

000 001 002 003 004 005 006 007 008 **STAIRS-FORMER: SPATIO-TEMPORAL ATTENTION 009 WITH INTERLEAVED RECURSIVE STRUCTURE 010 TRANSFORMER FOR OFFLINE MULTI-TASK MULTI- 011 AGENT REINFORCEMENT LEARNING**

012 **Anonymous authors**

013 Paper under double-blind review

014 ABSTRACT

015 Offline multi-agent reinforcement learning (MARL) with multi-task (MT) datasets
 016 poses unique challenges, as input structures vary across tasks due to the varying
 017 number of agents. Prior works have adopted transformers and hierarchical skill
 018 learning to facilitate coordination, but these methods underutilize the transformer's
 019 attention mechanism, focusing instead on extracting transferable skills. Moreover,
 020 existing transformer-based approaches compress the entire history into a single
 021 token and input this token at next time step, forming simple recursive neural
 022 network (RNN) processing on history tokens. As a result, models rely primarily
 023 on current and near-past observations while neglecting long historical information,
 024 even though the partially observable nature of MARL makes history information
 025 critical. In this paper, we propose STAIRS-Former, a transformer architecture
 026 augmented with spatial and temporal hierarchies that enables the model to properly
 027 attend to critical tokens while effectively leveraging long history. To further
 028 enhance robustness across varying token counts, we incorporate token dropout,
 029 which improves generalization to diverse agent populations. Experiments on the
 030 StarCraft Multi-Agent Challenge (SMAC) benchmark with diverse multi-task
 031 datasets show that STAIRS-Former consistently outperforms prior algorithms,
 032 achieving new state-of-the-art performance.

033 1 INTRODUCTION

034 Offline multi-agent reinforcement learning (MARL) has become a key paradigm for training many
 035 practical multi-agent systems such as connected vehicle and collaborative drones without costly or
 036 unsafe online interactions. Existing offline MARL methods mainly address overestimation bias,
 037 distributional shift and out-of-distribution errors through conservative value estimation, hybrid
 038 optimization, or regularization strategies (Pan et al., 2022; Shao et al., 2023; Wang et al., 2023b; Yang
 039 et al., 2021a). While these advances are significant, most approaches are limited to single-task settings.
 040 However, real-world applications demand agents that can master diverse skills, transfer knowledge
 041 across tasks, adapt to varying number of agents, and remain robust under heterogeneous conditions
 042 (Kaufmann et al., 2023; Tang et al., 2024). This highlights the need for offline MARL methods that
 043 are not only stable and reliable, but also generalizable and adaptable to complex multi-task scenarios.

044 The multi-task (MT) RL framework (Caruana, 1997) provides a pathway to realize such generalization
 045 by training policies across multiple tasks. Extending this MT framework to MARL poses a unique
 046 challenge due to the need to cover the varying number of agents. For example, one wants a local drone
 047 policy trained for a collaborative task under the assumption of six agents to still work well even if
 048 one, two or three drones are missing. One possible solution is to use *transformer-based* architectures
 049 with scalability, recently proposed for on-line transfer learning for MARL (Hu et al., 2021; Zhou
 050 et al., 2021). ODIS and HiSSD (Zhang et al., 2023; Liu et al., 2025) adopt UPDeT (Hu et al., 2021), a
 051 transformer-based scalable architecture developed for on-line transfer learning, leverage hierarchical
 052 skill learning to extract transferable coordination patterns for offline MT-MARL, and yield promising
 053 results. While these approaches show the effectiveness of transformers for MT-MARL, they primarily
 use transformers to handle task-dependent variability in observation dimensions, rather than to fully

054 exploit their capacity for modeling sequential history and complex token relationships (Vaswani
 055 et al., 2017b). As a result, much of their potential to capture long-range dependencies and relational
 056 structures remains underutilized, as we shall see shortly.

057 To address this limitation, in this paper, we propose Spatio-
 058 Temporal Attention with Interleaved Recursive Structure
 059 Transformer (STAIRS-Former), which extends the transformer
 060 architecture with spatial and temporal hierarchies to better
 061 model entity correlations and historical dependencies, and in-
 062 troduce an overall Q decomposition architecture for offline
 063 MT-MARL, as shown in Fig. 1. STAIRS-Former consists of
 064 three key components: (1) a spatial hierarchy that directs atten-
 065 tion toward the most relevant entities, (2) a temporal hierarchy that strengthens the use of long-range
 066 past information, crucial in the partially-observable setting of MARL, and (3) token dropout, which
 067 improves generalization across the varying number of agents. The contributions of this work are:

- 068 • A novel transformer architecture for offline multi-agent reinforcement learning in multi-task
 069 scenarios, which selectively focuses attention across tokens to better capture critical information.
- 070 • Introduction of spatial and temporal hierarchies within the transformer, highlighting their impor-
 071 tance for handling varying agent populations and history dependence in multi-task settings.
- 072 • Empirical evaluation on multi-task scenarios in the SMAC benchmark (Samvelyan et al., 2019),
 073 showing significant gains over baselines and setting new state-of-the-art performance.

074 2 RELATED WORKS

075 **Offline MARL** Offline MARL faces several key challenges, including coordination under partial
 076 observability, distributional shift, and convergence to sub-optimal policies. Recent works tackle
 077 these issues through conservative estimation or regularization. For example, CFCQL (Shao et al.,
 078 2023) introduces counterfactual regularization, OMAR (Pan et al., 2022) combines policy gradients
 079 with population-based search, OMIGA (Wang et al., 2023b) integrates value decomposition with
 080 offline policy learning, B3C (Kim & Sycara, 2025) incorporates behavior cloning with critic clipping,
 081 and MA-ICQ (Yang et al., 2021b) extends implicit Q-learning to multi-agent settings. While these
 082 methods enhance stability in offline training, they remain limited to single-task regimes and fail to
 083 address generalization and adaptability in dynamic multi-task settings.

084 **Generalization and MT-MARL** Although MT-RL (Hendawy et al., 2024; Cho et al.; Hendawy
 085 et al., 2023) and MARL (Jeon et al., 2022; Yang et al., 2020; Rashid et al., 2020; Peng et al., 2021)
 086 have been extensively studied, their integration remains relatively underexplored. One research
 087 direction emphasizes architectural flexibility. UPDeT (Hu et al., 2021) uses transformer-based value
 088 networks that adapt to dynamic agent populations and variable observation structures, providing
 089 a scalable inductive bias for cooperative MARL. Multi-Task Multi-Agent Shared Layers (Wang
 090 et al., 2023a) shows that combining shared decision layers with task-specific perception modules
 091 enables concurrent training across tasks and supports transfer to unseen environments. DT2GS (Tian
 092 et al., 2023) further advances MT-MARL by decomposing complex tasks into transferable subtasks,
 093 reducing interference and improving cross-task generalization.

094 Beyond architecture advances, recent works explore representation learning and modularization. M3
 095 (Meng et al., 2023) introduces an offline pre-training framework that disentangles agent-invariant
 096 and agent-specific representations, improving few-shot and zero-shot transfer. HyGen (Zhang et al.,
 097 2024) combines offline multi-task data with limited online fine-tuning to extract generalizable skills,
 098 ODIS (Zhang et al., 2023) learns task-invariant coordination strategies, and HiSSD (Liu et al.,
 099 2025) decomposes cooperative knowledge into shared and task-specific components for structured
 100 transfer. Together, these methods highlight the promise of architectural design, modularization, and
 101 skill discovery for enhancing generalization in MARL. However, they mainly emphasize skill and
 102 representation transfer, without addressing how to attend to critical factors such as historical context
 103 or changing agent interactions, which are crucial for robust policy learning under partial observability.

104 3 PRELIMINARIES

105 **MARL** A cooperative partially-observable Markov game with N agents is modeled as a Dec-POMDP
 106 $\mathcal{T} = \langle N, \mathcal{S}, \{\mathcal{A}^i\}_{i=1}^N, \Omega, \mathcal{O}, P, r, \rho, \gamma \rangle$ (Oliehoek & Amato, 2016). The state space is denoted by
 107 \mathcal{S} , and each agent i has its own action space \mathcal{A}^i . The observation space is represented by Ω , and

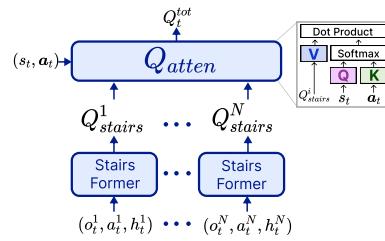


Figure 1: Overall Proposed Q Structure

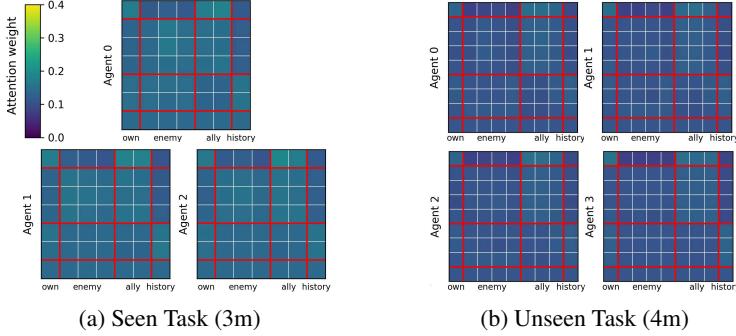


Figure 2: Attention map on both seen and unseen task with basic transformer in HiSSD

the initial state is drawn from the distribution $\rho : \mathcal{S} \rightarrow [0, 1]$. A discount factor $\gamma \in [0, 1]$ controls how future rewards are valued. Although the agents interact with the same environment state $s \in \mathcal{S}$, they each receive individual observations $o_i \in \Omega$, which are produced by the observation function $\mathcal{O}(s, i) : \mathcal{S} \times \mathcal{N} \rightarrow \Omega$. At every timestep, each agent selects an action $a^i \in \mathcal{A}^i$, and together these form the joint action $\mathbf{a} = (a^1, \dots, a^N)$. The environment then updates its state according to the transition dynamics $s' \sim P(\cdot | s, \mathbf{a})$, and all agents receive a shared reward $r(s, \mathbf{a})$. For clarity, bold symbols are used for joint variables, such as $\mathbf{o} = (o^1, \dots, o^N)$ for observations and $\tau_t = (\tau_t^1, \dots, \tau_t^N)$ for the collection of agent trajectories, i.e. $\tau_t^k = (o_{0:t}^k, a_{0:t-1}^k, r_{0:t-1})$. The goal is to optimize a collection of decentralized policies $\pi = \{\pi^i(a^i | \tau^i; \theta^i)\}_{i=1}^N$ that maximize the expected cumulative reward, expressed as $J(\pi) = \mathbb{E}_{\tau \sim \pi, P} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$.

Offline MT-MARL In this paper, to capture generalizable behaviors across diverse tasks, we consider a MT-MARL framework (Omidshafiei et al., 2017). In this setting, we have a set of training tasks $\mathcal{C}_{\text{Train}} = \{\mathcal{T}_j\}_{j=1}^{L_{tr}}$, where each task \mathcal{T}_j is modeled as an aforementioned Dec-POMDP: $\mathcal{T}_j = \langle N_j, \mathcal{S}_j, \{\mathcal{A}_j^i\}_{i=1}^N, \Omega_j, \mathcal{O}_j, P_j, r_j, \rho_j, \gamma \rangle$. The goal is to learn a universal decentralized policy π over the training set $\mathcal{C}_{\text{Train}}$ that generalizes to an unseen test set $\mathcal{C}_{\text{Test}} = \{\mathcal{T}_{j,\text{test}}\}_{j=1}^{L_{te}}$. Here, *the number of agents, state spaces, and action spaces differ across the tasks*.

To handle such heterogeneity, Hu et al. (2021) proposed UPDeT, a transformer-based unified policy network (Vaswani et al., 2017a). The key idea of UPDeT is that it decomposes each agent's observation o^i according to characteristics, e.g., o^i is decomposed into three groups of entities: (1) own information o_{own}^i , (2) information about other agents $\{o_{oa,j}^i\}_{j=1}^{K_a}$, and (3) environment information $\{o_{en,j}^i\}_{j=1}^{K_e}$, i.e., $o^i = (o_{own}^i, o_{oa,1}^i, \dots, o_{oa,K_a}^i, o_{en,1}^i, \dots, o_{en,K_e}^i)$. Then, each element in this decomposition is tokenized with a linear transform according to its characteristics, i.e., $e_{own}^i = W^{own} o_{own}^i + b^{own}$, $e_{oa,j}^i = W^{oa} o_{oa,j}^i + b^{oa}$ and $e_{en,j}^i = W^{en} o_{en,j}^i + b^{en}$. These tokens are appended by a history token e_{hs}^i , the appended overall tokens are fed to a transformer, and the local Q value for each discrete action is obtained from the output layer of the transformer. Note that the tokenizing matrices W^{own} , W^{oa} and W^{en} , the query, key and value generation matrices W^Q , W^K and W^V in attention and the up and down projection matrices W^{up} and W^{down} in MLP of the transformer are independent of the context length, i.e., the number of tokens, once they are learned, and are common to all tokens. Hence, as more agents are added, the added elements in o^i are just decomposed according to their characteristics, and all the previously-learned transformer parameters can be used again to cover this new setup with a different number of agents. Building on UPDeT, recent offline MT-MARL methods such as ODIS and HiSSD (Zhang et al., 2023; Liu et al., 2025) train policies from fixed offline datasets \mathcal{D}_j for each task \mathcal{T}_j without further environment interaction.

Limitations of UPDeT in MT-MARL To investigate how UPDeT, the central structure of previous offline MT-MARL algorithms, actually works, we conducted an experiment on the *Marine-Easy* task set in SMAC (Samvelyan et al., 2019), which includes three training tasks ('3m', '5m', '10m'). We ran HiSSD, the current state-of-the-art offline MT-MARL algorithm, and analyzed the resulting attention weights over the observation and history tokens of each agent for a seen task ('3m') and an unseen task ('4m'). Fig. 2 shows the attention maps of individual agents, where the rows correspond to queries and the columns to keys. It is seen that attention is distributed nearly uniformly across tokens in both seen and unseen tasks, failing to capture important entities in spatial domain. However, both HiSSD and ODIS use UPDeT-style transformers with only a single layer (depth 1) to model skills and actions. It limits the model's expressiveness, as a one-layer transformer cannot capture the diverse relations among agents, entities, and history. This explains the nearly uniform attention maps

we observed in Fig. 2. Furthermore, the history token, which is important for partially-observable environments, is not heavily used. Note that in UPDeT, the attention output at the history position at time step t is basically given by a linear combination of o_t^i and history token input $e_{hs,t}^i$, and this linear combination is fed to the MLP part of the transformer, yielding

$$e_{hs,t+1}^i = W^{down} \sigma(W^{up}(Ae_{hs,t}^i + Bo_t^i)) \quad (1)$$

for some matrices A and B , where $\sigma(\cdot)$ is the nonlinear activation of MLP. Hence, UPDeT's operation on the history token is simple RNN processing, which cannot incorporate long-term history information essential for partially-observable environments. Thus, it is seen that this information-lacking history token is not heavily attended in other output positions. In summary, the UPDeT structure does not possess the capability of long-term history preservation and does not fully exploit the strength of transformers, particularly their ability to model rich correlations between tokens.

This observation raises our central question: *"How can we enhance the transformer architecture to capture richer correlations between entities while effectively leveraging historical information for offline MT-MARL?"* In the next section, we will provide one solution to this question.

4 METHOD

We propose Spatio-Temporal Attention with Interleaved Recursive Structure Transformer (STAIRS-Former), a new architecture designed for offline multi-task multi-agent reinforcement learning (MT-MARL). STAIRS-Former enhances both the modeling of inter-entity relationships and the utilization of historical information by integrating three key components:

- **Spatial Recursive Module:** A recursive transformer that strengthens relational reasoning among entities within local observations.
- **Temporal Module:** A hierarchical temporal structure with both step-wise and periodic updates, enabling agents to capture both short-term and long-term dependencies under partial observability.
- **Token-Dropout Mechanism:** A stochastic regularization strategy that drops entity tokens during training, improving generalization to unseen tasks with different numbers of entities.

As illustrated in Fig. 3, STAIRS-Former consists of two trainable networks: a spatial-former $f(\cdot; \theta_S)$ and a GRU $g(\cdot; \psi)$. Together, they define the local Q-networks, which are then aggregated through the Qatten mixing network (Yang et al., 2020) which can adapt to a varying number of inputs. In the following subsections, we describe each component in detail.

4.1 SPATIAL RECURSIVE MODULE

In MARL, it is crucial to model diverse relationships among entities so that agents can prioritize the most relevant parts of their observations and generalize policies more effectively to unseen tasks. Prior methods, such as HiSSD, rely on shallow transformer layers that struggle to capture this diversity (see Fig. 2(b)). To address this, STAIRS-Former employs a recursive deep transformer, called *Spatial-Former*, which refines relational reasoning through recursive steps for each layer.

Entity Embeddings. For agent i , entity-level observations are given by $o^i = (o_{own}^i, o_{oa,1:K_a}^i, o_{en,1:K_e}^i)$ where K_a and K_e denote the numbers of other agents and environment entities. We embed entities as

$$e^i = [e_{own}^i, e_{oa,1}^i, \dots, e_{oa,K_a}^i, e_{en,1}^i, \dots, e_{en,K_e}^i] \in \mathbb{R}^{K \times d}, \quad (2)$$

with $e_{own}^i = W^{own} o_{own}^i + b^{own}$, $e_{oa,j}^i = W^{oa} o_{oa,j}^i + b^{oa}$ and $e_{en,j}^i = W^{en} o_{en,j}^i + b^{en}$, and parameters $\theta_e = \{W^{own}, b^{own}, W^{oa}, b^{oa}, W^{en}, b^{en}\}$.

Recursive Spatial Updates. Let the Spatial-Former have M distinct layers. Each layer l has weights θ_l and is applied ν_l times with shared parameters (recursive steps). Let z_j^l denote the recursive latent state at step j in layer l . For initialization ($l = 0$), the input is the token sequence concatenated with temporal tokens (defined in §4.2): $z^0 = [e^i, h^L, h^H]$.

At layer l , the recursive state is initialized as $z_0^l = \mathbf{0}$ (shape as z^{l-1}), and then updated recursively using the previous state z_j^l together with the final state from the preceding layer, z^{l-1} :

$$z_{j+1}^l = f(z_j^l + z^{l-1}; \theta_l), \quad j = 0, \dots, \nu_l - 1. \quad (3)$$

The final state of layer l is obtained as $z^l := z_{\nu_l}^l$ which is then passed to the next layer. Once all M layers are applied, the spatial representation is given by $z_{sp} = z^M$. Per-agent action values are then obtained through an output head f_O : $Q(o^i, \cdot) = f_O(z_{sp}; \theta_O)$. This recursive design enables deeper relational reasoning while controlling parameter costs through weight sharing.

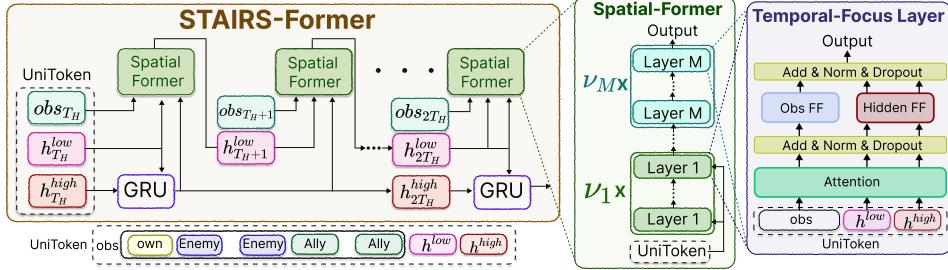


Figure 3: Overview of STAIRS-Former architecture.

4.2 TEMPORAL MODULE

Partial observability is a central challenge in MARL, as each agent i only has access to local observations o_t^i rather than the global state s_t . Existing approaches, such as UPDeT, augment embeddings e_t^i with a history token h_{t-1}^i , forming the input set $[e_t^i, h_{t-1}^i]$. However, these methods struggle to capture long-range dependencies (see Fig. 2). To address this limitation, we introduce a *hierarchical temporal process* that maintains two history states with different update frequencies.

Hierarchical Temporal Updates. Each agent i maintains a low level history $h_t^{i,L}$ updated *every* step, and a high level history $h_t^{i,H}$ updated *every* T_H steps by a GRU Chung et al. (2014) $g(\cdot; \psi)$. At time t , the transformer input is the token set $\{e_t^i, h_{t-1}^{i,L}, h_{t-1}^{i,H}\}$ of length K_a+K_e+3 . From the Spatial module output z_{sp} , we read the history position and update

$$h_t^{i,L} = z_{sp}[-2, :], \quad h_t^{i,H} = \begin{cases} g(h_{t-1}^{i,H}, h_t^{i,L}; \psi), & t \equiv 0 \pmod{T_H}, \\ h_{t-1}^{i,H}, & \text{otherwise.} \end{cases} \quad (4)$$

Both histories are initialized to zero at $t = 0$. The arrangement enables immediate responsiveness via h^L and long-range summarization via h^H .

Temporal-focus Layer Entity tokens (relational content) and history tokens (temporal context) play distinct roles; yet a single position-wise FFN after attention tends to blur them. To preserve this separation, we attach *two* independent FFNs after each attention block inside the Spatial-Former: one specialized for entity tokens and one for history tokens.

Formally, let the attention output at recursive step j in layer l be $x_j^l = [x_{j,obs}^l, x_{j,his}^l]$, where $x_{j,obs}^l$ are the updated entity tokens and $x_{j,his}^l$ are the updated history tokens. Instead of sending both through a single shared MLP, we apply two position-wise FFNs with *disjoint* parameters:

$$\tilde{x}_{j,obs}^l = \text{FFN}_{\text{obs}}(x_{j,obs}^l), \quad \tilde{x}_{j,his}^l = \text{FFN}_{\text{his}}(x_{j,his}^l), \quad (5)$$

and concatenate to form the post-FFN state $z_j^l = [\tilde{x}_{j,obs}^l, \tilde{x}_{j,his}^l]$. This ensures that relational reasoning over entities and temporal abstraction through history tokens are refined along distinct pathways, encouraging specialization while preventing interference between spatial and temporal representations.

4.3 TOKEN-DROPOUT MECHANISM

Generalization to unseen tasks is challenging because the number of entities K varies across environments according to the number of agents and enemies. Although transformers can handle variable-length inputs, training is restricted to entity counts observed in the training set $\mathcal{C}_{\text{train}}$. As a result, performance may drop on unseen tasks with new entity configurations. To reduce overfitting, STAIRS-Former employs a *token-dropout* strategy.

During training, each entity embedding in $e^i = (e_{\text{own}}^i, e_{\text{oa},1:K_a}^i, e_{\text{en},1:K_e}^i)$ is randomly dropped with probability p_{drop} , except for:

- (1) the agent’s own entity e_{own}^i , critical for stable learning,
- (2) both history tokens $h^{i,L}$ and $h^{i,H}$,
- (3) and, when the policy head associates actions with per-entity outputs as in UPDeT, the entity token linked to the dataset action to respect offline regularization.

This mechanism exposes the model to variable token lengths during training, improving robustness to unseen entity configurations by reducing overfitting to $\mathcal{C}_{\text{train}}$.

Table 1: Comparison of average and per-task performances on the *Marine-Hard* task set across four dataset qualities. We report mean \pm standard deviation, with the best shown in **bold**.

Tasks	Expert				Medium			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
3m	66.9 \pm 22.7	98.1 \pm 1.7	99.4 \pm 1.4	99.4 \pm 1.4	33.8 \pm 21.4	59.4 \pm 12.3	65.0 \pm 11.1	84.4 \pm 4.4
5m6m	6.9 \pm 7.1	43.1 \pm 28.2	72.5 \pm 10.7	70.6 \pm 10.5	1.9 \pm 2.8	22.5 \pm 10.0	35.6 \pm 9.5	50.0 \pm 12.5
9m10m	24.4 \pm 24.4	55.6 \pm 28.2	99.4 \pm 1.4	99.4 \pm 1.4	31.3 \pm 31.2	57.5 \pm 21.5	68.1 \pm 13.5	86.9 \pm 7.5
Unseen Tasks								
4m	51.9 \pm 15.6	88.1 \pm 8.7	100.0 \pm 0.0	97.5 \pm 4.1	27.5 \pm 30.3	71.3 \pm 18.0	78.1 \pm 21.1	89.4 \pm 13.9
5m	91.9 \pm 7.5	83.1 \pm 15.4	100.0 \pm 0.0	100.0 \pm 0.0	59.4 \pm 34.4	80.6 \pm 23.2	94.4 \pm 7.8	100.0 \pm 0.0
10m	46.3 \pm 19.3	43.1 \pm 30.1	98.8 \pm 2.8	100.0 \pm 0.0	49.4 \pm 40.8	65.6 \pm 24.1	96.3 \pm 5.6	97.5 \pm 4.1
12m	16.3 \pm 17.3	16.3 \pm 15.5	78.8 \pm 14.6	99.4 \pm 1.4	33.1 \pm 32.0	56.3 \pm 21.3	88.1 \pm 17.3	95.6 \pm 2.8
7m8m	0.6 \pm 1.4	12.5 \pm 10.1	43.1 \pm 15.4	25.0 \pm 22.0	1.3 \pm 1.7	6.3 \pm 6.3	5.6 \pm 5.1	10.6 \pm 8.7
8m9m	4.4 \pm 4.7	9.4 \pm 5.8	49.4 \pm 11.6	35.6 \pm 14.8	1.3 \pm 1.7	10.6 \pm 7.2	14.4 \pm 9.0	15.6 \pm 8.0
10m11m	8.8 \pm 9.7	29.4 \pm 28.5	80.6 \pm 18.9	87.5 \pm 4.9	4.4 \pm 4.7	19.4 \pm 15.2	46.3 \pm 17.3	61.3 \pm 18.2
10m12m	0.0 \pm 0.0	0.0 \pm 0.0	11.3 \pm 13.6	5.6 \pm 7.5	0.0 \pm 0.0	0.0 \pm 0.0	1.3 \pm 2.8	1.3 \pm 1.7
13m15m	0.0 \pm 0.0	0.0 \pm 0.0	2.5 \pm 2.6	0.6 \pm 1.4	0.0 \pm 0.0	0.0 \pm 0.0	0.6 \pm 1.4	1.9 \pm 2.8
Avg	26.5	39.9	69.7	68.4	20.3	37.5	49.5	57.9
Tasks	Medium-Expert				Medium-Replay			
Source Tasks								
3m	32.5 \pm 20.3	44.4 \pm 25.7	88.8 \pm 12.8	98.8 \pm 1.7	40.0 \pm 19.8	81.9 \pm 7.5	75.6 \pm 7.8	78.1 \pm 17.1
5m6m	5.6 \pm 12.6	29.4 \pm 13.6	32.5 \pm 22.6	57.5 \pm 13.9	0.0 \pm 0.0	11.9 \pm 13.0	24.4 \pm 17.0	50.6 \pm 5.1
9m10m	10.6 \pm 14.8	55.6 \pm 31.7	69.4 \pm 35.8	94.4 \pm 4.1	0.6 \pm 1.4	15.0 \pm 13.3	45.0 \pm 13.0	78.1 \pm 16.1
Unseen Tasks								
4m	46.3 \pm 22.9	75.6 \pm 25.2	98.8 \pm 2.8	90.6 \pm 7.7	46.3 \pm 21.4	59.4 \pm 20.6	71.9 \pm 7.3	93.8 \pm 6.6
5m	72.5 \pm 35.3	68.8 \pm 31.6	93.8 \pm 14.0	100.0 \pm 0.0	64.4 \pm 23.2	55.6 \pm 31.4	71.3 \pm 29.3	100.0 \pm 0.0
10m	49.4 \pm 12.2	71.3 \pm 25.1	95.0 \pm 4.8	90.0 \pm 12.8	29.4 \pm 16.9	51.9 \pm 47.7	93.1 \pm 4.6	97.5 \pm 5.6
12m	20.0 \pm 13.0	45.6 \pm 40.0	85.6 \pm 14.1	94.4 \pm 6.4	25.6 \pm 22.0	51.3 \pm 47.3	91.9 \pm 9.8	94.4 \pm 6.0
7m8m	0.6 \pm 1.4	11.9 \pm 15.1	40.0 \pm 20.4	15.0 \pm 4.1	0.6 \pm 1.4	8.1 \pm 6.5	12.5 \pm 8.0	23.1 \pm 15.1
8m9m	2.5 \pm 2.6	10.6 \pm 13.0	26.9 \pm 12.2	33.1 \pm 16.6	0.6 \pm 1.4	3.1 \pm 3.1	11.3 \pm 5.7	26.9 \pm 6.8
10m11m	3.8 \pm 5.1	25.6 \pm 21.1	62.5 \pm 16.4	80.6 \pm 18.1	0.6 \pm 1.4	12.5 \pm 15.5	33.8 \pm 11.6	66.9 \pm 11.2
10m12m	0.0 \pm 0.0	0.0 \pm 0.0	5.0 \pm 4.7	11.3 \pm 10.0	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	3.1 \pm 3.1
13m15m	0.0 \pm 0.0	0.0 \pm 0.0	8.8 \pm 9.2	0.6 \pm 1.4	0.0 \pm 0.0	1.3 \pm 2.8	6.3 \pm 1.4	4.4 \pm 4.7
Avg	20.3	36.6	58.9	63.9	17.3	29.3	44.8	59.7

4.4 TRAINING

We train STAIRS-Former with a *TD3+BC-style objective* (Fujimoto & Gu, 2021) adapted for discrete action spaces. The objective integrates temporal-difference (TD) learning with behavior cloning (BC) regularization, balancing value optimization with stability in the offline regime.

STAIRS Loss. For each agent i , STAIRS-Former outputs a Q-value, $Q_t^i = Q(o_t^i, a_t^i; \theta)$, for a given (o_t^i, a_t^i) . With each agent’s individual Q-value Q_t^i , we adopt the Qatten mixing network (Yang et al., 2020) to obtain the global Q-value in MARL, $Q_{tot}(\tau_t, s_t, a_t; \theta, \phi)$ from the set of individual Q-values $\{Q_t^1, \dots, Q_t^N\}$. Here, let $\theta = \{\theta_e, \theta_S, \theta_O, \psi\}$ denote the set of all parameters for STAIRS-Former and ϕ denote the parameters for mixing network. The target for TD learning is defined as

$$y_t = r_t + \gamma \max_{a'} Q_{tot}(\tau_{t+1}, s_{t+1}, a'; \bar{\theta}, \bar{\phi}), \quad (6)$$

where $\bar{\theta}, \bar{\phi}$ are target parameters. The STAIRS loss then jointly optimizes TD learning and BC regularization:

$$\mathcal{L}_{\text{STAIRS}}(\theta, \phi) = \mathbb{E}_{(\tilde{o}_t, a_t, r_t, \tilde{o}_{t+1}) \sim \mathcal{D}} \left[\underbrace{\left(Q_{tot}(\tau_t, s_t, a_t; \theta) - y_t \right)^2}_{\text{TD loss}} - \frac{\lambda}{N} \sum_{i=1}^N \underbrace{Q(o_t^i, a_t^i; \theta)}_{\text{BC loss}} \right]. \quad (7)$$

where the first term fits TD targets the second encourages higher Q-values for dataset actions. The coefficient λ controls the strength of policy regularization. Token-dropout (§ 4.3) is applied during training to improve robustness, and target networks are updated at each target update interval.

In summary, STAIRS-Former integrates a recursive spatial transformer for richer inter-entity reasoning, a dual-timescale temporal module for both short and long horizons, and token dropout for robustness to varying entity counts. Fig. 4 shows STAIRS-Former results for the same setup as Fig. 2(§ 3). It is seen that STAIRS-Former consistently emphasizes critical entities and history tokens, leading to more robust, generalizable policies across seen and unseen tasks. Additional visualizations of the attention maps for the various tasks are provided in Appendix G.

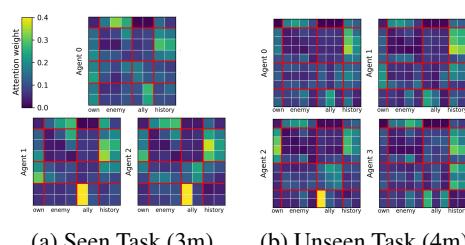


Figure 4: Attention map on both seen and unseen task with basic transformer in Ours.

Table 2: Comparison of average and per-task performances on the *Stalker-Zealot* task set across four dataset qualities. We report mean \pm standard deviation, with the best shown in **bold**.

Tasks	Expert				Medium			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
2s3z	40.6 \pm 33.9	56.9 \pm 29.3	90.6 \pm 7.7	95.6 \pm 5.2	27.5 \pm 15.5	44.4 \pm 16.1	46.9 \pm 15.5	56.9 \pm 10.5
2s4z	16.3 \pm 14.6	52.5 \pm 18.8	80.0 \pm 10.5	77.5 \pm 11.6	21.3 \pm 21.8	21.3 \pm 11.3	15.0 \pm 8.1	60.0 \pm 16.1
3s5z	23.8 \pm 27.2	65.6 \pm 37.8	90.6 \pm 3.8	87.5 \pm 10.6	13.1 \pm 9.5	15.6 \pm 8.0	28.1 \pm 20.1	52.5 \pm 3.4
Unseen Tasks								
1s3z	25.6 \pm 20.3	23.1 \pm 26.5	82.5 \pm 25.4	78.1 \pm 12.7	39.4 \pm 37.0	31.9 \pm 36.2	16.3 \pm 15.1	38.8 \pm 34.0
1s4z	26.9 \pm 27.6	18.8 \pm 8.0	59.4 \pm 33.2	76.3 \pm 21.0	20.6 \pm 24.3	26.3 \pm 16.6	18.8 \pm 11.9	25.6 \pm 9.7
1s5z	10.6 \pm 16.9	10.6 \pm 8.7	18.8 \pm 23.0	55.6 \pm 23.5	8.8 \pm 9.7	26.3 \pm 40.8	10.0 \pm 4.6	31.9 \pm 10.5
2s5z	18.8 \pm 24.3	36.3 \pm 17.8	49.4 \pm 14.5	84.4 \pm 7.0	11.3 \pm 10.5	26.3 \pm 11.4	16.9 \pm 6.5	25.6 \pm 8.7
3s3z	35.0 \pm 31.7	60.0 \pm 35.7	81.3 \pm 18.1	86.3 \pm 8.4	26.3 \pm 22.7	24.4 \pm 21.7	30.0 \pm 8.1	59.4 \pm 14.1
3s4z	32.5 \pm 37.5	60.0 \pm 35.3	88.8 \pm 9.3	92.5 \pm 3.6	25.0 \pm 23.1	24.4 \pm 15.4	27.5 \pm 10.0	59.4 \pm 24.7
4s3z	11.9 \pm 15.1	43.8 \pm 36.0	72.5 \pm 28.9	70.0 \pm 11.8	5.6 \pm 4.1	21.9 \pm 21.1	28.8 \pm 13.9	41.9 \pm 17.9
4s4z	10.6 \pm 11.8	33.8 \pm 19.3	51.3 \pm 26.8	58.1 \pm 20.8	3.8 \pm 2.6	17.5 \pm 11.4	8.1 \pm 4.2	21.3 \pm 18.0
4s5z	2.5 \pm 2.6	32.5 \pm 19.8	46.3 \pm 19.9	53.1 \pm 18.9	4.4 \pm 4.7	8.1 \pm 6.1	1.9 \pm 1.7	11.3 \pm 7.8
4s6z	3.8 \pm 5.1	26.3 \pm 28.1	47.5 \pm 22.4	59.4 \pm 17.5	0.6 \pm 1.4	3.8 \pm 2.6	4.4 \pm 2.8	11.9 \pm 5.6
Avg	19.9	40.0	66.1	75.0	16.0	22.5	19.4	38.2
Tasks	Medium-Expert				Medium-Replay			
Source Tasks								
2s3z	34.4 \pm 23.4	66.3 \pm 21.6	76.9 \pm 20.2	92.5 \pm 10.3	3.8 \pm 4.1	10.6 \pm 23.8	5.6 \pm 5.6	20.6 \pm 10.0
2s4z	31.3 \pm 25.6	27.5 \pm 19.7	35.0 \pm 29.8	74.4 \pm 6.8	10.0 \pm 20.7	6.3 \pm 12.3	7.5 \pm 6.1	28.8 \pm 15.8
3s5z	16.9 \pm 14.6	38.1 \pm 12.2	51.3 \pm 20.1	85.0 \pm 15.8	5.0 \pm 7.2	12.5 \pm 15.8	22.5 \pm 15.8	28.8 \pm 10.2
Unseen Tasks								
1s3z	30.0 \pm 22.2	70.6 \pm 34.7	65.6 \pm 24.9	63.1 \pm 15.2	6.9 \pm 8.7	3.1 \pm 7.0	45.6 \pm 32.3	12.5 \pm 14.5
1s4z	26.3 \pm 18.6	58.1 \pm 50.4	6.3 \pm 4.9	80.6 \pm 21.8	4.4 \pm 5.2	0.0 \pm 0.0	18.1 \pm 22.0	10.6 \pm 7.2
1s5z	13.8 \pm 13.8	19.4 \pm 26.2	1.9 \pm 2.8	51.9 \pm 32.9	2.5 \pm 5.6	0.0 \pm 0.0	5.6 \pm 7.8	23.1 \pm 36.3
2s5z	34.4 \pm 18.1	26.3 \pm 12.2	19.4 \pm 10.9	62.5 \pm 21.2	5.0 \pm 9.5	4.4 \pm 6.5	24.4 \pm 8.9	27.5 \pm 11.4
3s3z	30.6 \pm 29.0	46.3 \pm 12.8	52.5 \pm 10.9	81.9 \pm 11.6	1.3 \pm 1.7	9.4 \pm 16.2	15.6 \pm 21.5	56.3 \pm 15.9
3s4z	29.4 \pm 28.3	38.8 \pm 21.9	75.0 \pm 16.4	95.6 \pm 4.2	1.9 \pm 4.2	7.5 \pm 6.1	18.8 \pm 10.4	53.1 \pm 10.4
4s3z	15.0 \pm 22.7	12.5 \pm 17.0	62.5 \pm 12.5	61.3 \pm 15.7	3.8 \pm 5.1	3.1 \pm 5.4	8.1 \pm 14.8	28.1 \pm 20.4
4s4z	10.0 \pm 19.1	18.8 \pm 10.6	31.3 \pm 10.4	59.4 \pm 14.3	0.6 \pm 1.4	5.0 \pm 7.8	13.1 \pm 6.8	15.0 \pm 2.6
4s5z	2.5 \pm 4.1	11.9 \pm 13.1	11.9 \pm 4.1	53.8 \pm 21.7	1.3 \pm 1.7	1.3 \pm 2.8	5.0 \pm 4.7	3.8 \pm 4.1
4s6z	5.0 \pm 7.2	3.8 \pm 2.6	13.8 \pm 14.8	40.0 \pm 15.5	0.0 \pm 0.0	1.9 \pm 4.2	5.0 \pm 7.2	7.5 \pm 6.8
Avg	21.5	33.7	38.7	69.4	3.6	5.0	15.0	24.3

5 EXPERIMENTS

5.1 BENCHMARKS

We evaluate the proposed method in the offline MT-MARL setting using various task sets from the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), following the setup of Zhang et al. (2023). Each task set has separate train and test tasks to assess generalization to seen and unseen tasks. There are three task sets: Marine-Easy, Marine-Hard, and Stalker-Zealot. Each set contains tasks with identical unit types but varying unit counts. Similar to D4RL (Fu et al., 2020), every task has four datasets of different qualities: Expert, Medium, Medium-Expert, and Medium-Replay. Further details are provided in Appendix B. We report the mean performance along with the standard deviations of final policies trained across 5 different random seeds. [We also evaluate our method on SMAC-v2 \(Ellis et al., 2023\) and on the Multi-Agent Particle Environment \(MPE\) \(Lowe et al., 2017\). All SMAC-v2 and MPE results are provided in Appendix J and Appendix F, respectively](#)

5.2 BASELINES

We compared our method, STAIRS-Former, against the several offline MT-MARL approaches: 1) UPDeT-m: An offline variant of UPDeT (Hu et al., 2021), using a Qatten (Yang et al., 2020) mixing network trained with the CQL (Kumar et al., 2020) loss. 2) ODIS (Zhang et al., 2023): Discovers task-invariant coordination skills from offline multi-task data and learns a coordination policy that selects skills under the CTDE paradigm to generalize to unseen tasks. 3) HiSSD (Liu et al., 2025): Uses a hierarchical framework to jointly learn common cooperative skills and task-specific skills, enabling effective policy transfer and fine-grained action execution across tasks.

5.3 MAIN RESULTS

The results for the Marine-Hard and Stalker-Zealot task sets are presented in Tables 1 and 2, while the Marine-Easy results are provided in Appendix E due to space limits. Across all task sets, STAIRS-Former demonstrates outstanding performance. In Marine-Hard and Stalker-Zealot, it consistently achieves the best average results on both train and test tasks, with only a minor gap on the Expert

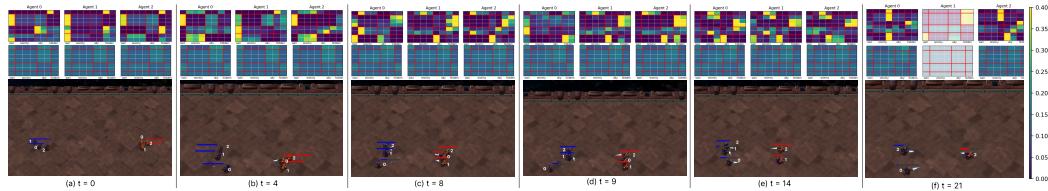


Figure 5: Temporal attention map in a SMAC 3m scenario. The attention maps from STAIRS-Former (top) and HiSSD (bottom) illustrate how attention shifts over time. Lighter-colored regions indicate eliminated agents. A detailed explanation of these heatmaps is provided in Appendix G.1

dataset in Stalker-Zealot. These results show that STAIRS-Former is not only effective in-distribution but also highly robust on unseen tasks, highlighting its strong generalization ability. This robustness arises directly from the proposed hierarchical spatial–temporal process with token dropout, which enables the model to capture richer dependencies across entities and leverage historical information more effectively, thereby maintaining robustness on unseen tasks.

Compared to the previous state of the art, HiSSD, the advantages of STAIRS-Former become even clearer. On sub-optimal datasets (Medium, Medium-Expert, and Medium-Replay), STAIRS-Former achieves large gains—improving average performance by 39.5%, 36.6%, and 40.5%, respectively. On the challenging Stalker-Zealot task set, which requires complex heterogeneous unit interactions, STAIRS-Former outperforms HiSSD by a remarkable 48.6% on average. Table 3 further illustrates STAIRS-Former’s superiority. It achieves the highest mean scores on both seen tasks (77.9% vs. 64.8% for HiSSD) and unseen tasks (64.0% vs. 54.7%), resulting in an overall mean of 67.4% compared to HiSSD’s 57.2%. These results highlights that the our spatial–temporal reasoning, reinforced with token dropout, gives STAIRS-Former a decisive advantage in both exploiting seen tasks and generalizing to unseen scenarios.

Tasks	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Seen	Marine-Hard	21.2	47.9	64.6
	Marine-Easy	44.3	59.3	<u>83.9</u>
	Stalker-Zealot	20.3	34.8	<u>45.9</u>
Mean				
	28.6	47.3	64.8	77.9
Unseen	Marine-Hard	21.1	31.8	52.7
	Marine-Easy	29.9	42.5	<u>79.8</u>
	Stalker-Zealot	13.7	22.5	<u>31.5</u>
Mean				
	21.6	32.3	<u>54.7</u>	64.0
Total Mean				
	23.5	37.0	<u>57.2</u>	67.4

Table 3: Results on seen and unseen tasks, averaged over dataset quality. Best results are in **bold**, second-best are underlined.

5.4 ATTENTION DYNAMICS OVER TIME

In this section, we analyze how attention maps evolve during a SMAC episode in the 3m environment, using trajectories generated from our trained STAIRS-Former policy (Fig. 5).

At the beginning ($t=0$), all agents mainly attend to their own tokens, stabilizing local information under partial observability. By $t=4$, agents 0 and 2, who first encounter enemies, shift attention to enemy tokens, while agent 1 maintains focus on itself and leverages history tokens to infer hidden state. At $t=8$, all agents still focus on the enemy tokens, while agents 1 and 2 also attend to agent 0 to protect the weakened ally. At $t=9$, agent 0 successfully retreats and emphasizes hidden tokens to decide between counterattack and withdrawal, whereas agents 1 and 2 continue attacking while monitoring agent 0’s status. At $t=14$, as agent 1 becomes critically weak, agents 0 and 1 attend to each other while sustaining fire on enemy 1, and enemy 2. Finally, at $t=21$, agent 1 is eliminated, and the surviving agents 0 and 2 concentrate fire on enemy 2, demonstrating adaptive reallocation of attention between protective and offensive strategies. For a detailed explanation of the attention maps, please refer to Appendix G.1. We also identify a complementary strategy, termed *focus fire*, which is discussed further in Appendix G.2.

In contrast, attention maps from a basic transformer remain nearly uniform across tokens and time steps, regardless of context. This lack of selectivity shows its inability to prioritize critical tokens such as enemies or history, causing it to miss the temporal and relational structures. By comparison, STAIRS-Former not only captures immediate interactions but also learns higher-level strategies such as focus fire and kiting, with attention dynamics closely aligned to observed tactical behaviors. This alignment highlights both its effectiveness and its interpretability in multi-agent decision making.

5.5 ABLATION STUDY

We conducted ablation studies on three core components: (1) spatial recursive module, (2) temporal module, and (3) token-dropout mechanism. Each was removed individually (“w/o”), where “w/o STD” excludes both spatial, temporal, and dropout.

	Tasks	STAIRS	w/o Temporal	w/o Spatial	w/o Dropout	w/o ST	w/o STD	
432 433 434 435	Seen	Marine-Hard	79.0	<u>77.5</u>	71.0	75.7	69.9	66.0
		Marine-Easy	91.2	88.1	87.2	<u>89.6</u>	86.9	87.9
		Stalker-Zealot	63.4	<u>63.0</u>	59.0	<u>62.6</u>	50.3	55.1
	Mean		77.9	<u>76.2</u>	72.4	76.0	69.0	69.6
436 437 438 439	Unseen	Marine-Hard	<u>57.0</u>	57.4	54.7	56.0	54.1	40.1
		Marine-Easy	86.7	78.5	79.0	<u>83.0</u>	78.0	79.7
		Stalker-Zealot	48.2	46.1	<u>47.0</u>	46.5	44.0	39.7
	Mean		64.0	60.6	60.2	<u>61.8</u>	48.7	53.2
	Total Mean		67.4	64.6	63.1	<u>65.4</u>	61.4	57.3

Table 4: Ablation results on Seen and Unseen tasks. “ST” = Spatial & Temporal, “STD” = ST + Dropout. The best performance is shown in **bold**, and the second-best performance is underlined.

Seen Tasks The spatial hierarchy is most critical for seen tasks, with performance dropping sharply when removed ($77.9\% \rightarrow 72.4\%$). In contrast, dropout and temporal abstraction yield little improvement in performance. This highlights that the rich correlation with entities is essential to capture the structured interactions within known environment.

Unseen Tasks On unseen tasks, all components are essential. Removing dropout, spatial, or temporal modules lowers performance. Dropout improves generalization by mitigating overfitting, the temporal hierarchy captures long-term information crucial under partial observability, and the spatial hierarchy helps identify critical tokens for adapting to new configurations. With all three, STAIRS achieves the best performance (64.0%), showing their joint importance for generalization to novel environments.

Considering both seen and unseen tasks, STAIRS consistently outperforms all ablations, achieving the highest overall mean (67.4%). The results clearly show that while the spatial hierarchy dominates performance on seen environments, the synergy of spatial, temporal, and dropout modules is essential for generalization to unseen scenarios. Additional ablation results are provided in Appendix I.

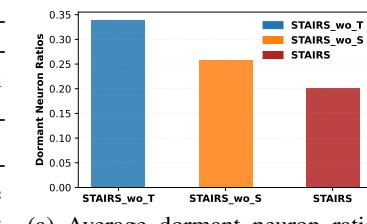
5.6 UNDERSTANDING ABLATION RESULTS THROUGH DORMANT NEURON ANALYSIS

To further assess the impact of structural components, we analyze the proportion of dormant neurons across all 12 Marine-Hard tasks. Following Sokar et al. (2023), the score of neuron i in layer ℓ is defined as $s_i^\ell = \frac{\mathbb{E}_{x \in D} |h_i^\ell(x)|}{\frac{1}{H^\ell} \sum_{k \in h} \mathbb{E}_{x \in D} |h_k^\ell(x)|}$ and a neuron is regarded as τ -dormant if $s_i^\ell \leq \tau$, with $\tau = 0.05$. Dormant neurons indicate under-utilized capacity. We compute the average dormant neuron ratios for STAIRS and compare them against the ablated variants obtained by removing the two most influential components identified in the ablation study (temporal and spatial attention; see Table 4).

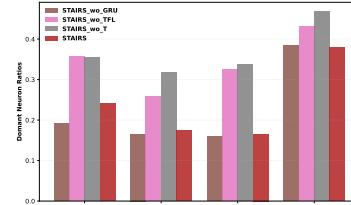
As shown in Figure 6(a), both temporal and spatial modules reduce dormant neuron ratios, with the temporal module having the stronger effect. To examine this further, we ablate the GRU and the Temporal Focus Layer (TFL) within the temporal module. Figure 6(b) shows that TFL substantially reduces dormant neurons in observation tokens, which drive Q-value estimation. By mitigating redundancy, increasing neuron activation, and improving the effective use of model capacity, TFL plays a central role in achieving better performance.

6 CONCLUSION

In this work, we addressed the limitations of offline multi-agent reinforcement learning in multi-task settings, where transformers underutilize historical dependencies and relational structures. We proposed STAIRS-Former, a transformer with spatial and temporal hierarchies for selective attention to critical tokens and effective history use, while token dropout improves robustness across agent populations. Experiments on the SMAC benchmark show that STAIRS-Former achieves state-of-the-art performance, underscoring the value of structured attention for scalable and generalizable offline MARL.



(a) Average dormant neuron ratios of STAIRS vs. ablations.



(b) Dormant ratios with token type of ablating GRU, TFL, Temporal(GRU+TFL)

Figure 6: Dormant neuron ratios on marine-hard tasks: STAIRS vs. ablations.

486 ETHICS STATEMENT
487488 This study relies solely on publicly available benchmark environments (e.g., SMAC) and does not
489 involve human subjects, personal data, or sensitive information. All experiments and results adhere
490 to the ICLR Code of Ethics.491
492 REPRODUCIBILITY STATEMENT
493494 We provide detailed descriptions of the proposed models, training protocols, and evaluation procedures
495 in the main text and appendix. All datasets are publicly available, and anonymized source code with
496 scripts is included in the supplementary materials.497
498 AUTHOR CONTRIBUTIONS
499

500 Equal contribution: the first two authors are co-first authors.

501
502 ACKNOWLEDGMENTS
503504 Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
505 those to funding agencies, go at the end of the paper.506
507 REFERENCES
508509 Rich Caruana. Multitask learning. *Mach. Learn.*, 28(1):41–75, 1997.510 Myungsik Cho, Jongeui Park, Jeonghye Kim, and Youngchul Sung. Ars: Adaptive reward scaling
511 for multi-task reinforcement learning. In *Forty-second International Conference on Machine
512 Learning*.513 Junyoung Chung, Çaglar Gülcöhre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
514 gated recurrent neural networks on sequence modeling. *CoRR*, abs/1412.3555, 2014.515 Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
516 Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
517 agent reinforcement learning. *Advances in Neural Information Processing Systems*, 36:37567–
518 37593, 2023.519 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
520 data-driven reinforcement learning. *CoRR*, abs/2004.07219, 2020.521 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
522 Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
523 Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on
524 Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
525 20132–20145, 2021.526 Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture of
527 orthogonal experts. *arXiv preprint arXiv:2311.11385*, 2023.528 Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture of
529 orthogonal experts. In *The Twelfth International Conference on Learning Representations, ICLR
530 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.531 Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent RL via
532 policy decoupling with transformers. In *9th International Conference on Learning Representations,
533 ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021.534 Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. Maser: Multi-agent reinforcement
535 learning with subgoals generated from experience replay buffer. In *International conference on
536 machine learning*, pp. 10041–10052. PMLR, 2022.

540 Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
 541 Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. *Nat.*, 620
 542 (7976):982–987, 2023. doi: 10.1038/S41586-023-06419-4.

543

544 Woojun Kim and Katia P. Sycara. B3C: A minimalist approach to offline multi-agent reinforcement
 545 learning. *CoRR*, abs/2501.18138, 2025. doi: 10.48550/ARXIV.2501.18138.

546 Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
 547 Yang. Trust region policy optimisation in multi-agent reinforcement learning. In *10th International
 548 Conference on Learning Representations, ICLR 2022*. OpenReview.net, 2022.

549

550 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 551 reinforcement learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
 552 Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual
 553 Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

554

555 Sicong Liu, Yang Shu, Chenjuan Guo, and Bin Yang. Learning generalizable skills from offline
 556 multi-task data for multi-agent cooperation. *arXiv preprint arXiv:2503.21200*, 2025.

557

558 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 559 actor-critic for mixed cooperative-competitive environments. *Advances in neural information
 560 processing systems*, 30, 2017.

561

562 Linghui Meng, Jingqing Ruan, Xuantang Xiong, Xiyun Li, Xi Zhang, Dengpeng Xing, and Bo Xu.
 563 M3: Modularization for multi-task and multi-agent offline pre-training. In *Proceedings of the 2023
 564 International Conference on Autonomous Agents and Multiagent Systems*, pp. 1624–1633, 2023.

565

566 Frans A. Oliehoek and Christopher Amato. *A Concise Introduction to Decentralized POMDPs*.
 567 Springer Briefs in Intelligent Systems. Springer, 2016. ISBN 978-3-319-28927-4. doi: 10.1007/
 568 978-3-319-28929-8.

569

570 Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
 571 decentralized multi-task multi-agent reinforcement learning under partial observability. In Doina
 572 Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine
 573 Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, volume 70 of *Proceedings of
 574 Machine Learning Research*, pp. 2681–2690. PMLR, 2017.

575

576 Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
 577 multi-agent reinforcement learning with actor rectification. In Kamalika Chaudhuri, Stefanie
 578 Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference
 579 on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of
 580 *Proceedings of Machine Learning Research*, pp. 17221–17237. PMLR, 2022.

581

582 Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
 583 Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
 584 gradients. *Advances in Neural Information Processing Systems*, 34:12208–12221, 2021.

585

586 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 587 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 588 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

589

590 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
 591 Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
 592 starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

593

594 Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conserva-
 595 tive Q learning for offline multi-agent reinforcement learning. In Alice Oh, Tristan Naumann, Amir
 596 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information
 597 Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
 598 NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

594 Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
 595 nomenon in deep reinforcement learning. In *International Conference on Machine Learning*, pp.
 596 32145–32168. PMLR, 2023.

597 Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter Stone.
 598 Deep reinforcement learning for robotics: A survey of real-world successes. *Annual Review of
 599 Control, Robotics, and Autonomous Systems*, 8, 2024.

600 Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo, Zidong
 601 Du, Qi Guo, et al. Decompose a task into generalizable subtasks in multi-agent reinforcement
 602 learning. *Advances in Neural Information Processing Systems*, 36:78514–78532, 2023.

603 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
 604 Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
 605 Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
 606 *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
 607 Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017a.

608 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 609 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 610 systems*, 30, 2017b.

611 Jiawei Wang, Jian Zhao, Zhengtao Cao, Ruili Feng, Rongjun Qin, and Yang Yu. Multi-task multi-
 612 agent shared layers are universal cognition of multi-agent coordination, 2023a. URL <https://arxiv.org/abs/2312.15674>.

613 Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement
 614 learning with implicit global-to-local value regularization. In Alice Oh, Tristan Naumann, Amir
 615 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information
 616 Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
 617 NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023b.

618 Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
 619 Qatten: A general framework for cooperative multiagent reinforcement learning. *arXiv preprint
 620 arXiv:2002.03939*, 2020.

621 Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 622 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 623 reinforcement learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
 624 Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems
 625 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
 626 6-14, 2021, virtual*, pp. 10299–10312, 2021a.

627 Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 628 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 629 reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
 630 Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 10299–10312.
 631 Curran Associates, Inc., 2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/550a141f12de6341fba65b0ad0433500-Paper.pdf.

632 Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discover-
 633 ing generalizable multi-agent coordination skills from multi-task offline data. In *The Eleventh
 634 International Conference on Learning Representations*, 2023.

635 Mingliang Zhang, Sichang Su, Chengyang He, and Guillaume Sartoretti. Hybrid training for enhanced
 636 multi-task generalization in multi-agent reinforcement learning. *arXiv preprint arXiv:2408.13567*,
 637 2024.

638 Tianze Zhou, Fubiao Zhang, Kun Shao, Kai Li, Wenhan Huang, Jun Luo, Weixun Wang, Yaodong
 639 Yang, Hangyu Mao, Bin Wang, Dong Li, Wulong Liu, and Jianye Hao. Cooperative multi-agent
 640 transfer learning with level-adaptive credit assignment. *CoRR*, abs/2106.00517, 2021.

648 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
649650 Large language models were employed as auxiliary tools to improve readability, refine phrasing,
651 and perform grammar checks. They were not used for research ideation, methodological design, or
652 experimental analysis, and did not contribute to the generation of research results.653 **B SMAC BENCHMARKS**
654655 We adopt two widely used benchmarks to evaluate our approach for offline MARL with multi-task
656 datasets proposed by Zhang et al. (2023). Our primary benchmark is the StarCraft Multi-Agent
657 Challenge (SMAC) (Samvelyan et al., 2019), which has become a standard testbed for cooperative
658 multi-agent reinforcement learning. SMAC provides a variety of micromanagement scenarios where
659 agents must coordinate under partial observability, facing both homogeneous and heterogeneous unit
660 dynamics. These characteristics make SMAC a challenging and realistic environment, well-suited for
661 assessing the robustness and scalability of offline MARL methods in complex domains.
662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 C DATASET PROPERTIES

704 We use the offline datasets provided by ODIS (Zhang et al., 2023), which are based on the PyMARL
 705 implementation of QMIX (Rashid et al., 2020). Similar to the D4RL benchmark (Fu et al., 2020),
 706 four dataset qualities are defined:

- 708 • **Expert:** trajectories collected by a QMIX policy trained for 2M environment steps, achieving
 709 high test win rates.
- 710 • **Medium:** trajectories collected by a weaker QMIX policy whose win rate is roughly half of
 711 the expert policy.
- 712 • **Medium-Expert:** a mixture of the expert and medium datasets, providing increased diver-
 713 sity.
- 714 • **Medium-Replay:** the replay buffer of the medium policy, containing lower-quality trajec-
 715 tories sampled during training.

717 For each source task, the expert and medium datasets contain 2,000 trajectories each, while the
 718 medium-expert dataset includes 4,000 trajectories as their union. The size of the medium-replay
 719 dataset depends on the number of trajectories collected before the medium policy terminates training.
 720 During multi-task training, we use up to 2,000 trajectories per task (or all available trajectories when
 721 fewer exist), and merge them across tasks to form a unified multi-task dataset. The detailed statistics
 722 of these datasets are summarized in Table 5.

723 Table 5: Properties of offline datasets with different qualities.

725 Task	726 Quality	727 # Trajectories	728 Average return	729 Average win rate
730 3m	731 expert	732 2000	733 19.89	734 0.99
	735 medium	736 2000	737 13.99	738 0.54
	739 medium-expert	740 4000	741 16.94	742 0.77
	743 medium-replay	744 3630	745 N/A	746 N/A
747 5m	748 expert	749 2000	750 19.94	751 0.99
	752 medium	753 2000	754 17.33	755 0.74
	756 medium-expert	757 4000	758 18.63	759 0.87
	760 medium-replay	761 771	762 N/A	763 N/A
764 10m	765 expert	766 2000	767 19.94	768 0.99
	769 medium	770 2000	771 16.63	772 0.54
	773 medium-expert	774 4000	775 18.26	776 0.76
	777 medium-replay	778 571	779 N/A	780 N/A
781 5m_vs_6m	782 expert	783 2000	784 17.34	785 0.72
	786 medium	787 2000	788 12.64	789 0.28
	790 medium-expert	791 4000	792 14.99	793 0.50
	794 medium-replay	795 32607	796 N/A	797 N/A
798 9m_vs_10m	799 expert	800 2000	801 19.61	802 0.94
	803 medium	804 2000	805 15.50	806 0.41
	807 medium-expert	808 4000	809 17.56	810 0.68
	811 medium-replay	812 13731	813 N/A	814 N/A
815 2s3z	816 expert	817 2000	818 19.77	819 0.96
	820 medium	821 2000	822 16.63	823 0.45
	824 medium-expert	825 4000	826 18.20	827 0.70
	828 medium-replay	829 4505	830 N/A	831 N/A
832 2s4z	833 expert	834 2000	835 19.74	836 0.95
	837 medium	838 2000	839 16.87	840 0.50
	841 medium-expert	842 4000	843 18.31	844 0.72
	845 medium-replay	846 6172	847 N/A	848 N/A
849 3s5z	850 expert	851 2000	852 19.79	853 0.95
	854 medium	855 2000	856 16.31	857 0.31
	858 medium-expert	859 4000	860 18.05	861 0.63
	862 medium-replay	863 11528	864 N/A	865 N/A

756 D DETAIL DESCRIPTIONS OF TASK

757
 758 In our experiments, we select three representative tasks from SMAC: *marine-easy*, *marine-hard*, and
 759 *stalker-zealot*. The marine-easy and marine-hard tasks both involve homogeneous units of marines:
 760 *marine-easy* is a balanced setting with equal allied and enemy counts, while *marine-hard* introduces
 761 more difficult cases where enemies are equal to or greater than allies. The *stalker-zealot* task, in
 762 contrast, is heterogeneous with two unit types (stalkers and zealots) distributed identically across
 763 both sides. Together, these tasks span different levels of difficulty and unit diversity, providing a
 764 comprehensive testbed for evaluating coordination strategies under varying conditions, with detailed
 765 specifications given in Tables 6–8.

766 Table 6: Descriptions of marine-easy tasks

767 Task type	768 Task	769 Ally units	770 Enemy units	771 Properties
772 Source	773 3m	774 3 Marines	775 3 Marines	776 homogeneous & symmetric
	777 5m	778 5 Marines	779 5 Marines	780 homogeneous & symmetric
	781 10m	782 10 Marines	783 10 Marines	784 homogeneous & symmetric
785 Unseen	786 4m	787 4 Marines	788 4 Marines	789 homogeneous & symmetric
	790 6m	791 6 Marines	792 6 Marines	793 homogeneous & symmetric
	794 7m	795 7 Marines	796 7 Marines	797 homogeneous & symmetric
	798 8m	799 8 Marines	800 8 Marines	801 homogeneous & symmetric
	802 9m	803 9 Marines	804 9 Marines	805 homogeneous & symmetric
	806 11m	807 11 Marines	808 11 Marines	809 homogeneous & symmetric
	810 12m	811 12 Marines	812 12 Marines	813 homogeneous & symmetric
	814 12m	815 12 Marines	816 12 Marines	817 homogeneous & symmetric

780 Table 7: Descriptions of marine-hard tasks

781 Task type	782 Task	783 Ally units	784 Enemy units	785 Properties
786 Source	787 3m	788 3 Marines	789 3 Marines	790 homogeneous & symmetric
	791 5m_vs_6m	792 5 Marines	793 6 Marines	794 homogeneous & asymmetric
	795 9m_vs_10m	796 9 Marines	797 10 Marines	798 homogeneous & asymmetric
799 Unseen	800 4m	801 4 Marines	802 4 Marines	803 homogeneous & symmetric
	804 5m	805 5 Marines	806 5 Marines	807 homogeneous & symmetric
	808 10m	809 10 Marines	810 10 Marines	811 homogeneous & symmetric
	812 12m	813 12 Marines	814 12 Marines	815 homogeneous & symmetric
	816 7m_vs_8m	817 7 Marines	818 8 Marines	819 homogeneous & asymmetric
	820 8m_vs_9m	821 8 Marines	822 9 Marines	823 homogeneous & asymmetric
	824 10m_vs_11m	825 10 Marines	826 11 Marines	827 homogeneous & asymmetric
	828 10m_vs_12m	829 10 Marines	830 12 Marines	831 homogeneous & asymmetric
	832 13m_vs_15m	833 13 Marines	834 15 Marines	835 homogeneous & asymmetric

795 Table 8: Descriptions of stalker-zealot tasks

796 Task type	797 Task	798 Ally units	799 Enemy units	800 Properties
801 Source	802 2s3z	803 2 Stalkers, 3 Zealots	804 2 Stalkers, 3 Zealots	805 heterogeneous & symmetric
	806 2s4z	807 2 Stalkers, 4 Zealots	808 2 Stalkers, 4 Zealots	809 heterogeneous & symmetric
	810 3s5z	811 3 Stalkers, 5 Zealots	812 3 Stalkers, 5 Zealots	813 heterogeneous & symmetric
814 Unseen	815 1s3z	816 1 Stalker, 3 Zealots	817 1 Stalker, 3 Zealots	818 heterogeneous & symmetric
	819 1s4z	820 1 Stalker, 4 Zealots	821 1 Stalker, 4 Zealots	822 heterogeneous & symmetric
	823 1s5z	824 1 Stalker, 5 Zealots	825 1 Stalker, 5 Zealots	826 heterogeneous & symmetric
	827 2s5z	828 2 Stalkers, 5 Zealots	829 2 Stalkers, 5 Zealots	830 heterogeneous & symmetric
	831 3s3z	832 3 Stalkers, 3 Zealots	833 3 Stalkers, 3 Zealots	834 heterogeneous & symmetric
	835 3s4z	836 3 Stalkers, 4 Zealots	837 3 Stalkers, 4 Zealots	838 heterogeneous & symmetric
	839 4s3z	840 4 Stalkers, 3 Zealots	841 4 Stalkers, 3 Zealots	842 heterogeneous & symmetric
	843 4s4z	844 4 Stalkers, 4 Zealots	845 4 Stalkers, 4 Zealots	846 heterogeneous & symmetric
	847 4s5z	848 4 Stalkers, 5 Zealots	849 4 Stalkers, 5 Zealots	850 heterogeneous & symmetric

810 E RESULTS ON MARINE-EASY TASK SET

811
 812 The results for the Marine-Easy task set are presented in Table 9. Across both source and unseen
 813 tasks, STAIRS-Former consistently delivers strong performance. On the Expert dataset, it matches
 814 HiSSD by achieving nearly perfect success rates on average, demonstrating that our model can
 815 fully exploit high-quality data. On the Medium and Medium-Expert datasets, STAIRS-Former
 816 significantly outperforms prior methods, showing clear advantages in handling sub-optimal data.
 817 For example, compared to HiSSD, STAIRS-Former improves average performance by **+16.0%** on
 818 Medium, **+26.6%** on Medium-Expert. However, on the Medium-Replay dataset, STAIRS-Former
 819 underperforms compared to HiSSD. We attribute this to the relatively small size of the Medium-
 820 Replay dataset in Marine-Easy (see Table 5), which limits trajectory diversity and thus reduces the
 821 effectiveness of offline reinforcement learning. To further mitigate overfitting caused by the limited
 822 trajectories, results for this task are reported at 10K time steps.
 823

824 Table 9: Comparison of average and per-task performances on the *Marine-Easy* task set across four
 825 dataset qualities. We report mean \pm standard deviation, with the best shown in **bold**.

826 Tasks	827 Expert				828 Medium			
	829 UPDeT-m	830 ODIS	831 HiSSD	832 STAIRS (Ours)	833 UPDeT-m	834 ODIS	835 HiSSD	836 STAIRS (Ours)
Source Tasks								
3m	58.8 \pm 20.1	84.4 \pm 18.9	100.0 \pm 0.0	99.4 \pm 1.4	55.6 \pm 28.8	60.0 \pm 6.8	67.5 \pm 10.5	85.6 \pm 6.5
5m	48.8 \pm 35.7	79.4 \pm 29.0	99.4 \pm 1.4	99.4 \pm 1.4	71.9 \pm 7.3	79.4 \pm 10.3	80.6 \pm 6.4	85.0 \pm 9.2
10m	46.3 \pm 36.4	67.5 \pm 41.8	99.4 \pm 1.4	99.4 \pm 1.4	48.8 \pm 27.9	77.5 \pm 13.7	66.3 \pm 19.6	94.4 \pm 2.6
Unseen Tasks								
4m	22.5 \pm 17.6	48.1 \pm 35.2	97.5 \pm 3.4	96.9 \pm 3.1	34.4 \pm 12.3	55.0 \pm 30.5	73.8 \pm 12.8	73.8 \pm 13.4
6m	32.5 \pm 39.2	44.4 \pm 44.7	100.0 \pm 0.0	96.9 \pm 3.8	70.6 \pm 31.1	87.5 \pm 17.3	86.3 \pm 8.4	82.5 \pm 9.3
7m	36.9 \pm 38.2	42.5 \pm 47.2	100.0 \pm 0.0	100.0 \pm 0.0	53.8 \pm 37.9	81.3 \pm 22.9	93.8 \pm 12.3	98.1 \pm 4.2
8m	31.3 \pm 39.5	59.4 \pm 43.2	100.0 \pm 0.0	99.4 \pm 1.4	78.8 \pm 12.8	88.8 \pm 7.2	90.6 \pm 5.8	96.9 \pm 3.1
9m	45.6 \pm 35.7	64.4 \pm 37.6	100.0 \pm 0.0	100.0 \pm 0.0	52.5 \pm 17.9	79.4 \pm 9.0	76.9 \pm 4.7	93.1 \pm 5.1
11m	38.1 \pm 32.8	74.4 \pm 34.9	99.4 \pm 1.4	100.0 \pm 0.0	26.9 \pm 9.0	51.3 \pm 11.8	48.1 \pm 7.2	65.6 \pm 14.5
12m	33.1 \pm 28.2	69.4 \pm 39.4	96.3 \pm 4.1	98.1 \pm 1.7	20.0 \pm 13.9	31.3 \pm 16.5	40.6 \pm 17.8	65.6 \pm 6.6
Avg	39.4	63.4	99.2	99.0	51.3	69.2	72.5	84.1
840 Tasks	841 Medium-Expert				842 Medium-Replay			
	843 UPDeT-m	844 ODIS	845 HiSSD	846 STAIRS (Ours)	847 UPDeT-m	848 ODIS	849 HiSSD	850 STAIRS (Ours)
Source Tasks								
3m	48.1 \pm 34.3	76.3 \pm 20.4	81.3 \pm 17.3	98.8 \pm 1.7	25.8 \pm 31.9	50.0 \pm 33.1	87.5 \pm 6.6	86.9 \pm 6.8
5m	66.3 \pm 19.2	84.4 \pm 9.9	80.0 \pm 16.0	98.8 \pm 1.7	0.0 \pm 0.0	0.0 \pm 0.0	85.0 \pm 8.4	89.4 \pm 7.8
10m	60.6 \pm 37.8	51.9 \pm 30.1	74.4 \pm 19.4	100.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	85.6 \pm 8.4	56.9 \pm 18.7
Unseen Tasks								
4m	24.4 \pm 17.6	64.4 \pm 29.7	75.6 \pm 6.0	60.0 \pm 25.4	0.0 \pm 0.0	15.6 \pm 34.9	66.9 \pm 10.0	79.4 \pm 13.0
6m	46.9 \pm 33.9	67.5 \pm 33.6	75.6 \pm 14.6	94.4 \pm 4.6	0.0 \pm 0.0	0.0 \pm 0.0	100.0 \pm 0.0	91.3 \pm 6.4
7m	37.5 \pm 39.0	62.5 \pm 22.0	73.1 \pm 12.0	96.9 \pm 3.1	0.0 \pm 0.0	0.0 \pm 0.0	99.4 \pm 1.4	90.6 \pm 5.8
8m	10.6 \pm 7.5	45.6 \pm 13.7	71.9 \pm 6.3	84.4 \pm 16.8	0.8 \pm 1.6	0.0 \pm 0.0	96.9 \pm 2.2	83.1 \pm 8.1
9m	48.1 \pm 40.2	62.5 \pm 30.8	73.1 \pm 18.6	100.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	80.6 \pm 5.1	82.5 \pm 5.7
11m	55.6 \pm 30.9	49.4 \pm 37.8	57.5 \pm 19.0	98.1 \pm 1.7	0.0 \pm 0.0	0.0 \pm 0.0	53.1 \pm 18.9	55.0 \pm 23.7
12m	36.9 \pm 31.5	40.6 \pm 28.5	69.4 \pm 9.7	95.6 \pm 4.7	0.0 \pm 0.0	0.0 \pm 0.0	36.3 \pm 11.2	49.4 \pm 30.0
Avg	43.5	60.5	73.2	92.7	2.7	6.6	79.1	76.5

854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 F COOPERATIVE NAVIGATION TASK
865

866 In addition to SMAC, we also include the Cooperative Navigation (CN) task from the Multi-Agent
867 Particle Environment (MPE) (Lowe et al., 2017) as a supplementary benchmark. CN provides
868 a simpler but complementary setting, where multiple agents must coordinate to occupy distinct
869 landmarks while avoiding collisions. While less complex than SMAC, this environment emphasizes
870 pure cooperation, making it a useful supplement to our main benchmark and enabling us to test the
871 generality of our approach across different types of multi-agent scenarios. The detailed specifications
872 of CN-tasks are in Table10

873 Table 10: Properties of offline datasets with different qualities.
874

875 Task	876 Quality	877 # Trajectories	878 Average return	879 Average win rate
876 CN-2	877 expert	878 2000	879 1.0000	880 1.0000
	877 medium	878 2000	879 0.6152	880 0.6152
878 CN-4	877 expert	878 2000	879 0.7173	880 0.7173
	877 medium	878 2000	879 0.4273	880 0.4273

881 Relative to the recent state-of-the-art HiSSD, STAIRS-Former achieves higher scores in the Expert
882 setting, improving from 49.1 to 51.3, and also shows gains in the Medium setting, increasing from
883 13.2 to 14.3. These results, obtained in the MPE domain in addition to our main SMAC experiments,
884 indicate that STAIRS-Former provides modest but consistent improvements over HiSSD across
885 different environments.

886 Table 11: Comparison of average and per-task performances on the *Cooperative navigation* task set
887 across two dataset qualities. We report mean \pm standard deviation, with the best shown in **bold**.
888

889 Tasks		890 Expert			
		891 UPDeT-m	892 ODIS	893 HiSSD	894 STAIRS (Ours)
895 Source Tasks					
893 CN-2	68.8 \pm 19.4	78.8 \pm 44.1	100.0 \pm 0.0	100.0 \pm 0.0	
894 CN-4	13.8 \pm 12.6	21.9 \pm 15.1	24.4 \pm 1.4	30.0 \pm 12.6	
896 Unseen Tasks					
897 CN-3	34.4 \pm 19.1	48.8 \pm 27.8	65.0 \pm 10.2	64.4 \pm 5.7	
897 CN-5	1.9 \pm 2.8	5.6 \pm 3.4	6.9 \pm 7.5	10.6 \pm 1.7	
899 Average	29.8	38.8	49.1	51.3	
900 Tasks		901 Medium			
		901 UPDeT-m	902 ODIS	903 HiSSD	904 STAIRS (Ours)
905 Source Tasks					
904 CN-2	8.8 \pm 11.1	16.7 \pm 14.4	38.8 \pm 11.2	45.0.5 \pm 13.6	
905 CN-4	1.9 \pm 1.7	2.1 \pm 3.6	2.5 \pm 2.6	1.9 \pm 2.8	
906 Unseen Tasks					
907 CN-3	3.1 \pm 2.2	5.2 \pm 4.8	8.8 \pm 3.4	8.8 \pm 2.6	
908 CN-5	0.0 \pm 0.0	0.0 \pm 0.0	2.5 \pm 2.6	1.3 \pm 1.7	
909 Average	3.5	6.0	13.2	14.3	

918 G VISUALIZATION OF ATTENTION MAP
919920 G.1 ATTENTION HEATMAP
921

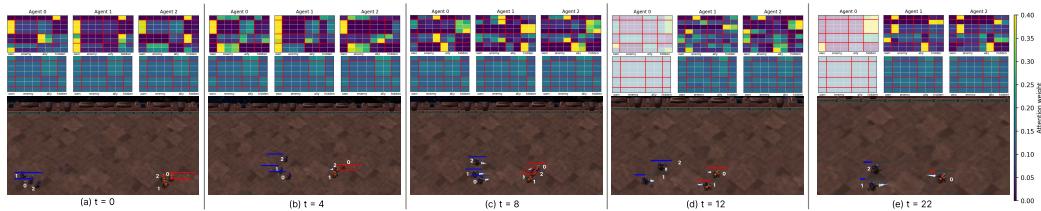
922 We describe how the attention map is constructed. As shown in
923 Fig. 7, the vertical axis corresponds to queries and the horizontal axis to keys.
924 Each entry denotes an attention weight, computed as
925

926 As shown in Fig. 7, queries (vertical) attend to keys (horizontal),
927 with each entry an attention weight: $\text{softmax}(QK^T / \sqrt{d_k})$.
928

$$\text{Attention}(Q, K) = \text{softmax}(QK^T / \sqrt{d_k}). \quad (8)$$

929 Here, Q (queries) and K (keys) are linear projections of the
930 input tokens that determine, respectively, what a token attends
931 to and what it provides to others. The scaling factor $\sqrt{d_k}$
932 normalizes the dot-product by the dimensionality of the key
933 vectors, preventing excessively large values that could saturate
934 the softmax. Once the attention weights are computed, they are
935 applied to the corresponding values V , another linear projection
936 of the tokens containing the actual information to be aggregated. In this way,
937 the attention mechanism produces a weighted sum of the values, where the weights specify how strongly each token attends to
938 others.

939 Building on this formulation, the SMAC 3m task constructs tokens by first decomposing the agent’s
940 observation into three categories: the agent’s own token, enemy tokens (E0, E1, E2), and ally tokens
941 (A0, A1). In addition to these observation-derived tokens, the model also incorporates two hidden
942 state tokens, namely the low-level hidden token (LH) and the high-level hidden token (HH). The LH
943 token functions as a short-term memory that captures fine-grained temporal dependencies, while the
944 HH token provides a more abstract representation that summarizes longer-horizon information.
945

946 G.2 ALTERNATIVE TRAJECTORY EVOLUTION IN A SMAC 3M EPISODE
947

948 Figure 7: Structure of attention map
949
950

951 Figure 8: Another temporal evolution in a SMAC 3m episode: STAIRS-Former (Above) vs. HiSSD
952 (Below)
953

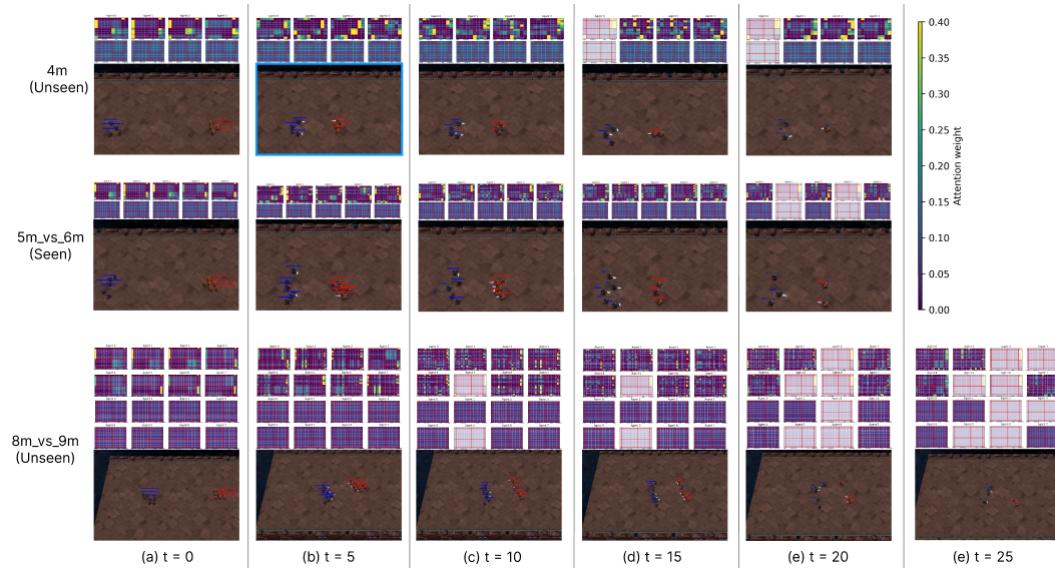
954 Compared to Figure 5.4, we present an alternative trajectory that illustrates the *focus-fire* strategy. As
955 shown in Figure 8, the agents behave almost identically to those in Figure 5 up to $t=4$, and thus the
956 attention distributions at this stage remain largely the same. However, a notable divergence occurs at
957 $t=8$, when all agents collectively direct their attention toward enemy 2. This coordinated decision
958 to execute focus-fire results in strong emphasis on enemy 2’s token, and consequently, enemy 2 is
959 quickly eliminated from the battlefield. Unlike the main trajectory in Figure 5, where agent 0 with
960 the lowest health retreated to preserve survivability, here agent 0 remains engaged in the fight and is
961 eliminated immediately after enemy 2’s death at $t=12$. Following this loss, agents 1 and 2 shift their
962 focus toward history tokens, reflecting a period of reassessment as they deliberate between possible
963 countermeasures under partial observability. Ultimately, at $t=22$, the two surviving agents reestablish
964 coordination and concentrate their attention on the remaining enemy 0.
965

966 G.3 SUPPLEMENTARY TEMPORAL VISUALIZATION: ATTENTION MAPS IN OTHER TASKS
967

968 In Section 5.4 and G.2, we analyzed the evolution of attention maps and real trajectories on the
969 SMAC 3m scenario. To further assess the generality of our method, we extend these visualizations
970

972 to additional tasks, including both seen and unseen scenarios every five timesteps. Specifically, we
 973 report results on the challenging *marine-hard* setting, adding three tasks: two unseen tasks (*4m*,
 974 *8m_vs_9m*) and one seen task (*5m*), in addition to the *3m* task previously shown.
 975

976 Across all tasks, our attention maps consistently highlight critical tokens while adaptively leveraging
 977 historical information, demonstrating the ability to capture both local interactions and temporal
 978 dependencies. In contrast, HiSSD fails to attend to critical tokens and exhibits little utilization of
 979 history, limiting its ability to model long-term coordination. These results confirm that our method
 980 generalizes well to diverse tasks, including those unseen during training, and robustly captures
 981 essential spatio-temporal dynamics.
 982



1000 Figure 9: Attention maps and trajectories on other tasks: STAIRS-Former (Above) vs. HiSSD
 1001 (Below)
 1002

1003 G.4 AVERAGE ATTENTION MAPS OVER WHOLE EPISODES WITH HiSSD

1005 While the previous subsections focused on trajectory-level analyses at selected timesteps, we now turn
 1006 to aggregated statistics over entire episodes. In particular, we compute the average attention maps of
 1007 the HiSSD transformer across all timesteps and episodes for each of the benchmark tasks, including
 1008 *marine-hard*, *marine-easy*, and *stalker-zealot*. These averaged maps reveal the characteristic behavior
 1009 of HiSSD: attention distributions are diffuse and fail to consistently concentrate on critical tokens,
 1010 suggesting limited ability to capture task-relevant structures over long horizons.
 1011

1012 G.5 AVERAGE ATTENTION MAPS OVER WHOLE EPISODES WITH STAIRS (OURS)

1013 We conduct the same analysis with STAIRS-Former, averaging attention maps across full episodes
 1014 for the same set of tasks (*marine-hard*, *marine-easy*, and *stalker-zealot*). In contrast to HiSSD, our
 1015 method exhibits sharper token-level concentration, consistently highlighting important entities while
 1016 incorporating historical tokens when necessary. Since these maps are averaged over all timesteps, the
 1017 degree of focus on critical tokens appears less pronounced than in the timestep-specific visualizations.
 1018 Nevertheless, STAIRS-Former still demonstrates clearer emphasis on task-relevant tokens compared
 1019 to HiSSD, maintaining more coherent and interpretable attention allocation throughout entire episodes.
 1020 Overall, these results reinforce the advantage of STAIRS-Former in modeling complex multi-agent
 1021 coordination.
 1022

Figure 10: Average attention map on marine-hard task with HiSSD

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 11: Average attention map on stalker-zealot task with HiSSD

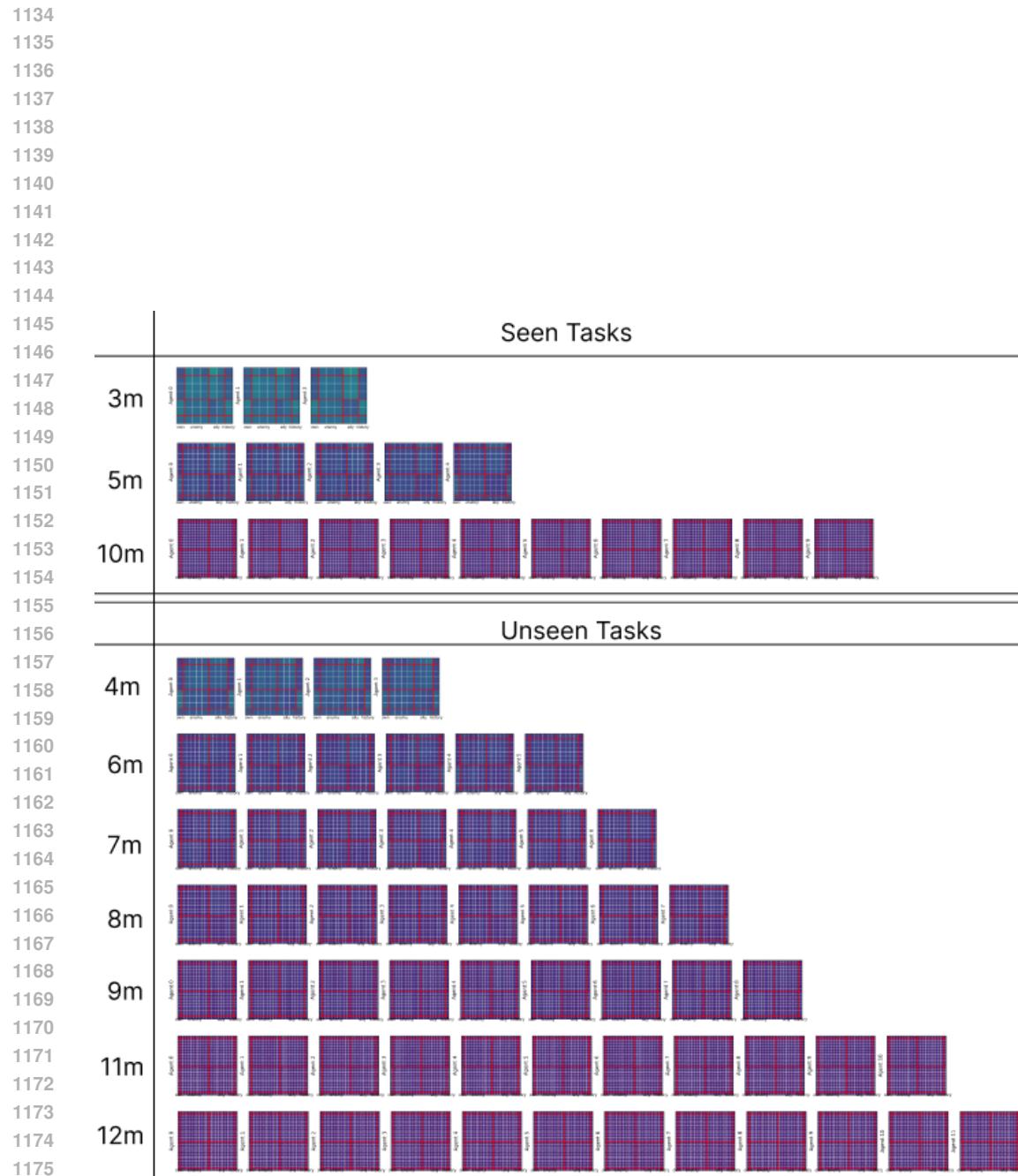


Figure 12: Average attention map on marine-easy task with HiSSD

Figure 13: Average attention map on marine-hard task with STAIRS

Figure 14: Average attention map on stalker-zealot task with STAIRS

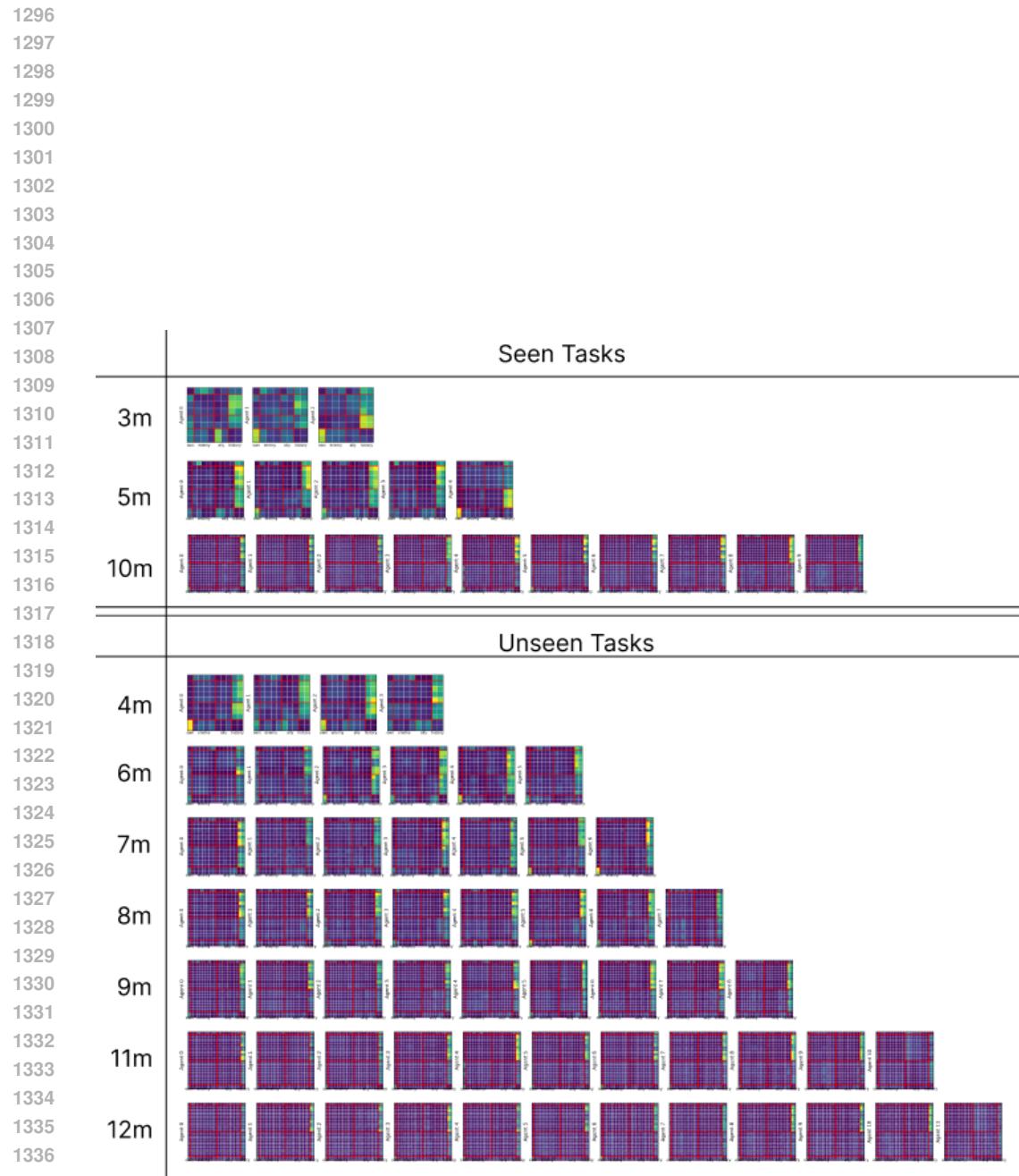


Figure 15: Average attention map on marine-easy task with STAIRS

1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 **H TRAINING DETAILS**
13511352 **H.1 HYPER-PARAMETERS**
13531354 In this section, we provide the hyperparameters for STAIRS-Former used in the SMAC offline
1355 MT-MARL benchmarks in Table 12. Across all tasks in benchmarks, we use same hyperparameters.
13561357 Table 12: Hyper-parameters of STAIRS-Former
1358

1359 Hyper-parameter	1360 Value
1361 hidden layer dimension	64
1362 attention dimension	64
1363 λ	1.0
1364 optimizer	Adam
1365 learning rate	0.0005
1366 Number of layers M	2
1367 Recursive steps ν_1	2
1368 Recursive steps ν_2	1
1369 Temporal interval T_H	3
1370 Dropout ratio p_{drop}	0.1
1371 Training timesteps	30,000

1375 **H.2 TRAINING COST**
13761378 To measure computational cost, we used a single NVIDIA RTX 4090 GPU (24,565 MiB memory
1379 usage). Training for 50K steps took approximately 7 hours 20 minutes for HiSSD, 3 hours for ODIS,
1380 whereas our method required only 4 hours under the same setup.
13811382 **H.3 PARAMETERS AND MEMORY USAGE**
13831384 On the Marine-Hard-Medium task, UpDeT-m, ODIS, our method, and HiSSD use 79,095,
1385 138,573, 220,023, and 679,335 parameters.
13861387 In terms of GPU memory consumption, UpDeT-m and ODIS require 7,046 MiB and 7,020 MiB,
1388 HiSSD requires 17,492 MiB, and our method uses 14,370 MiB. While slightly heavier than ODIS
1389 and UpDeT-m, our model remains substantially more efficient than HiSSD and achieves significantly
1390 higher performance.
1391

1404 I ADDITIONAL ABLATION STUDIES

1405
 1406 The main hyperparameters of our STAIRS-Former are the temporal interval T_H for long-term
 1407 dependency, and the token dropout ratio p_{drop} . In this section, we conduct ablation studies on each
 1408 hyperparameter to examine their effect on performance. Note that we conduct all ablation studies
 1409 without Temporal Focus Layer (TFL).

1410
 1411 I.1 ABLATION STUDY ON THE HYPERPARAMETER T_H AND p_{DROP}

1412
 1413 First, we conducted ablation studies on T_H and p_{drop} . Table 13 shows the average performance for
 1414 different values of T_H and p_{drop} . The results show that performance remains robust across various
 1415 settings, except when token dropout is not used ($p_{\text{drop}} = 0$). These results highlight that our token
 1416 dropout mechanism is essential for enhancing performance.

1417 Table 13: Comparison of average performances over all task set and dataset qualities. Best perfor-
 1418 mance are shown in **bold**.

	Temporal Interval T_H						
	3		4		5		
	Token Dropout Rate p_{drop}						
	0.05	0.1	0.05	0.1	0	0.05	0.1
Average Performance	65.9	65.3	64.5	66.2	63.6	66.2	65.6

1458
1459 **J SMAC-V2**

1460 In addition to SMAC, we also include SMAC-v2 Ellis et al. (2023) as a supplementary benchmark,
 1461 which is a more complex and realistic environment compared to SMAC-v1. SMAC-v2 introduces
 1462 significantly higher stochasticity due to randomized initial unit placements with dynamic team
 1463 compositions and unit types. These changes make the environment less deterministic and substantially
 1464 more challenging than SMAC-v1, especially for offline RL algorithms.

1465 We generated the SMAC-v2 offline datasets using QMIX Rashid et al. (2020) implemented in
 1466 PyMARL, collecting 2,000 trajectories for each task. The average return and win rate across all tasks
 1467 are summarized in Table 14.

1468
1469 Table 14: Properties of offline datasets with different qualities.

1470 Task	1471 Quality	1472 # Trajectories	1473 Average return	1474 Average win rate
1472 Terran 3_vs_3	medium	2000	11.6	0.44
	medium-replay	2000	N/A	N/A
1474 Terran 5_vs_5	medium	2000	13.09	0.4
	medium-replay	2000	N/A	N/A
1476 Terran 10_vs_10	medium	2000	12.58	0.42
	medium-replay	2000	N/A	N/A
1478 Protoss 3_vs_3	medium	2000	16.44	0.42
	medium-replay	2000	N/A	N/A
1480 Protoss 5_vs_5	medium	2000	17.98	0.41
	medium-replay	2000	N/A	N/A
1482 Protoss 10_vs_10	medium	2000	19.12	0.42
	medium-replay	2000	N/A	N/A
1485 Terran 3_vs_3	medium	2000	11.6	0.44
	medium-replay	2000	N/A	N/A
1487 Terran 5_vs_5	medium	2000	13.09	0.4
	medium-replay	2000	N/A	N/A
1489 Terran 10_vs_10	medium	2000	12.58	0.42
	medium-replay	2000	N/A	N/A
1491 Zerg 3_vs_3	medium	2000	9.75	0.43
	medium-replay	2000	N/A	N/A
1493 Zerg 5_vs_5	medium	2000	13.53	0.41
	medium-replay	2000	N/A	N/A
1495 Zerg 10_vs_10	medium	2000	13.56	0.4
	medium-replay	2000	N/A	N/A

1498 Since SMAC-v2 is a stochastic environment, the map configuration for each race is determined
 1499 probabilistically. For instance, in the Terran race, units are sampled according to predefined
 1500 weights—marine (0.45), marauder (0.45), and medivac (0.10). Similarly, the starting formation
 1501 is sampled from the surrounded_and_reflect distribution, where the agents are surrounded
 1502 with probability 0.5 and placed in a reflected configuration with probability 0.5. Because SMAC-v2
 1503 is substantially more challenging than SMAC-v1, we evaluate our method on settings with equal
 1504 numbers of allied and enemy units (e.g., 3_vs_3, 5_vs_5), similar in spirit to the classic marine-easy
 1505 and stalker-zealot scenarios.

1506 The probabilistic generation rules for each race are summarized in Table 15.
 1507

1508 The results for the complete SMAC-V2 task suite are presented in Table 16. Our method achieves
 1509 substantial performance improvements across all races. In Terran tasks, it improves performance by
 1510 approximately 292% over UpDeT-m, 132% over ODIS, and 28% over HiSSD. Similarly, in Protoss
 1511 tasks, we observe gains of 280%, 175%, and 14%, respectively. Zerg tasks exhibit comparable
 1512 improvements, with increases of 381% over UpDeT-m, 201% over ODIS, and 35% over HiSSD.

1512 Table 15: Unit generation and start-position configuration for each SMAC-v2 race.
1513

Race	Unit Types (weights)	Start Pos. Dist.
Terran	marine (0.45), marauder (0.45), medivac (0.10)	surrounded_and_reflect ($p=0.5$)
Protoss	stalker (0.45), zealot (0.45), colossus (0.10)	surrounded_and_reflect ($p=0.5$)
Zerg	zergling (0.45), baneling (0.10), hydralisk (0.45)	surrounded_and_reflect ($p=0.5$)

1519
1520 Aggregated over all SMAC-V2 tasks, our approach outperforms UpDeT-m, ODIS, and HiSSD by
1521 roughly 310%, 164%, and 24%, respectively. These results demonstrate that our method generalizes
1522 effectively across all races, maps, and unit compositions, even under the high stochasticity inherent
1523 in SMAC-V2.

1524 While the improvement over HiSSD is relatively smaller compared to the other baselines, it is
1525 important to note that HiSSD requires more than twice the number of parameters (679,335 vs. our
1526 220,023) and nearly double the training time. Thus, the comparison remains strongly favorable to our
1527 method in terms of both performance and efficiency.

1529
1530 Table 16: Comparison of average and per-task performances on the SMAC-V2 task set. We report
1531 mean \pm standard deviation, with the best result shown in **bold**. For brevity, we abbreviate task names
1532 such as 3_vs_3 to Terran 3, Protoss 3, and so on.

Tasks	Medium				Medium-replay			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Terran Source Tasks								
Terran 3	15.0 \pm 2.6	18.1 \pm 9.2	31.3 \pm 11.0	37.5 \pm 5.8	10.6 \pm 5.2	19.4 \pm 12.2	31.3 \pm 8.6	28.1 \pm 15.9
Terran 5	16.3 \pm 6.0	16.3 \pm 6.8	18.8 \pm 3.1	26.9 \pm 5.7	8.8 \pm 4.1	11.9 \pm 10.0	23.1 \pm 11.0	31.3 \pm 6.3
Terran 10	10.6 \pm 9.3	15.0 \pm 11.1	22.5 \pm 11.1	36.9 \pm 9.7	3.8 \pm 2.6	10.0 \pm 10.2	22.5 \pm 8.4	26.9 \pm 17.5
Terran Unseen Tasks								
Terran 4	11.9 \pm 2.6	19.4 \pm 8.4	33.8 \pm 8.7	35.6 \pm 9.5	10.6 \pm 4.2	16.3 \pm 12.8	25.0 \pm 8.8	36.3 \pm 5.7
Terran 6	10.6 \pm 9.3	14.4 \pm 7.2	26.9 \pm 10.5	26.9 \pm 8.4	7.5 \pm 6.8	13.1 \pm 10.0	24.4 \pm 5.6	33.8 \pm 10.5
Terran 7	10.6 \pm 6.8	17.5 \pm 5.7	35.6 \pm 11.0	35.0 \pm 8.9	8.1 \pm 4.7	15.0 \pm 10.2	25.0 \pm 9.4	28.8 \pm 7.8
Terran 8	6.9 \pm 4.1	20.0 \pm 14.8	26.9 \pm 8.7	38.8 \pm 4.7	6.3 \pm 5.4	16.3 \pm 15.1	18.1 \pm 9.2	30.6 \pm 12.2
Terran 9	5.0 \pm 5.7	12.5 \pm 8.6	26.9 \pm 9.8	35.6 \pm 13.2	5.0 \pm 3.6	13.1 \pm 9.2	19.4 \pm 8.9	25.0 \pm 10.4
Terran 11	2.5 \pm 5.6	6.3 \pm 4.9	20.6 \pm 5.7	37.5 \pm 11.0	5.0 \pm 7.2	5.6 \pm 5.1	23.1 \pm 6.1	24.4 \pm 15.1
Terran 12	3.1 \pm 2.2	7.5 \pm 6.1	23.1 \pm 12.4	38.8 \pm 15.1	4.4 \pm 5.2	8.1 \pm 5.7	21.9 \pm 7.0	23.8 \pm 20.7
Terran Avg	9.3	14.7	26.6	35.0	7.0	12.9	23.4	28.9
Protoss Source Tasks								
Protoss 3	16.9 \pm 9.0	14.4 \pm 15.1	30.6 \pm 7.1	28.1 \pm 6.6	8.1 \pm 6.1	14.4 \pm 9.8	28.1 \pm 12.5	28.1 \pm 8.8
Protoss 5	13.1 \pm 8.4	9.4 \pm 7.3	42.5 \pm 9.3	39.4 \pm 11.8	5.0 \pm 7.8	16.9 \pm 12.2	28.1 \pm 7.3	43.1 \pm 4.1
Protoss 10	10.0 \pm 9.7	11.9 \pm 14.0	27.5 \pm 7.1	31.3 \pm 6.3	6.3 \pm 9.6	8.8 \pm 11.6	20.0 \pm 8.1	25.0 \pm 6.3
Protoss Unseen Tasks								
Protoss 4	20.0 \pm 12.2	13.1 \pm 12.2	35.0 \pm 6.0	38.1 \pm 13.9	6.3 \pm 4.9	19.4 \pm 16.4	33.1 \pm 9.5	37.5 \pm 9.1
Protoss 6	12.5 \pm 8.0	10.6 \pm 9.5	35.0 \pm 11.4	40.0 \pm 9.2	5.0 \pm 7.8	11.3 \pm 9.0	41.9 \pm 12.0	32.5 \pm 11.2
Protoss 7	10.6 \pm 11.0	8.8 \pm 9.2	32.5 \pm 12.2	41.3 \pm 10.9	5.6 \pm 7.5	15.0 \pm 14.4	30.0 \pm 7.8	32.5 \pm 5.2
Protoss 8	14.4 \pm 8.4	15.0 \pm 19.1	25.6 \pm 6.0	36.9 \pm 7.1	4.4 \pm 4.7	11.3 \pm 9.5	23.1 \pm 7.2	31.9 \pm 8.9
Protoss 9	13.8 \pm 11.8	13.1 \pm 16.7	40.0 \pm 8.1	31.3 \pm 14.8	1.3 \pm 1.7	11.3 \pm 9.3	20.0 \pm 8.1	33.1 \pm 6.5
Protoss 11	8.1 \pm 6.5	11.3 \pm 11.8	33.8 \pm 4.6	35.6 \pm 7.8	3.1 \pm 5.4	8.8 \pm 6.0	12.5 \pm 4.9	29.4 \pm 8.1
Protoss 12	3.8 \pm 4.1	8.8 \pm 10.2	20.0 \pm 3.6	23.8 \pm 15.4	3.8 \pm 2.6	5.0 \pm 3.6	15.6 \pm 4.4	14.4 \pm 4.2
Protoss Avg	12.3	11.6	32.3	34.6	4.9	12.2	25.2	30.8
Zerg Source Tasks								
Zerg 3	11.3 \pm 8.1	13.1 \pm 8.9	28.1 \pm 8.3	33.1 \pm 6.1	3.8 \pm 5.1	11.3 \pm 8.4	27.5 \pm 11.1	37.5 \pm 14.8
Zerg 5	10.6 \pm 4.2	11.3 \pm 2.8	15.6 \pm 8.0	28.8 \pm 8.7	5.0 \pm 6.5	11.9 \pm 9.5	17.5 \pm 3.6	20.6 \pm 7.5
Zerg 10	6.3 \pm 3.8	11.9 \pm 13.3	20.0 \pm 7.8	31.9 \pm 5.6	2.5 \pm 2.6	2.5 \pm 4.1	17.5 \pm 4.2	23.1 \pm 6.5
Zerg Unseen Tasks								
Zerg 4	11.9 \pm 10.0	15.0 \pm 13.0	18.1 \pm 5.6	33.8 \pm 8.1	6.3 \pm 3.8	8.1 \pm 6.5	19.4 \pm 4.1	23.8 \pm 4.7
Zerg 6	8.8 \pm 6.8	11.9 \pm 10.5	25.0 \pm 16.1	26.9 \pm 12.4	4.4 \pm 1.7	5.6 \pm 4.6	11.3 \pm 4.2	16.9 \pm 4.7
Zerg 7	8.8 \pm 6.8	12.5 \pm 9.9	26.3 \pm 9.8	28.8 \pm 7.1	3.8 \pm 4.1	3.1 \pm 4.4	13.1 \pm 3.4	23.1 \pm 9.8
Zerg 8	4.4 \pm 6.1	8.8 \pm 7.1	25.0 \pm 13.4	35.0 \pm 16.1	1.3 \pm 1.7	2.5 \pm 2.6	13.1 \pm 8.7	21.9 \pm 10.4
Zerg 9	4.4 \pm 4.7	15.0 \pm 15.2	23.1 \pm 10.3	31.9 \pm 6.8	4.4 \pm 3.6	3.1 \pm 7.0	13.1 \pm 8.7	20.0 \pm 6.5
Zerg 11	2.5 \pm 3.4	11.3 \pm 12.8	25.0 \pm 4.9	23.8 \pm 10.3	1.9 \pm 2.8	1.9 \pm 4.2	11.3 \pm 4.2	15.6 \pm 7.3
Zerg 12	1.9 \pm 1.7	11.3 \pm 14.4	26.3 \pm 8.4	28.8 \pm 14.4	5.0 \pm 6.5	1.9 \pm 2.8	12.5 \pm 7.0	18.8 \pm 3.8
Zerg Avg	7.1	12.2	23.3	30.3	3.8	5.2	15.6	22.1

1566 **K MAMuJoCo**

1568 In addition to SMAC, we also include Multi-Agent MuJoCo (MaMuJoCo) (Peng et al., 2021) as an
 1569 additional supplementary benchmark, which is a more complex and realistic robotic environment
 1570 with continuous action space. MAMuJoCo models a single robot as multiple cooperating agents.
 1571 Each agent is responsible for controlling a designated group of joints, and the agents must collaborate
 1572 and align their actions to achieve the robot’s overall goals.

1573 HISSD (Liu et al., 2025) introduced the MAMuJoCo benchmark for offline multi task multi agent
 1574 (MAMA) reinforcement learning (RL) to demonstrate the performance of their method on a realistic
 1575 robotic system with continuous control. Their task set is built using the ‘HalfCheetah-v2’ environment
 1576 with six agents in MAMuJoCo and each task is formed by disabling one agent. The offline dataset for
 1577 each task is collected using a HAPPO trained policy (Kuba et al., 2022). However the dataset is not
 1578 publicly available and the observations are based on the full state of ‘HalfCheetah-v2’ rather than
 1579 agent specific local observations. This makes the dataset unsuitable for evaluating STAIRS because
 1580 STAIRS focuses on leveraging history tokens to mitigate partial observability in the offline MTMA
 1581 setting. Furthermore the task configuration in HISSD (Liu et al., 2025) uses the same number of
 1582 agents and identical observation spaces except for the non disabled case which limits its ability to test
 1583 robustness under varying agent configurations.

1584 To accommodate the offline MTMA learning setting, we construct a customized multi-task dataset in
 1585 ‘HalfCheetah-v2’, following the general procedure of Wang et al. (2023a). Unlike the original task
 1586 configuration (Liu et al., 2025), where each task is defined by disabling a single agent, our framework
 1587 introduces tasks with varying joint partitioning schemes. Specifically, the six joints of the robot
 1588 (‘bfoot’, ‘bshin’, ‘bthigh’, ‘ffoot’, ‘fshin’, ‘fthigh’) are grouped into different agent configurations,
 1589 such as (2,2,2), (3,3), (1,2,3), or (1,1,4), where each tuple represents the number of joints observable
 1590 and controllable by each agent. The hyperparameter ‘agent obsk’, which specifies how far agents
 1591 can observe in terms of connection distance, is set to 1. Models are trained using multiple source
 1592 partitions and evaluated on previously unseen configurations without relying on additional interaction
 1593 data. Further implementation details are provided in Tables 17.

1594 We generated the MAMuJoCo offline datasets using HAPPO (Kuba et al., 2022) , collecting 100
 1595 trajectories for each task. The average return across all tasks are summarized in Table 18.

1596 In our setting each agent has a different observation dimension across tasks, which requires obser-
 1597 vation decomposition similar to SMAC. A single joint in HalfCheetah provides a two dimensional
 1598 observation consisting of its qpos and qvel values. Therefore the observation is segmented in multiples
 1599 of two. For example if an agent observes a 10 dimensional vector it is decomposed into five tokens
 1600 represented as (2,2,2,2,2). The first tokens up to the number of joints assigned to the agent are treated
 1601 as the agent’s own observations and the remaining tokens correspond to observations of other agents.

1602 Using this tokenization scheme we train STAIRS with the TD3 BC algorithm (Fujimoto & Gu, 2021)
 1603 for one million timesteps. We compare our approach with two baselines UpDeT (Hu et al., 2021)
 1604 combined with TD3 BC and ODIS (Zhang et al., 2023). We do not include HISSD (Liu et al., 2025)
 1605 in comparison due to the complexity of its architecture which relies on multiple transformer modules
 1606 for skill and action extraction. The hyperparameters used in the MAMuJoCo benchmark are the same
 1607 as those used in SMAC.

1608 1609 Table 17: Descriptions of ‘HalfCheetah’

1610 Task type	1611 Task	1612 Number of Agents	1613 Observation Space	1614 Action Space
Source	(3,3)	2	[(8,), (8,)]	[(3,), (3,)]
	(2,2,2)	3	[(6,), (10,), (8,)]	[(2,), (2,), (2,)]
	(1,1,1,1,1,1)	6	[(4,), (6,), (6,), (4,), (6,), (6,)]	[(1,)] × 6
Unseen	(6)	1	[(12,)]	[(6,)]
	(2,4)	2	[(6,), (10,)]	[(2,), (4,)]
	(1,2,3)	3	[(4,), (8,), (8,)]	[(1,), (2,), (3,)]
	(1,1,4)	3	[(4,), (6,), (10,)]	[(1,), (1,), (4,)]
	(1,1,2,2)	4	[(4,), (6,), (10,), (8,)]	[(1,), (1,), (2,), (2,)]
	(1,1,1,3)	4	[(4,), (6,), (6,), (8,)]	[(1,), (1,), (1,), (3,)]

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
Table 18: Properties of offline datasets on 'HalfCheetah'

Task	Quality	# Trajectories	Average return
(3,3)	medium	100	5043.32
(2,2,2)	medium	100	5074.4
(1,1,1,1,1,1)	medium	100	4076.55

The results for the complete 'HalfCheetah' task suite are presented in Table 19. Our method achieves substantial performance improvements across all tasks and improves performance by 129% over ODIS.

Table 19: Comparison of average and per-task performances on the *HalfCheetah* task set in MAMu-JoCo. We report mean \pm standard deviation, with the best result shown in **bold**.

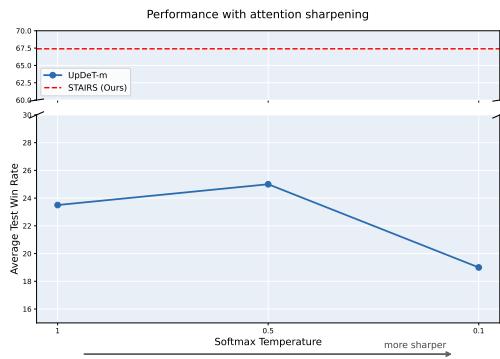
Tasks	HalfCheetah		
	UPDeT-BC	ODIS	STAIRS (Ours)
Source Tasks			
(3,3)	148.2 \pm 307.9	970.4 \pm 416.9	1459.0 \pm 400.3
(2,2,2)	-66.4 \pm 124.1	537.8 \pm 318.8	1410.6 \pm 537.6
(1,1,1,1,1,1)	262.6 \pm 200.7	727.6 \pm 662.0	1006.0 \pm 420.4
Unseen Tasks			
(6)	-190.9 \pm 296.5	-18.1 \pm 167.2	256.7 \pm 297.9
(2,4)	-58.2 \pm 203.9	137.3 \pm 77.2	249.1 \pm 151.7
(1,2,3)	127.6 \pm 189.4	48.7 \pm 136.5	627.2 \pm 732.6
(1,1,4)	-104.4 \pm 258.4	0.1 \pm 25.1	141.4 \pm 31.3
(1,1,2,2)	-171.0 \pm 96.4	399.6 \pm 222.9	1078.4 \pm 849.5
(1,1,1,3)	-2.3 \pm 252.2	178.9 \pm 271.1	606.2 \pm 700.6
Terran Avg	-6.1	331.4	759.4

1674 L ATTENTION SHARPENING

1675
 1676 To test whether simple attention sharpening can mitigate the “uniform attention” behavior observed in
 1677 other baselines, we performed an ablation study that modifies the softmax temperature in the attention
 1678 module. Specifically, we adjust the attention computation as:

$$1680 \text{Attn}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\tau\sqrt{d_k}}\right)V.$$

1682 where smaller values of τ produce sharper attention distributions. We compare models trained
 1683 with $\tau = 1.0, 0.5, 0.1$, representing progressively stronger sharpening. As shown in Figure 16 and
 1684 Table 20, mild sharpening provides slight improvements over the baseline. However, applying
 1685 excessive sharpening (i.e., using small τ) leads to notable performance degradation. When the
 1686 temperature becomes too low, the attention distribution approaches a nearly deterministic selection,
 1687 preventing the model from flexibly capturing relationships among tokens and ultimately reducing
 1688 overall performance.



1691
 1692 Figure 16: Average test win rate across all tasks
 1693 (marine-hard, stalker-zealot, and marine-easy)
 1694 under different temperatures τ .

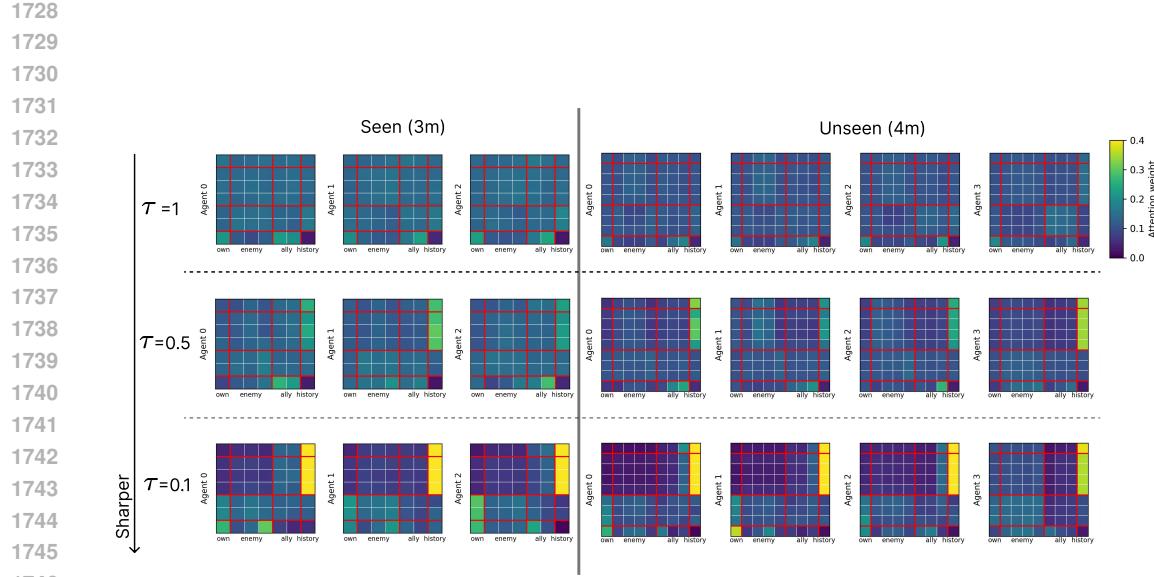
1695
 1696 Table 20: Performance with τ . Bold indicate the
 1697 best performance among the sharpening variants
 1698 (excluding ours).

Task / Dataset	$\tau=1.0$	$\tau=0.5$	$\tau=0.1$	Ours
Marine-Hard				
Expert	26.5	20.7	26.1	68.4
Medium	20.3	25.4	22.4	57.9
Medium-Expert	20.3	18.7	16.6	63.9
Medium-Replay	17.3	19.0	15.8	59.7
Stalker-Zealot				
Expert	19.9	24.4	24.2	75.0
Medium	16.0	16.4	15.3	38.2
Medium-Expert	21.5	16.8	8.8	69.4
Medium-Replay	3.6	15.7	8.7	24.3
Marine-Easy				
Expert	39.4	40.6	23.5	99.0
Medium	51.3	44.1	51.2	84.1
Medium-Expert	43.5	53.7	12.9	92.7
Medium-Replay	2.7	4.4	2.0	76.5

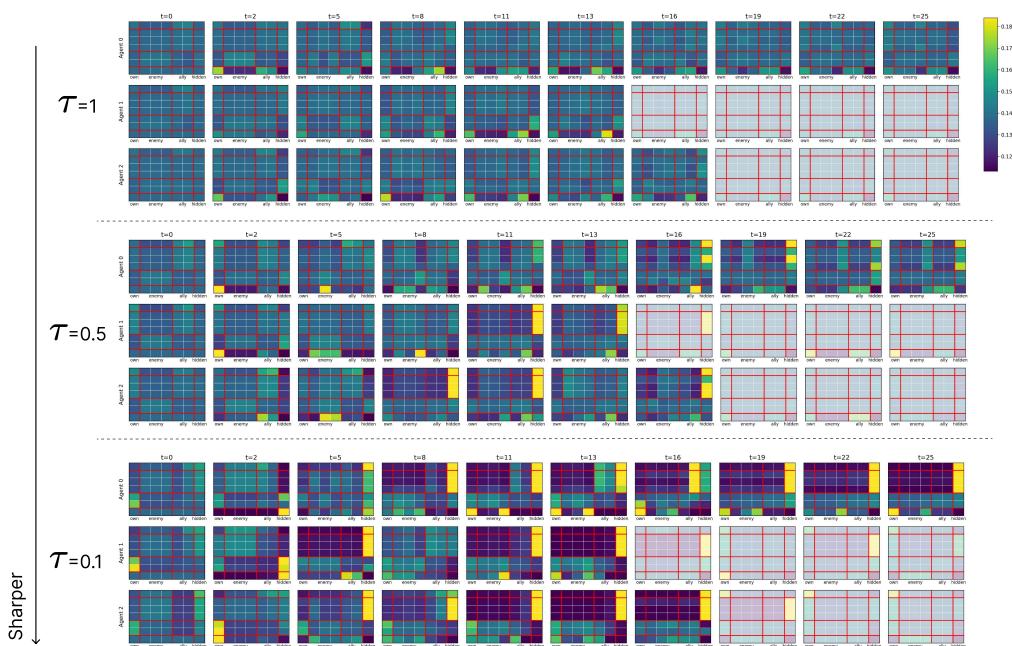
1701
 1702 In addition, to understand why simple attention sharpening cannot achieve the performance of
 1703 STAIRS, we examine the attention maps produced under different temperature settings. As shown in
 1704 Figure 17, decreasing τ (i.e., applying stronger sharpening) causes the model to place increasingly
 1705 higher attention on the history token in both the seen (3m) and unseen (4m) tasks. At first glance, this
 1706 tendency might appear desirable, since attending to history can help mitigate partial observability.

1711
 1712 However, when we visualize the attention maps (Figure 18), a different pattern emerges: with strong
 1713 sharpening, the model attends almost exclusively to the history token at every timestep. In contrast,
 1714 STAIRS attends to history only when necessary; depending on the situation, it may instead focus
 1715 on enemy tokens, ally tokens, or hidden-state tokens. This adaptive behavior enables more effective
 1716 reasoning under partial observability.

1717 These results reveal that forcing the model to focus on the history token at all timesteps is detrimental.
 1718 Effective policies require situation-aware attention, not uniformly sharpened attention distributions.



1747 Figure 17: Average attention maps of models trained on the Marine-Hard-Medium task, evaluated on
1748 the seen (3m) and unseen (4m) tasks across the entire trajectory for different values of τ .
1749
1750
1751
1752
1753
1754
1755



1778 Figure 18: Attention maps of models trained on the Marine-Hard-Medium task, evaluated on the 3m
1779 task and sampled every 2-3 timesteps for different values of τ .
1780
1781

1782 M COMPARISON WITH SAME DEPTH (2-LAYER TRANSFORMERS)
1783

1784 Since STAIRS employs hierarchical spatial structure, we additionally compare all baseline methods
 1785 under a comparable number of transformer parameters. Specifically, we reconfigure each baseline
 1786 (UpDeT-m, ODIS, and HiSSD) to use a 2-layer transformer, matching the transformer-level parameter
 1787 count of our model and ensuring a fair architectural comparison. (For reference, the total parameter
 1788 counts are: UpDeT-m 79,095; ODIS 138,573; HiSSD 679,335; and our model 220,023.)

1789 Across the tables 21,22 and 23 below, we observe that increasing the transformer depth does not
 1790 consistently improve baseline performance. In fact, performance degradation is observed in both
 1791 the *Marine-hard* and *Stalker-Zealot* benchmarks. For *Marine-hard*, performance decreases by **2.5%**
 1792 (UpDeT-m), **14.5%** (ODIS), and **2.2%** (HiSSD). For *Stalker-Zealot*, the degradation is even more
 1793 pronounced: **2.9%** (UpDeT-m), **21.5%** (ODIS), and **3.2%** (HiSSD). Only in the *Marine-easy*
 1794 benchmark does deeper architecture provide improvements: UpDeT-m increases by **29.2%**, ODIS by
 1795 **17.1%**, and HiSSD by **4.27%**.

1796 Even when all methods use deeper transformer backbones, STAIRSFormer consistently outperforms
 1797 all baselines across every task group. With 2-layer transformers, the improvements are substantial:
 1798

- 1799 • **Marine-hard:** +203.6% vs. UpDeT-m, +104% vs. ODIS, +14.6% vs. HiSSD
- 1800 • **Stalker-Zealot:** +248.9% vs. UpDeT-m, +160.6% vs. ODIS, +53.5% vs. HiSSD
- 1801 • **Marine-easy:** +99.2% vs. UpDeT-m, +50.7% vs. ODIS, +3.8% vs. HiSSD

1803 Overall, these results demonstrate that simply increasing transformer depth does not close the
 1804 performance gap for existing baselines, while STAIRSFormer continues to provide strong gains,
 1805 highlighting that its advantages arise from its architectural design rather than depth alone.

1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

Table 21: Comparison of average and per-task performances on the *Marine-hard* task set across four dataset qualities with all transformer backbones using depth 2. We report mean \pm standard deviation, with the best shown in **bold**.

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Tasks	Expert				Medium			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
3m	78.8 \pm 8.4	94.4 \pm 10.9	99.4 \pm 1.4	99.4 \pm 1.4	41.9 \pm 29.0	61.9 \pm 18.5	62.5 \pm 10.4	84.4 \pm 4.4
5m6m	5.0 \pm 4.7	38.1 \pm 13.1	72.5 \pm 6.8	70.6 \pm 10.5	5.0 \pm 11.2	28.1 \pm 9.1	33.8 \pm 13.3	50.0 \pm 12.5
9m10m	18.1 \pm 19.3	71.9 \pm 15.9	97.5 \pm 1.4	99.4 \pm 1.4	15.0 \pm 16.4	51.9 \pm 25.1	68.8 \pm 13.4	86.9 \pm 7.5
Unseen Tasks								
4m	47.5 \pm 27.0	76.9 \pm 29.6	100.0 \pm 0.0	97.5 \pm 4.1	39.4 \pm 23.7	65.6 \pm 21.8	72.5 \pm 10.9	89.4 \pm 13.9
5m	88.8 \pm 11.2	86.9 \pm 13.0	100.0 \pm 0.0	100.0 \pm 0.0	81.9 \pm 21.7	86.3 \pm 24.4	90.6 \pm 15.8	100.0 \pm 0.0
10m	40.0 \pm 42.2	51.3 \pm 35.3	95.0 \pm 11.2	100.0 \pm 0.0	45.6 \pm 31.3	50.0 \pm 29.1	87.5 \pm 9.1	97.5 \pm 4.1
12m	12.5 \pm 26.2	28.1 \pm 28.5	48.1 \pm 36.7	99.4 \pm 1.4	20.0 \pm 23.0	31.9 \pm 19.7	88.8 \pm 2.8	95.6 \pm 2.8
7m8m	1.3 \pm 1.7	8.8 \pm 6.4	32.5 \pm 15.4	25.0 \pm 22.0	4.4 \pm 9.8	7.5 \pm 11.8	8.1 \pm 14.8	10.6 \pm 8.7
8m9m	2.5 \pm 3.4	15.0 \pm 8.9	40.0 \pm 20.9	35.6 \pm 14.8	0.6 \pm 1.4	4.4 \pm 2.8	8.1 \pm 6.1	15.6 \pm 8.0
10m11m	8.8 \pm 12.8	15.6 \pm 15.5	72.5 \pm 33.5	87.5 \pm 4.9	6.9 \pm 8.4	10.6 \pm 9.5	28.8 \pm 9.2	61.3 \pm 18.2
10m12m	0.0 \pm 0.0	0.0 \pm 0.0	15.6 \pm 18.6	5.6 \pm 7.5	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	1.3 \pm 1.7
13m15m	0.0 \pm 0.0	0.0 \pm 0.0	2.5 \pm 3.4	0.6 \pm 1.4	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	1.9 \pm 2.8
Avg	25.3	40.6	64.6	68.4	21.7	33.2	45.8	57.9
Tasks	Medium-Expert				Medium-Replay			
Source Tasks								
3m	48.1 \pm 33.8	81.9 \pm 21.6	88.8 \pm 25.2	98.8 \pm 1.7	40.6 \pm 29.0	63.8 \pm 29.4	84.4 \pm 6.6	78.1 \pm 17.1
5m6m	3.8 \pm 5.6	18.1 \pm 19.1	40.6 \pm 26.0	57.5 \pm 13.9	0.0 \pm 0.0	5.0 \pm 7.2	30.0 \pm 9.3	50.6 \pm 5.1
9m10m	5.0 \pm 6.5	41.3 \pm 33.3	65.0 \pm 23.6	94.4 \pm 4.1	3.1 \pm 7.0	8.8 \pm 12.0	41.9 \pm 23.1	78.1 \pm 16.1
Unseen Tasks								
4m	43.8 \pm 34.9	53.8 \pm 33.7	97.5 \pm 5.6	90.6 \pm 7.7	31.3 \pm 40.1	26.9 \pm 36.0	64.4 \pm 18.7	93.8 \pm 6.6
5m	80.6 \pm 25.1	71.9 \pm 24.2	100.0 \pm 0.0	100.0 \pm 0.0	58.8 \pm 42.1	67.5 \pm 43.1	73.1 \pm 40.3	100.0 \pm 0.0
10m	41.3 \pm 33.5	32.5 \pm 38.1	99.4 \pm 1.4	90.0 \pm 12.8	23.8 \pm 31.6	46.9 \pm 36.4	95.0 \pm 5.7	97.5 \pm 5.6
12m	20.6 \pm 32.4	28.1 \pm 42.1	95.6 \pm 2.8	94.4 \pm 6.4	12.5 \pm 17.1	7.5 \pm 11.6	95.0 \pm 4.2	94.4 \pm 6.0
7m8m	0.0 \pm 0.0	5.6 \pm 7.8	42.5 \pm 15.4	15.0 \pm 4.1	1.9 \pm 2.8	1.3 \pm 2.8	15.0 \pm 8.9	23.1 \pm 15.1
8m9m	0.6 \pm 1.4	5.0 \pm 3.6	38.1 \pm 19.6	33.1 \pm 16.6	3.1 \pm 3.1	1.9 \pm 1.7	11.9 \pm 7.5	26.9 \pm 6.8
10m11m	2.5 \pm 2.6	15.0 \pm 26.8	71.3 \pm 16.1	80.6 \pm 18.1	1.9 \pm 4.2	1.9 \pm 2.8	36.9 \pm 14.6	66.9 \pm 11.2
10m12m	0.0 \pm 0.0	0.0 \pm 0.0	2.5 \pm 1.4	11.3 \pm 10.0	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	3.1 \pm 3.1
13m15m	0.0 \pm 0.0	0.0 \pm 0.0	1.9 \pm 1.7	0.6 \pm 1.4	0.0 \pm 0.0	0.0 \pm 0.0	1.3 \pm 1.7	4.4 \pm 4.7
Avg	20.5	29.4	61.9	63.9	14.8	19.3	45.7	59.7

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

Table 22: Comparison of average and per-task performances on the *Stalker-Zealot* task set across four dataset qualities with all transformer backbones using depth 2. We report mean \pm standard deviation, with the best shown in **bold**.

Tasks	Expert				Medium			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
2s3z	33.8 \pm 41.4	70.0 \pm 38.6	92.5 \pm 5.7	95.6 \pm 5.2	25.0 \pm 12.1	43.1 \pm 19.2	39.4 \pm 12.4	56.9 \pm 10.5
2s4z	13.8 \pm 14.3	58.8 \pm 37.3	65.0 \pm 5.1	77.5 \pm 11.6	25.0 \pm 20.6	7.5 \pm 3.6	9.4 \pm 4.9	60.0 \pm 16.1
3s5z	28.1 \pm 24.5	66.9 \pm 33.0	88.8 \pm 5.7	87.5 \pm 10.6	20.6 \pm 12.2	24.4 \pm 9.7	26.8 \pm 12.0	52.5 \pm 3.4
Unseen Tasks								
1s3z	13.8 \pm 20.6	35.0 \pm 37.7	63.8 \pm 19.1	78.1 \pm 12.7	22.5 \pm 10.5	5.0 \pm 7.8	25.6 \pm 27.7	38.8 \pm 34.0
1s4z	4.4 \pm 5.2	21.9 \pm 26.4	41.3 \pm 19.3	76.3 \pm 21.0	20.6 \pm 21.6	1.9 \pm 2.8	6.9 \pm 12.2	25.6 \pm 9.7
1s5z	2.5 \pm 4.1	9.4 \pm 12.9	20.6 \pm 14.1	55.6 \pm 23.5	11.9 \pm 10.2	0.0 \pm 0.0	3.8 \pm 2.6	31.9 \pm 10.5
2s5z	7.5 \pm 9.0	42.5 \pm 32.9	78.8 \pm 17.0	84.4 \pm 7.0	16.9 \pm 14.8	8.1 \pm 11.4	15.6 \pm 10.6	25.6 \pm 8.7
3s3z	20.6 \pm 21.0	58.8 \pm 35.2	74.4 \pm 7.1	86.3 \pm 8.4	18.8 \pm 18.1	26.9 \pm 13.7	25.6 \pm 17.0	59.4 \pm 14.1
3s4z	24.4 \pm 28.0	65.0 \pm 38.2	83.8 \pm 8.1	92.5 \pm 3.6	32.5 \pm 14.1	47.5 \pm 23.4	29.4 \pm 12.6	59.4 \pm 24.7
4s3z	21.3 \pm 28.2	46.9 \pm 31.3	81.3 \pm 12.1	70.0 \pm 11.8	11.9 \pm 13.9	22.5 \pm 14.4	21.9 \pm 11.0	41.9 \pm 17.9
4s4z	15.0 \pm 15.2	28.1 \pm 24.7	68.8 \pm 16.8	58.1 \pm 20.8	10.0 \pm 11.1	8.1 \pm 4.7	13.1 \pm 6.4	21.3 \pm 18.0
4s5z	9.4 \pm 13.3	16.3 \pm 17.2	40.6 \pm 24.7	53.1 \pm 18.9	5.6 \pm 4.6	0.6 \pm 1.4	5.0 \pm 4.7	11.3 \pm 7.8
4s6z	3.8 \pm 5.6	9.4 \pm 11.7	35.6 \pm 22.6	59.4 \pm 17.5	1.3 \pm 1.7	0.6 \pm 1.4	1.9 \pm 2.8	11.9 \pm 5.6
Avg	15.3	40.7	64.3	75.0	17.1	15.1	17.3	38.2
Tasks	Medium-Expert				Medium-Replay			
Source Tasks								
2s3z	35.0 \pm 9.2	41.3 \pm 26.6	78.8 \pm 4.1	92.5 \pm 10.3	16.3 \pm 12.0	10.0 \pm 13.7	7.5 \pm 4.7	20.6 \pm 10.0
2s4z	33.8 \pm 10.0	21.3 \pm 20.4	41.9 \pm 25.1	74.4 \pm 6.8	8.8 \pm 9.5	8.1 \pm 14.8	5.0 \pm 5.2	28.8 \pm 15.8
3s5z	20.0 \pm 16.9	34.4 \pm 30.0	58.8 \pm 24.8	85.0 \pm 15.8	0.0 \pm 0.0	5.6 \pm 5.1	11.3 \pm 6.8	28.8 \pm 10.2
Unseen Tasks								
1s3z	27.5 \pm 22.0	21.3 \pm 32.0	73.8 \pm 28.9	63.1 \pm 15.2	32.5 \pm 35.3	3.1 \pm 5.4	39.4 \pm 38.2	12.5 \pm 14.5
1s4z	14.4 \pm 9.5	1.9 \pm 4.2	5.0 \pm 6.5	80.6 \pm 21.8	18.8 \pm 24.6	8.1 \pm 11.2	7.5 \pm 8.7	10.6 \pm 7.2
1s5z	6.3 \pm 5.8	1.9 \pm 2.8	2.5 \pm 5.6	51.9 \pm 32.9	11.3 \pm 21.8	1.9 \pm 2.8	7.5 \pm 10.5	23.1 \pm 36.3
2s5z	14.4 \pm 12.2	25.0 \pm 21.9	8.1 \pm 5.2	62.5 \pm 21.2	6.3 \pm 10.8	8.8 \pm 13.7	7.5 \pm 4.7	27.5 \pm 11.4
3s3z	23.8 \pm 19.3	21.3 \pm 21.5	85.0 \pm 6.0	81.9 \pm 11.6	10.0 \pm 13.9	6.9 \pm 13.7	10.0 \pm 14.2	56.3 \pm 15.9
3s4z	26.9 \pm 19.1	41.3 \pm 37.8	74.4 \pm 27.6	95.6 \pm 4.2	5.6 \pm 7.8	11.9 \pm 11.1	21.9 \pm 14.5	53.1 \pm 10.4
4s3z	20.0 \pm 33.4	11.3 \pm 20.3	51.3 \pm 14.9	61.3 \pm 15.7	3.8 \pm 8.4	7.5 \pm 16.8	23.1 \pm 24.1	28.1 \pm 20.4
4s4z	4.4 \pm 3.6	5.6 \pm 9.5	30.6 \pm 15.8	59.4 \pm 14.3	0.0 \pm 0.0	4.4 \pm 9.8	10.6 \pm 8.1	15.0 \pm 2.6
4s5z	5.0 \pm 5.7	1.3 \pm 1.7	9.4 \pm 9.1	53.8 \pm 21.7	1.9 \pm 4.2	1.9 \pm 4.2	8.8 \pm 7.5	3.8 \pm 4.1
4s6z	1.9 \pm 1.7	1.3 \pm 1.7	6.9 \pm 4.1	40.0 \pm 15.5	0.6 \pm 1.4	0.0 \pm 0.0	5.0 \pm 5.7	7.5 \pm 6.8
Avg	18.0	17.6	40.5	69.4	8.9	6.0	12.7	24.3

1935
1936
1937
1938
1939
1940
1941
1942
1943

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958

Table 23: Comparison of average and per-task performances on the *Marine-easy* task set across four dataset qualities with all transformer backbones using depth 2. We report mean \pm standard deviation, with the best shown in **bold**.

Tasks	Expert				Medium			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
3m	71.9 \pm 21.1	96.3 \pm 3.4	100.0 \pm 0.0	99.4 \pm 1.4	63.1 \pm 20.4	46.9 \pm 12.1	70.6 \pm 5.7	85.6 \pm 6.5
5m	55.0 \pm 20.4	97.5 \pm 3.4	100.0 \pm 0.0	99.4 \pm 1.4	73.1 \pm 6.8	78.1 \pm 3.8	78.8 \pm 1.4	85.0 \pm 9.2
10m	48.1 \pm 15.7	96.3 \pm 4.1	100.0 \pm 0.0	99.4 \pm 1.4	56.9 \pm 12.8	59.4 \pm 17.7	75.6 \pm 9.7	94.4 \pm 2.6
Unseen Tasks								
4m	46.3 \pm 22.4	69.4 \pm 27.7	95.6 \pm 5.2	96.9 \pm 3.1	48.1 \pm 24.5	71.9 \pm 24.7	65.6 \pm 18.6	73.8 \pm 13.4
6m	51.9 \pm 36.6	85.6 \pm 18.8	100.0 \pm 0.0	96.9 \pm 3.8	72.5 \pm 12.8	91.3 \pm 10.5	81.9 \pm 17.3	82.5 \pm 9.3
7m	48.1 \pm 31.9	75.6 \pm 34.1	98.8 \pm 2.8	100.0 \pm 0.0	81.9 \pm 19.4	94.4 \pm 7.8	86.9 \pm 18.1	98.1 \pm 4.2
8m	60.0 \pm 24.5	91.9 \pm 11.8	99.4 \pm 1.4	99.4 \pm 1.4	83.1 \pm 12.6	95.0 \pm 3.6	96.9 \pm 5.4	96.9 \pm 3.1
9m	50.0 \pm 18.4	98.8 \pm 2.8	100.0 \pm 0.0	100.0 \pm 0.0	58.1 \pm 21.7	85.0 \pm 7.5	80.6 \pm 7.5	93.1 \pm 5.1
11m	58.1 \pm 23.9	96.3 \pm 3.4	99.4 \pm 1.4	100.0 \pm 0.0	30.6 \pm 10.7	43.1 \pm 16.7	52.5 \pm 7.8	65.6 \pm 14.5
12m	50.0 \pm 19.1	89.4 \pm 12.2	98.8 \pm 1.7	98.1 \pm 1.7	17.5 \pm 16.9	30.6 \pm 16.0	42.5 \pm 7.2	65.6 \pm 6.6
Avg	53.9	89.7	99.2	99.0	58.5	69.6	73.2	84.1
Medium-Expert								
Tasks	Medium-Expert				Medium-Replay			
	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)	UPDeT-m	ODIS	HiSSD	STAIRS (Ours)
Source Tasks								
3m	47.5 \pm 37.2	53.1 \pm 20.1	90.6 \pm 7.7	98.8 \pm 1.7	45.6 \pm 23.8	61.9 \pm 36.6	88.8 \pm 2.8	86.9 \pm 6.8
5m	81.3 \pm 23.5	77.5 \pm 21.6	100.0 \pm 0.0	98.8 \pm 1.7	0.0 \pm 0.0	21.9 \pm 30.0	90.6 \pm 7.3	89.4 \pm 7.8
10m	78.1 \pm 23.5	75.6 \pm 9.2	91.9 \pm 14.8	100.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	88.1 \pm 7.5	56.9 \pm 18.7
Unseen Tasks								
4m	48.8 \pm 11.0	58.8 \pm 23.1	95.0 \pm 4.2	60.0 \pm 25.4	0.0 \pm 0.0	22.5 \pm 30.4	70.6 \pm 5.2	79.4 \pm 13.0
6m	46.9 \pm 14.3	45.6 \pm 29.1	86.3 \pm 16.2	94.4 \pm 4.6	0.0 \pm 0.0	18.8 \pm 40.2	99.4 \pm 1.4	91.3 \pm 6.4
7m	67.5 \pm 18.0	58.8 \pm 44.2	84.4 \pm 13.6	96.9 \pm 3.1	0.0 \pm 0.0	20.0 \pm 44.7	100.0 \pm 0.0	90.6 \pm 5.8
8m	77.5 \pm 14.6	62.5 \pm 36.0	77.5 \pm 11.6	84.4 \pm 16.8	0.0 \pm 0.0	3.1 \pm 7.0	96.3 \pm 1.4	83.1 \pm 8.1
9m	51.3 \pm 19.0	61.9 \pm 17.2	73.1 \pm 15.1	100.0 \pm 0.0	0.0 \pm 0.0	1.3 \pm 2.8	87.5 \pm 6.3	82.5 \pm 5.7
11m	61.9 \pm 21.9	58.8 \pm 20.1	82.5 \pm 19.5	98.1 \pm 1.7	0.0 \pm 0.0	1.9 \pm 4.2	54.4 \pm 9.3	55.0 \pm 23.7
12m	38.1 \pm 23.5	39.4 \pm 20.9	63.8 \pm 17.9	95.6 \pm 4.7	0.0 \pm 0.0	1.9 \pm 4.2	48.1 \pm 14.1	49.4 \pm 30.0
Avg	59.9	59.2	84.5	92.7	4.6	15.3	82.4	76.5

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998 N ABLATION: ADDING SIMPLE GRU TOKEN

1999
2000 To examine whether the performance gain is merely from adding a recurrent GRU cell rather than our
2001 STAIRS design, we additionally evaluated baselines with a simple GRU history token. Specifically,
2002 we appended an additional history token that passes through a GRU cell operating on a 3-step
2003 temporal interval, which is identical to the interval used in our method.

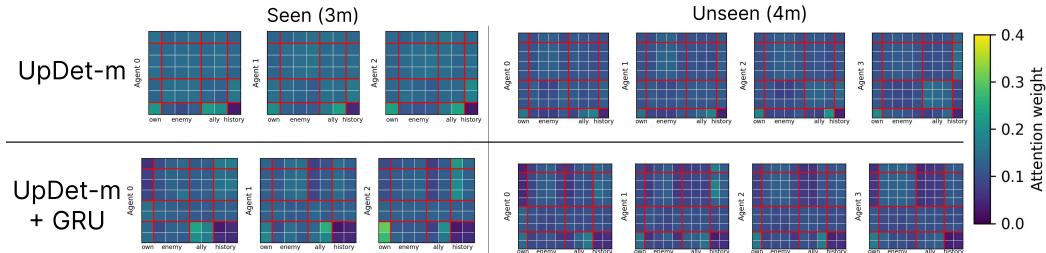
2004 The comparison results are summarized in Table 24. The table reports the average test win rate across
2005 all datasets. For example, for the Marine-Hard task, we average performance across Expert, Medium,
2006 Medium-Expert, and Medium-Replay. As shown, incorporating a GRU does not consistently improve
2007 either UpDeT-m or UpDeT-bc, indicating that simply extending the temporal horizon is insufficient.

2008
2009 Table 24: Average performance comparison of GRU addition.

2011 Task / Dataset	2012 UpDeT-m	2013 UpDeT-m + GRU	2014 UpDeT-bc	2015 UpDeT-bc + GRU	2016 Ours
2012 Marine-Hard	21.1	20.7	46.6	49.8	62.5
2013 Stalker-Zealot	15.3	16.7	43.3	42.9	51.7
2014 Marine-Easy	34.2	31.6	82.1	85.7	88.1

2016 Moreover, we visualized the average attention maps over the entire trajectories. We observed that
2017 adding the GRU history token does not encourage the model to attend to either short local history or
2018 long-range GRU-based history. In other words, the temporal cue introduced by the GRU is largely
2019 ignored and fails to help the baselines integrate temporal structure effectively.

2020 These results suggest that the performance gain of our method comes from the synergistic effect of
2021 its three components, Spatial Recursive Module, Temporal Module, and Token-Dropout mechanism,
2022 rather than the inclusion of a recurrent GRU cell alone.



2023 Figure 19: Average attention maps of models trained on the Marine-Hard-Medium task, evaluated on
2024 the seen (3m) and unseen (4m) tasks. UpDeT-m (upper) vs UpDeT-m with an added GRU history
2025 token (lower).