, and Qinghua Hu. Hierarchical
classification auxiliary network for time series forecasting. In AAAI, volume 39, pages 20743–
20751, 2025a.

Wenzhe Niu, Zongxia Xie, Yanru Sun, Wei He, Man Xu, and Chao Hao. Langtime: A language-
guided unified model for time series forecasting with proximal policy optimization. In ICML,
2025.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, pages 10041–10071, 2024.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. Advances in neural information processing systems, 32, 2019.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pages 950–959. PMLR, 2020.

12

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008, 2017.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decomposition
learning architecture for long-term time series forecasting. In ICLR, 2025a.

Jingru Fei, Kun Yi, Wei Fan, Qi Zhang, and Zhendong Niu. Amplifier: Bringing attention to neglected
low-energy components in time series forecasting. In AAAI, 2025.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In ICLR, 2024.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, and
Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In ICLR,
2024.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In NeurIPS, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pages 8024–8035, 2019.

Xiangfei Qiu, Xiuwen Li, Ruiyang Pang, Zhicheng Pan, Xingjian Wu, Liu Yang, Jilin Hu, Yang Shu,
Xuesong Lu, Chengcheng Yang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, and Bin Yang.
EasyTime: Time series forecasting made easy. In ICDE, 2025b.

Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Jilin Hu, and Chenjuan Guo. A comprehensive survey
of deep learning for multivariate time series forecasting: A channel strategy perspective. arXiv
preprint arXiv:2502.10721, 2025c.

Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao
Xia. Calf: Aligning llms for time series forecasting via cross-modal fine-tuning. AAAI, 39(18):
18915–18923, 2025a.

Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S Jensen. Autocts+:
Joint neural architecture and hyperparameter search for correlated time series forecasting. In
SIGMOD, volume 1, pages 1–26, 2023b.

Xvyuan Liu, Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Chenjuan Guo, Bin Yang, and Jilin Hu.
Astgi: Adaptive spatio-temporal graph interactions for irregular multivariate time series forecasting.
arXiv preprint arXiv:2509.23313, 2025b.

Hua Lu, Bin Yang, and Christian S Jensen. Spatio-temporal joins on symbolic indoor tracking data.
In ICDE, pages 816–827, 2011.

Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan
Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, et al. Magicscaler: Uncertainty-aware, predictive
autoscaling. Proc. VLDB Endow., 16(12):3808–3821, 2023.

Shilin Lu, Yanzhu Liu, and Adams Wai-Kin Kong. Tf-icon: Diffusion-based training-free cross-
domain image composition. In ICCV, pages 2294–2305, 2023.

Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
erasure in diffusion models. In CVPR, pages 6430–6440, 2024a.

Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, and Adams Wai-Kin Kong. Robust watermarking
using generative priors against image editing: From benchmarking to advances. arXiv preprint
arXiv:2410.18775, 2024b.

13

Leyang Li, Shilin Lu, Yan Ren, and Adams Wai-Kin Kong. Set you straight: Auto-steering denoising
trajectories to sidestep unwanted concepts. arXiv preprint arXiv:2504.12782, 2025a.

Chen Yang, Yangfan He, Aaron Xuxiang Tian, Dong Chen, Jianhui Wang, Tianyu Shi, Arsalan
Heydarian, and Pei Liu. Wcdt: World-centric diffusion transformer for traffic scene generation.
arXiv preprint arXiv:2404.02082, 2024.

Yiyang Zhou, Yangfan He, Yaofeng Su, Siwei Han, Joel Jang, Gedas Bertasius, Mohit Bansal, and
Huaxiu Yao. Reagent-v: A reward-driven multi-agent framework for video understanding. arXiv
preprint arXiv:2506.01300, 2025.

Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang, and Christian S
Jensen. Weakly guided adaptation for robust time series forecasting. Proc. VLDB Endow., 17(4):
766–779, 2023.

Xiang Li, Yangfan He, Shuaishuai Zu, Zhengyang Li, Tianyu Shi, Yiting Xie, and Kevin Zhang.
Multi-modal large language model with rag strategies in soccer commentary generation. In WACV,
pages 6197–6206, 2025b.

Ruoyu Wang, Yangfan He, Tengjiao Sun, Xiang Li, and Tianyu Shi. Unitmge: Uniform text-motion
generation and editing model via diffusion. In WACV, pages 6104–6114, 2025a.

Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Bin Yang, and Chenjuan Guo. K2VAE: A
koopman-kalman enhanced variational autoencoder for probabilistic time series forecasting. In
ICML, 2025.

Chenjuan Guo, Christian S Jensen, and Bin Yang. Towards total traffic awareness. In SIGMOD,
volume 43, pages 18–23, 2014.

Xiangfei Qiu, Yuhan Zhu, Zhengyu Li, Hanyin Cheng, Xingjian Wu, Chenjuan Guo, Bin Yang, and
Jilin Hu. Dag: A dual causal network for time series forecasting with exogenous variables. arXiv
preprint arXiv:2509.14933, 2025d.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
decoupling framework for long-term series forecasting. In ICLR, 2024a.

Yifan Hu, Peiyuan Liu, Peng Zhu, Dawei Cheng, and Tao Dai. Adaptive multi-scale decomposition
framework for time series forecasting. In AAAI, 2025a.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Xue Yuerong, Shu-Tao Xia, and Zexuan Zhu. Ddn:
Dual-domain dynamic normalization for non-stationary time series forecasting. In NeurIPS, 2024b.

Xvyuan Liu, Xiangfei Qiu, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Jilin Hu, and Bin Yang.
Rethinking irregular time series forecasting: A simple yet effective baseline. arXiv preprint
arXiv:2505.11250, 2025c.

Qichao Shentu, Beibu Li, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and Chenjuan
Guo. Towards a general time series anomaly detector with adaptive bottlenecks and dual adversarial
decoders. In ICLR, 2025.

Beibu Li, Qichao Shentu, Yang Shu, Hui Zhang, Ming Li, Ning Jin, Bin Yang, and Chenjuan Guo.
CrossAD: Time series anomaly detection with cross-scale associations and cross-window modeling.
In NeurIPS, 2025c.

Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan
Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, and Bin Yang. Tab: Unified
benchmarking of time series anomaly detection methods. In Proc. VLDB Endow., pages 2775–2789,
2025e.

Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, and Bin
Yang. Catch: Channel-aware multivariate time series anomaly detection via frequency patching.
arXiv preprint arXiv:2410.12261, 2024c.

14

Yuanyuan Yao, Yuan Dong, Lu Chen, Kun Kuang, Ziquan Fang, Cheng Long, Yunjun Gao, and
Tianyi Li. Arrow: Accelerator for time series causal discovery with time weaving. In Forty-second
International Conference on Machine Learning.

Yuanyuan Yao, Lu Chen, Ziquan Fang, Yunjun Gao, Christian S Jensen, and Tianyi Li. Camel:
Efficient compression of floating-point time series. Proceedings of the ACM on Management of
Data, 2(6):1–26, 2024a.

Xiangfei Qiu, Xingjian Wu, Hanyin Cheng, Xvyuan Liu, Chenjuan Guo, Jilin Hu, and Bin Yang.
DBLoss: Decomposition-based loss function for time series forecasting. In NeurIPS, 2025f.

Yuanyuan Yao, Shenjia Dai, Yilin Li, Lu Chen, Dimeng Li, Yunjun Gao, and Tianyi Li. A demon-
stration of tends: Time series management system based on model selection. Proceedings of the
VLDB Endowment, 17(12):4357–4360, 2024b.

Yuanyuan Yao, Hailiang Jie, Lu Chen, Tianyi Li, Yunjun Gao, and Shiting Wen. Tsec: An efficient
and effective framework for time series classification. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pages 1394–1406. IEEE, 2024c.

Yanru Sun, Zongxia Xie, Haoyu Xing, Hualong Yu, and Qinghua Hu. Ppgf: Probability pattern-
guided time series forecasting. IEEE Transactions on Neural Networks and Learning Systems,
2025b.

Yuanyuan Yao, Dimeng Li, Hailiang Jie, Lu Chen, Tianyi Li, Jie Chen, Jiaqi Wang, Feifei Li, and
Yunjun Gao. Simplets: An efficient and universal model selection framework for time series
forecasting. Proceedings of the VLDB Endowment, 16(12):3741–3753, 2023.

Chenxi Liu, Shaowen Zhou, Qianxiong Xu, Hao Miao, Cheng Long, Ziyue Li, and Rui Zhao. Towards
cross-modality modeling for time series analytics: A survey in the llm era. In IJCAI, 2025d.

Hao Wang, Lichen Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao
Liu, Haoxuan Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In The
Thirteenth International Conference on Learning Representations, 2025b.

Hao Wang, Haoxuan Li, Xu Chen, Mingming Gong, Zhichao Chen, et al. Optimal transport for
time series imputation. In The Thirteenth International Conference on Learning Representations,
2025c.

Hao Wang, Zhiyu Wang, Yunlong Niu, Zhaoran Liu, Haozhe Li, Yilin Liao, Yuxin Huang, and
Xinggao Liu. An accurate and interpretable framework for trustworthy process monitoring. IEEE
Transactions on Artificial Intelligence, 5(5):2241–2252, 2023.

Xinyu Li, Yuchen Luo, Hao Wang, Haoxuan Li, Liuhua Peng, Feng Liu, Yandong Guo, Kun Zhang,
and Mingming Gong. Towards accurate time series forecasting via implicit decoding. Advances in
Neural Information Processing Systems, 2025d.

Wenzhen Yue, Yong Liu, Hao Wang, Haoxuan Li, Xianghua Ying, Ruohao Guo, Bowei Xing, and
Ji Shi. Olinear: A linear model for time series forecasting in orthogonally transformed domain.
Advances in Neural Information Processing Systems, 2025a.

Wenzhen Yue, Xianghua Ying, Ruohao Guo, DongDong Chen, Ji Shi, Bowei Xing, Yuqing Zhu,
and Taiyan Chen. Sub-adjacent transformer: Improving time series anomaly detection with
reconstruction error from sub-adjacent neighborhoods. arXiv preprint arXiv:2404.18948, 2024.

Wenzhen Yue, Yong Liu, Xianghua Ying, Bowei Xing, Ruohao Guo, and Ji Shi. Freeformer:
Frequency enhanced transformer for multivariate time series forecasting. arXiv preprint
arXiv:2501.13989, 2025b.

Haotian Wang, Haoxuan Li, Hao Zou, Haoang Chi, Long Lan, Wanrong Huang, and Wenjing Yang.
Effective and efficient time-varying counterfactual prediction with state-space models. In The
Thirteenth International Conference on Learning Representations, 2025d.

15

Lei Wang, Shanshan Huang, Chunyuan Zheng, Jun Liao, Xiaofei Zhu, Haoxuan Li, and Li Liu.
Mitigating data imbalance in time series classification based on counterfactual minority samples
augmentation. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V. 2, pages 2962–2973, 2025e.

Jiaming Ma, Binwu Wang, Guanjun Wang, Kuo Yang, Zhengyang Zhou, Pengkun Wang, Xu Wang,
and Yang Wang. Less but more: Linear adaptive graph learning empowering spatiotemporal
forecasting. In Advances in Neural Information Processing Systems, 2025a.

Jiaming Ma, Binwu Wang, Qihe Huang, Guanjun Wang, Pengkun Wang, Zhengyang Zhou, and Yang
Wang. Mofo: Empowering long-term time series forecasting with periodic pattern modeling. In
Advances in Neural Information Processing Systems, 2025b.

Jiaming Ma, Zhiqing Cui, Binwu Wang, Pengkun Wang, Zhengyang Zhou, Zhe Zhao, and Yang
Wang. Causal learning meet covariates: Empowering lightweight and effective nationwide air
quality forecasting. 2025c.

Jiaming Ma, Binwu Wang, Pengkun Wang, Zhengyang Zhou, Xu Wang, and Yang Wang. Bist: A
lightweight and efficient bi-directional model for spatiotemporal prediction. Proceedings of the
VLDB Endowment, 18(6):1663–1676, 2025d.

Jiaming Ma, Binwu Wang, Pengkun Wang, Zhengyang Zhou, Yudong Zhang, Xu Wang, and Yang
Wang. Mobimixer: A multi-scale spatiotemporal mixing model for mobile traffic prediction. IEEE
Transactions on Mobile Computing, 2025e.

Jiaming Ma, Binwu Wang, Pengkun Wang, Zhengyang Zhou, Xu Wang, and Yang Wang. Robust
spatio-temporal centralized interaction for ood learning. In Forty-second International Conference
on Machine Learning, 2025f.

Qihe Huang, Zhengyang Zhou, , Yangze Li, Kuo Yang, Binwu Wang, and Yang Wang. Many minds,
one goal: Time series forecasting via sub-task specialization and inter-agent cooperation. In
Advances in Neural Information Processing Systems, 2025b.

Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, and Yang Wang. Timebase: The
power of minimalism in efficient long-term time series forecasting. In Forty-second International
Conference on Machine Learning, 2025c.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36:46885–46902, 2023.

Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding, Zhengyang Zhou, and Yang
Wang. Hdmixer: Hierarchical dependency with extendable patch for multivariate time series
forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pages
12608–12616, 2024.

Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao Xia, and
Shirui Pan. Timefilter: Patch-specific spatial-temporal graph filtration for time series forecasting.
ICML, 2025b.

Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-tao Xia. Timebridge:
Non-stationarity matters for long-term time series forecasting. In ICML, 2025e.

Yihang Wang, Yuying Qiu, kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and Guo
Chenjuan. Towards a general time series forecasting model with unified representation and adaptive
transfer. In ICML, 2025f.

Yihang Wang, Yuying Qiu, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and Guo Chenjuan.
Lightgts: A lightweight general time series forecasting model. In ICML, 2025g.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect our contri-
butions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the SRS module in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

17

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete experimental details in Appendix A. Additionally, we
have shared the full reproducible code and datasets in an anonymous repository (link
provided under the abstract).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymous link to the code (under the abstract) and describe
how to reproduce the experimental results in the README file of the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the complete experimental details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviations of the results for our proposed SRSNet under
different settings in Table 8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the computational resource requirements of our proposed SRSNet
in Table 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research aligns with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on advancing the field of machine learning. While our work
may have various societal implications, we believe none are significant enough to warrant
specific mention here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code and datasets used in the paper are publicly available and properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will make the code publicly available upon acceptance of the paper and
provide detailed documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our propsosed method does not include any component related to LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Experimental Details

Table 7: Statistics of datasets.

Dataset Domain Frequency Lengths Dim Split Description

ETTh1 Electricity 1 hour 14,400 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Electricity Electricity 1 hour 26,304 321 7:1:2 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Solar Energy 10 mins 52,560 137 6:2:2 Solar production records collected from 137 PV plants in Alabama
Traffic Traffic 1 hour 17,544 862 7:1:2 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways

We utilize the TFB code repository for unified evaluation, with all baseline results also derived from
TFB. Following the settings in TFB Qiu et al. [2024], we do not apply the “Drop Last” trick to ensure
a fair comparison. All experiments of SRSNet are conducted using PyTorch Paszke et al. [2019]
in Python 3.8 and executed on an NVIDIA Tesla-A800 GPU. The training process is guided by the
MSE loss function and employs the ADAM optimizer. The initial batch size is set to 64, with the
flexibility to halve it (down to a minimum of 8) in case of an Out-Of-Memory (OOM) issue.

A.1 Full results

Table 8: Multivariate forecasting results with forecasting horizons F ∈ {96, 192, 336, 720} for the
datasets. Red: the best, Blue: the 2nd best. The standard deviation of SRSNet calculated through 5
random seeds are also reported.

Models SRSNet TimeKAN Amplifier iTransformer TimeMixer PatchTST Crossformer TimesNet DLinear Stationary FEDformer
(ours) (2025) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022)

Metrics mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.366±0.001 0.394±0.001 0.370 0.396 0.373 0.399 0.386 0.405 0.372 0.401 0.377 0.397 0.411 0.435 0.389 0.412 0.379 0.403 0.591 0.524 0.379 0.419
192 0.400±0.001 0.415±0.001 0.403 0.417 0.414 0.420 0.430 0.435 0.413 0.430 0.409 0.425 0.409 0.438 0.440 0.443 0.427 0.435 0.615 0.540 0.420 0.444
336 0.424±0.002 0.430±0.001 0.420 0.432 0.442 0.446 0.450 0.452 0.438 0.450 0.431 0.444 0.433 0.457 0.523 0.487 0.440 0.440 0.632 0.551 0.458 0.466
720 0.426±0.001 0.455±0.001 0.442 0.463 0.455 0.467 0.495 0.487 0.483 0.483 0.457 0.477 0.501 0.514 0.521 0.495 0.473 0.494 0.828 0.658 0.474 0.488

E
T

T
h2

96 0.271±0.002 0.338±0.001 0.280 0.343 0.287 0.349 0.292 0.347 0.270 0.342 0.274 0.337 0.728 0.603 0.334 0.370 0.300 0.364 0.347 0.387 0.337 0.380
192 0.324±0.001 0.372±0.001 0.329 0.382 0.348 0.393 0.348 0.384 0.349 0.387 0.348 0.384 0.723 0.607 0.404 0.413 0.387 0.423 0.379 0.418 0.415 0.428
336 0.349±0.001 0.394±0.003 0.370 0.412 0.383 0.423 0.372 0.407 0.367 0.410 0.377 0.416 0.740 0.628 0.389 0.435 0.490 0.487 0.358 0.413 0.389 0.457
720 0.391±0.002 0.434±0.002 0.420 0.450 0.407 0.444 0.424 0.444 0.401 0.436 0.406 0.441 1.386 0.882 0.434 0.448 0.704 0.597 0.422 0.457 0.483 0.488

E
T

T
m

1 96 0.288±0.002 0.341±0.002 0.290 0.348 0.292 0.346 0.287 0.342 0.293 0.345 0.289 0.343 0.314 0.367 0.340 0.378 0.300 0.345 0.415 0.410 0.463 0.463
192 0.326±0.001 0.364±0.002 0.332 0.368 0.327 0.365 0.331 0.371 0.335 0.372 0.329 0.368 0.374 0.410 0.392 0.404 0.336 0.366 0.494 0.451 0.575 0.516
336 0.365±0.003 0.386±0.001 0.354 0.386 0.365 0.386 0.358 0.384 0.368 0.386 0.362 0.390 0.413 0.432 0.423 0.426 0.367 0.386 0.577 0.490 0.618 0.544
720 0.426±0.001 0.420±0.002 0.401 0.417 0.427 0.419 0.412 0.416 0.426 0.417 0.416 0.423 0.753 0.613 0.475 0.453 0.419 0.416 0.636 0.535 0.612 0.551

E
T

T
m

2 96 0.164±0.001 0.254±0.001 0.164 0.254 0.164 0.254 0.168 0.262 0.165 0.256 0.165 0.255 0.296 0.391 0.189 0.265 0.164 0.255 0.210 0.294 0.216 0.309
192 0.220±0.001 0.296±0.001 0.238 0.300 0.226 0.300 0.224 0.295 0.225 0.298 0.221 0.293 0.369 0.416 0.254 0.310 0.224 0.304 0.338 0.373 0.297 0.360
336 0.271±0.001 0.327±0.001 0.278 0.331 0.276 0.331 0.274 0.330 0.277 0.332 0.276 0.327 0.588 0.600 0.313 0.345 0.277 0.337 0.432 0.416 0.366 0.400
720 0.353±0.001 0.380±0.002 0.359 0.387 0.358 0.388 0.367 0.385 0.360 0.387 0.362 0.381 0.750 0.612 0.413 0.402 0.371 0.401 0.554 0.476 0.459 0.450

W
ea

th
er 96 0.147±0.001 0.198±0.001 0.151 0.202 0.147 0.199 0.157 0.207 0.147 0.198 0.150 0.200 0.143 0.210 0.168 0.214 0.170 0.230 0.188 0.242 0.229 0.298

192 0.190±0.001 0.242±0.001 0.195 0.244 0.194 0.245 0.200 0.248 0.191 0.242 0.191 0.239 0.195 0.261 0.219 0.262 0.216 0.275 0.240 0.290 0.265 0.334
336 0.241±0.001 0.282±0.001 0.242 0.287 0.243 0.282 0.252 0.287 0.244 0.280 0.242 0.279 0.254 0.319 0.278 0.302 0.258 0.307 0.322 0.328 0.330 0.372
720 0.325±0.001 0.340±0.001 0.317 0.340 0.310 0.329 0.320 0.336 0.316 0.331 0.312 0.330 0.335 0.385 0.353 0.351 0.324 0.367 0.396 0.378 0.423 0.418

E
le

ct
ri

ci
ty 96 0.131±0.001 0.226±0.001 0.135 0.231 0.132 0.227 0.134 0.230 0.153 0.256 0.143 0.247 0.134 0.231 0.169 0.271 0.140 0.237 0.171 0.274 0.191 0.305

192 0.147±0.002 0.241±0.001 0.149 0.243 0.149 0.243 0.154 0.250 0.168 0.269 0.158 0.260 0.146 0.243 0.180 0.280 0.154 0.250 0.180 0.283 0.203 0.316
336 0.163±0.001 0.258±0.001 0.165 0.260 0.167 0.261 0.169 0.265 0.189 0.291 0.168 0.267 0.165 0.264 0.204 0.293 0.169 0.268 0.204 0.305 0.221 0.333
720 0.201±0.001 0.291±0.001 0.206 0.297 0.203 0.292 0.194 0.288 0.228 0.320 0.214 0.307 0.237 0.314 0.206 0.293 0.203 0.300 0.221 0.319 0.259 0.364

So
la

r 96 0.167±0.002 0.222±0.001 0.187 0.255 0.175 0.237 0.174 0.229 0.180 0.233 0.170 0.234 0.183 0.208 0.198 0.270 0.199 0.265 0.365 0.390 0.485 0.570
192 0.182±0.003 0.237±0.001 0.194 0.265 0.198 0.259 0.205 0.270 0.201 0.259 0.204 0.302 0.208 0.226 0.206 0.276 0.220 0.282 0.400 0.386 0.415 0.477
336 0.188±0.002 0.245±0.003 0.203 0.264 0.213 0.259 0.216 0.282 0.214 0.272 0.212 0.293 0.212 0.239 0.208 0.284 0.234 0.295 0.414 0.394 1.008 0.839
720 0.195±0.002 0.251±0.002 0.209 0.269 0.222 0.269 0.211 0.260 0.218 0.278 0.215 0.307 0.215 0.256 0.232 0.294 0.243 0.301 0.379 0.377 0.655 0.627

Tr
af

fic

96 0.361±0.001 0.254±0.001 0.388 0.269 0.391 0.277 0.363 0.265 0.369 0.256 0.370 0.262 0.526 0.288 0.595 0.312 0.395 0.275 0.603 0.330 0.593 0.365
192 0.380±0.001 0.263±0.001 0.411 0.286 0.405 0.283 0.384 0.273 0.400 0.271 0.386 0.269 0.503 0.263 0.613 0.322 0.407 0.280 0.611 0.338 0.614 0.381
336 0.392±0.001 0.270±0.001 0.425 0.284 0.416 0.290 0.396 0.277 0.407 0.272 0.396 0.275 0.505 0.276 0.626 0.332 0.417 0.286 0.628 0.342 0.627 0.389
720 0.434±0.001 0.293±0.001 0.455 0.302 0.454 0.312 0.445 0.308 0.462 0.316 0.435 0.295 0.552 0.301 0.635 0.340 0.454 0.308 0.646 0.350 0.646 0.394

1st Count 23 20 3 0 1 2 2 3 1 0 0 4 2 3 0 0 0 0 0 0 0 0

Table 9: Ablation Studies with forecasting horizons F ∈ {96, 192, 336, 720} for the datasets. Red:
the best.

Datasets ETTh1 ETTm2

Horizons 96 192 336 720 96 192 336 720

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o SRS 0.385 0.412 0.427 0.448 0.447 0.461 0.462 0.483 0.178 0.272 0.243 0.316 0.291 0.352 0.378 0.402

w/o Selective Patching 0.381 0.407 0.418 0.428 0.441 0.457 0.452 0.471 0.177 0.271 0.229 0.304 0.290 0.353 0.372 0.395

w/o Dynamic Reassembly 0.373 0.398 0.406 0.417 0.429 0.436 0.443 0.462 0.169 0.263 0.231 0.306 0.275 0.335 0.368 0.391

w/o Adaptive Fusion 0.371 0.397 0.411 0.423 0.428 0.434 0.437 0.461 0.172 0.266 0.237 0.311 0.278 0.339 0.365 0.388

SRSNet 0.366 0.394 0.400 0.415 0.424 0.430 0.426 0.455 0.164 0.254 0.220 0.296 0.271 0.328 0.353 0.380

24

Table 10: Ablation Studies with forecasting horizons F ∈ {96, 192, 336, 720} for the datasets. Red:
the best.

Datasets Solar Traffic

Horizons 96 192 336 720 96 192 336 720

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o SRS 0.192 0.243 0.215 0.271 0.228 0.292 0.239 0.301 0.387 0.272 0.402 0.275 0.412 0.284 0.452 0.304

w/o Selective Patching 0.189 0.241 0.209 0.254 0.223 0.286 0.237 0.304 0.385 0.268 0.399 0.272 0.410 0.273 0.437 0.296

w/o Dynamic Reassembly 0.186 0.227 0.196 0.241 0.192 0.253 0.199 0.262 0.381 0.264 0.403 0.277 0.398 0.274 0.446 0.298

w/o Adaptive Fusion 0.182 0.226 0.195 0.239 0.198 0.262 0.207 0.278 0.378 0.262 0.389 0.269 0.399 0.276 0.443 0.301

SRSNet 0.167 0.222 0.182 0.237 0.188 0.245 0.195 0.251 0.361 0.254 0.380 0.263 0.392 0.270 0.434 0.293

Table 11: Plugin Studies with forecasting horizons F ∈ {96, 192, 336, 720} for the datasets. Black:
the improvement.

Datasets ETTh1 ETTm2

Horizons 96 192 336 720 96 192 336 720

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MLP 0.385 0.412 0.427 0.448 0.447 0.461 0.462 0.483 0.178 0.272 0.243 0.316 0.291 0.352 0.378 0.402

+ SRS 0.366 0.394 0.400 0.415 0.424 0.430 0.426 0.455 0.164 0.254 0.220 0.296 0.271 0.328 0.353 0.380

Improve 4.94% 4.37% 6.32% 7.37% 5.15% 6.72% 7.79% 5.80% 7.87% 6.62% 9.47% 6.33% 6.87% 6.82% 6.61% 5.47%

PatchTST 0.377 0.397 0.409 0.425 0.431 0.444 0.457 0.477 0.165 0.255 0.221 0.293 0.276 0.327 0.362 0.381

+ SRS 0.364 0.393 0.398 0.419 0.422 0.438 0.431 0.453 0.159 0.248 0.213 0.284 0.266 0.319 0.358 0.377

Improve 3.45% 1.01% 2.69% 1.41% 2.09% 1.35% 5.69% 5.03% 3.64% 2.75% 3.62% 3.07% 3.62% 2.45% 1.10% 1.05%

Crossformer 0.411 0.435 0.409 0.438 0.433 0.457 0.501 0.514 0.296 0.391 0.369 0.416 0.588 0.600 0.750 0.612

+ SRS 0.401 0.423 0.404 0.432 0.428 0.452 0.494 0.511 0.276 0.356 0.324 0.396 0.484 0.496 0.730 0.601

Improve 2.43% 2.76% 1.22% 1.37% 1.15% 1.09% 1.40% 0.58% 6.76% 8.95% 12.20% 4.81% 17.69% 17.33% 2.67% 1.80%

PatchMLP 0.380 0.395 0.430 0.441 0.451 0.453 0.479 0.484 0.168 0.259 0.228 0.300 0.275 0.330 0.371 0.398

+ SRS 0.378 0.393 0.419 0.430 0.428 0.447 0.461 0.475 0.161 0.251 0.222 0.294 0.268 0.323 0.362 0.390

Improve 0.53% 0.51% 2.56% 2.49% 5.10% 1.32% 3.76% 1.86% 4.17% 3.09% 2.63% 2.00% 2.55% 2.12% 2.43% 2.01%

xPatch 0.368 0.396 0.408 0.421 0.436 0.435 0.453 0.465 0.160 0.245 0.219 0.287 0.272 0.323 0.361 0.378

+ SRS 0.359 0.389 0.402 0.417 0.428 0.431 0.436 0.451 0.157 0.241 0.209 0.281 0.261 0.317 0.347 0.371

Improve 2.45% 1.77% 1.47% 0.95% 1.83% 0.92% 3.75% 3.01% 1.88% 1.63% 4.57% 2.09% 4.04% 1.86% 3.88% 1.85%

Table 12: Plugin Studies with forecasting horizons F ∈ {96, 192, 336, 720} for the datasets. Black:
the Improvement.

Datasets Solar Traffic

Horizons 96 192 336 720 96 192 336 720

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MLP 0.192 0.243 0.215 0.271 0.228 0.292 0.239 0.301 0.387 0.272 0.402 0.275 0.412 0.284 0.452 0.304

+ SRS 0.167 0.222 0.182 0.237 0.188 0.245 0.195 0.251 0.361 0.254 0.380 0.263 0.392 0.270 0.434 0.293

Improve 13.02% 8.64% 15.35% 12.55% 17.54% 16.10% 18.41% 16.61% 6.72% 6.62% 5.47% 4.36% 4.85% 4.93% 3.98% 3.62%

PatchTST 0.170 0.234 0.204 0.302 0.212 0.293 0.215 0.307 0.370 0.262 0.386 0.269 0.396 0.275 0.435 0.295

+ SRS 0.164 0.226 0.180 0.249 0.181 0.246 0.203 0.284 0.352 0.247 0.373 0.258 0.387 0.268 0.433 0.292

Improve 3.53% 3.42% 11.76% 17.55% 14.62% 16.04% 5.58% 7.49% 4.86% 5.73% 3.37% 4.09% 2.27% 2.55% 0.46% 1.02%

Crossformer 0.183 0.208 0.208 0.226 0.212 0.239 0.215 0.256 0.526 0.288 0.503 0.263 0.505 0.276 0.552 0.301

+ SRS 0.176 0.203 0.196 0.222 0.206 0.236 0.193 0.240 0.518 0.279 0.493 0.255 0.499 0.269 0.537 0.293

Improve 3.83% 2.40% 5.77% 1.77% 2.83% 1.26% 10.23% 6.25% 1.52% 3.12% 1.99% 3.04% 1.19% 2.54% 2.72% 2.66%

PatchMLP 0.173 0.234 0.192 0.247 0.199 0.255 0.208 0.264 0.388 0.273 0.399 0.277 0.412 0.286 0.452 0.311

+ SRS 0.163 0.222 0.178 0.244 0.183 0.247 0.193 0.256 0.381 0.264 0.389 0.268 0.400 0.278 0.439 0.298

Improve 5.64% 5.05% 7.19% 1.12% 7.92% 3.14% 7.26% 3.14% 1.86% 3.36% 2.51% 3.08% 2.98% 2.93% 2.92% 4.25%

xPatch 0.169 0.194 0.184 0.208 0.191 0.213 0.201 0.223 0.368 0.236 0.387 0.244 0.395 0.247 0.441 0.266

+ SRS 0.162 0.191 0.179 0.203 0.182 0.203 0.192 0.219 0.360 0.233 0.381 0.238 0.384 0.232 0.431 0.256

Improve 4.14% 1.55% 2.72% 2.40% 4.71% 4.69% 4.48% 1.79% 2.11% 1.42% 1.53% 2.28% 2.78% 6.07% 2.27% 3.76%

25

A.2 Showcases

Figure 5: Visualization of input-96-predict-96 results on the ETTh1 dataset. SRSNet effectively
processes the special cases with the help of SRS module. The grey rectangles are the selected patches
with the size of 24.

Figure 6: Visualization of input-96-predict-96 results on the ETTm2 dataset. SRSNet effectively
processes the special cases with the help of SRS module. The grey rectangles are the selected patches
with the size of 24.

Figure 7: Visualization of input-96-predict-96 results on the Traffic dataset. SRSNet effectively
processes the special cases with the help of SRS module. The grey rectangles are the selected patches
with the size of 24.

B Related Works

Time Series Analysis is very important in many fields like economy [Qiu et al., 2025b,c, Liu et al.,
2025a, Wu et al., 2023b], transportation [Wu et al., 2024a,b, Liu et al., 2025b, Lu et al., 2011, Pan
et al., 2023], health [Lu et al., 2023, 2024a,b], weather [Li et al., 2025a, Yang et al., 2024, Zhou et al.,

26

2025, Cheng et al., 2023], energy [Li et al., 2025b, Wang et al., 2025a, Wu et al., 2025, Guo et al.,
2014], including multiple key tasks like forecasting [Qiu et al., 2025d, Dai et al., 2024a, Hu et al.,
2025a, Dai et al., 2024b, Liu et al., 2025c], anomaly detection [Shentu et al., 2025, Li et al., 2025c,
Qiu et al., 2025e, Wu et al., 2024c], classification [Wu et al., 2023a, Wang et al., 2024, Liu et al.,
2024], imputation [Yao et al., 2024a], and others [Qiu et al., 2025f, Yao et al., 2024b,c]. Among
them, Time Series Forecasting is most widely used in real-world applications.

Time series forecasting (TSF) [Sun et al., 2025b, Yao et al., 2023, Liu et al., 2025d]] involves the
prediction of future observations grounded in historical ones. Research findings have indicated that
features derived through learning processes may exhibit superior performance compared to human-
engineered features [Wang et al., 2025b,c, 2023, Li et al., 2025d, Yue et al., 2025a, 2024, 2025b,
Wang et al., 2025d,e, Ma et al., 2025a,b,c,d,e,f, Huang et al., 2025b,c, 2023, 2024]. By capitalizing
on the representation learning capabilities of deep neural networks (DNNs), numerous deep-learning
approaches have come into existence. Methods such as TimesNet [Wu et al., 2023a] and SegRNN [Lin
et al., 2023] model time series as vector sequences, utilizing convolutional neural networks (CNNs)
or recurrent neural networks (RNNs) to capture temporal dependencies. Moreover, Transformer
architectures, including Informer [Zhou et al., 2021], TimeFilter [Hu et al., 2025b], TimeBridge [Liu
et al., 2025e], PDF [Dai et al., 2024a], Triformer [Cirstea et al., 2022a], PatchTST [Nie et al., 2023],
ROSE [Wang et al., 2025f], and LightGTS [Wang et al., 2025g], are capable of more accurately
capturing the intricate relationships between time points, thereby significantly enhancing forecasting
performance. MLP-based methods, including DUET [Qiu et al., 2025a], AMD [Hu et al., 2025a],
SparseTSF [Lin et al., 2024a], and CycleNet [Lin et al., 2024b], adopt relatively simpler architectures
with fewer parameters yet still attain highly competitive forecasting accuracy.

27

	Introduction
	Related works
	Development of Time Series Forecasting
	Progress in Patch-based Time Series Forecastng Methods

	Methodology
	Structure Overview
	Selective Patching
	Dynamic Reassembly
	Embedding

	SRSNet
	Experiments
	Experimental Details
	Main Results
	Ablation Study and Analysis
	Efficiency Analysis
	Parameter Sensitivity

	Discussion
	Conclusion
	Experimental Details
	Full results
	Showcases

	Related Works

