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ABSTRACT

Distributed Stochastic Gradient optimization algorithms are studied extensively to
address challenges in centralized approaches, such as data privacy, communication
load, and computational efficiency, especially when dealing with large datasets.
However, convergence theory research for these algorithms has been limited, par-
ticularly for distributed momentum-based SGD (mSGD) algorithms. Current the-
oretical work on distributed mSGD algorithms primarily focuses on establishing
time-average convergence theory, whereas last-iterate convergence—considered a
stronger and more practical definition than time-average convergence—has yet to
be thoroughly explored. In this paper, we aim to establish the last-iterate conver-
gence theory for a class of distributed mSGD algorithms with a decaying learning
rate. First, we propose a general framework for distributed mSGD algorithms.
Within this framework and under general conditions, we have proven the last-
iterate convergence of the gradient of the loss function for a class of distributed
mSGD algorithms. Furthermore, we have estimated the corresponding last-iterate
convergence rate under supplementary conditions. Moreover, we theoretically
prove that in the early stage, the adding of a momentum term can make the it-
erations converge more rapidly to a neighborhood of the stationary point. Some
experiments are provided to illustrate the theoretical findings.

1 INTRODUCTION

As a typical stochastic gradient optimization algorithm, Stochastic Gradient Descend (SGD) [Rob-
bins & Monro|(1951) has shown its prominent advantages, especially in the domain of deep learning.
This is due to its effectiveness in handling large datasets and high-dimensional feature spaces effec-
tively, such as regularized empirical risk minimization and training deep neural networks |Graves
et al| (2013); [Nguyen et al.| (2018)); Hinton & Salakhutdinov| (2006)); |[Krizhevsky et al.| (2012).
Adding momentum to the SGD algorithm—an improvement known as momentum-based SGD
(mSGD)—accelerates the convergence rate, as the accumulation of past gradient information helps
reduce oscillations in complex optimization scenarios.Polyak| (1964)); [Krizhevsky et al.|(2012)); | Tang
et al.| (2018); Kim et al.| (2014). Centralized stochastic gradient optimization algorithms, including
the centralized mSGD and SGD, can be used to solve the optimization problems as follows:

min E¢ (9(z,¢)), (1)
where g(x, ) is defined as an unbiased estimate of the loss function g(z) and £ is random noise
induced by sampling or external disturbance. These centralized algorithms are designed for an ar-
chitecture where a central server collects massive amounts of data from each edge devices, also
known as work nodes, and performs gradient computation. However, this architecture may en-
counter several problems: 1) The data from edge devices may contain private information, making it
infeasible to share raw data with the central server; 2) Transmitting large volumes of raw data, such
as videos and images, can result in significant communication overloading. Furthermore, this archi-
tecture exhibits low computational efficiency, particularly for dealing with massive training datasets
and complex deep neural network architectures.
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To address these problems, many related distributed algorithms have been proposed. The idea of
distributed algorithms is to establish cooperative training schemes among multiple worker nodes. In
a distributed architecture, these algorithms compute gradients in parallel across each worker nodes
and subsequently aggregate these gradients to update the model parameters. The distributed stochas-
tic gradient optimization algorithms can be used to solve the following optimization problem in a
distributed manner:

min Ee (900, ), o) = -~ gi(a), @)

zERN

where m is the number of worker nodes and similar to a centralized manner in equation , g(z, &)
is defined as an unbiased estimate of the loss function g(z), where £ represents random noise in-
duced by sampling or external disturbance. Although distributed algorithms show its advantages
in privacy preserving, reduced communication load and improved computational efficiency, the re-
quirement for gradient communication between each worker node and either a central server, or its
neighboring worker nodes remains. Consequently, these algorithms encounter communication de-
lays, which may be influenced by various factors such as network congestion, bandwidth limitations,
physical distance, and the performance of network hardware. This is especially true as increas-
ingly heavy machine learning models, such as deep neural networks, are being utilized. Various
communication-efficient techniques can be further integrated into distributed algorithms. Notably,
periodic communication is a standout method that aims to reduce the frequency of communication
rounds. The local-update SGD algorithmMcDonald et al.| (2010)), also known as Periodic Simple-
Averaging SGD (PSASGD), allowed to perform local updates on each worker nodes and subse-
quently conduct periodic averaging of local model on each worker nodes. This approach reduce the
total communication round significantly, thereby reducing communication delays. Unlike methods
that perform a simple average of local models, the Elastic Averaging Stochastic Gradient Descent
(EASGD) algorithmZhang et al.| (2015) maintains an auxiliary variable that acts as an anchor dur-
ing the update of local models on each worker nodes, preventing large deviations between local
models during local updates. Another approach is to perform averaging of local models in a sparse-
connected network topology, known as decentralized parallel SGD (D-PSGD) algorithmNedic et al.
(2018)). With D-PSGD algorithm, each node only needs to average its model with those of its neigh-
bors, significantly reducing the communication complexity.

Rather than only focusing on the improvement of algorithms, it is equally important to understand
their convergence properties. This understanding plays a key role in achieving effective and efficient
training for a variety of machine learning models, including deep neural networks, Support Vec-
tor Machines (SVMs), logistic regression, and others. For PSASGD algorithm, the convergence has
been studied for strongly convex objective functionsStich| (2018) and for non-convex objectives with
the assumption of uniformly bounded stochastic gradients at worker nodesYu et al.{(2019c). Further-
more, the convergence of PSASGD for non-convex objectives has also been investigated without this
boundedness assumption, by considering PSASGD as a special case of gradient sparsificationJiang
& Agrawal|(2018). For EASGD algorithm, the original paperZhang et al.| (2015)) provides a conver-
gence analysis that is limited to the scenario with one local update for quadratic objective functions.
The convergence of D-PSGD algorithm is studied for non-convex objective functions also in scenar-
ios where workers are not permitted to perform more than one local updateLian et al.[{(2017b); Jiang
et al.|(2017); Zeng & Yinl (2018)). Recently, a general framework for distributed Stochastic Gradient
Descent (SGD) algorithms has been proposed, named Cooperative SGDWang & Joshi (2021)). This
framework provides a unified convergence analysis for the class of Cooperative SGD algorithms,
including the PSASGD, EASGD, and D-PSGD algorithms.

It is important to note that existing convergence analyses on distributed algorithms for solving prob-
lem equation E] concentrate on distributed SGD without momentum. In practice, however, mo-
mentum SGD is more commonly used for training deep neural networks, as it often converges
faster and generalizes bettefKrizhevsky et al.[ (2012); |Yan et al.| (2018); Sutskever et al.| (2013)).
From this perspective, there is a significant discrepancy between current practices—specifically, the
preference for using momentum SGD over standard SGD in distributed training for deep neural
networks—and the existing theoretical analyses, which primarily study the convergence rate and
communication complexity of SGD without momentum. The only research on the convergence
of distributed momentum-based stochastic gradient descent algorithms focuses on the time-average
convergence theory for non-convex functionsYu et al.| (2019b). There is no research on last-iterate
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convergence, which is considered a stronger and more practical definition than time-average conver-
gence.

In this paper, we aim to establish last-iterate convergence theory for a class of distributed mSGD
algorithm, especially for Elastic Averaging SGD (EASGD) and Decentralized Parallel SGD (D-
PSGD) algorithms with adding of momentum, with a decaying learning rate {€,, }»>o. The main
contributions of this paper are summarized as follows:

* First, We develop a general framework for distributed mSGD algorithms that enables us to
obtain a unified analysis. Within this framework and under general conditions, we prove the
last-iterate almost-sure convergence and last-iterate mean-square convergence of the gra-
dient of the loss function for a class of distributed mSGD algorithms which includes three
popular distributed stochastic gradient descent algorithms in momentum form: Periodic
Simple-Averaging SGD, Elastic Averaging SGD, and Decentralized Parallel SGD.

» Secondly, we estimate the corresponding last-iterate convergence rate under a mild supple-
mentary condition.

* Finally, we prove that in the early stage, the adding of momentum term accelerate the rate
at which iterations converge to a neighborhood of the stationary point. Additionally, we
present a series of experiments designed to validate and illustrate our theoretical findings.

To our knowledge, these are the first results concerning the last-iterate convergence theory for the
related algorithms, including momentum-based D-PSGD and momentum-based EASGD.

2 MAIN RESULTS

2.1 DEFINITIONS OF CONVERGENCE

For the problem equation suppose the gradient of loss function g;(x) exists, which is denoted by
Vg(z). Then we say an iterate sequence {x,, } ensures:

* e-neighborhood time-average mean-square (e-TAMS) convergence if given any scalar € >
0, such that after n steps, it holds that = > | E (|[Vg(z)[|*) < €

» Time-average mean-square (TAMS) convergence if

S E(Ivg@I?) = 0t ) ®
k=1

n— oo

with f(n) = 0;
* Last-iterate mean-square (LIMS) convergence if
E (| Vg(zn)lI?) = O(f(n)) @)
with f(n) "= 0;
* Last-iterate almost-sure (LIAS) convergence if
IVg(zn)ll = O(f(n)) (5)
with f(n) "= 0

We note that LIMS convergence can ensure TAMS convergence, but not vice versa. In addition,
TAMS convergence can ensure e-TAMS convergence, but not vice versa.

2.2  GENERAL MOMENTUM-BASED ITERATION

First, we introduce two existing distributed SGD algorithms in the following.

D-PSGD. The decentralized SGD algorithm D-PSGD was studied in Jiang et al.|(2021); Lin et al.
(2018)); ILian et al.| (2017a)); Wang & Joshi|(2021). The idea is that each worker node performs local
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updates and then conducts weighted model averaging with the models from neighboring worker
nodes for every k step, mathematically,

ifn modk=0:
7L+1 Zw_] - —ean ( 57(1])))7

else :
xE:-)i,-l = Z‘ —€ Vgl( n 75(7))7
(7)

where z;,” represents the model parameter of worker node 7, w;; is the (j,)-TH element of a mixing
matrix W indicating the influence of worker node j in the weighted model averaging to worker node
1. PSASGD corresponds to a special case of D-PSGD when the mixing matrix W has equal non-
diagonal entries w;; = .
EASGD. In contrast to performing weighted model averaging of the local models in D-PSGD, the
EASGD motivated by quadratic penalty method is to let each worker node keep its own local model
first, and then use an update like elastic force to ensure that each worker node can coordinate its
model with other worker nodes Zhang et al.| (2015), mathematically,

ifn modk=0:
2y = (1= B8) (@) — enVai(a), €0)) + Bzn
Zn+1 = (1 = mpB)z, + mBT,,

. (6)
eles :
’I(’L<)‘rl - :L‘ —¢€ VQ ( ’gr(Li))v
Zn+1 = Zn,

where T,, = Z:n 1 xn) /m, and § > 0 is a parameter controlling the speed of consensus among all
local models.

Authors in Wang & Joshi|(2021) presented a general update rule of EASGD and D-PSGD as follows
Xn+1 =W, (Xn - enG(Xnvfn))a (7N
where for D-PSGD,
X, = (1 22 gmnT
G(Xnv gn) = (v.gl (xim 57(7,1))7 Tty ng(zzla gm))))—r
(Wij)mxm n mod k=0
Wn =
| n mod k #0
and for EASGD,

X, = (@D, 2@ gm0 )N

n * 'IL

G(XTHS") = (Vgl(mim '57,1))7 7ng(m7nn7 Szm))707 70)T

—_ ((1/8—1_@1 17’81171[3) n mod k=0

n =

L. n modk #0

To accelerate the convergence rate of the EASGD and the D-PSGD by adding momentum, motivated
by mSGD, one can modify equation equation [7]into the following iteration

Up = QUp—1 + enG(Xnvgn)a

Xn+1 =W, (Xn - Un)» ®)

4
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where o € [0, 1) stands for the momentum coefficient and ¢, is the learning rate, and vy := 0 .
We note that the above iteration is reduced to the momentum-based D-PSGD in [Yu et al.| (2019b)
when W,, and G(X) are set according to the D-PSGD. The algorithm equation equationwas also
mentioned in [Zhang et al.| (2015); [Yuan et al| (2021)); Singh et al.| (2021); |(Gao & Huang| (2020);
Balu et al.| (2021); [Yu et al.| (2019b). Comparing with Algorithm 2 in |Yu et al.| (2019Db), equationB]

does not have the procedure that each worker ¢ updates its local momentum term vg’ ) based on
the ones of neighbors, i.e., v, < W,v,. In|[Zhang et al.| (2015); [Yuan et al.| (2021); [Singh et al.
(2021));|Gao & Huang (2020); Balu et al.| (2021)), equationwas also used. Meanwhile, there is no
obvious difference in the techniques used to analyse the last-iterate convergence of the two different
iterations. We denote X = (z(1), z(2) ... (™)) For D-PSGD, let

G(X, &) = (Vg (1(1)7 fg))a cee ng(x(m)v fq(mm)) )T
G(X) = (Vg1 (zV), Vg (z®), .., Vgm (2™))) T,
and for EASGD, let
G(X, E"l) = (v.ql(m(l)7 5’21))7 e 7v9m(x(m>7 f’fzm))vov e ,O)T

G(z) = (Va1 (z™), Vg (2®), ..., Vg (2™),0,- - ,0) "

In the following two sections, we will study the convergence of the general iteration equation [§]

2.3 LAST-ITERATE CONVERGENCE

To proceed, the following assumptions are needed.

Assumption 2.1. g(z) := LY g;(z) is a non-negative and continuously differentiable. In

m

addition, the following conditions hold:
1. G(X,&,)) is an unbiased estimate of G(X), i.e., B¢, G(X,&,) = G(X);

2. The mixing matrix W,, € R™*™ s a symmetric doubly stochastic matrix with only one
eigenvalue equal to one and the absolute values of the rest eigenvalues are less than one.

3. (Assumption 1 in|Yu et al|(2019bl)) There are two constants L > 0, M > 0, such that
¥, X,Y e RN G(X) = G(Y)| < L| X = Y| and |G(X)|| < M.

4. Foranyi=1,2,...mand VX € R™*N it holds that

S Ee, |[Vgi(x,€) — Vgi(a)||” < o? .
=1

In addition, ¥ = € RY, it holds that

1 m
— 3" IVaita) - Vo) < o}
i=1

The conditions in Assumption [2.1] are common in the study of distributed SGD or mSGD. We can
find these conditions in the literature [Yu et al.[(2019b); [Wang & Joshi| (2021);|Yu et al.| (2019a); Jin
et al. (2022b)); Nguyen et al.|(2018)). In some works, the non-negative loss function condition may be
replaced by a finite low bound condition, i.e., g(z) > Iy > —oo. These two conditions are essentially
equivalent, since one can construct a new loss functiong = g — o for the finite low bound condition,
such that the new loss function is non-negative. Note that item 4 in Assumption 1 quantifies the
variance of stochastic gradients at local worker, and a% quantifies the deviations between the local
objective function of each workers. The bounded variance assumption can be trivially generalized
to the ABC growth condition, i.e., E¢, ||Vg(z,&,)|* < Ag(z) + B||Vg(z)|> + C (A >0, B >
0, C > 0) . For the sake of brevity in this proof, we did not consider this trivial generalization.

Assumption 2.2. The momentum coefficient o € [0,1) and the sequence of learning rate €, sat-
isfies the Robbins-Monro condition, i.e., it is positive, monotonically decreasing to zero, such that

oo e = 400 and Z+°O €2 < +o0.

n=1 n=1""n
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Assumption 2.2 means that a decreasing learning rate is required. Actually, for any stochastic opti-
mal algorithm, due to the gradient noise G(X,,,&,) — G(X,,), decreasing learning rate is almost an
essential condition to guarantee that last iterate can converge to stationary points|Smith et al.|(2017);
Welling & Teh|(2011); Khan et al.|(2015); |Gitman et al.[(2019), i.e., Vg(z,,) — 0 a.s. This condi-
tion is common in the community of machine learning He et al.| (2016);|Yu et al.| (2019b); [Sutskever,
et al.| (2013). In contrast, constant learning rate can just make the algorithm converge to a neigh-

bor of stationary point (and not in the sense of last iteration) , which indicates that the requirement
Z:ﬁ €2 < +o0 is also reasonable and common in the literature, such as in [Nguyen et al.[(2018)
for the convergence of SGD, and in Jin et al.| (2022b) for the convergence of centralized mSGD.

Under the above assumptions, we attain the convergence of momentum-based distributed SGD as
given in the following theorem.

Theorem 2.1. Suppose {X,,} is a sequence generated by equation equation Under Assumptions
it holds that ||[Vg(Zy,)|| — 0 a.s. and E||Vg(Z,)||* — 0, where T,, is defined as the
average value of every worker node, i.e., T,, = 1/m 2111 ng) .

Our method is based on the work [Jin et al.| (2022b)). Meanwhile, we have made some innovations to
enhance this method, and enable its applicability to distributed problems. First, we have summarized
the periodic communicated algorithm into a unified expression equation [/} We then eliminate the
influence of the matrix W, in two steps by left-multiplying two different eigenvectors, reducing
the problem to a centralized one. Second, our step 4 is more skilful and comprehensive compared
with the approach inJin et al.| (2022b). InJin et al.| (2022b), authors attempted to prove the almost-
sure convergence of the loss function sequence {g(Z, )} to imply the convergence of the gradient-
norm sequence {||Vg(Z,)||*} . However, this step is incomplete. For example, consider a saddle
point x where there exist many points connected to x with non-zero gradient-norm and the same
loss function value as x. Therefore, the convergence result ¢(Z,) — ¢(x) a.s. can only infer
that Z,, converges to this region, but this region has different gradient information, making that
the convergence of gradient-norm cannot be inferred. Finally, we provide additional results on
mean-square convergence, and we have revealed the intrinsic connection between these two types
of convergence in Remark 1.

Theorem[2.T|accurately shows the last-iterate convergence of EASGD and D-PSGD, and our results
imply the results with the time average form (described in |Yu et al.| (2019b)); [Yuan et al. (2021);

Singh et al.|(2021);|Gao & Huang (2020); Balu et al.[(2021)), i.e. 1/T ijl E|Vg@,)|*>—=0.

2.4 LAST-ITERATE CONVERGENCE RATE

In general, if we need to quantitatively estimate the convergence rate of the last iterate, we usu-
ally need some extra assumptions. These assumptions are usually used to establish a quantitative
relationship between g and Vg. In the existing works, the strong-convex assumption is often re-
quired. For example, it was assumed in |Yuan et al.| (2021) that the loss function of each worker
g; is strongly convex when studying the last-iterate convergence rate of deterministic distributed
momentum-based GD. In addition, Nguyen et al.[(2018) required that the loss function g is strongly
convex when studying the last-iterate convergence rate of SGD. In our paper, since Theorem [2.1]
actually guarantees the asymptotic convergence, we just need a milder condition (compared with
the above requirements) as follows:

Assumption 2.3. The loss function g(0) is a convex function and has a unique optimal point 0*.

Assumption 2.4. During the algorithm iteration process, stability is maintained, i.e., for any n > 0,
there exists a constant G < +oc0 such that |[u' X,,|| < G almost surely.

Under these new assumptions, we can get the last-iterate convergence rate as follows:
Theorem 2.2. Suppose {X,,} is a sequence generated by equation equati(m Under Assumptions
with €, = \/T? Then for any T' > 0, there is
InT 1 InT
E(g(u” Xr) = 9(6") = O(Vim—= ) + O(—=—=).
It may be observed that including momentum does not significantly enhance the algorithm’s conver-
gence rate. This discrepancy is incongruous with experimental results that demonstrate momentum’s
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ability to expedite convergence. The reason for this inconsistency is that the convergence rate dis-
cussed here pertains to the asymptotic behavior as the number of epochs approaches infinity, whereas
momentum primarily hastens the algorithm’s progress during the initial stages. To formalize this ef-
fect, we present the following theorem.

Theorem 2.3. Suppose {X,,} is a sequence generated by equation equation|8| Under Assumption
2.1} given any non-increasing positive learning rate €, > €,1 and bounded loss function, for any
worker node i (i = 1,2,...,m), then for any ag > 0, any Vo € R™ and any || Vg(Z1)||*> > ao,
there exists s > 0, such that

P(T(a‘)) >n)= O(e_ﬁ i e'i)7

where 7(a0) = min,~o{||Vgi(x,)||? < ao}-.

Remark 2.1. An intuitive understanding of why momentum can accelerate in the early stages (the
gradients-norm is relatively large) can be explained as follows: when the gradients-norm is large,
i.e., there exists a constant d such that |V g(z)||* > d, the random bias term E¢,, |Vg(Z, &,)||? can

be bounded by the gradients-norm, i.e., E¢, |Vg(Z,&,)|* < %‘%HVg(E)HQ . This indicates that in
the early stage, random noise approximately satisfies the strong growth condition. According to the
results in\Jin et al.|(2022b), we can conclude that momentum can indeed accelerate the algorithm
during this phase.

Theorem [2.3] shows that a larger momentum term coefficient a can speed up the convergence in an
early stage. In other words, given a scalar § > 0, a larger coefficient of the momentum term can
make the first time instant of having ||Vg(Z,)|| < 6 become shorter. Denote the time instant by
7(@0) 'which is random in the stochastic setting. From Theorem we see that a larger momentum
term coefficient can have a larger probability such that ||V ¢(Z ) )|| < J before a fixed time n. The
reason why a larger momentum term coefficient generally does not guarantee a faster convergence
rate over the whole time is that when time is sufficiently large, the upper bound of convergence rate
is determined by the decreasing rate of learning rate €,, (shown in Theorem [2.2).

3 EXPERIMENTS RESULTS

In this section, we consider a classification task where neural networks are trained using a distributed
mSGD algorithm, to demonstrate the correctness of our theoretical findings.

Implementation. We employ the ResNet20 network using Keras. We initialize the weights using
the Glorot uniform algorithm. The momentum coefficient takes on the values of 0, 0.5, and 0.9.
We train the model using the categorical cross-entropy loss function. The learning rate begins at
0.1 and subsequently decays. We partition the dataset into three, ten, and twenty sub-datasets,
with each sub-dataset communicating every 10 epochs with matrices W defined as follows: W =
%1;—13. W = 1—101]—0110 and W = 2%1;0120. The models are trained for up to 1000 epochs, which
takes approximately two hours each time using a 3080 GPU. We do not incorporate dropouts in our
training process.

Dataset. We use two distinct datasets: CIFAR-10 and CIFAR-100. Both datasets comprise 50,000
training images and 10,000 testing images. CIFAR-10 contains images across 10 classes, while
CIFAR-100 spans 100 classes. These datasets are composed of color images depicting common
objects, with each image measuring 32x32 pixels with 3 color channels. Each attribute of the data
is normalized to [0, 1].

Results. We conducted our experiments by using the distributed mSGD with three different mo-
mentum coefficients, namely, & = 0 (corresponding to standard SGD), a = 0.5, and o = 0.9. The
experimental results, as depicted in Figures [T|and 2] illustrate some key observations: The loss de-
creases to near zero across all three settings of the momentum coefficient, and the setting of « = 0.9
results in the fastest convergence of the gradient of loss to a small neighborhood around zero, outper-
forming the other two settings. This empirical finding is in accordance with the theoretical analysis

presented in Theorems [2.1]and[2.3]"
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Figure 1: Training and prediction performance on CIFAR-10 with 1,3,10,20 sub-datasets (workers).
(a)-(d): The training loss with 1, 3, 10, and 20 sub-datasets respectively. (e)-(h): The accuracy with
1, 3, 10, and 20 sub-datasets respectively.

) 0 (@) (h)

Figure 2: Training and prediction performance on CIFAR-100 with 1,3,10,20 sub-datasets (work-
ers). (a)-(d): The training loss with 1, 3, 10, and 20 sub-datasets respectively. (e)-(h): The accuracy
with 1, 3, 10, and 20 sub-datasets respectively.

4 CONCLUSION

This paper explores the last-iterate convergence for distributed mSGD algorithms. Our work ad-
dresses a critical gap in the current research by providing a thorough theoretical analysis of the last-
iterate convergence properties of a class of distributed mSGD algorithms, with a decaying learning
rate. Through the establishment of a general framework, we have proven the last-iterate almost-
sure convergence and last-iterate mean-square convergence of the gradient of the loss function for a
class of distributed mSGD algorithms, including momentum-based EASGD and momentum-based
D-PSGD algorithms. Our findings indicate that adding a momentum term accelerates the conver-
gence of iterations to a neighborhood of the stationary point in the early stages of the algorithm.
Furthermore, under mild supplementary conditions, a larger momentum coefficient can lead to a
higher convergence rate. These findings are important for understanding the performance of dis-
tributed mSGD algorithms in real-world applications. By showcasing the results of a classification
tasks using ResNet20 network, which is optimized by the distributed mSGD algorithm, we find that
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the experimental results are consistent with our theoretical findings. In conclusion, these theoretical
results offer a substantial contribution to the field of distributed stochastic optimization, particularly
in scenarios where communication efficiency and data privacy are of utmost importance.
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A APPENDIX

A.1 USEFUL LEMMAS

Lemma A.1. (Lemma 1.2.3|Nesterov|(2004)) Suppose f(x) € C* (x € RN) with gradient satisfy-
ing the following Lipschitz condition

IVf(z) = VIl < cllz -yl
then for any x,y € RY, it holds that
c
f@) < F@)+ VI @ =y) +5le -yl
Lemma A.2. (Lemma 10)Jin et al.|(2022b)) Under the same conditions as Lemma [A]] for any
zo € RY, it holds that
2 *
[V f(o)||” < 2¢(f(20) = £7),
where f* = inf ¢ pn f(2)
Lemma A.3. (Lemma B.6 inlJin et al| (20224)) If 0 < p < 1 and 0 < o < 1 (0 # p) are two
constant, then exists k1 > 0, ko > 0, for any positive sequence {wn)} it holds that

n k

Y R <Y TRy oR T < ke > KT,
i=1 k=1 i=1 i=1

where k = max{u, o} and wy = log, min{p,c}.
Lemma A4. If there exists a sequence of positive numbers {x,}52, such that Y - x, < 00,
then for any n > 0, there exists a constant k,, > 0, uniform in n, such that for any s, it holds that
ZZ:S T < kprs.
Lemma A.5. (Wang et al|(2019) Suppose that {X,} € RY is a Ly martingale difference se-
quence, and (X,,,F,) is an adaptive process. Then it holds that Y ;- X < +oo a.s., if
fo:l E(HXnHz) < +ooor ZZO:lE (HXn||2‘yn—l) < +o00.
Lemma A.6. (Lemma 6,Jin et al.|(2022b)) Suppose that {X,,} € RY is a non-negative sequence of
random variables, then it holds that Y~ X, < +00 a.s., if Yoo E (X,) < +oo.

A.2 PROOFS OF MAIN RESULTS

Proof. First, dueto 0 < a < 1, we can always find a positive constant oy, making o := o? +aqg <
1. Then based on the first equation of E.q. equation|[§] we have

ol < anlon-al?+ €2 (14 2-) - [Gne, P ©)

Then we take the mathematical expectation on the both side of E.q. equation[J] acquiring

1 1
E IIUnHQ <a-E ”Un—l”2 + ei(l + 7) K ”Gn,fn - GnH2 + ei (1 + CTO> E ”Gn”2

1
< ar-Elfoni|? + ¢ 00(1—|— )+e <1+a—>~EHGnH2.
0

11



Under review as a conference paper at ICLR 2025

Iterating above inequity, we acquire

1y © .
E [[oall? < af - Juol + & (1+ =) - Y (03 + E G ]2) - o}~ (10)
0 s=1
Next, we iterate the second equation of E.q. equation|§]to attain

Xn+1 =W, X, — Wyhv,
=W, (ananfl - anl’unfl) - Wyun
= Wanfl(Wn72an2 - Wn72vn72)
- Wan—lvn—l - ann

(1) 5 (1) )

t=1

We left multiply both sides of the above equation by the vector e/ = (—1/m,—1/m,...,1 —
1/m,..,—1/m,...,—1/m) (the i-th entry is 1 — 1/m, and others are 1/m) to obtain

eIXnH—eI(f[Ws)-&—fj(e?(]ﬂ[m)~vt>. (11)
s=1 s=t

t=1
When s mod k = 0, according to assumption2.1]2), we can find an orthogonal matrix ) such that
Q"W,Q = diag{1, A2, A3, ..., A}, where \g := maxa<j<,,{|A\;|} < 1. When n mod k # 0,
we always have W, = I,, = QQ . We assign Win = HZ:t Ws. Then we can get that

Win = 11 W,
s€[t,n], s mod k=0

= 11 (Q - diag{1, A2, X3, ..., A} - Q1)

s€[t,n], s mod k=0

12)
Q.diag{L 11 A2,
s€t,n], s mod k=0
11 A, 11 )\m}-QT.
s€t,n], s mod k=0 s€[t,n], s mod k=0
We can conclude that V j € [2,m], there is
II A < g™, (13)
s€[t,n], s mod k=0

where c(t,n) represents the total number of integers divisible by k between ¢ and n. It is easy to

prove that
-1 -1
V]CJ < eft,n) < VkJ +1.

Then based on E.q. equation we can derive the following expression:

n 2
llef Xnral® < 2llef Wanl® - [ Xa)® + ?<Z lef Wenll ||vt||> : (14)
t=1
For any ¢ and n, since the matrix W ,, is a real symmetric matrix, its eigenspaces are orthogonal to
each other. We know that (1,1,...,1) T is obviously an eigenvector corresponding to the eigenvalue
1, and according to Assumption[2.1]2), we know that the dimension of the eigenspace corresponding
to the eigenvalue 1 can only be 1. Therefore, the eigenspace corresponding to the eigenvalue 1
is completely spanned by the vector (1,1,...,1)T. On the other hand, since ¢, (1,1,...,1)T =

12
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0, we know that e; must belong to the direct sum of the eigenspaces of W, ,, other than the one
corresponding to eigenvalue 1. Hence, there exists an orthogonal decomposition

€; =Tg€z; +13e3; + ... + memi,

where each e, ; (2 < s < m)is a unit vector and at the same time an eigenvector of the matrix W, ,,
corresponding to an eigenspace not associated with the eigenvalue 1. Therefore, we can obtain

m m %
T Wil = | SoreTwin | = (S p21) x5
s=2 s=2 (15)
c(t,n
= [les g™

Substitute above inequity into E.q. equation [T4] getting

n 2
el X |2 < 22 X012 - A2 4 2||ei||2(ZA8“’”) : ""t“)

t=1

c(l,n c(t,n
< 2les ) X012 A 4 2ledl A k) S A w2,

=1
where A(n, k) = 7, AS"™). We take the mathematical expectation, resulting
B llef X I < 2lfeil*- 107050 + 2l A, B) SN Bl 16)
t=1

We substitute equation [I0]into equation [I6] getting
c(l,n
Eflef Xnsa|® < 2fledl® - 1Xa]* - A5 +2les]* - A, F)
n 1 t
SN (el + (14 5-) Sl + BIGAI) -t
t=1 s=1

c(l,n c(t,n
= 2flesl? - 112 A + 2llelPA(m, k) ST A ad - w2
t=1
t

n
112 c(tn) | 2 1 2 o\ s
+2]es] )\(n,k);AO 1+ ao);(ao—i—M Jal=,

In the above inequality, by substituting the estimate for ¢(¢,n) from equation |13|and simplifying,
we can obtain

- 1
Elle) Xpnml* = O(Zmax{)\(’; yap )t ef) — 0. (17)
t=1

We recall E.q. equation §]as follows

vy = avp_1 + €,G(X5, &),
Xpi1 = W (X — v).

Then we multiply u” = (1/m, 1/m, ..., 1/m) on the both sides of the above equalities to obtain

wl v, = ou v,_q + enuTG(Xn,fn),

T T
U Xpt+1=u Wn(Xn — vn).
Since W, is a doubly stochastic matrix, u' W,, = u", Furthermore, it holds that

T T T
U vy =au Up_1 + equ G(Xn, &),

uTX,H_l =u' X, —u'v,.

13
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Denote I, = [1,1,---,1]1x.m and ® is Kronecker Product. We derive g(u' X, 1) — g(u' X,,) to
obtain

glu' X)) —g(u' Xp) = —(u' G, @ u' X)) (u'v,) + (0 Gl @u' Xp) —u G(L, ® UTX{n))T(UTvn)
Ty

—(u" Gy @u’ X)) T (wv,) + LluT v, %,
(18)
where uTXC is a value between u' X,, and u' X,, ;. Next we focus on the term (u'G(I,, ®
u' X)) T (u"vy,). We derive that

(u"GI, ®u' X, ))T(uTvn) = (u G, @u' X)) (au" v, 1 4 euu’ G(Xn, &)
=a(u G, ®u' X,) u ve_1 + 6 (u Gy @ u' X)) Tu' G(Xn, &)

>au' G, @u' Xy 1) (' vp_1) — Lllu vp_ 1| + €a(In @ u' G(X,)) Tu" G(X,, €0)).
(19)
It follows from E.q. equation[T9]that

(u" Gy @u" X)) (u"vy,) > LZa” sHju v, ||2+Za e, (L, @u' G(X,)) Tu' G(X,, &)

(20)
Substituting E.q. equation [20]into E.q. equation [T8]leads to

g(u" Xpy1) —g(u' X, <LZa" $lu g |)? — Za" Ses(Lpy @u' G(X,)) Tul G(X,, €)) + Liju vl - o™

21
Then we consider the term (u' G(L,, ® u' X,)) TuT G(Xj, &) to have

- (UTG(Im ® UTXS))TUTG(X& 53))

=—u' GI, ®u' X,)" (u'G(Xs, &) —u' G(X,)) — |(u Gy, @u’ X)) |?

+u' G, @u' X)) (uw G, ®u' X,) —u'G(Xy))

< %Wcam @uT X))+ 2L [of) —uT Xo? =0T Gl @ uT X)) (uT G(X, &) —ul G(XL)).

=1

(22)
Denote B, := 2L ", [|#{” — uT X, |2, then substituting E.q. equationinto Eq. equation
yields

n 1 n n
g(u" Xpg1) —g(u' X,,) < L; " |Ju w2 — 3 ;a”ﬂesHuTG(Im ® uTXS)H2 + ;a”ﬂesﬂs

fZa Sesu! GLn @u' Xo) T - (uT G(Xs, &) —u' G(Xs)) + LluTvo? - o™

(23)
On the other hand, we have

HauTvn_l + enuTG(Xn,fn)H2
= a2||uTvn—1 H2 + 2aen(uTvn—1)TuTG(Xna gn) + Gi”uTG(Xna Sn)H2 (24)
= ?|JuT v 1 ||? + 20en (v 1) Tu T G(Xn) + EluT G( X, E) |12 + Yn,s

where v, = 2ae,v,) u' (G(X,, &) — G(X,,)). Then we calculate 2¢,(E.q.equation |18 —
E.q.equation + E.q.equationto obtain

[ s

14
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2en419(u' Xnt1) — 26a9(u’ X,)
< oflulvn 1 |® = luTvnl® + 2en Llu" v ||* 4 4n + €5 " G(Xn, &)[1* = 265 (u" Gy @ u' X)) Tu" G(X, &)
< P flul vp1|? = llu"vnl® + 260 L(l|u " val® + " vp—a[?) + €5 Ju’ G(Xn, &)1

+ Y — EiHUTG(Im ® “TXn)||2 + 257215717
(25)
where

A =+ 22 (W Gy @u' X)) T (u G(Xp,n) — u' G(X5)).
We make the mathematical expectation of E.q. equation[23]to obtain
. 1< ,
E(g(u' Xpt1)) —E (g(u' X5)) < LZ Q"R |Juvg|? — = Z a" e E HuTG(Im ® uTXS)H2
s=1 2 s=1
+ LluTwoll -a” + ) a"efs.

s=1

Making a summation of the above inequality leads to

L & 1 — 2 LluTwl?® 4
T T T, |2 T T

E (g(u Xn+1)) —E (g(u Xl)) < T ;E lu' s — B S:ZIESE Hu GL,®u XS)” + 1o + Bn,
(26)

where 3, = >, 2;1 a'~%¢,3,. We perform the same operations on E.q. equationto obtain

26,1 E (9(u" Xpp1)) =26 E (g(u’ X7)) < — Z(l — o) E|lu" v, + Z EE|u' G(Xs, &> +2 Z €2 Bs.

s=1 s=1 s=1

27

For the term Y. 2 E|ju’ G(X,, &)||?, we have

s=1"s

n

Y ER|uG(X &P 2> Ellu G(Xo, &) —u GX) P +2) R |lu" G(X,)|

s=1 s=1 s=1

<2 eu’G(X. &) —u GX)|P+4) EE|u'G(X,) —u' G, @u' X,)|?

s=1 s=1
+4) EE|u' G, @ u X,)|.
s=1
From Assumption 2.1]Item (4), we know that

QZeiﬂuTG(Xs,gs) —u' QX))+ 42631@ lu"G(X,) —u" G, ®u' X,)||? < 2(02 + 2Loy) Ze?,

s=1 s=1 s=1

which means

n n n
Y EE[u"G(Xo &) <2008 +2L01) Y 2 +4) R |u G, @ u' X,)|.

s=1 s=1 s=1

15
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Substitute above inequity into E.q. equation 27} getting

n n

2641 E (g(uTXn_H)) -2 E (g(uTXl)) < - Z(l — A E |Ju"v,||? + 2(0f + 207) Z €2

s=1 s=1

+4) QR [u" G, @u X)|?+2) €.
s=1 s=1
(28)
We calculate 122 E.q.equation [26|+ = E.q.equation from Assumption [2.1{4) and E.q.

equation(ZZzl €28, — 0, 3, — 0), we can get

+o0 too
S G EVg@a) 2 < +00, 3 €| Vg@)|? < 400 as,
s=1 s=1

where the second inequity is because Lemma Then by using the condition Z:ﬁ €, = 100,
we can immediately acquire

. — N2 . — 2
lim inf B [V g(,) | = 0, liminf [ Vg(,)|> = 0 a.5..

Our goal below is to prove

limsupE||Vg(Z,)||* =0, limsup||Vg(Z,)||> =0 a.s. .
n—-+oo n—-+4oo

We first prove limsup,,_,, o [[Vg(Z,)||> = 0 a.s. . We use proof by contradiction. We assume
that for a certain trajectory {||Vg(Z,)||*};}>3, apart from 0, there exists another accumulation
point & > 0 . Then, for a certain open interval (0,e) C (0,1), the sequence {||Vg(Z,)||?}, >3
must cross this interval infinitely many times. We denote all the intervals that go upwards as
{(IVg@ )% IVg(@r,)II?)}i27 - We have

+oo 1y +oo 1y

YD a3 S all Vol < oo (29)

n=1i=l, n=1i=l,

On the other hand, due to |[Vg(Z,,)||? > e and ||Vg(Zy, )||*> < e, we know there is a pp > 0, such
that |6, — 6, || > Po - Then we get

Tn

o < 10, — 00, = Gu + ko Y _ €,

i=ly

where ¢, — 0. We get

which conclude

+oo T

ZZQ:%O. (30)

n=1i=l,,

Now we have a contradiction between E.q. equation [30] and E.q. equation 29] which implies
that our assumption is false. Therefore, we obtain limsup,,_,, . ||Vg(Z»)[|> = 0 a.s., that is

lim,, 100 [[Vg(Zn)||> = 0 a.s. . Using the same technique, we can obtain convergence in the
mean square sense, i.e., lim, o0 E |[Vg(6,)]|> = 0 from the inequity 3.7 ¢, E | Vg(Z,)|? <
+00. 0

16
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A.3 PROOF OF THEOREM 2.2]

T T
Proof. We define z, = == Xn-1 \We can obtain V 6, € R? which satisfies ||z, — 6| < 7,

l—a
the following recursive inequality:

lznt1 — ‘90”2 = |lzn — 6o + 2n41 — ZnH2 = ||z — 90H2 +2(z, — GO)T(Zn-i-l = 2zn) + llZng1 — ZnH2
31

Due to the definition of z,, 1 — z,, we have

UT(Xn—i-l - Xn) - aUT(Xn - Xn—l)

11—«

—uTvn + auTvn,l

Zn+1 — Rn =

11—«
enuTG(Xnafn)
1—a '

Substitute above equation into Eq. equation 31] and take the mathematical expectation, noting
E(G(Xna gn)) = E(G(Xn))v getting

2€n 5721
E |21 = 0ol = E ||z, — 6o]|* — —E ((zn = 00) Tu" G(X,)) + A—ap Eu"G(Xn, &)
(32)
For u " G(X,,), dur to Eq. equation we get
u'G(X,) =Vgu' X,)+ (u' G(X,) - Vgu'X,))
=Vy(zn) + %(Vg(uTXn) —Vg(z,)) + (u"G(X,) — Vg(u' X,)) +

Then we get

26, T T 2¢p T 5

—170[ E(( —90) G( )) <_1704 ]E((Zn—eo) Vg(zn))—i—(?(en)
Substitute above inequity into Eq. equation[31] acquiring
2ep
E 241 = b0l = E ll20 = 60l = 1= -E (20 — 00) Vg(z)) + O(2).  (33)

For any term k in the first T iterations 1,2, . .. ,T, we set 0 in Eq. equation[31]to z7_, obtaining
31> 0, lyp > 0 such that

T
Zy — 27— T Zn)) < —
t:TZ;kE(( r-x) Vg( ))<f(f vT +lo¢>t;k\[

By convexity, we can lower bound (2; — zr_) " Vg(z) bt g(z) — g(2r—x). Also, it is easy to get
that

t=T—k t
Then we get
T
E (9(z0) — g(ern)) ) < (= +tovim ) (VT — VT —F—1) < (= +tyy/m ) F 1
(t_;kg oter-e)) < (o +ovin) ( )= (g rovim) S

Then we define Sj, = k%_l ZthT_ i E(g(2¢)) be the expected average value of the last K +1 iterates.
The bound above implies that

ly/m+ A

—E(g(27-x)) < —E(Sk) + JT

By the definition of Sj and the inequity above, we have

l/m +

ER(Sk_1) = (k+1)E(Sy) —E(g(2r_x)) < (k4 1)E(Sk) — E(Sy) + Nii

17
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and dividing by k, implies

Iy/m+ ‘&
vm
E(Sk-1) <E(Sk) + ———=—.
( k 1) ( k?) k‘\/T
Using the inequity repeatedly and by summing over k = 1,...,7 — 1, we have
l\/>+ lo 1
E(g(2r)) = E(So) < E(Sr-1) + Z %

Using Eq. equation[33|with £ = T'— 1 and 6, = 6*, we can get

ly/m +
VT

Blo(u Xr) 9(0) = 0 (i + =) 21,

E(St-1) —g(8") <

Finally, we get

A.4 PROOF OF THEOREM [2.3]

We define another event

B, = {|Vg@)|* > ao, [Vg@)II* > a0 -, [Vg(@n)|I* > ao},

and its characteristic function as Iy, (@) Then through Assumptionand €n > €p41 We get that

I\DH

12l @nn) — 109() = —3 3 0" el [Vg(a)|? + 22 OZ RIEVO(ER) + Fa” + G
k=1

n
Y a1,
k=1

where %, L and 1o are three constants which can not affect the result. Notice that

aop 1 aop ga—
I0(6) < -1 V(@) P0()

= 1" |V g(@)|20(}).
Then we get

10 g(Tp 1) — I@)g =—f2a"’fek— () E (1LY g@)|1%) + Ca

Due to E(¢,,) = 0, we make the mathematical expectation to obtain

E (I g(Fn11)) — E (I g(z =—72a (ex — O(N) IV g (1) |12

‘We denote

For convenience, we let

18
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n n—t

G = 2 > (525) (a-ow@)

E (1% V() [1?).

Then we get
F(ao) F(ao) Gg,ao)

so there is

(ao) ( 0) n (ao)
(aol) < Fy(Lao) <1 _ G ) F(ao) H (1 . 1 ) H ( G )7

F( ao)

F

n+

. G0 . .
where ¢ is a constant. We focus on Faoy- Using O’stolz theorem yields

o) S () PRIV g(z)1?)
liminf —— @) = liminf 5 - . (o)
itoo F“ oo (L—a)? 55 (G )it B(L " g(0))
2 EUI V()|
> liminf i (I; (H?g(w)ll )
i+too (1 — a) E(Ita" 9(Z))

In the setting of this theorem, the loss function is bounded. We let g(x) < T'. Then there is

2 BINV@EN) | a
itoo (1 —a)2 7"

lim inf
i—too (1 — ) E(It(ao)g(fi))

Then it holds that
E(I(%)) < Fl) _o(e T 1671)’

where s = 2a/T.
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