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Abstract

Enhancing large language models (LLMs) with
external tools has become a promising ap-
proach for solving complex tasks. As the num-
ber of available tools grows, context-based
prompting methods increasingly rely on re-
trieval mechanisms. A common solution is
to represent each tool with a unique token and
train LLMs to generate the corresponding token
during inference. However, this approach suf-
fers from linear growth in representation space,
leading to scalability challenges. It also limits
generalization to novel or rare tools and un-
derutilizes collaborative signals among tools in
downstream tasks. In this paper, we propose
SGTC, a generative tool invocation framework
that introduces structure-aware semantic tok-
enization to encode tools as discrete code se-
quences. This method ensures similar tools
share subtokens, enabling compression of the
representation space and facilitating token shar-
ing for new tools. We further introduce a post-
guided, multistage iterative training strategy
on a shared backbone model, where collabora-
tive signals from downstream tasks guide the
dynamic refinement of tool representations. Ex-
tensive experiments on the ToolBench dataset,
which includes over 47,000 APIs, demonstrate
the effectiveness of SGTC across various tasks,
showcasing its potential as a scalable and gen-
eralizable generative tool-using paradigm in
large-scale tool usage scenarios.

1 Introduction

Large language models (LLMs) improve their abil-
ity to interact with the real world through inte-
gration with tools, such as calculators, databases,
etc.(Parisi et al., 2022; Schick et al., 2024; Thoppi-
lan et al., 2022), and are proficient in handling ex-
ternal input, performing actions, and autonomously
completing tasks (Wu et al., 2023b; Liu et al.,
2023b). However, as the number of tools grows
to tens of thousands, existing methods for tool re-
trieval and execution struggle to scale effectively.

While various approaches have been proposed
to integrate tools into LLMs (Mialon et al.,
2023; Yang et al., 2023b), including context-based
prompting (Qin et al., 2024; Paranjape et al., 2023;
Yao et al., 2022) and fine-tuning with tool descrip-
tion (Borgeaud et al., 2022; Guu et al., 2020; Puig
etal., 2018; Shuster et al., 2021), they still face chal-
lenges in large-scale tool settings. Context-based
prompting methods are inherently constrained by
the input length limitation of LLMs, making it in-
feasible to include all tools within a single prompt
and requiring external retrievers to select a small
subset of candidate tools. On the other hand,
fine-tuning-based methods that integrate tools into
model parameters (Wang et al., 2024b; Hao et al.,
2023) often rely on assigning each tool a unique
identifier (ID) (Liu et al., 2024c¢; Yuan et al., 2023),
which introduces several limitations in large-scale
scenarios. First, the vocabulary size grows lin-
early with the number of tools, resulting in higher
memory consumption and a larger decoding space,
which increases the inference burden (Kang and
McAuley, 2018; Sun et al., 2019). Second, the data
sparsity and long-tail distribution of tool usage not
only hinder the learning of reliable representations
for infrequent tools, but also make it difficult to
incorporate newly introduced tools without addi-
tional retraining or architectural changes. Third,
since ID embeddings are learned independently,
they fail to capture functional similarities or collab-
orative relationships among tools, further limiting
generalization and reuse across tasks.

To address these limitations, we propose SGTC,
a unified generative framework that provides a scal-
able and semantically structured representation of
large-scale tools, enabling simultaneous tool re-
trieval and calling during generation. First, we
introduce structure-aware semantic tokenization,
which assigns each tool a compact sequence of dis-
crete codes (Rajput et al., 2024; Singh et al., 2024;
Wang et al., 2024d; Zhu et al., 2024) derived from



its semantic embedding. These semantic embed-
dings are obtained by compressing tool knowledge
into a small number of special tokens that encode
functional and behavioral information. To generate
the code sequences, we employ a lightweight deep
residual k-means algorithm over the semantic em-
bedding space for centroid assignment, and use the
resulting centroids to initialize the embeddings of
code tokens. The discrete codes are then dynam-
ically refined via post-guided training to ensure
that semantically or functionally similar tools share
similar subtokens. This code-based tokenization
facilitates representation compactness and encour-
ages knowledge sharing across tools, while also
enabling approximate similarity estimation (e.g.,
via Hamming distance) without additional model
training—thus offering scalability to newly added
or unseen tools. Its hierarchical structure enables
a logarithmic compression of the tool vocabulary
space, significantly reducing the decoding over-
head compared to linear ID-based indexing. Sec-
ond, we unify semantic tokenization, retrieval, and
calling into a single generative modeling frame-
work. This design allows for multistage iterative
training, where the model progressively integrates
tool knowledge—from basic documents to usage
contexts and invocation workflows—across stages.
Finally, in later training iterations, downstream
collaboration signals are leveraged to refine tok-
enization strategies, allowing the model to dynami-
cally adapt to tool usage patterns and improve its
generative capabilities over time.

In summary, our work contributes the following
key aspects:

* Robust tool representation: We employ se-
mantic compress and deep residual k-means
clustering to obtain the discrete structure-
aware semantic code sequence, which can
represent large-scale toolsets with minimal
space overhead. Thanks to their structured
composition, these code sequences also en-
able effective knowledge transfer to unseen
tools, supporting robust generalization and
scalability.

* Dynamically updated strategy: We adopt a
post-guided training strategy that integrates
tool knowledge from both documentation
and latent logic embedded in downstream
tasks—such as co-occurrence patterns and
shared usage contexts—enabling dynamic re-
finement of code sequence generation.

* Unified framework: We employ a unified
generative framework built upon a single
LLM to jointly model tool tokenization, re-
trieval, and calling, thereby reducing informa-
tion loss and enhancing cross-task knowledge
transfer.

* Empirical evaluation: Extensive experi-
ments conducted on the large-scale Tool-
Bench dataset, collected from real-world
sources, demonstrate that the SGTC frame-
work achieves outstanding performance in di-
versity tool usage scenarios, highlighting its
effectiveness and broad applicability.

2 Related Work

LLM with Tool Augmentation. Enhancing the
ability of LLMs to solve complex problems by
equipping them with tools for various tasks has
demonstrated strong potential(Vemprala et al.,
2024; Qin et al., 2023a; Wu et al., 2023a; Qian
et al., 2023; Song et al., 2023; Zhuang et al.,
2023; Gao et al., 2023a). By accessing external
tools, LLMs can be endowed with real-time factual
knowledge(Yang et al., 2023a), coding and debug-
ging capabilities (Chen et al., 2022; Gao et al.,
2023b; He-Yueya et al., 2023; Lyu et al., 2023; Xie
et al., 2023; Liu et al., 2023a), multimodal func-
tionalities (Gupta and Kembhavi, 2023; Shen et al.,
2023; Lu et al., 2023), domain-specific expertise
(Jin et al., 2024), and the ability to interact with the
virtual or physical world (Brohan et al., 2023b;
Huang et al., 2022b, 2023; Singh et al., 2023).
Thanks to the powerful contextual learning ability
(Brown et al., 2020), it is possible to enable LLMs
to use tools simply by displaying examples within
the prompt, without the need for training(Mekala
et al., 2024; Khot et al., 2022). Therefore, most
methods focus on guiding LLMs to mimic human
task solving processes and generate plans (Zheng
et al., 2024c; Liu et al., 2024d; Ahn et al., 2022;
Huang et al., 2022a; Ye et al., 2023), and improving
plans by incorporating execution feedback (Wang
et al., 2024a; Shinn et al., 2024), thus combining
reasoning with action. However, context-based
learning methods are prone to hallucinations and
are limited by inadequate context capacity when
faced with large-scale tools. Although the tool
retrieval stage is widely used, including trained ad-
ditional retriever to rank top-k candidates from a
large number of tools based on similarity to the
query to enhance the generation process (Zheng



et al., 2024b; Patil et al., 2025; Chen et al., 2024,
Qin et al., 2023b). Such strategies do not improve
the model’s understanding of external tool knowl-
edge, and maintaining dense retrieval databases and
document indices can lead to inefficiency and dif-
ficulties in optimizing within an end-to-end agent
framework.

Tool Learning. To address this problem, a promis-
ing paradigm is to integrate tool information di-
rectly into model parameters and generate tools
without retrieval(Wang et al., 2022; Sun et al., 2023;
Kishore et al., 2023; Mehta et al., 2022; Chen et al.,
2023). Existing work (Brohan et al., 2023a; Asai
et al., 2023; Hao et al., 2023; Wang et al., 2024b)
attempts to represent tools as atomic tokens(Geng
et al., 2022, 2023; Kang and McAuley, 2018; Sun
et al., 2019) and trains with existing token embed-
dings, so that LLMs can directly output atomic
tokens by means of the next token in the gener-
ation stage by conditional constraints. However,
such atomic tokens are relatively independent, i.e.,
the semantics cannot be directly transferred to new
tools without training, and the space of beam search
increases linearly. Therefore, this paper employs
structure-aware semantic tokenization to solve this
problem, which allows tools with similar semantics
to share part of the code sequences (Jin et al., 2023;
Liu et al., 2024a; Zheng et al., 2024a), achieving
logarithmic growth of additional tokens. On the
other hand, learning tools through interactive is
also prospective, especially as the traces may con-
tain implicit logic for calling multiple tools. How-
ever, existing methods (Parisi et al., 2022; Schick
et al., 2024; Nakano et al., 2021) require frequent
interaction with unstable environments, resulting
in high system design and tuning costs, and the
tool or action space involved is small, which is not
suitable for large-scale tool invocation scenarios.
To this end, this paper considers direct fine-tuning
of LLMs using massive trajectory data. Moreover,
prior work has not sufficiently investigated the dy-
namic refinement of semantic code sequences dur-
ing training (Qu et al., 2024; Wang et al., 2024c),
leading to suboptimal performance in downstream
tasks, a gap this paper aims to address.

3 Preliminaries

Existing agents based on LLMs that use tools
typically involve four stages (Qu et al., 2025):
given a query/task Q, (1) generating a plan p,
(2) determining the tool d € D, (3) generating

tool parameters ¢, (4) and collecting feedback
f from tool execution. The model iteratively
repeats the process (p;,d;, c;, f;) until it gener-
ates a stopping symbol or reaches the maximum
number of iterations, ultimately generating the
answer A and completing the task. The entire
process forms an interaction trajectory 1raj =
[Q, (p1,d1,¢1, f1), oees (Pry diy s ft), A], while ¢
is the total round, and 7 € ¢.

We unify the four phases through a generative
framework and focus on improving the second
phase. During the generative tool determination
phase, y;11 = logP(Idz(d)|Q, y<it1, embd(D)),
where Idx(d) is the tool tokens. When the can-
didate toolset |D| = N is large, existing unique
identifier schemes (Hao et al., 2023; Wang et al.,
2024b) suffer from sparse supervision and poor
generalization. Instead, if tool representations
share substructures, we can reduce representation
space and enhance inter-tool correlation. To this
end, we adopt a codebook-based semantic tokeniza-
tion (Van Den Oord et al., 2017), where a codebook
with L layers and K codes per layer enables tools
to share semantic components. Two similar tools
will share the same code at layer [ € L. This yields
a representation capacity of K, allowing compact
encoding even when /N > K. Compared to unique
identifiers requiring N x D memory, our method
compresses into logarithmic space K x L x D,
where D is the embedding dimension.

4 Proposed Approach: SGTC

4.1 Tool Tokenization

Semantic Compression. Following previous
works (Mu et al., 2024; Liu et al., 2024b), we or-
ganize the encoder input into four distinct blocks:
[Content; Token; Placeholder; Task], where [;] de-
notes concatenation. Specifically:

Content = [a;;a9;...;a;]

Token = [g1, g2, . . ]

Placeholder = [p1,p2,. . ]

Task = [tj; aj]
The Content block contains textual information ex-
tracted from the tool documentation, such as func-
tional descriptions, and is represented as {a; };":1,
where m denotes the number of distinct pieces
of information. The Token block consists of a se-
quence of V' gist tokens (Mu et al., 2024), each with
learnable embeddings designed to extract and ag-
gregate information from the Content block. The
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Figure 1: Overview of the SGTC framework. SGTC employs a three-stage training paradigm with multi-round itera-
tive refinement to progressively optimize tool representations. Initially, the LLM generates clustered, structure-aware
semantic code sequences that replace tool names in the corpus, forming a compact and expressive representation
space. The model then learns tool usage from Query-Tool pairs, procedural logic from execution trajectories, and
collaboration patterns from multi-tool interactions. Throughout iterations, tool knowledge and clustering co-evolve,
refining code sequences for better alignment with downstream retrieval and invocation. Finally, a generative agent is

trained to perform end-to-end tool calling.

Task block contains a special indicator token t;
and the corresponding target output a;; specifi-
cally, for 0 < j < r the task is reconstruction,
whereas for r < j < m it is generation. Finally,
the Placeholder block is employed to ensure that
the Task block can be effectively guided by the
output of the Token block. In practice, its embed-
ding is initialized with the output embedding of the
Token block, thereby facilitating the reconstruction
or generation process.

Similarly, we adopt a cascaded attention mask-
ing scheme to restrict Task output generation solely
to the Token (and subsequent Placeholder) blocks.
Each block applies a causal mask to capture in-
ternal sequential dependencies, while only the
Content block fully attends to the Token block and
the Placeholder block to the Task block; all other
inter-block attention is disabled.

Deep residual clustering. After obtaining the
Token block’s output embeddings, we cluster these
embeddings to derive semantic codes with explicit
classification signals. Although we initially ex-
plored unsupervised k-means (Krishna and Murty,
1999) — in contrast to training-dependent methods
such as RQ-VAE (Lee et al., 2022) — our experi-
ments show that a single-level k-means incurs a

high collision rate and yields inaccurate tool parti-
tioning. To address this, we adopt a deep residual
clustering approach.

Specifically, let the Token block’s output embed-
dings be:

€1,1 €12 €1,N
€21 €22 €2 N

= )
€Vl €Ev2 €V N

where e; ; € RP denotes the i-th gist token em-
bedding for the j-th tool (with D typically high,
e.g., 4098). We first apply principal component
analysis (PCA) (Mackiewicz and Ratajczak, 1993)
to reduce each e; ; to a lower-dimensional vector
é;; € RP (e.g, D = 32).
For each gist token position ¢, let

E[i,]] =
denote the reduced embeddings across the N tools.
We then adopt an L-level residual quantization
framework by applying k-means clustering on the
embedding space f); ateachlevell € {1,...,L},a
codebook is learned as follows:

C'={zLeRP : k=1,.. K}

where K is the number of centroids and z is the

[é\i,lu 62',2; ey é\i,N]



vector of centroids. For each reduced embedding
éé, ; atlevel [, we assign it to its nearest centroid
(measured via Euclidean distance) and compute the

residual for the next level:

Si4+1 4l l
ei’j = em — R,
with k™ = argmin ‘ééj —zéH .
’ 2

ke{l,.. K}
This process yields a sequence of discrete codes

for each tool:

2 L

Cj = [C%,jvcl,]ﬁ . v ]a

NERE C%J'“’ Cy
where each céj ; € {1,..., K} corresponds to the
centroid index assigned at level [ for the ¢-th token.

We generate m augmented copies for each train-
ing sample to accommodate different tasks. In
addition, we employ low-rank adaptation (LoRA)
(Hu et al., 2021) and update only token and task
blocks during training. The model is optimized
using cross-entropy loss:

Liool = — ZZOQP(az‘,jH!az',l, 8,2, ey B4)
(4.9)
where a; ; denotes the j-th token of a;. During
inference, the next token is selected as
ai7j+1 = argmin P(W|ai71, ai72, cey am-)
weW
, and W is the token vocabulary.

4.2 Generative Calling

Reframe embedding. In the subsequent stage,
to allow the model to generate and invoke tools
as next-tokens during interaction, we integrate the
learned codes into the language model vocabulary
as new tokens. For instance, consider a semantic
code sequence of length four, e.g., [154, 53, 48, 1].
We represent it via unique tokens such as [<a_154>,
<b_53>, <c_487>, <d_1>]. These tokens are then
trained using Query-Tool examples and trajecto-
ries.

While explicit tool knowledge is transferred
through these codes—multiple retrieval-capable
tools may share the code <a_154> —further tool in-
formation remains embedded in the Token block’s
output embeddings. This aspect is often overlooked
by previous works, which either fine-tune directly
on downstream tasks (Wang et al., 2024b) or apply
alignment objectives for refine-tuning (Liu et al.,
2024b). We posit that this embedded knowledge
can be implicitly transferred through shared net-
work parameters. Hence, we reassign the out-
put embeddings as the initial tool memory for the
newly introduced tokens, allowing them to be up-

dated in subsequent training.

However, we cannot directly assign zé to ¢! due
to dimensional mismatch (e.g., 32 # 4028). To
address this, we aggregate the embeddings for each
residual level [ of the gist tokens as follows:

: E!, =0,

| PCATYED, 1>1
For [ > 1, we restore the low-dimensional residual
vectors via the inverse PCA transform; for [ =
0, we simply use the original output embeddings.
Next, for each code ¢! with centroid index k, its

embedding is defined as the average of all tool
embeddings assigned to that code:

€. = @(Z el), A={dc'cc;}, el c E
dEA

Ultimately, combining this reframed embedding
with the compression process equips the LLM with
fundamental tool knowledge and their associated
operations.
Domain-specific training. Following Wang et al.
(2024b), we implement generative tool calls using
two data-organization strategies derived from Tool-
Bench. First, using Query-Tool examples, we train
the model to generate the correct code sequences
c; conditioned on a user query q. We fine-tune the
LLM’s parameters 6 using a next-token prediction

loss:
VL

Lre =Y Y —log Py(chq)
qeQ =1

Second, we fine-tune the model on trajectories
(described in Section 3) to enable it to function as
an intelligent agent. In this phase, the model learns
to determine a solution schema, select appropriate
tools, generate input parameters based on tool doc-
umentation, and produce a final answer from the
tools’ execution results. We employ cross entropy
based next-token prediction over the assistant’s re-
sponse within each dialogue:

T
Loy = 2 S —logRo(allet i)
u€Traj v=1

where ¢ is the user query for dialogue u, a¥ is the
v-th token in the assistant’s response, and 7, is the
total number of tokens in that response. Only the
assistant tokens contribute to the loss, enabling the
model to jointly learn tool calling and final answer
generation.

Post-guided Training. Pre-generated code se-
quences may be suboptimal for downstream tasks,



as trajectory data contain collaboration signals sug-
gesting that functionally similar tools should share
similar code sequences, yet these signals remain
underexploited. To address this limitation, we pro-
pose a post-guided iterative training strategy. In the
first round, the standard pipeline produces initial
parameters 6y for the final LLM. In subsequent
rounds t € T, we update the Token embeddings
while keeping 0;_; fixed. At the end of each epoch,
a new codebook C; is generated to replace the pre-
vious one. The trajectory loss /mej is computed
using the frozen 6;_1, and the overall fine-tuning
loss in round ¢ is given by the sum Lj ; + Lf,,;-
After that, the updated code sequences serve as the
foundation for the remaining training stages.

Our experiments show that this multi-round strat-
egy dynamically refines the code sequences and
embeddings, yielding code sequences that better
support downstream tasks and improve LLM per-
formance.

4.3 Inference

During inference, we employ constrained beam
search to ensure that generated tokens correspond
to valid code sequences. To this end, we construct
a code tree that encompasses all possible code com-
binations, where each node’s children represent
the feasible codes that can follow the current code.
This tree restricts the search space by effectively
blocking infeasible token combinations.

Since the trajectory is divided into several steps
(pi, di, ¢, f;) and the model outputs the tool’s code
sequence directly in the second step, we apply con-
strained search only at that step, while standard
beam search is used for the other steps.

5 Experiments

5.1 Experimental Setups

Datasets. We evaluate our method on ToolBench
(Qin et al., 2023b), a state-of-the-art, large-scale
benchmark designed for instruction tuning in tool-
use scenarios. ToolBench contains 16,464 real-
world RESTful APIs sourced from the RapidAPI
Hub', each associated with a name, domain cate-
gory, and a set of API functions. In this work, we
treat each API function as a distinct tool, resulting
in 46,985 unique and usable tools. For evalua-
tion, we consider three scenarios: I1 (single-tool
queries), I2 (multi-tool queries within the same cat-
egory), and I3 (multi-tool queries within the same

"https://rapidapi.com/hub

collection). Detailed dataset statistics and illustra-
tive examples are provided in Appendix A.
Baselines. We adopt several classical retrieval
methods as baselines, including BM25 (Robert-
son et al., 2009), Embedding Similarity (EmbSim)
(Kohane and Zitnik), and ToolRetriever (Qin et al.,
2023b), to evaluate the effectiveness of our method
in retrieving tools relevant to a given query. In
addition, we compare our approach with Tool-
Gen (Wang et al., 2024b), a state-of-the-art gen-
erative tool usage model. For tool calling tasks,
we benchmark against GPT-40-mini, ToolGen, and
ToolLlama-2 (Qin et al., 2023b). A comprehen-
sive description of all baselines is provided in Ap-
pendix B.

Metrics. To evaluate the effectiveness of each re-
trieval scheme in selecting the appropriate tool
for a given query, we employ Normalized Dis-
counted Cumulative Gain (NDCG), a standard met-
ric in information retrieval. We report NDCG@1,
NDCG@3, and NDCG @5 to assess ranking qual-
ity at varying depths. For tool calling evaluation,
we adopt the StableToolBench framework (Guo
et al., 2024), which provides two key metrics: Solv-
able Pass Rate (SoPR), indicating the proportion of
successfully completed queries, and Solvable Win
Rate (SoWR), measuring the percentage of cases
where the candidate model’s answer surpasses that
of the reference one (GPT-40-mini based on ground
truth).

5.2 [Experimental Results

As shown in Table 1, SGTC consistently achieves
the best performance across all settings, demon-
strating strong retrieval accuracy in both simple and
complex queries. Compared to ToolGen, SGTC
demonstrates notable gains(e.g., +4.5 NDCG@1
on I1, +6.5 on I2 and 48 on I3), validating the
benefit of its tokenization and training strategies.
Moreover, on subsets involving unseen tools (Tool.
and Cat.), SGTC still maintains top performance,
surpassing ToolGen by up to 7 NDCG@1 on I1-
Tool. and 8.54 on I2-Cat., highlighting its strong
compositional generalization and scalability to pre-
viously unseen tools.

Table 2 presents the task execution success rates
under two settings: (1) GT.: where the ground-
truth tool is provided in the query prompt, and
(2) Retrieval: where tools are retrieved from the
entire toolset without prior hints. SGTC and Tool-
Gen, which both directly integrate tool retrieval
into the generation process, consistently outper-



Table 1: Multi-domain tool retrieval and evaluation. We train all models on the full ToolBench dataset (I1123)
and evaluate retrieval performance across all tools. BM25 and EmbSim serve as unsupervised baselines, while
ToolRetriever and ToolGen are supervised. ToolGen, like our method, is trained via next-token prediction. All
results are re-evaluated using publicly released checkpoints. In addition to unseen instruction subsets for I1, 12, and
13, we also assess generalization to unseen tools in I1 and I2 (denoted as Tool. and Cat.).

Model NDCG@1 NDCG@3 NDCG @5
n 2 B3 | 1 2 B3 | 1 2 3

BM25 26.92 20.00 10.00 26.13 21.92 10.08 29.00 23.46 12.33
EmbSim 50.50 46.00 18.00 48.15 39.58 17.77 53.41 43.05 20.94
ToolRetriever | 75.92 63.00 28.00 76.96 66.38 39.28 82.31 72.72 44.54
ToolGen 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98

I1-Tool. I1-Cat. 12-Cat. | I1-Tool. I1-Cat. I2-Cat. | I1-Tool. I1-Cat. I2-Cat.
BM25 20.75 20.63 16.58 21.12 20.67 19.55 23.64 24.18 20.89
EmbSim 53.00 58.00 35.68 49.82 54.38 33.92 54.93 59.24 36.22
ToolRetriever | 75.25 73.50 60.30 78.26 73.56 64.11 83.08 79.10 73.01
ToolGen 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97

Table 2: Task completion evaluation with ground-truth and retrieved tools. We evaluate model performance under
two settings: (1) using ground-truth candidate tools, and (2) retrieving candidates from the full toolset. Both GPT
and ToolLlama rely on external retrievers. All results are reported as the average of three runs using SoPR and
SoWR metrics. Bold indicates the best result under each setting.

Model Setting SoPR SoWR
11 12 I3  I1-Tool. Il1-Cat. I2-Cat. ‘ 8 12 I3  I1-Tool. Il-Cat. I2-Cat.

GPT-40-mini GT. 52.66 4340 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2  GT. 3630 17.30  7.92 31.86 39.54 21.24 | 2577 20.75 2131 2594 35.95 15.32
ToolGen GT. 47.85 3491 2923 35.76 41.29 2527 | 38.65 35.85 3770 2531 33.33 22.58
SGTC GT. 60.22 44.03 27.87 4420 51.09 39.65 | 39.88 4340 4098 37.97 47.06 31.45
GPT-40-mini  Retrieval | 52.25 40.41 24.86 53.16 50.11 39.38 - - - - - -
ToolLlama-2  Retrieval | 28.94 24.69 10.93  28.48 36.93 19.09 | 25.15 30.19 2459  26.58 27.45 20.16
ToolGen 5297 45.13 3634 4536 55.56 4556 | 3620 4245 49.18 32091 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 57.19 56.99 | 42.94 46.23 4590 4241 47.71 37.90

form retriever-dependent models (GPT-40-mini,
ToolLlama-2) in SoPR, demonstrating superior tool
selection and end-to-end reasoning capabilities. Of
course, SGTC clearly demonstrates superior per-
formance. Interestingly, generative models such as
SGTC and ToolGen perform better in the Retrieval
setting than in the GT. setting. We hypothesize this
counterintuitive result stems from potential interac-
tion mismatch introduced by supervised fine-tuning
(SFT) when ground-truth tools are forcefully in-
jected, which may reduce robustness. We leave
a detailed investigation of this phenomenon for
future work. Regarding SoWR, SGTC also out-
performs most generative baselines, confirming its
ability to produce high-quality outputs. Despite
SGTC achieving notably higher SoPR than the ref-
erence model (GPT-40-mini GT.), its SOWR re-
mains below 50%. This suggests a systemic gap
between model predictions and GPT-40-mini’s in-
ternal satisfaction criteria, raising broader ques-

tions about evaluation alignment.

5.3 Further Analysis

Ablaiton Study. To evaluate the contribution of
key components in our method, we conduct ab-
lation experiments and present the results in Fig-
ure 2. The results show that removing either com-
ponent leads to consistent performance degradation
across all settings (I1, 12, I3). Notably, eliminat-
ing post-guided training causes significant drops
in NDCG@1, especially in I2 and I3, where the
performance drops by 5 and 10 points, respectively.
These results highlight the importance of seman-
tic transfer from language modeling and the ef-
fectiveness of iterative guidance in enhancing tool
discrimination and retrieval accuracy in complex
compositions.

Tokenization Strategy Evaluation. We compare
several tokenization strategies for tool retrieval.
Our structure-aware semantic tokenization, while



Table 3: Retrieval performance of different tokenization methods in the Multi-domain setting. All models are trained
on Query-Tool pairs and Trajectories. The results of ToolGen are directly adopted as the baseline for the Atomic.

Tokenization NDCGe@1 NDCG@3 NDCG @5

n r B | 2 B|n B2 B
Numerical | 8200 77.50 81.91 | 84.18 77.53 76.51 | 70.00 88.07 84.30
Hierarchical | 87.50 77.50 79.00 | 86.11 78.82 81.44 | 89.91 83.81 87.47
Semantic 90.00 8450 84.00 | 91.56 84.33 79.41 | 9296 88.44 87.40
Atomic 88.50 84.00 81.00 | 88.83 85.65 80.83 | 91.65 89.02 85.83
SGTC 93.00 90.50 89.00 | 93.87 92.26 88.16 | 94.85 93.68 91.98

Table 4: Tool calling evaluation for different tokenization methods

. Bold values denote the highest performance.

Tokenization Setting SoPR SoWR

n 12 I3 I1-Tool. Il1-Cat. I2-Cat. ‘ n 12 I3 I1-Tool. I1-Cat. I2-Cat.
Numerical 2198 912 11.20 20.68 26.14 17.20 | 16.56 16.04 1639  20.89 23.53 14.52
Hierarchical 39.16 2028 17.49  36.29 31.81 1492 | 2945 2830 2623 29.11 24.83 14.52
Semantic 5020 29.72 16.39  33.02 51.42 27.02 | 3926 29.24 3279  29.11 43.79 22.58
Atomic 5297 4513 36.34 4536 5556 4556 | 3620 4245 49.18 32091 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 5719  56.99 | 4294 46.23 4590 4241 47.71 37.90

SGTC w/o reframe embedding w/o post-guided

930 939 9438
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Figure 2: Ablation study for tool retrieval in the Multi-
domain setting. We evaluate the impact of removing
embedding initialization for code tokens and omitting
the second training iteration on SGTC’s performance.

conceptually related to Hierarchical and Semantic
tokenizations, goes further by constructing code se-
quences across both feature dimensions and resid-
ual depth, and dynamically refining them using
richer semantic and interaction signals. As reported
in Table 3 and Table 4, our method consistently
outperforms existing strategies, achieving stronger
tool ranking (NDCG) and downstream invocation
accuracy (SoPR/SoWR), especially on more am-
biguous cases like I2 and I3.

This performance gain stems from SGTC’s abil-
ity to preserve interaction-aware structure during
tokenization. While other strategies often rely
on fixed hierarchies or shallow semantics, SGTC
dynamically groups semantically related tool ac-
tions and constructs trajectory-aligned code se-
quences, reducing information loss across modali-
ties. This leads not only to higher relevance rank-

ing, but also to clearer contextual grounding for
accurate tool calling. For instance, improvements
in NDCG@3/5 translate into SOPR/SoWR gains
across both I1/12/13 and categorically split settings,
reflecting the method’s generalizability and real-
world robustness.

More results and implementation details can be
found in Appendix D and Appendix B.

6 Conclusions

We propose SGTC, a model-agnostic framework
that leverages a single LLM to perform genera-
tive tool retrieval and calling, thereby eliminating
the need for external retrievers. SGTC introduces
structure-aware semantic code sequences to con-
cisely and effectively represent large-scale toolsets,
while maintaining adaptability to the continual
expansion of new tools. Our method integrates
basic tool knowledge and inter-tool coordination
signals, and dynamically refines code sequences
through multistage iterative training. Extensive ex-
periments demonstrate the effectiveness of SGTC,
particularly in multi-tool scenarios. It consistently
outperforms strong baselines in accuracy, pass rate,
and win rate, and further shows clear advantages
over other tokenization strategies through structure-
aware semantic modeling. Our study provides a
promising direction for large-scale generative tool
execution and lays the groundwork for future ex-
tensions, such as combining generative agents with
reinforcement learning to further enhance tool-use
autonomy in LLMs.



Limitations

While our structure-aware semantic tokenization
method demonstrates strong scalability and gen-
eralization in large-scale tool scenarios, its per-
formance still relies on the initial quality of tool
documentation and the stability of the clustering
process. Specifically, when tool descriptions are
sparse, ambiguous, or inconsistent across domains,
the generated semantic identifiers may not fully
capture functional nuances, potentially affecting
downstream retrieval or planning accuracy. More-
over, our current iterative training pipeline, though
effective, involves non-negligible computational
overhead, which may limit applicability in low-
resource settings or rapid deployment scenarios.

Ethical Considerations

We recognize the ethical considerations in develop-
ing large language models and have carefully used
publicly available pretrained LLMs (e.g., Llama-2-
7B, Llama-3-8B) and the ToolBench dataset. The
ToolBench dataset is licensed under Apache 2.0,
which permits free use and modification. Our use
fully complies with its license terms and intended
purposes. The data contain no sensitive personal
information, and all ethical guidelines are observed
in processing these resources.
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A Dataset

The ToolBench dataset, introduced by Qin et al.
(2023b), was automatically constructed using Chat-
GPT and supports both single-tool and multi-tool
usage scenarios. It involves the generation of in-
structions and tool call sequences for RESTful
APIs. The dataset comprises 16,464 real-world
RESTful APIs spanning 49 categories, such as so-
cial media, e-commerce, and weather services, to-
taling 46,985 unique API functions. In our paper,
each API function is treated as an individual tool
and represented using a semantic code sequence.
Figure 4 illustrates a real RESTful API example,

where each entry in the ap:_list corresponds to a
single API function. In our experiments, we utilize
the following fields: "tool_name" and "name",
"description”, "categories", and "code".

Following the setup of Qin et al. (2023b), we
construct our training and evaluation sets based on
three subsets: I1 for single-tool queries, I2 with
multi-tool queries from the same category, and I3
with multi-tool queries from the same collection. 12
and I3 are created by randomly selecting 2-5 REST-
ful APIs from the same category or collection in
RapidAPI and sampling up to 3 API functions per
RESTful API to form each instruction sample. The
resulting subsets contain 87,413 (I1), 84,815 (12),
and 25,251 (I3) Query-Tool pairs, respectively.

In the semantic compression stage, tool docu-
mentation serves as input, and the objective is to
reconstruct individual fields such as category, tool
name, code, and description. Consequently, each
tool document generates m = 4 training instances,
one for each reconstruction target.

For the domain-specific training stage, we ex-
tract Query-Tool pairs from ToolBench, using the
query as input and the semantic code sequence of
the relevant tools as output. Figure 5 shows an
example training instance. Further, for the tool
calling stage, we follow the procedure from Wang
et al. (2024b), removing the system prompt tool de-
scriptions and adopting a three-stage output format
(Thought, Action, Action Input). We replace tool
names in the trajectories with our code sequences
and construct a mapping dictionary between tool
names and their corresponding codes to enable doc-
ument lookup during execution. Figure 6 presents
an illustrative training example.

Finally, Table 5 summarizes the data scale across
each training phase.

B Baselines and Tokenization Methods

Baseline Models. In the tool retrieval comparison
experiment, we adopted the following representa-
tive retrieval models as the baseline for comparison
with SGTC:

* BM25: An unsupervised retrieval model that
ranks documents by query relevance, using
normalized term frequency and document
length.

* Embedding Similarity (EmbSim): utilizes sen-
tence embeddings generated by OpenAl’s text-
embedding-3-large model to compute seman-



Table 5: Dataset statistics for the three-stage training.

Retrieval

|
Dataset ] P B Al |
|

Tool Calling

Tool Tokenization }
49,936 ‘194,086 222,783 72,833 489,702 183,336

Train ‘

tic similarity between queries and tool docu-
ments.

* ToolLlama (Wang et al., 2024b): Fine-tuned
the Llama-3 model on the ToolBench dataset
by Wang et al. (2024b). However, since they
did not open source checkpoints, we directly
used the data in their paper.

* ToolRetriever (Qin et al., 2023b): A BERT-
based retriever trained using contrastive learn-
ing to distinguish between relevant and irrel-
evant tools by maximizing the similarity be-
tween queries and corresponding tools.

Tokenization Methods. In 5.3, we compared
structure-aware semantic with four tokenization

hods:
* ToolGen (Wang et al., 2024b): A unified methods

framework that integrates tool retrieval and
calling within large language models by repre-
senting each tool as an atomic token, enabling
the model to generate tool calls and arguments
directly.

* Numerical: Use a unique numeric string to
represent a tool. For example, if the toolkit
contains 47,000 tools, then use a five-digit
string to represent them, and the 3rd tool is
represented as 0 0 0 0 3.

In Appendix D, under the In-domain setting, we
also made a comparison with Re-Invoke and Iter-
Feedback:

Hierarchical: Use a unique number to repre-
sent a tool and at the same time use clustering

* Re-Invoke (Chen et al., 2024): An unsuper-
vised retrieval method that generates synthetic
queries to enrich tool documents and employs
large language models to extract user intent
during inference, using a multi-view similarity
ranking strategy to identify relevant tools.

¢ JterFeedback (Xu et al., 2024): A retrieval
method that incorporates iterative feedback
from large language models, using a BERT-
based retriever and prompting a language
model like gpt-3.5-turbo-0125 to refine re-
trieval over multiple rounds.

to integrate all the numbers in the toolkit into
a hierarchical tree. We continue to use the hi-
erarchical coding of Wang et al. (2024b), like
10140.

Semantic: Represent a tool using one or more
semantic tokens, for example, directly using
the names of the API functions, for instance,
compress_for_imagon.

Atomic: Each tool is represented by
a single unique token. ToolGen en-
codes this as the combined string <<
tool_name&&api_name >> as a token.
For instance, the API function compress from

In the tool calling comparison experiment, apart
from the comparison with ToolGen, we further eval-
uate SGTC against the following baselines:

the RESTful API IMAGON is tokenized as
<< IMAGON &&compress >>.

* GPT-40-mini: We employ gpt-40-mini-2024- C
07-18 as a baseline, a cost-effective model in-
troduced by OpenAl, utilizing its tool-calling

capabilities to form a tool agent.

Experimental Setups

Settings. As proposed by ToolGen and others, we
adopt two evaluation settings: In-domain and Multi-
domain. In Appendix D, we provide a comprehen-
sive evaluation under both settings, while in the
main paper, we report only the results under the
Multi-domain setting. In the In-domain scenario,
models are restricted to retrieving and reasoning
over tools within the same domain (I1, 12, and 13),
whereas the Multi-domain setup requires operating

* ToolLlama-2 (Qin et al., 2023b): Developed
by fine-tuning the Llama-2 model on the Tool-
Bench dataset, enhancing its ability to interact
with external tools. In this article, we use

checkpoint which was open-sourced by Wang
et al. (2024b).

14



Table 6: Tool retrieval evaluation across two settings: In-domain and Multi-domain. * represents the results
disclosed in Wang et al. (2024b), while the others are the results we re-implemented based on the open-source

checkpoints.
Model 11 2 13
NDCG@1 NDCG@3 NDCG@5 | NDCG@1 NDCG@3 NDCG@5 | NDCG@1 NDCG@3 NDCG@5
In-domain
BM25%* 29.46 31.12 33.27 24.13 25.29 27.65 32.00 25.88 29.78
EmbSim* 63.67 61.03 65.37 49.11 42.27 46.56 53.00 46.40 52.73
Re-Invoke* 69.47 - 61.10 54.56 - 53.79 59.65 - 59.55
IterFeedback* 90.70 90.95 92.47 89.01 85.46 87.10 91.74 87.94 90.20
ToolRetriever* 80.50 79.55 84.39 71.18 64.81 70.35 70.00 60.44 64.70
ToolGen* 89.17 90.85 92.67 91.45 88.79 91.13 87.00 85.59 90.16
BM25 29.25 31.04 33.49 26.50 25.97 27.96 32.00 25.88 29.78
EmbSim 61.00 57.78 62.31 54.00 45.31 49.54 54.00 46.56 5291
ToolRetriever 83.50 83.67 88.66 72.00 73.27 80.40 70.00 70.01 77.21
ToolGen 91.00 92.15 94.11 87.50 88.52 90.81 87.00 85.35 90.08
SGTC 94.50 95.13 96.44 93.50 93.20 94.88 89.00 88.98 92.46
Multi-domain

BM25* 22.77 22.64 25.61 18.29 20.74 22.18 10.00 10.08 12.33
EmbSim* 54.00 50.82 55.86 40.84 36.67 39.55 18.00 17.77 20.70
ToolRetriever* 72.31 70.30 74.99 64.54 57.91 63.61 52.00 39.89 42.92
ToolGen* 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79
BM25 26.92 26.13 29.00 20.00 21.92 23.46 10.00 10.08 12.33
EmbSim 50.50 48.15 53.41 46.00 39.58 43.05 18.00 17.77 20.94
ToolRetriever 75.92 76.96 82.31 63.00 66.38 72.72 28.00 39.28 44.54
ToolGen 88.50 88.83 91.65 84.00 85.65 89.02 81.00 80.83 85.83
SGTC 93.00 93.87 94.85 90.50 92.26 93.68 89.00 88.16 91.98

Table 7: Tool retrieval evaluation under In-domain and Multi-domain settings, including results on I1-Tool., I1-Cat.,

and I2-Cat. subsets.

Model I1-Tool. I1-Cat. 12-Cat.
NDCG@1 NDCG@3 NDCG@5 | NDCG@1 NDCG@3 NDCG@5 | NDCG@1 NDCG@3 NDCG@5
In-domain
BM25 28.00 31.37 33.06 31.12 30.87 33.13 21.75 24.75 27.44
EmbSim 61.50 58.74 62.99 69.00 66.43 71.00 44.22 39.18 43.50
ToolRetriever 79.50 81.54 86.78 80.50 81.68 87.15 70.35 74.09 81.45
ToolGen 89.50 91.61 93.34 87.50 88.79 91.21 88.44 88.85 91.34
SGTC 88.50 91.60 93.24 95.00 95.78 96.43 92.96 92.98 93.99
Multi-domain

BM25 20.75 21.12 23.64 20.63 20.67 24.18 16.58 19.55 20.89
EmbSim 53.00 49.82 54.93 58.00 54.38 59.24 35.68 33.92 36.22
ToolRetriever 75.25 78.26 83.08 73.50 73.56 79.10 60.30 64.11 73.01
ToolGen 84.00 86.40 89.52 89.50 89.95 92.01 83.42 86.06 88.47
SGTC 91.00 92.20 93.89 93.00 93.56 94.92 91.96 91.06 92.97

over the full toolset, making it considerably more
challenging.

For the tool calling experiments, we evaluate two
configurations: with Ground Truth Tools (GT.) and
with Retriever. These two settings are motivated
by the fact that methods like ChatGPT and ToolL-
lama require an explicit list of candidate tools to
be included in the prompt. Therefore, the choice
between ground truth tools and tools selected by
a retriever significantly impacts performance. Fol-
lowing ToolGen, we treat the tools provided by
ChatGPT as the Ground Truth Tools for a given
query, and we employ a unified retriever (ToolRe-
triever) for the Retriever-based setting. For ToolL-
lama, candidate tools are directly included in the

15

prompt. For ToolGen and our proposed SGTC,
in the GT. setting, we constrain the candidate tool
space during the planning phase via a prefix prompt.
In the Retriever setting, we rely entirely on gener-
ation without using any external retriever module.

Implementation Details. i) In the first training
iteration, we start from a pre-trained Llama-3-8B
model to learn tool knowledge representations. We
optimize using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of le™3, weight
decay of 1e~4, batch size of 12, and LoRA con-
figurations set to rank 32, alpha 128, dropout 0.1.
The token block size is set to 2. After obtaining
the output embeddings from the token block, we
apply PCA (Mackiewicz and Ratajczak, 1993) to



Table 8: Tool calling evaluation performance on unseen instructions and unseen tools under two settings. Bold
values denote the highest performance, considering only the results reproduced in our experimental setting.

Model Setting SoPR SoWR

11 2 13 I1-Tool. I1-Cat. I2-Cat. 4 | 2 3 I1-Tool. I1-Cat. I2-Cat.
GPT-3.5* GT. 56.60 47.80 54.64 58.90 60.70 54.60 - - - - - -
ToolLlama-2*  GT. 53.37 4198 4645 - - - 4727 5943 27.87 - - -
ToolLlama* GT. 5593 4827 52.19 57.38 58.61 56.85 5031 53.77 31.15 43.04 50.31 54.84
ToolGen* GT. 61.35 49.53 43.17 5232 40.46 39.65 51.53 57.55 31.15 39.24 38.56 40.32
GPT-40-mini ~ GT. 52.66 43.40 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2  GT. 36.30 17.30  7.92 31.86 39.54 21.24 2577 20.75 21.31 25.94 35.95 15.32
ToolGen GT. 47.85 3491 29.23 35.76 41.29 2527 38.65 3585 37.70 2531 33.33 22.58
SGTC GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 4340 4098 37.97 47.06 31.45
GPT-3.5* Retrieval | 51.43 41.19 3443  57.59 53.05 46.51 5337 5377 3770 46.20 54.25 54.81
ToolLlama-2* Retrieval | 56.13 49.21 34.70 - - - 50.92 53.77 21.31 - - -
ToolLlama* Retrieval | 54.60 49.96 51.37 57.70 61.76 4543  49.08 61.32 31.15 4873 50.98 44.35
ToolGen* 56.13 5220 4754 56.54 49.46 51.96 50.92 6226 3442 40.51 39.87 37.90
GPT-40-mini  Retrieval | 52.25 40.41 24.86 53.16 50.11 39.38 47.24 52.83 4426 49.37 50.33 42.74
ToolLlama-2  Retrieval | 28.94 24.69 10.93  28.48 36.93 19.09 25.15 30.19 2459  26.58 27.45 20.16
ToolGen 5297 45.13 36.34 45.36 55.56 4556 3620 4245 49.18 32091 42.48 37.90
SGTC 62.78 52.04 4126 52.53 57.19 56.99 4294 4623 4590 4241 47.71 37.90

Table 9: Evaluating tool retrieval via ablation studies in Multi-domain settings.

Model NDCG@1 NDCG@3 NDCG@5
n 2 B | 1 2 B | 2 3

SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
w/o reframe embedding | 86.50 88.50 80.00 88.89 88.76 84.11 92.10 92.05 89.79
w/o post-guided 90.50 85.00 79.00 91.47 87.92 82.68 93.41 91.11 89.17

I1-Tool. I1-Cat. I2-Cat. | I1-Tool. I1-Cat. I2-Cat. | I1-Tool. I1-Cat. I2-Cat.
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
w/o reframe embedding | 86.00 88.00 86.43 89.92 91.04 87.26 92.26 92.88 90.27
w/o post-guided 89.00 92.00 88.44 89.85 93.65 88.87 92.65 94.60 91.52

reduce the dimensionality to 32. We then cluster
each position into 512 clusters using a two-level
residual quantization scheme. The resulting coding
sequence length is 4. ii) Next, we replace all tool
mentions in the ToolBench training text with their
semantic code sequences, and we expand the vocab-
ulary of Llama-3-8B by adding 2,048 new tokens
(512 x 4). These new tokens are initialized follow-
ing the method described in Section 4.1. iii) Based
on this extended model, we train it on two tasks:
Query-Tool pairs and Trajectories. We employ a
cosine learning rate scheduler with a 3% warm-up
ratio and a maximum learning rate of 4 x 10~°. For
trajectory inputs, the context length is truncated to
6144 tokens. The total batch size is set to 1 x 64,
where 64 denotes the number of gradient accumu-
lation steps. iv) After completing the above steps,
we treat the resulting model as the base model for
the second iteration and repeat steps i, ii, and iii.

In terms of computation resources, step i is
trained on a single A100 GPU, while steps ii and
iii require 4xA 100 GPUs. We leverage Deepspeed
ZeRO-3 (Rajbhandari et al., 2020) and FlashAt-
tention (Dao et al., 2022; Dao, 2023) to optimize

16

training efficiency. We conduct two full training
iterations. Each iteration includes 5 epochs of tool
retrieval training and 2 epochs of tool calling train-
ing. For the tool representation learning phase,
we employ an early stopping mechanism, with an
average of 6 epochs per run.

D Comprehensive Results

D.1 Main experiments

Tables 6 and 7 provide a more comprehensive eval-
uation of the tool retrieval stage. Beyond the results
presented in the main text, we include experiments
under both In-domain and Multi-domain settings,
and compare our reproduced results with those re-
ported by Wang et al. (2024b). The close match
between our results and theirs indicates that our
data preparation and experimental configurations
are well aligned.

Notably, SGTC significantly outperforms Iter-
Feedback, which is a more complex retrieval sys-
tem involving multiple models and a feedback
mechanism, across both settings, despite being a
single-model solution. This highlights the strength
and efficiency of our approach in addressing chal-



lenging real-world retrieval tasks. Additionally,
since Wang et al. (2024b) did not report results on
the Tool. and Cat. datasets, we include them in
Table 7. SGTC demonstrates robust generalization
to unseen tools, maintaining strong performance
even in open-set conditions.

In Table 8, we include experimental results from
Wang et al. (2024b). Their reported SoPR scores
are generally higher than those we reproduced,
likely due to their use of GPT-3.5 as both the dialog
agent and evaluator—potentially enhanced through
additional tool-use-specific tuning. However, con-
sidering the significantly higher cost of GPT-3.5
and the fact that it is no longer state-of-the-art, we
adopt GPT-40-mini for evaluation in our experi-
ments. For consistency in SOWR evaluation, we
also use GPT-40-mini (GT.) as the reference model.

While the effectiveness of this evaluation is par-
tially influenced by the choice of evaluator (GPT-
3.5 vs. GPT-40-mini), our method, SGTC, still
demonstrates competitive performance without ad-
ditional intervention from the ground truth model
(GT.). Notably, on the I1 and 12 subsets, SGTC
surpasses GPT-3.5 (GT.) with task completion
rates of 62.78% and 52.04%, respectively. Even
against the retrieval-augmented GPT-3.5, SGTC
achieves comparable results, falling behind only on
I1-Tool. These findings highlight the robustness
of our approach in real-world scenarios involving
large-scale tool utilization.

Note that we do not report the SOWR results
of GPT-40-mini Retrieval in the main text, as we
observed a strong preference for its own answers,
which introduces evaluation bias. To ensure a fair
comparison with other methods, we exclude these
results from the main discussion but provide the
complete results in the appendix.

D.2 Ablation experiment

Table 9 presents the complete ablation results, cor-
responding to the visualization shown in Figure 2.

D.3 Tokenization comparisons

we perform a statistical comparison of how many
subtokens are required to represent each tool across
different tokenization methods (see Figure 3). The
results show that structure-aware semantic tok-
enization achieves compact and efficient represen-
tations, with an average subtoken count second
only to Atomic (which uses exactly one token per
tool). In contrast, Semantic and Hierarchical strate-
gies exhibit highly variable subtoken lengths across
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Figure 3: The distribution of the number of subtokens
per tool.

tools—some being very short, others excessively
long—resulting in a scattered distribution that may
hinder effective model learning. Notably, both our
method and Numerical/Atomic use fixed-length se-
quences, which contribute to greater stability and
learnability in representation.

Furthermore, We augment the experimental re-
sults related to various tokenization strategies in
Table 10 and Table 11, incorporating both repro-
duced outcomes and reported results from Wang
et al. (2024b). The more comprehensive compar-
isons reveal that SGTC consistently outperforms
all competing methods across all datasets, estab-
lishing itself as the state-of-the-art in both tool re-
trieval (NDCG) and tool calling (SoPR and SoPW)
tasks. Notably, SGTC demonstrates clear advan-
tages in long-tail retrieval scenarios, achieving im-
provements of 2.91 to 6.15 NDCG@5 points over
the Atomic baseline. This gain can be attributed to
its fine-grained semantic modeling. In contrast, ap-
proaches like Semantic and Atomic, while compet-
itive in isolated scenarios (e.g., Semantic achieves
92.96 NDCG@5 on I1), lack dynamic optimiza-
tion mechanisms, which hinders their ability to
generalize in multi-tool interaction settings.

Interestingly, we observe that further training on
Trajectories after pretraining with Query-Tool pairs
tends to degrade NDCG performance. As shown
in Table 10, the most significant drops are seen in
the Numerical and Hierarchical methods, followed
by Atomic. In contrast, Semantic and SGTC ex-
perience only marginal degradation, with SGTC
exhibiting the most stable performance across al-
most all datasets. This degradation may stem from
the distributional mismatch between the Query-
Tool supervision and the sequential supervision
in Trajectories. While Query-Tool pairs provide



Table 10: Retrieval performance of different tokenization methods in the Multi-domain setting. The results of
ToolGen are directly adopted as the baseline for the Atomic. Results marked with * are directly taken from the
original paper (Wang et al., 2024b). All other results are re-evaluated using open-source checkpoints. { indicates
models trained with Trajectories, while others are trained with Query-Tool pairs only.

Tokenization NDCG@1 NDCG@3 NDCG@5
1 2 13 1 2 13 1 2 13

Numerical* 83.17 79.20 71.00 84.99 79.23 74.81 88.73 83.88 82.95
Hierarchical* 85.67 82.22 78.50 87.38 82.70 79.47 90.26 86.63 84.15
Semantic* 89.17 83.71 82.00 91.29 84.51 78.86 93.29 88.22 85.43
Atomic* 87.67 83.46 79.00 88.84 86.24 79.80 91.54 88.84 84.79
Numerical 82.00 77.50 81.91 84.18 77.53 76.51 70.00 88.07 84.30
Numerical 58.50 1235 49.50,28.0 45.00)3691 | 65.78, 184 56.86,20.67 55.88020.63 | 73.6213.62 63.41,24.66 65.96/ 18.34
Hierarchical 87.50 77.50 79.00 86.11 78.82 81.44 89.91 83.81 87.47
Hierarchicalf | 66.00421.5 61.50,16.0 62.00,17.0 | 70.33415.78 64.50414.32 71.07410.37 | 77.89,12.02 71.81412.0  80.01(7.46
Semantic 90.00 84.50 84.00 91.56 84.33 79.41 92.96 88.44 87.40
Semantict 86.5013.5 80.00445 72.00412.0 | 86.9214.64 7821)6.12 73.451.596 | 90.51,245 83.731471  83.34]4.06
Atomic 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
Atomict 86.542.0 76.00,.80  73.0048.0 | 85.7643.07 75.681.9.97 74.65/6.18 | 89.99,1.66 8192171  83.15,2.68
SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
SGTCt 89.0044.0 90.00405 84.00450 | 89.911396 86.21,6.05 79.87.829 | 9244241 91.154253 87.11,4.87

I1-Tool. I1-Cat. 12-Cat. 11-Tool. I1-Cat. 12-Cat. 11-Tool. I1-Cat. 12-Cat.
Numerical 83.50 81.50 79.39 85.04 85.57 80.90 88.06 88.88 85.13
Numerical 68.50115.0 57.504.24.0 50.75128.64 | 73.09411.95 63.43]22.14 58.68)22.22 | 77.19,10.87 70.72,18.16 65.25/19.88
Hierarchical 80.50 87.50 86.43 85.48 88.59 86.08 88.19 91.19 89.04
Hierarchicalt | 72.008.5 52.50135.0 62.81]23.62 | 71.94]13.54 62.76,2583 67.07,19.01 | 79.4418.75 70.58]20.61 74.33,14.71
Semantic 87.50 89.50 82.91 89.98 90.45 84.44 92.12 93.26 88.03
Semantict 85.5042.0 86.0043.5 72.36410.55 | 85.88/4.1 85961449 77.07,7.33 | 89.67,245 89.391387 8233157
Atomic 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
Atomict 78.0046.0  80.504,9.0 70.85,12.57 | 79.16,7.24  82.4217.53 73.09412.97 | 84.08] 544 86.6315.38 78.44]10.03
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
SGTCt 88.0043.0 89.5043.5 88.441352 | 87.621458 89.5713.99 86.5414.52 | 91.75,2.14 92341258 90.69)2.28

explicit relevance signals, Trajectories often intro-
duce noise or indirect supervision, which may mis-
lead models lacking strong semantic grounding.
The robustness of SGTC can likely be attributed to
its structure-aware and semantics-preserving tok-
enization, which helps maintain consistency across
different training paradigms.
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Table 11: Tool calling evaluation for different tokenization methods. * indicates results reproduced from Wang
et al. (2024b), where GPT-3.5 was used as the dialogue model, and GPT-3.5 GT. served as the reference model for
SoWR. In contrast, our experiments are conducted using GPT-4o0-mini. Bold values denote the highest performance,
considering only the results reproduced in our experimental setting.

Tokenization Setting SoPR SoWR
n 12 I3 I1-Tool. Il1-Cat. I2-Cat. ‘ n 12 I3 I1-Tool. I1-Cat. I2-Cat.

Numerical GT. 2321 1415 1230 2542 25.49 1559 | 20.86 15.09 2295 24.05 20.92 13.71
Hierarchical ~ GT. 3027 1824 4.92 28.06 33.33 14.52 | 22.09 20.75 18.03 24.05 25.49 10.48
Semantic GT. 51.74 3459 2158  36.81 52.07 29.84 | 39.87 36.79 27.87 29.75 45.10 25.00
Atomic GT. 4785 3491 2923 3576 41.29 2527 | 38.65 35.85 3770 2531 33.33 22.58
SGTC GT. 60.22 44.03 27.87 44.20 51.09 39.65 | 39.88 43.40 4098 37.97 47.06 3145
Numerical* 3476 29.87 46.99 - - - 25.77 33.02 2951 - - -
Hierarchical* 50.20 45.60 32.79 - - - 38.04 4340 2951 - - -
Semantic* 58.79 4528 44381 - - - 49.69 57.55 26.23 - - -
Atomic* 58.08 56.13 44.81 - - - 4785 57.55 29.51 - - -
Numerical 2198 9.2 1120 20.68 26.14 17.20 | 16.56 16.04 1639  20.89 23.53 14.52
Hierarchical 39.16 2028 17.49  36.29 31.81 1492 | 2945 2830 2623 29.11 24.83 14.52
Semantic 50.20 29.72 1639  33.02 51.42 27.02 | 39.26 2924 3279 29.11 43.79 22.58
Atomic 5297 45.13 3634 4536 5556 4556 | 3620 4245 49.18 32091 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 5719 5699 | 4294 46.23 4590 4241 47.71 37.90

{
"product_id": "api_53da6825-ded3-497c-9b9e-ef8920352d35",
"tool_description": "Tools for face transformation",
"home_url": "https://rapidapi.com/toonify-toonify-default/api/toonify/",
“name": "Toonify",
"title": "Toonify",
"pricing": "FREEMIUM",
"tool_name": "Toonify",
"score": {
"avgServicelLevel": 100,
“avglLatency": 9064,
"avgSuccessRate": 75,
"popularityScore": 9.7,
"__typename": "Score"
1
"host": "toonify.p.rapidapi.com”,
“api_list": [
{
"name": "caricature_v@_caricature",
"url": "https://toonify.p.rapidapi.com/v@/caricature”,
"description": "Caricature transformation",
"method": "POST",
"required_parameters": [
{
"name": "image",
"type": "BINARY",
"description": "",
"default": ""
}
5
"optional_parameters": [
{
"name": "return_aligned",
"type": "BOOLEAN",
"description": "Flag to returned cropped and aligned version of the input image",
"default": false
s
1,
“code”: “import requests\n\nurl = \”https://toonify.p.rapidapi.com/v@/caricature\“\nquerystring = {\”image\“: \”\*,
\”return_aligned\“: false, \”face_index\“: 0, ...",
"convert_code": "import requests\n\nurl = \"https://toonify.p.rapidapi.com/v@/caricature\"\nquerystring =
{\"image\": \"\", \"return_aligned\": false, \"face_index\": 0, ... e
"test_endpoint": "",
"statuscode": 1,
"schema": ""
1,
1,
"category_name": "Video_Images"
}

Figure 4: A real RESTful API example. The RESTful API contains one API function (tool).
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"conversations”: [
{

"role": "user",

"content”: "My friends and I are organizing a hackathon on ‘web development®' and
‘mobile app development’.
We need some inspiration and guidance. Can you fetch the top stories on
these topics from Medium.com?",

"loss": false

I3
{

"role": "assistant",
"content": "<a_186><b_393><c_204><d_29>",
"loss": true

Figure 5: Datasets examples for tool retrieval training. We use "user" role to represent inputs and "asststant" role
to represent outputs.

{
“conversations”: [ .
“from": "systen”, a1 oy
"value": "You are an AutoGPT, capable of utilizing numerous tools and {\n \"source\": \"https://www.example.com/document.pdf\"\n}",
functions to complete the given task.\nl.First, I will provide you with the task false
description, and your task will commence.\n2.At each step, you need to determine the z

next course of action by generating an action token.\n3.Following the token, you will
receive the documentation of the action corresponding to the token. You need to
generate the input of the action, transitioning you to a new state. Subsequently, you
will make decisions about the next steps, and repeat this process.\nd.After several
iterations of generating actions and inputs, you will ultimately complete the task and
provide your final answer.\n\nRemember:\nl.The state changes are irreversible, and you
cannot return to a previous state.\n2.Keep your actions concise, limiting them to best
suits the current query.\n3.You can make multiple attempts. If you plan to try
different conditions continuously, perform one condition per try.\n4.If you believe you
have gathered enough information, generate the action \"<a_296><b_157><c_77><d_372>
with argument give_answer\" to provide your answer for the task.\n5.If you feel unable
to handle the task from this step, generate the action \"<a_296><b_157><c_77><d_372>
with argument give_up_and_restart\".\nLet's Begin!\nTask description: You should use
actions to help handle the real time user querys. Remember:\nl.ALWAYS generate ? 7
\"<a_296><b_157><c_77><d_372>\" at the end of the task. And the final answer should snapshots as images. By providing the source URL of the webpage as the argunent, the
_296<b_1873¢c_77><d . d assistant aims to obtain the desired image snapshot for further use or analysis.”,
contain enough information to show to the user. If you can't handle the task, or you )
find that actions always fail(the function is not valid now), use action ’
<a_296><b_157><c_77><d_372> with give_up_and_restart.\n2.0nly generate actions and

“function”,

© "{\"error\": \"\", \"response\": \"{'source': 'http://google.com’,
‘mime_type': 'text/html’, 'timestamp': '2023-07-10T19:12:09.624239', 'request_id':
'31dc3777-b494-4284-aef8-1899F1b2f22" }\"}"

{

“from": "assistant”,

“value": "I can see that the assistant called the
\"<a_438><b_147><c_346><d_187>\" function with the argument \"{\\n \"source\":
\"https://www.example.com\"\\n}\" to generate a webpage snapshot as an image. It seems
the assistant wants to retrieve an image snapshot of the webpage located at
‘https://www.example.com'. This API call is necessary because using the
\"<a_438><b_147><c_346><d_187>\" function provides a streamlined way to capture webpage

inputs.”,” "from": “assistant”,
loss": false "value": "Since the previous attempt to generate a webpage snapshot as an
b image failed, I will now try a different approach by using the
L *<a_438><b_176><c_299><d_245>" function instead of '<a_438><b_147><c_346><d_187>". By
"from”: “user”, . directly generating a PDF from the webpage source, I can obtain a different output
) value": "\nCan you help me get the content type of a file located at format for further analysis. This alternative approach could potentially provide a
https://waw.example.com/document.pdf'? I also need to generate a webpage snapshot as successful solution to capture the desired image snapshot. Let's execute the function
an image. The source URL is 'https://waw.example.com'. Please provide me with the image with the argument \"{\\n \"source\": \"https://wuw.example.com\"\\n}\" and observe the
snapshot. \nBegin!\n", outcome. ",
"loss": false "loss": true
s 1
. {
"from": "assistant”, : "user”,
“value": "I believe the assistant called the \"<a_56><b_313><c_151><d_97>\" "Generate the action.",
function with the argument \"{\\n \"source\" false
\"https://www.example.con/document.pdf\"\\n}\" to retrieve the content type of the file 1,
located at 'https://waw.example.com/document.pdf'. This API call is necessary because i

it provides a streamlined way to fetch the content type information of a given file. By
providing the source URL of the file as the argument, the assistant aims to obtain the

“assistant”,
"<a_296><b_157><c_77><d_372>",

content type to further process the file.", true
“"loss": false 1
3 {
{ "from": "user”,
"user”, "value": "Please give the input. Here is the documentation: {'required': [],
"Generate the action ‘optional': [{'name’: 'give_answer', 'description’': 'Output the answer', 'type':
“loss": false ‘string'}, {'name': 'give_up_and_restart’, 'description’: 'Unable to handle the task
Y from this step’, "type': 'string'}]}",
{ "loss": false
"assistant”, 1
"<a_56><b_313><c_151><d_97>",
"loss": false “from": “assistant”,
1, “value": "{\n \"return_type\": \"give_answer\",\n \"final_answer\": \"The
{ content type of the file located at 'https://www.example.com/document.pdf’ is
: “user”, ‘text/html'. Unfortunately, I encountered difficulties in generating the webpage
: "Please give the input. Here is the documentation: {'name’ snapshot as an image. Could you please provide me with an alternative source URL for
"<a_56><b_313><c_151><d_97>", 'description’: 'File: get content type', 'required': generating the image snapshot?\"\n}",
[{'name': 'source', 'type': 'STRING', 'description’: '', 'default': “loss": true
‘http://google.com'}], ‘'optional’: [{'name': 'cache-key', 'type': 'STRING', }
‘description’: '', 'default’: 'c7b920f57e553df2bb68272f61576210'}]1}", 1
"loss": false }
1

Figure 6: An example for tool calling training.
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