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Abstract
Prompt tuning adapts Vision-Language Mod-
els like CLIP to open-world tasks with mini-
mal training costs. In this direction, one typi-
cal paradigm evaluates model performance sepa-
rately on known classes (i.e., base domain) and
unseen classes (i.e., new domain). However, real-
world scenarios require models to handle inputs
without prior domain knowledge. This practical
challenge has spurred the development of open-
world prompt tuning, which demands a unified
evaluation of two stages: 1) detecting whether
an input belongs to the base or new domain (P1),
and 2) classifying the sample into its correct class
(P2). What’s more, as domain distributions are
generally unknown, a proper metric should be in-
sensitive to varying base/new sample ratios (P3).
However, we find that current metrics, including
HM, overall accuracy, and AUROC, fail to satisfy
these three properties simultaneously. To bridge
this gap, we propose OpenworldAUC, a unified
metric that jointly assesses detection and classi-
fication through pairwise instance comparisons.
To optimize OpenworldAUC effectively, we in-
troduce Gated Mixture-of-Prompts (GMoP),
which employs domain-specific prompts and a
gating mechanism to dynamically balance de-
tection and classification. Theoretical guaran-
tees ensure generalization of GMoP under prac-
tical conditions. Experiments on 15 bench-
marks in open-world scenarios show GMoP
achieves SOTA performance on OpenworldAUC
and other metrics. We release the code at
https://github.com/huacong/OpenworldAUC
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Table 1. An overview of the existing metrics for OPT. ✓–means
OverallAcc evaluates detection implicitly.

Metrics
(P1)First-stage

detection
(P2)Second-stage

classification
(P3)Domain distribution

insensitivity
HM ✗ ✓ ✓

OverallAcc ✓– ✓ ✗
AUROC ✓ ✗ ✓

OpenworldAUC ✓ ✓ ✓

1. Introduction
Recent powerful Vision-Language Foundation Models
(VLMs), such as CLIP (Radford et al., 2021), use natu-
ral language to align visual concepts, enabling them to
infer new samples. To better utilize such abilities with min-
imal computational cost, Prompt Tuning (PT) has gained
significant attention (Lester et al., 2021; Zhou et al., 2022b).
PT allows the model to adapt to open-world scenarios with
only a small set of learnable parameters for textual or visual
prompts.

In this direction, a common setting is base-to-new (Zhou
et al., 2022b; Yao et al., 2024; Zhou et al., 2022a; Khat-
tak et al., 2023b; Zhang et al., 2024), where the model is
trained on a set of known classes (i.e., base domain) and
evaluated separately on the base domain and the unseen
classes (i.e., new domain). This task implicitly assumes that
the input samples are pre-labeled as belonging to either the
base or new domain. However, this assumption may not
hold in practice. To address this limitation, (Zhou et al.,
2024) adopt a divide-and-conquer strategy, inducing a more
practical setting named Open-world Prompt Tuning (OPT).
In this setting, the pipeline has two stages: the first stage
performs base-to-new detection to determine whether an
input belongs to the base or new domain, and the second
stage classifies the sample into its correct class.

In this complicated setting, how to evaluate model perfor-
mance becomes challenging. We argue that an appropriate
metric should comprehensively evaluate (P1) first-stage de-
tection, (P2) second-stage classification, and also (P3) be
insensitive to the domain distribution, i.e. the base/new ratio.
Unfortunately, as summarized in Tab. 1, existing metrics do
not satisfy the aforementioned properties simultaneously,
making them inconsistent with the actual model perfor-
mance. Concretely, the harmonic mean (HM) of BaseAcc
and NewAcc, a common metric for the base-to-new task,
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Figure 1. OpenworldAUC and its optimization framework. a) We first perform pseudo partition on the training dataset to simulate new
domain. b) Based on this partition, we calculate the AUROC-like ranking loss to optimize the detector. c) Then, to optimize base-domain
classifier, the CE loss is calculated on the original training set. Herein, a gating mechanism selects the correctly-classified samples to
calculate the aforementioned ranking loss. c) For new domain classifier, we adopt a fixed hand-crafted prompt to avoid the overfitting on
the base domain. d) Overall, each prompt fulfills its specific responsibility to jointly maximize the OpenworldAUC metric.

only evaluates second-stage performance but ignores de-
tection performance (P1). The empirical results in (Zhou
et al., 2024) and our theoretical analysis in Sec.3.1 both il-
lustrate that models with the same HM can have a significant
performance gap in the OPT setting. To alleviate this issue,
(Zhou et al., 2024) turn to calculate the accuracy defined
on the entire class space, i.e., the mixture of base and new
classes, denoted by OverallAcc. Compared with HM, this
metric can assess detection to some extent by penalizing
misaligned OOD/ID scores between domains. However, as
shown in Sec.3.2, we find that OverallAcc is highly sensi-
tive to the domain distribution, violating (P3). To fix this
issue, one naive option is AUROC (Fawcett, 2006; Yang &
Ying, 2023; Bao et al., 2025), a popular metric for OOD
detection (Hendrycks & Gimpel, 2017) due to its insensi-
tivity to label distribution. However, AUROC ignores the
classification performance, overlooking (P2). Hence, a
natural question arises: Can we find a single metric that
simultaneously satisfies three properties?

To answer this question, in Sec.4, we establish a novel
metric named OpenworldAUC, which evaluates base-to-new
detection, base classification, and new classification in a
unified manner. Specifically, this measure has a pairwise
formulation, where each pair consists of a base instance and
a new instance. For each pair, OpenworldAUC measures
the joint probability that 1) the new instance has a higher
OOD score than the base instance (P1), and 2) the two
instances are correctly classified in their respective domains
(P2). This ranking-based approach can naturally evaluate
model performance under any domain distribution (P3).
Further analysis theoretically shows that OpenworldAUC
overcomes the limitations of the aforementioned metrics.

In view of this, we design a learning framework to maxi-
mize OpenworldAUC effectively in Sec.5.1. To achieve this

goal, the key challenge is that a single prompt is insuffi-
cient to balance all three components in the OpenworldAUC
objective since each component involves different inputs
and sub-objectives. To address this issue, we propose a
novel Gated Mixture-of-Prompts (GMoP) approach. On the
one hand, each prompt targets a specific component. On
the other hand, the gating mechanism selects the correctly-
classified instances to optimize the detection performance
via an AUROC-like ranking loss. In this way, we achieve a
divide-and-conquer optimization, which is exactly consis-
tent with the OPT pipeline. Besides, we adopt the pseudo
base-to-new partitions of the training set as proposed in
(Zhou et al., 2024) to calculate the ranking loss.

Last but not least, in Sec.5.2, we explore the generalization
guarantee for our proposed learning framework, which, to
the best of our knowledge, is rarely discussed in the PT
community. Our theoretical results suggest that a training set
with a moderate volume and a proper partition number can
guarantee a satisfactory generalization performance. Finally,
in Sec.6, extensive empirical results on fifteen benchmarks
in the open-world scenario demonstrate that our proposed
method outperforms the state-of-the-art methods on both
OpenworldAUC and other metrics.

Overall, the contributions of this paper are as follows:

• Novel metric. A novel metric named OpenworldAUC
is proposed for the OPT task, which embraces base-to-
new detection, base classification, and new classifica-
tion in a unified way and is also insensitive towards
varying domain distributions.

• Learning framework. A learning framework named
GMoP is proposed with theoretical guarantee, where
multiple prompts jointly optimize OpenworldAUC via
a divide-and-conquer strategy.
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• Empirical studies. Comprehensive empirical results
on fifteen benchmarks in the open-world scenario
speak to the efficacy of our proposed method on both
OpenworldAUC and other metrics.

2. Problem Formulation
This paper focuses on prompt tuning for open-world clas-
sification. Let x ∈ X be the input sample and y ∈ Y :=
Yb ∪ Yn be the corresponding label, where X is the input
space; Yb and Yn are the label spaces of base classes and
new classes, respectively. In open-world learning, the model
is first trained on the base domain Db := X × Yb and fur-
ther evaluated on the overall domain D := Db ∪ Dn, where
Dn := X × Yn denotes the new domain.

To achieve this goal, Open-world Prompt Tuning (OPT)
(Zhou et al., 2024) fine-tunes the prompt of a foundation
model, such as CLIP (Radford et al., 2021), on the base
dataset Sb = {(x(i)

b , y
(i)
b )}Nb

i=1 sampled from Db. Specif-
ically, let fv be the visual feature of the input image x
obtained by the frozen image encoder. For text representa-
tion, class i is first embedded through a prompt template
P ([CLASSi];θ) parameterized by the leanable token θ.
Then, the text feature fti is obtained by feeding the i-th
class prompt into the frozen text encoder. Finally, the poste-
rior probability P(y = i|x) is assumed be proportional to
the cosine similarity between fti and fv .

During testing, OPT adopts a divide-and-conquer strategy
by introducing an additional evaluation of detection, com-
pared with the common PT task (Zhou et al., 2022b). In a
nutshell, this task involves two stages: base-to-new detec-
tion and domain-specific classification. In the first stage,
a base-to-new detector r : X → [0, 1] identifies whether
the input sample belongs to the base or the new domain
according to a threshold t, where a larger r(x) indicates
a higher probability of the sample belonging to the base
domain. In other words, this stage actually performs OOD
detection with an OOD score defined by 1− r(x). In the
second stage, x is further sent to its corresponding classifier,
denoted by g and h for the base and new domain.

3. Existing Metrics and Their Limitations
In this section, we discuss the limitations of the existing
metrics, including HM, OverallAcc and AUROC from three
key perspectives: comprehensively evaluating first-stage
detection (P1), second-stage classification (P2), and being
insensitive towards domain distribution (P3).

3.1. Harmonic Mean

HM is a popular metric in prompt tuning for the base-to-
new task (Xian et al., 2017; Zhou et al., 2022b;a; Yao et al.,

2024). Let BaseAcc and NewAcc represent the classifica-
tion accuracy defined on the base domain Db and the new
domainDn, respectively. Suppose sb ∈ RCb and sn ∈ RCn

are the logit scores of the base and new domain produced
by g and h, where Cb and Cn are the numbers of classes in
each domain. Then, BaseAcc and NewAcc are defined as
follows:

BaseAcc :=
1

Nb

∑
(xb,yb)∈Sb

1[yb = arg max
y′∈Yb

sb],

NewAcc :=
1

Nn

∑
(xn,yn)∈Sn

1[yn = arg max
y′∈Yn

sn],

where Nb and Nn are the number of samples in Sb and Sn,
respectively and 1[·] is the indicator function. Then, HM is
defined by the harmonic mean of BaseAcc and NewAcc:

HM :=
2× BaseAcc× NewAcc

BaseAcc+ NewAcc
.

From this formulation, one can easily find that HM only
evaluates the domain-specific classification performance
in OPT. This limitation becomes evident in the following
proposition, whose proof can be found in App.A.1.

Proposition 3.1. Given a dataset S sampled from the
overall domain D, for any (g, h), one can always find a
worse-performing (g̃, h̃) in OPT that satisfies HM(g, h) =
HM(g̃, h̃).

Remark. The proof follows this intuition: consider one
base sample xb and suppose that (g, h) predicts it correctly
while satisfying maxy′∈Yb

sb −maxy′∈Yn
sn > 0. We can

construct (g̃, h̃) such that g̃ remains correct on xb but satis-
fies maxy′∈Yb

s̃b −maxy′∈Yn
s̃n < 0. In this case, (g, h)

and (g̃, h̃) share the same HM score, yet (g̃, h̃) misidenti-
fies more base sample as new than (g, h) in OPT, thereby
matching the empirical observations in (Zhou et al., 2024).

From Prop.3.1, we can conclude that HM ignores the detec-
tion performance (P1) and thus is not a proper choice for
the OPT task.

3.2. Overall Accuracy

To alleviate this issue of ignoring (P1), the recent study
DeCoOp (Zhou et al., 2024) turns to evaluate the accuracy
performance directly defined on the overall domain, denoted
by OverallAcc. This metric is defined as:

OverallAcc :=
1

N

∑
(x,y)∈S

1[y = argmax
y′∈Y

sb||sn],

where N is the number of samples in S and || denotes the
concatenation operation.

3



OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning

(a) DTD (b) Flowers102

Figure 2. The sensitive analysis of existing metric w.r.t. new/base
ratio. OverallAcc is sensitive to the domain distribution, while
other metrics remains stable with varying ratios of new samples.

Compared with HM, OverallAcc considers detection to
some extent. To be concrete, the prediction could be re-
garded as correct only if the input has been identified in
the correct domain. In other words, there exists an implicit
detector r(x) ∝ maxy′∈Yb

sb − maxy′∈Yn
sn. However,

this metric becomes sensitive to the domain distribution,
violating (P3). To illustrate this issue, we can rewrite the
definition of OverallAcc as follows:

OverallAcc = Pb · TPRb + Pn · TPRn,

where TPRb and TPRn are True Positive Rate of base and
new domain, respectively, and Pb = Nb/N and Pn =
Nn/N . From this formulation, one can find that OverallAcc
can be dominated by the performance in the domain with
more samples. As shown in Fig.2, OverallAcc increases
significantly as the number of base domain samples grows,
while the other metrics remain stable. Since the domain
distribution is generally unknown, a distribution-sensitive
metric is improper for OPT.

3.3. AUROC

Another potential choice to evaluate the detection perfor-
mance is AUROC (Fawcett, 2006), which is a popular metric
for OOD detection (Hendrycks & Gimpel, 2017). To adapt
this metric to the OPT task, we should consider the base-to-
new detection as a binary classification problem. Specifi-
cally, we first assign all base/new classes to one base/new
super-class, respectively. Then, AUROC can be defined as
the area under the curve of the True Positive Rate (TPRns)
and the False Positive Rate (FPRns) of the new super-class,
with a pairwise reformulation:

AUROC :=

∫ t=1

t=0

TPRns(t) · d FPRns(t)

= ED [1[r(xb) > r(xn)]] .

Benefiting from the pairwise ranking formulation, AUROC
measures detection performance under any domain distri-
bution (Yang & Ying, 2023). As shown in Fig.2, AUROC
is insensitive towards the base/new ratios. However, it is

clear that AUROC ignores the classification performance
in the second stage, overlooking (P2).

4. OpenworldAUC: A Novel OPT Metric
In this section, we first explore a naive solution by aggre-
gating multiple metrics. Then, we develop a single met-
ric named OpenworldAUC that can satisfy the aforemen-
tioned three properties simultaneously.

4.1. A Naive Multiple Metrics Aggregation

Since HM and AUROC are complementary and both insen-
sitive to domain distributions, one potential solution is to
aggregate them via linear combination. However, the fol-
lowing proposition shows that this naive solution can induce
another issue, with proof in App.A.2.

Proposition 4.1. Given a dataset S sampled from the over-
all domain D, for any (r, g, h) under mild assumption
AUROC(r) < 1, one can always find (r̃, g̃, h̃) performs
worse in OPT that satisfies:

Lin(AUROC(r),BaseAcc(g),NewAcc(h))

= Lin(AUROC(r̃),BaseAcc(g̃),NewAcc(h̃))

where Lin(·) denotes the linear combination function.

Remark. The proof comes from the following intuition:
given two base samples x1

b and x2
b , suppose that r and g are

both wrong on x1
b but both correct on x2

b . We can construct
(r̃, g̃) such that r̃ misidentifies x1

b but g̃ makes a correct
prediction on x1

b , and vice versa for x2
b . In this case, the

linear combination remains the same, but (r̃, g̃) performs
inferior to (r, g) since more samples are misclassified.

4.2. OpenworldAUC

To tailor this problem, we have to seek a single measure,
in which the prediction is regarded to be correct only
when the model performs well in both stages. Following
this idea, we first define the Miss Rate of the base class
(MissRateb) and the Hit Rate of the new class (HitRaten)
in this pipeline:

MissRateb :=EDb
[1[r(xb) ≤ t] + 1[r(xb) > t, yb ̸= g(xb)]]

HitRaten :=EDn [1[r(xn) ≤ t, yn = h(xn)]]

However, the two rates rely on the threshold t, which is
hard to decide without prior knowledge of the new do-
main. Inspired by AUROC, we calculate the area under the
MissRateb-HitRaten curve, denoted as OpenworldAUC:

OpenworldAUC :=

∫ t=1

t=0

HitRaten(t) · dMissRateb(t)
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At first glance, the integral formulation is hard to compute.
Fortunately, the following proposition can alleviate this is-
sue, with proof in App.A.3.
Proposition 4.2. Given a pair (xb, yb) and (xn, yn) sam-
pled from D, OpenworldAUC equals to the joint possibility
that 1) r ranks xb higher than xn, and 2) g and h make
correct predictions on xb and xn, respectively.

ED

[
1[yb = g(xb)]︸ ︷︷ ︸

Base (P2)

·1[r(xb) > r(xn)]︸ ︷︷ ︸
Base-to-New (P1)

·1[yn = h(xn)]︸ ︷︷ ︸
New (P2)

]
Benefiting from this concise formulation, one can easily
find that OpenworldAUC satisfies (P1) and (P2). Further-
more, as shown in Fig.2, OpenworldAUC is insensitive to
the domain distribution due to the ranking formulation, ful-
filling (P3). To further highlight its advantages over existing
metrics, we provide the following proposition, with proof
in App.A.4.
Proposition 4.3. For any (r, g, h), we have:

• Assume that OpenworldAUC equals u, a lower bound
proportional to u is available for HitRaten for any
domain distributions.

• Constructing (r̃, g̃, h̃) as outlined in Prop.4.1 yields
OpenworldAUC(r̃, g̃, h̃) < OpenworldAUC(r, g, h).

These properties show that: 1) Compared with OverallAcc,
optimizing OpenworldAUC can guarantee the model perfor-
mance on the new domain under arbitrary base/new ratio.
2) OpenworldAUC is more consistent with the model perfor-
mance than the naive aggregation of multiple metrics. These
advantages encourage us to design an effective method to
optimize OpenworldAUC in the next section.

5. The Optimization of OpenworldAUC
Next, we explore how to optimize OpenworldAUC effec-
tively, whose overall pipeline is shown in Fig.1.

5.1. Gated Mixture-of-Prompts for OpenworldAUC
Optimization

We start by reformulating OpenworldAUC maximization
to an equivalent minimization problem via the following
proposition, with proof provided in App.A.5.
Proposition 5.1. Maximizing the OpenworldAUC metric
can be achieved by solving the following problem:

min
r,g,h

ED [1[yb ̸= g(xb)] + 1[yn ̸= h(xn)]

+ 1[yb = g(xb)] · 1[r(xb) ≤ r(xn)] · 1[yn = h(xn)]]

Since the distribution D is unknown, we resort to minimiz-
ing the empirical risk to tune the prompt P (·;θ), which is

parameterized by learnable tokens θ:

min
θ

ÊSb
[1[yb ̸= g(xb;θ)]] + ÊSn

[1[yn ̸= h(xn;θ)]]

+ ÊS [vb · ℓ0,1(r(xb;θ)− r(xn;θ)) · vn]

where vb := 1[yb = g(xb;θ)] and vn := 1[yn =
h(xn;θ)]; ℓ0,1 denotes the 0-1 loss. From this formula-
tion, we identify two key challenges: (C1) Training a sin-
gle prompt to balance the three components is inherently
conflicting, as each component requires distinct inputs and
targets on different sub-objectives. This can lead to mutual
interference during optimization. (C2) New class samples
are unavailable during training. Next, we elaborate on how
to address these challenges.

Gated Mixture-of-Prompts. To address (C1), we pro-
pose a novel Mixture-of-Prompts approach with three spe-
cialized prompts P (·;θr), P (·;θg), P (·;θh) targeting for
r, g, h, respectively. Among these, optimizing θr is more
challenging because the third term in the objective involves
a non-differentiable sample-selection operation vb, vn. To
tackle this issue, we use smooth and differentiable functions
φb := σ(syb (xb;θg)) and φn := σ(syn(xn;θh)) to approxi-
mate the selection process, where σ(·) denotes the sigmoid
function; syb and syn are the ground-truth channels of sb
and sn, respectively. Here, the sigmoid function acts as a
gate since correctly classified samples tend to have higher
confidence scores in the ground-truth channel. This gate
adaptively assigns the weights to each base-new pair based
on the outputs of g, h to optimize r, encouraging correctly
classified samples to be ranked correctly. Following this ap-
proach, θg,θh,θr are merged through the gate mechanism
into a mixture θmix:

ℓ(xb,xn;θmix) = φb · ℓsq(r(xb;θr)− r(xn;θr)) · φn

where θmix = (θr,θg,θh) represents all learnable tokens.
Besides, following the surrogate loss framework (Gao &
Zhou, 2015; Liu et al., 2020; Yang et al., 2022; 2023; Bao
et al., 2022), we replace the non-differentiable 0-1 loss
with a convex upper bound ℓ(t), such as ℓsq(t) = (1− t)2

for scores in [0, 1]. This smooth approximation enables
gradient-based optimization while preserving ranking se-
mantics. Hence, our goal is then to solve the following
problem:

(OP0)min
θmix

R̂(r, g, h) = ÊSb
[ℓce(sb(xb;θg), yb)]

+ ÊSn
[ℓce(sn(xn;θh), yn)] + ÊS [ℓ(xb,xn;θmix)]

where we use the CE loss ℓce for (g, h) and replace the non-
differentiable ℓ0,1 with the squared loss ℓsq(t) = (1− t)2.

Pseudo Base-to-New Partition. To handle (C2), we fol-
low the prior arts (Zhou et al., 2024) to perform pseudo
base-to-new partition Ŷ = (Ŷb, Ŷn) over the known class

5



OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning

Yb. Specifically, Ŷb and Ŷn are pseudo base and new do-
main which satisfy Ŷb ∪ Ŷn = Yb and Ŷb ∩ Ŷn = ∅. To
reduce the partition bias, we estimate the expectation of
the partition distribution by generating K pseudo partitions
Ŷ(k), k ∈ [1,K], satisfying

⋃K
k=1 Ŷ

(k)
b = Yb. Accordingly,

we assign each partition with a sub-detector r(k)(·;θr,k) to
avoid conflicts. During testing, the highest score across all
sub-detectors will be used as the final score r(x;θr).

Zero-shot New Domain Classifier. Last but not least, we
observe that training a new domain classifier on the base
domain can lead to overfitting, reducing new class perfor-
mance (Zhou et al., 2022b). To balance accuracy and effi-
ciency, we use a zero-shot CLIP model with a fixed hand-
crafted prompt θ∗

h for the new domain classifier h.

Overall, we have the following final objective, where Ŝ(k)
denotes the dataset partition defined onX×Ŷ(k) and θ′

mix =
(θr,1, · · · ,θr,k,θg,θ∗

h)

(OPfin)min
θ′
mix

R̂′(r, g, h) = ÊSb
[ℓce(sb(xb;θg), yb)]

+
1

K
· ÊŜ(k) [ℓ(xb,xn;θ

′
mix)]

5.2. Generalization Bound

In this part, we explore how well the proposed method
can generalize to test data theoretically. Specifically, let
R(r, g, h) be the population risk of R̂(r, g, h) in (OP0).
Our task is to bound the difference betweenR(r, g, h) and
R̂′(r, g, h). To this end, we present the following informal
theorem, whose detailed proof is presented in App.B.
Theorem 5.2. Let E and E ′ be the distributions over the
expectation of Y and Ŷ , respectively. Given the function
space ofHr andHg, the following inequality holds for all
r ∈ Hr, sb ∈ Hg with high probability:

R(r, g, h) ≲ R̂′(r, g, h)︸ ︷︷ ︸
(1)

+EDn
[ℓce(sn(xn), yn)]︸ ︷︷ ︸

(2)

+ C ·O(K−1/2 +N
−1/2
b ) +

||E − E ′||∞
(Cb + Cn)!︸ ︷︷ ︸

(3)

,

where C denotes the complexity of the hypothesis space;
≲ denotes the asymptotic notation that omits undominated
terms.

Theoretical insights. The bound in Thm.5.2 consists of
the following terms: (1) Empirical Error: The empirical
loss on the training set, optimized in (OPfin). (2) Error for
New Classes: The expected error of zero-shot classifier h
in the new domain, which can be reduced with carefully-
designed prompts or more powerful foundation models. (3)
Stochastic Error including three parts: First, the data esti-
mation error from approximating the training distribution D

(a) SUN397 (b) Flowers102

Figure 3. The MissRaten-HitRateb curve on SUN397 and Flow-
ers102. Our method can outperform other competitors on the
meaningful region with lower MissRateb and higher HitRaten.

with the empirical average from S , which can be minimized
with a moderate Nb due to the small parameter space of the
prompt. Second, the error from finite pseudo base-to-new
partitions during detector optimization, which is reduced by
increasing partition number K. Third, the error from a po-
tential shift from the pseudo new domain to the underlying
real new domain.

6. Experiments
In this section, we describe details of the experiments and
present our results. Due to space limitations, please refer to
App.C and App.D for more results about experiments.

6.1. Experimental Setup

Task and Dataset Description. We evaluate three open-
world tasks: open-world recognition, open-world do-
main generalization and cross-dataset generalization. For
recognition, models are trained on base classes and tested on
the mixture of base and new classes within each dataset, with
test sets resampled at varying base/new ratios to study im-
balance. To examine domain-level imbalance, we resample
the test sets with varying base/new ratios, which is different
from class-level imbalance in long-tail settings (Wang et al.,
2024; Zhao et al., 2024a;b; Wang et al., 2023). For domain
generalization, models are trained on base classes of Ima-
geNet and are tested on the full classes of ImageNet variants
with domain shifts. For the practical cross-dataset setting,
the prompts are tunned on the base domain in ImageNet
dataset and tested on other full datasets. Experiments use 11
image recognition benchmarks, 4 ImageNet variants, and
10 domain-imbalanced datasets (1:5 ratio) built via random
sampling. Details are provided in App.C.2.

Competitors. To demonstrate the effectiveness of our pro-
posed method, we compare our method with 10 competi-
tive SOTA competitors: a) Baseline, Zero-shot CLIP (Rad-
ford et al., 2021); b) HM-oriented methods, including
CoOp (Zhou et al., 2022b), Maple (Khattak et al., 2023a),
KgCoOp (Yao et al., 2023), PromptSRC (Khattak et al.,
2023b), DePT-Kg (Zhang et al., 2024) and TCP (Yao
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Table 2. The OpenworldAUC empirical results on eleven benchmark for open world prompt tuning recognition.
Method IN C101 Pets Cars F102 Food AC SUN DTD ES UCF Avg.

CLIP 47.31 82.31 76.17 43.43 48.51 75.09 7.23 42.52 25.22 28.01 50.37 47.83
CoOp 48.93 83.29 80.71 35.38 59.65 67.27 5.60 48.03 25.48 41.96 43.95 47.59
Maple 51.89 87.15 85.59 49.99 65.44 76.83 9.58 52.84 36.22 56.55 58.72 57.35

PromptSRC 52.44 86.74 86.10 50.90 69.36 77.33 11.40 54.19 40.30 52.56 58.94 58.21
LoCoOp 45.12 86.59 86.62 46.52 61.17 73.09 8.67 50.55 32.26 41.35 46.90 52.62
KgCoOp 51.45 86.63 86.80 49.40 62.96 76.96 8.18 52.09 34.87 39.16 57.29 55.07
DePT-Kg 51.35 92.74 87.81 55.24 69.46 79.45 12.71 56.42 37.56 44.90 61.38 59.00

Gallop 49.01 87.51 86.94 50.69 65.69 73.60 11.38 50.62 40.22 51.38 58.91 56.90
DeCoOp 51.98 92.72 88.72 53.59 70.28 80.67 8.17 57.00 37.07 46.66 59.57 58.77

TCP 51.34 88.65 85.50 53.18 69.20 77.27 10.72 54.86 37.92 55.89 63.39 58.90

Ours 52.64 92.81 89.77 55.31 72.79 81.25 11.42 58.54 40.37 53.09 62.39 60.94

Table 3. The OpenworldAUC empirical results on ten imbalance benchmark with different domain distributions. Fwd means base domain
number is 5× larger than new domain, and Bwd means the opposite.

Method
DTD Food101 Flowers102 OxfordPets SUN397

Avg.
Fwd Bwd Fwd Bwd Fwd Bwd Fwd Bwd Fwd Bwd

CLIP 25.71 25.74 76.11 75.76 48.97 45.37 82.82 80.30 42.39 42.68 54.59
CoOp 24.98 25.35 67.22 67.14 52.64 51.03 77.53 77.41 48.25 48.16 53.97

MaPLe 33.86 34.15 76.85 76.85 65.98 64.95 85.67 85.88 53.36 52.94 63.05
PromptSRC 40.51 39.40 77.51 77.25 70.08 69.44 85.47 86.10 54.43 54.16 65.44

LoCoOp 32.34 31.62 73.23 72.96 61.25 60.67 86.29 86.32 51.09 50.68 60.65
KgCoOp 34.75 34.95 77.03 76.80 63.28 62.05 86.74 87.01 52.47 52.05 62.71
DePT-Kg 37.32 37.06 79.71 79.28 69.24 69.41 87.52 87.85 56.76 56.45 66.06

Gallop 41.25 40.91 73.61 73.88 66.22 65.86 86.65 86.30 51.14 50.89 63.67
DeCoOp 36.74 36.61 80.65 81.11 70.09 69.89 89.76 89.10 57.37 57.37 66.87

TCP 38.18 37.75 77.42 77.18 70.08 69.34 85.63 85.58 55.09 55.04 65.13

Ours 41.13 40.97 81.65 81.09 73.50 73.10 90.36 89.79 58.59 58.26 68.84

et al., 2024); c) OOD-oriented methods, including Lo-
CoOp (Miyai et al., 2023) and Gallop (Lafon et al., 2024);
d) OverallAcc-oriented algorithms, DeCoOp (Zhou et al.,
2024). Detailed descriptions of each competitor are pro-
vided in App.C.3

Implementation details. We adopt 16-shot prompt tuning
setting following previous studies (Zhou et al., 2022b; Yao
et al., 2024; Khattak et al., 2023b). To ensure fairness, we
reimplement all competitor models on our device using their
open-source code. Results are reported as the average over
5 runs with different random seeds 1, 2, 3, 4, 5. The default
backbone used is the publicly available ViT-B/16 of CLIP.
For all competitors except DeCoOp, we use the maximum
probability among the base domain as the base-to-new de-
tection score r. The computation of the OpenworldAUC
metric and the implementation of the corresponding AUC
loss functions are based on the open-source library open-
source library XCurve. More implementation details are
deferred in the App.C.4 and App.D.3.

6.2. Performance Comparison

Openworld Recognition. Tab. 2, Tab. 8, Tab. 9 com-
pare the overall performance across eleven benchmarks

Table 4. The OpenworldAUC empirical results on ImageNet vari-
ants benchmark for open world domain generalization task.

Method
Source Target

ImageNet V2 S R A

CLIP 47.31 39.49 22.57 57.04 23.83
CoOp 48.93 39.88 21.69 56.58 24.22
Maple 51.89 42.44 23.79 59.71 25.10

PromptSRC 52.44 42.55 24.50 60.65 25.08
LoCoOp 45.12 38.45 20.88 57.31 22.98
KgCoOp 51.45 42.14 24.24 59.75 25.79
DePT-Kg 51.35 42.45 23.97 60.60 25.84

Gallop 49.01 39.86 21.57 56.78 22.28
DeCoOp 51.98 43.01 24.65 61.01 25.31

TCP 51.34 41.66 23.15 58.46 24.62

Ours 52.64 43.98 25.64 62.67 26.49

for the open-world recognition task. Our method out-
performs existing approaches on most datasets, achiev-
ing an average 2% improvement in OpenworldAUC with
a smaller parameter cost, shown in Fig.5. This highlights
the effectiveness of the proposed optimization methods.
To visualize the OpenworldAUC metric, we also plot the
MissRateb-HitRaten curve shown in Fig.3, which demon-
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(a) Average in Tab.2 (b) Flowers102 (c) ImageNetR

Figure 4. Trade-off between the first-stage AUROC and the second-stage HM metrics.Our approach,
located in the upper right corner, shows a better trade-off between first-stage detection and second-
stage classification performance.

(a) Average in Tab.2

Figure 5. Tradeoff between per-
formance and prompt complex-
ity across different methods.

(a) Effect of K (b) Effect of Shots
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Figure 6. Sensitivity Analysis and Ablation Study. (a), (b), (c) and (d) are performed on Flowers102, DTD, Caltech101 and ImageNet,
respectively. More results are provided in App.D.7, App.D.8, App.D.10 and App.D.11.

strates that our optimization method can significantly outper-
form other competitors on the region with MissRateb ≤ α
and HitRaten ≥ β. This area is particularly meaningful, as
it represents the task’s key concern: a skillful model should
balance a high HitRate with a low MissRate, as emphasized
in recent AUC literature (Yang et al., 2023).

Tradeoff between the AUROC and the HM metrics. As
shown in Fig.4 (a)-(b) and Fig.7, methods targeting the HM
metric often lack base-to-new detection abilities (P1), while
OOD-oriented methods typically compromise classification
performance (P2). These limitations align with the con-
straints of the metrics, as discussed in Sec.3. Compared with
these methods, our OpenworldAUC-oriented optimization
method can achieve a better trade-off between the AUROC
and HM, which further validates the comprehensiveness of
the OpenworldAUC metric and the efficiency of our opti-
mization method. This is consistent with (P1) and (P2).

Imbalance Setting for Recognition. Tab. 3 compares the
overall OpenworldAUC performance across five datasets
with different domain imbalance ratios. OpenworldAUC as
a comprehensive and distribution-insensitive metric shown
in Sec.D.2, can effectively capture the performance of the
model in the imbalance setting. Our method consistently
outperforms existing approaches across all datasets, achiev-
ing an average 2% improvement. This demonstrates that
our OpenworldAUC-oriented optimization method is also

robust towards the varying domain distribution, consistent
with (P3).

Openworld Domain Generalization Tab. 4 compares the
robustness performance of methods trained on ImageNet to
various domain-shift datasets. We observe that our method
consistently improves against all competitors in terms of
OpenworldAUC. Fig.4 (c), Tab. 10 and Fig.8 further demon-
strate that our method can also achieve better performance
trade-offs for stage-wise metrics on this more generalizable
task. Our fine-tuning strategy can further enhance the trans-
ferability of the model to the domain-shift scenarios, which
is crucial for real-world applications.

Cross-Dataset Generalization Tab. 13 compares the per-
formance of our method with existing competitors on the
cross-dataset generalization task. The comprehensive re-
sults of this cross-domain evaluation test the model’s ability
to handle both base and new categories across diverse visual
domains, validating the robustness of our method.

6.3. Ablation Study

Sensitivity Analysis of K. As shown in Fig.6 (a) and
Fig.10, the performance monotonically increases with more
base-to-new partitions (K) on Flowers102 and SUN397,
consistent with Thm. 5.2. In practice, we set K = 3 for
efficiency-performance balance.

8
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Effect of Different Shots. As shown in Fig.6 (b) and Fig.11,
our method surpasses representive competitors across all
shots (1/2/4/8/16) on DTD and OxfordPets, further demon-
strating its effectiveness. Additionally, OpenworldAUC im-
proves as N increases, aligning with Thm. 5.2.

Sensitivity Analysis of λ. In the practical objective
(OPfin), the second term serves as an AUC-style rank-
ing loss. However, recent studies (Yuan et al., 2022; Yang
et al., 2023; Han et al., 2024) show that optimizing AUC
loss from scratch can harm feature representations. The
cross-entropy regularization term λ · ℓce improves ranking
performance while mitigating this issue, as illustrated in
Fig.6(c) and Fig.12. Optimal results are usually achieved
when λ ∈ [1/2, 1].

Effect of Mixture-of-Prompts Fig.6 (d) and Fig.13 show
the effectiveness of the mixture-of-prompt strategy. This val-
idates the challenge of optimizing OpenworldAUC within a
single prompt as discussed in Sec.5.1.

Ablation Study of the Gating Mechanism. We evaluate
the gating mechanism in Tab. 17. Using a fixed 0-1 mask
(”Ours 0-1 Gate”) slightly outperforms removing the gate
(”Ours w/o Gate”) but underperforms the adaptive sigmoid
gate, confirming the effectiveness of both sparse sample
selection and gate approximation.

7. Related Work
In this section, we briefly review the closely related work
on few-shot prompt tuning and Open-world Learning.

7.1. Few-shot Prompt Tuning for VLM

CoOp (Zhou et al., 2022b) first introduced prompt tuning
to adapt VLMs for downstream tasks, significantly improv-
ing classification on base classes but showing poor gener-
alization to new classes. To address this, early methods
proposed more flexible prompt structures. For example,
CoCoOp (Zhou et al., 2022a) generates input-conditional to-
kens using lightweight networks, enabling dynamic prompts
per instance. MaPLe (Khattak et al., 2023a) adopts a multi-
modal joint learning strategy (Jiang et al., 2025; Xu et al.,
2025). Another line of work (Yao et al., 2023; Bulat & Tz-
imiropoulos, 2023; Zhu et al., 2023; Khattak et al., 2023b;
Roy & Etemad, 2024; Zhang et al., 2024; Hua et al., 2024;
Yao et al., 2024) enhances generalization by introducing
task-agnostic objectives and preserving the zero-shot knowl-
edge of VLMs. KgCoOp (Yao et al., 2023) and TCP (Yao
et al., 2024) reduce the gap between learned and hand-
crafted prompt features. Recent advances (Li et al., 2024;
Mistretta et al., 2024; Wu et al., 2024; Zhang et al., 2023;
Khattak et al., 2024) further boost performance by lever-
aging external knowledge. For instance,(Li et al., 2024;
Mistretta et al., 2024; Wu et al., 2024) apply knowledge

distillation from larger models, while (Zhang et al., 2023;
Khattak et al., 2024) use LLMs to generate prompts with
richer semantics.

While most methods focus on improving in-domain clas-
sification, they overlook inter-domain misclassification
risks—such as confusing base and new domain sam-
ples—which is critical for open-world scenarios. This has
led to growing interest in prompt tuning for OOD detec-
tion. LoCoOp (Miyai et al., 2023) treats non-semantic re-
gions (e.g., background) as new-domain signals and adds
scoring constraints to the CoOp objective. Follow-up meth-
ods introduce hierarchical (Lafon et al., 2024) and negative
prompts (Zeng et al., 2024; Nie et al., 2024) to better balance
accuracy and robustness.

Recently, DeCoOp (Zhou et al., 2024) proposed the first
open-world prompt tuning framework that jointly addresses
OOD detection and balanced classification across domains.
It combines an OOD detector for base-to-new separation
with domain-specific classifiers to improve within-domain
discriminability.

7.2. Opens-Set Recognition

A closely related topic to this paper is Open-Set Recognition
(OSR). OSR is a challenging and practical setting, where
the model is required to detect open-set samples which do
not come from the training and also correctly classify the
close-set samples (Yue et al., 2021; Feng et al., 2022). Com-
pared to the open-world learning discussed in this paper,
OSR does not require precise classification of open-set sam-
ples. In this direction, a variety of novel metrics (Yue et al.,
2021; Kong & Ramanan, 2025; Scherreik & Rigling, 2016;
Wang et al., 2022) have been proposed to evaluate OSR
models, focusing on close-set classification and open-set
OOD detection. However, these metrics have limitations
when applied to our open-world setting because they cannot
assess the classification performance of open-set samples.

8. Conclusion
This paper explores Open-world Prompt Tuning for Vision-
Language Models, involving base-to-new detection and
domain-specific classification. We argue that ideal metrics
should consistently evaluate both stages and remain robust
to domain distributions, yet existing metrics fall short. To
bridge this gap, we propose OpenworldAUC, a unified met-
ric that simultaneously assesses detection and classification
through pairwise sample comparison, thus being insensi-
tive towards the varying domain distributions. In pursuit
of this, our Gated Mixture-of-Prompts is proposed with a
theoretical guarantee where each prompt fulfills its specific
responsibility to jointly maximize OpenworldAUC. Exten-
sive experiments speak to the effectiveness of our method.
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Impact Statement
We propose a general evaluation metric for openworld recog-
nition to deal with the potential bias toward new domain
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helpful to improve fairness for groups with fewer occur-
rences.
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A. Proof for the Proposition
A.1. Proof for Proposition 3.1.

Restate of Proposition 3.1. Given a dataset S sampled from the overall domain D, for any (g, h), one can always find a
worse-performing (g̃, h̃) in OPT that satisfies HM(g, h) = HM(g̃, h̃).

Proof. Let sb ∈ RCb and sn ∈ RCn be the logits scores of the base and new domain produced by g and h. Here, we only
focus on differences in predictions between (g, h) and (g̃, h̃). Given one base sample (xb, yb), (g, h) and (g̃, h̃) make the
following predictions:

• yb = g(xb), maxy′∈Yb
sb(xb)−maxy′∈Yn

sn(xb) > 0

• yb = g̃(xb), maxy′∈Yb
s̃b(xb)−maxy′∈Yn

s̃n(xb) < 0

In this case, although g̃ correctly classifies xb, the joint model in OPT (g̃, h̃) nevertheless categorizes xb into the new
domain. This occurs because the class associated with the highest prediction probability for xb resides in the new domain.
Therefore, HM(g, h) = HM(g̃, h̃) holds but (g̃, h̃) performs inferior to (g, h) in OPT setting.

In OPT task, the prediction could be regarded as correct only if the input has been identified into the correct domain. In
other words, there exists an implicit detector defined as:

r(x) ∝ max
y′∈Yb

sb(x)− max
y′∈Yn

sn(x)

The OPT requires r(xb) > 0 for base samples and r(xn) < 0 for new samples. From the definition of HM, one can easily
find that HM lacks evaluations of this detector.

A.2. Proof for Proposition 4.1.

Restate of Proposition 4.1. Given a dataset S sampled from the overall domain D, for any (r, g, h) under mild assumption
AUROC(r) < 1, one can always find (r̃, g̃, h̃) performs worse in OPT that satisfies:

Lin(AUROC(r),BaseAcc(g),NewAcc(h)) = Lin(AUROC(r̃),BaseAcc(g̃),NewAcc(h̃))

where Lin(·) denotes the linear combination function.

Proof. Similarly, we only focus only on differences in predictions between (r, g, h) and (r̃, g̃, h̃). Given two base-domain
samples (x1

b , y
1
b ), (x

2
b , y

2
b ) and two new-domain samples (x1

n, y
1
n), (x

2
n, y

2
n), suppose that (r̃, g̃, h̃) and (r, g, h) only make

same predictions except the following cases:

• g(x1
b), g̃(x

1
b) = y1b and g(x2

b), g̃(x
2
b) ̸= y2b

• h(x1
n), h̃(x

1
n) ̸= y1n and h(x2

n), h̃(x
2
n) = y2n

• r(x1
b) > r(x1

n) > r(x2
b) > r(x2

n)

• r̃(x2
b) > r̃(x2

n) > r̃(x1
b) > r̃(x1

n)

• r(x1
b) = r̃(x2

b), r(x
1
n) = r̃(x2

n), r(x
2
b) = r̃(x1

b), r(x
2
n) = r̃(x1

n)

From this, we observe that:

• BaseAcc(g) = BaseAcc(g̃) and NewAcc(h) = NewAcc(h̃) since (g̃, h̃) and (g, h) share the same predictions.

• AUROC(r) = AUROC(r̃) since the ordering between base and new samples is also not changed.
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Consequently, we have Lin(AUROC(r),BaseAcc(g),NewAcc(h)) = Lin(AUROC(r̃),BaseAcc(g̃),NewAcc(h̃)).

However, (r̃, g̃, h̃) performs worse than (r, g, h) in the open-world prompt tuning task. Specifically, if we select a threshold
t such that r(x1

n) > t > r(x2
b), then (r, g, h) correctly predicts x1

b and x2
n, while (r̃, g̃, h̃) misclassify all four samples. This

shows that the linear aggregation of BaseAcc, NewAcc, and AUROC does not align with actual model performance.

A.3. Proof for Proposition 4.2.

Restate of Proposition 4.2. Given a pair (xb, yb) and (xn, yn) sampled from D, OpenworldAUC equals to the joint
possibility that 1) r ranks xb higher than xn, and 2) g and h make correct predictions on xb and xn, respectively.

ED

[
1[yb = g(xb)]︸ ︷︷ ︸

Base (P2)

·1[r(xb) > r(xn)]︸ ︷︷ ︸
Base-to-New (P1)

·1[yn = h(xn)]︸ ︷︷ ︸
New (P2)

]

Proof. We first review the definition of MissRateb and HitRaten as:

MissRateb := E
(xb,yb)∼Db

[1[r(xb) ≤ t] + 1[r(xb) > t, yb ̸= g(xb)]]

HitRaten := E
(xn,yn)∼Dn

[1[r(xn) ≤ t, yn = h(xn)]]

Specifically, MissRateb measures the probability that (h, r) misclassifies the base samples and HitRaten is the probability
that (g, r) makes correct predictions on the new samples.

MissRateb = P[r(xb) ≤ t] + P[r(xb) > t, yb ̸= g(xb)]

HitRaten = P[r(xn) ≤ t, yn = h(xn)]

Thus, we can rewrite the OpenworldAUC as:

OpenworldAUC :=

∫ t=1

t=0

HitRaten(t) · dMissRateb(t)

=

∫ t=1

t=0

P[r(xn) ≤ t, yn = h(xn)] · d{P[r(xb) ≤ t] + P[r(xb) > t, yb ̸= g(xb)]}

=

∫ t=1

t=0

P[r(xn) ≤ t, yn = h(xn)] · d{P[r(xb) ≤ t]︸ ︷︷ ︸
(a)

+

∫ t=1

t=0

P[r(xn) ≤ t, yn = h(xn)] · dP[r(xb) > t, yb ̸= g(xb)]︸ ︷︷ ︸
(b)

For (a),

(a) =

∫ t=1

t=0

P[r(xn) ≤ t, yn = h(xn)] · dP[r(xb) ≤ t]

= P[yn = h(xn)] ·
∫ t=1

t=0

P[r(xn) ≤ t|yn = h(xn)] · dP[r(xb) ≤ t]

= P[yn = h(xn)] · P[r(xb) > r(xn)|yn = h(xn)]

= P[r(xb) > r(xn), yn = h(xn)]

For (b),

(b) = −
∫ t=0

t=1

P[r(xn) ≤ t, yn = h(xn)] · dP[r(xb) > t, yb ̸= g(xb)]

= −P[yn = h(xn)] · P[yb ̸= g(xb)] ·
∫ t=0

t=1

P[r(xn) ≤ t|yn = h(xn)] · dP[r(xb) > t|yb ̸= g(xb)]

= −P[yn = h(xn)] · P[yb ̸= g(xb)] ·
∫ t=1

t=0

P[r(xn) ≤ t|yn = h(xn)] · dP[r(xb) ≤ t|yb ̸= g(xb)]

= −P[yn = h(xn)] · P[yb ̸= g(xb)] · P[r(xb) > r(xn)|yb ̸= g(xb), yn = h(xn)]

= −P[r(xb) > r(xn), yb ̸= g(xb), yn = h(xn)]
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Thus,

OpenworldAUC = (a) + (b)

= P[r(xb) > r(xn), yn = h(xn)]− P[r(xb) > r(xn), yb ̸= g(xb), yn = h(xn)]

= P[r(xb) > r(xn), yb = g(xb), yn = h(xn)]

= E
(xb,yb)∼Db

(xn,yn)∼Dn

[
1[yb = g(xb)]︸ ︷︷ ︸

Base (P2)

·1[r(xb) > r(xn)]︸ ︷︷ ︸
Base-to-New (P1)

·1[yn = h(xn)]︸ ︷︷ ︸
New (P2)

]

A.4. Proof for Proposition 4.3.

Restate of Proposition 4.3. For any (r, g, h), we have:

• Assume that OpenworldAUC equals u, a lower bound proportional to u is available for HitRaten for any domain
distributions.

• Constructing (r̃, g̃, h̃) as outlined in Prop.4.1 yields OpenworldAUC(r̃, g̃, h̃) < OpenworldAUC(r, g, h).

Proof. We first demonstarte the first property that OpenworldAUC avoids domination by domains with larger sample
sizes. To this end, we review that the OverallAcc is defined as:

OverallAcc =

∑
i∈Yb∪Yn

TPi∑
i∈Yb∪Yn

(TPi + FNi)
= Pb · TPRb + Pn · TPRn

TPRb =

∑
i∈Yb

TPi∑
i∈Yb

(TPi + FNi)
,TPRn =

∑
i∈Yn

TPi∑
i∈Yn

(TPi + FNi)

Pb =
Nb

N
,Pn =

Nn

N

From this formulation, OverallAcc can be dominated by performance in the domain with more samples. To be specific, a
very low TPRn with fewer new samples in one prediction can still yield similar OverallAcc scores if TPRb compensates.
In view of this, the OverallAcc metric is inconsistent with the actual performance of model in OPT setting. In contrast,
our OpenworldAUC metric is a ranking-based metric that is not affected by the sample size of each domain. Thus, this
metric can effectively avoid the issue of domination by domains with larger sample sizes. To illustrate this, we show that the
OpenworldAUC metric guarantees a lower bound for the HitRate of new domain.

According to the definition of OpenworldAUC, we have:

1− OpenworldAUC ≥

(∑
i∈Yb

FNi

)
·
(∑

j∈Yn
FNj

)
Nb ·Nn

where Nb and Nn are the numbers of base samples and novel samples respectively. Then, given the definition of HitRaten
and MissRateb, we have:

MissRateb =

(∑
i∈Yb

FNi

)
Nb

,HitRaten =
Nn −

∑
j∈Yn

FNj

Nn

Thus,

1− OpenworldAUC ≥ MissRateb · (1− HitRaten)

We have:

HitRaten ≥ 1− 1− OpenworldAUC

MissRateb
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Therefore, when OpenworldAUC equals u and MissRateb = a, we have HitRaten ≥ 1 − 1−u
a under arbitrary base/new

ratio. We conclude that our proposed metric avoids the limitations highlighted in Prop. 4.1.

Escape from the limitations of Prop.4.1. This inconsistency arises because Lin(AUROC(r),BaseAcc(g),NewAcc(h))
evaluates performance in a decoupling manner. In contrast, a sample contributes to the OpenworldAUC score only when the
detector correctly identifies it, and the domain classifier simultaneously classifies it correctly.

To further examine this issue, we analyze the case where the Lin metric becomes inconsistent. We consider the following
two cases. The difference between the two cases is marked in red.

Case 1: (r̃, g̃, h̃) and (r, g, h) make the predictions as follows:

• g(x1
b), g̃(x

1
b) = y1b and g(x2

b), g̃(x
2
b) ̸= y2b

• h(x1
n), h̃(x

1
n) ̸= y1n and h(x2

n), h̃(x
2
n) ̸= y2n

• r(x1
b) > r(x1

n) > r(x2
b) > r(x2

n)

• r̃(x2
b) > r̃(x2

n) > r̃(x1
b) > r̃(x1

n)

• r(x1
b) = r̃(x2

b), r(x
1
n) = r̃(x2

n), r(x
2
b) = r̃(x1

b), r(x
2
n) = r̃(x1

n)

In this case, one can naturally conclude:

Lin(AUROC(r),BaseAcc(g),NewAcc(h)) = Lin(BaseAcc(g̃),NewAcc(h̃),AUROC(r̃)).

Next, we analyze this case in our metric as following:

OpenworldAUC(r, g, h)− OpenworldAUC(r̃, g̃, h̃)

=
1

Nb ·Nn

Nn∑
j=1

[
1[g(x1

b) = y1b ] · 1[r(x1
b) > r(xj

n)] · 1[h(xj
n) = yjn]− 1[g̃(x1

b) = y1b ] · 1[r̃(x1
b) > r̃(xj

n)] · 1[h̃(xj
n) = yjn]

]

=
1

Nb ·Nn

Nn∑
j=1

[
1[r(x1

b) > r(xj
n)] · 1[h(xj

n) = yjn]− 1[r(x2
b) > r(xj

n)] · 1[h(xj
n) = yjn]

]
=

1

Nb ·Nn

Nn∑
j=1

[
1[r(x1

b) > r(xj
n) > r(x2

b)]
]
· [h(xj

n) = yjn] ≥ 0

where Nb and Nn denote the base samples and novel samples respectively.

The last equality holds only when there are no correctly classified novel samples between r(x1
b) and r(x2

b). This condition
is no mild. Thus, we can conclude that OpenworldAUC(r, g, h) > OpenworldAUC(r̃, g̃, h̃) in this scenario.

Case 2: If (r̃, g̃, h̃) and (r, g, h) make the predictions as follows:

• g(x1
b), g̃(x

1
b) = y1b and g(x2

b), g̃(x
2
b) ̸= y2b

• h(x1
n), h̃(x

1
n) ̸= y1n and h(x2

n), h̃(x
2
n) = y2n

• r(x1
b) > r(x1

n) > r(x2
b) > r(x2

n)

• r̃(x2
b) > r̃(x2

n) > r̃(x1
b) > r̃(x1

n)

• r(x1
b) = r̃(x2

b), r(x
1
n) = r̃(x2

n), r(x
2
b) = r̃(x1

b), r(x
2
n) = r̃(x1

n)

The equality Lin(AUROC(r),BaseAcc(g),NewAcc(h)) = Lin(BaseAcc(g̃),NewAcc(h̃),AUROC(r̃)) still holds.
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Similarly, we analyze this case in our metric,

OpenworldAUC(r, g, h)− OpenworldAUC(r̃, g̃, h̃)

=
1

Nb ·Nn

Nn∑
j=1

[
1[g(x1

b) = y1b ] · 1[r(x1
b) > r(xj

n)] · 1[h(xj
n) = yjn]− 1[g̃(x1

b) = y1b ] · 1[r̃(x1
b) > r̃(xj

n)] · 1[h̃(xj
n) = yjn]

]

+
1

Nb ·Nn

Nb∑
i=1

[
1[g(xi

b) = yib] · 1[r(xi
b) > r(x2

n)] · 1[h(x2
n) = y2n]− 1[g̃(xi

b) = yib] · 1[r̃(xi
b) > r̃(x2

n)] · 1[h̃(x2
n) = y2n]

]
− 1

Nb ·Nn
1[g(x1

b) = y1b ] · 1[r(x1
b) > r(x2

n)] · 1[h(x2
n) = y2n]

=
1

Nb ·Nn

Nn∑
j=1

[
1[r(x1

b) > r(xj
n)] · 1[h(xj

n) = yjn]− 1[r̃(x1
b) > r̃(xj

n)] · 1[h̃(xj
n) = yjn]

]

+
1

Nb ·Nn

Nb∑
i=1

[
1[g(xi

b) = yib] · 1[r(xi
b) > r(x2

n)]− 1[g̃(xi
b) = yib] · 1[r̃(xi

b) > r̃(x2
n)]
]
− 1

Nb ·Nn

=
1

Nb ·Nn

Nn∑
j=1

[
1[r(x1

b) > r(xj
n), r̃(x

1
b) < r̃(xj

n)] · 1[h(xj
n) = yjn]

]

+
1

Nb ·Nn

Nb∑
i=1

[
1[g(xi

b) = yib] · 1[r(xi
b) > r(x2

n), r̃(x
i
b) < r̃(x2

n)]
]
− 1

Nb ·Nn

≥ 1

Nb ·Nn

[
1[r(x1

b) > r(x2
n), r̃(x

1
b) < r̃(x2

n)] · 1[h(x2
n) = y2n]

]
+

1

Nb ·Nn

[
1[g(x1

b) = y1b ] · 1[r(x1
b) > r(x2

n), r̃(x
1
b) < r̃(x2

n)
]
− 1

Nb ·Nn

=
1

Nb ·Nn

Finally, we have:

OpenworldAUC(r, g, h)− OpenworldAUC(r̃, g̃, h̃) > 0

This further demonstrates that OpenworldAUC with joint probability formulation is more consistent with the model
performance than the naive aggregation of multiple metrics.

A.5. Proof for Proposition 5.1

Restate of Proposition 5.1. Maximizing the OpenworldAUC metric can be realized by solving the following minimization
problem:

min
r,g,h

ED [1[yb ̸= g(xb)] + 1[yn ̸= h(xn)] + 1[yb = g(xb)] · 1[r(xb) ≤ r(xn)] · 1[yn = h(xn)]]

Proof. We first review the definition of OpenworldAUC as:

ED

[
1[yb = g(xb)]︸ ︷︷ ︸

Ig

·1[r(xb) > r(xn)]︸ ︷︷ ︸
Ir

·1[yn = h(xn)]︸ ︷︷ ︸
Ih

]
According to the Truth Table in Tab.5, we have:

1− Ig · Ir · Ih = ¬Ig + Ig · ¬Ir · Ih + ¬Ih

Thus, maximizing Ig · Ir · Ih is equivalent to minimize ¬Ig + Ig · ¬Ir · Ih + ¬Ih. Therefore, the maximization of
OpenworldAUC is equivalent to the following minimization problem:

min
r,g,h

ED [1[yb ̸= g(xb)] + 1[yn ̸= h(xn)] + 1[yb = g(xb)] · 1[r(xb) ≤ r(xn)] · 1[yn = h(xn)]]
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Table 5. Truth Table for the Objective Function.

Ig Ir Ih 1− Ig · Ir · Ih ¬Ig + Ig · ¬Ir · Ih + ¬Ih
1 1 1 0 0
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
0 1 1 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1

This completes the proof.
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B. Proof for the Generalization Bound
In this section, we present the complete proof of our theoretical results. Tab.6 summarizes the key notations used in the
proof. We begin with a proof sketch to give an intuitive overview. Next, we provide the key lemma and then present the
detailed proof of the main results. Our primary theoretical results show how well the proposed method can generalize to test
data.

B.1. Proof Outline

We first define the hypothesis space of functions r and sb.

The Hypothesis Class In this paper, we consider the generalization ability base on the prompt architecture. Our functions
are chosen from the following hypothesis classHr andHg .

Hr =
{
r(k)(·;θr,k) : X → [0, 1], k ∈ [1,K],θr,k represents learnable tokens in the prompt P (·;θr,k)

}
where r(k)(x; θr,k) is the possibility that x belongs to the base domain. For the sake of simplicity, we denote the ensemble
{r(k)(x;θr,k)}k∈[K] as r(x) and use r ∈ Hr to express choosing one such collections out ofHr.

Hg =
{
sb(·;θg) : X → RCb ,θg represents learnable tokens in the prompt P (·;θg)

}
Here sb(x) abbreviates sb(x;θg) and use sb ∈ Hg to express choosing one out of the hypothesis classHg .

The Norm of Hypothesis To measure the complexity of Hr and Hg, we define a norm on each hypothesis respectively.
Here, we adopt the overall infinity norm (all classes and all input features x ∈ X ):

∥r∥∞ := sup
x∈X
|r(x)|

∥sb∥∞ := max
j∈{1,2,··· ,Cb}

sup
x∈X

∣∣∣s(j)b (x)
∣∣∣

Here s
(j)
b (x) is the logit score of the j-th channel for raw feature x.

In practical training, we aim to solve the following OPfin problem:

(OPfin)min
r,g
R̂′(r, g, h) = ÊSb

[ℓce(sb, yb)] +
1

K
· ÊŜ(k) [φb · ℓsq(r(xb)− r(xn)) · φn]

where Ŝ(k) is sampled from the data distribution D̂(k) := X × Ŷ(k) under the k-th base-to-new pseudo partition.

Theoretically, the generalization gap ∆ should be measured by the expected risk on the joint distribution of overall label
space Y and the training data D, expressed as:

R(r, g, h) = EDb
[ℓce(sb, yb)] + EYED[φb · ℓsq(r(xb)− r(xn)) · φn] + EDn

[ℓce(sn, yn)]

Assume that the detection function r, base domain score function sb are chosen from the hypothesis space Hr, Hg,
respectively. The generalization ability of the entire hypothesis set is often measured by the worst-case generalization gap
∆:

∆ := sup
sb∈Hg,r∈Hr

[
R(r, g, h)− R̂′(r, g, h)

]
However, this gap is complex. Intuitively, it mainly comes from three parts:

∆ = ∆r +∆g +∆h

where ∆r, ∆g , and ∆h are the generalization gaps for the detector r, base-domain classifier g, and new-domain classifier h,
respectively.
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Table 6. Some Important Notations Used in the Proof.
Notation Description

Sigmoid score

φi
b = σ(s

(y)
b (xi

b)) The gate score of i-th base-domain sample.
φj

n = σ(s
(y)
n (xj

n)) The gate score of j-th new-domain sample.
v∞ supx

∣∣∣σ(s(y)(x))
∣∣∣ , s ∈ {sb, sn}. The overall infinity norm on all input features X .

AUC-type Risks

ℓsq(r, x
i
b, x

j
n) ℓsq(r(x

i
b)− r(xj

n)).
ℓ∞ sup(xb,xn) |ℓsq(r, xb, xn)| The overall infinity norm on all input features X .

R̂Ŝ(r, g, h)
Ê (xb,yb)∼Ŝb

(xn,yn)∼Ŝn

φb · ℓsq(r, xn, xb) · φn = 1

Ñb·Ñn

∑Ñb
i=1

∑Ñn
j=1 φ

i
b · ℓsq(r(xi

b)− r(xj
n)) · φj

n

The empirical loss on training data under a fixed pseudo partition Ŷ
.

RD̂(r, g, h) E (xb,yb)∼D̂b

(xn,yn)∼D̂n

φb · ℓsq(r, xn, xb) · φn. The expected loss under a fixed pseudo partition Ŷ .

R̂Ŝ(k)(r, g, h) Ê
(xb,yb)∼Ŝ(k)

b

(xn,yn)∼Ŝ(k)
n

φb · ℓsq(r, xn, xb) · φn. The empirical risk on training data under a k-th pseudo partition Ŷ(k).

RD̂(k)(r, g, h) E
(xb,yb)∼D̂(k)

b

(xn,yn)∼D̂(k)
n

φb · ℓsq(r, xn, xb) · φn. The expected loss on training data under a k-th pseudo partition Ŷ(k).

ÊŶ

[
R̂Ŝ(r, g, h)

]
1
K

∑K
k=1 R̂Ŝ(k) . The empirical average of R̂Ŝ(k) over mutiple partitions.

ÊŶ [RD̂(r, g, h)] 1
K

∑K
k=1 RD̂(k)(r, g, h). The empirical average of RD̂(k)(r, g, h) over mutiple partitions.

EŶ [RD̂(r, g, h)] The expected RD̂(r, g, h) over the meta distribution of pseudo partition distribution.
EY [RD(r, g, h)] The expected RD(r, g, h) over the meta distribution of real partition distribution.

Distribution Generic definition

X Input space.
Y := Yb ∪ Yn Overall label space.

Yb Base label space.
Yn New label space.

Db := X × Yb Base domain data distribution.
Sb := {(xi

b, y
i
b)}

Nb
i=1 The base dataset sampled from Db

Dn := X × Yn New domain data distribution.
Sn The new dataset sampled from Dn

Ŷ =
(
Ŷb, Ŷn

)
Ŷ is the pseudo base-to-new partition distribution.

Ŷ(k) =
(
Ŷ(k)

b , Ŷ(k)
n

)
The k-th base-to-new pseudo partition during the training stage. k ∈ [1,K].

K The number of base-to-new pseudo partition during the training stage.
Ŷ(k)

b The pseudo base domain in k-th base-to-new pseudo partition.
Ŷ(k)

n The pseudo new domain in k-th base-to-new pseudo partition.
D̂ =

(
D̂b, D̂n

) (
X × Ŷb,X × Ŷn

)
. The data distribution under a fixed base-to-new pseudo partition Ŷ .

Ŝ =
(
Ŝb, Ŝn

)
Ŝb, Ŝn are sampled from D̂b and D̂n, respectively.

D̂(k) =
(
D̂(k)

b , D̂(k)
n

) (
X × Ŷ(k)

b ,X × Ŷ(k)
n

)
The data distribution under the k-th base-to-new pseudo partition.

D̂(k)
b , D̂(k)

n The pseudo base and new data distribution under the k-th base-to-new pseudo partition.
Ŝ(k) =

(
Ŝ(k)
b , Ŝ(k)

n

)
The dataset sampled from D̂(k).

Ŝ(k)
b , Ŝ(k)

n The pseudo base and new dataset sampled from D(k)
b , D(k)

n .
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To be specific, ∆g is defined as:

∆g = sup
sb∈Hg

[
EDb

[ℓce(sb, yb)]− ÊSb
[ℓce(sb, yb)]

]
This error arises from approximating the expectation over the training distribution D using the empirical average from the
training data S . Meanwhile, this term meets the basic assumptions of standard generalization analysis techniques, where the
loss function is represented as a sum of independent terms. Consequently, bounding this term is relatively straightforward.

∆r is defined as:

∆r = sup
sb∈Hg,r∈Hr

[
EY [RD]− ÊŶ

[
R̂Ŝ

]]

This formulation reveals two key challenges in bounding ∆r:

• The empirical risk is defined on the Ŷ and Ŝ spaces, while the expected risk is defined over the Y and D spaces.
This coupled discrepancy makes it difficult to directly bound the generalization gap for r. To address this issue, we
decompose ∆r into three types of errors: partition-distribution approximation error, empirical partitions estimation
error, and data estimation error.

• The standard generalization analysis techniques require the loss function to be expressed as a sum of independent
terms. However, the AUC-type risk violates this assumption due to pairwise sample dependency. For instance, the
optimization functions for the detector, ℓsq(r, xj

n, x
i
b) and ℓsq(r, x̃

j
n, x̃

i
b), are interdependent if any term is shared (e.g.,

x̃j
n = xj

n or x̃i
b = xi

b). To address this issue, we use covering numbers and ϵ-net arguments in the subsequent proof
to derive the generalization bound.

We decompose ∆r into three types of errors:

• Partition-distribution Approximation Error: This error occurs because, the pseudo partition distribution Ŷ is used
to approximate the open-world real partition distribution Y .

sup
sb∈Hg,r∈Hr

[
EY [RD]− EŶ

[
RD̂
]]

• Empirical Partitions Estimation Error: This error refers to the discrepancy between the expectation of pseudo
base-to-new partition distributions Ŷ and the empirical averages over Ŷ(k), k ∈ [1,K].

sup
sb∈Hg,r∈Hr

[
EŶ
[
RD̂
]
− ÊŶ

[
RD̂
]]

• Data Estimation Error: This error stems from approximating the expectation over the training distribution D̂ with the
empirical average from the training data Ŝ

sup
sb∈Hg,r∈Hr

[
ÊŶ
[
RD̂
]
− ÊŶ

[
R̂Ŝ

]]
= sup

sb∈Hg,r∈Hr

[
1

K

K∑
k=1

RD̂(k) −
1

K

K∑
k=1

R̂Ŝ(k)

]

∆h is defined as:

∆h = EDn [ℓce(sn, yn)]

Without prior knowledge of the new domain, we cannot bound the expected error. We can reduce this error by carefully
designing prompts or using powerful foundation models.
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B.2. Preliminary Lemma

Definition 1 (Bounded Difference Property). Given a group of independent random variables X1, X2, · · · , Xn where
Xt ∈ X,∀t, f(X1, X2, · · · , Xn) is satisfied with the bounded difference property, if there exists some non-negative
constants c1, c2, · · · , cn, such that:

sup
x1,x2,··· ,xn,x′

t

|f(x1, · · · , xn)− f(x1, · · · , xt−1, x
′
t, · · · , xn)| ≤ ct, ∀t, 1 ≤ t ≤ n. (1)

Hereafter, if any function f holds the Bounded Difference Property, the following Mcdiarmid’s inequality is always satisfied.

Lemma B.1 (Mcdiarmid’s Inequality). Assume we have n independent random variables X1, X2, . . . , Xn that all of them
are chosen from the set X . For a function f : X → R, ∀t, 1 ≤ t ≤ n, if the following inequality holds:

sup
x1,x2,··· ,xn,x′

t

|f(x1, · · · , xn)− f(x1, · · · , xt−1, x
′
t, · · · , xn)| ≤ ct, ∀t, 1 ≤ t ≤ n.

with x ̸= x′, then for all ϵ > 0, we have

P[|f − E(f)| ≥ ϵ] ≤ 2 · exp
(
−2ϵ2∑n
t=1 c

2
t

)
.

Lemma B.2 (Hoeffding’s Inequality). If Z1, · · · , Zn are independent random variables such that Zi ∈ [a, b] almost surely,
then for any t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi −
1

n

n∑
i=1

E[Zi]

∣∣∣∣∣ ⩾ t

)
⩽ 2 exp

(
−2nt2

(a− b)
2

)
.

Definition 2 (ϵ-Covering). Let (F , ρ) be a (pseudo) metric space, and G ⊆ F . {f1, . . . , fK} is said to be an ϵ-covering of

G if G ⊆
K
∪
i=1
B(fi, ϵ), i.e., ∀g ∈ G, ∃i such that ρ(g, fi) ≤ ϵ.

Definition 3 (Covering Number). According to the notations in Def.2, the covering number of G with radius ϵ is defined as:

N (ϵ;G, ρ) = min{n : ∃ϵ− covering over G with size n}

Lemma B.3. The covering number of the hypothesis classHR has the following upper bound:

logN (ϵ;HR, ρ) ≤ d log

(
3r

ϵ

)
, (2)

where d is the dimension of embedding space.

Lemma B.4 (Union bound/Boole’s inequality). Given the countable or finite set of events Ei, the probability that at least
one event happens is less than or equal to the sum of all probabilities of the events happened individually, i.e.,

P
[
∪
i
Ei

]
≤
∑
i

P [Ei] (3)

Lemma B.5 (ϕ-Lipschitz Continuous). Given a set X and a function f : X → R, if f is continuously differentiable on X
such that, ∀x, y ∈ X , the following condition holds with a real constant ϕ:

∥f(x)− f(y)∥ ≤ ϕ ∥x− y∥ .

Thereafter, f is said to be a ϕ-Lipschitz continuous function.

Assumption 1. The fg , fh, and r are Lipschitz continuous w.r.t. the input variable.

Corollary B.6. The Sigmoid function is 1
4 -Lipschitz continuous.

Corollary B.7. The Squared loss function is 2-Lipschitz continuous.

Lemma B.8. Let x and y be postive and satisfy x+ y = C. The maximum value of the function f(x, y) = 1
x + 1

y is 4
C .
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Lemma B.9. (Yang et al., 2024) The volume of an c-dimensional probability simplex is c!. In other words, we have:

Vc =

∫
∑c

i=1 xi=1

1 · dx1 · dx2 · . . . · dxc =
1

c!

Proof. We proof it by induction.

Base Case, c=1. Obviously, we have V1 =
1∫
0

dx = 1.

Induction. Supposes that Vi−1 = (i− 1)!, we have:

Vi =

∫
∑i

j=1 xj=1

1 · dx1 · dx2 · . . . · dxi

=

1∫
0

 ∫
∑i−1

j=1 xj=1−xi

1 · dx1 · dx2 · . . . · dxi−1

 dxi

=

1∫
0

(1− xi)
i−1 ·

 ∫
∑i−1

j=1 uj=1

1 · du1 · du2 · . . . · dui−1

 dxi

= Vi−1 ·
1∫

0

(1− xi)
i−1dxi

= (1/i) · Vi−1

= 1/i!

The proof is then completed by expanding the induction recursively.

B.3. Key Lemmas

Lemma B.10. When g(·) is Lipschitz continuous, the following holds:

∥g(x)− g(x̃)∥∞ ≤ sup ∥∇xg∥p · ∥x− x̃∥q,

where 1
p + 1

q = 1.

Proof.

|g(x)− g(x̃)| =
∣∣∣∣∫ 1

0

⟨∇g(τx+ (1− τ)x̃), x− x̃⟩ dτ
∣∣∣∣

≤ sup
x∈X

[
∥∇g∥p

]
·
∥∥x− x̃

∥∥
q

Corollary B.11. Specifically, when p = 1 and q =∞, we have

∥g(x)− g(x̃)∥∞ ≤ sup ∥∇xg∥1 · ∥x− x̃∥∞.

Lemma B.12. The cross-entropy loss function ℓce(f(x), y), where
(
f(x) ∈ RC

)
and C is the number of classes, is 2-Lip

continuous w.r.t. the defined infinity norm ∥f∥∞.
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Proof. According to Corollary.B.11, if:

sup
(x,y),f∈F

∥∇f ℓce(f(x), y)∥1 ≤ 2 (4)

Then we have: ∣∣∣ℓce(f(x), y)− ℓce(f̃(x), y)
∣∣∣ ≤ 2 · ∥f − f∥∞

Hence, we only need to proof 4. To see this:∣∣∣∣∂ℓce (f(x), y)∂f j(x)

∣∣∣∣ = ∣∣σj − 1[j = y]
∣∣

where

σj =
f j(x)∑C

i=1 exp (f
i(x))

Since we have:

sup
(x,y),f∈F

∥∇f ℓce(f(x), y)∥1 =
∑
j

∣∣σj − 1[j ̸= y]
∣∣ ≤ 2

This proof is completed since x, y, f are arbitrarily chosen.

Lemma B.13. Let {xi, yi}Ni=1 be i.i.d samples from a data distribution, the loss function of a prediction is given by
ℓ(, xi, yi) = ℓ(f(xi), yi) ∈ [0, B] for a scoring function f ∈ F . If the loss function Lc-lipschitz continuous w.r.t. the defined
infinity norm ∥f∥∞. With high probability, the following inequality holds for all f ∈ F:

|E[ℓ]− ˆE[ℓ]| ≤ B ·
√

2d

N
· log (3 · r ·N)

Proof. Based on the basic property of the covering number, we can construct a covering of F using a set of open balls
B1, · · · ,BM. Each open ball Bj is centered at fj , where Bj =

{
f ∈ F : ∥f − fj∥∞ ≤ ϵ/4Lc

}
.

Accoring to the lemma.B.4, the following inequality holds:

P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ ϵ

]
≤

M′∑
j=1

P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ ϵ

]

For one j, we have:

P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ ϵ

]
≤ P

[
sup
f∈Bj

[|E[ℓ]− E[ℓj ]|] ≥
ϵ

4

]
+ P

[∣∣∣E[ℓj ]− Ê[ℓj ]
∣∣∣ ≥ ϵ

2

]
+ P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓj ]
∣∣∣] ≥ ϵ

4

]
Since ℓ is L-lipschitz continuous w.r.t. the defined infinity norm, we have:

|ℓ− ℓj | ≤ Lc · ∥f − fj∥∞ ≤ Lc ·
ϵ

4Lc
≤ ϵ

4
.

Naturally, we have:

P

[
sup
f∈Bj

[|E[ℓ]− E[ℓj ]|] ≥
ϵ

4

]
= 0, P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓj ]
∣∣∣] ≥ ϵ

4

]
= 0

According to the lemma.B.2, we have:

P

[
sup
f∈Bj

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ ϵ

]
≤ P

[∣∣∣E[ℓj ]− Ê[ℓj ]
∣∣∣ ≥ ϵ

2

]
≤ 2 · exp

(
−ϵ2 ·N
2 ·B2

)
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Thus,

P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ ϵ

]
≤ 2 · N

(
F , ϵ

4Lc
, ∥·∥∞

)
· exp

(
−ϵ2 ·N
2 ·B2

)

By futher choosing,

ϵ = B ·
√

2d

N
· log (3 · r ·N)

we have:

P

[
sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≥ B ·

√
2d

N
· log (3 · r ·N)

]
≤ 2 ·

(
4 · Lc

B ·
√

2 · d ·N · log (3 · r ·N)

)d

Finally, we can conclude that, with high probability,

sup
f∈F

[∣∣∣E[ℓ]− Ê[ℓ]
∣∣∣] ≤ B ·

√
2d

N
· log (3 · r ·N)

This completed the proof.

Lemma B.14. Assume that the gated weighting function φ(·) is Lv-lipschitz continuous and the loss function ℓ is
Lℓ-Lipschitz continuous. Let ϵ be the generalization error between the empirical risk ÊŶ

[
RD̂ (r, g, h)

]
and the ex-

pected risk EŶ
[
RD̂ (r, g, h)

]
. Then by constructing σ-covering {r1, r2, · · · , rNr

} of Hr with ϵr and σ-covering{
sb,1, sb,2, · · · , sb,Ng

}
ofHg with ϵg , the following inequality holds:

P

[
sup

r∈B(rl,ϵr),sb∈B(sb,u,ϵg)

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≤ ϵ

]
≥ P

[∣∣∣EŶ
[
RD̂ (rl, gu, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣ ≤ ϵ

2

]

Proof. Some simplified notations applicable only to this proof are given as follows:

σ(sb(xb)) = φb, σ(sb,u(xb)) = φ̃b, σ(sn(xn)) = φn

ℓsq(r(xb)− r(xn)) = ℓ, ℓsq(rl(xb)− rl(xn)) = ℓ̃

We first turn to prove the following inequality,∣∣∣∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣− ∣∣∣EŶ
[
RD̂ (rl, gu, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣∣∣∣
(∗)
≤
∣∣∣ÊŶ

[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣+ ∣∣EŶ
[
RD̂ (r, g, h)

]
− EŶ

[
RD̂ (rl, gu, h)

]∣∣ ≤ ϵ

2

(∗) follows the rule that |x+ y| ≤ |x|+ |y| and ||x| − |y|| ≤ |x− y|. Thus, we only need to prove the following inequality,

∣∣∣ÊŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣ ≤ ϵ

4
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We have, ∣∣∣ÊŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣
(∗)
≤

∣∣∣∣∣ 1K
K∑

k=1

[
RD̂(k)(r, g, h)−RD̂(k)(rl, gu, h)

]∣∣∣∣∣
≤max

Ŷ(k)

∣∣RD̂(k)(r, g, h)−RD̂(k)(rl, gu, h)
∣∣

≤max
Ŷ(k)

E
(xb,yb)∼D̂(k)

b

(xn,yn)∼D̂(k)
n

∣∣∣φb · ℓ · φn − φ̃b · ℓ̃ · φn

∣∣∣
(∗∗)
≤ max

Ŷ(k)
E

(xb,yb)∼D̂(k)
b

(xn,yn)∼D̂(k)
n

{∣∣∣φb · ℓ · φn − φb · ℓ̃ · φn

∣∣∣+ ∣∣∣φb · ℓ̃ · φn − φ̃b · ℓ̃ · φn

∣∣∣}
(∗∗∗)
≤ max

Ŷ(k)
E

(xb,yb)∼D̂(k)
b

(xn,yn)∼D̂(k)
n

{
2 · Lℓ · v2∞ · ∥r − rℓ∥∞ + ℓ∞ · Lv · ∥sb − sb,u∥∞

}
≤2 · Lℓ · v2∞ · ϵr + ℓ∞ · Lv · ϵg ≤

ϵ

4

(∗) follows the fact that we perform K base-to-new pseudo partitions. (∗∗) follows the rule that |x+ y| ≤ |x| + |y|.
(∗ ∗ ∗) follows the Lem.B.5. By further choosing ϵr = ϵ

8·Lℓ·v2
∞+4·ℓ∞·Lv

and ϵg = ϵ
8·Lℓ·v2

∞+4·ℓ∞·Lv
, we could construct the

covering number Nr and Ng:

N (ϵr =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hr, ∥·∥∞)

N (ϵg =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hg, ∥·∥∞)

such that the following inequality holds:∣∣∣ÊŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣ ≤ ϵ

4

This completes the proof.

Lemma B.15. Let (r, g, h) be the detector-classifier triplet and K be the number of pseudo base-to-new partitions. The
following inequality holds given the definition of v∞ and ℓ∞:

P
[∣∣∣EŶ

[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ ϵ

2

]
≤ 2 · exp

(
− ϵ2 ·K
2 · v4∞ · ℓ2∞

)
Proof. Step 1: We first need to demonstrate that the ÊŶ

[
RD̂ (r, g, h)

]
satisfies the bounded difference property defined in

Def.1. Let Ŷ and Ŷ ′ be two independent base-to-new pseudo partition distribution where exactly one partition is different.
The difference between Ŷ and Ŷ ′ could be caused by i-th pseudo partition process, denoted as Ŷ(i) and Ŷ ′(i), respectively.
Thus, we need to prove the following bound:

sup
sb∈Hg,r∈Hr

∣∣∣ÊŶ
[
RD̂ (r, g, h)

]
− ÊŶ′

[
RD̂ (r, g, h)

]∣∣∣
Taking a further step, we have:

sup
sb∈Hg,r∈Hr

∣∣∣ÊŶ
[
RD̂ (r, g, h)

]
− ÊŶ′

[
RD̂ (r, g, h)

]∣∣∣
≤ sup

sb∈Hg,r∈Hr

1

K

K∑
k=1

∣∣RD̂(k) (r, g, h)−RD̂′(k) (r, g, h)
∣∣

= sup
sb∈Hg,r∈Hr

1

K

∣∣RD̂(i) (r, g, h)−RD̂′(i) (r, g, h)
∣∣ (∗)≤ v2∞ · ℓ∞

K
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(∗) holds because 0 ≤ φb · ℓsq(r, xn, xb) · φn ≤ v2∞ · ℓ∞. As a result, the expected loss also satisfies RD̂(i) ≤ v2∞ · ℓ∞.
This leads us to conclude that ÊŶ

[
RD̂ (r, g, h)

]
satisfies the bounded difference property.

Step 2: Then, according to the Lem.B.1, we have:

P
[∣∣∣EŶ

[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ ϵ

2

]
≤ 2 · exp

(
− ϵ2 ·K
2 · v4∞ · ℓ2∞

)
This completes the proof.

Lemma B.16. Equipped with Lem.B.14 and Lem.B.15, for ∀r ∈ Hr, sb ∈ Hg, the following inequation holds with high
probability: ∣∣∣EŶ

[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≤ v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K)

Proof. First, we need to figure out the following probability:

P

[
sup

sb∈Hg,r∈Hr

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ ϵ

]

≤ P

 sup

r∈
Nr∪
l=1

Br(rl,ϵr),sb∈
Ng
∪

u=1
Bg(sb,u,ϵg)

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ ϵ


≤

Ng∑
u=1

Nr∑
l=1

P

[
sup

r∈B(rl,ϵr),sb∈B(sb,u,ϵg)

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ ϵ

]
Lem.B.14
≤

Ng∑
u=1

Nr∑
l=1

P
[∣∣∣EŶ

[
RD̂ (rl, gu, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣ ≥ ϵ

2

]
≤ NgNrP

[∣∣∣EŶ
[
RD̂ (rl, gu, h)

]
− ÊŶ

[
RD̂ (rl, gu, h)

]∣∣∣ ≥ ϵ

2

]
Lem.B.15
≤ NgNr2 exp

(
− ϵ2 ·K
2 · v4∞ · ℓ2∞

)
According to Lem.B.14, we have

Ng = N (ϵr =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hr, ∥·∥∞)

Nr = N (ϵg =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hg, ∥·∥∞)

By further choosing

ϵ = v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K)

we further have:

P

[
sup

sb∈Hg,r∈Hr

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≥ v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K)

]
≤ 2 ·

(
Γ

2d log 3 · r ·K

)d

where Γ is universal constant depending on v∞, ℓ∞, Lℓ, Lv, r.

Therefore, we arrive at the conclusion that for ∀sb ∈ Hg, r ∈ Hr, the following inequation holds with high probability∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≤ v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K)
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Lemma B.17. Assume that the gated weighting function φ(·) is Lv-lipschitz continuous and the loss function ℓ is Lℓ-
Lipschitz continuous. Let ϵ be the generalization error between R̂Ŝ(r, g, h) and E[R̂Ŝ(r, g, h)]. Then by constructing
σ-covering {r1, r2, · · · , rNr} ofHr with ϵr and σ-covering

{
sb,1, sb,2, · · · , sb,Ng

}
ofHg with ϵg , the following inequality

holds:

P

[
sup

r∈B(rl,ϵr),sb∈B(sb,u,ϵg)

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≤ ϵ

]
≥ P

[∣∣∣R̂Ŝ(rℓ, gu, h)− E[R̂Ŝ(rℓ, gu, h)]
∣∣∣ ≤ ϵ

2

]
Proof. Firstly, some simplified notations applicable only to this proof are given as follows:

σ(fg(x
i
b)) = φi

b, σ(fgu(x
i
b)) = φ̃i

b, σ(fh(x
j
n)) = φj

n

ℓsq(r(x
i
b)− r(xj

n)) = ℓi,j , ℓsq(rl(x
i
b)− rl(x

j
n)) = ℓ̃i,j

Given ϵr-covering {r1, r2, · · · , rn} of Hr and ϵg-covering
{
sb,1, sb,2, · · · , sb,Ng

}
of Hg, to prove the above lemma, we

turn to prove the following inequality holds:∣∣∣∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣− ∣∣∣R̂Ŝ(rℓ, gu, h)− E[R̂Ŝ(rℓ, gu, h)]

∣∣∣∣∣∣
≤
∣∣∣R̂Ŝ(r, g, h)− R̂Ŝ(rℓ, gu, h)

∣∣∣+ ∣∣∣E[R̂Ŝ(r, g, h)]− E[R̂Ŝ(rℓ, gu, h)]
∣∣∣ ≤ ϵ

2

Similarly, we have:

∣∣∣R̂Ŝ(r, g, h)− R̂Ŝ(rℓ, gu, h)
∣∣∣ ≤

∣∣∣∣∣∣ 1

Ñb · Ñn

Ñb∑
i=1

Ñn∑
j=1

∣∣∣φi
g · ℓi,j · φj

n − φ̃i
b · ℓ̃i,j · φj

n

∣∣∣
∣∣∣∣∣∣

≤ max
(xi

b,x
j
n)

∣∣∣φi
g · ℓi,j · φj

n − φ̃i
b · ℓ̃i,j · φj

n

∣∣∣
(∗)
≤ max

(xi
b,x

j
n)

{∣∣∣φi
g · ℓi,j · φj

n − φi
g · ℓ̃i,j · φj

n

∣∣∣+ ∣∣∣φi
g · ℓ̃i,j · φj

n − φ̃i
b · ℓ̃i,j · φj

n

∣∣∣}
(∗∗)
≤ max

(xi
b,x

j
n)

{
2 · v2∞ · Lℓ · ∥r − rℓ∥∞ + ℓ∞ · v∞ · Lv · ∥sb − sb,u∥∞

}
≤ 2 · Lℓ · v2∞ · ϵr + ℓ∞ · Lv · ϵg ≤

ϵ

4

where Ñb and Ñn are the number of pseudo base and new samples in Ŝ. (∗) follows the fact that |x+ y| ≤ |x|+ |y|. (∗∗)
follows the Lem.B.5.

By further choosing ϵr = ϵ
8·Lℓ·v2

∞+4·ℓ∞·Lv
and ϵg = ϵ

8·Lℓ·v2
∞+4·ℓ∞·Lv

, we could construct the covering number Nr and Ng

as follows:

Nr = N (ϵr =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hr, ρr), ρr = ∥rl − r∥∞

Ng = N (ϵg =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hg, ρg), ρg = ∥sb,u − sb∥∞

such that the following inequality holds: ∣∣∣R̂Ŝ(r, g, h)− R̂Ŝ(rℓ, gu, h)
∣∣∣ ≤ ϵ

4

Thus, we have: ∣∣∣R̂Ŝ(r, g, h)− R̂Ŝ(rℓ, gu, h)
∣∣∣+ ∣∣∣E[R̂Ŝ(r, g, h)]− E[R̂Ŝ(rℓ, gu, h)]

∣∣∣ ≤ ϵ

2

This completes the proof.
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Lemma B.18. Let Ŝ and Ŝ ′ be two independent datasets where exactly one instance is different. We conclude that
R̂Ŝ(r, g, h) satisfies the bounded difference property.

Proof. The following simplified notations are used in this proof:

σ(fg(x
i
b)) = φi

b, σ(sb(xb)) = φb, σ(sb(x̃b)) = φ̃b

σ(fh(x
j
n)) = φj

n, σ(sn(xn)) = φn, σ(sn(x̃n)) = φ̃n

ℓsq(r(xb)− r(xj
n)) = ℓ(r, xb, x

j
n), ℓsq(r(x̃b)− r(xj

n)) = ℓ(r, x̃b, x
j
n)

ℓsq(r(x
i
b)− r(xn)) = ℓ(r, xi

b, xn), ℓsq(r(x
i
b)− r(x̃n)) = ℓ(r, xi

b, x̃n)

To prove this lemma, we need to seek the upper bound of

sup
sb∈Hg,r∈Hr

∣∣∣R̂Ŝ′(r, g, h)− R̂Ŝ(r, g, h)
∣∣∣

We first recall that

R̂Ŝ(r, g, h) = Ê
(xb,yb)∼Ŝb

(xn,yn)∼Ŝn

φb · ℓsq(r, xn, xb) · φn =
1

Ñb · Ñn

Ñb∑
i=1

Ñn∑
j=1

φi
b · ℓsq(r(xi

b)− r(xj
n)) · φj

n

Thus, the difference between Ŝ and Ŝ ′ could be caused by either the pseudo base domain sample (i.e. xb and x̃b) or the
pseudo new domain sample (i.e. xn and x̃n). Hence, we have the following two possible cases:

Case 1: Only a base domain sample is different. Since xb and x̃b are different in this case, we have:

sup
sb∈Hg,r∈Hr

∣∣∣R̂Ŝ′(r, g, h)− R̂Ŝ(r, g, h)
∣∣∣

= sup
sb∈Hg,r∈Hr

∣∣∣∣∣∣ 1

ÑbÑn

Ñn∑
j=1

φj
n · ℓsq(r(xb)− r(xj

n)) · φb −
1

ÑbÑn

Ñn∑
j=1

φj
n · ℓsq(r(x̃b)− r(xj

n)) · φ̃b

∣∣∣∣∣∣
≤ 1

ÑbÑn

sup
sb∈Hg,r∈Hr

Ñn∑
j=1

∣∣φj
n · ℓ(r, xb, x

j
n) · φb − φj

n · ℓ(r, x̃b, x
j
n) · φ̃b

∣∣ (∗)≤ v2∞ · ℓ∞
Ñb

(∗) holds because φj
n · ℓ(r, xb, x

j
n) · φb ∈ [0, v2∞ · ℓ∞].

Case 2: Only a new domain sample is different. Since xn and x̃n are different in this case, similarly we have:

sup
sb∈Hg,r∈Hr,h∈Hh

∣∣∣R̂Ŝ′(r, g, h)− R̂Ŝ(r, g, h)
∣∣∣ ≤ v2∞ · ℓ∞

Ñn

Finally, taking two cases into account, we can conclude that R̂S(r, g, h) is satisfied with the bounded difference property.

Lemma B.19. Let Ñb and Ñn be the number of pseudo base and new samples in dataset Ŝ. Equipped with the above
Lem.B.1 and Lem.B.18, the following inequality holds given the definition of v∞ and ℓ∞:

P
[∣∣∣R̂Ŝ(rl, gu, h)− E[R̂Ŝ(rl, gu, h)]

∣∣∣ ≥ ϵ

2

]
≤ 2 exp

(
−ϵ2 · Ñ

2

)

where

Ñ = v−4
∞ · ℓ−2

∞ ·
(

1

Ñb

+
1

Ñn

)−1
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Proof. The proof could be easily achieved by applying Lem.B.1 on top of Lem.B.18 as:

P
[∣∣∣R̂Ŝ(rl, gu, h)− E[R̂Ŝ(rl, gu, h)]

∣∣∣ ≥ ϵ

2

]
≤ 2 · exp

(
− ϵ2

2 ·
∑n

t=1 c
2
t

)

≤ 2 · exp

− ϵ2

2 ·
(

v4
∞·ℓ2∞
Ñb

+
v4
∞·ℓ2∞
Ñn

)


Lemma B.20. Let E[R̂Ŝ(r, g, h)] be the population risk of R̂Ŝ(r, g, h). Then, equipped with Lem.B.17 and Lem.B.18, for
∀r ∈ Hr, sb ∈ Hg , the following inequation holds with high probability:

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≤

√
2d log 3 · r · Ñ

Ñ

Proof. First, we need to figure out the following probability:

P

[
sup

sb∈Hg,r∈Hr

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≥ ϵ

]

≤ P

 sup

r∈
Nr∪
l=1

Br(rl,ϵr),sb∈
Ng
∪

u=1
Bg(sb,u,ϵg)

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≥ ϵ


≤

Ng∑
u=1

Nr∑
l=1

P

[
sup

r∈B(rl,ϵr),sb∈B(sb,u,ϵg)

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≥ ϵ

]
Lem.B.17
≤

Ng∑
u=1

Nr∑
l=1

P
[∣∣∣R̂Ŝ(rℓ, gu, h)− E[R̂Ŝ(rℓ, gu, h)]

∣∣∣ ≥ ϵ

2

]
≤ NgNrP

[∣∣∣R̂Ŝ(rℓ, gu, h)− E[R̂Ŝ(rℓ, gu, h)]
∣∣∣ ≥ ϵ

2

]
Lem.B.18
≤ NgNr2 exp

(
−ϵ2 · Ñ

2

)

where Nr, Ng are the covering numbers of the hypothesis spaceHr,Hg , respectively.

Nr = N (ϵr =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hr, ρr), ρr = ∥rl − r∥∞

Ng = N (ϵg =
ϵ

8 · Lℓ · v2∞ + 4 · ℓ∞ · Lv
,Hg, ρg), ρg = ∥sbu − sb∥∞

By futher choosing,

ϵ =

√√√√2 · d · log
(
3 · r · Ñ

)
Ñ

we have:

P

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≥

√
2d log 3 · r · Ñ

Ñ

 ≤ 2 ·
(

Γ

2d log 3 · r · Ñ

)d
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Similarly, we conclude that the following inequality holds with high probability,

∣∣∣R̂Ŝ(r, g, h)− E[R̂Ŝ(r, g, h)]
∣∣∣ ≤

√
2d log 3 · r · Ñ

Ñ
, ∀r ∈ Hr, sb ∈ Hg

B.4. Formal Proof

We present an upper bound of the expected risk R(r, g, h) in (OP0). Note that our subsequent analysis is based on a
standard assumption that the base domain logit score function sb and the detection function r are chosen from hypotheses
classHg andHr respectively. These hypothesis classes are the specific types of frozen CLIP with learnable prompts.

Restate of Theorem 5.2. Let Yb be the base label space and Y be the overall label space, where the total number of
classes is C. Suppose Ŷ represents the pseudo base-to-new partition distribution, and let E and E ′ denote the expectation
distribution over Y and Ŷ . Furthermore, consider a training dataset Sb = {(xi

b, y
i
b)}

Nb
i=1 comprising i.i.d. samples drawn

from the data distribution D̂. Define R(r, g, h) as the population risk of R̂(r, g, h) in OP0. For the loss function, let
ℓ∞ = sup(xb,xn) |ℓsq(r, xb, xn)| bounds the squared loss, ℓc,∞ = sup(x,y) ℓce(sb(x), y) bounds the cross-entropy loss and

v∞ = supx

∣∣∣σ(s(y)b (x))
∣∣∣ bounds the sigmoid function. Assume that N (ϵ;H, ρ) ≤

(
3r
ϵ

)d
. Then, for all r ∈ Hr, sb ∈ Hg,

with high probability, the following inequality holds:

R(h, g, r) ≤ R̂′(h, g, r) + EDn [ℓce(sn(xn), yn)] +
v2∞ · ℓ∞ · ||E(P)− E ′(P)||∞

C!

+ v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K) + 2 · v2∞ · ℓ∞ ·

√
2d log 3 · r ·Nb

Nb

Proof. We first decompose the overall excess risk into the following three parts:

∆ = sup
sb∈Hg,r∈Hr

[
R(r, g, h)− R̂′(r, g, h)

]
≤ sup

sb∈Hg,r∈Hr

[
EE [RD(r, g, h)]− ÊÊ

[
R̂Ŝ(r, g, h)

]]
︸ ︷︷ ︸

∆r

+ sup
sb∈Hg

[
EDb

[ℓce(sb(xb), yb)]− ÊSb
[ℓce(sb(xb), yb)]

]
︸ ︷︷ ︸

∆g

+ EDn
[ℓce(sn(xn), yn)]︸ ︷︷ ︸

∆h

According to our analysis in the proof outline, analyzing ∆h and bounding ∆g are relatively straightforward. We will first
analyze ∆h and ∆g and then provide a detailed analysis of ∆r.

As for ∆h. Without prior knowledge of the new domain, bounding the expected error ∆h remains challenging. In practice,
we can reduce this term by carefully designing hand-crafted prompts or using more powerful foundation models.

As for ∆g. Accoring to the Lem.B.12, the loss function ℓce is lipschitz continuous. By applying Lem.B.13, the following
inequality holds with high probability:

sup
sb∈Hg

[
EDb

[ℓce(sb(xb), yb)]− ÊSb
[ℓce(sb(xb), yb)]

]
≤ ℓc,∞ ·

√
2d

Nb
· log (3 · r ·Nb)
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As for ∆r. Directly bounding ∆r is difficult, so we decompose the ∆r as follows:

∆r = sup
sb∈Hg,r∈Hr

[
EY [RD]− ÊŶ

[
R̂Ŝ

]]
= sup

sb∈Hg,r∈Hr

[
EY [RD]− EŶ

[
RD̂
]
+ EŶ

[
RD̂
]
− ÊŶ

[
RD̂
]
+ ÊŶ

[
RD̂
]
− ÊŶ

[
R̂Ŝ

]]
≤ sup

sb∈Hg,r∈Hr

[
EY [RD]− EŶ

[
RD̂
]]

︸ ︷︷ ︸
(a)

+ sup
sb∈Hg,r∈Hr

[
EŶ
[
RD̂
]
− ÊŶ

[
RD̂
]]

︸ ︷︷ ︸
(b)

+ sup
sb∈Hg,r∈Hr

[
ÊŶ
[
RD̂
]
− ÊŶ

[
R̂Ŝ

]]
︸ ︷︷ ︸

(c)

As for (a) Since φb · ℓsq(r, xn, xb) · φn is bounded by [0, v2∞ · ℓ∞], we have

sup
sb∈Hg,r∈Hr

[
EY
[
RD|Y

]
− EŶ

[
RD̂
]]
≤ v2∞ · ℓ∞

∫
Sc−1

|E(P)− E ′(P)| dP

Lem.B.9
≤ v2∞ · ℓ∞ · ||E(P)− E ′(P)||∞

C!

where Sc−1 is the probabilistic simplex on RC , P is a C-dimensional probability allocation sampled either from E or E ′.

As for (b), by applying Lem.B.16, the following inequality holds with high probability:

sup
sb∈Hg,r∈Hr

∣∣∣EŶ
[
RD̂ (r, g, h)

]
− ÊŶ

[
RD̂ (r, g, h)

]∣∣∣ ≤ v2∞ · ℓ∞ ·
√

2d

K
· log (3 · r ·K)

As for (c), we have:

sup
sb∈Hg,r∈Hr

[
ÊŶ
[
RD̂
]
− ÊŶ

[
R̂Ŝ

]]
= sup

sb∈Hg,r∈Hr

[
1

K

K∑
k=1

RD̂(k) −
1

K

K∑
k=1

R̂Ŝ(k)

]

For on fixed Ŷ(k), according to the Lem.B.20, the following inequality holds with high probability:

sup
sb∈Hg,r∈Hr

∣∣∣R̂Ŝ(k)(r, g, h)− E[R̂Ŝ(k)(r, g, h)]
∣∣∣ ≤

√
2d log 3 · r · Ñ

Ñ

where

Ñ = v−4
∞ · ℓ−2

∞ ·

(
1

Ñ
(k)
b

+
1

Ñ
(k)
n

)−1

Due to Ñ
(k)
n + Ñ

(k)
b = Nb, we have:

Ñ ≥ Ñmin =
Nb

4 · v4∞ · ℓ2∞

Thus, for all Ŷ(k), k ∈ [1,K], with high probability, we further have:

sup
sb∈Hg,r∈Hr

∣∣∣R̂Ŝ(k)(r, g, h)− E[R̂Ŝ(k)(r, g, h)]
∣∣∣ ≤

√
2d log 3 · r · Ñmin

Ñmin

≤ 2 · v2∞ · ℓ∞ ·
√

2d log 3 · r ·Nb

Nb

Finally, by combining the bound for ∆r, ∆g and ∆h, we reach the conclusion of this theorem.
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C. Additional Experimental Setup
C.1. Task Description

We perform empirical evaluations on Open-world recognition, Open-world domain generalization and Open-world
cross-dataset generalization tasks:

• Open-world recognition task. This setting involves dividing the class space of each dataset equally, with 50% of
the classes designated as base classes and the remaining 50% as new classes, following (Zhou et al., 2022b). In the
imbalance setting, we resample the test sets constructed with different base/new sample ratios. The model is trained on
the base classes and evaluated on the mixture of base and new classes.

• Open-world domain generalization task. The model is trained only on the base classes of ImageNet dataset and
evaluated on the all classes of ImageNet variants datasets, each with additional different types of domain change.

• Open-world cross-dataset generalization task. We train our prompt exclusively on the base domain of ImageNet and
subsequently evaluate model performance on a combined test set containing both the original ImageNet-500 classes and
new categories from seven external datasets: FGVC-Aircraft, Caltech-101, Stanford-Cars, DTD, EuroSAT, SUN397,
and UCF101. To ensure a fair evaluation of open-world generalization, we meticulously remove any categories from
these external datasets that overlapped with the ImageNet-500 class space before evaluation.

C.2. Datasets

For open-world recognition task, we follow prior work (Zhou et al., 2022b;a; 2024) and conduct experiments on 11
benchmark datasets that span a wide range of image recognition tasks. These datasets can be categorized into five main
types: 1) Generic object classification, which includes ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al.,
2004); 2) Fine-grained classification, encompassing OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013),
Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al., 2013); 3)
Scene recognition, represented by SUN397 (Xiao et al., 2010); 4) Action recognition, with UCF101 (Soomro et al., 2012);
and 5) Specialized domains, such as texture classification with DTD (Cimpoi et al., 2014) and satellite image classification
with EuroSAT (Helber et al., 2019). For the open-world domain generalization task, we use ImageNet (Deng et al., 2009)
as the source domain and evaluate on its four variants: ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al., 2021a). The details of each dataset are
shown in the following:

• ImageNet. ImageNet, a widely recognized generic object classification dataset, comprises approximately 1.28 million
training images and 50,000 test images across 1,000 object classes. Sourced from the web and organized using the
WordNet hierarchy, it has become a benchmark for evaluating object recognition models.

• Caltech101. The Caltech101 dataset, designed for general object classification, includes 101 object categories and a
background class, featuring around 7,650 training and 3,300 test images. The images, collected at Caltech, present
significant variation in scale, orientation, and lighting conditions.

• OxfordPets. Focusing on fine-grained pet classification, OxfordPets contains 37 pet breed categories with nearly
equal numbers of training (3,680) and test (3,669) images. The dataset provides not only breed annotations but also
pixel-level segmentation masks, making it versatile for classification and segmentation tasks.

• StanfordCars. StanfordCars targets fine-grained car model recognition with 196 classes distinguished by make, model,
and year. It offers 8,144 training images and 8,041 test images, sourced from various car-related platforms, capturing
diverse vehicle angles and environments.

• Flowers102. Flowers102 is a dataset of 102 flower species, designed for fine-grained classification tasks. With 6,149
training and 1,020 test images, it presents visually intricate patterns, and challenging models to distinguish among
visually similar flower categories.

• Food101. Food101 is tailored for fine-grained food classification, comprising 101 categories of dishes. The dataset
includes 75,750 training images and 25,250 test images, offering challenges in recognizing overlapping ingredients and
presentation styles. Images were curated from a range of food-related sources.
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• FGVCAircraft. FGVCAircraft specializes in fine-grained classification of aircraft, offering 100 categories that
distinguish between models and manufacturers. It contains 6,667 training images and 3,333 test images, sourced from
aviation databases, with a focus on subtle visual differences in design.

• SUN397. SUN397 is a comprehensive scene recognition dataset that encompasses 397 categories, covering diverse
environments such as natural landscapes, indoor spaces, and urban areas. It includes approximately 50,000 training and
50,000 test images, offering a rich resource for scene understanding.

• UCF101. UCF101 is a video dataset designed for action recognition tasks, featuring 101 action classes ranging from
sports to daily activities. The dataset contains about 9,500 training clips and 3,700 test clips, collected from YouTube,
with a variety of dynamic scenarios.

• DTD(Describable Textures Dataset) The DTD dataset focuses on texture classification, featuring 47 texture categories
described using human-interpretable attributes. It offers 3,760 training and 1,880 test images, providing a unique
challenge in recognizing visually distinctive patterns from natural and artificial sources.

• EuroSAT. EuroSAT is a satellite image dataset for land-use and land-cover classification, containing 10 classes such as
agricultural areas, forests, and urban regions. Derived from Sentinel-2 satellite imagery, it includes 21,600 training and
5,400 test images, offering rich spatial and spectral diversity.

• ImageNet-A ImageNet-A is a curated subset of ImageNet consisting of images that exhibit challenging, adversarial
characteristics. These images are specifically selected to challenge existing models, often including unusual or
hard-to-classify variations of the objects from ImageNet’s standard classes.

• ImageNet-R ImageNet-R is a variant of ImageNet that features images with artistic and stylized renditions of the
original objects. These images have been altered to reflect different artistic interpretations, such as paintings, sketches,
or computer-generated images. This dataset evaluates how well models generalize across diverse artistic representations
of familiar objects.

• ImageNetV2 ImageNetV2 is a revised version of the original ImageNet dataset, designed to better represent real-world
data distribution. It has slight variations in image selection and distribution. It serves as an alternative benchmark to
assess the robustness of object recognition models under different data variations.

• ImageNet-Sketch ImageNet-Sketch is a variant of ImageNet, created by converting the original images into sketch-like
representations. It consists of 50, 000 images, spanning the same 1, 000 classes as the original ImageNet, but each
image has been hand-drawn to emphasize the object’s outline and basic features. This dataset challenges models to
recognize objects in a more abstract form, testing their generalization ability across different visual representations.

We also construct 10 domain imbalance of 1 : 5 datasets by randomly sampling DTD, Food101, Flowers102, OxfordPets,
and SUN397. Forward (Fwd) means base domain number is 5 times the new domain number, while Backward (Bwd) means
the opposite.

C.3. Competitors

To demonstrate the effectiveness of our proposed method, we compare our method with 10 competitive competitors:
a) Baseline, Zero-shot CLIP (Radford et al., 2021); b) HM-oriented methods, including CoOp (Zhou et al., 2022b),
Maple (Khattak et al., 2023a), KgCoOp (Yao et al., 2023), PromptSRC (Khattak et al., 2023b), DePT-Kg (Zhang et al.,
2024) and TCP (Yao et al., 2024); c) OOD-oriented methods, including LoCoOp (Miyai et al., 2023) and Gallop (Lafon
et al., 2024); d) OverallAcc-oriented algorithms, DeCoOp (Zhou et al., 2024). The details of each competitor are provided
in the following:

• CoOp proposes learnable continuous prompts to replace manual text templates in CLIP-like vision-language models.
Through gradient-based optimization of task-specific textual context, it achieves strong few-shot performance but tends
to overfit seen classes, compromising generalization on unseen categories.

• Maple couples vision-language prompts hierarchically, thus it mitigates the limitations of single-branch adaptation and
improves generalization to unseen classes.
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• KgCoOp addresses catastrophic forgetting of general knowledge in prompt tuning by minimizing the discrepancy
between learned prompts and fixed hand-crafted prompts. It enforces consistency via a regularization loss, balancing
base domain adaptation with CLIP’s original zero-shot capabilities for improved classification performance on new
domain.

• PromptSRC introduces a three-pronged regularization framework: (a) mutual agreement with frozen CLIP features,
(b) self-ensemble of prompts across training phases, and (c) textual diversity augmentation. This approach reduces
overfitting while preserving the model’s generalization on both base and new classification tasks.

• DePT decouples prompt optimization into distinct components, potentially separating base and new domain classifica-
tion. We incorporate this method on top of KgCoOp to further improve the generalization performance, denoted as
DePT-Kg.

• TCP emphasizes class-aware prompt design using textual semantics, aligning prompts with fine-grained class contexts.

• LoCoOp leverages CLIP’s local features (e.g., background regions) as pseudo-OOD samples during training, and it
optimizes text embeddings to separate in-distribution (ID) classes from OOD data, reducing nuisance signals in ID
embeddings. However, this method sacrifices classification performance on base and new domain to some extent.

• Gallop leverages both global and local visual representations. The key features of GalLoP are the strong discriminability
of its local representations and its capacity to produce diverse predictions from both local and global prompts. This
method achieves a better trade-off between domain classification and OOD detection.

• DeCoOp firstly focuses on open-world prompt tuning, where models must classify mixed base/new classes without
prior knowledge. It integrates OOD detection into prompt tuning via the DePT framework, using new-class detectors
and sub-classifiers to enhance base/new class discriminability.

To ensure a fair comparison, we use the same backbone architecture (ViT-B/16) for all competitors. We also adopt the same
training strategy and hyperparameters according to their open-source code. The number of parameters for each method is
shown in Tab.7.

Table 7. The number of parameters for each method.
Method CLIP CoOp Maple PromptSRC LoCoOp KgCoOp DePT-Kg Gallop DeCoOp TCP Ours
param 0 8192 3555072 46080 8192 8192 292914 606208 30720 331904 26624

For all competitors, the detection score r is derived from the maximum probability over the base domain. In this task, the
new domain class names are known during testing. Compared to out-of-distribution (OOD) detection—which operates
without prior knowledge of new classes—the base-to-new detection task is less challenging.

Algorithm 1: Base-to-new detection score r calculation
Input: image features, text features, Number of base classes Cb

Output: Base-to-new detection score r ∈ [0, 1]
logits← image features · text featuresT

prob← Softmax(logits,dim = 1)
r ← max

1≤j≤Cb

prob[:, j]

return r

C.4. Implementation Details

All models are implemented using PyTorch (Paszke et al., 2017). The length of the classifier prompt is set to 4. To ensure
the parameter size of our method is comparable to recent state-of-the-art methods that incorporate additional structures or
deep prompts, the detector prompt’s length is set to 16, consistent with DeCoOp (Zhou et al., 2024). Results are reported as
the average over 5 runs with different random seeds 1, 2, 3, 4, 5. We mention that we adopt a fixed hand-crafted prompt for
the new domain classifier. To be specific, we use the prompt ensemble:
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"itap of a {}. a bad photo of the {}. a origami {}. a photo of the large {}.
a {} in a video game. art of the {}. a photo of the small {}"

in all datasets except for some fine-grained datasets. For the challenging fine-grained dataset, we use the prompt:

• FGVCAircraft: "a photo of [CLASS], a type of aircraft."

• Food101: "a photo of [CLASS], a type of food"

• Flowers102: "a photo of [CLASS], a type of flower"

to ensure the prompt is consistent with the dataset’s characteristics.

C.5. Efficient Calculation of OpenworldAUC

During the test phase, all samples containing base and new samples are available. To calculate the OpenworldAUC efficiently,
we first mask each sample that has been misclassified and then calculate the AUROC on the correctly-classified samples
through pairwise instance comparisons. To be specific, there are the following two steps.

Step 1: Mask misclassified samples.

r̃(xn) =

{
ϵ+maxxb∈S′

b
r(xb) if h(xn) ̸= yn

r(xn) if h(xn) = yn

r̃(xb) =

{
minxn∈S′

n
r(xn)− ϵ if g(xb) ̸= yb

r(xb) if g(xb) = yb

where S ′b and S ′n are the base and new domain test datasets.

Step 2: AUROC Calculation.

OpenworldAUC(r, g, h) =
1

N ′
b ·N ′

n

∑
(xb,yb)∈S′

b

(xn,yn)∈S′
n

[
1[yb = g(xb)] · 1[r(xb) > r(xn)] · 1[yn = h(xn)]

]

=
1

N ′
b ·N ′

n

∑
(xb,yb)∈S′

b

(xn,yn)∈S′
n

[
1[r̃(xb) > r̃(xn)]

]
= AUROC(r̃)

D. Additional Experimental Results
D.1. Additional Results for Openworld Recognition Task

In this section, we present full results of open-world recognition task with standard deviation and also show stage-wise
metrics (say AUROC and HM) in the Tab.8, Tab.9 and Tab.10. Fig.7 provides a clearer visualization, showing that HM-
oriented methods are located on the right side of the image, implying a higher HM metric values. However, these methods
still have limitations in base-to-new detection performance, which is consistent with the shortcoming of HM metric (P1).
And the OOD-oriented method such as LoCoOp may is located on the left upper of the image, meaning a higher AUROC
metric but sacrifices the classification performance to some extent. This limitation is consistent with the AUROC metric (P2).
Compared with these methods, our OpenworldAUC-oriented optimization method can achieve a better trade-off between
the AUROC and HM, which further demonstrate the comprehensive of OpenworldAUC metric and the efficiency of our
optimization method. This is consistent with (P1) and (P2).
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Table 8. Quantitative comparisons on ImageNet, Caltech101, OxfordPets, StanfordCars, Flowers102 and the average of eleven datasets.
The best and the runner-up method on each dataset are marked with blue and red, respectively.

Method
Average ImageNet

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 71.55 79.62 47.83 70.18±0.00 87.91±0.00 47.31±0.00
CoOp 70.65 84.27 47.59 71.19±0.51 95.15±0.22 48.93±0.71
Maple 77.82 86.18 57.35 73.31±0.23 95.47±0.52 51.89±0.47

PromptSRC 78.83 86.20 58.21 73.59±0.36 95.83±0.08 52.44±0.53
LoCoOp 71.44 89.87 52.62 68.67±0.45 92.96±0.31 45.12±0.60
KgCoOp 76.31 84.23 55.07 73.00±0.08 95.33±0.16 51.45±0.13
DePT-kg 78.37 87.37 59.00 73.13±0.14 93.38±0.62 51.35±0.21
Gallop 77.75 85.81 56.90 70.83±0.14 95.93±0.15 49.01±0.18

DeCoOp 76.10 90.68 58.77 73.15±0.64 96.22±0.09 51.98±0.11
TCP 78.56 86.05 58.90 72.90±0.06 95.31±0.11 51.34±0.14

Ours 78.24 91.08 60.94 73.19±0.15 96.94±0.06 52.64±0.16

Method
Caltech101 OxfordPets

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 95.67±0.00 89.44±0.00 82.31±0.00 93.36±0.00 85.09±0.00 76.17±0.00
CoOp 94.10±0.51 93.48±0.65 83.29±0.65 93.87±1.30 90.56±0.48 80.71±2.31
Maple 96.38±0.47 93.66±0.36 87.15±0.99 96.02±0.49 92.23±0.94 85.59±1.62

PromptSRC 96.71±0.28 92.60±0.16 86.74±0.35 96.43±0.17 91.83±0.45 86.10±0.42
LoCoOp 93.28±1.44 98.88±0.39 86.59±2.65 93.86±2.71 97.73±0.90 86.62±5.52
KgCoOp 96.37±0.19 92.98±0.29 86.63±0.34 96.42±0.26 92.47±0.46 86.80±0.43
DePT-kg 96.59±0.08 99.39±0.07 92.74±0.17 95.90±0.24 95.23±0.35 87.81±0.35
Gallop 95.76±0.38 95.25±0.36 87.51±0.73 96.38±0.36 93.00±0.22 86.94±0.60

DeCoOp 96.45±0.07 99.48±0.07 92.72±0.10 94.83±0.65 98.21±0.42 88.72±1.21
TCP 96.50±0.12 92.34±2.85 88.65±2.65 95.74±0.44 92.27±0.27 85.50±0.83

Ours 96.51±0.06 99.49±0.04 92.81±0.12 95.52±0.13 98.03±0.92 89.77±0.97

Method
StanfordCars Flowers102

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 69.02±0.00 87.91±0.00 43.43±0.00 73.75±0.00 85.56±0.00 48.51±0.00
CoOp 62.54±2.56 84.97±1.37 35.38±2.85 78.86±3.50 92.21±0.97 59.65±4.40
Maple 73.69±0.34 89.84±0.55 49.99±0.50 83.38±0.45 92.17±0.52 65.44±0.33

PromptSRC 74.52±0.65 89.15±0.18 50.90±0.85 85.55±0.58 93.38±0.20 69.36±0.92
LoCoOp 68.66±1.52 94.66±0.99 46.52±1.86 77.50±1.45 96.86±0.47 61.17±2.07
KgCoOp 73.82±0.05 88.36±0.31 49.40±0.09 82.63±0.93 90.67±1.41 62.96±2.28
DePT-kg 76.88±0.46 93.57±0.85 55.24±0.44 85.10±0.40 92.83±0.75 69.46±1.02
Gallop 73.91±0.69 89.57±0.56 50.69±0.73 82.51±0.33 94.50±0.65 65.69±0.30

DeCoOp 74.03±0.29 95.42±0.53 53.59±0.47 84.15±0.45 96.84±0.36 70.28±0.61
TCP 76.25±0.34 88.85±0.20 53.18±0.31 84.34±1.97 94.05±0.26 69.20±0.35

Ours 75.32±0.17 95.58±0.27 55.31±0.32 85.76±0.12 96.95±0.89 72.79±0.60
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Table 9. Quantitative comparisons on Food101, Fgvc-aircraft, SUN397, DTD, EuroSAT and UCF101. The best and the runner-up method
on each dataset are marked with blue and red, respectively.

Method
Food101 FGVC Aircraft

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 90.3±0.00 89.57±0.00 75.09±0.00 30.94±0.00 60.89±0.00 7.23±0.00
CoOp 85.26±1.29 89.12±0.43 67.27±1.81 26.20±2.83 54.89±1.35 5.60±0.70
Maple 90.72±0.25 90.77±0.42 76.83±0.58 35.17±1.70 66.82±3.18 9.58±0.46

PromptSRC 90.89±0.38 91.13±0.17 77.33±0.57 39.77±0.75 69.53±2.09 11.40±0.61
LoCoOp 86.41±1.73 95.93±0.86 73.09±3.09 31.02±2.06 66.64±1.87 8.67±0.91
KgCoOp 90.84±0.18 90.67±0.37 76.96±0.24 34.08±0.51 56.01±1.90 8.18±0.22
DePT-kg 91.06±0.15 94.56±0.17 79.45±0.32 38.54±1.04 74.47±0.77 12.71±0.57
Gallop 88.96±0.48 90.48±0.24 73.60±0.92 40.32±1.16 58.83±1.36 11.38±0.42

DeCoOp 90.56±0.06 97.36±0.24 80.67±0.27 31.41±0.28 69.91±3.14 8.17±0.32
TCP 90.87±0.21 91.02±0.27 77.27±0.40 37.77±1.38 59.91±1.17 10.72±0.73

Ours 90.79±0.06 97.63±0.08 81.25±0.12 37.78±0.61 71.23±2.27 11.42±0.42

Method
SUN397 DTD

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 72.37±0.00 77.39±0.00 42.52±0.00 56.62±0.00 64.69±0.00 25.22±0.00
CoOp 75.54±0.62 81.63±0.46 48.03±0.56 53.30±1.91 76.03±1.06 25.48±1.40
Maple 79.35±0.28 81.53±0.50 52.84±0.61 67.16±0.76 73.53±2.03 36.22±1.52

PromptSRC 79.84±0.31 82.60±0.56 54.19±0.67 69.60±0.82 77.19±1.23 40.30±0.94
LoCoOp 73.24±0.76 89.35±0.28 50.55±0.98 57.73±3.43 81.14±2.01 32.26±3.12
KgCoOp 78.62±0.39 81.68±0.41 52.09±0.72 65.53±3.26 74.42±0.64 34.87±3.07
DePT-kg 79.79±0.42 85.72±0.26 56.42±0.65 67.51±0.89 72.19±0.99 37.56±1.05
Gallop 77.26±0.49 82.56±0.11 50.62±0.70 70.14±1.57 76.85±1.71 40.22±0.79

DeCoOp 78.08±0.11 89.97±0.45 57.00±0.14 63.94±1.14 79.64±2.19 37.07±1.61
TCP 80.13±0.18 83.03±0.16 54.86±0.36 66.36±0.65 78.47±0.55 37.92±0.85

Ours 79.04±0.10 90.70±0.48 58.54±0.21 68.32±0.87 78.58±1.67 40.37±1.28

Method
EuroSAT UCF101

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 60.21±0.00 64.08±0.00 28.01±0.00 74.66±0.00 83.29±0.00 50.37±0.00
CoOp 68.07±3.93 82.87±3.88 41.96±4.94 68.18±2.65 86.02±0.41 43.95±2.94
Maple 80.15±5.84 86.04±5.21 56.55±10.18 80.71±1.18 85.89±0.75 58.72±1.80

PromptSRC 79.10±5.18 79.46±4.31 52.56±9.26 81.16±0.85 85.46±0.60 58.94±1.36
LoCoOp 66.59±7.49 82.60±4.34 41.35±5.27 68.88±1.41 91.83±0.77 46.90±1.29
KgCoOp 68.85±6.59 77.22±2.90 39.16±7.31 79.21±1.23 86.67±0.84 57.29±1.48
DePT-kg 76.84±3.54 68.33±2.69 44.90±1.96 80.74±1.02 91.41±0.46 61.38±1.37
Gallop 80.06±5.90 78.28±3.13 51.38±8.33 79.13±1.38 88.64±0.52 58.91±1.81

DeCoOp 72.25±2.76 80.70±3.44 46.66±1.81 78.25±0.40 93.73±0.78 59.57±0.72
TCP 80.13±4.17 83.29±2.60 55.89±5.14 83.14±0.37 87.99±0.36 63.39±0.51
Ours 77.66±0.22 83.72±2.68 53.09±1.36 80.76±0.32 93.07±1.15 62.39±0.56
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(a) Average (b) ImageNet (c) SUN397 (d) Flowers102

(e) Caltech101 (f) OxfordPets (g) StanfordCars (h) Food101

Figure 7. Trade-off between the first-stage AUROC metric and the second-stage HM metric on the Openworld Recognition Task.

D.2. Additional Results for Openworld Domain Generalization Task

In this section, we present comprehensive results with standard deviation and also provide stage-wise metrics. The Tab.10
and Fig.8 once again illustrate that optimizing our can more effectively balance the trade-off between the first-stage detection
performance (P1) and the second-stage classification performance (P2). This further underscores the robustness and
generalizability of across diverse domains, as well as the efficacy of our proposed approach in addressing the challenges of
open-world domain generalization tasks.

(a) ImageNet Sketch (b) ImageNetV2 (c) ImageNetA (d) ImageNetR

Figure 8. Trade-off between the first-stage AUROC metric and the second-stage HM metric on the Openworld domain generalization task.

D.3. Sensitivity Analysis of different metrics in varying domain distributions

Tab.11 and Tab.12 show the OverallAcc can be dominated by the performance in the domain with more samples. To be
specific, the varying new/base ratio is constructed by adjusting sample sizes: when the ratio exceeds 1 (i.e., more new
samples), the number of new samples is held constant while reducing base samples; conversely, when the ratio is below 1,
base samples remain unchanged and new samples are decreased. Under this setup, when the new/base ratio is larger than
1 meaning that there are more new samples, the OverallAcc metric is lower which is dominated by new domain. As the
number of base domain samples grows, OverallAcc increases significantly as the number of base domain samples grows,
while our metric OpenworldAUC and AUROC, HM remain stable. Since the prior knowledge about domain distribution is
generally unknown, a distribution-sensitive metric is improper for OPT.
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Table 10. Quantitative comparisons on ImageNetv2, ImageNet-sketch, ImageNet-A and ImageNet-R. The best and the runner-up method
on each dataset are marked with blue and red, respectively.

Method
ImageNetv2 ImageNet sketch

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 64.49±0.00 93.04±0.00 39.49±0.00 49.65±0.00 87.12±0.00 22.57±0.00
CoOp 64.49±0.34 93.39±0.32 39.88±0.40 48.84±0.40 86.05±0.81 21.69±0.40
Maple 66.65±0.15 93.80±0.64 42.44±0.23 50.81±0.43 87.81±0.71 23.79±0.37

PromptSRC 66.57±0.48 94.20±0.16 42.55±0.58 51.24±0.54 89.23±0.49 24.50±0.50
LoCoOp 62.37±0.78 95.49±0.16 38.45±0.90 46.67±0.50 91.71±0.20 20.88±0.47
KgCoOp 66.39±0.24 93.47±0.14 42.14±0.32 51.31±0.17 87.51±0.31 24.24±0.13
DePT-kg 66.10±0.21 94.21±0.83 42.45±0.39 50.00±0.41 87.84±1.68 23.97±0.19
Gallop 64.12±0.20 94.20±0.23 39.86±0.28 48.44±0.37 87.93±0.48 21.57±0.35

DeCoOp 66.51±0.21 95.02±0.11 43.01±0.22 50.91±0.16 91.02±0.20 24.65±0.12
TCP 66.02±0.15 93.37±0.08 41.66±0.20 50.21±0.30 87.02±0.25 23.15±0.31

Ours 67.02±0.11 95.75±0.10 43.98±0.19 51.56±0.14 91.67±0.21 25.64±0.16

Method
ImageNet A ImageNet R

HM AUROC OpenworldAUC HM AUROC OpenworldAUC

CLIP 50.61±0.00 87.23±0.00 23.83±0.00 77.30±0.00 91.09±0.00 57.04±0.00
CoOp 51.10±0.45 88.09±0.77 24.22±0.43 77.08±0.68 90.66±0.86 56.58±1.08
Maple 52.53±1.21 88.93±0.42 25.10±0.57 79.00±0.38 91.66±0.56 59.71±0.68

PromptSRC 51.64±0.95 89.27±0.70 25.08±0.91 79.21±0.59 93.16±0.40 60.65±0.93
LoCoOp 48.82±0.59 90.87±0.19 22.98±0.56 76.09±0.82 96.88±0.23 57.31±1.28
KgCoOp 52.58±0.50 88.22±0.36 25.79±0.49 78.87±0.08 92.01±0.18 59.75±0.10
DePT-kg 52.06±0.21 91.51±0.44 25.84±0.40 78.91±0.12 93.88±0.14 60.60±0.12
Gallop 48.71±0.53 88.92±0.36 22.28±0.47 77.20±0.33 91.01±0.37 56.78±0.61

DeCoOp 52.21±0.33 90.15±0.23 25.31±0.22 78.31±0.22 96.71±0.18 61.01±0.11
TCP 51.35±0.37 88.01±0.24 24.62±0.35 78.18±0.17 91.31±0.27 58.46±0.31

Ours 52.47±0.56 91.63±0.35 26.49±0.63 79.46±0.16 97.57±0.20 62.67±0.27

D.4. Additional Results for Openworld Cross-dataset Generalization Task

We extend our evaluation to investigate the generalization performance of our optimization framework in more challenging
cross-dataset open-world scenarios. The comprehensive results of this cross-domain evaluation, which rigorously tests the
model’s ability to handle both known and new categories across diverse visual domains, are presented in the Tab.13. The
experimental results further speak to the efficiency of our method.

D.5. Fine-grained analysis of OpenworldAUC metric

The OpenworldAUC comprehensively evaluates: 1) base-to-new detection 2) base classification 3) new classification. A
high OpenworldAUC indicates the model performs well on three. To diagnose low OpenworldAUC, we can further check
three sub-metrics: AUROC, BaseAcc, NewAcc. To validate this, we present fine-grained results on four datasets shown in
the table below and Tab.14, Fig.9, which reveal:

• OOD-focused methods (Gallop) excel at BaseAcc-AUROC but struggle with new domain classification

• Base-to-new methods (DePT) show weaker detection performance

• Our method achieves better OpenworldAUC, indicating improved trade-offs across three, which further validates the
comprehensiveness of OpenworldAUC.

D.6. Complexity analysis

We have included the prompt complexity analysis in Fig.5 in the main text. To highlight the efficiency of our method, we
present those numerical results in the Tab.15, along with additional results on inference speed in the Tab.16. The Tab.15
compares average performance on three open-world tasks and learnable parameter counts across methods. Our method
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Table 11. Performance of TCP(Yao et al., 2024) on DTD dataset with respect to new/base ratios. It’s clear that the Overall metric is
sensitive to the new/base ratio.

The new/base ratio BaseAcc NewAcc HM AUROC OverallAcc OpenworldAUC

10 83.06 55.80 66.75 80.42 40.94 38.62
5 81.43 55.80 66.22 78.61 43.72 37.75
3 81.09 55.80 66.11 78.84 45.45 37.85
2 82.31 55.80 66.51 78.62 49.76 38.24
1 81.85 55.80 66.36 78.47 54.61 37.92

0.7 81.85 55.72 66.30 78.03 57.40 37.62
0.5 81.85 55.46 66.12 78.47 59.77 37.86
0.3 81.85 53.04 64.37 78.90 63.33 36.21
0.2 81.85 56.02 66.52 78.68 64.94 38.18
0.1 81.85 52.46 63.94 77.69 67.74 35.43

Mean 81.90 55.17 65.92 78.67 54.77 37.57
Variance 0.27 1.66 0.92 0.51 89.13 0.96

Table 12. Performance of TCP(Yao et al., 2024) on Flowers102 dataset with respect to new/base ratios. It’s clear that the Overall metric is
sensitive to the new/base ratio.

The new/base ratio BaseAcc NewAcc HM AUROC OverallAcc OpenworldAUC

10 96.15 75.76 84.75 92.84 72.77 67.78
5 97.47 75.76 85.25 94.00 74.25 69.34
3 96.17 75.76 84.75 93.53 75.18 68.39
2 97.67 75.76 85.33 94.40 77.59 69.67
1 97.19 75.76 85.15 94.05 80.97 69.19

0.7 97.19 75.86 85.21 94.09 83.16 69.34
0.5 97.19 75.47 84.96 94.17 84.81 69.01
0.3 97.19 76.07 85.34 94.67 87.71 69.97
0.2 97.19 76.26 85.46 94.39 89.31 70.08
0.1 97.19 75.52 85.00 94.78 91.33 69.59

Mean 97.06 75.80 85.12 94.09 81.71 69.24
Var. 0.25 0.05 0.06 0.32 43.75 0.50

outperforms SOTA methods on the average performance of these with a smaller parameter cost. While recent SOTA
methods design deep prompt structures, we optimize multiple shallow prompts in detector and classifiers. As shown in
Tab.16, while slightly slower than CoOp due to prompt mixing, our approach runs 34% faster than DeCoOp and matches
DePT/Gallop in speed, which maintains practical inference speeds.

42



OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning

Table 13. The OpenworldAUC empircal results on seven benchmark for open-world cross-dataset generalization.

Method AC C101 Cars DTD ES SUN UCF Avg

CLIP 16.21 60.76 45.59 31.13 30.33 44.31 45.83 39.17
CoOp 12.06 62.50 44.67 26.75 25.70 44.72 45.38 37.40

MaPLe 16.36 66.29 47.34 31.89 31.56 48.72 48.74 41.56
PromptSRC 17.75 65.89 49.08 33.94 34.14 49.53 50.06 42.91

KgCoOp 16.15 64.84 47.75 31.46 33.39 48.34 49.40 41.62
DePT-Kg 17.47 66.54 49.98 33.96 35.17 49.38 49.62 43.16
DeCoOp 16.95 66.35 50.04 33.91 36.12 49.42 49.65 43.21

TCP 16.77 65.86 47.60 32.69 33.50 48.81 49.31 42.08

Ours 18.18 66.58 50.25 34.21 36.84 49.65 49.87 43.65

Table 14. Fine-grained results in terms of BaseAcc, NewAcc, HM, AUROC and OpenworldAUC metrics on Flowers102, ImageNet,
ImageNet V2 and ImageNet-Sketch, comparing OOD-focused method Gallop, base-to-new method DePT, OPT method DeCoOp.

Method
Flowers102 ImageNet

BaseAcc NewAcc HM AUROC OpenworldAUC BaseAcc NewAcc HM AUROC OpenworldAUC

DePT-Kg 97.68 75.38 85.09 92.83 69.46 76.75 69.85 73.14 93.38 51.35
Gallop 98.60 70.94 82.51 94.50 65.69 79.25 64.02 70.83 95.93 49.01

DeCoOp 93.90 76.24 84.15 96.84 70.28 75.55 70.90 73.15 96.22 51.98
Ours 96.53 77.16 85.76 96.95 72.79 76.13 70.46 73.19 96.94 52.64

Method
ImageNet V2 ImageNet-Sketch

BaseAcc NewAcc HM AUROC OpenworldAUC BaseAcc NewAcc HM AUROC OpenworldAUC

DePT-Kg 70.25 62.42 66.10 90.21 41.45 46.64 53.88 50.00 86.84 23.37
Gallop 73.20 57.04 64.12 94.20 39.86 49.79 47.16 48.44 87.93 21.57

DeCoOp 70.55 62.91 66.51 95.02 43.01 48.23 53.90 50.91 91.02 24.65
Ours 71.04 63.60 67.02 95.75 43.98 48.77 54.69 51.56 91.67 25.64

D.7. Effect of mutiple pseudo base-to-new Partitions.

Fig.10 illustrates the effect of using different numbers of base-to-new partitions (K) on the Flowers102 and SUN397
datasets. The results show that OpenworldAUC increases monotonically as more class partitions are performed. This
observation agrees with Thm. 5.2. To purse the tradeoff between the efficiency and the efficacy, we choose K = 3 in our
main experiments.

D.8. Effect of Different Shots

Fig.11 and Fig.6 illustrate the performance comparison between different shot settings (1-shot, 2-shot, 4-shot, 8-shot and
16-shot) between the proposed method and representative competitors on the DTD and OxfordPets datasets. The results show
that our method consistently outperforms existing representative approaches across all shot settings, further demonstrating
its effectiveness. Additionally, OpenworldAUC improves as N increases, aligning with our theoretical findings.

D.9. Ablation Studies of the Gating Mechanism

We further explore the effectiveness of the gating mechanism in the Tab.17. Replacing the sigmoid-weighted gate with a
fixed 0-1 mask (”Ours 0-1 Gate”) slightly improves over removing the gate entirely (”Ours w/o Gate”) but under-performs
compared to the adaptive sigmoid gate. It validates the effectiveness of sparse sample selection mechanism and the gate
approximation mechanism.

D.10. Effect of CE Regularization

In the practical optimization objective (OPfin), the second term is actually an AUC-like ranking loss. However, recent
AUC-based optimization studies (Yuan et al., 2022; Yang et al., 2023) show that maximizing the AUC loss from scratch can
degrade feature representations. Therefore, we add a cross-entropy regularization term (λℓce) to improve discriminability
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(a) Flowers102 (b) ImageNet

(c) ImageNet V2 (d) ImageNet Sketch

Figure 9. Fine-grained results on four datasets, Flowers102, ImageNet, ImageNetV2, ImageNet Sketch, comparing three competitive
methods and ours. Our method achieves better OpenworldAUC, indicating improved trade-offs across three sub-metrics, which further
validates the comprehensiveness of OpenworldAUC.

following (Yang et al., 2023). To assess the impact of λ, we carry out sensitivity tests by altering λ’s value. We present
the results for Caltech101 and Food101 in the Fig.12 and Fig.6. A proper λ ∈ [1/2, 1] can effectively improve the ranking
performance.

D.11. Ablation Studies of Mixture-of-Prompts

In order to show the effectiveness of our proposed mixture-of-prompts, we compare its performance with the following two
variants of MoP:

• w/o Zero Shot new domain classifier h abbreviated as w/o ZS h. This variant of our method replaces the handcrafted
prompt for the new domain classifier with a tuned prompt based on the base domain.

• Single Prompt. This is a variant of our method where we only use one prompt to balance three component in R̂(r, g, h).

The empircal results on ImageNet, StanfordCars, DTD, Flowers102, SUN397 and UCF101 datasets are provided in Fig.6
and Fig.13. From these results, we can see that: 1) Traing a new domain classifier on the base domain can lead to overfitting,
compromising generalization on unseen new domains. Therefore, w/o ZS h could not outperform our mixture-of-prompts.
2) Single prompt performs significantly worse than mixture prompts. This validates the challenge of optimizing the
OpenworldAUC within a single prompt. This strengthens the effectiveness of our proposed mixture-of-prompts scheme.
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Table 15. The comparisons of average performance on open-world tasks and learnable parameter counts across methods.

Method Recognition task Imbalanced recognition task Domain adaption #param

CLIP 47.83 54.59 47.31 0
CoOp 47.59 53.97 48.93 8.2k
Maple 57.35 63.05 51.89 3555.1K

PromptSRC 58.21 65.44 52.44 46.1k
LoCoOp 52.62 60.65 45.12 8.2k
KgCoOp 55.07 62.71 51.45 8.2k
DePT-Kg 59.00 66.06 51.35 292.9k

Gallop 56.90 63.67 49.01 606.2k
DeCoOp 58.77 66.87 51.98 30.7K

TCP 58.90 65.13 51.34 331.9k

Ours 60.94 68.84 52.64 26.6k

Table 16. Average per-sample inference time comparison across ten datasets (ImageNet excluded) in the open-world recognition task.

CoOp DePT Gallop DeCoOp Ours

0.00117S 0.00167S 0.00148S 0.00273S 0.00180S

(a) Flowers102 (b) SUN397

Figure 10. The Effect of Using Different Number of base-to-new Partitions (K).

(a) DTD (b) OxfordPets

Figure 11. Comparison of few-shot learning with 1, 2, 4, 8, 16-shot samples on DTD and OxfordPets.
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Table 17. The ablation study of the gating mechanism.

Method Avg. IN C101 Pets Cars F102 Food AC SUN DTD ES UCF

Ours w/o Gate 60.29 52.49 92.56 89.47 55.06 72.59 79.30 10.97 56.96 40.63 51.27 61.85
Ours 0-1 Gate 60.65 52.61 92.77 89.50 55.20 72.71 79.92 11.08 57.13 40.72 52.78 62.75

Ours Sigmoid Gate 60.94 52.64 92.81 89.77 55.31 72.79 81.25 11.42 58.54 40.37 53.09 62.39

92.00

92.25

92.50

92.75

93.00

0 0.3 0.5 0.7 1 1.5
Lambda

O
pe

nw
or

ld
A

U
C

(%
)

(a) Caltech101

80.0

80.5

81.0

81.5

0 0.3 0.5 0.7 1 1.5
Lambda

O
pe

nw
or

ld
A

U
C

(%
)

(b) Food101

Figure 12. The Sensitive Analysis of λ.
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Figure 13. The ablation study of mixture-of-prompts.
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