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ABSTRACT

Offline multi-agent reinforcement learning (MARL) with multi-task (MT) datasets
poses unique challenges, as input structures vary across tasks due to the varying
number of agents. Prior works have adopted transformers and hierarchical skill
learning to facilitate coordination, but these methods underutilize the transformer’s
attention mechanism, focusing instead on extracting transferable skills. Moreover,
existing transformer-based approaches compress the entire history into a single
token and input this token at next time step, forming simple recursive neural
network (RNN) processing on history tokens. As a result, models rely primarily
on current and near-past observations while neglecting long historical information,
even though the partially observable nature of MARL makes history information
critical. In this paper, we propose STAIRS-Former, a transformer architecture
augmented with spatial and temporal hierarchies that enables the model to properly
attend to critical tokens while effectively leveraging long history. To further
enhance robustness across varying token counts, we incorporate token dropout,
which improves generalization to diverse agent populations. Experiments on the
StarCraft Multi-Agent Challenge (SMAC) benchmark with diverse multi-task
datasets show that STAIRS-Former consistently outperforms prior algorithms,
achieving new state-of-the-art performance.

1 INTRODUCTION

Offline multi-agent reinforcement learning (MARL) has become a key paradigm for training many
practical multi-agent systems such as connected vehicle and collaborative drones without costly or
unsafe online interactions. Existing offline MARL methods mainly address overestimation bias,
distributional shift and out-of-distribution errors through conservative value estimation, hybrid
optimization, or regularization strategies (Pan et al., 2022; Shao et al., 2023; Wang et al., 2023b; Yang
et al., 2021a). While these advances are significant, most approaches are limited to single-task settings.
However, real-world applications demand agents that can master diverse skills, transfer knowledge
across tasks, adapt to varying number of agents, and remain robust under heterogeneous conditions
(Kaufmann et al., 2023; Tang et al., 2024). This highlights the need for offline MARL methods that
are not only stable and reliable, but also generalizable and adaptable to complex multi-task scenarios.

The multi-task (MT) RL framework (Caruana, 1997) provides a pathway to realize such generalization
by training policies across multiple tasks. Extending this MT framework to MARL poses a unique
challenge due to the need to cover the varying number of agents. For example, one wants a local drone
policy trained for a collaborative task under the assumption of six agents to still work well even if
one, two or three drones are missing. One possible solution is to use transformer-based architectures
with scalability, recently proposed for on-line transfer learning for MARL (Hu et al., 2021; Zhou
et al., 2021). ODIS and HiSSD (Zhang et al., 2023; Liu et al., 2025) adopt UPDeT (Hu et al., 2021), a
transformer-based scalable architecture developed for on-line transfer learning, leverage hierarchical
skill learning to extract transferable coordination patterns for offline MT-MARL, and yield promising
results. While these approaches show the effectiveness of transformers for MT-MARL, they primarily
use transformers to handle task-dependent variability in observation dimensions, rather than to fully
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exploit their capacity for modeling sequential history and complex token relationships (Vaswani
et al., 2017b). As a result, much of their potential to capture long-range dependencies and relational
structures remains underutilized, as we shall see shortly.

Q K

V

Stairs 
Former

Stairs 
Former

Softmax

Dot Product

Figure 1: Overall Proposed Q Structure

To address this limitation, in this paper, we propose Spatio-
Temporal Attention with Interleaved Recursive Structure
Transformer (STAIRS-Former), which extends the transformer
architecture with spatial and temporal hierarchies to better
model entity correlations and historical dependencies, and in-
troduce an overall Q decomposition architecture for offline
MT-MARL, as shown in Fig. 1. STAIRS-Former consists of
three key components: (1) a spatial hierarchy that directs atten-
tion toward the most relevant entities, (2) a temporal hierarchy that strengthens the use of long-range
past information, crucial in the partially-observable setting of MARL, and (3) token dropout, which
improves generalization across the varying number of agents. The contributions of this work are:

• A novel transformer architecture for offline multi-agent reinforcement learning in multi-task
scenarios, which selectively focuses attention across tokens to better capture critical information.

• Introduction of spatial and temporal hierarchies within the transformer, highlighting their impor-
tance for handling varying agent populations and history dependence in multi-task settings.

• Empirical evaluation on multi-task scenarios in the SMAC benchmark (Samvelyan et al., 2019),
showing significant gains over baselines and setting new state-of-the-art performance.

2 RELATED WORKS

Offline MARL Offline MARL faces several key challenges, including coordination under partial
observability, distributional shift, and convergence to sub-optimal policies. Recent works tackle
these issues through conservative estimation or regularization. For example, CFCQL (Shao et al.,
2023) introduces counterfactual regularization, OMAR (Pan et al., 2022) combines policy gradients
with population-based search, OMIGA (Wang et al., 2023b) integrates value decomposition with
offline policy learning, B3C (Kim & Sycara, 2025) incorporates behavior cloning with critic clipping,
and MA-ICQ (Yang et al., 2021b) extends implicit Q-learning to multi-agent settings. While these
methods enhance stability in offline training, they remain limited to single-task regimes and fail to
address generalization and adaptability in dynamic multi-task settings.

Generalization and MT-MARL Although MT-RL (Hendawy et al., 2024; Cho et al.; Hendawy
et al., 2023) and MARL (Jeon et al., 2022; Yang et al., 2020; Rashid et al., 2020; Peng et al., 2021)
have been extensively studied, their integration remains relatively underexplored. One research
direction emphasizes architectural flexibility. UPDeT (Hu et al., 2021) uses transformer-based value
networks that adapt to dynamic agent populations and variable observation structures, providing
a scalable inductive bias for cooperative MARL. Multi-Task Multi-Agent Shared Layers (Wang
et al., 2023a) shows that combining shared decision layers with task-specific perception modules
enables concurrent training across tasks and supports transfer to unseen environments. DT2GS (Tian
et al., 2023) further advances MT-MARL by decomposing complex tasks into transferable subtasks,
reducing interference and improving cross-task generalization.

Beyond architecture advances, recent works explore representation learning and modularization. M3
(Meng et al., 2023) introduces an offline pre-training framework that disentangles agent-invariant
and agent-specific representations, improving few-shot and zero-shot transfer. HyGen (Zhang et al.,
2024) combines offline multi-task data with limited online fine-tuning to extract generalizable skills,
ODIS (Zhang et al., 2023) learns task-invariant coordination strategies, and HiSSD (Liu et al.,
2025) decomposes cooperative knowledge into shared and task-specific components for structured
transfer. Together, these methods highlight the promise of architectural design, modularization, and
skill discovery for enhancing generalization in MARL. However, they mainly emphasize skill and
representation transfer, without addressing how to attend to critical factors such as historical context
or changing agent interactions, which are crucial for robust policy learning under partial observability.

3 PRELIMINARIES

MARL A cooperative partially-observable Markov game withN agents is modeled as a Dec-POMDP
T = ⟨N,S, {Ai}Ni=1,Ω,O, P, r, ρ, γ⟩ (Oliehoek & Amato, 2016). The state space is denoted by
S, and each agent i has its own action space Ai. The observation space is represented by Ω, and
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(a) Seen Task (3m) (b) Unseen Task (4m)
Figure 2: Attention map on both seen and unseen task with basic transformer in HiSSD

the initial state is drawn from the distribution ρ : S → [0, 1]. A discount factor γ ∈ [0, 1) controls
how future rewards are valued. Although the agents interact with the same environment state s ∈ S,
they each receive individual observations oi ∈ Ω, which are produced by the observation function
O(s, i) : S × N → Ω. At every timestep, each agent selects an action ai ∈ Ai, and together
these form the joint action a = (a1, . . . , aN ). The environment then updates its state according
to the transition dynamics s′ ∼ P (· | s,a), and all agents receive a shared reward r(s,a). For
clarity, bold symbols are used for joint variables, such as o = (o1, . . . , oN ) for observations and
τt = (τ1t , . . . , τ

N
t ) for the collection of agent trajectories, i.e. τkt = (ok0:t, a

k
0:t−1, r0:t−1). The goal

is to optimize a collection of decentralized policies π = {πi(ai | τ i; θi)}Ni=1 that maximize the

expected cumulative reward, expressed as J(π) = Eτ∼π,P

[∑T−1
t=0 γtrt

]
.

Offline MT-MARL In this paper, to capture generalizable behaviors across diverse tasks, we
consider a MT-MARL framework (Omidshafiei et al., 2017). In this setting, we have a set of
training tasks CTrain = {Tj}Ltr

j=1, where each task Tj is modeled as an aforementioned Dec-POMDP:
Tj = ⟨Nj ,Sj , {Ai

j}Ni=1,Ωj ,Oj , Pj , rj , ρj , γ⟩. The goal is to learn a universal decentralized policy
π over the training set CTrain that generalizes to an unseen test set CTest = {Tj,test}Lte

j=1. Here, the
number of agents, state spaces, and action spaces differ across the tasks.

To handle such heterogeneity, Hu et al. (2021) proposed UPDeT, a transformer-based unified pol-
icy network (Vaswani et al., 2017a). The key idea of UPDeT is that it decomposes each agent’s
observation oi according to characteristics, e.g., oi is decomposed into three groups of entities:
(1) own information oiown, (2) information about other agents {oioa,j}

Ka
j=1, and (3) environment

information {oien,j}
Ke
j=1, i.e., oi=(oiown, o

i
oa,1, · · ·, oioa,Ka

, oien,1, · · ·, oien,Ke
). Then, each element

in this decomposition is tokenized with a linear transform according to its characteristics, i.e.,
eiown=W

ownoiown+b
own, eioa,j=W

oaoioa,j+b
oa and eien,j=W

enoien,j+b
en. These tokens are ap-

pended by a history token eihs, the appended overall tokens are fed to a transformer, and the local
Q value for each discrete action is obtained from the output layer of the transformer. Note that
the tokenizing matrices W own, W oa and W en, the query, key and value generation matrices WQ,
WK and WV in attention and the up and down projection matrices Wup and W down in MLP of the
transformer are independent of the context length, i.e., the number of tokens, once they are learned,
and are common to all tokens. Hence, as more agents are added, the added elements in oi are just
decomposed according to their characteristics, and all the previously-learned transformer parameters
can be used again to cover this new setup with a different number of agents. Building on UPDeT,
recent offline MT-MARL methods such as ODIS and HiSSD (Zhang et al., 2023; Liu et al., 2025)
train policies from fixed offline datasets Dj for each task Tj without further environment interaction.

Limitations of UPDeT in MT-MARL To investigate how UPDeT, the central structure of previous
offline MT-MARL algorithms, actually works, we conducted an experiment on the Marine-Easy
task set in SMAC (Samvelyan et al., 2019), which includes three training tasks (’3m’, ’5m’, ’10m’).
We ran HiSSD, the current state-of-the-art offline MT-MARL algorithm, and analyzed the resulting
attention weights over the observation and history tokens of each agent for a seen task (’3m’) and an
unseen task (’4m’). Fig. 2 shows the attention maps of individual agents, where the rows correspond
to queries and the columns to keys. It is seen that attention is distributed nearly uniformly across
tokens in both seen and unseen tasks, failing to capture important entities in spatial domain. However,
both HiSSD and ODIS use UPDeT-style transformers with only a single layer (depth 1) to model
skills and actions. It limits the model’s expressiveness, as a one-layer transformer cannot capture the
diverse relations among agents, entities, and history. This explains the nearly uniform attention maps
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we observed in Fig. 2. Furthermore, the history token, which is important for partially-observable
environments, is not heavily used. Note that in UPDeT, the attention output at the history position
at time step t is basically given by a linear combination of oit and history token input eihs,t, and this
linear combination is fed to the MLP part of the transformer, yielding

eihs,t+1 =W downσ(Wup(Aeihs,t +Boit)) (1)
for some matrices A and B, where σ(·) is the nonlinear activation of MLP. Hence, UPDeT’s
operation on the history token is simple RNN processing, which cannot incorporate long-term history
information essential for partially-observable environments. Thus, it is seen that this information-
lacking history token is not heavily attended in other output positions. In summary, the UPDeT
structure does not possesses the capability of long-term history preservation and does not fully exploit
the strength of transformers, particularly their ability to model rich correlations between tokens.

This observation raises our central question: "How can we enhance the transformer architecture to
capture richer correlations between entities while effectively leveraging historical information for
offline MT-MARL?" In the next section, we will provide one solution to this question.

4 METHOD

We propose Spatio-Temporal Attention with Interleaved Recursive Structure Transformer (STAIRS-
Former), a new architecture designed for offline multi-task multi-agent reinforcement learning
(MT-MARL). STAIRS-Former enhances both the modeling of inter-entity relationships and the
utilization of historical information by integrating three key components:

• Spatial Recursive Module: A recursive transformer that strengthens relational reasoning among
entities within local observations.

• Temporal Module: A hierarchical temporal structure with both step-wise and periodic updates,
enabling agents to capture both short-term and long-term dependencies under partial observability.

• Token-Dropout Mechanism: A stochastic regularization strategy that drops entity tokens during
training, improving generalization to unseen tasks with different numbers of entities.

As illustrated in Fig. 3, STAIRS-Former consists of two trainable networks: a spatial-former f(·; θS)
and a GRU g(·;ψ). Together, they define the local Q-networks, which are then aggregated through
the Qatten mixing network (Yang et al., 2020) which can adapt to a varying number of inputs. In the
following subsections, we describe each component in detail.

4.1 SPATIAL RECURSIVE MODULE

In MARL, it is crucial to model diverse relationships among entities so that agents can prioritize
the most relevant parts of their observations and generalize policies more effectively to unseen
tasks. Prior methods, such as HiSSD, rely on shallow transformer layers that struggle to capture this
diversity (see Fig. 2(b)). To address this, STAIRS-Former employs a recursive deep transformer,
called Spatial-Former, which refines relational reasoning through recursive steps for each layer.

Entity Embeddings. For agent i, entity-level observations are given by oi=(oiown, o
i
oa,1:Ka

, oien,1:Ke
)

where Ka and Ke denote the numbers of other agents and environment entities. We embed entities as

ei = [eiown, e
i
oa,1, . . . , e

i
oa,Ka

, eien,1, . . . , e
i
en,Ke

] ∈ RK×d, (2)

with eiown=W
ownoiown+b

own, eioa,j=W
oaoioa,j+b

oa and eien,j=W
enoien,j+b

en, and parameters
θe = {W own, bown,W oa, boa,W en, ben}.
Recursive Spatial Updates. Let the Spatial-Former have M distinct layers. Each layer l has
weights θl and is applied νl times with shared parameters (recursive steps). Let zlj denote the recursive
latent state at step j in layer l. For initialization (l = 0), the input is the token sequence concatenated
with temporal tokens (defined in §4.2): z0 = [ei, hL, hH ].

At layer l, the recursive state is initialized as zl0 = 0 (shape as zl−1), and then updated recursively
using the previous state zlj together with the final state from the preceding layer, zl−1:

zlj+1 = f
(
zlj + zl−1; θl

)
, j = 0, . . . , νl − 1. (3)

The final state of layer l is obtained as zl := zlνl
which is then passed to the next layer. Once all M

layers are applied, the spatial representation is given by zsp = zM . Per-agent action values are then
obtained through an output head fO: Q(oi, ·) = fO(zsp; θO). This recursive design enables deeper
relational reasoning while controlling parameter costs through weight sharing.

4
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Figure 3: Overview of STAIRS-Former architecture.

4.2 TEMPORAL MODULE

Partial observability is a central challenge in MARL, as each agent i only has access to local
observations oit rather than the global state st. Existing approaches, such as UPDeT, augment
embeddings eit with a history token hit−1, forming the input set [eit, h

i
t−1]. However, these methods

struggle to capture long-range dependencies (see Fig. 2). To address this limitation, we introduces a
hierarchical temporal process that maintains two history states with different update frequencies.

Hierarchical Temporal Updates. Each agent i maintains a low level history hi,Lt updated every
step, and a high level history hi,Ht updated every TH steps by a GRU Chung et al. (2014) g(·;ψ).
At time t, the transformer input is the token set {eit, h

i,L
t−1, h

i,H
t−1} of length Ka+Ke+3. From the

Spatial module output zsp, we read the history position and update

hi,Lt = zsp[−2, :], hi,Ht =

{
g(hi,Ht−1, h

i,L
t ;ψ), t ≡ 0 mod TH ,

hi,Ht−1, otherwise.
(4)

Both histories are initialized to zero at t = 0. The arrangement enables immediate responsiveness via
hL and long-range summarization via hH .
Temporal-focus Layer Entity tokens (relational content) and history tokens (temporal context)
play distinct roles; yet a single position-wise FFN after attention tends to blur them. To preserve this
separation, we attach two independent FFNs after each attention block inside the Spatial-Former: one
specialized for entity tokens and one for history tokens.

Formally, let the attention output at recursive step j in layer l be xlj = [xlj,obs, x
l
j,his], where xlj,obs are

the updated entity tokens and xlj,his are the updated history tokens. Instead of sending both through a
single shared MLP, we apply two position-wise FFNs with disjoint parameters:

x̃lj,obs = FFNobs
(
xlj,obs

)
, x̃lj,his = FFNhis

(
xlj,his

)
, (5)

and concatenate to form the post-FFN state zlj =
[
x̃lj,obs, x̃

l
j,his

]
. This ensures that relational reasoning

over entities and temporal abstraction through history tokens are refined along distinct pathways, en-
couraging specialization while preventing interference between spatial and temporal representations.

4.3 TOKEN-DROPOUT MECHANISM

Generalization to unseen tasks is challenging because the number of entities K varies across en-
vironments according to the number of agents and enemies. Although transformers can handle
variable-length inputs, training is restricted to entity counts observed in the training set Ctrain. As a
result, performance may drop on unseen tasks with new entity configurations. To reduce overfitting,
STAIRS-Former employs a token-dropout strategy.

During training, each entity embedding in ei=(eiown, e
i
oa,1:Ka

, eien,1:Ke
) is randomly dropped with

probability pdrop, except for:

(1) the agent’s own entity eiown, critical for stable learning,

(2) both history tokens hi,L and hi,H ,

(3) and, when the policy head associates actions with per-entity outputs as in UPDeT, the entity
token linked to the dataset action to respect offline regularization.

This mechanism exposes the model to variable token lengths during training, improving robustness to
unseen entity configurations by reducing overfitting to Ctrain.
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Table 1: Comparison of average and per-task performances on the Marine-Hard task set across four
dataset qualities. We report mean±standard deviation, with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 66.9± 22.7 98.1± 1.7 99.4± 1.4 99.4± 1.4 33.8± 21.4 59.4± 12.3 65.0± 11.1 84.4± 4.4
5m6m 6.9± 7.1 43.1± 28.2 72.5± 10.7 70.6± 10.5 1.9± 2.8 22.5± 10.0 35.6± 9.5 50.0± 12.5
9m10m 24.4± 24.4 55.6± 28.2 99.4± 1.4 99.4± 1.4 31.3± 31.2 57.5± 21.5 68.1± 13.5 86.9± 7.5

Unseen Tasks

4m 51.9± 15.6 88.1± 8.7 100.0± 0.0 97.5± 4.1 27.5± 30.3 71.3± 18.0 78.1± 21.1 89.4± 13.9
5m 91.9± 7.5 83.1± 15.4 100.0± 0.0 100.0± 0.0 59.4± 34.4 80.6± 23.2 94.4± 7.8 100.0± 0.0
10m 46.3± 19.3 43.1± 30.1 98.8± 2.8 100.0± 0.0 49.4± 40.8 65.6± 24.1 96.3± 5.6 97.5± 4.1
12m 16.3± 17.3 16.3± 15.5 78.8± 14.6 99.4± 1.4 33.1± 32.0 56.3± 21.3 88.1± 17.3 95.6± 2.8
7m8m 0.6± 1.4 12.5± 10.1 43.1± 15.4 25.0± 22.0 1.3± 1.7 6.3± 6.3 5.6± 5.1 10.6± 8.7
8m9m 4.4± 4.7 9.4± 5.8 49.4± 11.6 35.6± 14.8 1.3± 1.7 10.6± 7.2 14.4± 9.0 15.6± 8.0
10m11m 8.8± 9.7 29.4± 28.5 80.6± 18.9 87.5± 4.9 4.4± 4.7 19.4± 15.2 46.3± 17.3 61.3± 18.2
10m12m 0.0± 0.0 0.0± 0.0 11.3± 13.6 5.6± 7.5 0.0± 0.0 0.0± 0.0 1.3± 2.8 1.3± 1.7
13m15m 0.0± 0.0 0.0± 0.0 2.5± 2.6 0.6± 1.4 0.0± 0.0 0.0± 0.0 0.6± 1.4 1.9± 2.8

Avg 26.5 39.9 69.7 68.4 20.3 37.5 49.5 57.9

Tasks Medium-Expert Medium-Replay

Source Tasks

3m 32.5± 20.3 44.4± 25.7 88.8± 12.8 98.8± 1.7 40.0± 19.8 81.9± 7.5 75.6± 7.8 78.1± 17.1
5m6m 5.6± 12.6 29.4± 13.6 32.5± 22.6 57.5± 13.9 0.0± 0.0 11.9± 13.0 24.4± 17.0 50.6± 5.1
9m10m 10.6± 14.8 55.6± 31.7 69.4± 35.8 94.4± 4.1 0.6± 1.4 15.0± 13.3 45.0± 13.0 78.1± 16.1

Unseen Tasks

4m 46.3± 22.9 75.6± 25.2 98.8± 2.8 90.6± 7.7 46.3± 21.4 59.4± 20.6 71.9± 7.3 93.8± 6.6
5m 72.5± 35.3 68.8± 31.6 93.8± 14.0 100.0± 0.0 64.4± 23.2 55.6± 31.4 71.3± 29.3 100.0± 0.0
10m 49.4± 12.2 71.3± 25.1 95.0± 4.8 90.0± 12.8 29.4± 16.9 51.9± 47.7 93.1± 4.6 97.5± 5.6
12m 20.0± 13.0 45.6± 40.0 85.6± 14.1 94.4± 6.4 25.6± 22.0 51.3± 47.3 91.9± 9.8 94.4± 6.0
7m8m 0.6± 1.4 11.9± 15.1 40.0± 20.4 15.0± 4.1 0.6± 1.4 8.1± 6.5 12.5± 8.0 23.1± 15.1
8m9m 2.5± 2.6 10.6± 13.0 26.9± 12.2 33.1± 16.6 0.6± 1.4 3.1± 3.1 11.3± 5.7 26.9± 6.8
10m11m 3.8± 5.1 25.6± 21.1 62.5± 16.4 80.6± 18.1 0.6± 1.4 12.5± 15.5 33.8± 11.6 66.9± 11.2
10m12m 0.0± 0.0 0.0± 0.0 5.0± 4.7 11.3± 10.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 3.1± 3.1
13m15m 0.0± 0.0 0.0± 0.0 8.8± 9.2 0.6± 1.4 0.0± 0.0 1.3± 2.8 6.3± 1.4 4.4± 4.7

Avg 20.3 36.6 58.9 63.9 17.3 29.3 44.8 59.7

4.4 TRAINING

We train STAIRS-Former with a TD3+BC–style objective (Fujimoto & Gu, 2021) adapted for discrete
action spaces. The objective integrates temporal-difference (TD) learning with behavior cloning (BC)
regularization, balancing value optimization with stability in the offline regime.

STAIRS Loss. For each agent i, STAIRS-Former outputs a Q-value, Qi
t = Q(oit, a

i
t; θ), for a given

(oit, a
i
t). With each agent’s individual Q-value Qi

t, we adopt the Qatten mixing network (Yang et al.,
2020) to obtain the global Q-value in MARL,Qtot(τt, st,at; θ, ϕ) from the set of individual Q-values
{Q1

t , · · ·QN
t }. Here, let θ = {θe, θS , θO, ψ} denote the set of all parameters for STAIRS-Former

and ϕ denote the parameters for mixing network. The target for TD learning is defined as
yt = rt + γmax

a′
Qtot(τt+1, st+1,a

′; θ̄, ϕ̄), (6)

where θ̄, ϕ̄ are target parameters. The STAIRS loss then jointly optimizes TD learning and BC
regularization:

LSTAIRS(θ, ϕ) = E(õt,at,rt,õt+1)∼D

[(
Qtot(τt, st,at; θ)− yt

)2

︸ ︷︷ ︸
TD loss

− λ

N

N∑
i=1

Q(oit, a
i
t; θ)︸ ︷︷ ︸

BC loss

]
. (7)

where the first term fits TD targets the second encourages higher Q-values for dataset actions. The
coefficient λ controls the strength of policy regularization. Token-dropout (§ 4.3) is applied during
training to improve robustness, and target networks are updated at each target update interval.

(a) Seen Task (3m) (b) Unseen Task (4m)

Figure 4: Attention map on both seen and
unseen task with basic transformer in Ours.

In summary, STAIRS-Former integrates a recursive
spatial transformer for richer inter-entity reasoning,
a dual-timescale temporal module for both short and
long horizons, and token dropout for robustness to
varying entity counts. Fig. 4 shows STAIRS-Former
results for the same setup as Fig. 2(§ 3). It is seen
that STAIRS-Former consistently emphasizes critical
entities and history tokens, leading to more robust,
generalizable policies across seen and unseen tasks.
Additional visualizations of the attention maps for
the various tasks are provided in Appendix G.
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Table 2: Comparison of average and per-task performances on the Stalker-Zealot task set across four
dataset qualities. We report mean±standard deviation, with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

2s3z 40.6± 33.9 56.9± 29.3 90.6± 7.7 95.6± 5.2 27.5± 15.5 44.4± 16.1 46.9± 15.5 56.9± 10.5
2s4z 16.3± 14.6 52.5± 18.8 80.0± 10.5 77.5± 11.6 21.3± 21.8 21.3± 11.3 15.0± 8.1 60.0± 16.1
3s5z 23.8± 27.2 65.6± 37.8 90.6± 3.8 87.5± 10.6 13.1± 9.5 15.6± 8.0 28.1± 20.1 52.5± 3.4

Unseen Tasks

1s3z 25.6± 20.3 23.1± 26.5 82.5± 25.4 78.1± 12.7 39.4± 37.0 31.9± 36.2 16.3± 15.1 38.8± 34.0
1s4z 26.9± 27.6 18.8± 8.0 59.4± 33.2 76.3± 21.0 20.6± 24.3 26.3± 16.6 18.8± 11.9 25.6± 9.7
1s5z 10.6± 16.9 10.6± 8.7 18.8± 23.0 55.6± 23.5 8.8± 9.7 26.3± 40.8 10.0± 4.6 31.9± 10.5
2s5z 18.8± 24.3 36.3± 17.8 49.4± 14.5 84.4± 7.0 11.3± 10.5 26.3± 11.4 16.9± 6.5 25.6± 8.7
3s3z 35.0± 31.7 60.0± 35.7 81.3± 18.1 86.3± 8.4 26.3± 22.7 24.4± 21.7 30.0± 8.1 59.4± 14.1
3s4z 32.5± 37.5 60.0± 35.3 88.8± 9.3 92.5± 3.6 25.0± 23.1 24.4± 15.4 27.5± 10.0 59.4± 24.7
4s3z 11.9± 15.1 43.8± 36.0 72.5± 28.9 70.0± 11.8 5.6± 4.1 21.9± 21.1 28.8± 13.9 41.9± 17.9
4s4z 10.6± 11.8 33.8± 19.3 51.3± 26.8 58.1± 20.8 3.8± 2.6 17.5± 11.4 8.1± 4.2 21.3± 18.0
4s5z 2.5± 2.6 32.5± 19.8 46.3± 19.9 53.1± 18.9 4.4± 4.7 8.1± 6.1 1.9± 1.7 11.3± 7.8
4s6z 3.8± 5.1 26.3± 28.1 47.5± 22.4 59.4± 17.5 0.6± 1.4 3.8± 2.6 4.4± 2.8 11.9± 5.6

Avg 19.9 40.0 66.1 75.0 16.0 22.5 19.4 38.2

Tasks Medium-Expert Medium-Replay

Source Tasks

2s3z 34.4± 23.4 66.3± 21.6 76.9± 20.2 92.5± 10.3 3.8± 4.1 10.6± 23.8 5.6± 5.6 20.6± 10.0
2s4z 31.3± 25.6 27.5± 19.7 35.0± 29.8 74.4± 6.8 10.0± 20.7 6.3± 12.3 7.5± 6.1 28.8± 15.8
3s5z 16.9± 14.6 38.1± 12.2 51.3± 20.1 85.0± 15.8 5.0± 7.2 12.5± 15.8 22.5± 15.8 28.8± 10.2

Unseen Tasks

1s3z 30.0± 22.2 70.6± 34.7 65.6± 24.9 63.1± 15.2 6.9± 8.7 3.1± 7.0 45.6± 32.3 12.5± 14.5
1s4z 26.3± 18.6 58.1± 50.4 6.3± 4.9 80.6± 21.8 4.4± 5.2 0.0± 0.0 18.1± 22.0 10.6± 7.2
1s5z 13.8± 13.8 19.4± 26.2 1.9± 2.8 51.9± 32.9 2.5± 5.6 0.0± 0.0 5.6± 7.8 23.1± 36.3
2s5z 34.4± 18.1 26.3± 12.2 19.4± 10.9 62.5± 21.2 5.0± 9.5 4.4± 6.5 24.4± 8.9 27.5± 11.4
3s3z 30.6± 29.0 46.3± 12.8 52.5± 10.9 81.9± 11.6 1.3± 1.7 9.4± 16.2 15.6± 21.5 56.3± 15.9
3s4z 29.4± 28.3 38.8± 21.9 75.0± 16.4 95.6± 4.2 1.9± 4.2 7.5± 6.1 18.8± 10.4 53.1± 10.4
4s3z 15.0± 22.7 12.5± 17.0 62.5± 12.5 61.3± 15.7 3.8± 5.1 3.1± 5.4 8.1± 14.8 28.1± 20.4
4s4z 10.0± 19.1 18.8± 10.6 31.3± 10.4 59.4± 14.3 0.6± 1.4 5.0± 7.8 13.1± 6.8 15.0± 2.6
4s5z 2.5± 4.1 11.9± 13.1 11.9± 4.1 53.8± 21.7 1.3± 1.7 1.3± 2.8 5.0± 4.7 3.8± 4.1
4s6z 5.0± 7.2 3.8± 2.6 13.8± 14.8 40.0± 15.5 0.0± 0.0 1.9± 4.2 5.0± 7.2 7.5± 6.8

Avg 21.5 33.7 38.7 69.4 3.6 5.0 15.0 24.3

5 EXPERIMENTS

5.1 BENCHMARKS

We evaluate the proposed method in the offline MT-MARL setting using various task sets from the
StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), following the setup of Zhang
et al. (2023). Each task set has separate train and test tasks to assess generalization to seen and unseen
tasks. There are three task sets: Marine-Easy, Marine-Hard, and Stalker-Zealot. Each set contains
tasks with identical unit types but varying unit counts. Similar to D4RL (Fu et al., 2020), every
task has four datasets of different qualities: Expert, Medium, Medium-Expert, and Medium-Replay.
Further details are provided in Appendix B. We report the mean performance along with the standard
deviations of final policies trained across 5 different random seeds. We also evaluate our method
on SMAC-v2 (Ellis et al., 2023) and on the Multi-Agent Particle Environment (MPE) (Lowe et al.,
2017). All SMAC-v2 and MPE results are provided in Appendix J and Appendix F. respectively

5.2 BASELINES

We compared our method, STAIRS-Former, against the several offline MT-MARL approaches: 1)
UPDeT-m: An offline variant of UPDeT (Hu et al., 2021), using a Qatten (Yang et al., 2020) mixing
network trained with the CQL (Kumar et al., 2020) loss. 2) ODIS (Zhang et al., 2023): Discovers
task-invariant coordination skills from offline multi-task data and learns a coordination policy that
selects skills under the CTDE paradigm to generalize to unseen tasks. 3) HiSSD (Liu et al., 2025):
Uses a hierarchical framework to jointly learn common cooperative skills and task-specific skills,
enabling effective policy transfer and fine-grained action execution across tasks.

5.3 MAIN RESULTS

The results for the Marine-Hard and Stalker-Zealot task sets are presented in Tables 1 and 2, while the
Marine-Easy results are provided in Appendix E due to space limits. Across all task sets, STAIRS-
Former demonstrates outstanding performance. In Marine-Hard and Stalker-Zealot, it consistently
achieves the best average results on both train and test tasks, with only a minor gap on the Expert
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Figure 5: Temporal attention map in a SMAC 3m scenario. The attention maps from STAIRS-Former
(top) and HiSSD (bottom) illustrate how attention shifts over time. Lighter-colored regions indicate
eliminated agents. A detailed explanation of these heatmaps is provided in Appendix G.1

dataset in Stalker-Zealot. These results show that STAIRS-Former is not only effective in-distribution
but also highly robust on unseen tasks, highlighting its strong generalization ability. This robustness
arises directly from the proposed hierarchical spatial–temporal process with token dropout, which
enables the model to capture richer dependencies across entities and leverage historical information
more effectively, thereby maintaining robustness on unseen tasks.

Tasks UPDeT-m ODIS HiSSD STAIRS (Ours)

Seen
Marine-Hard 21.2 47.9 64.6 79.0
Marine-Easy 44.3 59.3 83.9 91.2
Stalker-Zealot 20.3 34.8 45.9 63.4
Mean 28.6 47.3 64.8 77.9

Unseen
Marine-Hard 21.1 31.8 52.7 57.0
Marine-Easy 29.9 42.5 79.8 86.7
Stalker-Zealot 13.7 22.5 31.5 48.2
Mean 21.6 32.3 54.7 64.0

Total Mean 23.5 37.0 57.2 67.4

Table 3: Results on seen and unseen tasks, averaged
over dataset quality. Best results are in bold, second-
best are underlined.

Compared to the previous state of the art, HiSSD,
the advantages of STAIRS-Former become even
clearer. On sub-optimal datasets (Medium,
Medium-Expert, and Medium-Replay), STAIRS-
Former achieves large gains—improving average
performance by 39.5%, 36.6%, and 40.5%, respec-
tively. On the challenging Stalker-Zealot task set,
which requires complex heterogeneous unit inter-
actions, STAIRS-Former outperforms HiSSD by
a remarkable 48.6% on average. Table 3 further il-
lustrates STAIRS-Former’s superiority. It achieves
the highest mean scores on both seen tasks (77.9% vs. 64.8% for HiSSD) and unseen tasks (64.0% vs.
54.7%), resulting in an overall mean of 67.4% compared to HiSSD’s 57.2%. These results highlights
that the our spatial–temporal reasoning, reinforced with token dropout, gives STAIRS-Former a
decisive advantage in both exploiting seen tasks and generalizing to unseen scenarios.

5.4 ATTENTION DYNAMICS OVER TIME

In this section, we analyze how attention maps evolve during a SMAC episode in the 3m environment,
using trajectories generated from our trained STAIRS-Former policy (Fig. 5).

At the beginning (t=0), all agents mainly attend to their own tokens, stabilizing local information
under partial observability. By t=4, agents 0 and 2, who first encounter enemies, shift attention to
enemy tokens, while agent 1 maintains focus on itself and leverages history tokens to infer hidden
state. At t=8, all agents still focus on the enemy tokens, while agents 1 and 2 also attend to agent 0
to protect the weakened ally. At t=9, agent 0 successfully retreats and emphasizes hidden tokens
to decide between counterattack and withdrawal, whereas agents 1 and 2 continue attacking while
monitoring agent 0’s status. At t=14, as agent 1 becomes critically weak, agents 0 and 1 attend to
each other while sustaining fire on enemy 1, and enemy 2. Finally, at t=21, agent 1 is eliminated,
and the surviving agents 0 and 2 concentrate fire on enemy 2, demonstrating adaptive reallocation
of attention between protective and offensive strategies. For a detailed explanation of the attention
maps, please refer to Appendix G.1. We also identify a complementary strategy, termed focus fire,
which is discussed further in Appendix G.2.

In contrast, attention maps from a basic transformer remain nearly uniform across tokens and time
steps, regardless of context. This lack of selectivity shows its inability to prioritize critical tokens
such as enemies or history, causing it to miss the temporal and relational structures. By comparison,
STAIRS-Former not only captures immediate interactions but also learns higher-level strategies such
as focus fire and kiting, with attention dynamics closely aligned to observed tactical behaviors. This
alignment highlights both its effectiveness and its interpretability in multi-agent decision making.

5.5 ABLATION STUDY

We conducted ablation studies on three core components: (1) spatial recursive module, (2) temporal
module, and (3) token-dropout mechanism. Each was removed individually (“w/o”), where “w/o
STD” excludes both spatial, temporal, and dropout.
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Tasks STAIRS w/o Temporal w/o Spatial w/o Dropout w/o ST w/o STD

Seen
Marine-Hard 79.0 77.5 71.0 75.7 69.9 66.0
Marine-Easy 91.2 88.1 87.2 89.6 86.9 87.9
Stalker-Zealot 63.4 63.0 59.0 62.6 50.3 55.1

Mean 77.9 76.2 72.4 76.0 69.0 69.6

Unseen
Marine-Hard 57.0 57.4 54.7 56.0 54.1 40.1
Marine-Easy 86.7 78.5 79.0 83.0 78.0 79.7
Stalker-Zealot 48.2 46.1 47.0 46.5 44.0 39.7

Mean 64.0 60.6 60.2 61.8 48.7 53.2

Total Mean 67.4 64.6 63.1 65.4 61.4 57.3

Table 4: Ablation results on Seen and Unseen tasks. “ST” = Spatial & Temporal, “STD” = ST + Dropout. The
best performance is shown in bold, and the second-best performance is underlined.

Seen Tasks The spatial hierarchy is most critical for seen tasks, with performance dropping
sharply when removed (77.9% → 72.4%). In contrast, dropout and temporal abstraction yield little
improvement in performance. This highlights that the rich correlation with entities is essential to
capture the structured interactions within known environment.
Unseen Tasks On unseen tasks, all components are essential. Removing dropout, spatial, or
temporal modules lowers performance. Dropout improves generalization by mitigating overfitting,
the temporal hierarchy captures long-term information crucial under partial observability, and the
spatial hierarchy helps identify critical tokens for adapting to new configurations. With all three,
STAIRS achieves the best performance (64.0%), showing their joint importance for generalization to
novel environments.

Considering both seen and unseen tasks, STAIRS consistently outperforms all ablations, achieving
the highest overall mean (67.4%). The results clearly show that while the spatial hierarchy dominates
performance on seen environments, the synergy of spatial, temporal, and dropout modules is essential
for generalization to unseen scenarios. Additional ablation results are provided in Appendix I.

5.6 UNDERSTANDING ABLATION RESULTS THROUGH DORMANT NEURON ANALYSIS
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Figure 6: Dormant neuron ratios on
marine-hard tasks: STAIRS vs. ablations.

To further assess the impact of structural components, we an-
alyze the proportion of dormant neurons across all 12 Marine-
Hard tasks. Following Sokar et al. (2023), the score of neuron
i in layer ℓ is defined as sℓi =

Ex∈D|hℓ
i(x)|

1

Hℓ

∑
k∈h Ex∈D|hℓ

k(x)|
and a neu-

ron is regarded as τ -dormant if sℓi ≤ τ , with τ = 0.05. Dor-
mant neurons indicate under-utilized capacity. We compute
the average dormant neuron ratios for STAIRS and compare
them against the ablated variants obtained by removing the
two most influential components identified in the ablation
study (temporal and spatial attention; see Table 4).

As shown in Figure 6(a), both temporal and spatial modules
reduce dormant neuron ratios, with the temporal module hav-
ing the stronger effect. To examine this further, we ablate the
GRU and the Temporal Focus Layer (TFL) within the tempo-
ral module. Figure 6(b) shows that TFL substantially reduces
dormant neurons in observation tokens, which drive Q-value
estimation. By mitigating redundancy, increasing neuron ac-
tivation, and improving the effective use of model capacity,
TFL plays a central role in achieving better performance.

6 CONCLUSION

In this work, we addressed the limitations of offline multi-agent reinforcement learning in multi-
task settings, where transformers underutilize historical dependencies and relational structures. We
proposed STAIRS-Former, a transformer with spatial and temporal hierarchies for selective attention
to critical tokens and effective history use, while token dropout improves robustness across agent
populations. Experiments on the SMAC benchmark show that STAIRS-Former achieves state-of-the-
art performance, underscoring the value of structured attention for scalable and generalizable offline
MARL.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were employed as auxiliary tools to improve readability, refine phrasing,
and perform grammar checks. They were not used for research ideation, methodological design, or
experimental analysis, and did not contribute to the generation of research results.

B SMAC BENCHMARKS

We adopt two widely used benchmarks to evaluate our approach for offline MARL with multi-task
datasets proposed by Zhang et al. (2023). Our primary benchmark is the StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019), which has become a standard testbed for cooperative
multi-agent reinforcement learning. SMAC provides a variety of micromanagement scenarios where
agents must coordinate under partial observability, facing both homogeneous and heterogeneous unit
dynamics. These characteristics make SMAC a challenging and realistic environment, well-suited for
assessing the robustness and scalability of offline MARL methods in complex domains.
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C DATASET PROPERTIES

We use the offline datasets provided by ODIS (Zhang et al., 2023), which are based on the PyMARL
implementation of QMIX (Rashid et al., 2020). Similar to the D4RL benchmark (Fu et al., 2020),
four dataset qualities are defined:

• Expert: trajectories collected by a QMIX policy trained for 2M environment steps, achieving
high test win rates.

• Medium: trajectories collected by a weaker QMIX policy whose win rate is roughly half of
the expert policy.

• Medium-Expert: a mixture of the expert and medium datasets, providing increased diver-
sity.

• Medium-Replay: the replay buffer of the medium policy, containing lower-quality trajecto-
ries sampled during training.

For each source task, the expert and medium datasets contain 2,000 trajectories each, while the
medium-expert dataset includes 4,000 trajectories as their union. The size of the medium-replay
dataset depends on the number of trajectories collected before the medium policy terminates training.
During multi-task training, we use up to 2,000 trajectories per task (or all available trajectories when
fewer exist), and merge them across tasks to form a unified multi-task dataset. The detailed statistics
of these datasets are summarized in Table 5.

Table 5: Properties of offline datasets with different qualities.

Task Quality # Trajectories Average return Average win rate

3m

expert 2000 19.89 0.99
medium 2000 13.99 0.54
medium-expert 4000 16.94 0.77
medium-replay 3630 N/A N/A

5m

expert 2000 19.94 0.99
medium 2000 17.33 0.74
medium-expert 4000 18.63 0.87
medium-replay 771 N/A N/A

10m

expert 2000 19.94 0.99
medium 2000 16.63 0.54
medium-expert 4000 18.26 0.76
medium-replay 571 N/A N/A

5m_vs_6m

expert 2000 17.34 0.72
medium 2000 12.64 0.28
medium-expert 4000 14.99 0.50
medium-replay 32607 N/A N/A

9m_vs_10m

expert 2000 19.61 0.94
medium 2000 15.50 0.41
medium-expert 4000 17.56 0.68
medium-replay 13731 N/A N/A

2s3z

expert 2000 19.77 0.96
medium 2000 16.63 0.45
medium-expert 4000 18.20 0.70
medium-replay 4505 N/A N/A

2s4z

expert 2000 19.74 0.95
medium 2000 16.87 0.50
medium-expert 4000 18.31 0.72
medium-replay 6172 N/A N/A

3s5z

expert 2000 19.79 0.95
medium 2000 16.31 0.31
medium-expert 4000 18.05 0.63
medium-replay 11528 N/A N/A
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D DETAIL DESCRIPTIONS OF TASK

In our experiments, we select three representative tasks from SMAC: marine-easy, marine-hard, and
stalker-zealot. The marine-easy and marine-hard tasks both involve homogeneous units of marines:
marine-easy is a balanced setting with equal allied and enemy counts, while marine-hard introduces
more difficult cases where enemies are equal to or greater than allies. The stalker-zealot task, in
contrast, is heterogeneous with two unit types (stalkers and zealots) distributed identically across
both sides. Together, these tasks span different levels of difficulty and unit diversity, providing a
comprehensive testbed for evaluating coordination strategies under varying conditions, with detailed
specifications given in Tables 6–8.

Table 6: Descriptions of marine-easy tasks

Task type Task Ally units Enemy units Properties

Source
3m 3 Marines 3 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric

10m 10 Marines 10 Marines homogeneous & symmetric

Unseen

4m 4 Marines 4 Marines homogeneous & symmetric
6m 6 Marines 6 Marines homogeneous & symmetric
7m 7 Marines 7 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
9m 9 Marines 9 Marines homogeneous & symmetric

11m 11 Marines 11 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

Table 7: Descriptions of marine-hard tasks

Task type Task Ally units Enemy units Properties

Source
3m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen

4m 4 Marines 4 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric
10m 10 Marines 10 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

Table 8: Descriptions of stalker-zealot tasks

Task type Task Ally units Enemy units Properties

Source
2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots heterogeneous & symmetric
2s4z 2 Stalkers, 4 Zealots 2 Stalkers, 4 Zealots heterogeneous & symmetric
3s5z 3 Stalkers, 5 Zealots 3 Stalkers, 5 Zealots heterogeneous & symmetric

Unseen

1s3z 1 Stalker, 3 Zealots 1 Stalker, 3 Zealots heterogeneous & symmetric
1s4z 1 Stalker, 4 Zealots 1 Stalker, 4 Zealots heterogeneous & symmetric
1s5z 1 Stalker, 5 Zealots 1 Stalker, 5 Zealots heterogeneous & symmetric
2s5z 2 Stalkers, 5 Zealots 2 Stalkers, 5 Zealots heterogeneous & symmetric
3s3z 3 Stalkers, 3 Zealots 3 Stalkers, 3 Zealots heterogeneous & symmetric
3s4z 3 Stalkers, 4 Zealots 3 Stalkers, 4 Zealots heterogeneous & symmetric
4s3z 4 Stalkers, 3 Zealots 4 Stalkers, 3 Zealots heterogeneous & symmetric
4s4z 4 Stalkers, 4 Zealots 4 Stalkers, 4 Zealots heterogeneous & symmetric
4s5z 4 Stalkers, 5 Zealots 4 Stalkers, 5 Zealots heterogeneous & symmetric
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E RESULTS ON MARINE-EASY TASK SET

The results for the Marine-Easy task set are presented in Table 9. Across both source and unseen
tasks, STAIRS-Former consistently delivers strong performance. On the Expert dataset, it matches
HiSSD by achieving nearly perfect success rates on average, demonstrating that our model can
fully exploit high-quality data. On the Medium and Medium-Expert datasets, STAIRS-Former
significantly outperforms prior methods, showing clear advantages in handling sub-optimal data.
For example, compared to HiSSD, STAIRS-Former improves average performance by +16.0% on
Medium, +26.6% on Medium-Expert. However, on the Medium-Replay dataset, STAIRS-Former
underperforms compared to HiSSD. We attribute this to the relatively small size of the Medium-
Replay dataset in Marine-Easy (see Table 5), which limits trajectory diversity and thus reduces the
effectiveness of offline reinforcement learning. To further mitigate overfitting caused by the limited
trajectories, results for this task are reported at 10K time steps.

Table 9: Comparison of average and per-task performances on the Marine-Easy task set across four
dataset qualities. We report mean±standard deviation, with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 58.8± 20.1 84.4± 18.9 100.0± 0.0 99.4± 1.4 55.6± 28.8 60.0± 6.8 67.5± 10.5 85.6± 6.5

5m 48.8± 35.7 79.4± 29.0 99.4± 1.4 99.4± 1.4 71.9± 7.3 79.4± 10.3 80.6± 6.4 85.0± 9.2

10m 46.3± 36.4 67.5± 41.8 99.4± 1.4 99.4± 1.4 48.8± 27.9 77.5± 13.7 66.3± 19.6 94.4± 2.6

Unseen Tasks

4m 22.5± 17.6 48.1± 35.2 97.5± 3.4 96.9± 3.1 34.4± 12.3 55.0± 30.5 73.8± 12.8 73.8± 13.4

6m 32.5± 39.2 44.4± 44.7 100.0± 0.0 96.9± 3.8 70.6± 31.1 87.5± 17.3 86.3± 8.4 82.5± 9.3

7m 36.9± 38.2 42.5± 47.2 100.0± 0.0 100.0± 0.0 53.8± 37.9 81.3± 22.9 93.8± 12.3 98.1± 4.2

8m 31.3± 39.5 59.4± 43.2 100.0± 0.0 99.4± 1.4 78.8± 12.8 88.8± 7.2 90.6± 5.8 96.9± 3.1

9m 45.6± 35.7 64.4± 37.6 100.0± 0.0 100.0± 0.0 52.5± 17.9 79.4± 9.0 76.9± 4.7 93.1± 5.1

11m 38.1± 32.8 74.4± 34.9 99.4± 1.4 100.0± 0.0 26.9± 9.0 51.3± 11.8 48.1± 7.2 65.6± 14.5

12m 33.1± 28.2 69.4± 39.4 96.3± 4.1 98.1± 1.7 20.0± 13.9 31.3± 16.5 40.6± 17.8 65.6± 6.6

Avg 39.4 63.4 99.2 99.0 51.3 69.2 72.5 84.1

Tasks Medium-Expert Medium-Replay

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 48.1± 34.3 76.3± 20.4 81.3± 17.3 98.8± 1.7 25.8± 31.9 50.0± 33.1 87.5± 6.6 86.9± 6.8

5m 66.3± 19.2 84.4± 9.9 80.0± 16.0 98.8± 1.7 0.0± 0.0 0.0± 0.0 85.0± 8.4 89.4± 7.8

10m 60.6± 37.8 51.9± 30.1 74.4± 19.4 100.0± 0.0 0.0± 0.0 0.0± 0.0 85.6± 8.4 56.9± 18.7

Unseen Tasks

4m 24.4± 17.6 64.4± 29.7 75.6± 6.0 60.0± 25.4 0.0± 0.0 15.6± 34.9 66.9± 10.0 79.4± 13.0

6m 46.9± 33.9 67.5± 33.6 75.6± 14.6 94.4± 4.6 0.0± 0.0 0.0± 0.0 100.0± 0.0 91.3± 6.4

7m 37.5± 39.0 62.5± 22.0 73.1± 12.0 96.9± 3.1 0.0± 0.0 0.0± 0.0 99.4± 1.4 90.6± 5.8

8m 10.6± 7.5 45.6± 13.7 71.9± 6.3 84.4± 16.8 0.8± 1.6 0.0± 0.0 96.9± 2.2 83.1± 8.1

9m 48.1± 40.2 62.5± 30.8 73.1± 18.6 100.0± 0.0 0.0± 0.0 0.0± 0.0 80.6± 5.1 82.5± 5.7

11m 55.6± 30.9 49.4± 37.8 57.5± 19.0 98.1± 1.7 0.0± 0.0 0.0± 0.0 53.1± 18.9 55.0± 23.7

12m 36.9± 31.5 40.6± 28.5 69.4± 9.7 95.6± 4.7 0.0± 0.0 0.0± 0.0 36.3± 11.2 49.4± 30.0

Avg 43.5 60.5 73.2 92.7 2.7 6.6 79.1 76.5
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F COOPERATIVE NAVIGATION TASK

In addition to SMAC, we also include the Cooperative Navigation (CN) task from the Multi-Agent
Particle Environment (MPE) (Lowe et al., 2017) as a supplementary benchmark. CN provides
a simpler but complementary setting, where multiple agents must coordinate to occupy distinct
landmarks while avoiding collisions. While less complex than SMAC, this environment emphasizes
pure cooperation, making it a useful supplement to our main benchmark and enabling us to test the
generality of our approach across different types of multi-agent scenarios. The detailed specifications
of CN-tasks are in Table10

Table 10: Properties of offline datasets with different qualities.

Task Quality # Trajectories Average return Average win rate

CN-2 expert 2000 1.0000 1.0000
medium 2000 0.6152 0.6152

CN-4 expert 2000 0.7173 0.7173
medium 2000 0.4273 0.4273

Relative to the recent state-of-the-art HiSSD, STAIRS-Former achieves higher scores in the Expert
setting, improving from 49.1 to 51.3, and also shows gains in the Medium setting, increasing from
13.2 to 14.3. These results, obtained in the MPE domain in addition to our main SMAC experiments,
indicate that STAIRS-Former provides modest but consistent improvements over HiSSD across
different environments.

Table 11: Comparison of average and per-task performances on the Cooperative navigation task set
across two dataset qualities. We report mean±standard deviation, with the best shown in bold.

Tasks Expert

UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

CN-2 68.8 ± 19.4 78.8 ± 44.1 100.0 ± 0.0 100.0 ± 0.0
CN-4 13.8 ± 12.6 21.9 ± 15.1 24.4 ± 1.4 30.0 ± 12.6

Unseen Tasks

CN-3 34.4 ± 19.1 48.8 ± 27.8 65.0 ± 10.2 64.4 ± 5.7
CN-5 1.9 ± 2.8 5.6 ± 3.4 6.9 ± 7.5 10.6 ± 1.7

Average 29.8 38.8 49.1 51.3

Tasks Medium

UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

CN-2 8.8 ± 11.1 16.7 ± 14.4 38.8 ± 11.2 45.0.5 ± 13.6
CN-4 1.9 ± 1.7 2.1 ± 3.6 2.5 ± 2.6 1.9 ± 2.8

Unseen Tasks

CN-3 3.1 ± 2.2 5.2 ± 4.8 8.8 ± 3.4 8.8 ± 2.6
CN-5 0.0 ± 0.0 0.0 ± 0.0 2.5 ± 2.6 1.3 ± 1.7

Average 3.5 6.0 13.2 14.3
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G VISUALIZATION OF ATTENTION MAP

G.1 ATTENTION HEATMAP
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Figure 7: Structue of attention map

We describe how the attention map is constructed. As shown in
Fig. 7, the vertical axis corresponds to queries and the horizontal
axis to keys. Each entry denotes an attention weight, computed
as

As shown in Fig. 7, queries (vertical) attend to keys (horizontal),
with each entry an attention weight: softmax

(
QKT /

√
dk

)
.

Attention(Q,K) = softmax
(
QKT /

√
dk

)
. (8)

Here, Q (queries) and K (keys) are linear projections of the
input tokens that determine, respectively, what a token attends
to and what it provides to others. The scaling factor

√
dk

normalizes the dot-product by the dimensionality of the key
vectors, preventing excessively large values that could saturate
the softmax. Once the attention weights are computed, they are
applied to the corresponding values V , another linear projection
of the tokens containing the actual information to be aggregated. In this way, the attention mechanism
produces a weighted sum of the values, where the weights specify how strongly each token attends to
others.

Building on this formulation, the SMAC 3m task constructs tokens by first decomposing the agent’s
observation into three categories: the agent’s own token, enemy tokens (E0, E1, E2), and ally tokens
(A0, A1). In addition to these observation-derived tokens, the model also incorporates two hidden
state tokens, namely the low-level hidden token (LH) and the high-level hidden token (HH). The LH
token functions as a short-term memory that captures fine-grained temporal dependencies, while the
HH token provides a more abstract representation that summarizes longer-horizon information.

G.2 ALTERNATIVE TRAJECTORY EVOLUTION IN A SMAC 3M EPISODE

(a) t = 0 (b) t = 4 (c) t = 8 (d) t = 12 (e) t = 22
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Figure 8: Another temporal evolution in a SMAC 3m episode: STAIRS-Former (Above) vs. HiSSD
(Below)

Compared to Figure 5.4, we present an alternative trajectory that illustrates the focus-fire strategy. As
shown in Figure 8, the agents behave almost identically to those in Figure 5 up to t=4, and thus the
attention distributions at this stage remain largely the same. However, a notable divergence occurs at
t=8, when all agents collectively direct their attention toward enemy 2. This coordinated decision
to execute focus-fire results in strong emphasis on enemy 2’s token, and consequently, enemy 2 is
quickly eliminated from the battlefield. Unlike the main trajectory in Figure 5, where agent 0 with
the lowest health retreated to preserve survivability, here agent 0 remains engaged in the fight and is
eliminated immediately after enemy 2’s death at t=12. Following this loss, agents 1 and 2 shift their
focus toward history tokens, reflecting a period of reassessment as they deliberate between possible
countermeasures under partial observability. Ultimately, at t=22, the two surviving agents reestablish
coordination and concentrate their attention on the remaining enemy 0.

G.3 SUPPLEMENTARY TEMPORAL VISUALIZATION: ATTENTION MAPS IN OTHER TASKS

In Section 5.4 and G.2, we analyzed the evolution of attention maps and real trajectories on the
SMAC 3m scenario. To further assess the generality of our method, we extend these visualizations
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to additional tasks, including both seen and unseen scenarios every five timesteps. Specifically, we
report results on the challenging marine-hard setting, adding three tasks: two unseen tasks (4m,
8m_vs_9m) and one seen task (5m), in addition to the 3m task previously shown.

Across all tasks, our attention maps consistently highlight critical tokens while adaptively leveraging
historical information, demonstrating the ability to capture both local interactions and temporal
dependencies. In contrast, HiSSD fails to attend to critical tokens and exhibits little utilization of
history, limiting its ability to model long-term coordination. These results confirm that our method
generalizes well to diverse tasks, including those unseen during training, and robustly captures
essential spatio-temporal dynamics.

Figure 9: Attention maps and trajectories on other tasks: STAIRS-Former (Above) vs. HiSSD
(Below)

G.4 AVERAGE ATTENTION MAPS OVER WHOLE EPISODES WITH HISSD

While the previous subsections focused on trajectory-level analyses at selected timesteps, we now turn
to aggregated statistics over entire episodes. In particular, we compute the average attention maps of
the HiSSD transformer across all timesteps and episodes for each of the benchmark tasks, including
marine-hard, marine-easy, and stalker-zealot. These averaged maps reveal the characteristic behavior
of HiSSD: attention distributions are diffuse and fail to consistently concentrate on critical tokens,
suggesting limited ability to capture task-relevant structures over long horizons.

G.5 AVERAGE ATTENTION MAPS OVER WHOLE EPISODES WITH STAIRS (OURS)

We conduct the same analysis with STAIRS-Former, averaging attention maps across full episodes
for the same set of tasks (marine-hard, marine-easy, and stalker-zealot). In contrast to HiSSD, our
method exhibits sharper token-level concentration, consistently highlighting important entities while
incorporating historical tokens when necessary. Since these maps are averaged over all timesteps, the
degree of focus on critical tokens appears less pronounced than in the timestep-specific visualizations.
Nevertheless, STAIRS-Former still demonstrates clearer emphasis on task-relevant tokens compared
to HiSSD, maintaining more coherent and interpretable attention allocation throughout entire episodes.
Overall, these results reinforce the advantage of STAIRS-Former in modeling complex multi-agent
coordination.
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Figure 10: Average attention map on marine-hard task with HiSSD
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Figure 11: Average attention map on stalker-zealot task with HiSSD
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Figure 12: Average attention map on marine-easy task with HiSSD
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Figure 13: Average attention map on marine-hard task with STAIRS
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Figure 14: Average attention map on stalker-zealot task with STAIRS
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Figure 15: Average attention map on marine-easy task with STAIRS
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H TRAINING DETAILS

H.1 HYPER-PARAMETERS

In this section, we provide the hyperparameters for STAIRS-Former used in the SMAC offline
MT-MARL benchmarks in Table 12. Across all tasks in benchmarks, we use same hyperparmeters.

Table 12: Hyper-parameters of STAIRS-Former

Hyper-parameter Value

hidden layer dimension 64
attention dimension 64
λ 1.0
optimizer Adam
learning rate 0.0005
Number of layers M 2
Recursive steps ν1 2
Recursive steps ν2 1
Temporal interval TH 3
Dropout ratio pdrop 0.1
Training timesteps 30,000

H.2 TRAINING COST

To measure computational cost, we used a single NVIDIA RTX 4090 GPU (24,565 MiB memory
usage). Training for 50K steps took approximately 7 hours 20 minutes for HiSSD, 3 hours for ODIS,
whereas our method required only 4 hours under the same setup.

H.3 PARAMETERS AND MEMORY USAGE

On the Marine-Hard-Medium task, UpDeT-m, ODIS, our method, and HiSSD use 79,095,
138,573, 220,023, and 679,335 parameters.

In terms of GPU memory consumption, UpDeT-m and ODIS require 7,046 MiB and 7,020 MiB,
HiSSD requires 17,492 MiB, and our method uses 14,370 MiB. While slightly heavier than ODIS
and UpDeT-m, our model remains substantially more efficient than HiSSD and achieves significantly
higher performance.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I ADDITIONAL ABLATION STUDIES

The main hyperparameters of our STAIRS-Former are the temporal interval TH for long-term
dependency, and the token dropout ratio pdrop. In this section, we conduct ablation studies on each
hyperparameter to examine their effect on performance. Note that we conduct all ablation studies
without Temporal Focus Layer (TFL).

I.1 ABLATION STUDY ON THE HYPERPARAMETER TH AND pDROP

First, we conducted ablation studies on TH and pdrop. Table 13 shows the average performance for
different values of TH and pdrop. The results show that performance remains robust across various
settings, except when token dropout is not used (pdrop = 0). These results highlight that our token
dropout mechanism is essential for enhancing performance.

Table 13: Comparison of average performances over all task set and dataset qualities. Best perfor-
mance are shown in bold.

Temporal Interval TH

3 4 5

Token Dropout Rate pdrop

0.05 0.1 0.05 0.1 0 0.05 0.1
Average Performance 65.9 65.3 64.5 66.2 63.6 66.2 65.6
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J SMAC-V2

In addition to SMAC, we also include SMAC-v2 Ellis et al. (2023) as a supplementary benchmark,
which is a more complex and realistic environment compared to SMAC-v1. SMAC-v2 introduces
significantly higher stochasticity due to randomized initial unit placements with dynamic team
compositions and unit types. These changes make the environment less deterministic and substantially
more challenging than SMAC-v1, especially for offline RL algorithms.

We generated the SMAC-v2 offline datasets using QMIX Rashid et al. (2020) implemented in
PyMARL, collecting 2,000 trajectories for each task. The average return and win rate across all tasks
are summarized in Table 14.

Table 14: Properties of offline datasets with different qualities.

Task Quality # Trajectories Average return Average win rate

Terran 3_vs_3 medium 2000 11.6 0.44
medium-replay 2000 N/A N/A

Terran 5_vs_5 medium 2000 13.09 0.4
medium-replay 2000 N/A N/A

Terran 10_vs_10 medium 2000 12.58 0.42
medium-replay 2000 N/A N/A

Protoss 3_vs_3 medium 2000 16.44 0.42
medium-replay 2000 N/A N/A

Protoss 5_vs_5 medium 2000 17.98 0.41
medium-replay 2000 N/A N/A

Protoss 10_vs_10 medium 2000 19.12 0.42
medium-replay 2000 N/A N/A

Terran 3_vs_3 medium 2000 11.6 0.44
medium-replay 2000 N/A N/A

Terran 5_vs_5 medium 2000 13.09 0.4
medium-replay 2000 N/A N/A

Terran 10_vs_10 medium 2000 12.58 0.42
medium-replay 2000 N/A N/A

Zerg 3_vs_3 medium 2000 9.75 0.43
medium-replay 2000 N/A N/A

Zerg 5_vs_5 medium 2000 13.53 0.41
medium-replay 2000 N/A N/A

Zerg 10_vs_10 medium 2000 13.56 0.4
medium-replay 2000 N/A N/A

Since SMAC-v2 is a stochastic environment, the map configuration for each race is determined
probabilistically. For instance, in the Terran race, units are sampled according to predefined
weights—marine (0.45), marauder (0.45), and medivac (0.10). Similarly, the starting formation
is sampled from the surrounded_and_reflect distribution, where the agents are surrounded
with probability 0.5 and placed in a reflected configuration with probability 0.5. Because SMAC-v2
is substantially more challenging than SMAC-v1, we evaluate our method on settings with equal num-
bers of allied and enemy units (e.g., 3_vs_3, 5_vs_5), similar in spirit to the classic marine-easy
and stalker-zealot scenarios.

The probabilistic generation rules for each race are summarized in Table 15.

The results for the complete SMAC-V2 task suite are presented in Table 16. Our method achieves
substantial performance improvements across all races. In Terran tasks, it improves performance by
approximately 292% over UpDeT-m, 132% over ODIS, and 28% over HiSSD. Similarly, in Protoss
tasks, we observe gains of 280%, 175%, and 14%, respectively. Zerg tasks exhibit comparable
improvements, with increases of 381% over UpDeT-m, 201% over ODIS, and 35% over HiSSD.
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Table 15: Unit generation and start-position configuration for each SMAC-v2 race.

Race Unit Types (weights) Start Pos. Dist.

Terran marine (0.45), marauder (0.45), medivac (0.10) surrounded_and_reflect (p=0.5)
Protoss stalker (0.45), zealot (0.45), colossus (0.10) surrounded_and_reflect (p=0.5)
Zerg zergling (0.45), baneling (0.10), hydralisk (0.45) surrounded_and_reflect (p=0.5)

Aggregated over all SMAC-V2 tasks, our approach outperforms UpDeT-m, ODIS, and HiSSD by
roughly 310%, 164%, and 24%, respectively. These results demonstrate that our method generalizes
effectively across all races, maps, and unit compositions, even under the high stochasticity inherent
in SMAC-V2.

While the improvement over HiSSD is relatively smaller compared to the other baselines, it is
important to note that HiSSD requires more than twice the number of parameters (679,335 vs. our
220,023) and nearly double the training time. Thus, the comparison remains strongly favorable to our
method in terms of both performance and efficiency.

Table 16: Comparison of average and per-task performances on the SMAC-V2 task set. We report
mean±standard deviation, with the best result shown in bold. For brevity, we abbreviate task names
such as 3_vs_3 to Terran 3, Protoss 3, and so on.

Tasks Medium Medium-replay

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Terran Source Tasks

Terran 3 15.0± 2.6 18.1± 9.2 31.3± 11.0 37.5± 5.8 10.6± 5.2 19.4± 12.2 31.3± 8.6 28.1± 15.9
Terran 5 16.3± 6.0 16.3± 6.8 18.8± 3.1 26.9± 5.7 8.8± 4.1 11.9± 10.0 23.1± 11.0 31.3± 6.3
Terran 10 10.6± 9.3 15.0± 11.1 22.5± 11.1 36.9± 9.7 3.8± 2.6 10.0± 10.2 22.5± 8.4 26.9± 17.5

Terran Unseen Tasks

Terran 4 11.9± 2.6 19.4± 8.4 33.8± 8.7 35.6± 9.5 10.6± 4.2 16.3± 12.8 25.0± 8.8 36.3± 5.7
Terran 6 10.6± 9.3 14.4± 7.2 26.9± 10.5 26.9± 8.4 7.5± 6.8 13.1± 10.0 24.4± 5.6 33.8± 10.5
Terran 7 10.6± 6.8 17.5± 5.7 35.6± 11.0 35.0± 8.9 8.1± 4.7 15.0± 10.2 25.0± 9.4 28.8± 7.8
Terran 8 6.9± 4.1 20.0± 14.8 26.9± 8.7 38.8± 4.7 6.3± 5.4 16.3± 15.1 18.1± 9.2 30.6± 12.2
Terran 9 5.0± 5.7 12.5± 8.6 26.9± 9.8 35.6± 13.2 5.0± 3.6 13.1± 9.2 19.4± 8.9 25.0± 10.4
Terran 11 2.5± 5.6 6.3± 4.9 20.6± 5.7 37.5± 11.0 5.0± 7.2 5.6± 5.1 23.1± 6.1 24.4± 15.1
Terran 12 3.1± 2.2 7.5± 6.1 23.1± 12.4 38.8± 15.1 4.4± 5.2 8.1± 5.7 21.9± 7.0 23.8± 20.7

Terran Avg 9.3 14.7 26.6 35.0 7.0 12.9 23.4 28.9

Protoss Source Tasks

Protoss 3 16.9± 9.0 14.4± 15.1 30.6± 7.1 28.1± 6.6 8.1± 6.1 14.4± 9.8 28.1± 12.5 28.1± 8.8
Protoss 5 13.1± 8.4 9.4± 7.3 42.5± 9.3 39.4± 11.8 5.0± 7.8 16.9± 12.2 28.1± 7.3 43.1± 4.1
Protoss 10 10.0± 9.7 11.9± 14.0 27.5± 7.1 31.3± 6.3 6.3± 9.6 8.8± 11.6 20.0± 8.1 25.0± 6.3

Protoss Unseen Tasks

Protoss 4 20.0± 12.2 13.1± 12.2 35.0± 6.0 38.1± 13.9 6.3± 4.9 19.4± 16.4 33.1± 9.5 37.5± 9.1
Protoss 6 12.5± 8.0 10.6± 9.5 35.0± 11.4 40.0± 9.2 5.0± 7.8 11.3± 9.0 41.9± 12.0 32.5± 11.2
Protoss 7 10.6± 11.0 8.8± 9.2 32.5± 12.2 41.3± 10.9 5.6± 7.5 15.0± 14.4 30.0± 7.8 32.5± 5.2
Protoss 8 14.4± 8.4 15.0± 19.1 25.6± 6.0 36.9± 7.1 4.4± 4.7 11.3± 9.5 23.1± 7.2 31.9± 8.9
Protoss 9 13.8± 11.8 13.1± 16.7 40.0± 8.1 31.3± 14.8 1.3± 1.7 11.3± 9.3 20.0± 8.1 33.1± 6.5
Protoss 11 8.1± 6.5 11.3± 11.8 33.8± 4.6 35.6± 7.8 3.1± 5.4 8.8± 6.0 12.5± 4.9 29.4± 8.1
Protoss 12 3.8± 4.1 8.8± 10.2 20.0± 3.6 23.8± 15.4 3.8± 2.6 5.0± 3.6 15.6± 4.4 14.4± 4.2

Protoss Avg 12.3 11.6 32.3 34.6 4.9 12.2 25.2 30.8

Zerg Source Tasks

Zerg 3 11.3± 8.1 13.1± 8.9 28.1± 8.3 33.1± 6.1 3.8± 5.1 11.3± 8.4 27.5± 11.1 37.5± 14.8
Zerg 5 10.6± 4.2 11.3± 2.8 15.6± 8.0 28.8± 8.7 5.0± 6.5 11.9± 9.5 17.5± 3.6 20.6± 7.5
Zerg 10 6.3± 3.8 11.9± 13.3 20.0± 7.8 31.9± 5.6 2.5± 2.6 2.5± 4.1 17.5± 4.2 23.1± 6.5

Zerg Unseen Tasks

Zerg 4 11.9± 10.0 15.0± 13.0 18.1± 5.6 33.8± 8.1 6.3± 3.8 8.1± 6.5 19.4± 4.1 23.8± 4.7
Zerg 6 8.8± 6.8 11.9± 10.5 25.0± 16.1 26.9± 12.4 4.4± 1.7 5.6± 4.6 11.3± 4.2 16.9± 4.7
Zerg 7 8.8± 6.8 12.5± 9.9 26.3± 9.8 28.8± 7.1 3.8± 4.1 3.1± 4.4 13.1± 3.4 23.1± 9.8
Zerg 8 4.4± 6.1 8.8± 7.1 25.0± 13.4 35.0± 16.1 1.3± 1.7 2.5± 2.6 13.1± 8.7 21.9± 10.4
Zerg 9 4.4± 4.7 15.0± 15.2 23.1± 10.3 31.9± 6.8 4.4± 3.6 3.1± 7.0 13.1± 8.7 20.0± 6.5
Zerg 11 2.5± 3.4 11.3± 12.8 25.0± 4.9 23.8± 10.3 1.9± 2.8 1.9± 4.2 11.3± 4.2 15.6± 7.3
Zerg 12 1.9± 1.7 11.3± 14.4 26.3± 8.4 28.8± 14.4 5.0± 6.5 1.9± 2.8 12.5± 7.0 18.8± 3.8

Zerg Avg 7.1 12.2 23.3 30.3 3.8 5.2 15.6 22.1
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K MAMUJOCO

In addition to SMAC, we also include Multi-Agent MuJoCo (MaMuJoCo) (Peng et al., 2021) as an
additional supplementary benchmark, which is a more complex and realistic robotic environment
with continuous aciton space. MAMuJoCo models a single robot as multiple cooperating agents.
Each agent is responsible for controlling a designated group of joints, and the agents must collaborate
and align their actions to achieve the robot’s overall goals.

HISSD (Liu et al., 2025) introduced the MAMuJoCo benchmark for offline multi task multi agent
(MAMA) reinforcement learning (RL) to demonstrate the performance of their method on a realistic
robotic system with continuous control. Their task set is built using the ’HalfCheetah-v2’ environment
with six agents in MAMuJoCo and each task is formed by disabling one agent. The offline dataset for
each task is collected using a HAPPO trained policy (Kuba et al., 2022). However the dataset is not
publicly available and the observations are based on the full state of ’HalfCheetah-v2’ rather than
agent specific local observations. This makes the dataset unsuitable for evaluating STAIRS because
STAIRS focuses on leveraging history tokens to mitigate partial observability in the offline MTMA
setting. Furthermore the task configuration in HISSD (Liu et al., 2025) uses the same number of
agents and identical observation spaces except for the non disabled case which limits its ability to test
robustness under varying agent configurations.

To accommodate the offline MTMA learning setting, we construct a customized multi-task dataset in’
HalfCheetah-v2’, following the general procedure of Wang et al. (2023a). Unlike the original task
configuration (Liu et al., 2025), where each task is defined by disabling a single agent, our framework
introduces tasks with varying joint partitioning schemes. Specifically, the six joints of the robot
(’bfoot’, ’bshin’, ’bthigh, ’ffoot’, ’fshin’, ’fthigh’) are grouped into different agent configurations,
such as (2,2,2), (3,3), (1,2,3), or (1,1,4), where each tuple represents the number of joints observable
and controllable by each agent. The hyperparameter ’agent obsk’, which specifies how far agents
can observe in terms of connection distance, is set to 1. Models are trained using multiple source
partitions and evaluated on previously unseen configurations without relying on additional interaction
data. Further implementation details are provided in Tables 17.

We generated the MAMuJoCo offline datasets using HAPPO (Kuba et al., 2022) , collecting 100
trajectories for each task. The average return across all tasks are summarized in Table 18.

In our setting each agent has a different observation dimension across tasks, which requires obser-
vation decomposition similar to SMAC. A single joint in HalfCheetah provides a two dimensional
observation consisting of its qpos and qvel values. Therefore the observation is segmented in multiples
of two. For example if an agent observes a 10 dimensional vector it is decomposed into five tokens
represented as (2,2,2,2,2). The first tokens up to the number of joints assigned to the agent are treated
as the agent’s own observations and the remaining tokens correspond to observations of other agents.

Using this tokenization scheme we train STAIRS with the TD3 BC algorithm (Fujimoto & Gu, 2021)
for one million timesteps. We compare our approach with two baselines UpDeT (Hu et al., 2021)
combined with TD3 BC and ODIS (Zhang et al., 2023). We do not include HISSD (Liu et al., 2025)
in comparison due to the complexity of its architecture which relies on multiple transformer modules
for skill and action extraction. The hyperparameters used in the MAMuJoCo benchmark are the same
as those used in SMAC.

Table 17: Descriptions of ’HalfCheetah’

Task type Task Number of Agents Observation Space Action Space

Source
(3,3) 2 [(8,), (8,)] [(3,), (3,)]

(2,2,2) 3 [(6,), (10,), (8,)] [(2,), (2,), (2,)]
(1,1,1,1,1,1) 6 [(4,), (6,), (6,), (4,), (6,), (6,)] [(1,)] × 6

Unseen

(6) 1 [(12,)] [(6,)]
(2,4) 2 [(6,), (10,)] [(2,), (4,)]

(1,2,3) 3 [(4,), (8,), (8,)] [(1,), (2,), (3,)]
(1,1,4) 3 [(4,), (6,), (10,)] [(1,), (1,), (4,)]

(1,1,2,2) 4 [(4,), (6,), (10,), (8,)] [(1,), (1,), (2,), (2,)]
(1,1,1,3) 4 [(4,), (6,), (6,), (8,)] [(1,), (1,), (1,), (3,)]
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Table 18: Properties of offline datasets on ’HalfCheetah’

Task Quality # Trajectories Average return

(3,3) medium 100 5043.32

(2,2,2) medium 100 5074.4

(1,1,1,1,1,1) medium 100 4076.55

The results for the complete ’HalfCheetah’ task suite are presented in Table 19. Our method achieves
substantial performance improvements across all tasks and improves performance by 129% over
ODIS.

Table 19: Comparison of average and per-task performances on the HalfCheetah task set in MAMu-
JoCo. We report mean±standard deviation, with the best result shown in bold.

Tasks HalfCheetah

UPDeT-BC ODIS STAIRS (Ours)

Source Tasks

(3,3) 148.2± 307.9 970.4± 416.9 1459.0± 400.3
(2,2,2) −66.4± 124.1 537.8± 318.8 1410.6± 537.6
(1,1,1,1,1,1) 262.6± 200.7 727.6± 662.0 1006.0± 420.4

Unseen Tasks

(6) −190.9± 296.5 −18.1± 167.2 256.7± 297.9
(2,4) −58.2± 203.9 137.3± 77.2 249.1± 151.7
(1,2,3) 127.6± 189.4 48.7± 136.5 627.2± 732.6
(1,1,4) −104.4± 258.4 0.1± 25.1 141.4± 31.3
(1,1,2,2) −171.0± 96.4 399.6± 222.9 1078.4± 849.5
(1,1,1,3) −2.3± 252.2 178.9± 271.1 606.2± 700.6

Terran Avg −6.1 331.4 759.4
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L ATTENTION SHARPENING

To test whether simple attention sharpening can mitigate the “uniform attention” behavior observed in
other baselines, we performed an ablation study that modifies the softmax temperature in the attention
module. Specifically, we adjust the attention computation as:

Attn(Q,K, V ) = softmax

(
QK⊤

τ
√
dk

)
V.

where smaller values of τ produce sharper attention distributions. We compare models trained
with τ = 1.0, 0.5, 0.1, representing progressively stronger sharpening. As shown in Figure 16 and
Table 20, mild sharpening provides slight improvements over the baseline. However, applying
excessive sharpening (i.e., using small τ ) leads to notable performance degradation. When the
temperature becomes too low, the attention distribution approaches a nearly deterministic selection,
preventing the model from flexibly capturing relationships among tokens and ultimately reducing
overall performance.
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Figure 16: Average test win rate across all tasks
(marine-hard, stalker-zealot, and marine-easy)
under different temperatures τ .

Table 20: Performance with τ . Bold indicate the
best performance among the sharpening variants
(excluding ours).

Task / Dataset τ=1.0 τ=0.5 τ=0.1 Ours

Marine-Hard
Expert 26.5 20.7 26.1 68.4
Medium 20.3 25.4 22.4 57.9
Medium-Expert 20.3 18.7 16.6 63.9
Medium-Replay 17.3 19.0 15.8 59.7

Stalker–Zealot
Expert 19.9 24.4 24.2 75.0
Medium 16.0 16.4 15.3 38.2
Medium-Expert 21.5 16.8 8.8 69.4
Medium-Replay 3.6 15.7 8.7 24.3

Marine-Easy
Expert 39.4 40.6 23.5 99.0
Medium 51.3 44.1 51.2 84.1
Medium-Expert 43.5 53.7 12.9 92.7
Medium-Replay 2.7 4.4 2.0 76.5

In addition, to understand why simple attention sharpening cannot achieve the performance of
STAIRS, we examine the attention maps produced under different temperature settings. As shown in
Figure 17, decreasing τ (i.e., applying stronger sharpening) causes the model to place increasingly
higher attention on the history token in both the seen (3m) and unseen (4m) tasks. At first glance, this
tendency might appear desirable, since attending to history can help mitigate partial observability.

However, when we visualize the attention maps (Figure 18), a different pattern emerges: with strong
sharpening, the model attends almost exclusively to the history token at every timestep. In contrast,
STAIRS attends to history only when necessary; depending on the situation, it may instead focus
on enemy tokens, ally tokens, or hidden-state tokens. This adaptive behavior enables more effective
reasoning under partial observability.

These results reveal that forcing the model to focus on the history token at all timesteps is detrimental.
Effective policies require situation-aware attention, not uniformly sharpened attention distributions.
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Figure 17: Average attention maps of models trained on the Marine-Hard-Medium task, evaluated on
the seen (3m) and unseen (4m) tasks across the entire trajectory for different values of τ .
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Figure 18: Attention maps of models trained on the Marine-Hard-Medium task, evaluated on the 3m
task and sampled every 2–3 timesteps for different values of τ .
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M COMPARISON WITH SAME DEPTH (2-LAYER TRANSFORMERS)

Since STAIRS employs hierarchical spatial structure, we additionally compare all baseline methods
under a comparable number of transformer parameters. Specifically, we reconfigure each baseline
(UpDeT-m, ODIS, and HiSSD) to use a 2-layer transformer, matching the transformer-level parameter
count of our model and ensuring a fair architectural comparison. (For reference, the total parameter
counts are: UpDeT-m 79,095; ODIS 138,573; HiSSD 679,335; and our model 220,023.)

Across the tables 21,22 and 23 below, we observe that increasing the transformer depth does not
consistently improve baseline performance. In fact, performance degradation is observed in both
the Marine-hard and Stalker-Zealot benchmarks. For Marine-hard, performance decreases by 2.5%
(UpDeT-m), 14.5% (ODIS), and 2.2% (HiSSD). For Stalker-Zealot, the degradation is even more
pronounced: 2.9% (UpDeT-m), 21.5% (ODIS), and 3.2% (HiSSD). Only in the Marine-easy
benchmark does deeper architecture provide improvements: UpDeT-m increases by 29.2%, ODIS by
17.1%, and HiSSD by 4.27%.

Even when all methods use deeper transformer backbones, STAIRSFormer consistently outperforms
all baselines across every task group. With 2-layer transformers, the improvements are substantial:

• Marine-hard: +203.6% vs. UpDeT-m, +104% vs. ODIS, +14.6% vs. HiSSD
• Stalker-Zealot: +248.9% vs. UpDeT-m, +160.6% vs. ODIS, +53.5% vs. HiSSD
• Marine-easy: +99.2% vs. UpDeT-m, +50.7% vs. ODIS, +3.8% vs. HiSSD

Overall, these results demonstrate that simply increasing transformer depth does not close the
performance gap for existing baselines, while STAIRSFormer continues to provide strong gains,
highlighting that its advantages arise from its architectural design rather than depth alone.
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Table 21: Comparison of average and per-task performances on the Marine-hard task set across four
dataset qualitieswith all transformer backbones using depth 2. We report mean±standard deviation,
with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 78.8± 8.4 94.4± 10.9 99.4± 1.4 99.4± 1.4 41.9± 29.0 61.9± 18.5 62.5± 10.4 84.4± 4.4

5m6m 5.0± 4.7 38.1± 13.1 72.5± 6.8 70.6± 10.5 5.0± 11.2 28.1± 9.1 33.8± 13.3 50.0± 12.5

9m10m 18.1± 19.3 71.9± 15.9 97.5± 1.4 99.4± 1.4 15.0± 16.4 51.9± 25.1 68.8± 13.4 86.9± 7.5

Unseen Tasks

4m 47.5± 27.0 76.9± 29.6 100.0± 0.0 97.5± 4.1 39.4± 23.7 65.6± 21.8 72.5± 10.9 89.4± 13.9

5m 88.8± 11.2 86.9± 13.0 100.0± 0.0 100.0± 0.0 81.9± 21.7 86.3± 24.4 90.6± 15.8 100.0± 0.0

10m 40.0± 42.2 51.3± 35.3 95.0± 11.2 100.0± 0.0 45.6± 31.3 50.0± 29.1 87.5± 9.1 97.5± 4.1

12m 12.5± 26.2 28.1± 28.5 48.1± 36.7 99.4± 1.4 20.0± 23.0 31.9± 19.7 88.8± 2.8 95.6± 2.8

7m8m 1.3± 1.7 8.8± 6.4 32.5± 15.4 25.0± 22.0 4.4± 9.8 7.5± 11.8 8.1± 14.8 10.6± 8.7

8m9m 2.5± 3.4 15.0± 8.9 40.0± 20.9 35.6± 14.8 0.6± 1.4 4.4± 2.8 8.1± 6.1 15.6± 8.0

10m11m 8.8± 12.8 15.6± 15.5 72.5± 33.5 87.5± 4.9 6.9± 8.4 10.6± 9.5 28.8± 9.2 61.3± 18.2

10m12m 0.0± 0.0 0.0± 0.0 15.6± 18.6 5.6± 7.5 0.0± 0.0 0.0± 0.0 0.0± 0.0 1.3± 1.7

13m15m 0.0± 0.0 0.0± 0.0 2.5± 3.4 0.6± 1.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 1.9± 2.8

Avg 25.3 40.6 64.6 68.4 21.7 33.2 45.8 57.9

Tasks Medium-Expert Medium-Replay

Source Tasks

3m 48.1± 33.8 81.9± 21.6 88.8± 25.2 98.8± 1.7 40.6± 29.0 63.8± 29.4 84.4± 6.6 78.1± 17.1

5m6m 3.8± 5.6 18.1± 19.1 40.6± 26.0 57.5± 13.9 0.0± 0.0 5.0± 7.2 30.0± 9.3 50.6± 5.1

9m10m 5.0± 6.5 41.3± 33.3 65.0± 23.6 94.4± 4.1 3.1± 7.0 8.8± 12.0 41.9± 23.1 78.1± 16.1

Unseen Tasks

4m 43.8± 34.9 53.8± 33.7 97.5± 5.6 90.6± 7.7 31.3± 40.1 26.9± 36.0 64.4± 18.7 93.8± 6.6

5m 80.6± 25.1 71.9± 24.2 100.0± 0.0 100.0± 0.0 58.8± 42.1 67.5± 43.1 73.1± 40.3 100.0± 0.0

10m 41.3± 33.5 32.5± 38.1 99.4± 1.4 90.0± 12.8 23.8± 31.6 46.9± 36.4 95.0± 5.7 97.5± 5.6

12m 20.6± 32.4 28.1± 42.1 95.6± 2.8 94.4± 6.4 12.5± 17.1 7.5± 11.6 95.0± 4.2 94.4± 6.0

7m8m 0.0± 0.0 5.6± 7.8 42.5± 15.4 15.0± 4.1 1.9± 2.8 1.3± 2.8 15.0± 8.9 23.1± 15.1

8m9m 0.6± 1.4 5.0± 3.6 38.1± 19.6 33.1± 16.6 3.1± 3.1 1.9± 1.7 11.9± 7.5 26.9± 6.8

10m11m 2.5± 2.6 15.0± 26.8 71.3± 16.1 80.6± 18.1 1.9± 4.2 1.9± 2.8 36.9± 14.6 66.9± 11.2

10m12m 0.0± 0.0 0.0± 0.0 2.5± 1.4 11.3± 10.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 3.1± 3.1

13m15m 0.0± 0.0 0.0± 0.0 1.9± 1.7 0.6± 1.4 0.0± 0.0 0.0± 0.0 1.3± 1.7 4.4± 4.7

Avg 20.5 29.4 61.9 63.9 14.8 19.3 45.7 59.7
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Table 22: Comparison of average and per-task performances on the Stalker-Zealot task set across four
dataset qualitieswith all transformer backbones using depth 2. We report mean±standard deviation,
with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

2s3z 33.8± 41.4 70.0± 38.6 92.5± 5.7 95.6± 5.2 25.0± 12.1 43.1± 19.2 39.4± 12.4 56.9± 10.5

2s4z 13.8± 14.3 58.8± 37.3 65.0± 5.1 77.5± 11.6 25.0± 20.6 7.5± 3.6 9.4± 4.9 60.0± 16.1

3s5z 28.1± 24.5 66.9± 33.0 88.8± 5.7 87.5± 10.6 20.6± 12.2 24.4± 9.7 26.8± 12.0 52.5± 3.4

Unseen Tasks

1s3z 13.8± 20.6 35.0± 37.7 63.8± 19.1 78.1± 12.7 22.5± 10.5 5.0± 7.8 25.6± 27.7 38.8± 34.0

1s4z 4.4± 5.2 21.9± 26.4 41.3± 19.3 76.3± 21.0 20.6± 21.6 1.9± 2.8 6.9± 12.2 25.6± 9.7

1s5z 2.5± 4.1 9.4± 12.9 20.6± 14.1 55.6± 23.5 11.9± 10.2 0.0± 0.0 3.8± 2.6 31.9± 10.5

2s5z 7.5± 9.0 42.5± 32.9 78.8± 17.0 84.4± 7.0 16.9± 14.8 8.1± 11.4 15.6± 10.6 25.6± 8.7

3s3z 20.6± 21.0 58.8± 35.2 74.4± 7.1 86.3± 8.4 18.8± 18.1 26.9± 13.7 25.6± 17.0 59.4± 14.1

3s4z 24.4± 28.0 65.0± 38.2 83.8± 8.1 92.5± 3.6 32.5± 14.1 47.5± 23.4 29.4± 12.6 59.4± 24.7

4s3z 21.3± 28.2 46.9± 31.3 81.3± 12.1 70.0± 11.8 11.9± 13.9 22.5± 14.4 21.9± 11.0 41.9± 17.9

4s4z 15.0± 15.2 28.1± 24.7 68.8± 16.8 58.1± 20.8 10.0± 11.1 8.1± 4.7 13.1± 6.4 21.3± 18.0

4s5z 9.4± 13.3 16.3± 17.2 40.6± 24.7 53.1± 18.9 5.6± 4.6 0.6± 1.4 5.0± 4.7 11.3± 7.8

4s6z 3.8± 5.6 9.4± 11.7 35.6± 22.6 59.4± 17.5 1.3± 1.7 0.6± 1.4 1.9± 2.8 11.9± 5.6

Avg 15.3 40.7 64.3 75.0 17.1 15.1 17.3 38.2

Tasks Medium-Expert Medium-Replay

Source Tasks

2s3z 35.0± 9.2 41.3± 26.6 78.8± 4.1 92.5± 10.3 16.3± 12.0 10.0± 13.7 7.5± 4.7 20.6± 10.0

2s4z 33.8± 10.0 21.3± 20.4 41.9± 25.1 74.4± 6.8 8.8± 9.5 8.1± 14.8 5.0± 5.2 28.8± 15.8

3s5z 20.0± 16.9 34.4± 30.0 58.8± 24.8 85.0± 15.8 0.0± 0.0 5.6± 5.1 11.3± 6.8 28.8± 10.2

Unseen Tasks

1s3z 27.5± 22.0 21.3± 32.0 73.8± 28.9 63.1± 15.2 32.5± 35.3 3.1± 5.4 39.4± 38.2 12.5± 14.5

1s4z 14.4± 9.5 1.9± 4.2 5.0± 6.5 80.6± 21.8 18.8± 24.6 8.1± 11.2 7.5± 8.7 10.6± 7.2

1s5z 6.3± 5.8 1.9± 2.8 2.5± 5.6 51.9± 32.9 11.3± 21.8 1.9± 2.8 7.5± 10.5 23.1± 36.3

2s5z 14.4± 12.2 25.0± 21.9 8.1± 5.2 62.5± 21.2 6.3± 10.8 8.8± 13.7 7.5± 4.7 27.5± 11.4

3s3z 23.8± 19.3 21.3± 21.5 85.0± 6.0 81.9± 11.6 10.0± 13.9 6.9± 13.7 10.0± 14.2 56.3± 15.9

3s4z 26.9± 19.1 41.3± 37.8 74.4± 27.6 95.6± 4.2 5.6± 7.8 11.9± 11.1 21.9± 14.5 53.1± 10.4

4s3z 20.0± 33.4 11.3± 20.3 51.3± 14.9 61.3± 15.7 3.8± 8.4 7.5± 16.8 23.1± 24.1 28.1± 20.4

4s4z 4.4± 3.6 5.6± 9.5 30.6± 15.8 59.4± 14.3 0.0± 0.0 4.4± 9.8 10.6± 8.1 15.0± 2.6

4s5z 5.0± 5.7 1.3± 1.7 9.4± 9.1 53.8± 21.7 1.9± 4.2 1.9± 4.2 8.8± 7.5 3.8± 4.1

4s6z 1.9± 1.7 1.3± 1.7 6.9± 4.1 40.0± 15.5 0.6± 1.4 0.0± 0.0 5.0± 5.7 7.5± 6.8

Avg 18.0 17.6 40.5 69.4 8.9 6.0 12.7 24.3
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Table 23: Comparison of average and per-task performances on the Marine-easy task set across four
dataset qualitieswith all transformer backbones using depth 2. We report mean±standard deviation,
with the best shown in bold.

Tasks Expert Medium

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 71.9± 21.1 96.3± 3.4 100.0± 0.0 99.4± 1.4 63.1± 20.4 46.9± 12.1 70.6± 5.7 85.6± 6.5

5m 55.0± 20.4 97.5± 3.4 100.0± 0.0 99.4± 1.4 73.1± 6.8 78.1± 3.8 78.8± 1.4 85.0± 9.2

10m 48.1± 15.7 96.3± 4.1 100.0± 0.0 99.4± 1.4 56.9± 12.8 59.4± 17.7 75.6± 9.7 94.4± 2.6

Unseen Tasks

4m 46.3± 22.4 69.4± 27.7 95.6± 5.2 96.9± 3.1 48.1± 24.5 71.9± 24.7 65.6± 18.6 73.8± 13.4

6m 51.9± 36.6 85.6± 18.8 100.0± 0.0 96.9± 3.8 72.5± 12.8 91.3± 10.5 81.9± 17.3 82.5± 9.3

7m 48.1± 31.9 75.6± 34.1 98.8± 2.8 100.0± 0.0 81.9± 19.4 94.4± 7.8 86.9± 18.1 98.1± 4.2

8m 60.0± 24.5 91.9± 11.8 99.4± 1.4 99.4± 1.4 83.1± 12.6 95.0± 3.6 96.9± 5.4 96.9± 3.1

9m 50.0± 18.4 98.8± 2.8 100.0± 0.0 100.0± 0.0 58.1± 21.7 85.0± 7.5 80.6± 7.5 93.1± 5.1

11m 58.1± 23.9 96.3± 3.4 99.4± 1.4 100.0± 0.0 30.6± 10.7 43.1± 16.7 52.5± 7.8 65.6± 14.5

12m 50.0± 19.1 89.4± 12.2 98.8± 1.7 98.1± 1.7 17.5± 16.9 30.6± 16.0 42.5± 7.2 65.6± 6.6

Avg 53.9 89.7 99.2 99.0 58.5 69.6 73.2 84.1

Tasks Medium-Expert Medium-Replay

UPDeT-m ODIS HiSSD STAIRS (Ours) UPDeT-m ODIS HiSSD STAIRS (Ours)

Source Tasks

3m 47.5± 37.2 53.1± 20.1 90.6± 7.7 98.8± 1.7 45.6± 23.8 61.9± 36.6 88.8± 2.8 86.9± 6.8

5m 81.3± 23.5 77.5± 21.6 100.0± 0.0 98.8± 1.7 0.0± 0.0 21.9± 30.0 90.6± 7.3 89.4± 7.8

10m 78.1± 23.5 75.6± 9.2 91.9± 14.8 100.0± 0.0 0.0± 0.0 0.0± 0.0 88.1± 7.5 56.9± 18.7

Unseen Tasks

4m 48.8± 11.0 58.8± 23.1 95.0± 4.2 60.0± 25.4 0.0± 0.0 22.5± 30.4 70.6± 5.2 79.4± 13.0

6m 46.9± 14.3 45.6± 29.1 86.3± 16.2 94.4± 4.6 0.0± 0.0 18.8± 40.2 99.4± 1.4 91.3± 6.4

7m 67.5± 18.0 58.8± 44.2 84.4± 13.6 96.9± 3.1 0.0± 0.0 20.0± 44.7 100.0± 0.0 90.6± 5.8

8m 77.5± 14.6 62.5± 36.0 77.5± 11.6 84.4± 16.8 0.0± 0.0 3.1± 7.0 96.3± 1.4 83.1± 8.1

9m 51.3± 19.0 61.9± 17.2 73.1± 15.1 100.0± 0.0 0.0± 0.0 1.3± 2.8 87.5± 6.3 82.5± 5.7

11m 61.9± 21.9 58.8± 20.1 82.5± 19.5 98.1± 1.7 0.0± 0.0 1.9± 4.2 54.4± 9.3 55.0± 23.7

12m 38.1± 23.5 39.4± 20.9 63.8± 17.9 95.6± 4.7 0.0± 0.0 1.9± 4.2 48.1± 14.1 49.4± 30.0

Avg 59.9 59.2 84.5 92.7 4.6 15.3 82.4 76.5
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N ABLATION: ADDING SIMPLE GRU TOKEN

To examine whether the performance gain is merely from adding a recurrent GRU cell rather than our
STAIRS design, we additionally evaluated baselines with a simple GRU history token. Specifically,
we appended an additional history token that passes through a GRU cell operating on a 3-step
temporal interval, which is identical to the interval used in our method.

The comparison results are summarized in Table 24. The table reports the average test win rate across
all datasets. For example, for the Marine-Hard task, we average performance across Expert, Medium,
Medium-Expert, and Medium-Replay. As shown, incorporating a GRU does not consistently improve
either UpDeT-m or UpDeT-bc, indicating that simply extending the temporal horizon is insufficient.

Table 24: Average performance comparison of GRU addition.

Task / Dataset UpDeT-m UpDeT-m + GRU UpDeT-bc UpDeT-bc + GRU Ours

Marine-Hard 21.1 20.7 46.6 49.8 62.5
Stalker–Zealot 15.3 16.7 43.3 42.9 51.7
Marine-Easy 34.2 31.6 82.1 85.7 88.1

Moreover, we visualized the average attention maps over the entire trajectories. We observed that
adding the GRU history token does not encourage the model to attend to either short local history or
long-range GRU-based history. In other words, the temporal cue introduced by the GRU is largely
ignored and fails to help the baselines integrate temporal structure effectively.

These results suggest that the performance gain of our method comes from the synergistic effect of
its three components, Spatial Recursive Module, Temporal Module, and Token-Dropout mechanism,
rather than the inclusion of a recurrent GRU cell alone.

Seen (3m) Unseen (4m)

UpDet-m

UpDet-m 
+ GRU

Figure 19: Average attention maps of models trained on the Marine-Hard-Medium task, evaluated on
the seen (3m) and unseen (4m) tasks. UpDeT-m (upper) vs UpDeT-m with an added GRU history
token (lower).
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