
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON LAST-ITERATE CONVERGENCE OF DISTRIBUTED
STOCHASTIC GRADIENT DESCENT ALGORITHM WITH
MOMENTUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed Stochastic Gradient optimization algorithms are studied extensively to
address challenges in centralized approaches, such as data privacy, communication
load, and computational efficiency, especially when dealing with large datasets.
However, convergence theory research for these algorithms has been limited, par-
ticularly for distributed momentum-based SGD (mSGD) algorithms. Current the-
oretical work on distributed mSGD algorithms primarily focuses on establishing
time-average convergence theory, whereas last-iterate convergence—considered a
stronger and more practical definition than time-average convergence—has yet to
be thoroughly explored. In this paper, we aim to establish the last-iterate conver-
gence theory for a class of distributed mSGD algorithms with a decaying learning
rate. First, we propose a general framework for distributed mSGD algorithms.
Within this framework and under general conditions, we have proven the last-
iterate convergence of the gradient of the loss function for a class of distributed
mSGD algorithms. Furthermore, we have estimated the corresponding last-iterate
convergence rate under supplementary conditions. Moreover, we theoretically
prove that in the early stage, the adding of a momentum term can make the it-
erations converge more rapidly to a neighborhood of the stationary point. Some
experiments are provided to illustrate the theoretical findings.

1 INTRODUCTION

As a typical stochastic gradient optimization algorithm, Stochastic Gradient Descend (SGD) Rob-
bins & Monro (1951) has shown its prominent advantages, especially in the domain of deep learning.
This is due to its effectiveness in handling large datasets and high-dimensional feature spaces effec-
tively, such as regularized empirical risk minimization and training deep neural networks Graves
et al. (2013); Nguyen et al. (2018); Hinton & Salakhutdinov (2006); Krizhevsky et al. (2012).
Adding momentum to the SGD algorithm—an improvement known as momentum-based SGD
(mSGD)—accelerates the convergence rate, as the accumulation of past gradient information helps
reduce oscillations in complex optimization scenarios.Polyak (1964); Krizhevsky et al. (2012); Tang
et al. (2018); Kim et al. (2014). Centralized stochastic gradient optimization algorithms, including
the centralized mSGD and SGD, can be used to solve the optimization problems as follows:

min
x∈RN

Eξ

(
g(x, ξ)

)
, (1)

where g(x, ξ) is defined as an unbiased estimate of the loss function g(x) and ξ is random noise
induced by sampling or external disturbance. These centralized algorithms are designed for an ar-
chitecture where a central server collects massive amounts of data from each edge devices, also
known as work nodes, and performs gradient computation. However, this architecture may en-
counter several problems: 1) The data from edge devices may contain private information, making it
infeasible to share raw data with the central server; 2) Transmitting large volumes of raw data, such
as videos and images, can result in significant communication overloading. Furthermore, this archi-
tecture exhibits low computational efficiency, particularly for dealing with massive training datasets
and complex deep neural network architectures.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address these problems, many related distributed algorithms have been proposed. The idea of
distributed algorithms is to establish cooperative training schemes among multiple worker nodes. In
a distributed architecture, these algorithms compute gradients in parallel across each worker nodes
and subsequently aggregate these gradients to update the model parameters. The distributed stochas-
tic gradient optimization algorithms can be used to solve the following optimization problem in a
distributed manner:

min
x∈RN

Eξ

(
g(x, ξ)

)
, g(x) =

1

m

m∑
i=1

gi(x), (2)

where m is the number of worker nodes and similar to a centralized manner in equation (1), g(x, ξ)
is defined as an unbiased estimate of the loss function g(x), where ξ represents random noise in-
duced by sampling or external disturbance. Although distributed algorithms show its advantages
in privacy preserving, reduced communication load and improved computational efficiency, the re-
quirement for gradient communication between each worker node and either a central server, or its
neighboring worker nodes remains. Consequently, these algorithms encounter communication de-
lays, which may be influenced by various factors such as network congestion, bandwidth limitations,
physical distance, and the performance of network hardware. This is especially true as increas-
ingly heavy machine learning models, such as deep neural networks, are being utilized. Various
communication-efficient techniques can be further integrated into distributed algorithms. Notably,
periodic communication is a standout method that aims to reduce the frequency of communication
rounds. The local-update SGD algorithmMcDonald et al. (2010), also known as Periodic Simple-
Averaging SGD (PSASGD), allowed to perform local updates on each worker nodes and subse-
quently conduct periodic averaging of local model on each worker nodes. This approach reduce the
total communication round significantly, thereby reducing communication delays. Unlike methods
that perform a simple average of local models, the Elastic Averaging Stochastic Gradient Descent
(EASGD) algorithmZhang et al. (2015) maintains an auxiliary variable that acts as an anchor dur-
ing the update of local models on each worker nodes, preventing large deviations between local
models during local updates. Another approach is to perform averaging of local models in a sparse-
connected network topology, known as decentralized parallel SGD (D-PSGD) algorithmNedić et al.
(2018). With D-PSGD algorithm, each node only needs to average its model with those of its neigh-
bors, significantly reducing the communication complexity.

Rather than only focusing on the improvement of algorithms, it is equally important to understand
their convergence properties. This understanding plays a key role in achieving effective and efficient
training for a variety of machine learning models, including deep neural networks, Support Vec-
tor Machines (SVMs), logistic regression, and others. For PSASGD algorithm, the convergence has
been studied for strongly convex objective functionsStich (2018) and for non-convex objectives with
the assumption of uniformly bounded stochastic gradients at worker nodesYu et al. (2019c). Further-
more, the convergence of PSASGD for non-convex objectives has also been investigated without this
boundedness assumption, by considering PSASGD as a special case of gradient sparsificationJiang
& Agrawal (2018). For EASGD algorithm, the original paperZhang et al. (2015) provides a conver-
gence analysis that is limited to the scenario with one local update for quadratic objective functions.
The convergence of D-PSGD algorithm is studied for non-convex objective functions also in scenar-
ios where workers are not permitted to perform more than one local updateLian et al. (2017b); Jiang
et al. (2017); Zeng & Yin (2018). Recently, a general framework for distributed Stochastic Gradient
Descent (SGD) algorithms has been proposed, named Cooperative SGDWang & Joshi (2021). This
framework provides a unified convergence analysis for the class of Cooperative SGD algorithms,
including the PSASGD, EASGD, and D-PSGD algorithms.

It is important to note that existing convergence analyses on distributed algorithms for solving prob-
lem equation 2 concentrate on distributed SGD without momentum. In practice, however, mo-
mentum SGD is more commonly used for training deep neural networks, as it often converges
faster and generalizes betterKrizhevsky et al. (2012); Yan et al. (2018); Sutskever et al. (2013).
From this perspective, there is a significant discrepancy between current practices—specifically, the
preference for using momentum SGD over standard SGD in distributed training for deep neural
networks—and the existing theoretical analyses, which primarily study the convergence rate and
communication complexity of SGD without momentum. The only research on the convergence
of distributed momentum-based stochastic gradient descent algorithms focuses on the time-average
convergence theory for non-convex functionsYu et al. (2019b). There is no research on last-iterate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

convergence, which is considered a stronger and more practical definition than time-average conver-
gence.

In this paper, we aim to establish last-iterate convergence theory for a class of distributed mSGD
algorithm, especially for Elastic Averaging SGD (EASGD) and Decentralized Parallel SGD (D-
PSGD) algorithms with adding of momentum, with a decaying learning rate {ϵn}n≥0. The main
contributions of this paper are summarized as follows:

• First, We develop a general framework for distributed mSGD algorithms that enables us to
obtain a unified analysis. Within this framework and under general conditions, we prove the
last-iterate almost-sure convergence and last-iterate mean-square convergence of the gra-
dient of the loss function for a class of distributed mSGD algorithms which includes three
popular distributed stochastic gradient descent algorithms in momentum form: Periodic
Simple-Averaging SGD, Elastic Averaging SGD, and Decentralized Parallel SGD.

• Secondly, we estimate the corresponding last-iterate convergence rate under a mild supple-
mentary condition.

• Finally, we prove that in the early stage, the adding of momentum term accelerate the rate
at which iterations converge to a neighborhood of the stationary point. Additionally, we
present a series of experiments designed to validate and illustrate our theoretical findings.

To our knowledge, these are the first results concerning the last-iterate convergence theory for the
related algorithms, including momentum-based D-PSGD and momentum-based EASGD.

2 MAIN RESULTS

2.1 DEFINITIONS OF CONVERGENCE

For the problem equation 2, suppose the gradient of loss function gi(x) exists, which is denoted by
∇g(x). Then we say an iterate sequence {xn} ensures:

• ϵ-neighborhood time-average mean-square (ϵ-TAMS) convergence if given any scalar ϵ >
0, such that after n steps, it holds that 1

n

∑n
k=1 E

(
∥∇g(xk)∥2

)
< ϵ;

• Time-average mean-square (TAMS) convergence if

1

n

n∑
k=1

E
(
∥∇g(xk)∥2

)
= O(f(n)) (3)

with f(n) n→∞→ 0;

• Last-iterate mean-square (LIMS) convergence if

E
(
∥∇g(xn)∥2

)
= O(f(n)) (4)

with f(n) n→∞→ 0;

• Last-iterate almost-sure (LIAS) convergence if

∥∇g(xn)∥ = O(f(n)) (5)

with f(n) n→∞→ 0

We note that LIMS convergence can ensure TAMS convergence, but not vice versa. In addition,
TAMS convergence can ensure ϵ-TAMS convergence, but not vice versa.

2.2 GENERAL MOMENTUM-BASED ITERATION

First, we introduce two existing distributed SGD algorithms in the following.

D-PSGD. The decentralized SGD algorithm D-PSGD was studied in Jiang et al. (2021); Lin et al.
(2018); Lian et al. (2017a); Wang & Joshi (2021). The idea is that each worker node performs local

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

updates and then conducts weighted model averaging with the models from neighboring worker
nodes for every k step, mathematically,

if n mod k = 0 :

x
(i)
n+1 =

m∑
j=1

wji

(
x(j)n − ϵn∇gj(x(j)n , ξ(j)n)

)
,

else :

x
(i)
n+1 = x(i)n − ϵn∇gi(x(i)n , ξ(i)n),

where x(i)n represents the model parameter of worker node i, wji is the (j, i)-TH element of a mixing
matrixW indicating the influence of worker node j in the weighted model averaging to worker node
i. PSASGD corresponds to a special case of D-PSGD when the mixing matrix W has equal non-
diagonal entries wji =

1
m .

EASGD. In contrast to performing weighted model averaging of the local models in D-PSGD, the
EASGD motivated by quadratic penalty method is to let each worker node keep its own local model
first, and then use an update like elastic force to ensure that each worker node can coordinate its
model with other worker nodes Zhang et al. (2015), mathematically,

if n mod k = 0 :

x
(i)
n+1 = (1− β)

(
x(i)n − ϵn∇gi(x(i)n , ξ(i)n)

)
+ βzn

zn+1 = (1−mβ)zn +mβxn,

eles :

x
(i)
n+1 = x(i)n − ϵn∇gi(x(i)n , ξ(i)n),

zn+1 = zn,

(6)

where xn =
∑m

i=1 x
(i)
n /m, and β > 0 is a parameter controlling the speed of consensus among all

local models.

Authors in Wang & Joshi (2021) presented a general update rule of EASGD and D-PSGD as follows

Xn+1 =Wn

(
Xn − ϵnG(Xn, ξn)

)
, (7)

where for D-PSGD,

Xn = (x(1)n , x(2)n , ..., x(m)
n)⊤

G(Xn, ξn) = (∇g1(x1n, ξ(1)n), · · · ,∇gm(xmn , ξ
(m)
n)))⊤

Wn =

{
(wij)m×m n mod k = 0

Im n mod k ̸= 0
.

and for EASGD,

Xn = (x(1)n , x(2)n , ..., x(m)
n , z(1)n , z(2)n , ..., z(v)n)⊤,

G(Xn, ξn) = (∇g1(x
1
n, ξ

(1)
n), · · · ,∇gm(xm

n , ξ(m)
n), 0, · · · , 0)⊤

Wn =

(
(1− β)I β1
β1⊤ 1−mβ

)
n mod k = 0

Im n mod k ̸= 0

.

To accelerate the convergence rate of the EASGD and the D-PSGD by adding momentum, motivated
by mSGD, one can modify equation equation 7 into the following iteration

vn = αvn−1 + ϵnG(Xn, ξn),

Xn+1 =Wn

(
Xn − vn

)
,

(8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where α ∈ [0, 1) stands for the momentum coefficient and ϵn is the learning rate, and v0 := 0 .
We note that the above iteration is reduced to the momentum-based D-PSGD in Yu et al. (2019b)
when Wn and G(X) are set according to the D-PSGD. The algorithm equation equation 8 was also
mentioned in Zhang et al. (2015); Yuan et al. (2021); Singh et al. (2021); Gao & Huang (2020);
Balu et al. (2021); Yu et al. (2019b). Comparing with Algorithm 2 in Yu et al. (2019b), equation 8
does not have the procedure that each worker i updates its local momentum term v

(i)
n based on

the ones of neighbors, i.e., vn ← Wnvn. In Zhang et al. (2015); Yuan et al. (2021); Singh et al.
(2021); Gao & Huang (2020); Balu et al. (2021), equation 8 was also used. Meanwhile, there is no
obvious difference in the techniques used to analyse the last-iterate convergence of the two different
iterations. We denote X = (x(1), x(2), ..., x(m)). For D-PSGD, let

G(X, ξn) = (∇g1(x(1), ξ(1)n), . . . ,∇gm(x(m), ξ(m)
n)))⊤

G(X) = (∇g1(x(1)),∇g2(x(2)), ...,∇gm(xm)))⊤,

and for EASGD, let

G(X, ξn) = (∇g1(x
(1), ξ(1)n), · · · ,∇gm(x(m), ξ(m)

n), 0, · · · , 0)⊤

G(x) = (∇g1(x
(1)),∇g2(x

(2)), ...,∇gm(x(m)), 0, · · · , 0)⊤.

In the following two sections, we will study the convergence of the general iteration equation 8.

2.3 LAST-ITERATE CONVERGENCE

To proceed, the following assumptions are needed.
Assumption 2.1. g(x) := 1

m

∑m
i=1 gi(x) is a non-negative and continuously differentiable. In

addition, the following conditions hold:

1. G(X, ξn)) is an unbiased estimate of G(X), i.e., Eξn G(X, ξn) = G(X);

2. The mixing matrix Wn ∈ Rm×m is a symmetric doubly stochastic matrix with only one
eigenvalue equal to one and the absolute values of the rest eigenvalues are less than one.

3. (Assumption 1 in Yu et al. (2019b)) There are two constants L > 0, M > 0, such that
∀, X, Y ∈ Rm×N , ∥G(X)−G(Y)∥ ≤ L∥X − Y ∥ and ∥G(X)∥ ≤M.

4. For any i = 1, 2, ...,m and ∀X ∈ Rm×N , it holds that
m∑
i=1

Eξn

∥∥∇gi(x, ξ)−∇gi(x)∥∥2 ≤ σ2
0 .

In addition, ∀ x ∈ RN , it holds that

1

m

m∑
i=1

∥∇gi(x)−∇g(x)∥2 ≤ σ2
1 .

The conditions in Assumption 2.1 are common in the study of distributed SGD or mSGD. We can
find these conditions in the literature Yu et al. (2019b); Wang & Joshi (2021); Yu et al. (2019a); Jin
et al. (2022b); Nguyen et al. (2018). In some works, the non-negative loss function condition may be
replaced by a finite low bound condition, i.e., g(x) > l̂0 > −∞. These two conditions are essentially
equivalent, since one can construct a new loss function g = g− l̂0 for the finite low bound condition,
such that the new loss function is non-negative. Note that item 4 in Assumption 1 quantifies the
variance of stochastic gradients at local worker, and σ2

1 quantifies the deviations between the local
objective function of each workers. The bounded variance assumption can be trivially generalized
to the ABC growth condition, i.e., Eξn ∥∇g(x, ξn)∥2 ≤ Ag(x) + B∥∇g(x)∥2 + C (A > 0, B >
0, C > 0) . For the sake of brevity in this proof, we did not consider this trivial generalization.
Assumption 2.2. The momentum coefficient α ∈ [0, 1) and the sequence of learning rate ϵn sat-
isfies the Robbins-Monro condition, i.e., it is positive, monotonically decreasing to zero, such that∑+∞

n=1 ϵn = +∞ and
∑+∞

n=1 ϵ
2
n < +∞.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Assumption 2.2 means that a decreasing learning rate is required. Actually, for any stochastic opti-
mal algorithm, due to the gradient noise G(Xn, ξn)−G(Xn), decreasing learning rate is almost an
essential condition to guarantee that last iterate can converge to stationary points Smith et al. (2017);
Welling & Teh (2011); Khan et al. (2015); Gitman et al. (2019), i.e., ∇g(xn) → 0 a.s. This condi-
tion is common in the community of machine learning He et al. (2016); Yu et al. (2019b); Sutskever
et al. (2013). In contrast, constant learning rate can just make the algorithm converge to a neigh-
bor of stationary point (and not in the sense of last iteration) , which indicates that the requirement∑+∞

n=1 ϵ
2
n < +∞ is also reasonable and common in the literature, such as in Nguyen et al. (2018)

for the convergence of SGD, and in Jin et al. (2022b) for the convergence of centralized mSGD.

Under the above assumptions, we attain the convergence of momentum-based distributed SGD as
given in the following theorem.
Theorem 2.1. Suppose {Xn} is a sequence generated by equation equation 8. Under Assumptions
2.1–2.2, it holds that ∥∇g(xn)∥ → 0 a.s. and E ∥∇g(xn)∥2 → 0, where xn is defined as the
average value of every worker node, i.e., xn = 1/m

∑m
i=1 x

(i)
n .

Our method is based on the work Jin et al. (2022b). Meanwhile, we have made some innovations to
enhance this method, and enable its applicability to distributed problems. First, we have summarized
the periodic communicated algorithm into a unified expression equation 7. We then eliminate the
influence of the matrix Wn in two steps by left-multiplying two different eigenvectors, reducing
the problem to a centralized one. Second, our step 4 is more skilful and comprehensive compared
with the approach in Jin et al. (2022b). In Jin et al. (2022b), authors attempted to prove the almost-
sure convergence of the loss function sequence {g(xn)} to imply the convergence of the gradient-
norm sequence {∥∇g(xn)∥2} . However, this step is incomplete. For example, consider a saddle
point x where there exist many points connected to x with non-zero gradient-norm and the same
loss function value as x. Therefore, the convergence result g(xn) → g(x) a.s. can only infer
that xn converges to this region, but this region has different gradient information, making that
the convergence of gradient-norm cannot be inferred. Finally, we provide additional results on
mean-square convergence, and we have revealed the intrinsic connection between these two types
of convergence in Remark 1.

Theorem 2.1 accurately shows the last-iterate convergence of EASGD and D-PSGD, and our results
imply the results with the time average form (described in Yu et al. (2019b); Yuan et al. (2021);
Singh et al. (2021); Gao & Huang (2020); Balu et al. (2021)), i.e. 1/T

∑⊤
i=1 E ∥∇g(xn)∥2 → 0 .

2.4 LAST-ITERATE CONVERGENCE RATE

In general, if we need to quantitatively estimate the convergence rate of the last iterate, we usu-
ally need some extra assumptions. These assumptions are usually used to establish a quantitative
relationship between g and ∇g. In the existing works, the strong-convex assumption is often re-
quired. For example, it was assumed in Yuan et al. (2021) that the loss function of each worker
gi is strongly convex when studying the last-iterate convergence rate of deterministic distributed
momentum-based GD. In addition, Nguyen et al. (2018) required that the loss function g is strongly
convex when studying the last-iterate convergence rate of SGD. In our paper, since Theorem 2.1
actually guarantees the asymptotic convergence, we just need a milder condition (compared with
the above requirements) as follows:
Assumption 2.3. The loss function g(θ) is a convex function and has a unique optimal point θ∗.
Assumption 2.4. During the algorithm iteration process, stability is maintained, i.e., for any n > 0,
there exists a constant G < +∞ such that ∥u⊤Xn∥ < G almost surely.

Under these new assumptions, we can get the last-iterate convergence rate as follows:
Theorem 2.2. Suppose {Xn} is a sequence generated by equation equation 8. Under Assumptions
2.1– 2.4 with ϵn =

√
m√
n
. Then for any T > 0, there is

E(g(u⊤XT)− g(θ∗)) = O
(√

m
lnT√
T

)
+O

(1√
m

lnT√
T

)
.

It may be observed that including momentum does not significantly enhance the algorithm’s conver-
gence rate. This discrepancy is incongruous with experimental results that demonstrate momentum’s

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ability to expedite convergence. The reason for this inconsistency is that the convergence rate dis-
cussed here pertains to the asymptotic behavior as the number of epochs approaches infinity, whereas
momentum primarily hastens the algorithm’s progress during the initial stages. To formalize this ef-
fect, we present the following theorem.

Theorem 2.3. Suppose {Xn} is a sequence generated by equation equation 8. Under Assumption
2.1, given any non-increasing positive learning rate ϵn ≥ ϵn+1 and bounded loss function, for any
worker node i (i = 1, 2, ...,m), then for any a0 > 0, any V0 ∈ RmN and any ∥∇g(x1)∥2 > a0,
there exists s > 0, such that

P (τ (a0) ≥ n) = O
(
e
− s

(1−α)2

∑n
i=1 ϵi

)
,

where τ (a0) = minn>0{∥∇gi(xn)∥2 < a0}.

Remark 2.1. An intuitive understanding of why momentum can accelerate in the early stages (the
gradients-norm is relatively large) can be explained as follows: when the gradients-norm is large,
i.e., there exists a constant d such that ∥∇g(x)∥2 > d, the random bias term Eξn ∥∇g(x, ξn)∥2 can

be bounded by the gradients-norm, i.e., Eξn ∥∇g(x, ξn)∥2 ≤
σ2
0

d ∥∇g(x)∥
2 . This indicates that in

the early stage, random noise approximately satisfies the strong growth condition. According to the
results in Jin et al. (2022b), we can conclude that momentum can indeed accelerate the algorithm
during this phase.

Theorem 2.3 shows that a larger momentum term coefficient α can speed up the convergence in an
early stage. In other words, given a scalar δ > 0, a larger coefficient of the momentum term can
make the first time instant of having ∥∇g(xn)∥ ≤ δ become shorter. Denote the time instant by
τ (a0), which is random in the stochastic setting. From Theorem 2.3, we see that a larger momentum
term coefficient can have a larger probability such that ∥∇g(xτ(a0))∥ ≤ δ before a fixed time n. The
reason why a larger momentum term coefficient generally does not guarantee a faster convergence
rate over the whole time is that when time is sufficiently large, the upper bound of convergence rate
is determined by the decreasing rate of learning rate ϵn (shown in Theorem 2.2).

3 EXPERIMENTS RESULTS

In this section, we consider a classification task where neural networks are trained using a distributed
mSGD algorithm, to demonstrate the correctness of our theoretical findings.

Implementation. We employ the ResNet20 network using Keras. We initialize the weights using
the Glorot uniform algorithm. The momentum coefficient takes on the values of 0, 0.5, and 0.9.
We train the model using the categorical cross-entropy loss function. The learning rate begins at
0.1 and subsequently decays. We partition the dataset into three, ten, and twenty sub-datasets,
with each sub-dataset communicating every 10 epochs with matrices W defined as follows: W =
1
31⊤

3 13. W = 1
101⊤10110 and W = 1

201⊤20120. The models are trained for up to 1000 epochs, which
takes approximately two hours each time using a 3080 GPU. We do not incorporate dropouts in our
training process.

Dataset. We use two distinct datasets: CIFAR-10 and CIFAR-100. Both datasets comprise 50,000
training images and 10,000 testing images. CIFAR-10 contains images across 10 classes, while
CIFAR-100 spans 100 classes. These datasets are composed of color images depicting common
objects, with each image measuring 32x32 pixels with 3 color channels. Each attribute of the data
is normalized to [0, 1].

Results. We conducted our experiments by using the distributed mSGD with three different mo-
mentum coefficients, namely, α = 0 (corresponding to standard SGD), α = 0.5, and α = 0.9. The
experimental results, as depicted in Figures 1 and 2, illustrate some key observations: The loss de-
creases to near zero across all three settings of the momentum coefficient, and the setting of α = 0.9
results in the fastest convergence of the gradient of loss to a small neighborhood around zero, outper-
forming the other two settings. This empirical finding is in accordance with the theoretical analysis
presented in Theorems 2.1 and 2.3."

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a)

0 200 400 600 800 1000
1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(b)

0 200 400 600 800 1000

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(c)

0 200 400 600 800 1000

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(d)

(e)

0 200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(f)

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(g)

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(h)

Figure 1: Training and prediction performance on CIFAR-10 with 1,3,10,20 sub-datasets (workers).
(a)-(d): The training loss with 1, 3, 10, and 20 sub-datasets respectively. (e)-(h): The accuracy with
1, 3, 10, and 20 sub-datasets respectively.

(a)

0 200 400 600 800 1000
3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(b)

0 200 400 600 800 1000
3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(c)

0 200 400 600 800 1000

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

Lo
ss

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(d)

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(e)

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(f)

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(g)

0 200 400 600 800 1000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ac
cu
rac

y

Epochs

 momentum=0.9
 momentum=0.5
 momentum=0

(h)

Figure 2: Training and prediction performance on CIFAR-100 with 1,3,10,20 sub-datasets (work-
ers). (a)-(d): The training loss with 1, 3, 10, and 20 sub-datasets respectively. (e)-(h): The accuracy
with 1, 3, 10, and 20 sub-datasets respectively.

4 CONCLUSION

This paper explores the last-iterate convergence for distributed mSGD algorithms. Our work ad-
dresses a critical gap in the current research by providing a thorough theoretical analysis of the last-
iterate convergence properties of a class of distributed mSGD algorithms, with a decaying learning
rate. Through the establishment of a general framework, we have proven the last-iterate almost-
sure convergence and last-iterate mean-square convergence of the gradient of the loss function for a
class of distributed mSGD algorithms, including momentum-based EASGD and momentum-based
D-PSGD algorithms. Our findings indicate that adding a momentum term accelerates the conver-
gence of iterations to a neighborhood of the stationary point in the early stages of the algorithm.
Furthermore, under mild supplementary conditions, a larger momentum coefficient can lead to a
higher convergence rate. These findings are important for understanding the performance of dis-
tributed mSGD algorithms in real-world applications. By showcasing the results of a classification
tasks using ResNet20 network, which is optimized by the distributed mSGD algorithm, we find that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the experimental results are consistent with our theoretical findings. In conclusion, these theoretical
results offer a substantial contribution to the field of distributed stochastic optimization, particularly
in scenarios where communication efficiency and data privacy are of utmost importance.

REFERENCES

A. Balu, Z. Jiang, S. Y. Tan, C. Hedge, and S. Sarkar. Decentralized deep learning using momentum-
accelerated consensus. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

H. Gao and H. Huang. Periodic stochastic gradient descent with momentum for decentralized train-
ing. arXiv preprint arXiv:2008.10435, 2020.

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum
in stochastic gradient methods. Advances in Neural Information Processing Systems, 32, 2019.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 6645–6649, 2013.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE, 2016.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse
and quantized communication. Advances in Neural Information Processing Systems, 31, 2018.

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in
fixed topology networks. Advances in Neural Information Processing Systems, 30, 2017.

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. On consensus-optimality trade-
offs in collaborative deep learning. Frontiers in artificial intelligence, 4:573731, 2021.

Ruinan Jin, Xingkang He, Lang Chen, Difei Cheng, and Vijay Gupta. Revisit last-iterate conver-
gence of msgd under milder requirement on step size. In NeurIPS, 2022a.

Ruinan Jin, Yu Xing, and Xingkang He. On the convergence of mSGD and AdaGrad for stochastic
optimization. In International Conference on Learning Representations, 2022b.

M. E. Khan, R. Babanezhad, W. Lin, M. Schmidt, and M. Sugiyama. Convergence of proximal-
gradient stochastic variational inference under non-decreasing step-size sequence. Journal of
Comparative Neurology, 319(3):359–86, 2015.

Donghwan Kim, Sathish Ramani, and Jeffrey A Fessler. Combining ordered subsets and momentum
for accelerated X-ray CT image reconstruction. IEEE Transactions on Medical Imaging, 34(1):
167–178, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems, 25:1097–1105,
2012.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017a.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017b.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. ICLR, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In Human language technologies: The 2010 annual conference of the North American
chapter of the association for computational linguistics, pp. 456–464, 2010.

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Introductory Lectures
on Convex Optimization: A Basic Course, 2004.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin
Takác. SGD and Hogwild! convergence without the bounded gradients assumption. In Interna-
tional Conference on Machine Learning, pp. 3750–3758, 2018.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics & Mathematical Physics, 4(5):1–17, 1964.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. 2020SQuARM: Communication-
efficient momentum SGD for decentralized optimization. IEEE Journal on Selected Areas in
Information Theory, 2(3):954–969, 2021.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey E. Hinton. On the importance of initial-
ization and momentum in deep learning. In International Conference on Machine Learning, pp.
1139–1147, 2013.

Shenghao Tang, Changqing Shen, Dong Wang, Shuang Li, Weiguo Huang, and Zhongkui Zhu.
Adaptive deep feature learning network with Nesterov momentum and its application to rotating
machinery fault diagnosis. Neurocomputing, 305:1–14, 2018.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
local-update sgd algorithms. Journal of Machine Learning Research, 22, 2021.

Zhong-zhi Wang, Yun Dong, and Fangqing Ding. On almost sure convergence for sums of stochastic
sequence. Communications in Statistics-Theory and Methods, 48(14):3609–3621, 2019.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
International Conference on International Conference on Machine Learning, 2011.

Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic momen-
tum methods for deep learning. arXiv preprint arXiv:1808.10396, 2018.

H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication:
Demystifying why model averaging works for deep learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 33:5693–5700, 2019a.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient mo-
mentum sgd for distributed non-convex optimization. In International Conference on Machine
Learning, pp. 7184–7193. PMLR, 2019b.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 5693–5700, 2019c.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin.
Decentlam: Decentralized momentum sgd for large-batch deep training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3029–3039, 2021.

Jinshan Zeng and Wotao Yin. On nonconvex decentralized gradient descent. IEEE Transactions on
signal processing, 66(11):2834–2848, 2018.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd.
Advances in Neural Information Processing Systems, 28, 2015.

A APPENDIX

A.1 USEFUL LEMMAS

Lemma A.1. (Lemma 1.2.3,Nesterov (2004)) Suppose f(x) ∈ C1 (x ∈ RN) with gradient satisfy-
ing the following Lipschitz condition

∥∇f(x)−∇f(y)∥ ≤ c∥x− y∥,

then for any x, y ∈ RN , it holds that

f(x) ≤ f(y) +∇f(y)⊤(x− y) + c

2
∥x− y∥2.

Lemma A.2. (Lemma 10,Jin et al. (2022b)) Under the same conditions as Lemma A.1, for any
x0 ∈ RN , it holds that ∥∥∇f(x0)∥∥2 ≤ 2c

(
f(x0)− f∗

)
,

where f∗ = infx∈ RN f(x)

Lemma A.3. (Lemma B.6 in Jin et al. (2022a)) If 0 < µ < 1 and 0 < σ < 1 (σ ̸= µ) are two
constant, then exists k1 > 0, k2 > 0, for any positive sequence {ψ(i)

n }, it holds that

k1

n∑
i=1

κn−iψi ≤
n∑

k=1

µn−k
k∑

i=1

σk−iψi ≤ k2
n∑

i=1

κn−iψi,

where κ = max{µ, σ} and ω0 = logκ min{µ, σ}.
Lemma A.4. If there exists a sequence of positive numbers {xn}∞n=1 such that

∑∞
n=1 xn < ∞,

then for any n > 0, there exists a constant kn > 0, uniform in n, such that for any s, it holds that∑n
k=s xk < knxs.

Lemma A.5. Wang et al. (2019) Suppose that {Xn} ∈ RN is a L2 martingale difference se-
quence, and (Xn,Fn) is an adaptive process. Then it holds that

∑∞
k=0Xk < +∞ a.s., if∑∞

n=1 E(∥Xn∥2) < +∞ or
∑∞

n=1 E
(
∥Xn∥2

∣∣Fn−1

)
< +∞.

Lemma A.6. (Lemma 6,Jin et al. (2022b)) Suppose that {Xn} ∈ RN is a non-negative sequence of
random variables, then it holds that

∑∞
n=0Xn < +∞ a.s., if

∑∞
n=0 E

(
Xn

)
< +∞.

A.2 PROOFS OF MAIN RESULTS

Proof. First, due to 0 < α < 1, we can always find a positive constant α0,making α1 := α2+α0 <
1. Then based on the first equation of E.q. equation 8, we have

∥vn∥2 ≤ α1∥vn−1∥2 + ϵ2n

(
1 +

1

α0

)
· ∥Gn,ξn∥2. (9)

Then we take the mathematical expectation on the both side of E.q. equation 9, acquiring

E ∥vn∥2 ≤ α1 · E ∥vn−1∥2 + ϵ2n

(
1 +

1

α0

)
· E ∥Gn,ξn −Gn∥2 + ϵ2n

(
1 +

1

α0

)
· E ∥Gn∥2

≤ α1 · E ∥vn−1∥2 + ϵ2nσ
2
0

(
1 +

1

α0

)
+ ϵ2n

(
1 +

1

α0

)
· E ∥Gn∥2.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Iterating above inequity, we acquire

E ∥vn∥2 ≤ αn
1 · ∥v0∥2 + ϵ2n

(
1 +

1

α0

)
·

n∑
s=1

(σ2
0 + E ∥Gs∥2) · αn−s

1 (10)

Next, we iterate the second equation of E.q. equation 8 to attain

Xn+1 =WnXn −Wnvn

=Wn

(
Wn−1Xn−1 −Wn−1vn−1

)
−Wnvn

=WnWn−1(Wn−2Xn−2 −Wn−2vn−2)

−WnWn−1vn−1 −Wnvn

= ... =

(n∏
s=1

Ws

)
·X1 −

n∑
t=1

((n∏
s=t

Ws

)
· vt

)
.

We left multiply both sides of the above equation by the vector e⊤i := (−1/m,−1/m, ..., 1 −
1/m, ...,−1/m, ...,−1/m) (the i-th entry is 1− 1/m, and others are 1/m) to obtain

e⊤i Xn+1 = e⊤i

(n∏
s=1

Ws

)
·X1 −

n∑
t=1

(
e⊤i

(n∏
s=t

Ws

)
· vt

)
. (11)

When s mod k = 0, according to assumption2.1 2), we can find an orthogonal matrix Q such that
Q⊤WsQ = diag{1, λ2, λ3, . . . , λm}, where λ0 := max2≤j≤m{|λj |} < 1. When n mod k ̸= 0,
we always have Ws = Im = QQ⊤. We assign Wt,n :=

∏n
s=tWs. Then we can get that

Wt,n =
∏

s∈[t,n], s mod k=0

Ws

=
∏

s∈[t,n], s mod k=0

(Q · diag{1, λ2, λ3, . . . , λm} ·Q⊤)

= Q · diag
{
1,

∏
s∈[t,n], s mod k=0

λ2,

∏
s∈[t,n], s mod k=0

λ3, . . . ,
∏

s∈[t,n], s mod k=0

λm

}
·Q⊤.

(12)

We can conclude that ∀ j ∈ [2,m], there is∣∣∣∣∣ ∏
s∈[t,n], s mod k=0

λj

∣∣∣∣∣ ≤ λc(t,n)0 , (13)

where c(t, n) represents the total number of integers divisible by k between t and n. It is easy to
prove that ⌊

n− t
k

⌋
≤ c(t, n) ≤

⌊
n− t
k

⌋
+ 1.

Then based on E.q. equation 12, we can derive the following expression:

∥e⊤i Xn+1∥2 ≤ 2∥e⊤i W1,n∥2 · ∥X1∥2 + 2

(n∑
t=1

∥e⊤i Wt,n∥ · ∥vt∥
)2

. (14)

For any t and n, since the matrix Wt,n is a real symmetric matrix, its eigenspaces are orthogonal to
each other. We know that (1, 1, ..., 1)⊤ is obviously an eigenvector corresponding to the eigenvalue
1, and according to Assumption 2.1 2), we know that the dimension of the eigenspace corresponding
to the eigenvalue 1 can only be 1. Therefore, the eigenspace corresponding to the eigenvalue 1
is completely spanned by the vector (1, 1, ..., 1)⊤. On the other hand, since e⊤i (1, 1, ..., 1)

⊤ =

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

0, we know that ei must belong to the direct sum of the eigenspaces of Wt,n other than the one
corresponding to eigenvalue 1. Hence, there exists an orthogonal decomposition

ei = r2e2,i + r3e3,i + ...+ rmem,i,

where each es,i (2 ≤ s ≤ m) is a unit vector and at the same time an eigenvector of the matrix Wt,n

corresponding to an eigenspace not associated with the eigenvalue 1. Therefore, we can obtain

∥e⊤i Wt,n∥ =
∥∥∥∥ m∑

s=2

rse
⊤
s,iWt,n

∥∥∥∥ =

(m∑
s=2

|r2s |
) 1

2

· λc(t,n)0

= ∥ei∥λc(t,n)0 .

(15)

Substitute above inequity into E.q. equation 14, getting

∥e⊤i Xn+1∥2 ≤ 2∥ei∥2 · ∥X1∥2 · λ2c(1,n)0 + 2∥ei∥2
(n∑

t=1

λ
c(t,n)
0 · ∥vt∥

)2

≤ 2∥ei∥2 · ∥X1∥2 · λc(1,n)0 + 2∥ei∥2λ(n, k)
n∑

t=1

λ
c(t,n)
0 · ∥vt∥2,

where λ(n, k) =
∑n

t=1 λ
c(t,n)
0 . We take the mathematical expectation, resulting

E ∥e⊤i Xn+1∥2 ≤ 2∥ei∥2 · ∥X1∥2 · λc(1,n)0 + 2∥ei∥2 · λ(n, k)
n∑

t=1

λ
c(t,n)
0 · E ∥vt∥2. (16)

We substitute equation 10 into equation 16, getting

E ∥e⊤i Xn+1∥2 ≤ 2∥ei∥2 · ∥X1∥2 · λc(1,n)0 + 2∥ei∥2 · λ(n, k)
n∑

t=1

λ
c(t,n)
0 ·

(
αt
1∥v0∥2 + ϵ2t

(
1 +

1

α0

) t∑
s=1

(σ2
0 + E ∥Gs∥2) · αt−s

1

)

= 2∥ei∥2 · ∥X1∥2 · λc(1,n)0 + 2∥ei∥2λ(n, k)
n∑

t=1

λ
c(t,n)
0 · αt

1 · ∥v0∥2

+ 2∥ei∥2λ(n, k)
n∑

t=1

λ
c(t,n)
0 · ϵ2t

(
1 +

1

α0

) t∑
s=1

(σ2
0 +M2)αt−s

1 .

In the above inequality, by substituting the estimate for c(t, n) from equation 13 and simplifying,
we can obtain

E ∥e⊤i Xn+1∥2 = O

(n∑
t=1

max{λ
1
k
0 , α1}n−t · ϵ2t

)
→ 0. (17)

We recall E.q. equation 8 as follows

vn = αvn−1 + ϵnG(Xn, ξn),

Xn+1 =Wn

(
Xn − vn

)
.

Then we multiply u⊤ = (1/m, 1/m, ..., 1/m) on the both sides of the above equalities to obtain

u⊤vn = αu⊤vn−1 + ϵnu
⊤G(Xn, ξn),

u⊤Xn+1 = u⊤Wn

(
Xn − vn

)
.

Since Wn is a doubly stochastic matrix, u⊤Wn = u⊤, Furthermore, it holds that

u⊤vn = αu⊤vn−1 + ϵnu
⊤G(Xn, ξn),

u⊤Xn+1 = u⊤Xn − u⊤vn.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Denote Im = [1, 1, · · · , 1]1×m and ⊗ is Kronecker Product. We derive g(u⊤Xn+1)− g(u⊤Xn) to
obtain

g(u⊤Xn+1)− g(u⊤Xn) = −(u⊤G(Im ⊗ u⊤Xn))
⊤(u⊤vn) + (u⊤G(Im ⊗ u⊤Xn)− u⊤G(Im ⊗ u⊤Xζn))

⊤(u⊤vn)

≤ −(u⊤G(Im ⊗ u⊤Xn))
⊤(u⊤vn) + L∥u⊤vn∥2,

(18)
where u⊤Xζn is a value between u⊤Xn and u⊤Xn+1. Next we focus on the term (u⊤G(Im ⊗
u⊤Xn))

⊤(u⊤vn). We derive that

(u⊤G(Im ⊗ u⊤Xn))
⊤(u⊤vn) = (u⊤G(Im ⊗ u⊤Xn))

⊤(αu⊤vn−1 + ϵnu
⊤G(Xn, ξn))

= α(u⊤G(Im ⊗ u⊤Xn))
⊤u⊤vn−1 + ϵn(u

⊤G(Im ⊗ u⊤Xn))
⊤u⊤G(Xn, ξn))

≥ αu⊤G(Im ⊗ u⊤Xn−1)
⊤(u⊤vn−1)− L∥u⊤vn−1∥2 + ϵn(Im ⊗ u⊤G(Xn))

⊤u⊤G(Xn, ξn)).
(19)

It follows from E.q. equation 19 that

(u⊤G(Im ⊗ u⊤Xn))
⊤(u⊤vn) ≥ −L

n−1∑
s=0

αn−s−1∥u⊤vs∥2 +
n∑

s=1

αn−sϵs(Im ⊗ u⊤G(Xs))
⊤u⊤G(Xs, ξs)).

(20)
Substituting E.q. equation 20 into E.q. equation 18 leads to

g(u⊤Xn+1)− g(u⊤Xn) ≤ L
n∑

s=1

αn−s∥u⊤vs∥2 −
n∑

s=1

αn−sϵs(Im ⊗ u⊤G(Xs))
⊤u⊤G(Xs, ξs)) + L∥u⊤v0∥2 · αn.

(21)
Then we consider the term (u⊤G(Im ⊗ u⊤Xs))

⊤u⊤G(Xs, ξs)) to have

− (u⊤G(Im ⊗ u⊤Xs))
⊤u⊤G(Xs, ξs))

= −u⊤G(Im ⊗ u⊤Xs)
⊤(u⊤G(Xs, ξs)− u⊤G(Xs)

)
− ∥(u⊤G(Im ⊗ u⊤Xs))

⊤∥2

+ u⊤G(Im ⊗ u⊤Xs)
⊤(u⊤G(Im ⊗ u⊤Xs)− u⊤G(Xs))

≤ −1

2

∥∥u⊤G(Im ⊗ u⊤Xs)
∥∥2 + 2L

m∑
i=1

∥x(i)s − u⊤Xs∥2 − u⊤G(Im ⊗ u⊤Xs)
⊤(u⊤G(Xs, ξs)− u⊤G(Xs)

)
.

(22)
Denote βs := 2L

∑m
i=1 ∥x

(i)
s − u⊤Xs∥2, then substituting E.q. equation 22 into E.q. equation 21

yields

g(u⊤Xn+1)− g(u⊤Xn) ≤ L
n∑

s=1

αn−s∥u⊤vs∥2 −
1

2

n∑
s=1

αn−sϵs
∥∥u⊤G(Im ⊗ u⊤Xs)

∥∥2 + n∑
s=1

αn−sϵsβs

−
n∑

s=1

αn−sϵsu
⊤G(Im ⊗ u⊤Xs)

⊤ ·
(
u⊤G(Xs, ξs)− u⊤G(Xs)

)
+ L∥u⊤v0∥2 · αn.

(23)
On the other hand, we have

∥u⊤vn∥2 = ∥αu⊤vn−1 + ϵnu
⊤G(Xn, ξn)∥2

= α2∥u⊤vn−1∥2 + 2αϵn(u
⊤vn−1)

⊤u⊤G(Xn, ξn) + ϵ2n∥u⊤G(Xn, ξn)∥2

= α2∥u⊤vn−1∥2 + 2αϵn(u
⊤vn−1)

⊤u⊤G(Xn) + ϵ2n∥u⊤G(Xn, ξn)∥2 + γn,

(24)

where γn = 2αϵnv
⊤
n−1u

⊤(G(Xn, ξn) − G(Xn)). Then we calculate 2ϵn(E.q.equation 18 −
E.q.equation 19) + E.q.equation 24 to obtain

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2ϵn+1g(u
⊤Xn+1)− 2ϵng(u

⊤Xn)

≤ α2∥u⊤vn−1∥2 − ∥u⊤vn∥2 + 2ϵnL∥u⊤vn∥2 + γ̂n + ϵ2n∥u⊤G(Xn, ξn)∥2 − 2ϵ2n(u
⊤G(Im ⊗ u⊤Xn))

⊤u⊤G(Xn, ξn)

≤ α2∥u⊤vn−1∥2 − ∥u⊤vn∥2 + 2ϵnL(∥u⊤vn∥2 + ∥u⊤vn−1∥2) + ϵ2n∥u⊤G(Xn, ξn)∥2

+ γ̂n − ϵ2n∥u⊤G(Im ⊗ u⊤Xn)∥2 + 2ϵ2nβn,
(25)

where

γ̂n := γn + 2ϵ2n(u
⊤G(Im ⊗ u⊤Xn))

⊤(u⊤G(Xn, ξn)− u⊤G(Xn)
)
.

We make the mathematical expectation of E.q. equation 23 to obtain

E
(
g(u⊤Xn+1)

)
− E

(
g(u⊤Xn)

)
≤ L̂

n∑
s=1

αn−s E ∥u⊤vs∥2 −
1

2

n∑
s=1

αn−sϵs E
∥∥u⊤G(Im ⊗ u⊤Xs)

∥∥2
+ L∥u⊤v0∥ · αn +

n∑
s=1

αn−sϵsβs.

Making a summation of the above inequality leads to

E
(
g(u⊤Xn+1)

)
− E

(
g(u⊤X1)

)
≤ L

1− α

n∑
s=1

E ∥u⊤vs∥2 −
1

2

n∑
s=1

ϵs E
∥∥u⊤G(Im ⊗ u⊤Xs)

∥∥2 + L∥u⊤v0∥2

1− α
+ β̂n,

(26)
where β̂n =

∑n
t=1

∑⊤
s=1 α

t−sϵsβs. We perform the same operations on E.q. equation 25 to obtain

2ϵn+1 E
(
g(u⊤Xn+1)

)
− 2ϵ1 E

(
g(u⊤X1)

)
≤ −

n∑
s=1

(1− α2)E ∥u⊤vs∥2 +
n∑

s=1

ϵ2s E ∥u⊤G(Xs, ξs)∥2 + 2

n∑
s=1

ϵ2sβs.

(27)
For the term

∑n
s=1 ϵ

2
s E ∥u⊤G(Xs, ξs)∥2, we have

n∑
s=1

ϵ2s E ∥u⊤G(Xs, ξs)∥2 ≤ 2

n∑
s=1

ϵ2s∥u⊤G(Xs, ξs)− u⊤G(Xs)∥2 + 2

n∑
s=1

ϵ2s E ∥u⊤G(Xs)∥2

≤ 2

n∑
s=1

ϵ2s∥u⊤G(Xs, ξs)− u⊤G(Xs)∥2 + 4

n∑
s=1

ϵ2s E ∥u⊤G(Xs)− u⊤G(Im ⊗ u⊤Xs)∥2

+ 4

n∑
s=1

ϵ2s E ∥u⊤G(Im ⊗ u⊤Xs)∥2.

From Assumption 2.1 Item (4), we know that

2

n∑
s=1

ϵ2s∥u⊤G(Xs, ξs)− u⊤G(Xs)∥2 + 4

n∑
s=1

ϵ2s E ∥u⊤G(Xs)− u⊤G(Im ⊗ u⊤Xs)∥2 ≤ 2(σ2
0 + 2Lσ1)

n∑
s=1

ϵ2s,

which means

n∑
s=1

ϵ2s E ∥u⊤G(Xs, ξs)∥2 ≤ 2(σ2
0 + 2Lσ1)

n∑
s=1

ϵ2s + 4

n∑
s=1

ϵ2s E ∥u⊤G(Im ⊗ u⊤Xs)∥2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Substitute above inequity into E.q. equation 27, getting

2ϵn+1 E
(
g(u⊤Xn+1)

)
− 2ϵ1 E

(
g(u⊤X1)

)
≤ −

n∑
s=1

(1− α2)E ∥u⊤vs∥2 + 2(σ2
0 + 2σ1)

n∑
s=1

ϵ2s

+ 4

n∑
s=1

ϵ2s E ∥u⊤G(Im ⊗ u⊤Xs)∥2 + 2

n∑
s=1

ϵ2sβs.

(28)
We calculate 1−α

L E.q.equation 26 + 1
1−α2E.q.equation 28, from Assumption 2.1 4) and E.q.

equation 17 (
∑n

s=1 ϵ
2
sβs → 0, β̂n → 0), we can get

+∞∑
s=1

ϵs E ∥∇g(xn)∥2 < +∞,
+∞∑
s=1

ϵs∥∇g(xn)∥2 < +∞ a.s.,

where the second inequity is because Lemma A.6. Then by using the condition
∑+∞

n=1 ϵn = +∞,
we can immediately acquire

lim inf
n→+∞

E ∥∇g(xn)∥2 = 0, lim inf
n→+∞

∥∇g(xn)∥2 = 0 a.s. .

Our goal below is to prove

lim sup
n→+∞

E ∥∇g(xn)∥2 = 0, lim sup
n→+∞

∥∇g(xn)∥2 = 0 a.s. .

We first prove lim supn→+∞ ∥∇g(xn)∥2 = 0 a.s. . We use proof by contradiction. We assume
that for a certain trajectory {∥∇g(xn)∥2}+∞

n=1, apart from 0, there exists another accumulation
point û > 0 . Then, for a certain open interval (o, e) ⊂ (0, û), the sequence {∥∇g(xn)∥2}+∞

n=1
must cross this interval infinitely many times. We denote all the intervals that go upwards as
{(∥∇g(xln)∥2, ∥∇g(xrn)∥2)}+∞

n=1 . We have

+∞∑
n=1

rn∑
i=ln

ϵi <
1

o

+∞∑
n=1

rn∑
i=ln

ϵi∥∇g(xi)∥2 < +∞ . (29)

On the other hand, due to ∥∇g(xrn)∥2 > e and ∥∇g(xln)∥2 < e, we know there is a p̃0 > 0, such
that ∥θrn − θln∥ > p̃0 . Then we get

p̃0 < ∥θrn − θln∥ = ζn + k0

rn∑
i=ln

ϵi,

where ζn → 0 . We get

lim inf
n→+∞

rn∑
i=ln

ϵi >
p̃0
2k0

> 0,

which conclude
+∞∑
n=1

rn∑
i=ln

ϵi = +∞ . (30)

Now we have a contradiction between E.q. equation 30 and E.q. equation 29, which implies
that our assumption is false. Therefore, we obtain lim supn→+∞ ∥∇g(xn)∥2 = 0 a.s., that is
limn→+∞ ∥∇g(xn)∥2 = 0 a.s. . Using the same technique, we can obtain convergence in the
mean square sense, i.e., limn→+∞ E ∥∇g(θn)∥2 = 0 from the inequity

∑+∞
s=1 ϵs E ∥∇g(xn)∥2 <

+∞ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 PROOF OF THEOREM 2.2

Proof. We define zn = u⊤Xn−αu⊤Xn−1

1−α . We can obtain ∀ θ0 ∈ Rd which satisfies ∥zn − θ0∥ ≤ τ,
the following recursive inequality:

∥zn+1 − θ0∥2 = ∥zn − θ0 + zn+1 − zn∥2 = ∥zn − θ0∥2 + 2(zn − θ0)⊤(zn+1 − zn) + ∥zn+1 − zn∥2.
(31)

Due to the definition of zn+1 − zn, we have

zn+1 − zn =
u⊤(Xn+1 −Xn)− αu⊤(Xn −Xn−1)

1− α

=
−u⊤vn + αu⊤vn−1

1− α

= −ϵnu
⊤G(Xn, ξn)

1− α
.

Substitute above equation into Eq. equation 31, and take the mathematical expectation, noting
E(G(Xn, ξn)) = E(G(Xn)), getting

E ∥zn+1 − θ0∥2 = E ∥zn − θ0∥2 −
2ϵn
1− α

· E
(
(zn − θ0)⊤u⊤G(Xn)

)
+

ϵ2n
(1− α)2

E ∥u⊤G(Xn, ξn)∥2.

(32)
For u⊤G(Xn), dur to Eq. equation 17, we get

u⊤G(Xn) = ∇g(u⊤Xn) + (u⊤G(Xn)−∇g(u⊤Xn))

= ∇g(zn) +
α

1− α
(∇g(u⊤Xn)−∇g(zn)) + (u⊤G(Xn)−∇g(u⊤Xn)) + .

Then we get

− 2ϵn
1− α

· E
(
(zn − θ0)⊤u⊤G(Xn)

)
≤ − 2ϵn

1− α
· E
(
(zn − θ0)⊤∇g(zn)

)
+O(ϵ2n).

Substitute above inequity into Eq. equation 31, acquiring

E ∥zn+1 − θ0∥2 = E ∥zn − θ0∥2 −
2ϵn
1− α

· E
(
(zn − θ0)⊤∇g(zn)

)
+O(ϵ2n). (33)

For any term k in the first T iterations 1, 2, . . . , T , we set θ0 in Eq. equation 31 to zT−k, obtaining
∃ l > 0, l0 > 0 such that

T∑
t=T−k

E((zt − zT−k)
⊤∇g(zn)) ≤

l√
m

(√
T −
√
T − k

)
+ l0
√
m

T∑
t=T−k

1√
t
.

By convexity, we can lower bound (zt − zT−k)
⊤∇g(zt) bt g(zt)− g(zT−k). Also, it is easy to get

that
T∑

t=T−k

1√
t
≤ 2(
√
T −
√
T − k − 1).

Then we get

E

(
T∑

t=T−k

(g(zt)− g(zT−k))

)
≤
(

l√
m

+ l0
√
m

)(√
T −
√
T − k − 1

)
≤
(

l√
m

+ l0
√
m

)
k + 1√
T
.

Then we define Sk = 1
k+1

∑T
t=T−k E(g(zt)) be the expected average value of the lastK+1 iterates.

The bound above implies that

−E(g(zT−k)) ≤ −E(Sk) +
l
√
m+ l0√

m√
T

.

By the definition of Sk and the inequity above, we have

kE(Sk−1) = (k + 1)E(Sk)− E(g(zT−k)) ≤ (k + 1)E(Sk)− E(Sk) +
l
√
m+ l0√

m√
T

,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and dividing by k, implies

E(Sk−1) ≤ E(Sk) +
l
√
m+ l0√

m

k
√
T

.

Using the inequity repeatedly and by summing over k = 1, ..., T − 1, we have

E(g(zT)) = E(S0) ≤ E(ST−1) +
l
√
m+ l0√

m√
T

T−1∑
k=1

1

k
.

Using Eq. equation 33 with k = T − 1 and θ0 = θ∗, we can get

E(ST−1)− g(θ∗) ≤
l
√
m+ l0√

m√
T

.

Finally, we get

E(g(u⊤XT)− g(θ∗)) = O
((

l
√
m+

l0√
m

)
lnT√
T

)
.

A.4 PROOF OF THEOREM 2.3

We define another event

Bn = {∥∇g(x1)∥2 > a0, ∥∇g(x2)∥2 > a0 · · · , ∥∇g(xn)∥2 > a0},

and its characteristic function as I(a0)
n . Then through Assumption 2.1 and ϵn ≥ ϵn+1 we get that

I
(a0)
n+1g(xn+1)− I(a0)

n g(xn) = −
1

2

n∑
k=i

αn−kϵkI
(a0)
k ∥∇g(xk)∥2 +

µ̂0σ
2
0

2

n∑
k=i

αn−kI
(a0)
k O(ϵ2k) + kαn + ζn

+ L̂

n∑
k=1

αn−kI
(a0)
k ϵkβk,

where k, L̂ and µ̂0 are three constants which can not affect the result. Notice that

I
(a0)
k O(ϵ2k) ≤

1

a0
I
(a0)
k ∥∇g(xk)∥2O(ϵ2k)

= I
(a0)
k ∥∇g(xk)∥2O(ϵ2k).

Then we get

I
(a0)
n+1g(xn+1)− I(a0)

n g(xn) = −
1

2

n∑
k=i

αn−k
(
ϵk −O(ϵ2k)

)
E
(
I
(a0)
k ∥∇g(xk)∥2

)
+ ζn.

Due to E(ζn) = 0, we make the mathematical expectation to obtain

E
(
I
(a0)
n+1g(xn+1)

)
− E

(
I(a0)
n g(xn)

)
= −1

2

n∑
k=i

αn−k
(
ϵk −O(ϵ2k)

)
I
(a0)
k ∥∇g(xk)∥2.

We denote

F̂ (a0)
n =

n∑
i=1

(
1

2− α

)n−i

E
(
I(a0)
n g(θn)

)
.

For convenience, we let

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ĝ(a0)
n =

2

(1− α)2
n∑

i=1

(
1

2− α

)n−i

(ϵi −O(ϵ2i))

· E
(
I
(a0)
i ∥∇g(xn)∥2

)
.

Then we get
F̂

(a0)
n+1 − F̂ (a0)

n ≤ −Ĝ(a0)
n ,

so there is

F̂
(a0)
n+1 ≤ F̂ (a0)

n

(
1− Ĝ

(a0)
n

F̂
(a0)
n

)
≤ F̂ (a0)

1

n∏
i=1

(
1− Ĝ

(a0)
i

F̂
(a0)
i

)
≤ q̂0

n∏
i=1

(
1− Ĝ

(a0)
i

F̂
(a0)
i

)
,

where q̂0 is a constant. We focus on Ĝ
(a0)
i

F̂
(a0)
i

. Using O′stolz theorem yields

lim inf
i→+∞

Ĝ
(a0)
i

ϵiF̂
(a0)
i

= lim inf
i→+∞

2

(1− α)2

∑i
t=1(

1
2−α)

i−t E(I(a0)
t ∥∇g(xt)∥2)∑i

t=1(
1

2−α)
i−t E(I(a0)

t g(xt))

≥ lim inf
i→+∞

2

(1− α)2
E(I(a0)

i ∥∇g(xi)∥2)
E(I(a0)

t g(xi))
.

In the setting of this theorem, the loss function is bounded. We let g(x) < T̂ . Then there is

lim inf
i→+∞

2

(1− α)2
E(I(a0)

i ∥∇g(xi)∥2)
E(I(a0)

t g(xi))
≥ lim inf

i→+∞

2

(1− α)2
a

T̂
.

Then it holds that
E(I(a0)

n) ≤ F̂ (a0)
n+1 = O

(
e
− s

(1−α)2

∑n
i=1 ϵn

)
,

where s = 2a/T̂ .

19

	Introduction
	Main results
	Definitions of convergence
	General momentum-based iteration
	Last-iterate Convergence
	Last-iterate convergence rate

	Experiments Results
	Conclusion
	Appendix
	Useful lemmas
	Proofs of main results
	Proof of Theorem 2.2
	Proof of Theorem 2.3

