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Abstract

Recurrent neural networks (RNNs) are popular tools for studying computational
dynamics in neurobiological circuits. However, due to the dizzying array of design
choices, it is unclear if computational dynamics unearthed from RNNs provide
reliable neurobiological inferences. Understanding the effects of design choices on
RNN computation is valuable in two ways. First, invariant properties that persist
in RNNs across a wide range of design choices are more likely to be candidate
neurobiological mechanisms. Second, understanding what design choices lead to
similar dynamical solutions reduces the burden of imposing that all design choices
be totally faithful replications of biology. We focus our investigation on how RNN
learning rule and task design affect RNN computation. We trained large populations
of RNNs with different, but commonly used, learning rules on decision-making
tasks inspired by neuroscience literature. For relatively complex tasks, we find that
attractor topology is invariant to the choice of learning rule, but representational
geometry is not. For simple tasks, we find that attractor topology depends on task
input noise. However, when a task becomes increasingly complex, RNN attractor
topology becomes invariant to input noise. Together, our results suggest that RNN
dynamics are robust across learning rules but can be sensitive to the training task
design, especially for simpler tasks.

1 Introduction

Computational neuroscientists have increasingly used recurrent neural networks (RNNs) to model
cortical computation and gain insight into how the brain performs cognitive and motor tasks. Typically,
neuroscientists design RNNs to model a particular brain region during a behavioral task by generating
an artificial dataset that abstracts the task. RNNs are trained to perform this task and often exhibit
similar representations and low-dimensional dynamics to neural population recordings. This similarity
is used to argue that the RNN is a good model of the brain circuit’s computations and neural dynamics.
In this way, RNNs have been successfully used to study cognitive tasks, including decision-making
and working memory [1–7], as well as motor tasks [8–12]. Because RNN parameters are fully
observed, trained RNNs can be analyzed to propose new hypotheses for how these computations are
carried out in the brain [13].

One potential concern of this approach is that there are significant differences between RNNs and
biological circuits. Further, RNNs may exhibit different representations and dynamics as a result
of design choices, such as hyperparameters and architectures. Maheswaranathan, Williams, et al.
[14] investigated whether there were any universal properties across recurrent architectures and
activation functions. They found through a numerical study that RNNs tend to exhibit different
representations across architectures (RNN, GRU, LSTM, UGRNN) and activation function (relu, tanh)
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but exhibited universality in attractor topologies. These results encouragingly suggest that, although
RNN architecture and activation function may result in different representations, the dynamical
mechanisms of these networks appear to be conserved irrespective of these choices.

A similarly important aspect of RNN modeling is how networks are trained, which differ in nature
from biological neural circuits. Neural circuits are believed to employ Hebbian learning princi-
ples [15], and while it is possible that they may employ a backpropagation-like algorithm, typical
training approaches in RNNs are not necessarily biologically plausible [16, 17]. For example,
backpropagation-through-time assumes global knowledge of all the parameter weights in the network.
Computational neuroscience studies utilize a diverse range of learning algorithms, from stochastic
gradient descent with backpropagation-through-time [1–3, 5, 6, 9–11], Hebbian-inspired learning
[18], FORCE learning [19, 4, 20], and evolutionary learning through genetic algorithms [21]. Dif-
ferent learning rules result in different learning trajectories through parameter space, leading to the
possibility that RNN computation is learning rule dependent. If learning rule affects the learned
solution, then conclusions of computational neuroscience studies may depend on the experimenter-
chosen learning rule. We therefore sought to empirically study the similarities and differences in
RNN representations and dynamics across learning rules.

In particular, we study the topological structure of RNN attractor (or fixed point) states and the
representational geometry following training with different learning rules. We find that all learning
rules resulted in similar attractor topologies across different decision-making tasks. However, while
we find evidence that the attractor structure is invariant to the choice of learning rule, it is not invariant
to task hyperparameters. We found that task hyperparameters for the contextual integration task
from different studies resulted in RNNs with different attractor structure and dynamical mechanisms.
Interestingly, we also find that as we train RNNs on progressively more complex tasks, the attractor
topology remains invariant to the choice of learning rule even though representational geometries
become more individualistic. The results of our study therefore provide insights into what properties
of RNNs are likely conserved across design choices, which in turn supports the study of RNNs to
probe dynamics in biological neural circuits.

2 Methods

2.1 Model Architecture

We trained continuous time RNNs, which when discretized via Euler’s method, evolve as

xt+1 = (1− α)xt + α (Wrecf(xt) + Winut) (1)

where xt ∈ R50 is the pre-activation state, ut ∈ RM is the input to the RNN, f(·) is the activation
function, and α = ∆t/τ is the Euler time step, ∆t, divided by the network time constant, τ . When
α = 1, the continuous time RNN simplifies to a vanilla RNN. Unless noted otherwise, the activation
function is f(·) = 1 + tanh(·), and we define rt = f(xt). We shifted the tanh(·) by 1 so that its
output is always positive, as a non-negative activation is typically used for computational neuroscience
studies [2]. The RNN output yt is a linear readout of the hidden states,

yt = Woutf(xt). (2)

Wrec was initialized with weights drawn fromN (0, g
2

N ) where g = 1 is the network gain andN = 50
is the number of artificial neurons in the RNN. Win weights were initialized from N (0, 0.5). Wout

were initialized from N (0, 0.1). At the beginning of all trials, the initial hidden state x0 ∈ R50 was
drawn from N (0, 0.3). All networks were trained using the mean-squared error (MSE) loss. The
tasks and learning rules are described in the next sections. In total, we trained and analyzed 1,920
RNNs in this numerical study1.

2.2 Tasks

We used three tasks based on commonly studied perceptual decision making tasks from the neuro-
science literature [22, 1, 14, 18].

1Training was carried out in approximately 7 days on an RTX 2080. H and FF RNNs were trained using
CPUs both locally and on AWS
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Random dots motion (RDM): RNNs received a 1-dimensional Gaussian noise input [22]. For each
trial, we drew a random number µ ∼ U [−0.1857,+0.1857], which modeled the “coherence” of a
traditional RDM stimulus [23, 1]. At each timestep, t = 0, 1, . . . , 750 ms, the input to the network
was drawn from ut ∼ N (µ, 1). The RNN was constrained to output yt = 0 at t = 0 and yt = 1 (or
yt = −1) at t = 750 ms if µ was positive (negative). These input and output values were chosen to
be consistent with a previously implemented context-dependent integration task, described next [1].

Context-dependent integration (CDI): We implemented the CDI task in the same way as [1]. RNNs
received two static binary context inputs and two time-varying Gaussian noise inputs. For each trial,
one context input was 0 and the other was 1, providing a one-hot encoding of which Gaussian input
stream should be integrated to compute the output. For each trial, two Gaussian noise inputs where
both independently sampled fromN (µ1, 1) andN (µ2, 1) where µ1 and µ2 where both independently
sampled from U [−0.1857, 0.1857]. Samples were drawn at t = 0, 1, . . . , 750 ms. RNNs were trained
to output zero at t = 0 and ±1 at t = 750 ms depending on the sign of µ for the relevant input.

N-input context-dependent integration (N-CDI): We generalized the CDI task by considering N
noisy input streams and N static context inputs, which we call the N-CDI task. Only one of the N
static context inputs was 1, indicating which input should be integrated to compute the output. Each
noisy input stream was generated the same way as described for the CDI task. As in the CDI task, the
RNN was trained to output zero at t = 0, and ±1 at t = 750 ms depending on the sign of µ for the
relevant input. We trained networks from N = 2 to N = 6 contexts.

2.3 Learning Rules

We trained RNNs with four different learning rules: stochastic gradient descent with gradients
computed using backpropagation-through-time (BPTT), a genetic learning rule (GA) [21], a Hebbian
(H) learning algorithm [18], and the Full Force (FF) algorithm [20]. For all learning rules, training
was terminated when accuracy on a validation dataset of 2,000 trials exceeded 90%.

BPTT: Gradients were computed using backpropagation through time over the entire trial length.
After computing gradients, we updated parameters using the Adam optimizer with a mini-batch size
of 500 trials and a learning rate of 0.0005.

GA: Each iteration of the GA involves producing a more accurate generation of RNNs from the prior
generation. We started with an initial population of 50 RNNs with random initializations as described
in Section 2.1, termed generation zero. We then computed the loss of generation zero RNNs over 500
trials. The five RNNs with the lowest loss were then used to produce the next generation (generation
one). The next generation of RNNs was constructed by randomly choosing one of the five best RNNs
from the prior generation and applying a small amount of noise to all the weight matrices. The
noise was drawn from N (0, 0.005). This resulted in 50 new RNNs. The original 5 RNNs (without
perturbation) were also included in the next generation. This process was repeated until our validation
criterion was met. The final RNN was the RNN with the lowest MSE in the final generation.

H: We used the learning rule described in Miconi [18]. In brief, during training trials, all weights,
accumulated an eligibility potential. The weight wi,j , which is the (i, j) element of Wrec, had an
eligibility potential ei,j , given by,

ei,j(t) = ei,j(t− 1) +

[
rj(t− 1)× (xi(t)− x̄i)

]3
(3)

where rj is the activation of artificial unit j and xi is the pre-activation value of artificial unit i. x̄i
designated the average pre-activation value of artificial unit i across the trial. At the end of each trial,
the weights were updated according to the eligibilities and the discrepancy between the current trial
loss, R, and a running average of past losses for this trial type, R̄,

∇wi,j = ηei,j
(
R− R̄

)
(4)

for a learning rate, η = 0.01. This learning rule therefore alters synapses (weights) when the
activity of post-synaptic and pre-synaptic neurons are correlated during training, mimicking Hebbian
plasticity. In this learning rule, the RNN output is a readout of a single unit [18]. These Hebbian
networks used f(·) = tanh(·), since the shifted 1 + tanh(·) resulted in training difficulties.

FF: We used the learning rule proposed by DePasquale et al. [20]. In short, this learning rule uses
a recursive least squares algorithm to minimize the difference between the RNN’s output and the
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target output. Additionally, recurrent activations are constrained to match the activations of a second
randomly initialized RNN that receives both task inputs and outputs. These FF networks used
f(·) = tanh(·), since the shifted 1 + tanh(·) resulted in training difficulties.

2.4 Finding RNN attractor states

To study the dynamical mechanisms used by RNNs, we computed their attractor states. An attractor
state is an activity state x∗ ∈ R50 where xt+1 = xt. We therefore solved for attractor states by
optimizing over x∗ satisfying Equation 1

x∗ = (1− α)x∗ + α (Wrecf(x∗) + Winut) (5)

Because x∗ depends on the input ut to the RNN at time t, we set the input to be a static value when
solving for attractor states. We solved for these fixed points by using a numerical solver, based on the
Levenberg-Marquardt algorithm [24]. Due to numerical precision, we termed any states satisfying
‖xt+1 − xt‖ < ε to be an attractor, where ε = 10−8. In some analyses, we also computed slow
points along a line attractor, which corresponded to states with ε = 1. After finding fixed points, we
clustered them based on their topology, described further in Section 2.6.

2.5 SVCCA to assess similarity of RNN activity

We quantified how similar the representational geometry, that is, the activity of two different RNNs,
was to the same inputs using singular value canonical correlation analysis (SVCCA) as described
in Raghu et al. [25]. SVCCA was also used by Maheswaranathan, Williams, et al. [14] to quantify
differences and similarities in representational geometry between RNNs. To compute the SVCCA, we
provided multiple test inputs to the RNN. RNN activity was then projected onto its top K principal
components (PCs), with K chosen so that the PCs explained over 95% of the variance. Canonical
correlation analysis (CCA) was then performed on the projected activity to determine a correlation
between the PC-embedded activations of two RNNs. The SVCCA was the maximum correlation
between the two projected representations subject to a linear transformation.

2.6 Multi-dimensional scaling to visualize attractor topology and representational geometry

We compared an embedding of attractor topologies across RNNs in a similar manner as [14]. For
additional details, refer to the Appendix. To compare representational geometry across RNNs, we
computed a pairwise distance matrix between all RNNs using SVCCA. Each element of the distance
matrix was 1 minus the SVCCA correlation between pairwise RNNs. We used MDS to qualitatively
visualize how clustered this pairwise distance matrix was for different tasks. To quantify clustering,
we computed the Silhouette cluster score for the pairwise distance matrix using the learning rule as
the cluster label. All Silhouette cluster scores were computed on the high-dimensional data, not the
MDS projections. MDS projections were used solely for visualization purposes.

3 Results

We numerically investigated the impact that learning rule, task complexity, and input noise have
on RNN representations and dynamics during perceptual decision-making tasks. We make the
following contributions. First, we show that across four learning rules, RNNs adopt a similar attractor
topology regardless of the learning rule used. Second, we show that as task complexity increases, the
representational geometry of RNNs becomes more individualistic (unique) across different learning
algorithms while attractor topologies remain universal. Third, we show that task input noise, which
affects task difficulty, can result in different RNN integration dynamics. Fourth, we show evidence
that as tasks become more complex, task input noise has a smaller effect on RNN attractor topologies.
These results suggest that RNN attractor topologies, and therefore dynamical mechanisms, are similar
across learning rules and tasks despite differences in representations.

3.1 RNN attractor topologies are universal across learning rules

We trained RNNs to perform the RDM task and the CDI tasks using the previously described learning
rules. All RNNs successfully performed the tasks with greater than 90% accuracy following training
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Figure 1: Representation and attractor structure across learning rules. a) SVCCA distance
matrices for RDM (left) and CDI (right). There are 50 trained networks for each learning rule.
BPTT, GA, and FF exhibit similar SVCCA distances, but H is different. (b) SVCCA MDS clustering
shows that BPTT, GA, and FF networks are highly overlapping, while H representations are more
dispersed. Each dot corresponds to one RNN. c) Attractor calculation intuition. Different inputs to
the network (top) lead to different RNN equilibrium representations (bottom, which shows stable
activity along the first principal component). We show 5 different attractor states corresponding to
inputs: {−0.5,−0.2, 0, 0.2, 0.5}. d) Example attractors for the 5 different input levels for a single
RNN trained with all four learning rules for RDM (top) and CDI (bottom). Attractors are visualized
in the top two principal components. e). Clustering across RNNs trained for BPTT, GA, H, and FF
(50 networks each). Networks are highly clustered in attractor structure.

with any of the four learning rules. We assessed the similarity of RNN representations by computing
a pairwise distance matrix between all RNNs based on their SVCCA score, shown in Figure 1a.
We used MDS clustering to visualize RNNs based on similarity of neural representations, revealing
that network representations were largely overlapping following training with BPTT, GA, and FF
learning rules (Figure 1b). Interestingly, Hebbian RNNs exhibited less overlap with RNNs trained
with other learning rules, which may be because Hebbian RNNs use an arbitrary recurrent neuron as
the output [18]. We therefore performed these analyses after training non-Hebbian RNNs to use a
single neuron readout, and observed consistent results (Appendix Figure 11). Overall, this suggests
that representations in RNNs are similar across BPTT, GA, and FF for the RDM and CDI tasks.

We analyzed the attractor states of all trained RNNs to investigate their dynamical mechanisms and
whether they differed across learning rules. We solved for attractor states of each network under
five different probe input conditions: u = {0.5, 0.2, 0,−0.2,−0.5} (Figure 1c). We visualized these
attractor states in the principal components (PCs) of the activity, with example networks for each
learning rule shown in Figure 1d. In the RDM task, non-zero inputs resulted in a single attractor state.
We observed that at zero input, the network had multiple attractor states, which we elaborate on in
Section 3.3. In the CDI task, RNNs instantiated relatively similar attractor topologies, with a set of
input-based attractors for each context, previously shown in Mante et al. [1] and Maheswaranathan
et al. [14]. All RNNs also exhibited a line attractor of slow points, discussed further in Section 3.3.

Visualization in the PCs is limited, since these attractors are a property of the high-dimensional RNN
activity space. We therefore computed attractor structure similarity in the space of the RNN activity.
We clustered RNN attractors associated with static inputs near zero based on the topology of their
nearest neighbors and used MDS to visualize the resultant clusters (see Appendix and [14]). These
results are shown in Figure 1e. We found attractor topologies were indistinguishable across RNNs
trained with different learning rules. Silhouette cluster scores were close to zero across all learning
rules. Our results contribute to literature finding evidence that there is universality and invariance of
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Figure 2: Effect of task complexity on representational geometry and attractor topology. (a)
SVCCA distance matrices for N-CDI task varying N = 2 (left) to N = 6 (right) comparing BPTT
and GA networks. As the task became more complex, block structure was observed, indicating
larger distances between BPTT and GA representations. (b) Visualization of SVCCA MDS clusters
for N = 2 (left) to N = 6 (right). As N increases, BPTT and GA RNNs representations cluster.
(c) SVCCA cluster silhouette score increased as the number of contexts in N-CDI increased. (d)
Visualization of attractor MDS clusters. As N increases, BPTT and GA attractor structures remain
overlapping. (e) Attractor topology silhouette score did not show a trend with the number of contexts.

attractor structure across different RNN architectures and activation functions [14]. In particular, we
show that different learning rules exhibit universal attractor structure.

3.2 Increasing task complexity results in more individualistic representations, but not
dynamics

To assess the degree to which representations and attractor topologies varied with task complexity, we
performed the N-CDI task, varying the number of contexts and inputs in the task. We speculated that
increasing task complexity may affect neural representations following training with different learning
rules since more task-related information would need to be stored in the network. Concurrently,
increasing task complexity likely reduces the space of task solutions, constraining possible solutions.
We found that, as tasks became more complex, H and FF training did not meet the accuracy termination
criterion when N > 2, that is, these learning rules did not lead to high-performing networks. We
therefore report results comparing BPTT and GA.

BPTT and GA trained RNNs had larger MDS distances (Figure 2a) as the number of CDI contexts
increased from N = 2 to N = 6, indicating different representations. As a result, we observed
stronger SVCCA MDS clustering, shown in Figure 2b. We quantified this by measuring the Silhouette
scores of the BPTT and GA SVCCA clusters, finding they generally increased with increasing N , as
shown in Figure 2c. These results suggest that increasing task complexity leads to representations
that form distinctive clusters depending on the choice of learning rule. That is, RNN representa-
tions became more individualistic as task complexity increased since trained RNNs had distinct
(individual) representations instead of the universally shared representations. This is important to
consider, especially as computational neuroscience studies typically compare RNN representations
to neurophysiological representations. In contrast, we found that across all values of N , BPTT and
GA RNNs shared a universal attractor structure (Figure 2d,e). These results suggest that even as
representations become more individualistic for complex tasks, attractor topologies may remain
universal across learning rules.
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Figure 3: Effect of input noise on attractor structure. (a) Example RNN attractor structure at
different input noise variance. When the noise variance is sufficiently large, the RNN instantiates
multiple attractors for low inputs. (b) As the noise increases, there is more universality in attractor
structure across learning rules. (c) Attractor structure clustering decreases with increasing input noise.
(d-f) Same as (a-c) but for the CDI task.

3.3 Task input noise can alter RNN integration strategies

Because RNNs are used to propose candidate mechanisms for neural computation, it is appealing that
RNNs exhibit similar dynamics across different training approaches and task complexities, suggesting
robustness to particular hyperparameter settings, network architectures (as detailed in [14]) and
learning rule. However, this led us to ask: under what settings, if any, might a network exhibit distinct
dynamics? We reasoned that an important consideration is task input design, which is determined by
the experimenter. For example, in the CDI task, Mante et al. [1] chose the standard deviation of the
input noise to be 31.623

√
∆t, where ∆t is the time step of the Euler update for the RNN, resulting

in a noise variance of 1. But Miconi [18], also modeling the CDI task, set the noise to 0.5 and the
mean to 1 (instead of at most 0.1875), leading to a difference in task difficulty. However, the input
noise may dramatically affect the integration strategies: tasks with high input noise may employ
more robust integration strategies. We ultimately find that, depending on the input noise, RNNs may
employ different integration mechanisms, including for the CDI task [1].

We trained RNNs to perform the RDM and CDI tasks under varying input noise levels with the four
learning rules. As input noise increased, there was a greater multiplicity of attractors for small input
values (shaded attractor topologies in Figure 3a,d). Whereas low input noise levels instantiated one
attractor for each input, increasing levels of noise resulted in the emergence of multiple attractors
for small inputs. Attractors associated with small input values are of particular interest since they
correspond to the networks state in the absence of any meaningful input. Examples of these attractor
topologies are visualized in Figure 3a,d, where representative attractor topologies are shown for BPTT.
Interestingly, the topological structure of attractors was invariant across learning rules for the high
noise tasks. However, following training on the lower noise task variants, attractor topologies were
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Figure 4: Two different input strategies based on input noise. Panels (a-c) illustrate transient
integration, while (d-f) is for stable integration. (a) RNN output activation for positive (red) and
negative (blue) inputs. After inputs turn off, the RNN output slowly decays. (b) Attractor topology
for a transient RNN. Dots are attractors. Numbers next to them correspond to the setting of the
input, ut. There was a single attractor for ut = 0. There was also a line attractor of slow dynamics
under zero input, denoted by gray x’s. (c) When the inputs turn on, the RNN state is driven towards
attractors (blue, yellow dots). When the input turns off, the trajectories relax to a single attractor
corresponding to zero input. This decay is relatively slow along a line attractor of slow dynamics. (d)
RNN output activation for a RNN with stable integration. After the inputs turn off, the RNN output
maintains a stable value. (e) Attractor topology for stable RNN. Now, at an input of zero (purple),
there are two attractors. (f) After the dots turn off, the trajectory stably relaxes to one of the two
attractors corresponding to zero input, holding memory of the input stably.

not universal across learning rules (Figure 3b,c). The effects of input noise and task complexity on
attractor topologies is further discussed in Section 3.4. Together, these results suggest that task noise
affects attractor topology, and when the task is too easy (low noise), learning rules may converge to
different dynamical mechanisms.

We found that this bifurcation from single to multiple attractors results in two fundamentally different
modes of integration, which we term “transient” and “stable” integration for the single and multiple
attractor structures, respectively. We interrogated these dynamical mechanisms by providing a pulse
of input evidence to the RNN. In these experiments, the inputs to the network are turned off (set to
zero) midway through the trial (Figure 4a,d, “inputs off”). Single attractor networks employed a
transient integration mechanism, which is a form of leaky integration, causing the output to slowly
forget its integrated state (Figure 4a). When the input was pulsed on, the RNN state evolved to the
single attractor corresponding to the input level (Figure 4c, left). However, when the input was turned
off, the network instantiated a single attractor at the zero input level, which caused the network state
to slowly relax to an attractor corresponding to zero output (Figure 4c, right). The network, under
zero input, also, instantiated a line attractor with slow dynamics (Figure 4b,c), consistent with the
dynamics reported in Mante, Sussillo, et al. [1]. The network therefore decayed to the single attractor
at zero, albeit slowly along the line attractor. This corresponded to a slowly decaying output value,
reflecting leaky integration of the input.

In contrast, the multiple attractor networks employed a stable integration mechanism. In particular,
small inputs resulted in multiple fixed points, shown in Figure 4e. When turning off the input,
the RNN state converged to a nearby attractor that maintains a stable memory of the sign of the
pulsed input (Figure 4f). This enabled the RNN to stably and indefinitely output a non-zero value
(Figure 4d), corresponding to the sign of the prior integrated evidence, in contrast to the leaky
integration mechanism. In both mechanisms, there is a line attractor of slow dynamics that the RNN
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Figure 5: Input noise and task complexity. We show SVCCA and attractor topology clustering
for BPTT networks trained at input noise variances of 0.1, 0.5, and 1.0. (a, b) As task complexity
increases (more contexts), representations are highly overlapping. (c, d) Increasing task complexity
results in similar attractor topologies across different input noise variances.

relaxes along. However the key difference between these mechanisms is the presence of multiple
attractors at low inputs. The same analysis for the RDM task in Figure 4 is also shown for the CDI
task in the Appendix. Together, these results show that task design, in particular, input variance, can
have a stronger effect on the dynamical mechanism than learning rule.

3.4 Attractor topologies are robust to input noise as tasks become more complex

We previously found that, as tasks become more complex, networks trained with different learning
rules maintain similar attractor topologies. This may reflect that as tasks become more complex, this
constrains the space of potential solutions. Additionally, we found that RNNs trained at different
levels of input noise instantiated different attractor topologies and therefore dynamical mechanisms.
We therefore investigated the effect of input noise on attractor topology in the setting of increasingly
complex tasks.

We trained BPTT networks at three different noise levels: variances of 0.1, 0.5, and 1.0. For the RDM
task, RNNs trained at different levels of input noise instantiated distinct attractor topologies. For the
2-CDI task, however, attractor topologies were less strongly clustered by input noise and appeared
more universal. We subsequently trained the N-CDI task for these three input noise levels up to
N = 6. We found that as N increased beyond 3, attractor topologies were indistinguishable across
all three noise levels. Figure 5 depicts attractor topologies following training at different levels of
input noise for all tasks. These results suggest that although input noise may affect RNN dynamics,
these effects on attractor topology diminish for sufficiently complex tasks.

4 Discussion

We studied the effects of learning rule, input noise, and task complexity on RNN dynamics. We found
that an RNN’s attractor topologies are invariant to the choice of learning rule across different decision-
making tasks. We also observed this conclusion in a simple working memory task (Appendix). We
found the amount of noise present in the task during training can change an RNN’s dynamics when
the task is sufficiently simple. These results suggest that when a task is simple, hyperparameters may
affect RNN dynamics. Consistent with these results, we also found that activation function affects
attractor topology for RDM, but not the more complex CDI task (see Appendix).

We characterized two distinct dynamical mechanisms used for integrating the inputs to an RNN: a
transient and stable integration mechanism. In the case of high input noise, we find a dynamical
mechanism consistent with that reported by [1] following training in the CDI task. Alternatively,
training with low input noise led to a mechanism with transient integration. While the topological
structure of attractors did not vary, the representational geometry of RNNs was different following
training with different learning rules on more complex N-CDI tasks. Our findings here are consistent
with those by Maheswaranathan, Williams, et al. [14] that dynamics and computational scaffold are
invariant over various RNN design choices while representational geometries are not.

These results contribute to laying a foundation for interpretability in using RNNs to study computa-
tional neuroscience. We focused here on traditional RNNs on relatively simple neuroscience tasks to
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better understand the effect of learning rules on attractor topologies and representational geometries.
Our main contribution is showing that dynamical mechanism, as assessed through attractor structure,
remains conserved across different learning rules and task designs for sufficiently complex tasks,
even if representational geometry is not. This is an important finding since many existing computa-
tional neuroscience studies directly compare representations from artificial neural networks to neural
recordings. While our results suggest that for tasks as complex as N-CDI, we observe universality
in attractor topology, future work should extend these results to more complex tasks. More broadly,
having a framework that allows better understanding of the validity of neurobiological inferences
from modern neural networks during realistic tasks is important for building a foundation for RNN
use in neuroscience studies.
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