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Abstract

Deep neural network (NN) with millions or billions of parameters can perform
really well on unseen data, after being trained from a finite training set. Various
prior theories have been developed to explain such excellent ability of NNs, but
do not provide a meaningful bound on the test error. Some recent theories, based
on PAC-Bayes and mutual information, are non-vacuous and hence promising to
explain the excellent performance of NNs. However, they often require a stringent
assumption and extensive modification (e.g. compression, quantization) to the
trained model of interest. Therefore, those prior theories provide a guarantee for
the modified versions only. In this paper, we propose two novel bounds on the test
error of a model. Our bounds uses the training set only and require no modification
to the model. Those bounds are verified on a large class of modern NN, pretrained
by Pytorch on the ImageNet dataset, and are non-vacuous. To the best of our
knowledge, these are the first non-vacuous bounds at this large scale, without any
modification to the pretrained models.

1 Introduction

Deep neural networks (NNs) are arguably the most effective families in Machine Learning. They have
been helping us to produce various breakthoughs, from mastering complex games [39], generating
high-quality languages [10] or images [20], protein structure prediction [22], to building multi-task
systems such as Gimini [41] and ChatGPT [1]. Big or huge NN can efficiently learn knowledge
from large datasets and then perform extremely well on unseen data.

Despite many empirical successes, there still remains a big gap between theory and practice of modern
NNs. In particular, it is largely unclear [48] about Why can deep NNs generalize well on unseen
data after being trained from a finite number of samples? This question relates to the generalization
ability of a trained model. The standard learning theories suffer from various difficulties to provide a
reasonable explanation. Various approaches have been studied, e.g. Radermacher complexity [18] 5],
algorithmic stability 38| [11]], algorithmic robustness [47} 40|, PAC-Bayes [32.,[7].

Some recent theories [50, [7,[28H30] are really promissing, as they can provide meaningful bounds on
the test error of some models. Dziugaite and Roy [14] obtained a non-vacuous bound by optimizing a
distribution over NN parameters. [50} 16} 34]] bounded the expected error of a stochastic NN by using
off-the-shelf compression methods. Those theories follow the PAC-Bayes approach. On the other
hand, Nadjahi et al. [35] showed the potential of the stability-based approach. Although making a
significant progress, those theories are meaningful for small and stochastic NNs only.

Lotfi et al. [29} 130] made a significant step to analyze the generalization ability of big/huge NN,
such as large language models (LLM). Using state-of-the-art quantization, finetuning and some other
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Table 1: Recent approaches for analyzing generalization error. v' means “Required” or “Yes”. The upper
part shows the required assumptions about differrent aspects, e.g., hypothesis space, loss function, training or
finetuning. The lower part reports non-vacuousness in different situations.

Approach Radermacher Alg. Stability Alg. Robustness Mutual Info PAC-Bayes Ours
complexity 3 [iloxi] [Eyilexilze) [Elkx] BOBE (29300

Requirement:

Model compressibility v v v

Train or finetune v v v

Lipschitz loss v v v

Finite hypothesis space v
Non-vacuousness for:

Stochastic models only v v v

Trained models
Training size > 1 M
Model size > 500 M

SNENEN
SNENEN

techniques, the PAC-Bayes bounds by [30, 29] are non-vacuous for huge LLMs, e.g., GPT-2 and
LLamMAZ2. Those bounds significantly push the frontier of deep learning theory.

In this work, we are interested in estimating or bounding the expected error F'(P, h) of a specific
model (hypothesis) h which is trained from a finite number of samples from distribution P. The
expected error tells how well a model h can generalize on unseen data, and hence can explain the
performance of a trained model. This estimation problem is fundamental in learning theory [33]],
but arguably challenging for NNs. Many prior theories [50, 28, [35] were developed for stochastic
models, but not for a trained model h of interest. Lotfi et al. [29,30] made a significant progress
to remove “stochasticity”. For example, Lotfi et al. [30] provided a non-vacuous bound for the
2-bit quantized (and finetuned) versions of LLamMA2. Nonetheless, those theories require to use
a method for intensively quantizing or compressing h. This means that those theories are for the
quantized or compressed models, and hence may not necessarily be true for the original (unquantized
or uncompressed) models. This is a major limitation of those bounds. Such a limitation calls for
novel theories that directly work with a given model h.

Our contributions in this work are as follow:

e We develop a novel bound on the expected error F'(P, h) of a trained model h. This bound

does not require stringent assumptions as prior bounds do. It encodes both the complexity
of the data distribution and the behavior of model h at local areas of the data space.
The main technical challenge to obtain our bound is to use the training set to approximate
an intractable term which summarizes the true error of h at different local areas of the data
space. We resolve this challenge by analyzing various properties of small and binomial
random variables.

e We next derive a tractable bound that can be easily computed from the training set only,
without any change to h. Hence this bound directly provides a guarantee for h. Those
properties are really beneficial and enable our bound to overcome the major limitations of
prior theories. Table[I] presents a more detailed comparison about some key aspects.

e Third, we develop a novel bound that uses a data transformation method. This bound can
help us to analyze more properties of a trained model, and enable an effective comparison
between two trained models. This bound may be useful in many contexts, where prior
theories cannot provide an effective answer.

e Finally, we did an extensive evaluation for a large class of modern NNs which were pretrained
by Pytorch on the ImageNet dataset with more than 1.2M images. The results show that our
bounds are non-vacuous. To the best of our knowledge, this is the first time that a theoretical
bound is non-vacuous at this large scale, without any change to the trained models.

Organization: The next section presents a comprehensive survey about related work, the main advan-
tages and limitations of prior theories. We then present our novel bounds in Section 3] accompanied
with more detailed comparisons. Section[d]contains our empirical evaluation for some pretrained NNs.
Section 5] concludes the paper. Proofs and more experimental details can be found in appendices.



73
74
75

76

77
78
79
80

81
82
83
84
85

86
87
88
89
90
91
92
93

94
95
96
97
98
99
100

101
102
103
104

106
107
108
109

110
111
112
113
114
115
116

17
118
119
120
121
122

123
124

Notations: S often denotes a dataset and | S| denotes its size/cardinality. T' denotes a partition of the
data space. [K] denotes the set {1, ..., K'} of natural numbers at most K. ¢ denotes a loss function,
and h often denotes a model or hypothesis of interest.

2 Related work

Various approaches have been studied to analyze generalization capability, e.g., Radermacher com-
plexity [4], algorithmic stability [38, [15]], algorithmic robustness [47], Mutual-infomation based
bounds [46l 35]], PAC-Bayes [32] [19]. Those approaches connect different aspects of a learning
algorithm or hypothesis (model) to generalization.

Norm-based bounds [5} 18, |17] is one of the earliest approaches to understand NNs. The existing
studies often use Rademacher complexity to provide data- and model-dependent bounds on the
generalization error. An NN with smaller weight norms will have a smaller bound, suggesting better
generalization on unseen data. Nonetheless, the norms of weight matrices are often large for practical
NNs [3]. Therefore, most existing norm-based bounds are vacuous.

Algorithmic stability [[9, 38| [12][24] is a crucial approach to studying a learning algorithm. Basically,
those theories suggest that a more stable algorithm can generalize better. Stable algorithms are less
likely to overfit the training set, leading to more reliable predictions. The stability requirement in
those theories is that a replacement of one sample for the training set will not significantly change
the loss of the trained model. Such an assumption is really strong. One primary drawback is that
achieving stability often requires restricting model complexity, potentially sacrificing predictive
accuracy on challenging datasets. Therefore, this approach has a limited success in understanding
deep NNis.

Algorithmic robustness [47, 40, 23| 42] is a framework to study generalization capability. It
essesntially says that a robust learning algorithm can produce robust models which can generalize
well on unseen data. This approach provides another lens to understand a learning algorithm and
a trained model. However, it requires the assumption that the learning algorithm is robust, i.e., the
loss of the trained model changes little in the small areas around the training samples. Such an
assumption is really strong and cannot apply well for modern NN, since many practical NNs suffer
from adversarial attacks [31},149]]. Than et al. [42] showed that those theories are often vacuous.

Neural Tangent Kernel [21] provides a theoretical lens to study generalization of NNs by linking
them to kernel methods in the infinite-width limit. As networks grow wider, their training dynamics
under gradient descent can be approximated by a kernel function which remains constant throughout
training. This perspective simplifies the analysis of complex neural architectures. The framework
enables explicit generalization bounds, and a deeper understanding of how network architecture
and initialization affect learning. However, the main limitation of this framework comes from its
assumptions, such as the infinite-width regime and fixed kernel during training, may not fully capture
the behavior of finite, practical networks where feature learning is dynamic. Some other studies [25]]
can remove the infinite-width regime but assume the infinite depth.

Mutual information (MI) [46 [35] has emerged as a powerful tool for analyzing generalization
by quantifying the dependency between a model’s learned representations and the data. Since a
trained model contains the (compressed) knowledge learned from the training samples, MI offers
a principled framework for studying the trade-off between compression and predictive accuracy.
However, the existing MI-based theories [46, 145} 137, 35 have a notable drawback: computing MI in
high-dimensional, non-linear settings is computationally challenging. This drawback poses significant
challenges for analyzing deep NNs, although [35]] obtained some promissing results on small NNs.

PAC-Bayes [32, [19, 8] recently has received a great attention, and provide non-vacuous bounds
(50, 34] for some NNs. Those bounds often estimate E;, [F'(P, h)] which is the expectation of the

test error over the posterior distribution of h. It means that those bounds are for a stochastic model h.
Hence they provide limited understanding for a specific deterministic model h. Neyshabur et al. [36]]
provided an attempt to derandomization for PAC-Bayes but resulted in vacuous bounds for modern
neural networks [3]. Some recent attempts to derandomization include [44, [13]].

Non-vacuous bounds for NNs: Dziugaite and Roy [14] obtained a non-vacuous bound for NNs by
finding a posterior distribution over neural network parameters that minimizes the PAC-Bayes bound.
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Their optimized bound is non-vacuous for a stochastic MLP with 3 layers trained on MNIST dataset.
Zhou et al. [50] bounded the population loss of a stochastic NNs by using compressibility level of a
NN. Using off-the-shelf neural network compression schemes, they provided the first non-vacuous
bound for LeNet-5 and MobileNet, trained on ImageNet with more than 1.2M samples. Lotfi et al.
[28] developed a compression method to further optimize the PAC-Bayes bound, and estimated
the error rate of 40.9% for MobileViT on ImageNet. Mustafa et al. [34] provided a non-vacuous
PAC-Bayes bound for adversarial population loss for VGG on CIFAR10 dataset. Galanti et al. [[16]]
presented a PAC-Bayes bound which is non-vacuous for Convolutional NNs with up to 20 layers
and for CIFAR10 and MNIST. Akinwande et al. [2] provided a non-vacuous PAC-Bayes bound
for prompts. Although making a significant progress for NNs, those bounds are non-vacuous for
stochastic neural networks only. Biggs and Guedj [7] provided PAC-Bayes bounds for deterministic
models and obtain (empirically) non-vacuous bounds for a specific class of (SHEL) NNs with a single
hidden layer, trained on MNIST and Fashion-MNIST. Nonetheless, it is unclear about how well those
bounds apply to bigger or deeper NNs.

Towards understanding big/huge NN, Lotfi et al. [29, 30] made a significant step that provides
non-vacuous bounds for LLMs. While the PAC-Bayes bound in [29] can work with LLMs trained
from i.i.d data, the recent bound in [30] considers token-level loss for LLMs and applies to dependent
settings, which is close to the practice of training LLMs. Using both model quantization, finetuning
and some other techniques, the PAC-Bayes bound by [30] is shown to be non-vacuous for huge LLMs,
e.g., LLamMAZ2. Those bounds significantly push the frontier of learning theory towards building a
solid foundation for DL.

Nonetheless, there are two main drawbacks of those bounds [29, 30]. First, model quantization
or compression is required in order to obtain a good bound. It means, those bounds are for the
quantized or compressed models, and hence may not necessarily be true for the original (unquantized
or uncompressed) models. For example, [30] provided a non-vacuous bound for the 2-bit quantized
versions of LLamMAZ2, instead of their original pretrained versions. Second, those bounds require
the assumption that the model (hypothesis) family is finite, meaning that a learning algorithm only
searches in a space with finite number of specific models. Although such an assumption is reasonable
for the current computer architectures, those bounds cannot explain a trained model that belongs to
families with infinite (or uncountable) number of members, which are provably prevalent. In contrast,
our bounds apply directly to any specific model without requiring any modification or support. A
comparison between our bounds and prior approaches about some key aspects is presented in Table|T]

3 Error bounds

In this section, we present three novel bounds for the expected error of a given model. The first
bound provides a general form which directly depends on the complexity of the data distribution and
the trained model. The second bound provides an explicit upper bound for the error, which can be
computed directly from any given dataset. The last bound helps us to analyze the robustness of a
model by using data augmentation.

Consider a hypothesis (or model) h, defined on an instance set Z, and a nonnegative loss function /.
Each /(h, z) tells the loss (or quality) of h at an instance z € Z. Given a distribution P defined on
Z, the quality of h is measured by its expected loss F(P,h) = E,..p[¢(h, z)]. Quantity F(P, h)
tells the generalization ability of model h; a smaller F'(P, h) implies that h can generalize better on
unseen data.

For analyzing generalization ability, we are often interested in estimating (or bounding) F'(P, h).
Sometimes this expected loss is compared with the empirical loss of h on a data set S =
{z1,...,2n} € Z, which is defined as F(S,h) = %Zzesf(h,z). Note that a small F'(S, h)
does not neccessarily imply good generalization of h, since overfitting may appear. Therefore, our
ultimate goal is to estimate F'( P, h) directly.

LetT'(Z) := Ufil Z; be a partition of Z into K disjoint nonempty subsets. Denote S; = SN Z;,

and n; = |S;| as the number of samples falling into Z;, meaning that n = Z]K:1 n;. Denote

T ={i € [K]:n; >0},a;(h) =E.[l(h, z)|z € Z;] fori € [K], and a, = max;¢r a;(h).
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3.1 General bound

The first result incorporates the properties of the data distribution and the trained model.

Theorem 3.1. Given a partition I and a bounded nonnegative loss ¢, consider a model h which may
depend on a dataset S with n i.i.d. samples from distribution P. Denote p; = P(Z;) as the measure

uln'y)

of area Z; fori € [K|, and u = Zfil ynp;(1+~np;). For any constants -y > 1, 1 > exp(— 1%

and 62 > 0, we have the following with probability at least 1 — §1 — 62

u 1
< _ 1n —
F(P,h) < F(S,h)+C4/ o2 In 5 +g(T, h, o) (1)

where g(T', h,5y) = VRCR%) s~ /i (a0 + V2ai(R)) + 2RCEL%) (g 17| 4 5. a;(h))
and C = sup,c z U(h, z).

This theorem suggests that the expected loss cannot be far from the empirical loss F'(S, h). The gap
between the two is at most C'y / 57> In % + g(T', h, d2). Such a gap represents the uncertainty of our

bound and mostly depends on the sample size n, the trained model h, the data distribution P and the
partition I'. We emphasize that bound (1]) has some interesting properties:

e First, it does not require any assumption about the hypothesis family and learning algorithm.
This is an advantage over many approaches including algorithmic stability [9,[27], robustness
[47,123], Radermacher complexity [4} 5]. This bound focuses directly on the the model h of
interest, helping it to be tighter than many prior bounds.

e Second, it depends on the complexity of the data distribution. Note that u encodes the
complexity of P. For a uniform partition I', a more structured distribution P can have a
higher sum Zfil p?. As an example of structured distributions, a Gaussian with a small
variance has the most probability density in a small area around its mean and lead to a high
p; for some <. Meanwhile a less structured distribution (e.g. uniform) can produce a small
Zfil p? and hence smaller u. To the best of our knowledge, such an explicit dependence
on the distribution complexity is rare in prior theories.

e Third, it is model-dependent. Some particular properties of model h are encoded in
g(T', h, §3) and the empirical loss . A better model h will lead to smaller a;’s and hence g.
On the other hand, a worse model can have a bigger g, leading to a higher RHS of (T).

It is worth noticing the similarity between our bound (I)) and robustness-based bounds in [23] 42]].
F(S,h) + g(T, h,d2) is the common part in those bounds. Our bound H contains C' / 5% In é

2n2
that encodes the complexity of the data distribution, whereas the bounds in 23] 142] use a robustness
quantity that measures the sensitivity of the loss w.r.t. a change in the input. While prior bounds
are not amenable to be exactly computed from a training set, our bound enables to easily derive a
computable and non-vacuous bound (below). This is the main advantage of bound ().

Proof sketch. The detailed proof can be found in Appendix [A] We focus on bounding the probability
Pr(F(P,h) — F(S,h) > ¢), for some gap ¢. Note that F'(P,h) — F(S,h) = A + B, where
A = F(P,h) =3, "a;(h) and B = }_, “a;(h) — F(S,h). Therefore, our proof estimates
Pr(A > g) and

Pr(B > 1) )
for some constant ¢. Once they are known, we can use the union bound to obtain a bound on
Pr(F(P,h) — F(S,h) > g +t) as desired. We use a result from [23]] to bound Pr(A > g). The
remaining task is to estimate (2)), which is the main challenge. This challenge requires approximating
an intractable quantity from a data set.

We resolve this challenge by developing Theorem [A.1] Its proof contains three main steps:
1. First we show Pr(B > t) < e ¥'Ep, p, [Es [€¥Z|h, n]], forn = {n4,...,nk} and some y.
2. We next estimate Eg [eyBK |h, n] Overall, we make sure that Eg [eyB\h, n] < e?Wm) for

some function 1) (y, v) which does not depend on h. As a result Pr(B > t) < E,e?®m),

3. The last step is to bound E,,e?(¥™). This requires us to develop various analyses for small random
variables in Appendix B} A suitable choice for ¢,y completes our proof. O
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3.2 Tractable bounds
It is worth noticing that bound contains some unknown quantities, e.g., u and a;’s, which cannot
be computed exactly. This is its main limitation. The following bound overcomes such a limitation.

Theorem 3.2. Given the notations and assumption in Theorem[3.1] for any constants v > 1,5 > 0
and o € [0 M}, we have the following with probability at least 1 — v~ — §:

) K (4n—3)
F(P,h) < F(S,h) + Cy/aalny + g2(5/2) 3)
2 K n
where i = - + - 3" (%‘)2 +7%/2In 2K, go(8) = —C(Hﬁ)nv In(2K/9) > Vi + 74C|T“2(2K/5).
i=1 1eT

One special property is that we can evaluate our bound easily by using only the training set. Indeed,
we can choose K and a specific partition I' of the data space. Then we can count n; and T" and
evaluate the bound (3) easily. This property is remarkable and beneficial in practice.

A theoretical comparison with closely related bounds: Although many model-dependent bounds
[23} 142, [7,144) 29, 30] have been proposed, our bound (3) has various advantages:

o Mild assumption: Our bound does not require stringent assumptions as in prior ones. Some
prior bounds require stability [27, 26] or robustness [47, 23] 140] of the learning algorithm.
Those assumptions are often violated in practice, e.g. for the appearance of adversarial
attacks [49]. Some theories [29, [30]] assume that the hypothesis class is finite, which is
restrictive. In contrast, our bound requires only i.i.d. assumption which also appears in most
prior bounds.

e Easy evaluation: An evaluation of our bound (3)) will be simple and does not require any
modification to the model h of interest. This is a crucial advantage. Many prior theories
require intermediate steps to change the model of interest into a suitable form. For example,
state-of-the-art methods to compress NNs are required for [50, 28, [35]]; quantization for a
model is required for [29} 30]; finetuning (e.g. SubLoRA) is required for [29] 30]. Those
facts suggests that evaluations for prior bounds are often expensive. Besides, many prior
model-dependent bounds [47} 23] 142] cannot be exactly computed from a training set only.

e No change to the model: Most prior non-vacuous bounds [50} [14} 29/ 130] require extensively
compressing (or quantizing) model h of interest and then retraining/finetuning the com-
pressed version. Sometimes the compression step is too restrictive and produces low-quality
models [29]. Therefore, a modification will change model h and hence those bounds do
not directly provide guarantees for the generalization ability of h. In contrast, our bound
does not require any change to model h, and hence directly provides a guarantee for h.

There is a nonlinear relationship between K and the uncertainty term Unc(I") = C'v/aa Iny+g2(0/2)
in our bound. A partition with a larger K can make the sum Zfil (%) ? smaller, as the samples can
be spread into more areas. However a larger K can make g2(d) larger. Therefore, we should not
choose too large K. On the other hand, a small K can make the sum Zf; (%)2 large, since more
samples can appear in each area Z; and enlarge “*. Therefore, we should not choose too small K.
Furthermore, we need to choose constant « carefully, since there is a trade-off in the bound and the

certainty 1 — y~% — §. A smaller o can make the bound smaller, but could enlarge v~ and hence
reduce the certainty of the bound.

The next result considers the robustness of a model.

Theorem 3.3. Given the assumption in Theorem let S = T(S) be the result of using a
transformation method T, which is independent with h, on the samples of S. Denote é(h) = 3 "1€;

i€T
andm = Y mj, where S; = 8 N Z;, m; = |S;|, and & = LN s ses, [(h,z) — ((h,s)|
i€T o o
for each i € T. We have the following with probability at least 1 — v~ — §:
F(P,h) < eh) + F(S,h) + > (% - %) F(S;,h) + C\/aalny + g2(8/2) @)

i€T

This theorem suggests that a model can be better if its loss is less sensitive with respect to some small
changes in the training samples. This can be seen from each quantity €; which measures the average
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difference of the loss of h for the samples S; and S; belonging to the same small area. This result
closely relates to adversarial training [31]], where one often wants to train a model which is robust
w.r.t small changes in the inputs. It is also worth noticing that if 7 transforms S too much, both the
loss I (S’ , h) and the sensitivity € can be large. As a result, the bound (4)) will be large. In fact, our
proof suggests that bound (@) is worse than bound (3)).

The main benefit of Theorem 3.3]is that we can use some transformation methods to compare some
trained models. This is particularly useful for the cases where two models have comparable (even
zero) training losses. For those cases, Theorem@]does not provide a satisfactory answer. Instead, we
can use a snnple augmentation method (e.g., noise perturbation, rotation, translation, ...) to produce
a dataset S and then use this dataset to evaluate the upper bound (4| . By this way, we use both the

training loss F/(S, h) and €(h) + F(S,h) + X, (% — ™) F(S;, h) for comparison.

4 Empirical evaluation

In this section, we present two sets of extensice evaluations about the our bounds. We use 32 modern
NN modelsﬂ which were pretrained by Pytorch on the ImageNet dataset with 1,281,167 images.
Those models are multiclass classifiers. Our main aim is to provide a guarantee for the error of a
trained model, without any further modification. Therefore, no prior bound is taken into comparison,
since those existing bounds are either already vacuous or require some extensive modifications or
cannot directly apply to those trained NNs.

4.1 Large-scale evaluation for pretrained models

The first set of experiments verifies nonvacuouness of our first bound (3) and the effects of some
parameters in the bound. We use the training part of ImageNet only to compute the bound.

Experimental settings: We fix § = 0.01,a = 100,y = 0.04~/®. This choice means that our
bound is correct with probability at least 95%. The partition I' is chosen with K = 200 small areas
of the input space, by clustering the training images into 200 areas, whose centroids are initialized
randomly. The upper bound (3)) for each model was computed with 5 random seeds. We use the 0-1
loss function, meaning that our bound directly estimates the true classification error.

Results: The overall results are reported in Table[2] One can observe that our bound for all models
are all non-vacuous even for the non-optimized choices of some parameters. Our estimate is often
2-3 times higher than the oracle test error of each model. When choosing the best parameter for
each model by grid search, we can obtain much better bounds about the test errors. Note that
non-vacuousness of our bound holds true for a large class of deep NN families, some of which have
more than 630M parameters. To the best of our knowledge, bound (3)) is the first theoretical bound
which is non-vacuous at such a large scale, without requiring any modification to the trained models.

Effect of parameters: Note that our bound depends on the choice of some parameters. Figure

reports the changes of El 1 (7“) as the partition I" changes. We can see that this quantity tends
to decrease as we divide the input space into more small areas. Meanwhile, Figure 2] reports the
uncertainty term, as either o or K changes. Observe that a larger K can increase the uncertainty fast,
while an increase in « can gradually decrease the uncertainty. Those figures enable an easy choice
for the parameters in our bound.

4.2 Evaluation with data augmentation

As mentioned before, our bound (EI) can provide a theoretical certificate for a trained model, but may
not be ideal to compare two models which have the same training error. Sometimes, a model can
have a lower training error but a higher test error (such as DenseNet161 vs. DenseNet201, VIT L 16
linear vs. VIT L 16 V1). Bound (3) may not be good for model comparison. In those cases, we need
to use bound (@) for comparison.

Experimental settings: We fix § = 0.01,« = 100,v = 0.04-Y/*, K = 200 as before. We use
white noise addition as the transformation method in Theorem [3.3] Specifically, each image is added

"https://pytorch.org/vision/stable/models.html
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Table 2: Upper bounds on the true error (in %) of 32 deep NNs which were pretrained on ImageNet dataset.
The second column presents the model size, the third column contains the test accuracy at Top 1, as reported
by Pytorch. “Mild" reports the bound for the choice of {6 = 0.01, K = 200, = 100,y = 0.04~ Y/ 1,
while “Optimized" reports the bound with parameter optimization by grid search. The grid search is done for
K € {100,200, 300, 400, 500, 1000, 5000, 10000}, o € {10, 20, ...,100},6 = 0.01 and y = 0.047/%_ The
last two columns report our estimates about the true error, with a certainty at least 95%.

Model #Params (M) Training error Acc@1 Test error Error bound (3)
Mild Optimized
ResNet18 V1 11.7 21.245 69.758 30.242  57.896 +4189  54.262
ResNet34 V1 21.8 15.669 73.314 26.686  52.320 +4189  48.686
ResNet50 V1 25.6 13.121 76.130 23.870  49.772 +4180  46.138
ResNet101 V1 44.5 10.502 71.374 22.626  47.153 4189  43.519
ResNet152 V1 60.2 10.133 78.312 21.688  46.784 +4189  43.150
ResNet50 V2 25.6 8.936 80.858 19.142  45.587 +4189  41.953
ResNet101 V2 44.5 6.008 81.886 18.114  42.659 +4189  39.025
ResNet152 V2 60.2 5.178 82.284 17.716  41.829 +4189  38.195
| SwinTransformer B~~~ 87.8 6464 ~  83.582 16418  43.115 +a10  39.481 |
SwinTransformer B V2 87.9 6.392 84.112 15.888 43.043 +4189  39.409
SwinTransformer T 28.3 9.992 81.474 18.526  46.643 +t4189  43.009
SwinTransformer T V2 284 8.724 82.072 17.928 45.375 4189 41.741
VGG13 133.0 18.456 69.928 30.072  55.107 4180  51.473
|VGGI3BN ~ ~ ~ " T 1331 T T T 19.223 © ~ 71.586  28.414 ~ 55.874 +4139 52240 |
VGGI19 143.7 16.121 72.376 27.624  52.772 4189  49.138
VGG19 BN 143.7 15.941 74.218 25782 52592 +4189  48.958
| DenseNeti21 ~ ~ ~ =~ 80 15.631 =~ 74.434 ~ "25566  52.282 4139  48.648 |
DenseNet161 28.7 10.48 77.138 22.862  47.131 +4a180  43.497
DenseNet169 14.1 12.395 75.600 24400  49.046 +4180 45412
DenseNet201 20.0 9.806 76.896 23.104  46.457 4180  42.823
| ConvNext Base ~ 88.6 5209 = 84.062  15.938 ° 41.860 4189 38226 |
ConvNext Large 197.8 3.846 84.414 15.586  40.497 +4189  36.863
| RegNet Y 128GFe2e ~ =~ 6448 5.565 ~  88.228 ° 11.772  42.216 +a1v 38582 |
RegNet Y 128GF linear 644.8 9.032 86.068 13.932  45.683 +4189  42.049
RegNet Y 32GF e2e 145.0 7.127 86.838 13.162  43.778 4189  40.144
RegNet Y 32GF linear 145.0 10.558 84.622 15378  47.209 +4189  43.575
RegNet Y 32GF V2 145.0 3.761 81.982 18.018  40.412 +4189  36.778
| VIT B 16 linear ~ ~ 866 14969 =~ 81.886 18.114  51.620 +4189 47.986 |
VITB 16 V1 86.6 5.916 81.072 18.928  42.567 +4.189  38.933
VIT H 14 linear 632.0 9.951 85.708 14.292  46.602 4180  42.968
VIT L 16 linear 304.3 11.003 85.146 14.854  47.654 +4189  44.020
VITL 16 V1 304.3 3.465 79.662 20.338  40.116 +4180  36.482
0.50
0.04 045 o8
; % 0.40 06
0.02 5 0.35
0.4
0.00 0.30
0 o T 20 40 60 80 100 102 1}33 10t

K

Figure 2: The uncertainty Unc(I") = CyaaIny + ¢g(6/2)
as (right) K changes and (left) o changes, for fixed K =
200,~ = 0.04~Y/* 5 = 0.01.

Figure 1: The dynamic of 7 = 3%, (%)2
as K changes.

by a noise which is randomly sampled from the normal distribution with mean 0 and variance o2.

Those noisy images are used to compute bound ().

Results: Table [3|reports bound (@) for o = 0.15, ignoring the uncertainty part which is common for
all models. One can observe that our bound (d) correlates very well with the test error of each model,
except RegNet and VIT families. This suggests that the use of data augmentation can help us to better
compare the performance of two models.

We next vary o € {0,0.05,0.1,0.15,0.2} to see when the noise can enable a good comparison.
Figure [3] reports the results about two families. We observe that while DenseNet161 has higher
training error than DenseNet201 does, the error bound for DenseNet161 tends to be lower than that
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Table 3: Bound (4)) on the test error (in %) of some models which were pretrained on ImageNet dataset. Each
bound was computed by adding Gaussian noises to the training images, with ¢ = 0.15.

Model Training error Test error Bound
ResNetl18 V1 21.245 30.242 129.226
ResNet34 V1 15.669 26.686 111.521
|DenseNet161 ~ ~ ~ ~ ~ ~ 10480 ~ = 22862~ 94.045 |
DenseNet169 12.395 24.400 100.747
DenseNet201 9.806 23.104 96.221
IVGG13 =~~~ " T 18456 ~ ~ 30072  142.870 |
VGG 13 BN 19.223 28.414 134.955
|RegNet Y32GFe2e ~ ~ 7.127 = 13162 ~ 72474 |
RegNet Y 32GF linear 10.558 15.378 85.368
RegNet Y 32GF V2 3.761 18.018 67.764
|VITB {6 Tinear  ~ =~ 14969 ~ = 18.110 ~ 96.967 |
VITB 16 V1 5916 18.930 65.969
VIT L 16 linear 11.003 14.850 80.178
VITL 16 V1 3.465 20.340 58.402
0.8 1.4
—— DenseNet161 —— VGG 13
0.7 DenseNet169 1.2 VGG 13 BN
0.6{ —— DenseNet201 1.0
5 0.5 08
=2
g% 0.6
0.3
02 0.4 /
0.1 0.2 ¢
00000 005 o010 o015 o020 >%000 005 o010 015 020

Figure 3: The dynamic of bound as the noise level o increases. These subfigures report the main part
é(h) + F(S, h) of the bound.

of DenseNet201 as the images get more noisy. This suggests that DenseNet161 should be better than
DenseNet201, which is correctly reflected by their test errors. The same behavior also appears for
VGG13 and VGG13 BN. However, those two families require two different values of o (0.05 for
VGQG; 0.1 for DenseNet) to exhibit an accurate comparison. This also suggests that the anti-correlation
mentioned before for RegNet and VIT may be due to the small value of ¢ in Table 3] Those two
families may require a higher o to exhibit an accurate comparison.

5 Conclusion

Providing theoretical guarantees for the performance of a model in practice is crucial to build reliable
ML applications. Our work contributes three bounds on the test error of a model, one of which is
non-vacuous for all the trained deep NNs in our experiments, without requiring any change to the
trained models. Hence, our bounds can be used to provide a non-vacuous theoretical certificate for a
trained model. This fills in the decade-missing cornerstone of deep learning theory.

Our work opens various avenues for future research. Indeed, while the the uncertainty part of bound
(T) depends on the inherent property of the model of interest, that in bound (3)) mostly does not.
This suggests that bound (3) is suboptimal. One direction to develop better theories is to take more
properties of a model into consideration, e.g. exploit more fine-grained properties of bound ().
Another direction is to take dependency of the training samples into account. However, it may require
some improvements from very fundamental steps, e.g., concentrations for dependent variables. Since
our bounds are for general settings, one interesting direction is to provide certificates for models
in different types of applications, e.g. regression, segmentation, language inference, translation,
text-2-images, image-2-text, ... We believe that our bounds provide a good starting point for those
directions.
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A Proofs for main results

Proof of Theorem[3.1] We first observe that

K K
n n;
F(P,h)— F(S,h) = F(P,h) —a —a;(h) — F(S,h 5
(P,h) — F( ;n +;n“() (S.h) (5)
Next, we comsider F(P,h) — YK %aih) = YK pai(h) — Y5, %a(h) =
SR ai(h) [pi —™]. Note that (ni,..,ng) is a multinomial random variable with pa-
rameters n and (pi,...,PK). Therefore, according to Lemma 7 in [23], we have
Pr (ZZ Lai(h) [pi — 2] > g(l",h,ég)) < d5. This implies
n;
(P, h) — (T, h,o J 6
< ; o ) > g( 2)) <02 (6)
On the other hand, Theorem [A 1] below shows that
n; U 1
P —a;(h) — F(S,h) > —ln—| < ¢ 7
r(.;:n“() (S,h)>C 2n2“51> < 4 (7)
i€Ts

Combining this with @ and the union bound, we have

Pr (F(P, h) > F(S,h) + C\ /# 1n(5i +g(T, h, 52)> < 01 + 6 )
1

completing the proof. O

Proof of Theorem Theorem [3.1] shows that

Pr (F(P, h) > F(S,h) + C\/# 1116i +g(T, h,5/2)> <8 +6/2 9)
1

where v and §; depend on the sum Zfil p?. We next bound this quantity using S.

Since p; > 0 and Zfil p; = 1, we can use the Lagrange multiplier method to show that Zfil p? is
minimized at 1/ K. Hence u = Zf; ynp;(1+vnp;) = yn+~2n? Zf; p? > yn++*n?/K. This

2,2
suggests that exp(fﬁig) < exp(f%) < exp(f%) < 4~“. Choosing

01 = v~ % and plugging it into @) lead to

Pr (F(P h) > F(S,h) +C,/ alny +g(Th 5/2)) <8/2+~C (10)

It is easy to see that g(T', h, §/2) < g2(d/2), since a,(h) < C and a;(h) < C for any i. Therefore

Pr (F(P h) > F(8S, h)+C,/aln7+92(5/2)) <§/24+~7¢ (11)

. 2 K . . .. .
Next we consider 57 = - + 5> .7 p?. Since S contains n i.i.d. samples, (n1,...,nk) is a
multinomial random variable with parameters n and (p1, ..., px ). Lemma|[B.8| shows

- 5 a2 2 2K
p 2> (&) 2y/=In=— | <4/2
Therefore Pr (ﬁ>%+§2fl( )+71/%ln%)<5/2. This also suggests that

Pr(C 2u2aln'y>C’\/1laln7)<5/2 (12)
\V 2n

Combining this with and the union bound will complete the proof. O

13



489 Proof of Theorem[3.3] Theorem [3.2] shows that the following holds with probability at least 1 —

40 YT¥—0:
F(P,h) < F(S,h) + Cy/aalny + g(5/2) (13)
491 Note that
my m; A N
F(S,h) =F(S,h) = > LF(Si,h) + 3 LF(Si,h) = F(S,h) + F(S, h) (14)
1eT €T
=Y THE(Si,h) — F(Si )] + F(S,h) = Y “XF(S;,h) + F(S. h) (15)
€T €T m
:Z Z (h,z) — F(Si,h)] + F(S,h) = Y " F(S;,h) + F($,h) (16)
ieT i z€S; i€T m
=SB L N uh,z) — Uk, 9)] + F(S,h) = S ZEE(S,, B) + (S, )
- . m nlmz A b b ) : m 19 b
i€T z€S;,8€8; ieT

A7)

<> o Y lth.z) ~t(h.s)| + F(S,h) - Z%F(Si,h) + F(S,h)

€T z€8,,5€8; ieT
m; _ m; A
<2762+F S, h)— EF(Si,h)nLF(S,h)
€T €T
mg _
=Y e+ (5= 2 F(Si.h) + F(S,h)
€T €T

492 Since this determistically holds for all S, combining (13) with (20) completes the proof.

493 A.1 Approximating the intractable part by a data set

494 Theorem A.1. Given the notations in Theorem

Pr(Zmal >3 2 TLF(Sih) +C 1n51> < 6
n 1

ieTs zGTS

se5  Proof. Denote n = {ny,...,nk } and for each j € [K]:

J J
Bj = anaz(h) — ZniF(Si, h)
i=1 =1

Xj = leF(Sj, h)
Sq; = |Jsi
1<y
496 Denote y = u‘gz [0, uC' 81“16} . The proof for contains three main steps.

497 Step 1: We first observe that

Pr(Bx >t) < e Y"Eg [e*P¥] (Chernoff bounds)
< e Y'Epn [Es [¢vP%|h,n]] (Law of total expectation)

14

(18)
19)

(20)

O

2n

(22)

(23)
(24)

(25)
(26)



48 Step 2 - estimating Eg [e¥P% |h, n]: We observe the following for each j € T,

EXJ- [Xﬂh,’n] :Esj [’I’LJF(Sj7h)|h,’I’L} (27)
=Es, | > l(h,z;)lh, n] (where S; = {z;;};2,)  (28)
i=1

= ZEzﬂegj [(h, zj;)|h, n] (S; contains i.i.d. samples in Z;) (29)
i=1

=3 ay(h) = nja,(h) (30)
i=1
499 Therefore B; = Bj_1 + Ex,[X;|lh,n] — X; for all j € Ts. Note that B; = B;_; (due to

so0 n; =b; = X; =0)forall i ¢ Ts. Hence, for i ¢ Tg, we will use Ex, [X;|h, n] — X, instead of O
501 in the below analysis for simplicity of presentation.

502 We can rewrite

Es [e7% [h.n] = g [e0(Pr2 Ex Dl X0 a1
= Es_j [0 B Xlhn X0 |y (32)
< ]ESSK—I [eyBK—1|h’n] Ex, I:ey(]EXK [XKIh,n]*XK)‘h,n] (33)

s03 where the last inequality comes from the fact that X is conditionally independent with S<x_1,
s04 conditioned on {h,n}.

so5 It is easy to see that 0 < Xgx < Cng, due to 0 < F(Sk,h) < C. Lemma implies
2~2, 2
s Ex, [evExxXrlhnl=Xu)|p n] <exp (yCTnK> Plugging this into , we obtain
2022
Eg [eyBK|h,n] <Es_,_, [eyBK*1|h,n] exp <y8nK> (34)
507 Using the same arguments for X _1, ..., X7, we obtain the followings
20022 2022
Eg [eyBK|h,n} < Es_x, [eyBK—2|h,n} exp (y 8”}{ + i S K_1>
202 K
< exp (y . n?) (35)
i=1
se  Step 3 - bounding Pr (Bx > t): By combining this with (26)), we obtain
y2C? K
Pr(Bg >t) < e YEp,exp > ng (36)
7 8 i=1
202 K
o —yt Y 2
= e Enexp< 3 ;nz> (37)
202 K-1 202
< e Y'E, exp (y g Z nf) E,, exp (ySn%{> (38)
i=1
(Since n is independent with vy, ...,nx 1)
In 202 _ 22 In In
509 Whenypg < 1,duetot < uCy/ Snjﬁ’ observe that £ 5 = oz < 4n13 < (177171()7(4“73). Note

510 that ng is a binomial random variable with parameters n and px . Combining those facts with Lemma
511 implies E,, exp (gnid < exp (Lgcz’ynpK(l + 'ynpK)). On the other hand, Lemma
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also implies E,, . exp (gn%) < exp (gvnplg(l + 'ynpK)) when ypx > 1. As a result,

those facts and lead to the following:

y2C? K-1 Y202
Pr(Bxk >t) < e YEnexp 3 Z n? | exp ( 3 (14 ’ynpK)vnpK)) (39
i=1

Using the same arguments for the remaining variables nx_1, ..., n1, we obtain

202 K
Pr(Bg 2t) < exp (—yt +4 S > +vnm)vnpi> (40)

i=1

202y —2t2
~ e (yter g )exp(u02> (1)
As aresult
K K 22

Pr <§ n;a;(h) > ;niF(Si, h)+ t) < exp (_u02> (42)

Since n; = 0 for all j ¢ T, we have

2
Pr (Z n;a;(h) > Z nF(S;, h) + t) < exp (_thC’Z) (43)

i€Ts i€Ts

Multiplying both sides (of the probability term) with 1/n leads to

n; i :
Pr (Z “aih) = Y 7{”5“")“/") = o (f;)

i€Ts i€Ts
Choosingt = Cy /5 In i results in lb completing the proof. O
B Supporting theorems and lemmas

B.1 Hoeffding’s Lemma

Lemma B.1 (Hoeffding’s lemma for conditionals). Let X be any real-valued random variable that
may depend on some random variables Y . Assume that a < X < b almost surely, for some constants
a,b. Then, for all A € R,

207 N2
Ex [PEM-0y] < e (A(b8a)> 44)

Proof. Denote c =Ex[X|Y] —b,d=Ex[X|Y] —aandhence c <0 < d.

Since exp is a convex function, we have the following for all Ex [X|Y] — X € [¢,d]:

AEXX|Y]-X) < d—Ex[X|Y]+ Xe/\c n Ex[X|Y]-X - € Ad
- d—c d—c
Therefore, by taking the conditional expectation over X for both sides,
d—Ex[X|V] +Ex[X|Y] ,,  Ex[X|Y]-Ex[X|V]-c ,,
d—c d—c
d
Ac € oM (45)

d—c' d—c
= lL(Ad=0)) (46)

Ex ek(Ex[XlY]—X)|Y

IN

where L(h) = dc_hc +In(1+ Cg—ft”) For this function, note that
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cdel

L(O) = LI(O) = 0and L,/(h) = —m

The AM-GM inequality suggests that L” (h) < 1/4 for all h. Combining this property with Taylor’s
theorem leads to the following, for some 6 € [0, 1],

L(h) = L(0) + hL'(0) + %th”(he) < %2

Combining this with #6) completes the proof. O

B.2 Small random variables

Lemma B.2. Let x1,...,x, be independent random variables in [0,1] and satisfy E[z;] <
v, Vi for some v € [0,1]. For any ¢ > 1 satisfying cv > 1 and any A > 0, we have
Eexp (AM(z1 4 + 2n)?) < exp(Aenv(1 + cnv)).

Lemma B.3. Let x4, ..., x, be independent random variables in [0, 1] and satisfy E[z;] < v,Vi

Inc

for some v € [0,1]. For any ¢ > 1 satisfying cv < 1 and any \ € [0, W]’ we have
Eexp (M1 + -+ + 2n)?) < exp(Aenv(1 + cnv)).

In order to prove those results, we need the following observations.

Lemma B.4. Consider a random variable X € [0,1] with mean E[X]| < v for some constant
v € [0,1]. Foranyc> 1,1 > 0:

o Ifcv > 1, then Ee?X < e,
o Ifcv < 1, then EerX < e forall X € [0, 222 ],

?1—cv

Proof. The Taylor series expansion of the function e** at any X is e? = 14 307, ()‘ﬁ)p.
Therefore
o AP
E[e*¥] = 1+Z ) <1+E(X Zj (dueto XP < X,¥p >1) (47)
< Z —1—|—l/ 1) =1-v+ve (48)

A A

A 1+ v — vet. Its derivative is 3y = cre® — ver =

Next we consider function y(\) = e
ver(celr=DA — 1),

For the case cv > 1, one can observe that 3y’ > 0 for all A > 0. This means y is non-decreasing, and
hence y(\) > y(0) = 0. As aresult, e > 1 — v + ve* > E[eM].

Consider the case cv < 1, it is easy to show that y'(A\) > 0 for all A € [0, 11115”]. This means y is
non-decreasing in the interval [0, 12< ], and hence y(\) > y(0) = 0 forall A € [0, 2% ]. Asa

? 1—crv ? 1—cv

result, e* > 1 — v + ve* > E[e?MX], completing the proof. O

Corollary B.5. Consider a random variable X € [0,1] with mean E[X]| < v for some constant
v € [0,1]. For all constants a,b > 0,c > 1:

o EeMaX?+bX) < ecattvA forall X\ > 0, if cv > 1.

o EeMaX?+bX) < pclatbA gor gl X € [0, O_JJ’%] ifev < 1.

Proof. Tt is easy to observe that Ee*eX”) < EeAaX) due to X € [0,1]. This suggests that
EeMaX*+bX) < EeAa+b)X  Applying Lemmawill complete the proof. O
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Proof of Lemma([B.2] Denote y,, = x1 + - - - + x,,. Observe that y,, = y,,_1 + x,, and

E. e n — E, AWn_1+2zayn—1+2}) _ |

|:e>‘%2171 Ew”e/\(290nyn71+ﬂfi)i| (49)

Yn Yn—1

Since cv > 1 and =z, is independent with y,,_;, Corollary implies E, A 2Tnyn—1ter) <
eVA(2yn—1+1) Plugging this into leads to

Eynekyi < E |:e)\yif1eCVA(29n—1+1)} — em/)\E

{ex(yi,ﬁ?cl’yn—l)} (50)

Yn—1 Yn—1

. 2
Next we consider E,,, | [ek(yn%““’y"—l)} . Observe that y,,_1 = y,—2 + x,,—1 and hence

E ek(yi,1+2cvyn71)} _ A2 04220 1Yn—2 T2 20T 01 +2¢0Yn—2) (51)

Yn—1

Eyn—le
E

o |:e)\(yi_2+2cuyn_2)]EgB 16)\(2mn_1yn_2+2cuzn_1+zi_le§2)
n— n—

Since ¢cv > 1 and z,_; is independent with y, o, Corollary [B3] implies
E e/\(2‘Ln—1yn72+2(/l/‘Ln—l+-Ln,1) < ecuA(?ynfz-i-ch-‘rl). Pluggmg this into " leads to

Tn—1

E,._, {EA(yi_1+26Vyn—1)} < E

2
< o |:€)\(yn_2+25uyn_2)ecu)\(Zyn_2+25u+1):| (53)

ecuA(ch-{-l)Ey [e)\(yi,2+4cuyn72):| (54)

n—2

By using the same arguments, we can show that

Ey » |:e)\(y72l_1+2cuyn_1):| < ecu)\(ch+1)ecv)\(4cu+1)]Ey . [ek(yi_3+ﬁcvyn_3)} (55)
6201/)\(3c1/+1)Eyn73 {ek(yi73+601/yn,3)} (56)

< ec(n—Z)UA(c(n—l)u-&-l)Eyl |:6>\(yf+2c(n—l)l/y1):| (57)

Note that E,, |e*@it2e(m=brs) | — | eA(szrzc(”*l)”ml)} < eevAF2e(n=1v) "according to

Corollary Combining this with (57)), we obtain

E |:e)\(y3l71+2cuyn_1):| < ec(n—Z)l/)\(c(n—l)l/+1)ecz/)\(1+2c(n—1)1/) — ecu)\(1+cnu)(n—1)(58)

Yn—1

By plugging this into (50), we obtain

Ey e)\yi < echecuA(1+cnv)(n—1) — ecz/)\((1+cnu)n—cnl/) (59)
< ecnu(l—i-cm/))\ (60)
completing the proof. O

Proof of Lemma(B.3| Denote y,, = x1 + - - - + x,, and observe that

E. e n — Ey”eA(yi,1+2xnynf1+wi):E

Yn Yn—1

|:6>\y’21*1 Ew”e/\(2$nyn71+$i):| 61)

Note that ¢, 1 =1 +--- 4+ 2,1 <n—land A(2y,_1 + 1) < A\(2n — 1) < \(4n — 3) < B,

1—cv
Since z,, is independent with 7,,_1, Corollary implies B, eM2onyn-1+23) < eerA(2yn—1+1),
Plugging this into (61) leads to

EyneAyi < E [ekyiﬂewk(%nfﬁl)} =" E,, | {e/\(yiﬁ?wynfl)} (62)

Yn—1

. 2
Next we consider E [e’\(ynﬂ”c”y"*l)} . Observe that

Yn—1
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2 2 2
ek(yn,l-ﬁ‘QCVyn—l) — EynileA(yn,,2+2mn—1yn_2+zn,1+2curn—1+2cvyn_z) (63)

E

Yn—1

ek(yi,2+2cvyn72)Em

= E e)‘(2$n—1yn—2+2CV$n71+$i,12%4)

Yn—2 n—1

One can easily show that A(2y,—2 + 2cv + 1) < A2(n—2) + 2cv + 1) < Adn —
3) < Inc " gince Yn—2 = T1 + -+ + Tp—a < n — 2. Therefore Corollary implies

— l—cv’
E

2 . . . .
o, e FEn—1yn—at2oven it 1) < gerARyn—2+2ev+1) gince x,,_; is independent with 1,,_o.
Plugging this into (64) leads to

Eynﬂ {ek(yi,l-&-?cvynq)} < ]Ey,L,Q |:6A(y72l72+20Vyn—2)eCV)\(2yn72+2CV+1):| (65)

ecuz\(2cu+1)E [e)\(yi72+4cyy,z,2)i| (66)

Yn—2

By using the same arguments, we can show that

Ey » |:€/\(y12L71+QCVyn71):| < ecu/\(20u+1)ecy)\(4cu+1)]E - |:e)\(y373+601/y",3):| 67)
2evABa DR {eA(yi_ngGchnfs)} (68)
< ec(n—Q)uA(c(n—l)u—‘rl)Eyl |:€)\(yf+2c(n—1)uy1):| (69)

Note that E,, [6)‘(9%”‘3(”*1)”“)] = E,, [e“zf*%(”*l)”ml)] < eevAH2e(n=1v) "according to

Corollary [B.5]and the fact that A(1 + 2¢(n — 1)v) < A(4n — 3) < {2£. Combining this with (69),
we obtain

E

_— |:e)\(y72171+2c1/yn,1):| < ec(n72)u)\(c(n71)u+1)ecu)\(1+2c(n71)u) _ ecu)\(1+cnu)(n71)(70)

By plugging this into (62)), we obtain

Ey eAyi < ecu)\ecuk(lJrcnv)(nfl) _ ecu)\((lJrcnu)nfch) (71)
< ecnu(l—i—cnu)/\ (72)
completing the proof. O

B.3 Binomial and multinomial random variables

Next we analyze some properties of binomial random variables.

Lemma B.6. Consider a binomial random variable =z with parameters n > 1 and v € [0, 1]. For

any ¢ > 1 satisfying cv > 1 and any A > 0, we have Rt < ecnv(ltenv)A

Proof. Since z is a binomial random variable, we can write z = 1 + - - - + x,,, Where x1, ..., T,, are
i.i.d. Bernoulli random variables with parameter v. Therefore applying Lemma [B.2]completes the

proof. O
Lemma B.7. Consider a binomial random variable z with parameters n > 1 and v € [0,1]. For
any ¢ > 1 satisfying cv < 1 and any X € [0, %], we have Ee*=* < eenv(1teni)A,

Proof. Since z is a binomial random variable, we can write z = x1 + - - - + ©,,, Where x1, ..., x,, are
i.i.d. Bernoulli random variables with parameter v. Therefore applying Lemma [B.3]completes the
proof.

Lemma B.8 (Multinomial variable). Consider a multinomial random variable (nq, ...,nx) with
parameters n.and (p1, ..., px ). For any § > 0:

K K N K
Pr P> i +2\/1n><5
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Proof. Observe that

ép? -y (%] o)

=1 =1
- Y[ 2 - e
K 0.5n; n;
= 21:21 (0.5]% + n) (pi — ;) (75)
< 2 mex (pi - %) (76)

where the last inequlality can be derived by using the fact that Zfil (0.5p¢ + %) (pi - %)

is a convex combination of the elements in {p; — % : i € [K]}, because of 1 =

Zfil (O.5pi + %) Furthermore, since n; is a binomial random variable with parameters

n and p;, Lemma 5 in [23]] shows that Pr | p; — =% > Zpi |y % < ¢ for all 7. This im-

n

mediately implies Pr (pi — > %ln %) < §. Combining this fact with li we obtain

Pr (Zfil D P (%)2 >24/2In %) < &, completing the proof. O

C Experimental setup

More details about clustering the training images:

e We first preprocessed the images following Pytorclﬂ The images are resized to
resize_size = [256] using interpolation=InterpolationMode.BILINEAR, followed by a
central crop of crop_size = [224]. Finally the values are first rescaled to [0.0, 1.0]. Those
operations are required for Pytorch pretrained models.

e For each run, we randomly choose 200 points in [0.0, 1.0]*#>*W (o be the centroids, since
each preprocessed image belongs to [0.0, 1.0]“*#*W "Those centroids are used to build
the small areas Z; in the partition. Each training image x will be assigned to area Z; if it is
closest to the centroid of Z; amongst all centroids, according to the Euclidean distance.

"https://pytorch.org/vision/0.20/models/generated/torchvision.models.vit_b_16.
html
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
o The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

o The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

o The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification:
Guidelines:
e The answer NA means that the paper does not include theoretical results.
e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
o All assumptions should be clearly stated or referenced in the statement of any theorems.
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e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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o The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:
e The answer NA means that the paper does not include experiments.
o The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
o The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

o [t should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e [t is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer:
Justification: Our paper is theoretical, so no special requirement for computer resources is
required.
Guidelines:

e The answer NA means that the paper does not include experiments.

23


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

789
790
791
792
793
794

796
797
798
799
800

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

835
836
837
838
839
840
841
842
843
844
845
846
847

0.

10.

11.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification:

Guidelines:

o The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: At this moment, we do not foresee any negative impact of our work to the
world, since our work is theoretical. Nonetheless, we can see positive impacts of our work
to deep learning. Although deep learning has been helping us to make many breakthroughs,
little has been known about why those DL models can perform really well on unseen data,
after training from a finite training set. This is arguably the biggest challenge in DL theory.
Our work provides novel theories that are non-vacuous for a large class of modern DL
models. Those theories contribute to the solid foundation of DL in particular, and Al in
general.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

24


https://neurips.cc/public/EthicsGuidelines

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

12.

13.

14.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or dataset.

o The authors should state which version of the asset is used and, if possible, include a
URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

o The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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16.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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