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Abstract

Deep neural network (NN) with millions or billions of parameters can perform1

really well on unseen data, after being trained from a finite training set. Various2

prior theories have been developed to explain such excellent ability of NNs, but3

do not provide a meaningful bound on the test error. Some recent theories, based4

on PAC-Bayes and mutual information, are non-vacuous and hence promising to5

explain the excellent performance of NNs. However, they often require a stringent6

assumption and extensive modification (e.g. compression, quantization) to the7

trained model of interest. Therefore, those prior theories provide a guarantee for8

the modified versions only. In this paper, we propose two novel bounds on the test9

error of a model. Our bounds uses the training set only and require no modification10

to the model. Those bounds are verified on a large class of modern NNs, pretrained11

by Pytorch on the ImageNet dataset, and are non-vacuous. To the best of our12

knowledge, these are the first non-vacuous bounds at this large scale, without any13

modification to the pretrained models.14

1 Introduction15

Deep neural networks (NNs) are arguably the most effective families in Machine Learning. They have16

been helping us to produce various breakthoughs, from mastering complex games [39], generating17

high-quality languages [10] or images [20], protein structure prediction [22], to building multi-task18

systems such as Gimini [41] and ChatGPT [1]. Big or huge NNs can efficiently learn knowledge19

from large datasets and then perform extremely well on unseen data.20

Despite many empirical successes, there still remains a big gap between theory and practice of modern21

NNs. In particular, it is largely unclear [48] about Why can deep NNs generalize well on unseen22

data after being trained from a finite number of samples? This question relates to the generalization23

ability of a trained model. The standard learning theories suffer from various difficulties to provide a24

reasonable explanation. Various approaches have been studied, e.g. Radermacher complexity [18, 5],25

algorithmic stability [38, 11], algorithmic robustness [47, 40], PAC-Bayes [32, 7].26

Some recent theories [50, 7, 28–30] are really promissing, as they can provide meaningful bounds on27

the test error of some models. Dziugaite and Roy [14] obtained a non-vacuous bound by optimizing a28

distribution over NN parameters. [50, 16, 34] bounded the expected error of a stochastic NN by using29

off-the-shelf compression methods. Those theories follow the PAC-Bayes approach. On the other30

hand, Nadjahi et al. [35] showed the potential of the stability-based approach. Although making a31

significant progress, those theories are meaningful for small and stochastic NNs only.32

Lotfi et al. [29, 30] made a significant step to analyze the generalization ability of big/huge NNs,33

such as large language models (LLM). Using state-of-the-art quantization, finetuning and some other34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Table 1: Recent approaches for analyzing generalization error. X means “Required” or “Yes”. The upper
part shows the required assumptions about differrent aspects, e.g., hypothesis space, loss function, training or
finetuning. The lower part reports non-vacuousness in different situations.

Approach Radermacher Alg. Stability Alg. Robustness Mutual Info PAC-Bayes Ours
complexity [5] [9, 27] [47, 23, 42] [46, 35] [50, 34] [29, 30]

Requirement:
Model compressibility X X X
Train or finetune X X X
Lipschitz loss X X X
Finite hypothesis space X

Non-vacuousness for:
Stochastic models only X X X
Trained models X X
Training size > 1 M X X
Model size > 500 M X X

techniques, the PAC-Bayes bounds by [30, 29] are non-vacuous for huge LLMs, e.g., GPT-2 and35

LLamMA2. Those bounds significantly push the frontier of deep learning theory.36

In this work, we are interested in estimating or bounding the expected error F (P,h) of a specific37

model (hypothesis) h which is trained from a finite number of samples from distribution P . The38

expected error tells how well a model h can generalize on unseen data, and hence can explain the39

performance of a trained model. This estimation problem is fundamental in learning theory [33],40

but arguably challenging for NNs. Many prior theories [50, 28, 35] were developed for stochastic41

models, but not for a trained model h of interest. Lotfi et al. [29, 30] made a significant progress42

to remove “stochasticity”. For example, Lotfi et al. [30] provided a non-vacuous bound for the43

2-bit quantized (and finetuned) versions of LLamMA2. Nonetheless, those theories require to use44

a method for intensively quantizing or compressing h. This means that those theories are for the45

quantized or compressed models, and hence may not necessarily be true for the original (unquantized46

or uncompressed) models. This is a major limitation of those bounds. Such a limitation calls for47

novel theories that directly work with a given model h.48

Our contributions in this work are as follow:49

• We develop a novel bound on the expected error F (P,h) of a trained model h. This bound50

does not require stringent assumptions as prior bounds do. It encodes both the complexity51

of the data distribution and the behavior of model h at local areas of the data space.52

The main technical challenge to obtain our bound is to use the training set to approximate53

an intractable term which summarizes the true error of h at different local areas of the data54

space. We resolve this challenge by analyzing various properties of small and binomial55

random variables.56

• We next derive a tractable bound that can be easily computed from the training set only,57

without any change to h. Hence this bound directly provides a guarantee for h. Those58

properties are really beneficial and enable our bound to overcome the major limitations of59

prior theories. Table 1 presents a more detailed comparison about some key aspects.60

• Third, we develop a novel bound that uses a data transformation method. This bound can61

help us to analyze more properties of a trained model, and enable an effective comparison62

between two trained models. This bound may be useful in many contexts, where prior63

theories cannot provide an effective answer.64

• Finally, we did an extensive evaluation for a large class of modern NNs which were pretrained65

by Pytorch on the ImageNet dataset with more than 1.2M images. The results show that our66

bounds are non-vacuous. To the best of our knowledge, this is the first time that a theoretical67

bound is non-vacuous at this large scale, without any change to the trained models.68

Organization: The next section presents a comprehensive survey about related work, the main advan-69

tages and limitations of prior theories. We then present our novel bounds in Section 3, accompanied70

with more detailed comparisons. Section 4 contains our empirical evaluation for some pretrained NNs.71

Section 5 concludes the paper. Proofs and more experimental details can be found in appendices.72
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Notations: S often denotes a dataset and |S| denotes its size/cardinality. Γ denotes a partition of the73

data space. [K] denotes the set {1, ...,K} of natural numbers at most K. ` denotes a loss function,74

and h often denotes a model or hypothesis of interest.75

2 Related work76

Various approaches have been studied to analyze generalization capability, e.g., Radermacher com-77

plexity [4], algorithmic stability [38, 15], algorithmic robustness [47], Mutual-infomation based78

bounds [46, 35], PAC-Bayes [32, 19]. Those approaches connect different aspects of a learning79

algorithm or hypothesis (model) to generalization.80

Norm-based bounds [5, 18, 17] is one of the earliest approaches to understand NNs. The existing81

studies often use Rademacher complexity to provide data- and model-dependent bounds on the82

generalization error. An NN with smaller weight norms will have a smaller bound, suggesting better83

generalization on unseen data. Nonetheless, the norms of weight matrices are often large for practical84

NNs [3]. Therefore, most existing norm-based bounds are vacuous.85

Algorithmic stability [9, 38, 12, 24] is a crucial approach to studying a learning algorithm. Basically,86

those theories suggest that a more stable algorithm can generalize better. Stable algorithms are less87

likely to overfit the training set, leading to more reliable predictions. The stability requirement in88

those theories is that a replacement of one sample for the training set will not significantly change89

the loss of the trained model. Such an assumption is really strong. One primary drawback is that90

achieving stability often requires restricting model complexity, potentially sacrificing predictive91

accuracy on challenging datasets. Therefore, this approach has a limited success in understanding92

deep NNs.93

Algorithmic robustness [47, 40, 23, 42] is a framework to study generalization capability. It94

essesntially says that a robust learning algorithm can produce robust models which can generalize95

well on unseen data. This approach provides another lens to understand a learning algorithm and96

a trained model. However, it requires the assumption that the learning algorithm is robust, i.e., the97

loss of the trained model changes little in the small areas around the training samples. Such an98

assumption is really strong and cannot apply well for modern NNs, since many practical NNs suffer99

from adversarial attacks [31, 49]. Than et al. [42] showed that those theories are often vacuous.100

Neural Tangent Kernel [21] provides a theoretical lens to study generalization of NNs by linking101

them to kernel methods in the infinite-width limit. As networks grow wider, their training dynamics102

under gradient descent can be approximated by a kernel function which remains constant throughout103

training. This perspective simplifies the analysis of complex neural architectures. The framework104

enables explicit generalization bounds, and a deeper understanding of how network architecture105

and initialization affect learning. However, the main limitation of this framework comes from its106

assumptions, such as the infinite-width regime and fixed kernel during training, may not fully capture107

the behavior of finite, practical networks where feature learning is dynamic. Some other studies [25]108

can remove the infinite-width regime but assume the infinite depth.109

Mutual information (MI) [46, 35] has emerged as a powerful tool for analyzing generalization110

by quantifying the dependency between a model’s learned representations and the data. Since a111

trained model contains the (compressed) knowledge learned from the training samples, MI offers112

a principled framework for studying the trade-off between compression and predictive accuracy.113

However, the existing MI-based theories [46, 45, 37, 35] have a notable drawback: computing MI in114

high-dimensional, non-linear settings is computationally challenging. This drawback poses significant115

challenges for analyzing deep NNs, although [35] obtained some promissing results on small NNs.116

PAC-Bayes [32, 19, 8] recently has received a great attention, and provide non-vacuous bounds117

[50, 34] for some NNs. Those bounds often estimate Eĥ[F (P, ĥ)] which is the expectation of the118

test error over the posterior distribution of ĥ. It means that those bounds are for a stochastic model ĥ.119

Hence they provide limited understanding for a specific deterministic model h. Neyshabur et al. [36]120

provided an attempt to derandomization for PAC-Bayes but resulted in vacuous bounds for modern121

neural networks [3]. Some recent attempts to derandomization include [44, 13].122

Non-vacuous bounds for NNs: Dziugaite and Roy [14] obtained a non-vacuous bound for NNs by123

finding a posterior distribution over neural network parameters that minimizes the PAC-Bayes bound.124
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Their optimized bound is non-vacuous for a stochastic MLP with 3 layers trained on MNIST dataset.125

Zhou et al. [50] bounded the population loss of a stochastic NNs by using compressibility level of a126

NN. Using off-the-shelf neural network compression schemes, they provided the first non-vacuous127

bound for LeNet-5 and MobileNet, trained on ImageNet with more than 1.2M samples. Lotfi et al.128

[28] developed a compression method to further optimize the PAC-Bayes bound, and estimated129

the error rate of 40.9% for MobileViT on ImageNet. Mustafa et al. [34] provided a non-vacuous130

PAC-Bayes bound for adversarial population loss for VGG on CIFAR10 dataset. Galanti et al. [16]131

presented a PAC-Bayes bound which is non-vacuous for Convolutional NNs with up to 20 layers132

and for CIFAR10 and MNIST. Akinwande et al. [2] provided a non-vacuous PAC-Bayes bound133

for prompts. Although making a significant progress for NNs, those bounds are non-vacuous for134

stochastic neural networks only. Biggs and Guedj [7] provided PAC-Bayes bounds for deterministic135

models and obtain (empirically) non-vacuous bounds for a specific class of (SHEL) NNs with a single136

hidden layer, trained on MNIST and Fashion-MNIST. Nonetheless, it is unclear about how well those137

bounds apply to bigger or deeper NNs.138

Towards understanding big/huge NNs, Lotfi et al. [29, 30] made a significant step that provides139

non-vacuous bounds for LLMs. While the PAC-Bayes bound in [29] can work with LLMs trained140

from i.i.d data, the recent bound in [30] considers token-level loss for LLMs and applies to dependent141

settings, which is close to the practice of training LLMs. Using both model quantization, finetuning142

and some other techniques, the PAC-Bayes bound by [30] is shown to be non-vacuous for huge LLMs,143

e.g., LLamMA2. Those bounds significantly push the frontier of learning theory towards building a144

solid foundation for DL.145

Nonetheless, there are two main drawbacks of those bounds [29, 30]. First, model quantization146

or compression is required in order to obtain a good bound. It means, those bounds are for the147

quantized or compressed models, and hence may not necessarily be true for the original (unquantized148

or uncompressed) models. For example, [30] provided a non-vacuous bound for the 2-bit quantized149

versions of LLamMA2, instead of their original pretrained versions. Second, those bounds require150

the assumption that the model (hypothesis) family is finite, meaning that a learning algorithm only151

searches in a space with finite number of specific models. Although such an assumption is reasonable152

for the current computer architectures, those bounds cannot explain a trained model that belongs to153

families with infinite (or uncountable) number of members, which are provably prevalent. In contrast,154

our bounds apply directly to any specific model without requiring any modification or support. A155

comparison between our bounds and prior approaches about some key aspects is presented in Table 1.156

3 Error bounds157

In this section, we present three novel bounds for the expected error of a given model. The first158

bound provides a general form which directly depends on the complexity of the data distribution and159

the trained model. The second bound provides an explicit upper bound for the error, which can be160

computed directly from any given dataset. The last bound helps us to analyze the robustness of a161

model by using data augmentation.162

Consider a hypothesis (or model) h, defined on an instance set Z , and a nonnegative loss function `.163

Each `(h, z) tells the loss (or quality) of h at an instance z ∈ Z . Given a distribution P defined on164

Z , the quality of h is measured by its expected loss F (P,h) = Ez∼P [`(h, z)]. Quantity F (P,h)165

tells the generalization ability of model h; a smaller F (P,h) implies that h can generalize better on166

unseen data.167

For analyzing generalization ability, we are often interested in estimating (or bounding) F (P,h).168

Sometimes this expected loss is compared with the empirical loss of h on a data set S =169

{z1, ...,zn} ⊆ Z , which is defined as F (S,h) = 1
n

∑
z∈S `(h, z). Note that a small F (S,h)170

does not neccessarily imply good generalization of h, since overfitting may appear. Therefore, our171

ultimate goal is to estimate F (P,h) directly.172

Let Γ(Z) :=
⋃K
i=1Zi be a partition of Z into K disjoint nonempty subsets. Denote Si = S ∩ Zi,173

and ni = |Si| as the number of samples falling into Zi, meaning that n =
∑K
j=1 nj . Denote174

T = {i ∈ [K] : ni > 0}, ai(h) = Ez[`(h, z)|z ∈ Zi] for i ∈ [K], and ao = maxj /∈T aj(h).175
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3.1 General bound176

The first result incorporates the properties of the data distribution and the trained model.177

Theorem 3.1. Given a partition Γ and a bounded nonnegative loss `, consider a model h which may178

depend on a dataset S with n i.i.d. samples from distribution P . Denote pi = P (Zi) as the measure179

of area Zi for i ∈ [K], and u =
∑K
i=1 γnpi(1 + γnpi). For any constants γ ≥ 1, δ1 ≥ exp(−u ln γ

4n−3 )180

and δ2 > 0, we have the following with probability at least 1− δ1 − δ2:181

F (P,h) ≤ F (S,h) + C

√
u

2n2
ln

1

δ1
+ g(Γ,h, δ2) (1)

where g(Γ,h, δ2) =

√
ln(2K/δ2)

n

∑
i∈T
√
ni
(
ao +

√
2ai(h)

)
+ 2 ln(2K/δ2)

n (ao|T | +
∑
i∈T ai(h))182

and C = supz∈Z `(h, z).183

This theorem suggests that the expected loss cannot be far from the empirical loss F (S,h). The gap184

between the two is at most C
√

u
2n2 ln 1

δ1
+ g(Γ,h, δ2). Such a gap represents the uncertainty of our185

bound and mostly depends on the sample size n, the trained model h, the data distribution P and the186

partition Γ. We emphasize that bound (1) has some interesting properties:187

• First, it does not require any assumption about the hypothesis family and learning algorithm.188

This is an advantage over many approaches including algorithmic stability [9, 27], robustness189

[47, 23], Radermacher complexity [4, 5]. This bound focuses directly on the the model h of190

interest, helping it to be tighter than many prior bounds.191

• Second, it depends on the complexity of the data distribution. Note that u encodes the192

complexity of P . For a uniform partition Γ, a more structured distribution P can have a193

higher sum
∑K
i=1 p

2
i . As an example of structured distributions, a Gaussian with a small194

variance has the most probability density in a small area around its mean and lead to a high195

pi for some i. Meanwhile a less structured distribution (e.g. uniform) can produce a small196 ∑K
i=1 p

2
i and hence smaller u. To the best of our knowledge, such an explicit dependence197

on the distribution complexity is rare in prior theories.198

• Third, it is model-dependent. Some particular properties of model h are encoded in199

g(Γ,h, δ2) and the empirical loss . A better model h will lead to smaller ai’s and hence g.200

On the other hand, a worse model can have a bigger g, leading to a higher RHS of (1).201

It is worth noticing the similarity between our bound (1) and robustness-based bounds in [23, 42].202

F (S,h) + g(Γ,h, δ2) is the common part in those bounds. Our bound (1) contains C
√

u
2n2 ln 1

δ1
203

that encodes the complexity of the data distribution, whereas the bounds in [23, 42] use a robustness204

quantity that measures the sensitivity of the loss w.r.t. a change in the input. While prior bounds205

are not amenable to be exactly computed from a training set, our bound enables to easily derive a206

computable and non-vacuous bound (below). This is the main advantage of bound (1).207

Proof sketch. The detailed proof can be found in Appendix A. We focus on bounding the probability208

Pr (F (P,h)− F (S,h) ≥ φ), for some gap φ. Note that F (P,h) − F (S,h) = A + B, where209

A = F (P,h) −
∑
i
ni

n ai(h) and B =
∑
i
ni

n ai(h) − F (S,h). Therefore, our proof estimates210

Pr(A ≥ g) and211

Pr(B ≥ t) (2)
for some constant t. Once they are known, we can use the union bound to obtain a bound on212

Pr (F (P,h)− F (S,h) ≥ g + t) as desired. We use a result from [23] to bound Pr(A ≥ g). The213

remaining task is to estimate (2), which is the main challenge. This challenge requires approximating214

an intractable quantity from a data set.215

We resolve this challenge by developing Theorem A.1. Its proof contains three main steps:216

1. First we show Pr(B ≥ t) ≤ e−ytEh,n

[
ES

[
eyB |h,n

]]
, for n = {n1, ..., nK} and some y.217

2. We next estimate ES

[
eyBK |h,n

]
. Overall, we make sure that ES

[
eyB |h,n

]
≤ eψ(y,n), for218

some function ψ(y,v) which does not depend on h. As a result Pr(B ≥ t) ≤ Eve
ψ(y,n).219

3. The last step is to bound Ene
ψ(y,n). This requires us to develop various analyses for small random220

variables in Appendix B. A suitable choice for t, y completes our proof.221
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3.2 Tractable bounds222

It is worth noticing that bound (1) contains some unknown quantities, e.g., u and ai’s, which cannot223

be computed exactly. This is its main limitation. The following bound overcomes such a limitation.224

Theorem 3.2. Given the notations and assumption in Theorem 3.1, for any constants γ ≥ 1, δ > 0225

and α ∈ [0, γn(K+γn)
K(4n−3) ], we have the following with probability at least 1− γ−α − δ:226

F (P,h) ≤ F (S,h) + C
√
ûα ln γ + g2(δ/2) (3)

where û = γ
2n

+ γ2

2

K∑
i=1

(
ni
n

)2
+ γ2

√
2
n

ln 2K
δ

, g2(δ) =
C(1+

√
2)
√

ln(2K/δ)

n

∑
i∈T

√
ni + 4C|T | ln(2K/δ)

n
.227

One special property is that we can evaluate our bound easily by using only the training set. Indeed,228

we can choose K and a specific partition Γ of the data space. Then we can count ni and T and229

evaluate the bound (3) easily. This property is remarkable and beneficial in practice.230

A theoretical comparison with closely related bounds: Although many model-dependent bounds231

[23, 42, 7, 44, 29, 30] have been proposed, our bound (3) has various advantages:232

• Mild assumption: Our bound does not require stringent assumptions as in prior ones. Some233

prior bounds require stability [27, 26] or robustness [47, 23, 40] of the learning algorithm.234

Those assumptions are often violated in practice, e.g. for the appearance of adversarial235

attacks [49]. Some theories [29, 30] assume that the hypothesis class is finite, which is236

restrictive. In contrast, our bound requires only i.i.d. assumption which also appears in most237

prior bounds.238

• Easy evaluation: An evaluation of our bound (3) will be simple and does not require any239

modification to the model h of interest. This is a crucial advantage. Many prior theories240

require intermediate steps to change the model of interest into a suitable form. For example,241

state-of-the-art methods to compress NNs are required for [50, 28, 35]; quantization for a242

model is required for [29, 30]; finetuning (e.g. SubLoRA) is required for [29, 30]. Those243

facts suggests that evaluations for prior bounds are often expensive. Besides, many prior244

model-dependent bounds [47, 23, 42] cannot be exactly computed from a training set only.245

• No change to the model: Most prior non-vacuous bounds [50, 14, 29, 30] require extensively246

compressing (or quantizing) model h of interest and then retraining/finetuning the com-247

pressed version. Sometimes the compression step is too restrictive and produces low-quality248

models [29]. Therefore, a modification will change model h and hence those bounds do249

not directly provide guarantees for the generalization ability of h. In contrast, our bound250

(3) does not require any change to model h, and hence directly provides a guarantee for h.251

There is a nonlinear relationship betweenK and the uncertainty term Unc(Γ) = C
√
ûα ln γ+g2(δ/2)252

in our bound. A partition with a larger K can make the sum
∑K
i=1

(
ni

n

)2
smaller, as the samples can253

be spread into more areas. However a larger K can make g2(δ) larger. Therefore, we should not254

choose too large K. On the other hand, a small K can make the sum
∑K
i=1

(
ni

n

)2
large, since more255

samples can appear in each area Zi and enlarge ni

n . Therefore, we should not choose too small K.256

Furthermore, we need to choose constant α carefully, since there is a trade-off in the bound and the257

certainty 1− γ−α − δ. A smaller α can make the bound smaller, but could enlarge γ−α and hence258

reduce the certainty of the bound.259

The next result considers the robustness of a model.260

Theorem 3.3. Given the assumption in Theorem 3.2, let Ŝ = T (S) be the result of using a261

transformation method T , which is independent with h, on the samples of S. Denote ε̄(h) =
∑
i∈T

mi

m ε̄i262

and m =
∑
i∈T

mj , where Ŝi = Ŝ ∩ Zi, mi = |Ŝi|, and ε̄i = 1
mini

∑
z∈Si,s∈Ŝi

|`(h, z) − `(h, s)|263

for each i ∈ T . We have the following with probability at least 1− γ−α − δ:264

F (P,h) ≤ ε̄(h) + F (Ŝ,h) +
∑
i∈T

(ni
n
− mi

m

)
F (Si,h) + C

√
ûα ln γ + g2(δ/2) (4)

This theorem suggests that a model can be better if its loss is less sensitive with respect to some small265

changes in the training samples. This can be seen from each quantity ε̄i which measures the average266
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difference of the loss of h for the samples Si and Ŝi belonging to the same small area. This result267

closely relates to adversarial training [31], where one often wants to train a model which is robust268

w.r.t small changes in the inputs. It is also worth noticing that if T transforms S too much, both the269

loss F (Ŝ,h) and the sensitivity ε̄ can be large. As a result, the bound (4) will be large. In fact, our270

proof suggests that bound (4) is worse than bound (3).271

The main benefit of Theorem 3.3 is that we can use some transformation methods to compare some272

trained models. This is particularly useful for the cases where two models have comparable (even273

zero) training losses. For those cases, Theorem 3.2 does not provide a satisfactory answer. Instead, we274

can use a simple augmentation method (e.g., noise perturbation, rotation, translation, ...) to produce275

a dataset Ŝ and then use this dataset to evaluate the upper bound (4). By this way, we use both the276

training loss F (S,h) and ε̄(h) + F (Ŝ,h) +
∑
i∈T

(
ni

n −
mi

m

)
F (Si,h) for comparison.277

4 Empirical evaluation278

In this section, we present two sets of extensice evaluations about the our bounds. We use 32 modern279

NN models1 which were pretrained by Pytorch on the ImageNet dataset with 1,281,167 images.280

Those models are multiclass classifiers. Our main aim is to provide a guarantee for the error of a281

trained model, without any further modification. Therefore, no prior bound is taken into comparison,282

since those existing bounds are either already vacuous or require some extensive modifications or283

cannot directly apply to those trained NNs.284

4.1 Large-scale evaluation for pretrained models285

The first set of experiments verifies nonvacuouness of our first bound (3) and the effects of some286

parameters in the bound. We use the training part of ImageNet only to compute the bound.287

Experimental settings: We fix δ = 0.01, α = 100, γ = 0.04−1/α. This choice means that our288

bound is correct with probability at least 95%. The partition Γ is chosen with K = 200 small areas289

of the input space, by clustering the training images into 200 areas, whose centroids are initialized290

randomly. The upper bound (3) for each model was computed with 5 random seeds. We use the 0-1291

loss function, meaning that our bound directly estimates the true classification error.292

Results: The overall results are reported in Table 2. One can observe that our bound for all models293

are all non-vacuous even for the non-optimized choices of some parameters. Our estimate is often294

2-3 times higher than the oracle test error of each model. When choosing the best parameter for295

each model by grid search, we can obtain much better bounds about the test errors. Note that296

non-vacuousness of our bound holds true for a large class of deep NN families, some of which have297

more than 630M parameters. To the best of our knowledge, bound (3) is the first theoretical bound298

which is non-vacuous at such a large scale, without requiring any modification to the trained models.299

Effect of parameters: Note that our bound depends on the choice of some parameters. Figure 1300

reports the changes of
∑K
i=1

(
ni

n

)2
as the partition Γ changes. We can see that this quantity tends301

to decrease as we divide the input space into more small areas. Meanwhile, Figure 2 reports the302

uncertainty term, as either α or K changes. Observe that a larger K can increase the uncertainty fast,303

while an increase in α can gradually decrease the uncertainty. Those figures enable an easy choice304

for the parameters in our bound.305

4.2 Evaluation with data augmentation306

As mentioned before, our bound (3) can provide a theoretical certificate for a trained model, but may307

not be ideal to compare two models which have the same training error. Sometimes, a model can308

have a lower training error but a higher test error (such as DenseNet161 vs. DenseNet201, VIT L 16309

linear vs. VIT L 16 V1). Bound (3) may not be good for model comparison. In those cases, we need310

to use bound (4) for comparison.311

Experimental settings: We fix δ = 0.01, α = 100, γ = 0.04−1/α,K = 200 as before. We use312

white noise addition as the transformation method in Theorem 3.3. Specifically, each image is added313

1https://pytorch.org/vision/stable/models.html
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Table 2: Upper bounds on the true error (in %) of 32 deep NNs which were pretrained on ImageNet dataset.
The second column presents the model size, the third column contains the test accuracy at Top 1, as reported
by Pytorch. “Mild" reports the bound for the choice of {δ = 0.01,K = 200, α = 100, γ = 0.04−1/α},
while “Optimized" reports the bound with parameter optimization by grid search. The grid search is done for
K ∈ {100, 200, 300, 400, 500, 1000, 5000, 10000}, α ∈ {10, 20, ..., 100}, δ = 0.01 and γ = 0.04−1/α. The
last two columns report our estimates about the true error, with a certainty at least 95%.

Model #Params (M) Training error Acc@1 Test error Error bound (3)
Mild Optimized

ResNet18 V1 11.7 21.245 69.758 30.242 57.896 ±4.189 54.262
ResNet34 V1 21.8 15.669 73.314 26.686 52.320 ±4.189 48.686
ResNet50 V1 25.6 13.121 76.130 23.870 49.772 ±4.189 46.138
ResNet101 V1 44.5 10.502 77.374 22.626 47.153 ±4.189 43.519
ResNet152 V1 60.2 10.133 78.312 21.688 46.784 ±4.189 43.150
ResNet50 V2 25.6 8.936 80.858 19.142 45.587 ±4.189 41.953
ResNet101 V2 44.5 6.008 81.886 18.114 42.659 ±4.189 39.025
ResNet152 V2 60.2 5.178 82.284 17.716 41.829 ±4.189 38.195
SwinTransformer B 87.8 6.464 83.582 16.418 43.115 ±4.189 39.481
SwinTransformer B V2 87.9 6.392 84.112 15.888 43.043 ±4.189 39.409
SwinTransformer T 28.3 9.992 81.474 18.526 46.643 ±4.189 43.009
SwinTransformer T V2 28.4 8.724 82.072 17.928 45.375 ±4.189 41.741
VGG13 133.0 18.456 69.928 30.072 55.107 ±4.189 51.473
VGG13 BN 133.1 19.223 71.586 28.414 55.874 ±4.189 52.240
VGG19 143.7 16.121 72.376 27.624 52.772 ±4.189 49.138
VGG19 BN 143.7 15.941 74.218 25.782 52.592 ±4.189 48.958
DenseNet121 8.0 15.631 74.434 25.566 52.282 ±4.189 48.648
DenseNet161 28.7 10.48 77.138 22.862 47.131 ±4.189 43.497
DenseNet169 14.1 12.395 75.600 24.400 49.046 ±4.189 45.412
DenseNet201 20.0 9.806 76.896 23.104 46.457 ±4.189 42.823
ConvNext Base 88.6 5.209 84.062 15.938 41.860 ±4.189 38.226
ConvNext Large 197.8 3.846 84.414 15.586 40.497 ±4.189 36.863
RegNet Y 128GF e2e 644.8 5.565 88.228 11.772 42.216 ±4.189 38.582
RegNet Y 128GF linear 644.8 9.032 86.068 13.932 45.683 ±4.189 42.049
RegNet Y 32GF e2e 145.0 7.127 86.838 13.162 43.778 ±4.189 40.144
RegNet Y 32GF linear 145.0 10.558 84.622 15.378 47.209 ±4.189 43.575
RegNet Y 32GF V2 145.0 3.761 81.982 18.018 40.412 ±4.189 36.778
VIT B 16 linear 86.6 14.969 81.886 18.114 51.620 ±4.189 47.986
VIT B 16 V1 86.6 5.916 81.072 18.928 42.567 ±4.189 38.933
VIT H 14 linear 632.0 9.951 85.708 14.292 46.602 ±4.189 42.968
VIT L 16 linear 304.3 11.003 85.146 14.854 47.654 ±4.189 44.020
VIT L 16 V1 304.3 3.465 79.662 20.338 40.116 ±4.189 36.482

Figure 1: The dynamic of n̂ =
∑K
i=1

(
ni
n

)2
as K changes.

Figure 2: The uncertainty Unc(Γ) = C
√
ûα ln γ + g(δ/2)

as (right) K changes and (left) α changes, for fixed K =

200, γ = 0.04−1/α, δ = 0.01.

by a noise which is randomly sampled from the normal distribution with mean 0 and variance σ2.314

Those noisy images are used to compute bound (4).315

Results: Table 3 reports bound (4) for σ = 0.15, ignoring the uncertainty part which is common for316

all models. One can observe that our bound (4) correlates very well with the test error of each model,317

except RegNet and VIT families. This suggests that the use of data augmentation can help us to better318

compare the performance of two models.319

We next vary σ ∈ {0, 0.05, 0.1, 0.15, 0.2} to see when the noise can enable a good comparison.320

Figure 3 reports the results about two families. We observe that while DenseNet161 has higher321

training error than DenseNet201 does, the error bound for DenseNet161 tends to be lower than that322
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Table 3: Bound (4) on the test error (in %) of some models which were pretrained on ImageNet dataset. Each
bound was computed by adding Gaussian noises to the training images, with σ = 0.15.

Model Training error Test error Bound (4)
ResNet18 V1 21.245 30.242 129.226
ResNet34 V1 15.669 26.686 111.521
DenseNet161 10.480 22.862 94.045
DenseNet169 12.395 24.400 100.747
DenseNet201 9.806 23.104 96.221
VGG 13 18.456 30.072 142.870
VGG 13 BN 19.223 28.414 134.955
RegNet Y 32GF e2e 7.127 13.162 72.474
RegNet Y 32GF linear 10.558 15.378 85.368
RegNet Y 32GF V2 3.761 18.018 67.764
VIT B 16 linear 14.969 18.110 96.967
VIT B 16 V1 5.916 18.930 65.969
VIT L 16 linear 11.003 14.850 80.178
VIT L 16 V1 3.465 20.340 58.402
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Figure 3: The dynamic of bound (4) as the noise level σ increases. These subfigures report the main part
ε̄(h) + F (Ŝ,h) of the bound.

of DenseNet201 as the images get more noisy. This suggests that DenseNet161 should be better than323

DenseNet201, which is correctly reflected by their test errors. The same behavior also appears for324

VGG13 and VGG13 BN. However, those two families require two different values of σ (0.05 for325

VGG; 0.1 for DenseNet) to exhibit an accurate comparison. This also suggests that the anti-correlation326

mentioned before for RegNet and VIT may be due to the small value of σ in Table 3. Those two327

families may require a higher σ to exhibit an accurate comparison.328

5 Conclusion329

Providing theoretical guarantees for the performance of a model in practice is crucial to build reliable330

ML applications. Our work contributes three bounds on the test error of a model, one of which is331

non-vacuous for all the trained deep NNs in our experiments, without requiring any change to the332

trained models. Hence, our bounds can be used to provide a non-vacuous theoretical certificate for a333

trained model. This fills in the decade-missing cornerstone of deep learning theory.334

Our work opens various avenues for future research. Indeed, while the the uncertainty part of bound335

(1) depends on the inherent property of the model of interest, that in bound (3) mostly does not.336

This suggests that bound (3) is suboptimal. One direction to develop better theories is to take more337

properties of a model into consideration, e.g. exploit more fine-grained properties of bound (1).338

Another direction is to take dependency of the training samples into account. However, it may require339

some improvements from very fundamental steps, e.g., concentrations for dependent variables. Since340

our bounds are for general settings, one interesting direction is to provide certificates for models341

in different types of applications, e.g. regression, segmentation, language inference, translation,342

text-2-images, image-2-text, ... We believe that our bounds provide a good starting point for those343

directions.344
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A Proofs for main results469

Proof of Theorem 3.1. We first observe that470

F (P,h)− F (S,h) = F (P,h)−
K∑
i=1

ni
n
ai(h) +

K∑
i=1

ni
n
ai(h)− F (S,h) (5)

Next, we consider F (P,h) −
∑K
i=1

ni

n ai(h) =
∑K
i=1 piai(h) −

∑K
i=1

ni

n ai(h) =471 ∑K
i=1 ai(h)

[
pi − ni

n

]
. Note that (n1, ..., nK) is a multinomial random variable with pa-472

rameters n and (p1, ..., pK). Therefore, according to Lemma 7 in [23], we have473

Pr
(∑K

i=1 ai(h)
[
pi − ni

n

]
> g(Γ,h, δ2)

)
< δ2. This implies474

Pr

(
F (P,h)−

K∑
i=1

ni
n
ai(h) > g(Γ,h, δ2)

)
< δ2 (6)

On the other hand, Theorem A.1 below shows that475

Pr

(∑
i∈TS

ni
n
ai(h)− F (S,h) ≥ C

√
u

2n2
ln

1

δ1

)
≤ δ1 (7)

Combining this with (6) and the union bound, we have476

Pr

(
F (P,h) > F (S,h) + C

√
u

2n2
ln

1

δ1
+ g(Γ,h, δ2)

)
< δ1 + δ2 (8)

completing the proof.477

Proof of Theorem 3.2. Theorem 3.1 shows that478

Pr

(
F (P,h) > F (S,h) + C

√
u

2n2
ln

1

δ1
+ g(Γ,h, δ/2)

)
< δ1 + δ/2 (9)

where u and δ1 depend on the sum
∑K
i=1 p

2
i . We next bound this quantity using S.479

Since pi ≥ 0 and
∑K
i=1 pi = 1, we can use the Lagrange multiplier method to show that

∑K
i=1 p

2
i is480

minimized at 1/K. Hence u =
∑K
i=1 γnpi(1+γnpi) = γn+γ2n2

∑K
i=1 p

2
i ≥ γn+γ2n2/K. This481

suggests that exp(−u ln γ
4n−3 ) ≤ exp(− (γn+γ2n2/K) ln γ

4n−3 ) ≤ exp(−γn(K+γn) ln γ
K(4n−3) ) ≤ γ−α. Choosing482

δ1 = γ−α and plugging it into (9) lead to483

Pr

(
F (P,h) > F (S,h) + C

√
u

2n2
α ln γ + g(Γ,h, δ/2)

)
< δ/2 + γ−α (10)

It is easy to see that g(Γ,h, δ/2) ≤ g2(δ/2), since ao(h) ≤ C and ai(h) ≤ C for any i. Therefore484

Pr

(
F (P,h) > F (S,h) + C

√
u

2n2
α ln γ + g2(δ/2)

)
< δ/2 + γ−α (11)

Next we consider u
2n2 = γ

2n + γ2

2

∑K
i=1 p

2
i . Since S contains n i.i.d. samples, (n1, ..., nK) is a485

multinomial random variable with parameters n and (p1, ..., pK). Lemma B.8 shows486

Pr

(
K∑
i=1

p2i >

K∑
i=1

(ni
n

)2
+ 2

√
2

n
ln

2K

δ

)
< δ/2

Therefore Pr
(

u
2n2 >

γ
2n + γ2

2

∑K
i=1

(
ni

n

)2
+ γ2

√
2
n ln 2K

δ

)
< δ/2. This also suggests that487

Pr

(
C

√
u

2n2
α ln γ > C

√
ûα ln γ

)
< δ/2 (12)

Combining this with (11) and the union bound will complete the proof.488
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Proof of Theorem 3.3. Theorem 3.2 shows that the following holds with probability at least 1 −489

γ−α − δ:490

F (P,h) ≤ F (S,h) + C
√
ûα ln γ + g(δ/2) (13)

Note that491

F (S,h) =F (S,h)−
∑
i∈T

mi

m
F (Si,h) +

∑
i∈T

mi

m
F (Si,h)− F (Ŝ,h) + F (Ŝ,h) (14)

=
∑
i∈T

mi

m
[F (Si,h)− F (Ŝi,h)] + F (S,h)−

∑
i∈T

mi

m
F (Si,h) + F (Ŝ,h) (15)

=
∑
i∈T

mi

m

1

ni

∑
z∈Si

[`(h, z)− F (Ŝi,h)] + F (S,h)−
∑
i∈T

mi

m
F (Si,h) + F (Ŝ,h) (16)

=
∑
i∈T

mi

m

1

nimi

∑
z∈Si,s∈Ŝi

[`(h, z)− `(h, s)] + F (S,h)−
∑
i∈T

mi

m
F (Si,h) + F (Ŝ,h)

(17)

≤
∑
i∈T

mi

m

1

nimi

∑
z∈Si,s∈Ŝi

|`(h, z)− `(h, s)|+ F (S,h)−
∑
i∈T

mi

m
F (Si,h) + F (Ŝ,h)

(18)

≤
∑
i∈T

mi

m
ε̄i + F (S,h)−

∑
i∈T

mi

m
F (Si,h) + F (Ŝ,h) (19)

=
∑
i∈T

mi

m
ε̄i +

∑
i∈T

(ni
n
− mi

m

)
F (Si,h) + F (Ŝ,h) (20)

Since this determistically holds for all S, combining (13) with (20) completes the proof.492

A.1 Approximating the intractable part by a data set493

Theorem A.1. Given the notations in Theorem 3.1,494

Pr

(∑
i∈TS

ni
n
ai(h) ≥

∑
i∈TS

ni
n
F (Si,h) + C

√
u

2n2
ln

1

δ1

)
≤ δ1 (21)

Proof. Denote n = {n1, ..., nK} and for each j ∈ [K]:495

Bj =

j∑
i=1

niai(h)−
j∑
i=1

niF (Si,h) (22)

Xj = njF (Sj ,h) (23)

S≤j =
⋃
i≤j

Si (24)

Denote y = 4t
uC2 for any t ∈

[
0, uC

√
ln γ
8n−6

]
. The proof for (21) contains three main steps.496

Step 1: We first observe that497

Pr (BK ≥ t) ≤ e−ytES

[
eyBK

]
(Chernoff bounds) (25)

≤ e−ytEh,n

[
ES

[
eyBK |h,n

]]
(Law of total expectation) (26)
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Step 2 - estimating ES

[
eyBK |h,n

]
: We observe the following for each j ∈ TS ,498

EXj [Xj |h,n] = ESj [njF (Sj ,h)|h,n] (27)

= ESj

[
nj∑
i=1

`(h, zji)|h,n

]
(where Sj = {zji}

nj

i=1) (28)

=

nj∑
i=1

Ezji∈Zj [`(h, zji)|h,n] (Sj contains i.i.d. samples in Zj) (29)

=

nj∑
i=1

aj(h) = njaj(h) (30)

Therefore Bj = Bj−1 + EXj [Xj |h,n] − Xj for all j ∈ TS . Note that Bi = Bi−1 (due to499

ni = bi = Xi = 0) for all i /∈ TS . Hence, for i /∈ TS , we will use EXi
[Xi|h,n]−Xi instead of 0500

in the below analysis for simplicity of presentation.501

We can rewrite502

ES

[
eyBK |h,n

]
= ES

[
ey(BK−1+EXK

[XK |h,n]−XK)|h,n
]

(31)

= ES≤K

[
ey(BK−1+EXK

[XK |h,n]−XK)|h,n
]

(32)

≤ ES≤K−1

[
eyBK−1 |h,n

]
EXK

[
ey(EXK

[XK |h,n]−XK)|h,n
]

(33)

where the last inequality comes from the fact that XK is conditionally independent with S≤K−1,503

conditioned on {h,n}.504

It is easy to see that 0 ≤ XK ≤ CnK , due to 0 ≤ F (SK ,h) ≤ C. Lemma B.1 implies505

EXK

[
ey(EXK

[XK |h,n]−XK)|h,n
]
≤ exp

(
y2C2n2

K

8

)
. Plugging this into (33), we obtain506

ES

[
eyBK |h,n

]
≤ ES≤K−1

[
eyBK−1 |h,n

]
exp

(
y2C2n2K

8

)
(34)

Using the same arguments for XK−1, ..., X1, we obtain the followings507

ES

[
eyBK |h,n

]
≤ ES≤K−2

[
eyBK−2 |h,n

]
exp

(
y2C2n2K

8
+
y2C2n2K−1

8

)
...

≤ exp

(
y2C2

8

K∑
i=1

n2i

)
(35)

Step 3 - bounding Pr (BK ≥ t): By combining this with (26), we obtain508

Pr (BK ≥ t) ≤ e−ytEh,n exp

(
y2C2

8

K∑
i=1

n2i

)
(36)

= e−ytEn exp

(
y2C2

8

K∑
i=1

n2i

)
(37)

≤ e−ytEn exp

(
y2C2

8

K−1∑
i=1

n2i

)
EnK

exp

(
y2C2

8
n2K

)
(38)

(Since nK is independent with v1, ..., nK−1)

When γpK < 1, due to t ≤ uC
√

ln γ
8n−6 , observe that y

2C2

8 = 2t2

u2C2 ≤ ln γ
4n−3 ≤

ln γ
(1−γpK)(4n−3) . Note509

that nK is a binomial random variable with parameters n and pK . Combining those facts with Lemma510

B.7 implies EnK
exp

(
y2C2

8 n2K

)
≤ exp

(
y2C2

8 γnpK(1 + γnpK)
)

. On the other hand, Lemma B.6511
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also implies EnK
exp

(
y2C2

8 n2K

)
≤ exp

(
y2C2

8 γnpK(1 + γnpK)
)

when γpK ≥ 1. As a result,512

those facts and (38) lead to the following:513

Pr (BK ≥ t) ≤ e−ytEn exp

(
y2C2

8

K−1∑
i=1

n2i

)
exp

(
y2C2

8
((1 + γnpK)γnpK)

)
(39)

Using the same arguments for the remaining variables nK−1, ..., n1, we obtain514

Pr (BK ≥ t) ≤ exp

(
−yt+

y2C2

8

K∑
i=1

(1 + γnpi)γnpi

)
(40)

= exp

(
−yt+

y2C2u

8

)
= exp

(
−2t2

uC2

)
(41)

As a result515

Pr

(
K∑
i=1

niai(h) ≥
K∑
i=1

niF (Si,h) + t

)
≤ exp

(
− 2t2

uC2

)
(42)

Since nj = 0 for all j /∈ TS , we have516

Pr

(∑
i∈TS

niai(h) ≥
∑
i∈TS

niF (Si,h) + t

)
≤ exp

(
− 2t2

uC2

)
(43)

Multiplying both sides (of the probability term) with 1/n leads to517

Pr

(∑
i∈TS

ni
n
ai(h) ≥

∑
i∈TS

ni
n
F (Si,h) + t/n

)
≤ exp

(
− 2t2

uC2

)

Choosing t = C
√

u
2 ln 1

δ1
results in (21), completing the proof.518

B Supporting theorems and lemmas519

B.1 Hoeffding’s Lemma520

Lemma B.1 (Hoeffding’s lemma for conditionals). Let X be any real-valued random variable that521

may depend on some random variables Y . Assume that a ≤ X ≤ b almost surely, for some constants522

a, b. Then, for all λ ∈ R,523

EX
[
eλ(EX [X|Y ]−X)|Y

]
≤ exp

(
λ2(b− a)2

8

)
(44)

Proof. Denote c = EX [X|Y ]− b, d = EX [X|Y ]− a and hence c ≤ 0 ≤ d.524

Since exp is a convex function, we have the following for all EX [X|Y ]−X ∈ [c, d]:525

eλ(EX [X|Y ]−X) ≤ d− EX [X|Y ] +X

d− c
eλc +

EX [X|Y ]−X − c
d− c

eλd

Therefore, by taking the conditional expectation over X for both sides,526

EX
[
eλ(EX [X|Y ]−X)|Y

]
≤ d− EX [X|Y ] + EX [X|Y ]

d− c
eλc +

EX [X|Y ]− EX [X|Y ]− c
d− c

eλd

=
d

d− c
eλc − c

d− c
eλd (45)

= eL(λ(d−c)) (46)

where L(h) = ch
d−c + ln(1 + c−ehc

d−c ). For this function, note that527
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L(0) = L′(0) = 0 and L′′(h) = − cdeh

(d− ceh)2

The AM-GM inequality suggests that L′′(h) ≤ 1/4 for all h. Combining this property with Taylor’s528

theorem leads to the following, for some θ ∈ [0, 1],529

L(h) = L(0) + hL′(0) +
1

2
h2L′′(hθ) ≤ h2

8

Combining this with (46) completes the proof.530

B.2 Small random variables531

Lemma B.2. Let x1, ..., xn be independent random variables in [0, 1] and satisfy E[xi] ≤532

ν, ∀i for some ν ∈ [0, 1]. For any c ≥ 1 satisfying cν ≥ 1 and any λ ≥ 0, we have533

E exp
(
λ(x1 + · · ·+ xn)2

)
≤ exp(λcnν(1 + cnν)).534

Lemma B.3. Let x1, ..., xn be independent random variables in [0, 1] and satisfy E[xi] ≤ ν, ∀i535

for some ν ∈ [0, 1]. For any c ≥ 1 satisfying cν < 1 and any λ ∈ [0, ln c
(1−cν)(4n−3) ], we have536

E exp
(
λ(x1 + · · ·+ xn)2

)
≤ exp(λcnν(1 + cnν)).537

In order to prove those results, we need the following observations.538

Lemma B.4. Consider a random variable X ∈ [0, 1] with mean E[X] ≤ ν for some constant539

ν ∈ [0, 1]. For any c ≥ 1, λ ≥ 0:540

• If cν ≥ 1, then EeλX ≤ ecνλ.541

• If cν < 1, then EeλX ≤ ecνλ for all λ ∈ [0, ln c
1−cν ].542

Proof. The Taylor series expansion of the function eλX at any X is eλX = 1 +
∑∞
p=1

(λX)p

p! .543

Therefore544

E[eλX ] = 1 +

∞∑
p=1

λp

p!
E(Xp) ≤ 1 + E(X)

∞∑
p=1

λp

p!
(due to Xp ≤ X,∀p ≥ 1) (47)

≤ 1 + ν

∞∑
p=1

λp

p!
= 1 + ν(eλ − 1) = 1− ν + νeλ (48)

Next we consider function y(λ) = ecνλ − 1 + ν − νeλ. Its derivative is y′ = cνecνλ − νeλ =545

νeλ(ce(cν−1)λ − 1).546

For the case cν ≥ 1, one can observe that y′ ≥ 0 for all λ ≥ 0. This means y is non-decreasing, and547

hence y(λ) ≥ y(0) = 0. As a result, ecνλ ≥ 1− ν + νeλ ≥ E[eλX ].548

Consider the case cν < 1, it is easy to show that y′(λ) ≥ 0 for all λ ∈ [0, ln c
1−cν ]. This means y is549

non-decreasing in the interval [0, ln c
1−cν ], and hence y(λ) ≥ y(0) = 0 for all λ ∈ [0, ln c

1−cν ]. As a550

result, ecνλ ≥ 1− ν + νeλ ≥ E[eλX ], completing the proof.551

Corollary B.5. Consider a random variable X ∈ [0, 1] with mean E[X] ≤ ν for some constant552

ν ∈ [0, 1]. For all constants a, b ≥ 0, c ≥ 1:553

• Eeλ(aX2+bX) ≤ ec(a+b)νλ, for all λ ≥ 0, if cν ≥ 1.554

• Eeλ(aX2+bX) ≤ ec(a+b)νλ, for all λ ∈ [0, ln c
(1−cν)(a+b) ], if cν < 1.555

Proof. It is easy to observe that Eeλ(aX2) ≤ Eeλ(aX) due to X ∈ [0, 1]. This suggests that556

Eeλ(aX2+bX) ≤ Eeλ(a+b)X . Applying Lemma B.4 will complete the proof.557
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Proof of Lemma B.2. Denote yn = x1 + · · ·+ xn. Observe that yn = yn−1 + xn and558

Eyneλy
2
n = Eyneλ(y

2
n−1+2xnyn−1+x

2
n) = Eyn−1

[
eλy

2
n−1Exn

eλ(2xnyn−1+x
2
n)
]

(49)

Since cν ≥ 1 and xn is independent with yn−1, Corollary B.5 implies Exn
eλ(2xnyn−1+x

2
n) ≤559

ecνλ(2yn−1+1). Plugging this into (49) leads to560

Eyneλy
2
n ≤ Eyn−1

[
eλy

2
n−1ecνλ(2yn−1+1)

]
= ecνλEyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
(50)

Next we consider Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
. Observe that yn−1 = yn−2 + xn−1 and hence561

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
= Eyn−1

eλ(y
2
n−2+2xn−1yn−2+x

2
n−1+2cνxn−1+2cνyn−2) (51)

= Eyn−2

[
eλ(y

2
n−2+2cνyn−2)Exn−1

eλ(2xn−1yn−2+2cνxn−1+x
2
n−1)

]
(52)

Since cν ≥ 1 and xn−1 is independent with yn−2, Corollary B.5 implies562

Exn−1
eλ(2xn−1yn−2+2cνxn−1+x

2
n−1) ≤ ecνλ(2yn−2+2cν+1). Plugging this into (52) leads to563

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ Eyn−2

[
eλ(y

2
n−2+2cνyn−2)ecνλ(2yn−2+2cν+1)

]
(53)

= ecνλ(2cν+1)Eyn−2

[
eλ(y

2
n−2+4cνyn−2)

]
(54)

By using the same arguments, we can show that564

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ ecνλ(2cν+1)ecνλ(4cν+1)Eyn−3

[
eλ(y

2
n−3+6cνyn−3)

]
(55)

= e2cνλ(3cν+1)Eyn−3

[
eλ(y

2
n−3+6cνyn−3)

]
(56)

...

≤ ec(n−2)νλ(c(n−1)ν+1)Ey1
[
eλ(y

2
1+2c(n−1)νy1)

]
(57)

Note that Ey1
[
eλ(y

2
1+2c(n−1)νy1)

]
= Ex1

[
eλ(x

2
1+2c(n−1)νx1)

]
≤ ecνλ(1+2c(n−1)ν), according to565

Corollary B.5. Combining this with (57), we obtain566

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ ec(n−2)νλ(c(n−1)ν+1)ecνλ(1+2c(n−1)ν) = ecνλ(1+cnν)(n−1)(58)

By plugging this into (50), we obtain567

Eyneλy
2
n ≤ ecνλecνλ(1+cnν)(n−1) = ecνλ((1+cnν)n−cnν) (59)

≤ ecnν(1+cnν)λ (60)

completing the proof.568

Proof of Lemma B.3. Denote yn = x1 + · · ·+ xn and observe that569

Eyneλy
2
n = Eyneλ(y

2
n−1+2xnyn−1+x

2
n) = Eyn−1

[
eλy

2
n−1Exn

eλ(2xnyn−1+x
2
n)
]

(61)

Note that yn−1 = x1 + · · ·+ xn−1 ≤ n− 1 and λ(2yn−1 + 1) ≤ λ(2n− 1) ≤ λ(4n− 3) ≤ ln c
1−cν .570

Since xn is independent with yn−1, Corollary B.5 implies Exn
eλ(2xnyn−1+x

2
n) ≤ ecνλ(2yn−1+1).571

Plugging this into (61) leads to572

Eyneλy
2
n ≤ Eyn−1

[
eλy

2
n−1ecνλ(2yn−1+1)

]
= ecνλEyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
(62)

Next we consider Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
. Observe that573
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Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
= Eyn−1

eλ(y
2
n−2+2xn−1yn−2+x

2
n−1+2cνxn−1+2cνyn−2) (63)

= Eyn−2

[
eλ(y

2
n−2+2cνyn−2)Exn−1

eλ(2xn−1yn−2+2cνxn−1+x
2
n−1)

]
(64)

One can easily show that λ(2yn−2 + 2cν + 1) ≤ λ(2(n− 2) + 2cν + 1) ≤ λ(4n −574

3) ≤ ln c
1−cν , since yn−2 = x1 + · · · + xn−2 ≤ n − 2. Therefore Corollary B.5 implies575

Exn−1
eλ(2xn−1yn−2+2cνxn−1+x

2
n−1) ≤ ecνλ(2yn−2+2cν+1), since xn−1 is independent with yn−2.576

Plugging this into (64) leads to577

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ Eyn−2

[
eλ(y

2
n−2+2cνyn−2)ecνλ(2yn−2+2cν+1)

]
(65)

= ecνλ(2cν+1)Eyn−2

[
eλ(y

2
n−2+4cνyn−2)

]
(66)

By using the same arguments, we can show that578

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ ecνλ(2cν+1)ecνλ(4cν+1)Eyn−3

[
eλ(y

2
n−3+6cνyn−3)

]
(67)

= e2cνλ(3cν+1)Eyn−3

[
eλ(y

2
n−3+6cνyn−3)

]
(68)

...

≤ ec(n−2)νλ(c(n−1)ν+1)Ey1
[
eλ(y

2
1+2c(n−1)νy1)

]
(69)

Note that Ey1
[
eλ(y

2
1+2c(n−1)νy1)

]
= Ex1

[
eλ(x

2
1+2c(n−1)νx1)

]
≤ ecνλ(1+2c(n−1)ν), according to579

Corollary B.5 and the fact that λ(1 + 2c(n− 1)ν) ≤ λ(4n− 3) ≤ ln c
1−cν . Combining this with (69),580

we obtain581

Eyn−1

[
eλ(y

2
n−1+2cνyn−1)

]
≤ ec(n−2)νλ(c(n−1)ν+1)ecνλ(1+2c(n−1)ν) = ecνλ(1+cnν)(n−1)(70)

By plugging this into (62), we obtain582

Eyneλy
2
n ≤ ecνλecνλ(1+cnν)(n−1) = ecνλ((1+cnν)n−cnν) (71)

≤ ecnν(1+cnν)λ (72)

completing the proof.583

B.3 Binomial and multinomial random variables584

Next we analyze some properties of binomial random variables.585

Lemma B.6. Consider a binomial random variable z with parameters n ≥ 1 and ν ∈ [0, 1]. For586

any c ≥ 1 satisfying cν ≥ 1 and any λ ≥ 0, we have Eeλz2 ≤ ecnν(1+cnν)λ.587

Proof. Since z is a binomial random variable, we can write z = x1 + · · ·+ xn, where x1, ..., xn are588

i.i.d. Bernoulli random variables with parameter ν. Therefore applying Lemma B.2 completes the589

proof.590

Lemma B.7. Consider a binomial random variable z with parameters n ≥ 1 and ν ∈ [0, 1]. For591

any c ≥ 1 satisfying cν < 1 and any λ ∈ [0, ln c
(1−cν)(4n−3) ], we have Eeλz2 ≤ ecnν(1+cnν)λ.592

Proof. Since z is a binomial random variable, we can write z = x1 + · · ·+ xn, where x1, ..., xn are593

i.i.d. Bernoulli random variables with parameter ν. Therefore applying Lemma B.3 completes the594

proof.595

Lemma B.8 (Multinomial variable). Consider a multinomial random variable (n1, ..., nK) with596

parameters n and (p1, ..., pK). For any δ > 0:597

Pr

(
K∑
i=1

p2i >

K∑
i=1

(ni
n

)2
+ 2

√
2

n
ln
K

δ

)
< δ
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Proof. Observe that598

K∑
i=1

p2i −
K∑
i=1

(ni
n

)2
=

K∑
i=1

[
p2i −

(ni
n

)2]
(73)

=

K∑
i=1

[
pi +

ni
n

] [
pi −

ni
n

]
(74)

= 2

K∑
i=1

(
0.5pi +

0.5ni
n

)(
pi −

ni
n

)
(75)

≤ 2 max
i∈[K]

(
pi −

ni
n

)
(76)

where the last inequlality can be derived by using the fact that
∑K
i=1

(
0.5pi + 0.5ni

n

) (
pi − ni

n

)
599

is a convex combination of the elements in {pi − ni

n : i ∈ [K]}, because of 1 =600 ∑K
i=1

(
0.5pi + 0.5ni

n

)
. Furthermore, since ni is a binomial random variable with parameters601

n and pi, Lemma 5 in [23] shows that Pr

(
pi − ni

n >
√

2pi
n ln K

δ

)
< δ for all i. This im-602

mediately implies Pr
(
pi − ni

n >
√

2
n ln K

δ

)
< δ. Combining this fact with (76), we obtain603

Pr
(∑K

i=1 p
2
i −

∑K
i=1

(
ni

n

)2
> 2
√

2
n ln K

δ

)
< δ, completing the proof.604

C Experimental setup605

More details about clustering the training images:606

• We first preprocessed the images following Pytorch2: The images are resized to607

resize_size = [256] using interpolation=InterpolationMode.BILINEAR, followed by a608

central crop of crop_size = [224]. Finally the values are first rescaled to [0.0, 1.0]. Those609

operations are required for Pytorch pretrained models.610

• For each run, we randomly choose 200 points in [0.0, 1.0]C×H×W to be the centroids, since611

each preprocessed image belongs to [0.0, 1.0]C×H×W . Those centroids are used to build612

the small areas Zi in the partition. Each training image x will be assigned to area Zi if it is613

closest to the centroid of Zi amongst all centroids, according to the Euclidean distance.614

2https://pytorch.org/vision/0.20/models/generated/torchvision.models.vit_b_16.
html
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Answer: [Yes]665

Justification:666

Guidelines:667

• The answer NA means that the paper does not include theoretical results.668

• All the theorems, formulas, and proofs in the paper should be numbered and cross-669

referenced.670

• All assumptions should be clearly stated or referenced in the statement of any theorems.671
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• The proofs can either appear in the main paper or the supplemental material, but if672

they appear in the supplemental material, the authors are encouraged to provide a short673

proof sketch to provide intuition.674

• Inversely, any informal proof provided in the core of the paper should be complemented675

by formal proofs provided in appendix or supplemental material.676

• Theorems and Lemmas that the proof relies upon should be properly referenced.677

4. Experimental result reproducibility678

Question: Does the paper fully disclose all the information needed to reproduce the main ex-679

perimental results of the paper to the extent that it affects the main claims and/or conclusions680

of the paper (regardless of whether the code and data are provided or not)?681

Answer: [Yes]682

Justification:683

Guidelines:684

• The answer NA means that the paper does not include experiments.685

• If the paper includes experiments, a No answer to this question will not be perceived686

well by the reviewers: Making the paper reproducible is important, regardless of687

whether the code and data are provided or not.688

• If the contribution is a dataset and/or model, the authors should describe the steps taken689

to make their results reproducible or verifiable.690

• Depending on the contribution, reproducibility can be accomplished in various ways.691

For example, if the contribution is a novel architecture, describing the architecture fully692

might suffice, or if the contribution is a specific model and empirical evaluation, it may693

be necessary to either make it possible for others to replicate the model with the same694

dataset, or provide access to the model. In general. releasing code and data is often695

one good way to accomplish this, but reproducibility can also be provided via detailed696

instructions for how to replicate the results, access to a hosted model (e.g., in the case697

of a large language model), releasing of a model checkpoint, or other means that are698

appropriate to the research performed.699

• While NeurIPS does not require releasing code, the conference does require all submis-700

sions to provide some reasonable avenue for reproducibility, which may depend on the701

nature of the contribution. For example702

(a) If the contribution is primarily a new algorithm, the paper should make it clear how703

to reproduce that algorithm.704

(b) If the contribution is primarily a new model architecture, the paper should describe705

the architecture clearly and fully.706

(c) If the contribution is a new model (e.g., a large language model), then there should707

either be a way to access this model for reproducing the results or a way to reproduce708

the model (e.g., with an open-source dataset or instructions for how to construct709

the dataset).710

(d) We recognize that reproducibility may be tricky in some cases, in which case711

authors are welcome to describe the particular way they provide for reproducibility.712

In the case of closed-source models, it may be that access to the model is limited in713

some way (e.g., to registered users), but it should be possible for other researchers714

to have some path to reproducing or verifying the results.715

5. Open access to data and code716

Question: Does the paper provide open access to the data and code, with sufficient instruc-717

tions to faithfully reproduce the main experimental results, as described in supplemental718

material?719

Answer: [Yes]720

Justification:721

Guidelines:722

• The answer NA means that paper does not include experiments requiring code.723

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/724

public/guides/CodeSubmissionPolicy) for more details.725

• While we encourage the release of code and data, we understand that this might not be726

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not727

including code, unless this is central to the contribution (e.g., for a new open-source728

benchmark).729
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• The instructions should contain the exact command and environment needed to run to730

reproduce the results. See the NeurIPS code and data submission guidelines (https:731

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.732

• The authors should provide instructions on data access and preparation, including how733

to access the raw data, preprocessed data, intermediate data, and generated data, etc.734

• The authors should provide scripts to reproduce all experimental results for the new735

proposed method and baselines. If only a subset of experiments are reproducible, they736

should state which ones are omitted from the script and why.737

• At submission time, to preserve anonymity, the authors should release anonymized738

versions (if applicable).739

• Providing as much information as possible in supplemental material (appended to the740

paper) is recommended, but including URLs to data and code is permitted.741

6. Experimental setting/details742

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-743

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the744

results?745

Answer: [Yes]746

Justification:747

Guidelines:748

• The answer NA means that the paper does not include experiments.749

• The experimental setting should be presented in the core of the paper to a level of detail750

that is necessary to appreciate the results and make sense of them.751

• The full details can be provided either with the code, in appendix, or as supplemental752

material.753

7. Experiment statistical significance754

Question: Does the paper report error bars suitably and correctly defined or other appropriate755

information about the statistical significance of the experiments?756

Answer: [Yes]757

Justification:758

Guidelines:759

• The answer NA means that the paper does not include experiments.760

• The authors should answer "Yes" if the results are accompanied by error bars, confi-761

dence intervals, or statistical significance tests, at least for the experiments that support762

the main claims of the paper.763

• The factors of variability that the error bars are capturing should be clearly stated (for764

example, train/test split, initialization, random drawing of some parameter, or overall765

run with given experimental conditions).766

• The method for calculating the error bars should be explained (closed form formula,767

call to a library function, bootstrap, etc.)768

• The assumptions made should be given (e.g., Normally distributed errors).769

• It should be clear whether the error bar is the standard deviation or the standard error770

of the mean.771

• It is OK to report 1-sigma error bars, but one should state it. The authors should772

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis773

of Normality of errors is not verified.774

• For asymmetric distributions, the authors should be careful not to show in tables or775

figures symmetric error bars that would yield results that are out of range (e.g. negative776

error rates).777

• If error bars are reported in tables or plots, The authors should explain in the text how778

they were calculated and reference the corresponding figures or tables in the text.779

8. Experiments compute resources780

Question: For each experiment, does the paper provide sufficient information on the com-781

puter resources (type of compute workers, memory, time of execution) needed to reproduce782

the experiments?783

Answer: [No]784

Justification: Our paper is theoretical, so no special requirement for computer resources is785

required.786

Guidelines:787

• The answer NA means that the paper does not include experiments.788
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,789

or cloud provider, including relevant memory and storage.790

• The paper should provide the amount of compute required for each of the individual791

experimental runs as well as estimate the total compute.792

• The paper should disclose whether the full research project required more compute793

than the experiments reported in the paper (e.g., preliminary or failed experiments that794

didn’t make it into the paper).795

9. Code of ethics796

Question: Does the research conducted in the paper conform, in every respect, with the797

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?798

Answer: [Yes]799

Justification:800

Guidelines:801

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.802

• If the authors answer No, they should explain the special circumstances that require a803

deviation from the Code of Ethics.804

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-805

eration due to laws or regulations in their jurisdiction).806

10. Broader impacts807

Question: Does the paper discuss both potential positive societal impacts and negative808

societal impacts of the work performed?809

Answer: [No]810

Justification: At this moment, we do not foresee any negative impact of our work to the811

world, since our work is theoretical. Nonetheless, we can see positive impacts of our work812

to deep learning. Although deep learning has been helping us to make many breakthroughs,813

little has been known about why those DL models can perform really well on unseen data,814

after training from a finite training set. This is arguably the biggest challenge in DL theory.815

Our work provides novel theories that are non-vacuous for a large class of modern DL816

models. Those theories contribute to the solid foundation of DL in particular, and AI in817

general.818

Guidelines:819

• The answer NA means that there is no societal impact of the work performed.820

• If the authors answer NA or No, they should explain why their work has no societal821

impact or why the paper does not address societal impact.822

• Examples of negative societal impacts include potential malicious or unintended uses823

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations824

(e.g., deployment of technologies that could make decisions that unfairly impact specific825

groups), privacy considerations, and security considerations.826

• The conference expects that many papers will be foundational research and not tied827

to particular applications, let alone deployments. However, if there is a direct path to828

any negative applications, the authors should point it out. For example, it is legitimate829

to point out that an improvement in the quality of generative models could be used to830

generate deepfakes for disinformation. On the other hand, it is not needed to point out831

that a generic algorithm for optimizing neural networks could enable people to train832

models that generate Deepfakes faster.833

• The authors should consider possible harms that could arise when the technology is834

being used as intended and functioning correctly, harms that could arise when the835

technology is being used as intended but gives incorrect results, and harms following836

from (intentional or unintentional) misuse of the technology.837

• If there are negative societal impacts, the authors could also discuss possible mitigation838

strategies (e.g., gated release of models, providing defenses in addition to attacks,839

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from840

feedback over time, improving the efficiency and accessibility of ML).841

11. Safeguards842

Question: Does the paper describe safeguards that have been put in place for responsible843

release of data or models that have a high risk for misuse (e.g., pretrained language models,844

image generators, or scraped datasets)?845

Answer: [NA]846

Justification:847
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Guidelines:848

• The answer NA means that the paper poses no such risks.849

• Released models that have a high risk for misuse or dual-use should be released with850

necessary safeguards to allow for controlled use of the model, for example by requiring851

that users adhere to usage guidelines or restrictions to access the model or implementing852

safety filters.853

• Datasets that have been scraped from the Internet could pose safety risks. The authors854

should describe how they avoided releasing unsafe images.855

• We recognize that providing effective safeguards is challenging, and many papers do856

not require this, but we encourage authors to take this into account and make a best857

faith effort.858

12. Licenses for existing assets859

Question: Are the creators or original owners of assets (e.g., code, data, models), used in860

the paper, properly credited and are the license and terms of use explicitly mentioned and861

properly respected?862

Answer: [Yes]863

Justification:864

Guidelines:865

• The answer NA means that the paper does not use existing assets.866

• The authors should cite the original paper that produced the code package or dataset.867

• The authors should state which version of the asset is used and, if possible, include a868

URL.869

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.870

• For scraped data from a particular source (e.g., website), the copyright and terms of871

service of that source should be provided.872

• If assets are released, the license, copyright information, and terms of use in the873

package should be provided. For popular datasets, paperswithcode.com/datasets874

has curated licenses for some datasets. Their licensing guide can help determine the875

license of a dataset.876

• For existing datasets that are re-packaged, both the original license and the license of877

the derived asset (if it has changed) should be provided.878

• If this information is not available online, the authors are encouraged to reach out to879

the asset’s creators.880

13. New assets881

Question: Are new assets introduced in the paper well documented and is the documentation882

provided alongside the assets?883

Answer: [NA]884

Justification:885

Guidelines:886

• The answer NA means that the paper does not release new assets.887

• Researchers should communicate the details of the dataset/code/model as part of their888

submissions via structured templates. This includes details about training, license,889

limitations, etc.890

• The paper should discuss whether and how consent was obtained from people whose891

asset is used.892

• At submission time, remember to anonymize your assets (if applicable). You can either893

create an anonymized URL or include an anonymized zip file.894

14. Crowdsourcing and research with human subjects895

Question: For crowdsourcing experiments and research with human subjects, does the paper896

include the full text of instructions given to participants and screenshots, if applicable, as897

well as details about compensation (if any)?898

Answer: [NA]899

Justification:900

Guidelines:901

• The answer NA means that the paper does not involve crowdsourcing nor research with902

human subjects.903

• Including this information in the supplemental material is fine, but if the main contribu-904

tion of the paper involves human subjects, then as much detail as possible should be905

included in the main paper.906
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,907

or other labor should be paid at least the minimum wage in the country of the data908

collector.909

15. Institutional review board (IRB) approvals or equivalent for research with human910

subjects911

Question: Does the paper describe potential risks incurred by study participants, whether912

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)913

approvals (or an equivalent approval/review based on the requirements of your country or914

institution) were obtained?915

Answer: [NA]916

Justification:917

Guidelines:918

• The answer NA means that the paper does not involve crowdsourcing nor research with919

human subjects.920

• Depending on the country in which research is conducted, IRB approval (or equivalent)921

may be required for any human subjects research. If you obtained IRB approval, you922

should clearly state this in the paper.923

• We recognize that the procedures for this may vary significantly between institutions924

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the925

guidelines for their institution.926

• For initial submissions, do not include any information that would break anonymity (if927

applicable), such as the institution conducting the review.928

16. Declaration of LLM usage929

Question: Does the paper describe the usage of LLMs if it is an important, original, or930

non-standard component of the core methods in this research? Note that if the LLM is used931

only for writing, editing, or formatting purposes and does not impact the core methodology,932

scientific rigorousness, or originality of the research, declaration is not required.933

Answer: [NA]934

Justification:935

Guidelines:936

• The answer NA means that the core method development in this research does not937

involve LLMs as any important, original, or non-standard components.938

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)939

for what should or should not be described.940
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