
Non-vacuous Bounds for the test error of Deep Learning without any change to the trained models

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Deep neural network (NN) with millions or billions of parameters can perform
2 really well on unseen data, after being trained from a finite training set. Various
3 prior theories have been developed to explain such excellent ability of NNs, but
4 do not provide a meaningful bound on the test error. Some recent theories, based
5 on PAC-Bayes and mutual information, are non-vacuous and hence promising to
6 explain the excellent performance of NNs. However, they often require a stringent
7 assumption and extensive modification (e.g. compression, quantization) to the
8 trained model of interest. Therefore, those prior theories provide a guarantee for
9 the modified versions only. In this paper, we propose two novel bounds on the test
10 error of a model. Our bounds uses the training set only and require no modification
11 to the model. Those bounds are verified on a large class of modern NNs, pretrained
12 by Pytorch on the ImageNet dataset, and are non-vacuous. To the best of our
13 knowledge, these are the first non-vacuous bounds at this large scale, without any
14 modification to the pretrained models.

15 1 Introduction

16 Deep neural networks (NNs) are arguably the most effective families in Machine Learning. They have
17 been helping us to produce various breakthroughs, from mastering complex games [39], generating
18 high-quality languages [10] or images [20], protein structure prediction [22], to building multi-task
19 systems such as Gimini [41] and ChatGPT [1]. Big or huge NNs can efficiently learn knowledge
20 from large datasets and then perform extremely well on unseen data.

21 Despite many empirical successes, there still remains a big gap between theory and practice of modern
22 NNs. In particular, it is largely unclear [48] about *Why can deep NNs generalize well on unseen*
23 *data after being trained from a finite number of samples?* This question relates to the generalization
24 ability of a trained model. The standard learning theories suffer from various difficulties to provide a
25 reasonable explanation. Various approaches have been studied, e.g. Radermacher complexity [18, 5],
26 algorithmic stability [38, 11], algorithmic robustness [47, 40], PAC-Bayes [32, 7].

27 Some recent theories [50, 7, 28–30] are really promising, as they can provide meaningful bounds on
28 the test error of some models. Dziugaite and Roy [14] obtained a non-vacuous bound by optimizing a
29 distribution over NN parameters. [50, 16, 34] bounded the expected error of a *stochastic NN* by using
30 off-the-shelf compression methods. Those theories follow the PAC-Bayes approach. On the other
31 hand, Nadjahi et al. [35] showed the potential of the stability-based approach. Although making a
32 significant progress, those theories are meaningful for small and *stochastic NNs* only.

33 Lotfi et al. [29, 30] made a significant step to analyze the generalization ability of big/huge NNs,
34 such as large language models (LLM). Using state-of-the-art quantization, finetuning and some other

Table 1: Recent approaches for analyzing generalization error. ✓ means “Required” or “Yes”. The upper part shows the required assumptions about different aspects, e.g., hypothesis space, loss function, training or finetuning. The lower part reports non-vacuousness in different situations.

Approach	Radermacher complexity [5]	Alg. [9, 27]	Stability [47, 23, 42]	Alg. Robustness [46, 35]	Mutual Info [50, 34]	PAC-Bayes [29, 30]	Ours
Requirement:							
Model compressibility				✓	✓	✓	
Train or finetune				✓	✓	✓	
Lipschitz loss	✓	✓		✓			
<i>Finite</i> hypothesis space						✓	
Non-vacuousness for:							
<i>Stochastic</i> models only		✓		✓	✓		
Trained models					✓	✓	
Training size > 1 M					✓	✓	
Model size > 500 M					✓	✓	

35 techniques, the PAC-Bayes bounds by [30, 29] are non-vacuous for huge LLMs, e.g., GPT-2 and
36 LLaMA2. Those bounds significantly push the frontier of deep learning theory.

37 In this work, we are interested in estimating or bounding the expected error $F(P, \mathbf{h})$ of a specific
38 model (hypothesis) \mathbf{h} which is trained from a finite number of samples from distribution P . The
39 expected error tells how well a model \mathbf{h} can generalize on unseen data, and hence can explain the
40 performance of a trained model. This estimation problem is fundamental in learning theory [33],
41 but arguably challenging for NNs. Many prior theories [50, 28, 35] were developed for *stochastic*
42 *models*, but not for a trained model \mathbf{h} of interest. Lotfi et al. [29, 30] made a significant progress
43 to remove “stochasticity”. For example, Lotfi et al. [30] provided a non-vacuous bound for the
44 2-bit quantized (and finetuned) versions of LLaMA2. Nonetheless, those theories require to use
45 a method for intensively quantizing or compressing \mathbf{h} . This means that those theories are for the
46 quantized or compressed models, and *hence may not necessarily be true for the original (unquantized*
47 *or uncompressed) models*. This is a major limitation of those bounds. Such a limitation calls for
48 novel theories that directly work with a given model \mathbf{h} .

49 Our contributions in this work are as follow:

- 50 • We develop a novel bound on the expected error $F(P, \mathbf{h})$ of a trained model \mathbf{h} . This bound
51 does not require stringent assumptions as prior bounds do. It encodes both the complexity
52 of the data distribution and the behavior of model \mathbf{h} at local areas of the data space.
53 The main technical challenge to obtain our bound is to use the training set to approximate
54 an intractable term which summarizes the true error of \mathbf{h} at different local areas of the data
55 space. We resolve this challenge by analyzing various properties of small and binomial
56 random variables.
- 57 • We next derive a tractable bound that can be easily computed from the training set only,
58 without any change to \mathbf{h} . Hence this bound directly provides a guarantee for \mathbf{h} . Those
59 properties are really beneficial and enable our bound to overcome the major limitations of
60 prior theories. Table 1 presents a more detailed comparison about some key aspects.
- 61 • Third, we develop a novel bound that uses a data transformation method. This bound can
62 help us to analyze more properties of a trained model, and enable an effective comparison
63 between two trained models. This bound may be useful in many contexts, where prior
64 theories cannot provide an effective answer.
- 65 • Finally, we did an extensive evaluation for a large class of modern NNs which were pretrained
66 by Pytorch on the ImageNet dataset with more than 1.2M images. The results show that our
67 bounds are non-vacuous. To the best of our knowledge, this is the first time that a theoretical
68 bound is non-vacuous at this large scale, without any change to the trained models.

69 *Organization:* The next section presents a comprehensive survey about related work, the main advan-
70 tages and limitations of prior theories. We then present our novel bounds in Section 3, accompan-
71 ed with more detailed comparisons. Section 4 contains our empirical evaluation for some pretrained NNs.
72 Section 5 concludes the paper. Proofs and more experimental details can be found in appendices.

73 *Notations*: S often denotes a dataset and $|S|$ denotes its size/cardinality. Γ denotes a partition of the
74 data space. $[K]$ denotes the set $\{1, \dots, K\}$ of natural numbers at most K . ℓ denotes a loss function,
75 and \mathbf{h} often denotes a model or hypothesis of interest.

76 2 Related work

77 Various approaches have been studied to analyze generalization capability, e.g., Rademacher com-
78 plexity [4], algorithmic stability [38, 15], algorithmic robustness [47], Mutual-infomation based
79 bounds [46, 35], PAC-Bayes [32, 19]. Those approaches connect different aspects of a learning
80 algorithm or hypothesis (model) to generalization.

81 **Norm-based bounds** [5, 18, 17] is one of the earliest approaches to understand NNs. The existing
82 studies often use Rademacher complexity to provide data- and model-dependent bounds on the
83 generalization error. An NN with smaller weight norms will have a smaller bound, suggesting better
84 generalization on unseen data. Nonetheless, the norms of weight matrices are often large for practical
85 NNs [3]. Therefore, most existing norm-based bounds are vacuous.

86 **Algorithmic stability** [9, 38, 12, 24] is a crucial approach to studying a learning algorithm. Basically,
87 those theories suggest that a more stable algorithm can generalize better. Stable algorithms are less
88 likely to overfit the training set, leading to more reliable predictions. The stability requirement in
89 those theories is that a replacement of one sample for the training set will not significantly change
90 the loss of the trained model. Such an assumption is really strong. One primary drawback is that
91 achieving stability often requires restricting model complexity, potentially sacrificing predictive
92 accuracy on challenging datasets. Therefore, this approach has a limited success in understanding
93 deep NNs.

94 **Algorithmic robustness** [47, 40, 23, 42] is a framework to study generalization capability. It
95 essesntially says that a robust learning algorithm can produce robust models which can generalize
96 well on unseen data. This approach provides another lens to understand a learning algorithm and
97 a trained model. However, it requires the assumption that the learning algorithm is robust, i.e., the
98 loss of the trained model changes little in the small areas around the training samples. Such an
99 assumption is really strong and cannot apply well for modern NNs, since many practical NNs suffer
100 from adversarial attacks [31, 49]. Than et al. [42] showed that those theories are often vacuous.

101 **Neural Tangent Kernel** [21] provides a theoretical lens to study generalization of NNs by linking
102 them to kernel methods in the infinite-width limit. As networks grow wider, their training dynamics
103 under gradient descent can be approximated by a kernel function which remains constant throughout
104 training. This perspective simplifies the analysis of complex neural architectures. The framework
105 enables explicit generalization bounds, and a deeper understanding of how network architecture
106 and initialization affect learning. However, the main limitation of this framework comes from its
107 assumptions, such as the *infinite-width* regime and fixed kernel during training, may not fully capture
108 the behavior of finite, practical networks where feature learning is dynamic. Some other studies [25]
109 can remove the infinite-width regime but assume the *infinite depth*.

110 **Mutual information (MI)** [46, 35] has emerged as a powerful tool for analyzing generalization
111 by quantifying the dependency between a model’s learned representations and the data. Since a
112 trained model contains the (compressed) knowledge learned from the training samples, MI offers
113 a principled framework for studying the trade-off between compression and predictive accuracy.
114 However, the existing MI-based theories [46, 45, 37, 35] have a notable drawback: computing MI in
115 high-dimensional, non-linear settings is computationally challenging. This drawback poses significant
116 challenges for analyzing deep NNs, although [35] obtained some promissing results on small NNs.

117 **PAC-Bayes** [32, 19, 8] recently has received a great attention, and provide non-vacuous bounds
118 [50, 34] for some NNs. Those bounds often estimate $\mathbb{E}_{\hat{\mathbf{h}}}[F(P, \hat{\mathbf{h}})]$ which is the expectation of the
119 test error over the posterior distribution of $\hat{\mathbf{h}}$. It means that those bounds are for a *stochastic model* $\hat{\mathbf{h}}$.
120 Hence they provide limited understanding for a specific deterministic model \mathbf{h} . Neyshabur et al. [36]
121 provided an attempt to derandomization for PAC-Bayes but resulted in vacuous bounds for modern
122 neural networks [3]. Some recent attempts to derandomization include [44, 13].

123 **Non-vacuous bounds for NNs**: Dziugaite and Roy [14] obtained a non-vacuous bound for NNs by
124 finding a posterior distribution over neural network parameters that minimizes the PAC-Bayes bound.

125 Their optimized bound is non-vacuous for a stochastic MLP with 3 layers trained on MNIST dataset.
 126 Zhou et al. [50] bounded the population loss of a stochastic NNs by using compressibility level of a
 127 NN. Using off-the-shelf neural network compression schemes, they provided the first non-vacuous
 128 bound for LeNet-5 and MobileNet, trained on ImageNet with more than 1.2M samples. Lotfi et al.
 129 [28] developed a compression method to further optimize the PAC-Bayes bound, and estimated
 130 the error rate of 40.9% for MobileViT on ImageNet. Mustafa et al. [34] provided a non-vacuous
 131 PAC-Bayes bound for adversarial population loss for VGG on CIFAR10 dataset. Galanti et al. [16]
 132 presented a PAC-Bayes bound which is non-vacuous for Convolutional NNs with up to 20 layers
 133 and for CIFAR10 and MNIST. Akinwande et al. [2] provided a non-vacuous PAC-Bayes bound
 134 for prompts. Although making a significant progress for NNs, those bounds are non-vacuous for
 135 stochastic neural networks only. Biggs and Guedj [7] provided PAC-Bayes bounds for deterministic
 136 models and obtain (empirically) non-vacuous bounds for a specific class of (SHEL) NNs with a single
 137 hidden layer, trained on MNIST and Fashion-MNIST. Nonetheless, it is unclear about how well those
 138 bounds apply to bigger or deeper NNs.

139 Towards understanding big/huge NNs, Lotfi et al. [29, 30] made a significant step that provides
 140 non-vacuous bounds for LLMs. While the PAC-Bayes bound in [29] can work with LLMs trained
 141 from i.i.d data, the recent bound in [30] considers token-level loss for LLMs and applies to dependent
 142 settings, which is close to the practice of training LLMs. Using both model quantization, finetuning
 143 and some other techniques, the PAC-Bayes bound by [30] is shown to be non-vacuous for huge LLMs,
 144 e.g., LLaMA2. Those bounds significantly push the frontier of learning theory towards building a
 145 solid foundation for DL.

146 Nonetheless, there are two main drawbacks of those bounds [29, 30]. First, model quantization
 147 or compression is required in order to obtain a good bound. It means, those bounds are for the
 148 quantized or compressed models, and *hence may not necessarily be true for the original (unquantized
 149 or uncompressed) models*. For example, [30] provided a non-vacuous bound for the 2-bit quantized
 150 versions of LLaMA2, instead of their original pretrained versions. Second, those bounds require
 151 the assumption that *the model (hypothesis) family is finite*, meaning that a learning algorithm only
 152 searches in a space with finite number of specific models. Although such an assumption is reasonable
 153 for the current computer architectures, those bounds cannot explain a trained model that belongs to
 154 families with infinite (or uncountable) number of members, which are provably prevalent. In contrast,
 155 our bounds apply directly to any specific model without requiring any modification or support. A
 156 comparison between our bounds and prior approaches about some key aspects is presented in Table 1.

157 3 Error bounds

158 In this section, we present three novel bounds for the expected error of a given model. The first
 159 bound provides a general form which directly depends on the complexity of the data distribution and
 160 the trained model. The second bound provides an explicit upper bound for the error, which can be
 161 computed directly from any given dataset. The last bound helps us to analyze the robustness of a
 162 model by using data augmentation.

163 Consider a hypothesis (or model) \mathbf{h} , defined on an instance set \mathcal{Z} , and a nonnegative loss function ℓ .
 164 Each $\ell(\mathbf{h}, \mathbf{z})$ tells the loss (or quality) of \mathbf{h} at an instance $\mathbf{z} \in \mathcal{Z}$. Given a distribution P defined on
 165 \mathcal{Z} , the quality of \mathbf{h} is measured by its *expected loss* $F(P, \mathbf{h}) = \mathbb{E}_{\mathbf{z} \sim P}[\ell(\mathbf{h}, \mathbf{z})]$. Quantity $F(P, \mathbf{h})$
 166 tells the generalization ability of model \mathbf{h} ; a smaller $F(P, \mathbf{h})$ implies that \mathbf{h} can generalize better on
 167 unseen data.

168 For analyzing generalization ability, we are often interested in estimating (or bounding) $F(P, \mathbf{h})$.
 169 Sometimes this expected loss is compared with the *empirical loss* of \mathbf{h} on a data set $\mathbf{S} =$
 170 $\{\mathbf{z}_1, \dots, \mathbf{z}_n\} \subseteq \mathcal{Z}$, which is defined as $F(\mathbf{S}, \mathbf{h}) = \frac{1}{n} \sum_{\mathbf{z} \in \mathbf{S}} \ell(\mathbf{h}, \mathbf{z})$. Note that a small $F(\mathbf{S}, \mathbf{h})$
 171 does not necessarily imply good generalization of \mathbf{h} , since overfitting may appear. Therefore, our
 172 ultimate goal is to estimate $F(P, \mathbf{h})$ directly.

173 Let $\Gamma(\mathcal{Z}) := \bigcup_{i=1}^K \mathcal{Z}_i$ be a partition of \mathcal{Z} into K disjoint nonempty subsets. Denote $\mathbf{S}_i = \mathbf{S} \cap \mathcal{Z}_i$,
 174 and $n_i = |\mathbf{S}_i|$ as the number of samples falling into \mathcal{Z}_i , meaning that $n = \sum_{j=1}^K n_j$. Denote
 175 $\mathbf{T} = \{i \in [K] : n_i > 0\}$, $a_i(\mathbf{h}) = \mathbb{E}_{\mathbf{z}}[\ell(\mathbf{h}, \mathbf{z}) | \mathbf{z} \in \mathcal{Z}_i]$ for $i \in [K]$, and $a_o = \max_{j \notin \mathbf{T}} a_j(\mathbf{h})$.

176 **3.1 General bound**

177 The first result incorporates the properties of the data distribution and the trained model.

178 **Theorem 3.1.** *Given a partition Γ and a bounded nonnegative loss ℓ , consider a model \mathbf{h} which may
179 depend on a dataset \mathbf{S} with n i.i.d. samples from distribution P . Denote $p_i = P(\mathcal{Z}_i)$ as the measure
180 of area \mathcal{Z}_i for $i \in [K]$, and $u = \sum_{i=1}^K \gamma np_i(1 + \gamma np_i)$. For any constants $\gamma \geq 1$, $\delta_1 \geq \exp(-\frac{u \ln \gamma}{4n-3})$
181 and $\delta_2 > 0$, we have the following with probability at least $1 - \delta_1 - \delta_2$:*

$$F(P, \mathbf{h}) \leq F(\mathbf{S}, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} + g(\Gamma, \mathbf{h}, \delta_2) \quad (1)$$

182 where $g(\Gamma, \mathbf{h}, \delta_2) = \frac{\sqrt{\ln(2K/\delta_2)}}{n} \sum_{i \in \mathbf{T}} \sqrt{n_i} (a_o + \sqrt{2}a_i(\mathbf{h})) + \frac{2\ln(2K/\delta_2)}{n} (a_o |\mathbf{T}| + \sum_{i \in \mathbf{T}} a_i(\mathbf{h}))$
183 and $C = \sup_{\mathbf{z} \in \mathcal{Z}} \ell(\mathbf{h}, \mathbf{z})$.

184 This theorem suggests that the expected loss cannot be far from the empirical loss $F(\mathbf{S}, \mathbf{h})$. The gap
185 between the two is at most $C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} + g(\Gamma, \mathbf{h}, \delta_2)$. Such a gap represents the uncertainty of our
186 bound and mostly depends on the sample size n , the trained model \mathbf{h} , the data distribution P and the
187 partition Γ . We emphasize that bound (1) has some interesting properties:

- 188 • *First, it does not require any assumption about the hypothesis family and learning algorithm.*
189 This is an advantage over many approaches including algorithmic stability [9, 27], robustness
190 [47, 23], Rademacher complexity [4, 5]. This bound focuses directly on the the model \mathbf{h} of
191 interest, helping it to be tighter than many prior bounds.
- 192 • *Second, it depends on the complexity of the data distribution.* Note that u encodes the
193 complexity of P . For a uniform partition Γ , a more structured distribution P can have a
194 higher sum $\sum_{i=1}^K p_i^2$. As an example of structured distributions, a Gaussian with a small
195 variance has the most probability density in a small area around its mean and lead to a high
196 p_i for some i . Meanwhile a less structured distribution (e.g. uniform) can produce a small
197 $\sum_{i=1}^K p_i^2$ and hence smaller u . To the best of our knowledge, such an explicit dependence
198 on the distribution complexity is rare in prior theories.
- 199 • *Third, it is model-dependent.* Some particular properties of model \mathbf{h} are encoded in
200 $g(\Gamma, \mathbf{h}, \delta_2)$ and the empirical loss . A better model \mathbf{h} will lead to smaller a_i 's and hence g .
201 On the other hand, a worse model can have a bigger g , leading to a higher RHS of (1).

202 It is worth noticing the similarity between our bound (1) and robustness-based bounds in [23, 42].

203 $F(\mathbf{S}, \mathbf{h}) + g(\Gamma, \mathbf{h}, \delta_2)$ is the common part in those bounds. Our bound (1) contains $C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}}$
204 that encodes the complexity of the data distribution, whereas the bounds in [23, 42] use a robustness
205 quantity that measures the sensitivity of the loss w.r.t. a change in the input. While prior bounds
206 are not amenable to be exactly computed from a training set, our bound enables to easily derive a
207 computable and non-vacuous bound (below). This is the main advantage of bound (1).

208 *Proof sketch.* The detailed proof can be found in Appendix A. We focus on bounding the probability
209 $\Pr(F(P, \mathbf{h}) - F(\mathbf{S}, \mathbf{h}) \geq \phi)$, for some gap ϕ . Note that $F(P, \mathbf{h}) - F(\mathbf{S}, \mathbf{h}) = A + B$, where
210 $A = F(P, \mathbf{h}) - \sum_i \frac{n_i}{n} a_i(\mathbf{h})$ and $B = \sum_i \frac{n_i}{n} a_i(\mathbf{h}) - F(\mathbf{S}, \mathbf{h})$. Therefore, our proof estimates
211 $\Pr(A \geq g)$ and

$$\Pr(B \geq t) \quad (2)$$

212 for some constant t . Once they are known, we can use the union bound to obtain a bound on
213 $\Pr(F(P, \mathbf{h}) - F(\mathbf{S}, \mathbf{h}) \geq g + t)$ as desired. We use a result from [23] to bound $\Pr(A \geq g)$. The
214 remaining task is to estimate (2), which is **the main challenge**. This challenge requires approximating
215 an intractable quantity from a data set.

216 We resolve this challenge by developing Theorem A.1. Its proof contains three main steps:

- 217 1. First we show $\Pr(B \geq t) \leq e^{-yt} \mathbb{E}_{\mathbf{h}, \mathbf{n}} [\mathbb{E}_{\mathbf{S}} [e^{yB} | \mathbf{h}, \mathbf{n}]]$, for $\mathbf{n} = \{n_1, \dots, n_K\}$ and some y .
- 218 2. We next estimate $\mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}]$. Overall, we make sure that $\mathbb{E}_{\mathbf{S}} [e^{yB} | \mathbf{h}, \mathbf{n}] \leq e^{\psi(y, \mathbf{n})}$, for
219 some function $\psi(y, \mathbf{v})$ which does not depend on \mathbf{h} . As a result $\Pr(B \geq t) \leq \mathbb{E}_{\mathbf{v}} e^{\psi(y, \mathbf{n})}$.
- 220 3. The last step is to bound $\mathbb{E}_{\mathbf{n}} e^{\psi(y, \mathbf{n})}$. This requires us to develop various analyses for small random
221 variables in Appendix B. A suitable choice for t, y completes our proof. \square

222 **3.2 Tractable bounds**

223 It is worth noticing that bound (1) contains some unknown quantities, e.g., u and a_i 's, which cannot
224 be computed exactly. This is its main limitation. The following bound overcomes such a limitation.

225 **Theorem 3.2.** *Given the notations and assumption in Theorem 3.1, for any constants $\gamma \geq 1, \delta > 0$
226 and $\alpha \in [0, \frac{\gamma n(K+\gamma n)}{K(4n-3)}]$, we have the following with probability at least $1 - \gamma^{-\alpha} - \delta$:*

$$F(P, \mathbf{h}) \leq F(\mathbf{S}, \mathbf{h}) + C \sqrt{\hat{u} \alpha \ln \gamma} + g_2(\delta/2) \quad (3)$$

227 where $\hat{u} = \frac{\gamma}{2n} + \frac{\gamma^2}{2} \sum_{i=1}^K \left(\frac{n_i}{n}\right)^2 + \gamma^2 \sqrt{\frac{2}{n} \ln \frac{2K}{\delta}}$, $g_2(\delta) = \frac{C(1+\sqrt{2})\sqrt{\ln(2K/\delta)}}{n} \sum_{i \in \mathbf{T}} \sqrt{n_i} + \frac{4C|\mathbf{T}|\ln(2K/\delta)}{n}$.

228 One special property is that we can evaluate our bound easily by using only the training set. Indeed,
229 we can choose K and a specific partition Γ of the data space. Then we can count n_i and \mathbf{T} and
230 evaluate the bound (3) easily. This property is remarkable and beneficial in practice.

231 **A theoretical comparison with closely related bounds:** Although many model-dependent bounds
232 [23, 42, 7, 44, 29, 30] have been proposed, our bound (3) has various advantages:

- 233 • *Mild assumption:* Our bound does not require stringent assumptions as in prior ones. Some
234 prior bounds require stability [27, 26] or robustness [47, 23, 40] of the learning algorithm.
235 Those assumptions are often violated in practice, e.g. for the appearance of adversarial
236 attacks [49]. Some theories [29, 30] assume that the hypothesis class is finite, which is
237 restrictive. In contrast, our bound requires only i.i.d. assumption which also appears in most
238 prior bounds.
- 239 • *Easy evaluation:* An evaluation of our bound (3) will be simple and does not require any
240 modification to the model \mathbf{h} of interest. This is a crucial advantage. Many prior theories
241 require intermediate steps to change the model of interest into a suitable form. For example,
242 state-of-the-art methods to compress NNs are required for [50, 28, 35]; quantization for a
243 model is required for [29, 30]; finetuning (e.g. SubLoRA) is required for [29, 30]. Those
244 facts suggests that evaluations for prior bounds are often expensive. Besides, many prior
245 model-dependent bounds [47, 23, 42] cannot be exactly computed from a training set only.
- 246 • *No change to the model:* Most prior non-vacuous bounds [50, 14, 29, 30] require extensively
247 compressing (or quantizing) model \mathbf{h} of interest and then retraining/finetuning the com-
248 pressed version. Sometimes the compression step is too restrictive and produces low-quality
249 models [29]. Therefore, a modification will change model \mathbf{h} and hence **those bounds do**
250 **not directly provide guarantees for the generalization ability of \mathbf{h} .** In contrast, our bound
251 (3) does not require any change to model \mathbf{h} , and hence directly provides a guarantee for \mathbf{h} .

252 There is a nonlinear relationship between K and the uncertainty term $\text{Unc}(\Gamma) = C \sqrt{\hat{u} \alpha \ln \gamma} + g_2(\delta/2)$
253 in our bound. A partition with a larger K can make the sum $\sum_{i=1}^K \left(\frac{n_i}{n}\right)^2$ smaller, as the samples can
254 be spread into more areas. However a larger K can make $g_2(\delta)$ larger. Therefore, we should not
255 choose too large K . On the other hand, a small K can make the sum $\sum_{i=1}^K \left(\frac{n_i}{n}\right)^2$ large, since more
256 samples can appear in each area \mathcal{Z}_i and enlarge $\frac{n_i}{n}$. Therefore, we should not choose too small K .
257 Furthermore, we need to choose constant α carefully, since there is a trade-off in the bound and the
258 certainty $1 - \gamma^{-\alpha} - \delta$. A smaller α can make the bound smaller, but could enlarge $\gamma^{-\alpha}$ and hence
259 reduce the certainty of the bound.

260 The next result considers the robustness of a model.

261 **Theorem 3.3.** *Given the assumption in Theorem 3.2, let $\hat{\mathbf{S}} = \mathcal{T}(\mathbf{S})$ be the result of using a
262 transformation method \mathcal{T} , which is independent with \mathbf{h} , on the samples of \mathbf{S} . Denote $\bar{\epsilon}(\mathbf{h}) = \sum_{i \in \mathbf{T}} \frac{m_i}{m} \bar{\epsilon}_i$
263 and $m = \sum_{i \in \mathbf{T}} m_j$, where $\hat{\mathbf{S}}_i = \hat{\mathbf{S}} \cap \mathcal{Z}_i$, $m_i = |\hat{\mathbf{S}}_i|$, and $\bar{\epsilon}_i = \frac{1}{m_i n_i} \sum_{\mathbf{z} \in \mathbf{S}_i, \mathbf{s} \in \hat{\mathbf{S}}_i} |\ell(\mathbf{h}, \mathbf{z}) - \ell(\mathbf{h}, \mathbf{s})|$
264 for each $i \in \mathbf{T}$. We have the following with probability at least $1 - \gamma^{-\alpha} - \delta$:*

$$F(P, \mathbf{h}) \leq \bar{\epsilon}(\mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) + \sum_{i \in \mathbf{T}} \left(\frac{n_i}{n} - \frac{m_i}{m} \right) F(\mathbf{S}_i, \mathbf{h}) + C \sqrt{\hat{u} \alpha \ln \gamma} + g_2(\delta/2) \quad (4)$$

265 This theorem suggests that a model can be better if its loss is less sensitive with respect to some small
266 changes in the training samples. This can be seen from each quantity $\bar{\epsilon}_i$ which measures the average

267 difference of the loss of \mathbf{h} for the samples S_i and \hat{S}_i belonging to the same small area. This result
268 closely relates to adversarial training [31], where one often wants to train a model which is robust
269 w.r.t small changes in the inputs. It is also worth noticing that if \mathcal{T} transforms S too much, both the
270 loss $F(\hat{S}, \mathbf{h})$ and the sensitivity $\bar{\epsilon}$ can be large. As a result, the bound (4) will be large. In fact, our
271 proof suggests that bound (4) is worse than bound (3).

272 The main benefit of Theorem 3.3 is that we can use some transformation methods to compare some
273 trained models. This is particularly useful for the cases where two models have comparable (even
274 zero) training losses. For those cases, Theorem 3.2 does not provide a satisfactory answer. Instead, we
275 can use a simple augmentation method (e.g., noise perturbation, rotation, translation, ...) to produce
276 a dataset \hat{S} and then use this dataset to evaluate the upper bound (4). By this way, we use both the
277 training loss $F(S, \mathbf{h})$ and $\bar{\epsilon}(\mathbf{h}) + F(\hat{S}, \mathbf{h}) + \sum_{i \in T} \left(\frac{n_i}{n} - \frac{m_i}{m} \right) F(S_i, \mathbf{h})$ for comparison.

278 4 Empirical evaluation

279 In this section, we present two sets of extensice evaluations about the our bounds. We use 32 modern
280 NN models¹ which were pretrained by Pytorch on the ImageNet dataset with 1,281,167 images.
281 Those models are multiclass classifiers. Our main aim is to provide a guarantee for the error of a
282 trained model, without any further modification. Therefore, no prior bound is taken into comparison,
283 since those existing bounds are either already vacuous or require some extensive modifications or
284 cannot directly apply to those trained NNs.

285 4.1 Large-scale evaluation for pretrained models

286 The first set of experiments verifies nonvacuouness of our first bound (3) and the effects of some
287 parameters in the bound. We use the training part of ImageNet only to compute the bound.

288 **Experimental settings:** We fix $\delta = 0.01, \alpha = 100, \gamma = 0.04^{-1/\alpha}$. This choice means that our
289 bound is correct with probability at least 95%. The partition Γ is chosen with $K = 200$ small areas
290 of the input space, by clustering the training images into 200 areas, whose centroids are initialized
291 randomly. The upper bound (3) for each model was computed with 5 random seeds. We use the 0-1
292 loss function, meaning that our bound directly estimates the true classification error.

293 **Results:** The overall results are reported in Table 2. One can observe that our bound for all models
294 are all non-vacuous even for the non-optimized choices of some parameters. Our estimate is often
295 2-3 times higher than the oracle test error of each model. When choosing the best parameter for
296 each model by grid search, we can obtain much better bounds about the test errors. Note that
297 non-vacuousness of our bound holds true for a large class of deep NN families, some of which have
298 more than 630M parameters. To the best of our knowledge, bound (3) is the first theoretical bound
299 which is non-vacuous at such a large scale, without requiring any modification to the trained models.

300 **Effect of parameters:** Note that our bound depends on the choice of some parameters. Figure 1
301 reports the changes of $\sum_{i=1}^K \left(\frac{n_i}{n} \right)^2$ as the partition Γ changes. We can see that this quantity tends
302 to decrease as we divide the input space into more small areas. Meanwhile, Figure 2 reports the
303 uncertainty term, as either α or K changes. Observe that a larger K can increase the uncertainty fast,
304 while an increase in α can gradually decrease the uncertainty. Those figures enable an easy choice
305 for the parameters in our bound.

306 4.2 Evaluation with data augmentation

307 As mentioned before, our bound (3) can provide a theoretical certificate for a trained model, but may
308 not be ideal to compare two models which have the same training error. Sometimes, a model can
309 have a lower training error but a higher test error (such as DenseNet161 vs. DenseNet201, VIT L 16
310 linear vs. VIT L 16 V1). Bound (3) may not be good for model comparison. In those cases, we need
311 to use bound (4) for comparison.

312 **Experimental settings:** We fix $\delta = 0.01, \alpha = 100, \gamma = 0.04^{-1/\alpha}, K = 200$ as before. We use
313 white noise addition as the transformation method in Theorem 3.3. Specifically, each image is added

¹<https://pytorch.org/vision/stable/models.html>

Table 2: Upper bounds on the true error (in %) of 32 deep NNs which were pretrained on ImageNet dataset. The second column presents the model size, the third column contains the test accuracy at Top 1, as reported by Pytorch. ‘‘Mild’’ reports the bound for the choice of $\{\delta = 0.01, K = 200, \alpha = 100, \gamma = 0.04^{-1/\alpha}\}$, while ‘‘Optimized’’ reports the bound with parameter optimization by grid search. The grid search is done for $K \in \{100, 200, 300, 400, 500, 1000, 5000, 10000\}$, $\alpha \in \{10, 20, \dots, 100\}$, $\delta = 0.01$ and $\gamma = 0.04^{-1/\alpha}$. The last two columns report our estimates about the true error, with a certainty at least 95%.

Model	#Params (M)	Training error	Acc@1	Test error	Error bound (3)	
					Mild	Optimized
ResNet18 V1	11.7	21.245	69.758	30.242	57.896 ± 4.189	54.262
ResNet34 V1	21.8	15.669	73.314	26.686	52.320 ± 4.189	48.686
ResNet50 V1	25.6	13.121	76.130	23.870	49.772 ± 4.189	46.138
ResNet101 V1	44.5	10.502	77.374	22.626	47.153 ± 4.189	43.519
ResNet152 V1	60.2	10.133	78.312	21.688	46.784 ± 4.189	43.150
ResNet50 V2	25.6	8.936	80.858	19.142	45.587 ± 4.189	41.953
ResNet101 V2	44.5	6.008	81.886	18.114	42.659 ± 4.189	39.025
ResNet152 V2	60.2	5.178	82.284	17.716	41.829 ± 4.189	38.195
SwinTransformer B	87.8	6.464	83.582	16.418	43.115 ± 4.189	39.481
SwinTransformer B V2	87.9	6.392	84.112	15.888	43.043 ± 4.189	39.409
SwinTransformer T	28.3	9.992	81.474	18.526	46.643 ± 4.189	43.009
SwinTransformer T V2	28.4	8.724	82.072	17.928	45.375 ± 4.189	41.741
VGG13	133.0	18.456	69.928	30.072	55.107 ± 4.189	51.473
VGG13 BN	133.1	19.223	71.586	28.414	55.874 ± 4.189	52.240
VGG19	143.7	16.121	72.376	27.624	52.772 ± 4.189	49.138
VGG19 BN	143.7	15.941	74.218	25.782	52.592 ± 4.189	48.958
DenseNet121	8.0	15.631	74.434	25.566	52.282 ± 4.189	48.648
DenseNet161	28.7	10.48	77.138	22.862	47.131 ± 4.189	43.497
DenseNet169	14.1	12.395	75.600	24.400	49.046 ± 4.189	45.412
DenseNet201	20.0	9.806	76.896	23.104	46.457 ± 4.189	42.823
ConvNext Base	88.6	5.209	84.062	15.938	41.860 ± 4.189	38.226
ConvNext Large	197.8	3.846	84.414	15.586	40.497 ± 4.189	36.863
RegNet Y 128GF e2e	644.8	5.565	88.228	11.772	42.216 ± 4.189	38.582
RegNet Y 128GF linear	644.8	9.032	86.068	13.932	45.683 ± 4.189	42.049
RegNet Y 32GF e2e	145.0	7.127	86.838	13.162	43.778 ± 4.189	40.144
RegNet Y 32GF linear	145.0	10.558	84.622	15.378	47.209 ± 4.189	43.575
RegNet Y 32GF V2	145.0	3.761	81.982	18.018	40.412 ± 4.189	36.778
VIT B 16 linear	86.6	14.969	81.886	18.114	51.620 ± 4.189	47.986
VIT B 16 V1	86.6	5.916	81.072	18.928	42.567 ± 4.189	38.933
VIT H 14 linear	632.0	9.951	85.708	14.292	46.602 ± 4.189	42.968
VIT L 16 linear	304.3	11.003	85.146	14.854	47.654 ± 4.189	44.020
VIT L 16 V1	304.3	3.465	79.662	20.338	40.116 ± 4.189	36.482

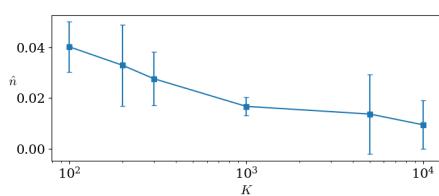


Figure 1: The dynamic of $\hat{n} = \sum_{i=1}^K \left(\frac{n_i}{n}\right)^2$ as K changes.

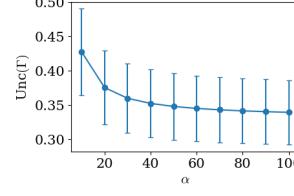


Figure 2: The uncertainty $\text{Unc}(\Gamma) = C\sqrt{\hat{u}\alpha \ln \gamma} + g(\delta/2)$ as (right) K changes and (left) α changes, for fixed $K = 200, \gamma = 0.04^{-1/\alpha}, \delta = 0.01$.

314 by a noise which is randomly sampled from the normal distribution with mean 0 and variance σ^2 .
315 Those noisy images are used to compute bound (4).

316 **Results:** Table 3 reports bound (4) for $\sigma = 0.15$, ignoring the uncertainty part which is common for
317 all models. One can observe that our bound (4) correlates very well with the test error of each model,
318 except RegNet and VIT families. This suggests that the use of data augmentation can help us to better
319 compare the performance of two models.

320 We next vary $\sigma \in \{0, 0.05, 0.1, 0.15, 0.2\}$ to see when the noise can enable a good comparison.
321 Figure 3 reports the results about two families. We observe that while DenseNet161 has higher
322 training error than DenseNet201 does, the error bound for DenseNet161 tends to be lower than that

Table 3: Bound (4) on the test error (in %) of some models which were pretrained on ImageNet dataset. Each bound was computed by adding Gaussian noises to the training images, with $\sigma = 0.15$.

Model	Training error	Test error	Bound (4)
ResNet18 V1	21.245	30.242	129.226
ResNet34 V1	15.669	26.686	111.521
DenseNet161	10.480	22.862	94.045
DenseNet169	12.395	24.400	100.747
DenseNet201	9.806	23.104	96.221
VGG 13	18.456	30.072	142.870
VGG 13 BN	19.223	28.414	134.955
RegNet Y 32GF e2e	7.127	13.162	72.474
RegNet Y 32GF linear	10.558	15.378	85.368
RegNet Y 32GF V2	3.761	18.018	67.764
VIT B 16 linear	14.969	18.110	96.967
VIT B 16 V1	5.916	18.930	65.969
VIT L 16 linear	11.003	14.850	80.178
VIT L 16 V1	3.465	20.340	58.402

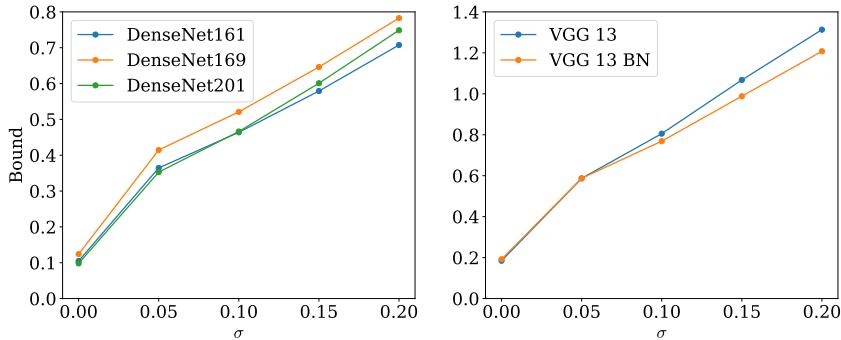


Figure 3: The dynamic of bound (4) as the noise level σ increases. These subfigures report the main part $\bar{\epsilon}(\mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h})$ of the bound.

323 of DenseNet201 as the images get more noisy. This suggests that DenseNet161 should be better than
324 DenseNet201, which is correctly reflected by their test errors. The same behavior also appears for
325 VGG13 and VGG13 BN. However, those two families require two different values of σ (0.05 for
326 VGG; 0.1 for DenseNet) to exhibit an accurate comparison. This also suggests that the anti-correlation
327 mentioned before for RegNet and VIT may be due to the small value of σ in Table 3. Those two
328 families may require a higher σ to exhibit an accurate comparison.

329 5 Conclusion

330 Providing theoretical guarantees for the performance of a model in practice is crucial to build reliable
331 ML applications. Our work contributes three bounds on the test error of a model, one of which is
332 non-vacuous for all the trained deep NNs in our experiments, without requiring any change to the
333 trained models. Hence, our bounds can be used to provide a non-vacuous theoretical certificate for a
334 trained model. This fills in the decade-missing cornerstone of deep learning theory.

335 Our work opens various avenues for future research. Indeed, while the the uncertainty part of bound
336 (1) depends on the inherent property of the model of interest, that in bound (3) mostly does not.
337 This suggests that bound (3) is suboptimal. One direction to develop better theories is to take more
338 properties of a model into consideration, e.g. exploit more fine-grained properties of bound (1).
339 Another direction is to take dependency of the training samples into account. However, it may require
340 some improvements from very fundamental steps, e.g., concentrations for dependent variables. Since
341 our bounds are for general settings, one interesting direction is to provide certificates for models
342 in different types of applications, e.g. regression, segmentation, language inference, translation,
343 text-2-images, image-2-text, ... We believe that our bounds provide a good starting point for those
344 directions.

345 **References**

346 [1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
347 J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. *arXiv preprint*
348 *arXiv:2303.08774*, 2023.

349 [2] V. Akinwande, Y. Jiang, D. Sam, and J. Z. Kolter. Understanding prompt engineering may not
350 require rethinking generalization. In *International Conference on Learning Representations*,
351 2024.

352 [3] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via
353 a compression approach. In *International Conference on Machine Learning*, pages 254–263.
354 PMLR, 2018.

355 [4] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
356 structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

357 [5] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
358 networks. *Advances in Neural Information Processing Systems*, 30:6240–6249, 2017.

359 [6] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
360 the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*, 116
361 (32):15849–15854, 2019.

362 [7] F. Biggs and B. Guedj. Non-vacuous generalisation bounds for shallow neural networks. In
363 *International Conference on Machine Learning*, pages 1963–1981. PMLR, 2022.

364 [8] F. Biggs and B. Guedj. Tighter pac-bayes generalisation bounds by leveraging example difficulty.
365 In *International Conference on Artificial Intelligence and Statistics*, pages 8165–8182. PMLR,
366 2023.

367 [9] O. Bousquet and A. Elisseeff. Stability and generalization. *The Journal of Machine Learning
368 Research*, 2:499–526, 2002.

369 [10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
370 G. Sastry, A. Askell, et al. Language models are few-shot learners. In *Advances in Neural
371 Information Processing Systems*, volume 33, pages 1877–1901, 2020.

372 [11] A. Brutzkus and A. Globerson. An optimization and generalization analysis for max-pooling
373 networks. In *Uncertainty in Artificial Intelligence*, pages 1650–1660. PMLR, 2021.

374 [12] Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that
375 converge to global optima. In *International Conference on Machine Learning*, pages 745–754.
376 PMLR, 2018.

377 [13] E. Clerico, T. Farghly, G. Deligiannidis, B. Guedj, and A. Doucet. Generalisation under gradient
378 descent via deterministic pac-bayes. In *International Conference on Algorithmic Learning
379 Theory*, 2025.

380 [14] G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep
381 (stochastic) neural networks with many more parameters than training data. In *Conference on
382 Uncertainty in Artificial Intelligence (UAI)*, 2017.

383 [15] V. Feldman and J. Vondrak. High probability generalization bounds for uniformly stable
384 algorithms with nearly optimal rate. In *Conference on Learning Theory (COLT)*, pages 1270–
385 1279. PMLR, 2019.

386 [16] T. Galanti, L. Galanti, and I. Ben-Shaul. Comparative generalization bounds for deep neural
387 networks. *Transactions on Machine Learning Research*, 2023.

388 [17] T. Galanti, M. Xu, L. Galanti, and T. Poggio. Norm-based generalization bounds for sparse
389 neural networks. *Advances in Neural Information Processing Systems*, 36, 2023.

390 [18] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
391 networks. *Information and Inference: A Journal of the IMA*, 9(2):473–504, 2020.

392 [19] M. Haddouche and B. Guedj. Pac-bayes generalisation bounds for heavy-tailed losses through
 393 supermartingales. *Transactions on Machine Learning Research*, 2023.

394 [20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural*
 395 *Information Processing Systems*, volume 33, pages 6840–6851, 2020.

396 [21] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: convergence and generalization in
 397 neural networks. In *Advances in Neural Information Processing Systems*, pages 8580–8589,
 398 2018.

399 [22] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
 400 R. Bates, A. Žídek, A. Potapenko, et al. Highly accurate protein structure prediction with
 401 alphafold. *Nature*, 596(7873):583–589, 2021.

402 [23] K. Kawaguchi, Z. Deng, K. Luh, and J. Huang. Robustness implies generalization via data-
 403 dependent generalization bounds. In *International Conference on Machine Learning*, volume
 404 162 of *Proceedings of Machine Learning Research*, pages 10866–10894. PMLR, 2022.

405 [24] I. Kuzborskij and C. Lampert. Data-dependent stability of stochastic gradient descent. In
 406 *International Conference on Machine Learning*, pages 2815–2824. PMLR, 2018.

407 [25] J. Lee, J. Y. Choi, E. K. Ryu, and A. No. Neural tangent kernel analysis of deep narrow neural
 408 networks. In *International Conference on Machine Learning*, pages 12282–12351, 2022.

409 [26] Y. Lei and Y. Ying. Fine-grained analysis of stability and generalization for stochastic gradient
 410 descent. In *International Conference on Machine Learning*, pages 5809–5819. PMLR, 2020.

411 [27] S. Li, B. Zhu, and Y. Liu. Algorithmic stability unleashed: Generalization bounds with
 412 unbounded losses. In *International Conference on Machine Learning*, 2024.

413 [28] S. Lotfi, M. Finzi, S. Kapoor, A. Potapczynski, M. Goldblum, and A. G. Wilson. Pac-bayes
 414 compression bounds so tight that they can explain generalization. In *Advances in Neural*
 415 *Information Processing Systems*, volume 35, pages 31459–31473, 2022.

416 [29] S. Lotfi, M. A. Finzi, Y. Kuang, T. G. Rudner, M. Goldblum, and A. G. Wilson. Non-vacuous
 417 generalization bounds for large language models. In *International Conference on Machine*
 418 *Learning*, 2024.

419 [30] S. Lotfi, Y. Kuang, M. A. Finzi, B. Amos, M. Goldblum, and A. G. Wilson. Unlocking tokens
 420 as data points for generalization bounds on larger language models. In *Advances in Neural*
 421 *Information Processing Systems*, 2024.

422 [31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
 423 resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018.

424 [32] D. A. McAllester. Some pac-bayesian theorems. *Machine Learning*, 37(3):355–363, 1999.

425 [33] M. Mohri, A. Rostamizadeh, and A. Talwalkar. *Foundations of Machine Learning*. MIT Press,
 426 2018.

427 [34] W. Mustafa, P. Liznerski, A. Ledent, D. Wagner, P. Wang, and M. Kloft. Non-vacuous general-
 428 ization bounds for adversarial risk in stochastic neural networks. In *International Conference*
 429 *on Artificial Intelligence and Statistics*, pages 4528–4536, 2024.

430 [35] K. Nadjahi, K. Greenewald, R. B. Gabrielsson, and J. Solomon. Slicing mutual information
 431 generalization bounds for neural networks. In *International Conference on Machine Learning*,
 432 2024.

433 [36] B. Neyshabur, S. Bhojanapalli, and N. Srebro. A pac-bayesian approach to spectrally-normalized
 434 margin bounds for neural networks. In *International Conference on Learning Representations*,
 435 2018.

436 [37] M. Sefidgaran, A. Gohari, G. Richard, and U. Simsekli. Rate-distortion theoretic generalization
 437 bounds for stochastic learning algorithms. In *Conference on Learning Theory*, pages 4416–4463.
 438 PMLR, 2022.

439 [38] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform
440 convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.

441 [39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
442 I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
443 networks and tree search. *Nature*, 529(7587):484–489, 2016.

444 [40] J. Sokolić, R. Giryes, G. Sapiro, and M. R. Rodrigues. Robust large margin deep neural
445 networks. *IEEE Transactions on Signal Processing*, 65(16):4265–4280, 2017.

446 [41] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai,
447 A. Hauth, K. Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv*
448 preprint *arXiv:2312.11805*, 2023.

449 [42] K. Than, D. Phan, and G. Vu. Gentle local robustness implies generalization. *Machine Learning*,
450 114(6):142, 2025.

451 [43] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa. Quip#: Even better l1m quantization
452 with hadamard incoherence and lattice codebooks. In *International Conference on Machine
453 Learning*, 2024.

454 [44] P. Viallard, P. Germain, A. Habrard, and E. Morvant. A general framework for the practical
455 disintegration of pac-bayesian bounds. *Machine Learning*, 113(2):519–604, 2024.

456 [45] B. Wang, H. Zhang, J. Zhang, Q. Meng, W. Chen, and T.-Y. Liu. Optimizing information-
457 theoretical generalization bound via anisotropic noise of sgld. In *Advances in Neural Information
458 Processing Systems*, volume 34, pages 26080–26090, 2021.

459 [46] A. Xu and M. Raginsky. Information-theoretic analysis of generalization capability of learning
460 algorithms. In *Advances in Neural Information Processing Systems*, volume 30, 2017.

461 [47] H. Xu and S. Mannor. Robustness and generalization. *Machine Learning*, 86(3):391–423, 2012.

462 [48] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)
463 requires rethinking generalization. *Communications of the ACM*, 64(3):107–115, 2021.

464 [49] S. Zhou, C. Liu, D. Ye, T. Zhu, W. Zhou, and P. S. Yu. Adversarial attacks and defenses in deep
465 learning: From a perspective of cybersecurity. *ACM Computing Surveys*, 55(8):1–39, 2022.

466 [50] W. Zhou, V. Veitch, M. Austern, R. P. Adams, and P. Orbanz. Non-vacuous generalization
467 bounds at the imagenet scale: a pac-bayesian compression approach. In *International Conference on
468 Learning Representations (ICLR)*, 2019.

469 **A Proofs for main results**

470 *Proof of Theorem 3.1.* We first observe that

$$F(P, \mathbf{h}) - F(\mathbf{S}, \mathbf{h}) = F(P, \mathbf{h}) - \sum_{i=1}^K \frac{n_i}{n} a_i(\mathbf{h}) + \sum_{i=1}^K \frac{n_i}{n} a_i(\mathbf{h}) - F(\mathbf{S}, \mathbf{h}) \quad (5)$$

471 Next, we consider $F(P, \mathbf{h}) - \sum_{i=1}^K \frac{n_i}{n} a_i(\mathbf{h}) = \sum_{i=1}^K p_i a_i(\mathbf{h}) - \sum_{i=1}^K \frac{n_i}{n} a_i(\mathbf{h}) = \sum_{i=1}^K a_i(\mathbf{h}) [p_i - \frac{n_i}{n}]$. Note that (n_1, \dots, n_K) is a multinomial random variable with parameters n and (p_1, \dots, p_K) . Therefore, according to Lemma 7 in [23], we have

472 $\Pr \left(\sum_{i=1}^K a_i(\mathbf{h}) [p_i - \frac{n_i}{n}] > g(\Gamma, \mathbf{h}, \delta_2) \right) < \delta_2$. This implies

$$\Pr \left(F(P, \mathbf{h}) - \sum_{i=1}^K \frac{n_i}{n} a_i(\mathbf{h}) > g(\Gamma, \mathbf{h}, \delta_2) \right) < \delta_2 \quad (6)$$

473 On the other hand, Theorem A.1 below shows that

$$\Pr \left(\sum_{i \in \mathbf{T}_S} \frac{n_i}{n} a_i(\mathbf{h}) - F(\mathbf{S}, \mathbf{h}) \geq C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} \right) \leq \delta_1 \quad (7)$$

474 Combining this with (6) and the union bound, we have

$$\Pr \left(F(P, \mathbf{h}) > F(\mathbf{S}, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} + g(\Gamma, \mathbf{h}, \delta_2) \right) < \delta_1 + \delta_2 \quad (8)$$

475 completing the proof. \square

476 *Proof of Theorem 3.2.* Theorem 3.1 shows that

$$\Pr \left(F(P, \mathbf{h}) > F(\mathbf{S}, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} + g(\Gamma, \mathbf{h}, \delta/2) \right) < \delta_1 + \delta/2 \quad (9)$$

477 where u and δ_1 depend on the sum $\sum_{i=1}^K p_i^2$. We next bound this quantity using \mathbf{S} .

478 Since $p_i \geq 0$ and $\sum_{i=1}^K p_i = 1$, we can use the Lagrange multiplier method to show that $\sum_{i=1}^K p_i^2$ is minimized at $1/K$. Hence $u = \sum_{i=1}^K \gamma n p_i (1 + \gamma n p_i) = \gamma n + \gamma^2 n^2 \sum_{i=1}^K p_i^2 \geq \gamma n + \gamma^2 n^2 / K$. This suggests that $\exp(-\frac{u \ln \gamma}{4n-3}) \leq \exp(-\frac{(\gamma n + \gamma^2 n^2 / K) \ln \gamma}{4n-3}) \leq \exp(-\frac{\gamma n (K + \gamma n) \ln \gamma}{K(4n-3)}) \leq \gamma^{-\alpha}$. Choosing $\delta_1 = \gamma^{-\alpha}$ and plugging it into (9) lead to

$$\Pr \left(F(P, \mathbf{h}) > F(\mathbf{S}, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \alpha \ln \gamma} + g(\Gamma, \mathbf{h}, \delta/2) \right) < \delta/2 + \gamma^{-\alpha} \quad (10)$$

479 It is easy to see that $g(\Gamma, \mathbf{h}, \delta/2) \leq g_2(\delta/2)$, since $a_o(\mathbf{h}) \leq C$ and $a_i(\mathbf{h}) \leq C$ for any i . Therefore

$$\Pr \left(F(P, \mathbf{h}) > F(\mathbf{S}, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \alpha \ln \gamma} + g_2(\delta/2) \right) < \delta/2 + \gamma^{-\alpha} \quad (11)$$

480 Next we consider $\frac{u}{2n^2} = \frac{\gamma}{2n} + \frac{\gamma^2}{2} \sum_{i=1}^K p_i^2$. Since \mathbf{S} contains n i.i.d. samples, (n_1, \dots, n_K) is a multinomial random variable with parameters n and (p_1, \dots, p_K) . Lemma B.8 shows

$$\Pr \left(\sum_{i=1}^K p_i^2 > \sum_{i=1}^K \left(\frac{n_i}{n} \right)^2 + 2 \sqrt{\frac{2}{n} \ln \frac{2K}{\delta}} \right) < \delta/2$$

481 Therefore $\Pr \left(\frac{u}{2n^2} > \frac{\gamma}{2n} + \frac{\gamma^2}{2} \sum_{i=1}^K \left(\frac{n_i}{n} \right)^2 + \gamma^2 \sqrt{\frac{2}{n} \ln \frac{2K}{\delta}} \right) < \delta/2$. This also suggests that

$$\Pr \left(C \sqrt{\frac{u}{2n^2} \alpha \ln \gamma} > C \sqrt{\hat{u} \alpha \ln \gamma} \right) < \delta/2 \quad (12)$$

482 Combining this with (11) and the union bound will complete the proof. \square

489 *Proof of Theorem 3.3.* Theorem 3.2 shows that the following holds with probability at least $1 -$
490 $\gamma^{-\alpha} - \delta$:

$$F(P, \mathbf{h}) \leq F(\mathbf{S}, \mathbf{h}) + C\sqrt{\hat{u}\alpha \ln \gamma} + g(\delta/2) \quad (13)$$

491 Note that

$$F(\mathbf{S}, \mathbf{h}) = F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\hat{\mathbf{S}}_i, \mathbf{h}) - F(\hat{\mathbf{S}}, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (14)$$

$$= \sum_{i \in \mathbf{T}} \frac{m_i}{m} [F(\mathbf{S}_i, \mathbf{h}) - F(\hat{\mathbf{S}}_i, \mathbf{h})] + F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (15)$$

$$= \sum_{i \in \mathbf{T}} \frac{m_i}{m} \frac{1}{n_i} \sum_{\mathbf{z} \in \mathbf{S}_i} [\ell(\mathbf{h}, \mathbf{z}) - F(\hat{\mathbf{S}}_i, \mathbf{h})] + F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (16)$$

$$= \sum_{i \in \mathbf{T}} \frac{m_i}{m} \frac{1}{n_i m_i} \sum_{\mathbf{z} \in \mathbf{S}_i, \mathbf{s} \in \hat{\mathbf{S}}_i} [\ell(\mathbf{h}, \mathbf{z}) - \ell(\mathbf{h}, \mathbf{s})] + F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (17)$$

$$\leq \sum_{i \in \mathbf{T}} \frac{m_i}{m} \frac{1}{n_i m_i} \sum_{\mathbf{z} \in \mathbf{S}_i, \mathbf{s} \in \hat{\mathbf{S}}_i} |\ell(\mathbf{h}, \mathbf{z}) - \ell(\mathbf{h}, \mathbf{s})| + F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (18)$$

$$\leq \sum_{i \in \mathbf{T}} \frac{m_i}{m} \bar{\epsilon}_i + F(\mathbf{S}, \mathbf{h}) - \sum_{i \in \mathbf{T}} \frac{m_i}{m} F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (19)$$

$$= \sum_{i \in \mathbf{T}} \frac{m_i}{m} \bar{\epsilon}_i + \sum_{i \in \mathbf{T}} \left(\frac{n_i}{n} - \frac{m_i}{m} \right) F(\mathbf{S}_i, \mathbf{h}) + F(\hat{\mathbf{S}}, \mathbf{h}) \quad (20)$$

492 Since this deterministically holds for all \mathbf{S} , combining (13) with (20) completes the proof. \square

493 A.1 Approximating the intractable part by a data set

494 **Theorem A.1.** *Given the notations in Theorem 3.1,*

$$\Pr \left(\sum_{i \in \mathbf{T}_S} \frac{n_i}{n} a_i(\mathbf{h}) \geq \sum_{i \in \mathbf{T}_S} \frac{n_i}{n} F(\mathbf{S}_i, \mathbf{h}) + C \sqrt{\frac{u}{2n^2} \ln \frac{1}{\delta_1}} \right) \leq \delta_1 \quad (21)$$

495 *Proof.* Denote $\mathbf{n} = \{n_1, \dots, n_K\}$ and for each $j \in [K]$:

$$B_j = \sum_{i=1}^j n_i a_i(\mathbf{h}) - \sum_{i=1}^j n_i F(\mathbf{S}_i, \mathbf{h}) \quad (22)$$

$$X_j = n_j F(\mathbf{S}_j, \mathbf{h}) \quad (23)$$

$$S_{\leq j} = \bigcup_{i \leq j} S_i \quad (24)$$

496 Denote $y = \frac{4t}{uC^2}$ for any $t \in \left[0, uC \sqrt{\frac{\ln \gamma}{8n-6}}\right]$. The proof for (21) contains three main steps.

497 **Step 1:** We first observe that

$$\Pr(B_K \geq t) \leq e^{-yt} \mathbb{E}_{\mathbf{S}} [e^{yB_K}] \quad (\text{Chernoff bounds}) \quad (25)$$

$$\leq e^{-yt} \mathbb{E}_{\mathbf{h}, \mathbf{n}} [\mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}]] \quad (\text{Law of total expectation}) \quad (26)$$

498 **Step 2 - estimating $\mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}]$:** We observe the following for each $j \in \mathbf{T}_S$,

$$\mathbb{E}_{X_j} [X_j | \mathbf{h}, \mathbf{n}] = \mathbb{E}_{\mathbf{S}_j} [n_j F(\mathbf{S}_j, \mathbf{h}) | \mathbf{h}, \mathbf{n}] \quad (27)$$

$$= \mathbb{E}_{\mathbf{S}_j} \left[\sum_{i=1}^{n_j} \ell(\mathbf{h}, \mathbf{z}_{ji}) | \mathbf{h}, \mathbf{n} \right] \quad (\text{where } \mathbf{S}_j = \{\mathbf{z}_{ji}\}_{i=1}^{n_j}) \quad (28)$$

$$= \sum_{i=1}^{n_j} \mathbb{E}_{\mathbf{z}_{ji} \in \mathcal{Z}_j} [\ell(\mathbf{h}, \mathbf{z}_{ji}) | \mathbf{h}, \mathbf{n}] \quad (\mathbf{S}_j \text{ contains i.i.d. samples in } \mathcal{Z}_j) \quad (29)$$

$$= \sum_{i=1}^{n_j} a_j(\mathbf{h}) = n_j a_j(\mathbf{h}) \quad (30)$$

499 Therefore $B_j = B_{j-1} + \mathbb{E}_{X_j} [X_j | \mathbf{h}, \mathbf{n}] - X_j$ for all $j \in \mathbf{T}_S$. Note that $B_i = B_{i-1}$ (due to
500 $n_i = b_i = X_i = 0$) for all $i \notin \mathbf{T}_S$. Hence, for $i \notin \mathbf{T}_S$, we will use $\mathbb{E}_{X_i} [X_i | \mathbf{h}, \mathbf{n}] - X_i$ instead of 0
501 in the below analysis for simplicity of presentation.

502 We can rewrite

$$\mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}] = \mathbb{E}_{\mathbf{S}} \left[e^{y(B_{K-1} + \mathbb{E}_{X_K} [X_K | \mathbf{h}, \mathbf{n}] - X_K)} | \mathbf{h}, \mathbf{n} \right] \quad (31)$$

$$= \mathbb{E}_{\mathbf{S}_{\leq K}} \left[e^{y(B_{K-1} + \mathbb{E}_{X_K} [X_K | \mathbf{h}, \mathbf{n}] - X_K)} | \mathbf{h}, \mathbf{n} \right] \quad (32)$$

$$\leq \mathbb{E}_{\mathbf{S}_{\leq K-1}} \left[e^{yB_{K-1}} | \mathbf{h}, \mathbf{n} \right] \mathbb{E}_{X_K} \left[e^{y(\mathbb{E}_{X_K} [X_K | \mathbf{h}, \mathbf{n}] - X_K)} | \mathbf{h}, \mathbf{n} \right] \quad (33)$$

503 where the last inequality comes from the fact that X_K is conditionally independent with $\mathbf{S}_{\leq K-1}$,
504 conditioned on $\{\mathbf{h}, \mathbf{n}\}$.

505 It is easy to see that $0 \leq X_K \leq Cn_K$, due to $0 \leq F(\mathbf{S}_K, \mathbf{h}) \leq C$. Lemma B.1 implies
506 $\mathbb{E}_{X_K} [e^{y(\mathbb{E}_{X_K} [X_K | \mathbf{h}, \mathbf{n}] - X_K)} | \mathbf{h}, \mathbf{n}] \leq \exp \left(\frac{y^2 C^2 n_K^2}{8} \right)$. Plugging this into (33), we obtain

$$\mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}] \leq \mathbb{E}_{\mathbf{S}_{\leq K-1}} \left[e^{yB_{K-1}} | \mathbf{h}, \mathbf{n} \right] \exp \left(\frac{y^2 C^2 n_K^2}{8} \right) \quad (34)$$

507 Using the same arguments for X_{K-1}, \dots, X_1 , we obtain the followings

$$\begin{aligned} \mathbb{E}_{\mathbf{S}} [e^{yB_K} | \mathbf{h}, \mathbf{n}] &\leq \mathbb{E}_{\mathbf{S}_{\leq K-2}} \left[e^{yB_{K-2}} | \mathbf{h}, \mathbf{n} \right] \exp \left(\frac{y^2 C^2 n_K^2}{8} + \frac{y^2 C^2 n_{K-1}^2}{8} \right) \\ &\dots \\ &\leq \exp \left(\frac{y^2 C^2}{8} \sum_{i=1}^K n_i^2 \right) \end{aligned} \quad (35)$$

508 **Step 3 - bounding $\Pr(B_K \geq t)$:** By combining this with (26), we obtain

$$\Pr(B_K \geq t) \leq e^{-yt} \mathbb{E}_{\mathbf{h}, \mathbf{n}} \exp \left(\frac{y^2 C^2}{8} \sum_{i=1}^K n_i^2 \right) \quad (36)$$

$$= e^{-yt} \mathbb{E}_{\mathbf{n}} \exp \left(\frac{y^2 C^2}{8} \sum_{i=1}^K n_i^2 \right) \quad (37)$$

$$\leq e^{-yt} \mathbb{E}_{\mathbf{n}} \exp \left(\frac{y^2 C^2}{8} \sum_{i=1}^{K-1} n_i^2 \right) \mathbb{E}_{n_K} \exp \left(\frac{y^2 C^2}{8} n_K^2 \right) \quad (38)$$

(Since n_K is independent with v_1, \dots, v_{K-1})

509 When $\gamma p_K < 1$, due to $t \leq uC \sqrt{\frac{\ln \gamma}{8n-6}}$, observe that $\frac{y^2 C^2}{8} = \frac{2t^2}{u^2 C^2} \leq \frac{\ln \gamma}{4n-3} \leq \frac{\ln \gamma}{(1-\gamma p_K)(4n-3)}$. Note
510 that n_K is a binomial random variable with parameters n and p_K . Combining those facts with Lemma
511 B.7 implies $\mathbb{E}_{n_K} \exp \left(\frac{y^2 C^2}{8} n_K^2 \right) \leq \exp \left(\frac{y^2 C^2}{8} \gamma n p_K (1 + \gamma n p_K) \right)$. On the other hand, Lemma B.6

512 also implies $\mathbb{E}_{n_K} \exp\left(\frac{y^2 C^2}{8} n_K^2\right) \leq \exp\left(\frac{y^2 C^2}{8} \gamma np_K (1 + \gamma np_K)\right)$ when $\gamma p_K \geq 1$. As a result,
513 those facts and (38) lead to the following:

$$\Pr(B_K \geq t) \leq e^{-yt} \mathbb{E}_{\mathbf{n}} \exp\left(\frac{y^2 C^2}{8} \sum_{i=1}^{K-1} n_i^2\right) \exp\left(\frac{y^2 C^2}{8} ((1 + \gamma np_K) \gamma np_K)\right) \quad (39)$$

514 Using the same arguments for the remaining variables n_{K-1}, \dots, n_1 , we obtain

$$\Pr(B_K \geq t) \leq \exp\left(-yt + \frac{y^2 C^2}{8} \sum_{i=1}^K (1 + \gamma np_i) \gamma np_i\right) \quad (40)$$

$$= \exp\left(-yt + \frac{y^2 C^2 u}{8}\right) = \exp\left(\frac{-2t^2}{uC^2}\right) \quad (41)$$

515 As a result

$$\Pr\left(\sum_{i=1}^K n_i a_i(\mathbf{h}) \geq \sum_{i=1}^K n_i F(\mathbf{S}_i, \mathbf{h}) + t\right) \leq \exp\left(-\frac{2t^2}{uC^2}\right) \quad (42)$$

516 Since $n_j = 0$ for all $j \notin \mathbf{T}_S$, we have

$$\Pr\left(\sum_{i \in \mathbf{T}_S} n_i a_i(\mathbf{h}) \geq \sum_{i \in \mathbf{T}_S} n_i F(\mathbf{S}_i, \mathbf{h}) + t\right) \leq \exp\left(-\frac{2t^2}{uC^2}\right) \quad (43)$$

517 Multiplying both sides (of the probability term) with $1/n$ leads to

$$\Pr\left(\sum_{i \in \mathbf{T}_S} \frac{n_i}{n} a_i(\mathbf{h}) \geq \sum_{i \in \mathbf{T}_S} \frac{n_i}{n} F(\mathbf{S}_i, \mathbf{h}) + t/n\right) \leq \exp\left(-\frac{2t^2}{uC^2}\right)$$

518 Choosing $t = C \sqrt{\frac{u}{2} \ln \frac{1}{\delta_1}}$ results in (21), completing the proof. \square

519 B Supporting theorems and lemmas

520 B.1 Hoeffding's Lemma

521 **Lemma B.1** (Hoeffding's lemma for conditionals). *Let X be any real-valued random variable that
522 may depend on some random variables \mathbf{Y} . Assume that $a \leq X \leq b$ almost surely, for some constants
523 a, b . Then, for all $\lambda \in \mathbb{R}$,*

$$\mathbb{E}_X \left[e^{\lambda(\mathbb{E}_X[X|\mathbf{Y}] - X)} \right] \leq \exp\left(\frac{\lambda^2(b-a)^2}{8}\right) \quad (44)$$

524 *Proof.* Denote $c = \mathbb{E}_X[X|\mathbf{Y}] - b, d = \mathbb{E}_X[X|\mathbf{Y}] - a$ and hence $c \leq 0 \leq d$.

525 Since \exp is a convex function, we have the following for all $\mathbb{E}_X[X|\mathbf{Y}] - X \in [c, d]$:

$$e^{\lambda(\mathbb{E}_X[X|\mathbf{Y}] - X)} \leq \frac{d - \mathbb{E}_X[X|\mathbf{Y}] + X}{d - c} e^{\lambda c} + \frac{\mathbb{E}_X[X|\mathbf{Y}] - X - c}{d - c} e^{\lambda d}$$

526 Therefore, by taking the conditional expectation over X for both sides,

$$\mathbb{E}_X \left[e^{\lambda(\mathbb{E}_X[X|\mathbf{Y}] - X)} \right] \leq \frac{d - \mathbb{E}_X[X|\mathbf{Y}] + \mathbb{E}_X[X|\mathbf{Y}]}{d - c} e^{\lambda c} + \frac{\mathbb{E}_X[X|\mathbf{Y}] - \mathbb{E}_X[X|\mathbf{Y}] - c}{d - c} e^{\lambda d} \quad (45)$$

$$= \frac{d}{d - c} e^{\lambda c} - \frac{c}{d - c} e^{\lambda d} \quad (45)$$

$$= e^{L(\lambda(d-c))} \quad (46)$$

527 where $L(h) = \frac{ch}{d-c} + \ln(1 + \frac{c-e^h c}{d-c})$. For this function, note that

$$L(0) = L'(0) = 0 \text{ and } L''(h) = -\frac{cde^h}{(d-ce^h)^2}$$

528 The AM-GM inequality suggests that $L''(h) \leq 1/4$ for all h . Combining this property with Taylor's
529 theorem leads to the following, for some $\theta \in [0, 1]$,

$$L(h) = L(0) + hL'(0) + \frac{1}{2}h^2L''(h\theta) \leq \frac{h^2}{8}$$

530 Combining this with (46) completes the proof. \square

531 B.2 Small random variables

532 **Lemma B.2.** Let x_1, \dots, x_n be independent random variables in $[0, 1]$ and satisfy $\mathbb{E}[x_i] \leq$
533 $\nu, \forall i$ for some $\nu \in [0, 1]$. For any $c \geq 1$ satisfying $c\nu \geq 1$ and any $\lambda \geq 0$, we have
534 $\mathbb{E} \exp(\lambda(x_1 + \dots + x_n)^2) \leq \exp(\lambda cn\nu(1 + cn\nu))$.

535 **Lemma B.3.** Let x_1, \dots, x_n be independent random variables in $[0, 1]$ and satisfy $\mathbb{E}[x_i] \leq \nu, \forall i$
536 for some $\nu \in [0, 1]$. For any $c \geq 1$ satisfying $c\nu < 1$ and any $\lambda \in [0, \frac{\ln c}{(1-c\nu)(4n-3)}]$, we have
537 $\mathbb{E} \exp(\lambda(x_1 + \dots + x_n)^2) \leq \exp(\lambda cn\nu(1 + cn\nu))$.

538 In order to prove those results, we need the following observations.

539 **Lemma B.4.** Consider a random variable $X \in [0, 1]$ with mean $\mathbb{E}[X] \leq \nu$ for some constant
540 $\nu \in [0, 1]$. For any $c \geq 1, \lambda \geq 0$:

- 541 • If $c\nu \geq 1$, then $\mathbb{E}e^{\lambda X} \leq e^{c\nu\lambda}$.
- 542 • If $c\nu < 1$, then $\mathbb{E}e^{\lambda X} \leq e^{c\nu\lambda}$ for all $\lambda \in [0, \frac{\ln c}{1-c\nu}]$.

543 *Proof.* The Taylor series expansion of the function $e^{\lambda X}$ at any X is $e^{\lambda X} = 1 + \sum_{p=1}^{\infty} \frac{(\lambda X)^p}{p!}$.
544 Therefore

$$\mathbb{E}[e^{\lambda X}] = 1 + \sum_{p=1}^{\infty} \frac{\lambda^p}{p!} \mathbb{E}(X^p) \leq 1 + \mathbb{E}(X) \sum_{p=1}^{\infty} \frac{\lambda^p}{p!} \quad (\text{due to } X^p \leq X, \forall p \geq 1) \quad (47)$$

$$\leq 1 + \nu \sum_{p=1}^{\infty} \frac{\lambda^p}{p!} = 1 + \nu(e^{\lambda} - 1) = 1 - \nu + \nu e^{\lambda} \quad (48)$$

545 Next we consider function $y(\lambda) = e^{c\nu\lambda} - 1 + \nu - \nu e^{\lambda}$. Its derivative is $y' = c\nu e^{c\nu\lambda} - \nu e^{\lambda} =$
546 $\nu e^{\lambda} (ce^{(c\nu-1)\lambda} - 1)$.

547 For the case $c\nu \geq 1$, one can observe that $y' \geq 0$ for all $\lambda \geq 0$. This means y is non-decreasing, and
548 hence $y(\lambda) \geq y(0) = 0$. As a result, $e^{c\nu\lambda} \geq 1 - \nu + \nu e^{\lambda} \geq \mathbb{E}[e^{\lambda X}]$.

549 Consider the case $c\nu < 1$, it is easy to show that $y'(\lambda) \geq 0$ for all $\lambda \in [0, \frac{\ln c}{1-c\nu}]$. This means y is
550 non-decreasing in the interval $[0, \frac{\ln c}{1-c\nu}]$, and hence $y(\lambda) \geq y(0) = 0$ for all $\lambda \in [0, \frac{\ln c}{1-c\nu}]$. As a
551 result, $e^{c\nu\lambda} \geq 1 - \nu + \nu e^{\lambda} \geq \mathbb{E}[e^{\lambda X}]$, completing the proof. \square

552 **Corollary B.5.** Consider a random variable $X \in [0, 1]$ with mean $\mathbb{E}[X] \leq \nu$ for some constant
553 $\nu \in [0, 1]$. For all constants $a, b \geq 0, c \geq 1$:

- 554 • $\mathbb{E}e^{\lambda(aX^2+bX)} \leq e^{c(a+b)\nu\lambda}$, for all $\lambda \geq 0$, if $c\nu \geq 1$.
- 555 • $\mathbb{E}e^{\lambda(aX^2+bX)} \leq e^{c(a+b)\nu\lambda}$, for all $\lambda \in [0, \frac{\ln c}{(1-c\nu)(a+b)}]$, if $c\nu < 1$.

556 *Proof.* It is easy to observe that $\mathbb{E}e^{\lambda(aX^2)} \leq \mathbb{E}e^{\lambda(aX)}$ due to $X \in [0, 1]$. This suggests that
557 $\mathbb{E}e^{\lambda(aX^2+bX)} \leq \mathbb{E}e^{\lambda(a+b)X}$. Applying Lemma B.4 will complete the proof. \square

558 *Proof of Lemma B.2.* Denote $y_n = x_1 + \dots + x_n$. Observe that $y_n = y_{n-1} + x_n$ and

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} = \mathbb{E}_{y_n} e^{\lambda(y_{n-1}^2 + 2x_n y_{n-1} + x_n^2)} = \mathbb{E}_{y_{n-1}} \left[e^{\lambda y_{n-1}^2} \mathbb{E}_{x_n} e^{\lambda(2x_n y_{n-1} + x_n^2)} \right] \quad (49)$$

559 Since $c\nu \geq 1$ and x_n is independent with y_{n-1} , Corollary B.5 implies $\mathbb{E}_{x_n} e^{\lambda(2x_n y_{n-1} + x_n^2)} \leq e^{c\nu\lambda(2y_{n-1}+1)}$. Plugging this into (49) leads to

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} \leq \mathbb{E}_{y_{n-1}} \left[e^{\lambda y_{n-1}^2} e^{c\nu\lambda(2y_{n-1}+1)} \right] = e^{c\nu\lambda} \mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \quad (50)$$

561 Next we consider $\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right]$. Observe that $y_{n-1} = y_{n-2} + x_{n-1}$ and hence

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] = \mathbb{E}_{y_{n-1}} e^{\lambda(y_{n-2}^2 + 2x_{n-1} y_{n-2} + x_{n-1}^2 + 2c\nu x_{n-1} + 2c\nu y_{n-2})} \quad (51)$$

$$= \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 2c\nu y_{n-2})} \mathbb{E}_{x_{n-1}} e^{\lambda(2x_{n-1} y_{n-2} + 2c\nu x_{n-1} + x_{n-1}^2)} \right] \quad (52)$$

562 Since $c\nu \geq 1$ and x_{n-1} is independent with y_{n-2} , Corollary B.5 implies
563 $\mathbb{E}_{x_{n-1}} e^{\lambda(2x_{n-1} y_{n-2} + 2c\nu x_{n-1} + x_{n-1}^2)} \leq e^{c\nu\lambda(2y_{n-2} + 2c\nu + 1)}$. Plugging this into (52) leads to

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 2c\nu y_{n-2})} e^{c\nu\lambda(2y_{n-2} + 2c\nu + 1)} \right] \quad (53)$$

$$= e^{c\nu\lambda(2c\nu + 1)} \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 4c\nu y_{n-2})} \right] \quad (54)$$

564 By using the same arguments, we can show that

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq e^{c\nu\lambda(2c\nu + 1)} e^{c\nu\lambda(4c\nu + 1)} \mathbb{E}_{y_{n-3}} \left[e^{\lambda(y_{n-3}^2 + 6c\nu y_{n-3})} \right] \quad (55)$$

$$= e^{2c\nu\lambda(3c\nu + 1)} \mathbb{E}_{y_{n-3}} \left[e^{\lambda(y_{n-3}^2 + 6c\nu y_{n-3})} \right] \quad (56)$$

$$\dots \leq e^{c(n-2)\nu\lambda(c(n-1)\nu + 1)} \mathbb{E}_{y_1} \left[e^{\lambda(y_1^2 + 2c(n-1)\nu y_1)} \right] \quad (57)$$

565 Note that $\mathbb{E}_{y_1} \left[e^{\lambda(y_1^2 + 2c(n-1)\nu y_1)} \right] = \mathbb{E}_{x_1} \left[e^{\lambda(x_1^2 + 2c(n-1)\nu x_1)} \right] \leq e^{c\nu\lambda(1 + 2c(n-1)\nu)}$, according to
566 Corollary B.5. Combining this with (57), we obtain

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq e^{c(n-2)\nu\lambda(c(n-1)\nu + 1)} e^{c\nu\lambda(1 + 2c(n-1)\nu)} = e^{c\nu\lambda(1 + cn\nu)(n-1)} \quad (58)$$

567 By plugging this into (50), we obtain

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} \leq e^{c\nu\lambda} e^{c\nu\lambda(1 + cn\nu)(n-1)} = e^{c\nu\lambda((1 + cn\nu)n - cn\nu)} \quad (59)$$

$$\leq e^{cn\nu(1 + cn\nu)\lambda} \quad (60)$$

568 completing the proof. \square

569 *Proof of Lemma B.3.* Denote $y_n = x_1 + \dots + x_n$ and observe that

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} = \mathbb{E}_{y_n} e^{\lambda(y_{n-1}^2 + 2x_n y_{n-1} + x_n^2)} = \mathbb{E}_{y_{n-1}} \left[e^{\lambda y_{n-1}^2} \mathbb{E}_{x_n} e^{\lambda(2x_n y_{n-1} + x_n^2)} \right] \quad (61)$$

570 Note that $y_{n-1} = x_1 + \dots + x_{n-1} \leq n - 1$ and $\lambda(2y_{n-1} + 1) \leq \lambda(2n - 1) \leq \lambda(4n - 3) \leq \frac{\ln c}{1 - cn\nu}$.

571 Since x_n is independent with y_{n-1} , Corollary B.5 implies $\mathbb{E}_{x_n} e^{\lambda(2x_n y_{n-1} + x_n^2)} \leq e^{c\nu\lambda(2y_{n-1} + 1)}$.
572 Plugging this into (61) leads to

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} \leq \mathbb{E}_{y_{n-1}} \left[e^{\lambda y_{n-1}^2} e^{c\nu\lambda(2y_{n-1} + 1)} \right] = e^{c\nu\lambda} \mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \quad (62)$$

573 Next we consider $\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right]$. Observe that

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] = \mathbb{E}_{y_{n-1}} e^{\lambda(y_{n-2}^2 + 2x_{n-1}y_{n-2} + x_{n-1}^2 + 2c\nu x_{n-1} + 2c\nu y_{n-2})} \quad (63)$$

$$= \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 2c\nu y_{n-2})} \mathbb{E}_{x_{n-1}} e^{\lambda(2x_{n-1}y_{n-2} + 2c\nu x_{n-1} + x_{n-1}^2)} \right] \quad (64)$$

574 One can easily show that $\lambda(2y_{n-2} + 2c\nu + 1) \leq \lambda(2(n-2) + 2c\nu + 1) \leq \lambda(4n - 575 3) \leq \frac{\ln c}{1-c\nu}$, since $y_{n-2} = x_1 + \dots + x_{n-2} \leq n - 2$. Therefore Corollary B.5 implies 576 $\mathbb{E}_{x_{n-1}} e^{\lambda(2x_{n-1}y_{n-2} + 2c\nu x_{n-1} + x_{n-1}^2)} \leq e^{c\nu\lambda(2y_{n-2} + 2c\nu + 1)}$, since x_{n-1} is independent with y_{n-2} . 577 Plugging this into (64) leads to

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 2c\nu y_{n-2})} e^{c\nu\lambda(2y_{n-2} + 2c\nu + 1)} \right] \quad (65)$$

$$= e^{c\nu\lambda(2c\nu + 1)} \mathbb{E}_{y_{n-2}} \left[e^{\lambda(y_{n-2}^2 + 4c\nu y_{n-2})} \right] \quad (66)$$

578 By using the same arguments, we can show that

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq e^{c\nu\lambda(2c\nu + 1)} e^{c\nu\lambda(4c\nu + 1)} \mathbb{E}_{y_{n-3}} \left[e^{\lambda(y_{n-3}^2 + 6c\nu y_{n-3})} \right] \quad (67)$$

$$= e^{2c\nu\lambda(3c\nu + 1)} \mathbb{E}_{y_{n-3}} \left[e^{\lambda(y_{n-3}^2 + 6c\nu y_{n-3})} \right] \quad (68)$$

$$\dots \leq e^{c(n-2)\nu\lambda(c(n-1)\nu + 1)} \mathbb{E}_{y_1} \left[e^{\lambda(y_1^2 + 2c(n-1)\nu y_1)} \right] \quad (69)$$

579 Note that $\mathbb{E}_{y_1} \left[e^{\lambda(y_1^2 + 2c(n-1)\nu y_1)} \right] = \mathbb{E}_{x_1} \left[e^{\lambda(x_1^2 + 2c(n-1)\nu x_1)} \right] \leq e^{c\nu\lambda(1 + 2c(n-1)\nu)}$, according to 580 Corollary B.5 and the fact that $\lambda(1 + 2c(n-1)\nu) \leq \lambda(4n - 3) \leq \frac{\ln c}{1-c\nu}$. Combining this with (69), 581 we obtain

$$\mathbb{E}_{y_{n-1}} \left[e^{\lambda(y_{n-1}^2 + 2c\nu y_{n-1})} \right] \leq e^{c(n-2)\nu\lambda(c(n-1)\nu + 1)} e^{c\nu\lambda(1 + 2c(n-1)\nu)} = e^{c\nu\lambda(1 + cn\nu)(n-1)} \quad (70)$$

582 By plugging this into (62), we obtain

$$\mathbb{E}_{y_n} e^{\lambda y_n^2} \leq e^{c\nu\lambda} e^{c\nu\lambda(1 + cn\nu)(n-1)} = e^{c\nu\lambda((1 + cn\nu)n - cn\nu)} \quad (71)$$

$$\leq e^{cn\nu(1 + cn\nu)\lambda} \quad (72)$$

583 completing the proof. \square

584 B.3 Binomial and multinomial random variables

585 Next we analyze some properties of binomial random variables.

586 **Lemma B.6.** Consider a binomial random variable z with parameters $n \geq 1$ and $\nu \in [0, 1]$. For 587 any $c \geq 1$ satisfying $c\nu \geq 1$ and any $\lambda \geq 0$, we have $\mathbb{E}e^{\lambda z^2} \leq e^{cn\nu(1 + cn\nu)\lambda}$.

588 *Proof.* Since z is a binomial random variable, we can write $z = x_1 + \dots + x_n$, where x_1, \dots, x_n are 589 i.i.d. Bernoulli random variables with parameter ν . Therefore applying Lemma B.2 completes the 590 proof. \square

591 **Lemma B.7.** Consider a binomial random variable z with parameters $n \geq 1$ and $\nu \in [0, 1]$. For 592 any $c \geq 1$ satisfying $c\nu < 1$ and any $\lambda \in [0, \frac{\ln c}{(1-c\nu)(4n-3)}]$, we have $\mathbb{E}e^{\lambda z^2} \leq e^{cn\nu(1 + cn\nu)\lambda}$.

593 *Proof.* Since z is a binomial random variable, we can write $z = x_1 + \dots + x_n$, where x_1, \dots, x_n are 594 i.i.d. Bernoulli random variables with parameter ν . Therefore applying Lemma B.3 completes the 595 proof. \square

596 **Lemma B.8** (Multinomial variable). Consider a multinomial random variable (n_1, \dots, n_K) with 597 parameters n and (p_1, \dots, p_K) . For any $\delta > 0$:

$$\Pr \left(\sum_{i=1}^K p_i^2 > \sum_{i=1}^K \left(\frac{n_i}{n} \right)^2 + 2\sqrt{\frac{2}{n} \ln \frac{K}{\delta}} \right) < \delta$$

598 *Proof.* Observe that

$$\sum_{i=1}^K p_i^2 - \sum_{i=1}^K \left(\frac{n_i}{n}\right)^2 = \sum_{i=1}^K \left[p_i^2 - \left(\frac{n_i}{n}\right)^2 \right] \quad (73)$$

$$= \sum_{i=1}^K \left[p_i + \frac{n_i}{n} \right] \left[p_i - \frac{n_i}{n} \right] \quad (74)$$

$$= 2 \sum_{i=1}^K \left(0.5p_i + \frac{0.5n_i}{n} \right) \left(p_i - \frac{n_i}{n} \right) \quad (75)$$

$$\leq 2 \max_{i \in [K]} \left(p_i - \frac{n_i}{n} \right) \quad (76)$$

599 where the last inequality can be derived by using the fact that $\sum_{i=1}^K \left(0.5p_i + \frac{0.5n_i}{n} \right) \left(p_i - \frac{n_i}{n} \right)$
600 is a convex combination of the elements in $\{p_i - \frac{n_i}{n} : i \in [K]\}$, because of $1 =$
601 $\sum_{i=1}^K \left(0.5p_i + \frac{0.5n_i}{n} \right)$. Furthermore, since n_i is a binomial random variable with parameters
602 n and p_i , Lemma 5 in [23] shows that $\Pr \left(p_i - \frac{n_i}{n} > \sqrt{\frac{2p_i}{n} \ln \frac{K}{\delta}} \right) < \delta$ for all i . This im-
603 mediately implies $\Pr \left(p_i - \frac{n_i}{n} > \sqrt{\frac{2}{n} \ln \frac{K}{\delta}} \right) < \delta$. Combining this fact with (76), we obtain
604 $\Pr \left(\sum_{i=1}^K p_i^2 - \sum_{i=1}^K \left(\frac{n_i}{n}\right)^2 > 2\sqrt{\frac{2}{n} \ln \frac{K}{\delta}} \right) < \delta$, completing the proof. \square

605 C Experimental setup

606 More details about clustering the training images:

- 607 • We first preprocessed the images following Pytorch²: The images are resized to
608 $resize_size = [256]$ using $interpolation=InterpolationMode.BILINEAR$, followed by a
609 central crop of $crop_size = [224]$. Finally the values are first rescaled to $[0.0, 1.0]$. Those
610 operations are required for Pytorch pretrained models.
- 611 • For each run, we randomly choose 200 points in $[0.0, 1.0]^{C \times H \times W}$ to be the centroids, since
612 each preprocessed image belongs to $[0.0, 1.0]^{C \times H \times W}$. Those centroids are used to build
613 the small areas \mathcal{Z}_i in the partition. Each training image x will be assigned to area \mathcal{Z}_i if it is
614 closest to the centroid of \mathcal{Z}_i amongst all centroids, according to the Euclidean distance.

²https://pytorch.org/vision/0.20/models/generated/torchvision.models.vit_b_16.html

616 **1. Claims**

617 Question: Do the main claims made in the abstract and introduction accurately reflect the
 618 paper's contributions and scope?

619 Answer: [\[Yes\]](#)

620 Justification:

621 Guidelines:

- 622 • The answer NA means that the abstract and introduction do not include the claims
 623 made in the paper.
- 624 • The abstract and/or introduction should clearly state the claims made, including the
 625 contributions made in the paper and important assumptions and limitations. A No or
 626 NA answer to this question will not be perceived well by the reviewers.
- 627 • The claims made should match theoretical and experimental results, and reflect how
 628 much the results can be expected to generalize to other settings.
- 629 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
 630 are not attained by the paper.

631 **2. Limitations**

632 Question: Does the paper discuss the limitations of the work performed by the authors?

633 Answer: [\[Yes\]](#)

634 Justification:

635 Guidelines:

- 636 • The answer NA means that the paper has no limitation while the answer No means that
 637 the paper has limitations, but those are not discussed in the paper.
- 638 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 639 • The paper should point out any strong assumptions and how robust the results are to
 640 violations of these assumptions (e.g., independence assumptions, noiseless settings,
 641 model well-specification, asymptotic approximations only holding locally). The authors
 642 should reflect on how these assumptions might be violated in practice and what the
 643 implications would be.
- 644 • The authors should reflect on the scope of the claims made, e.g., if the approach was
 645 only tested on a few datasets or with a few runs. In general, empirical results often
 646 depend on implicit assumptions, which should be articulated.
- 647 • The authors should reflect on the factors that influence the performance of the approach.
 648 For example, a facial recognition algorithm may perform poorly when image resolution
 649 is low or images are taken in low lighting. Or a speech-to-text system might not be
 650 used reliably to provide closed captions for online lectures because it fails to handle
 651 technical jargon.
- 652 • The authors should discuss the computational efficiency of the proposed algorithms
 653 and how they scale with dataset size.
- 654 • If applicable, the authors should discuss possible limitations of their approach to
 655 address problems of privacy and fairness.
- 656 • While the authors might fear that complete honesty about limitations might be used by
 657 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
 658 limitations that aren't acknowledged in the paper. The authors should use their best
 659 judgment and recognize that individual actions in favor of transparency play an impor-
 660 tant role in developing norms that preserve the integrity of the community. Reviewers
 661 will be specifically instructed to not penalize honesty concerning limitations.

662 **3. Theory assumptions and proofs**

663 Question: For each theoretical result, does the paper provide the full set of assumptions and
 664 a complete (and correct) proof?

665 Answer: [\[Yes\]](#)

666 Justification:

667 Guidelines:

- 668 • The answer NA means that the paper does not include theoretical results.
- 669 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
 670 referenced.
- 671 • All assumptions should be clearly stated or referenced in the statement of any theorems.

672 • The proofs can either appear in the main paper or the supplemental material, but if
 673 they appear in the supplemental material, the authors are encouraged to provide a short
 674 proof sketch to provide intuition.
 675 • Inversely, any informal proof provided in the core of the paper should be complemented
 676 by formal proofs provided in appendix or supplemental material.
 677 • Theorems and Lemmas that the proof relies upon should be properly referenced.

678 **4. Experimental result reproducibility**

679 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
 680 perimental results of the paper to the extent that it affects the main claims and/or conclusions
 681 of the paper (regardless of whether the code and data are provided or not)?

682 Answer: **[Yes]**

683 Justification:

684 Guidelines:

685 • The answer NA means that the paper does not include experiments.
 686 • If the paper includes experiments, a No answer to this question will not be perceived
 687 well by the reviewers: Making the paper reproducible is important, regardless of
 688 whether the code and data are provided or not.
 689 • If the contribution is a dataset and/or model, the authors should describe the steps taken
 690 to make their results reproducible or verifiable.
 691 • Depending on the contribution, reproducibility can be accomplished in various ways.
 692 For example, if the contribution is a novel architecture, describing the architecture fully
 693 might suffice, or if the contribution is a specific model and empirical evaluation, it may
 694 be necessary to either make it possible for others to replicate the model with the same
 695 dataset, or provide access to the model. In general, releasing code and data is often
 696 one good way to accomplish this, but reproducibility can also be provided via detailed
 697 instructions for how to replicate the results, access to a hosted model (e.g., in the case
 698 of a large language model), releasing of a model checkpoint, or other means that are
 699 appropriate to the research performed.
 700 • While NeurIPS does not require releasing code, the conference does require all submis-
 701 sions to provide some reasonable avenue for reproducibility, which may depend on the
 702 nature of the contribution. For example
 703 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
 704 to reproduce that algorithm.
 705 (b) If the contribution is primarily a new model architecture, the paper should describe
 706 the architecture clearly and fully.
 707 (c) If the contribution is a new model (e.g., a large language model), then there should
 708 either be a way to access this model for reproducing the results or a way to reproduce
 709 the model (e.g., with an open-source dataset or instructions for how to construct
 710 the dataset).
 711 (d) We recognize that reproducibility may be tricky in some cases, in which case
 712 authors are welcome to describe the particular way they provide for reproducibility.
 713 In the case of closed-source models, it may be that access to the model is limited in
 714 some way (e.g., to registered users), but it should be possible for other researchers
 715 to have some path to reproducing or verifying the results.

716 **5. Open access to data and code**

717 Question: Does the paper provide open access to the data and code, with sufficient instruc-
 718 tions to faithfully reproduce the main experimental results, as described in supplemental
 719 material?

720 Answer: **[Yes]**

721 Justification:

722 Guidelines:

723 • The answer NA means that paper does not include experiments requiring code.
 724 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
 725 • While we encourage the release of code and data, we understand that this might not be
 726 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
 727 including code, unless this is central to the contribution (e.g., for a new open-source
 728 benchmark).

730 • The instructions should contain the exact command and environment needed to run to
 731 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
 732 • The authors should provide instructions on data access and preparation, including how
 733 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 734 • The authors should provide scripts to reproduce all experimental results for the new
 735 proposed method and baselines. If only a subset of experiments are reproducible, they
 736 should state which ones are omitted from the script and why.
 737 • At submission time, to preserve anonymity, the authors should release anonymized
 738 versions (if applicable).
 739 • Providing as much information as possible in supplemental material (appended to the
 740 paper) is recommended, but including URLs to data and code is permitted.

741 **6. Experimental setting/details**

742 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
 743 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
 744 results?

745 Answer: **[Yes]**

746 Justification:

747 Guidelines:

- 748 • The answer NA means that the paper does not include experiments.
- 749 • The experimental setting should be presented in the core of the paper to a level of detail
 750 that is necessary to appreciate the results and make sense of them.
- 751 • The full details can be provided either with the code, in appendix, or as supplemental
 752 material.

753 **7. Experiment statistical significance**

754 Question: Does the paper report error bars suitably and correctly defined or other appropriate
 755 information about the statistical significance of the experiments?

756 Answer: **[Yes]**

757 Justification:

758 Guidelines:

- 759 • The answer NA means that the paper does not include experiments.
- 760 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
 761 dence intervals, or statistical significance tests, at least for the experiments that support
 762 the main claims of the paper.
- 763 • The factors of variability that the error bars are capturing should be clearly stated (for
 764 example, train/test split, initialization, random drawing of some parameter, or overall
 765 run with given experimental conditions).
- 766 • The method for calculating the error bars should be explained (closed form formula,
 767 call to a library function, bootstrap, etc.)
- 768 • The assumptions made should be given (e.g., Normally distributed errors).
- 769 • It should be clear whether the error bar is the standard deviation or the standard error
 770 of the mean.
- 771 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 772 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 773 of Normality of errors is not verified.
- 774 • For asymmetric distributions, the authors should be careful not to show in tables or
 775 figures symmetric error bars that would yield results that are out of range (e.g. negative
 776 error rates).
- 777 • If error bars are reported in tables or plots, The authors should explain in the text how
 778 they were calculated and reference the corresponding figures or tables in the text.

779 **8. Experiments compute resources**

780 Question: For each experiment, does the paper provide sufficient information on the com-
 781 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 782 the experiments?

783 Answer: **[No]**

784 Justification: Our paper is theoretical, so no special requirement for computer resources is
 785 required.

786 Guidelines:

- 787 • The answer NA means that the paper does not include experiments.

789 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 790 or cloud provider, including relevant memory and storage.
 791 • The paper should provide the amount of compute required for each of the individual
 792 experimental runs as well as estimate the total compute.
 793 • The paper should disclose whether the full research project required more compute
 794 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 795 didn't make it into the paper).

796 9. **Code of ethics**

797 Question: Does the research conducted in the paper conform, in every respect, with the
 798 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

799 Answer: **[Yes]**

800 Justification:

801 Guidelines:

802 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 803 • If the authors answer No, they should explain the special circumstances that require a
 804 deviation from the Code of Ethics.
 805 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 806 eration due to laws or regulations in their jurisdiction).

807 10. **Broader impacts**

808 Question: Does the paper discuss both potential positive societal impacts and negative
 809 societal impacts of the work performed?

810 Answer: **[No]**

811 Justification: At this moment, we do not foresee any negative impact of our work to the
 812 world, since our work is theoretical. Nonetheless, we can see positive impacts of our work
 813 to deep learning. Although deep learning has been helping us to make many breakthroughs,
 814 little has been known about why those DL models can perform really well on unseen data,
 815 after training from a finite training set. This is arguably the biggest challenge in DL theory.
 816 Our work provides novel theories that are non-vacuous for a large class of modern DL
 817 models. Those theories contribute to the solid foundation of DL in particular, and AI in
 818 general.

819 Guidelines:

820 • The answer NA means that there is no societal impact of the work performed.
 821 • If the authors answer NA or No, they should explain why their work has no societal
 822 impact or why the paper does not address societal impact.
 823 • Examples of negative societal impacts include potential malicious or unintended uses
 824 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 825 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 826 groups), privacy considerations, and security considerations.
 827 • The conference expects that many papers will be foundational research and not tied
 828 to particular applications, let alone deployments. However, if there is a direct path to
 829 any negative applications, the authors should point it out. For example, it is legitimate
 830 to point out that an improvement in the quality of generative models could be used to
 831 generate deepfakes for disinformation. On the other hand, it is not needed to point out
 832 that a generic algorithm for optimizing neural networks could enable people to train
 833 models that generate Deepfakes faster.
 834 • The authors should consider possible harms that could arise when the technology is
 835 being used as intended and functioning correctly, harms that could arise when the
 836 technology is being used as intended but gives incorrect results, and harms following
 837 from (intentional or unintentional) misuse of the technology.
 838 • If there are negative societal impacts, the authors could also discuss possible mitigation
 839 strategies (e.g., gated release of models, providing defenses in addition to attacks,
 840 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
 841 feedback over time, improving the efficiency and accessibility of ML).

842 11. **Safeguards**

843 Question: Does the paper describe safeguards that have been put in place for responsible
 844 release of data or models that have a high risk for misuse (e.g., pretrained language models,
 845 image generators, or scraped datasets)?

846 Answer: **[NA]**

847 Justification:

848 Guidelines:

849

- 850 The answer NA means that the paper poses no such risks.
- 851 Released models that have a high risk for misuse or dual-use should be released with
- 852 necessary safeguards to allow for controlled use of the model, for example by requiring
- 853 that users adhere to usage guidelines or restrictions to access the model or implementing
- 854 safety filters.
- 855 Datasets that have been scraped from the Internet could pose safety risks. The authors
- 856 should describe how they avoided releasing unsafe images.
- 857 We recognize that providing effective safeguards is challenging, and many papers do
- 858 not require this, but we encourage authors to take this into account and make a best
- 859 faith effort.

860 **12. Licenses for existing assets**

861 Question: Are the creators or original owners of assets (e.g., code, data, models), used in

862 the paper, properly credited and are the license and terms of use explicitly mentioned and

863 properly respected?

864 Answer: [Yes]

865 Justification:

866 Guidelines:

867

- 868 The answer NA means that the paper does not use existing assets.
- 869 The authors should cite the original paper that produced the code package or dataset.
- 870 The authors should state which version of the asset is used and, if possible, include a
- 871 URL.
- 872 The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 873 For scraped data from a particular source (e.g., website), the copyright and terms of
- 874 service of that source should be provided.
- 875 If assets are released, the license, copyright information, and terms of use in the
- 876 package should be provided. For popular datasets, paperswithcode.com/datasets
- 877 has curated licenses for some datasets. Their licensing guide can help determine the
- 878 license of a dataset.
- 879 For existing datasets that are re-packaged, both the original license and the license of
- 880 the derived asset (if it has changed) should be provided.
- 881 If this information is not available online, the authors are encouraged to reach out to
- 882 the asset's creators.

883 **13. New assets**

884 Question: Are new assets introduced in the paper well documented and is the documentation

885 provided alongside the assets?

886 Answer: [NA]

887 Justification:

888 Guidelines:

889

- 890 The answer NA means that the paper does not release new assets.
- 891 Researchers should communicate the details of the dataset/code/model as part of their
- 892 submissions via structured templates. This includes details about training, license,
- 893 limitations, etc.
- 894 The paper should discuss whether and how consent was obtained from people whose
- 895 asset is used.
- 896 At submission time, remember to anonymize your assets (if applicable). You can either
- 897 create an anonymized URL or include an anonymized zip file.

898 **14. Crowdsourcing and research with human subjects**

899 Question: For crowdsourcing experiments and research with human subjects, does the paper

900 include the full text of instructions given to participants and screenshots, if applicable, as

901 well as details about compensation (if any)?

902 Answer: [NA]

903 Justification:

904 Guidelines:

905

- 906 The answer NA means that the paper does not involve crowdsourcing nor research with
- 907 human subjects.
- 908 Including this information in the supplemental material is fine, but if the main contribu-
- 909 tion of the paper involves human subjects, then as much detail as possible should be
- 910 included in the main paper.

907 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
908 or other labor should be paid at least the minimum wage in the country of the data
909 collector.

910 **15. Institutional review board (IRB) approvals or equivalent for research with human
911 subjects**

912 Question: Does the paper describe potential risks incurred by study participants, whether
913 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
914 approvals (or an equivalent approval/review based on the requirements of your country or
915 institution) were obtained?

916 Answer: [NA]

917 Justification:

918 Guidelines:

919 • The answer NA means that the paper does not involve crowdsourcing nor research with
920 human subjects.

921 • Depending on the country in which research is conducted, IRB approval (or equivalent)
922 may be required for any human subjects research. If you obtained IRB approval, you
923 should clearly state this in the paper.

924 • We recognize that the procedures for this may vary significantly between institutions
925 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
926 guidelines for their institution.

927 • For initial submissions, do not include any information that would break anonymity (if
928 applicable), such as the institution conducting the review.

929 **16. Declaration of LLM usage**

930 Question: Does the paper describe the usage of LLMs if it is an important, original, or
931 non-standard component of the core methods in this research? Note that if the LLM is used
932 only for writing, editing, or formatting purposes and does not impact the core methodology,
933 scientific rigorousness, or originality of the research, declaration is not required.

934 Answer: [NA]

935 Justification:

936 Guidelines:

937 • The answer NA means that the core method development in this research does not
938 involve LLMs as any important, original, or non-standard components.

939 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
940 for what should or should not be described.