
SGTC: Scalable Generative Tool Calling via Structure-Aware Semantic
Tokenization

Anonymous ACL submission

Abstract

Enhancing large language models (LLMs) with001
external tools has become a promising ap-002
proach for solving complex tasks. As the num-003
ber of available tools grows, context-based004
prompting methods increasingly rely on re-005
trieval mechanisms. A common solution is006
to represent each tool with a unique token and007
train LLMs to generate the corresponding token008
during inference. However, this approach suf-009
fers from linear growth in representation space,010
leading to scalability challenges. It also limits011
generalization to novel or rare tools and un-012
derutilizes collaborative signals among tools in013
downstream tasks. In this paper, we propose014
SGTC, a generative tool invocation framework015
that introduces structure-aware semantic tok-016
enization to encode tools as discrete code se-017
quences. This method ensures similar tools018
share subtokens, enabling compression of the019
representation space and facilitating token shar-020
ing for new tools. We further introduce a post-021
guided, multistage iterative training strategy022
on a shared backbone model, where collabora-023
tive signals from downstream tasks guide the024
dynamic refinement of tool representations. Ex-025
tensive experiments on the ToolBench dataset,026
which includes over 47,000 APIs, demonstrate027
the effectiveness of SGTC across various tasks,028
showcasing its potential as a scalable and gen-029
eralizable generative tool-using paradigm in030
large-scale tool usage scenarios.031

1 Introduction032

Large language models (LLMs) improve their abil-033

ity to interact with the real world through inte-034

gration with tools, such as calculators, databases,035

etc.(Parisi et al., 2022; Schick et al., 2024; Thoppi-036

lan et al., 2022), and are proficient in handling ex-037

ternal input, performing actions, and autonomously038

completing tasks (Wu et al., 2023b; Liu et al.,039

2023b). However, as the number of tools grows040

to tens of thousands, existing methods for tool re-041

trieval and execution struggle to scale effectively.042

While various approaches have been proposed 043

to integrate tools into LLMs (Mialon et al., 044

2023; Yang et al., 2023b), including context-based 045

prompting (Qin et al., 2024; Paranjape et al., 2023; 046

Yao et al., 2022) and fine-tuning with tool descrip- 047

tion (Borgeaud et al., 2022; Guu et al., 2020; Puig 048

et al., 2018; Shuster et al., 2021), they still face chal- 049

lenges in large-scale tool settings. Context-based 050

prompting methods are inherently constrained by 051

the input length limitation of LLMs, making it in- 052

feasible to include all tools within a single prompt 053

and requiring external retrievers to select a small 054

subset of candidate tools. On the other hand, 055

fine-tuning-based methods that integrate tools into 056

model parameters (Wang et al., 2024b; Hao et al., 057

2023) often rely on assigning each tool a unique 058

identifier (ID) (Liu et al., 2024c; Yuan et al., 2023), 059

which introduces several limitations in large-scale 060

scenarios. First, the vocabulary size grows lin- 061

early with the number of tools, resulting in higher 062

memory consumption and a larger decoding space, 063

which increases the inference burden (Kang and 064

McAuley, 2018; Sun et al., 2019). Second, the data 065

sparsity and long-tail distribution of tool usage not 066

only hinder the learning of reliable representations 067

for infrequent tools, but also make it difficult to 068

incorporate newly introduced tools without addi- 069

tional retraining or architectural changes. Third, 070

since ID embeddings are learned independently, 071

they fail to capture functional similarities or collab- 072

orative relationships among tools, further limiting 073

generalization and reuse across tasks. 074

To address these limitations, we propose SGTC, 075

a unified generative framework that provides a scal- 076

able and semantically structured representation of 077

large-scale tools, enabling simultaneous tool re- 078

trieval and calling during generation. First, we 079

introduce structure-aware semantic tokenization, 080

which assigns each tool a compact sequence of dis- 081

crete codes (Rajput et al., 2024; Singh et al., 2024; 082

Wang et al., 2024d; Zhu et al., 2024) derived from 083

1

its semantic embedding. These semantic embed-084

dings are obtained by compressing tool knowledge085

into a small number of special tokens that encode086

functional and behavioral information. To generate087

the code sequences, we employ a lightweight deep088

residual k-means algorithm over the semantic em-089

bedding space for centroid assignment, and use the090

resulting centroids to initialize the embeddings of091

code tokens. The discrete codes are then dynam-092

ically refined via post-guided training to ensure093

that semantically or functionally similar tools share094

similar subtokens. This code-based tokenization095

facilitates representation compactness and encour-096

ages knowledge sharing across tools, while also097

enabling approximate similarity estimation (e.g.,098

via Hamming distance) without additional model099

training—thus offering scalability to newly added100

or unseen tools. Its hierarchical structure enables101

a logarithmic compression of the tool vocabulary102

space, significantly reducing the decoding over-103

head compared to linear ID-based indexing. Sec-104

ond, we unify semantic tokenization, retrieval, and105

calling into a single generative modeling frame-106

work. This design allows for multistage iterative107

training, where the model progressively integrates108

tool knowledge—from basic documents to usage109

contexts and invocation workflows—across stages.110

Finally, in later training iterations, downstream111

collaboration signals are leveraged to refine tok-112

enization strategies, allowing the model to dynami-113

cally adapt to tool usage patterns and improve its114

generative capabilities over time.115

In summary, our work contributes the following116

key aspects:117

• Robust tool representation: We employ se-118

mantic compress and deep residual k-means119

clustering to obtain the discrete structure-120

aware semantic code sequence, which can121

represent large-scale toolsets with minimal122

space overhead. Thanks to their structured123

composition, these code sequences also en-124

able effective knowledge transfer to unseen125

tools, supporting robust generalization and126

scalability.127

• Dynamically updated strategy: We adopt a128

post-guided training strategy that integrates129

tool knowledge from both documentation130

and latent logic embedded in downstream131

tasks—such as co-occurrence patterns and132

shared usage contexts—enabling dynamic re-133

finement of code sequence generation.134

• Unified framework: We employ a unified 135

generative framework built upon a single 136

LLM to jointly model tool tokenization, re- 137

trieval, and calling, thereby reducing informa- 138

tion loss and enhancing cross-task knowledge 139

transfer. 140

• Empirical evaluation: Extensive experi- 141

ments conducted on the large-scale Tool- 142

Bench dataset, collected from real-world 143

sources, demonstrate that the SGTC frame- 144

work achieves outstanding performance in di- 145

versity tool usage scenarios, highlighting its 146

effectiveness and broad applicability. 147

2 Related Work 148

LLM with Tool Augmentation. Enhancing the 149

ability of LLMs to solve complex problems by 150

equipping them with tools for various tasks has 151

demonstrated strong potential(Vemprala et al., 152

2024; Qin et al., 2023a; Wu et al., 2023a; Qian 153

et al., 2023; Song et al., 2023; Zhuang et al., 154

2023; Gao et al., 2023a). By accessing external 155

tools, LLMs can be endowed with real-time factual 156

knowledge(Yang et al., 2023a), coding and debug- 157

ging capabilities (Chen et al., 2022; Gao et al., 158

2023b; He-Yueya et al., 2023; Lyu et al., 2023; Xie 159

et al., 2023; Liu et al., 2023a), multimodal func- 160

tionalities (Gupta and Kembhavi, 2023; Shen et al., 161

2023; Lu et al., 2023), domain-specific expertise 162

(Jin et al., 2024), and the ability to interact with the 163

virtual or physical world (Brohan et al., 2023b; 164

Huang et al., 2022b, 2023; Singh et al., 2023). 165

Thanks to the powerful contextual learning ability 166

(Brown et al., 2020), it is possible to enable LLMs 167

to use tools simply by displaying examples within 168

the prompt, without the need for training(Mekala 169

et al., 2024; Khot et al., 2022). Therefore, most 170

methods focus on guiding LLMs to mimic human 171

task solving processes and generate plans (Zheng 172

et al., 2024c; Liu et al., 2024d; Ahn et al., 2022; 173

Huang et al., 2022a; Ye et al., 2023), and improving 174

plans by incorporating execution feedback (Wang 175

et al., 2024a; Shinn et al., 2024), thus combining 176

reasoning with action. However, context-based 177

learning methods are prone to hallucinations and 178

are limited by inadequate context capacity when 179

faced with large-scale tools. Although the tool 180

retrieval stage is widely used, including trained ad- 181

ditional retriever to rank top-k candidates from a 182

large number of tools based on similarity to the 183

query to enhance the generation process (Zheng 184

2

et al., 2024b; Patil et al., 2025; Chen et al., 2024;185

Qin et al., 2023b). Such strategies do not improve186

the model’s understanding of external tool knowl-187

edge, and maintaining dense retrieval databases and188

document indices can lead to inefficiency and dif-189

ficulties in optimizing within an end-to-end agent190

framework.191

Tool Learning. To address this problem, a promis-192

ing paradigm is to integrate tool information di-193

rectly into model parameters and generate tools194

without retrieval(Wang et al., 2022; Sun et al., 2023;195

Kishore et al., 2023; Mehta et al., 2022; Chen et al.,196

2023). Existing work (Brohan et al., 2023a; Asai197

et al., 2023; Hao et al., 2023; Wang et al., 2024b)198

attempts to represent tools as atomic tokens(Geng199

et al., 2022, 2023; Kang and McAuley, 2018; Sun200

et al., 2019) and trains with existing token embed-201

dings, so that LLMs can directly output atomic202

tokens by means of the next token in the gener-203

ation stage by conditional constraints. However,204

such atomic tokens are relatively independent, i.e.,205

the semantics cannot be directly transferred to new206

tools without training, and the space of beam search207

increases linearly. Therefore, this paper employs208

structure-aware semantic tokenization to solve this209

problem, which allows tools with similar semantics210

to share part of the code sequences (Jin et al., 2023;211

Liu et al., 2024a; Zheng et al., 2024a), achieving212

logarithmic growth of additional tokens. On the213

other hand, learning tools through interactive is214

also prospective, especially as the traces may con-215

tain implicit logic for calling multiple tools. How-216

ever, existing methods (Parisi et al., 2022; Schick217

et al., 2024; Nakano et al., 2021) require frequent218

interaction with unstable environments, resulting219

in high system design and tuning costs, and the220

tool or action space involved is small, which is not221

suitable for large-scale tool invocation scenarios.222

To this end, this paper considers direct fine-tuning223

of LLMs using massive trajectory data. Moreover,224

prior work has not sufficiently investigated the dy-225

namic refinement of semantic code sequences dur-226

ing training (Qu et al., 2024; Wang et al., 2024c),227

leading to suboptimal performance in downstream228

tasks, a gap this paper aims to address.229

3 Preliminaries230

Existing agents based on LLMs that use tools231

typically involve four stages (Qu et al., 2025):232

given a query/task Q, (1) generating a plan p,233

(2) determining the tool d ∈ D, (3) generating234

tool parameters c, (4) and collecting feedback 235

f from tool execution. The model iteratively 236

repeats the process (pi, di, ci, fi) until it gener- 237

ates a stopping symbol or reaches the maximum 238

number of iterations, ultimately generating the 239

answer A and completing the task. The entire 240

process forms an interaction trajectory Traj = 241

[Q, (p1, d1, c1, f1),, (pt, dt, ct, ft),A], while t 242

is the total round, and i ∈ t. 243

We unify the four phases through a generative 244

framework and focus on improving the second 245

phase. During the generative tool determination 246

phase, yi+1 = logP (Idx(d)|Q, y<i+1, embd(D)), 247

where Idx(d) is the tool tokens. When the can- 248

didate toolset |D| = N is large, existing unique 249

identifier schemes (Hao et al., 2023; Wang et al., 250

2024b) suffer from sparse supervision and poor 251

generalization. Instead, if tool representations 252

share substructures, we can reduce representation 253

space and enhance inter-tool correlation. To this 254

end, we adopt a codebook-based semantic tokeniza- 255

tion (Van Den Oord et al., 2017), where a codebook 256

with L layers and K codes per layer enables tools 257

to share semantic components. Two similar tools 258

will share the same code at layer l ∈ L. This yields 259

a representation capacity of KL, allowing compact 260

encoding even when N ≫ K. Compared to unique 261

identifiers requiring N ×D memory, our method 262

compresses into logarithmic space K × L × D, 263

where D is the embedding dimension. 264

4 Proposed Approach: SGTC 265

4.1 Tool Tokenization 266

Semantic Compression. Following previous 267

works (Mu et al., 2024; Liu et al., 2024b), we or- 268

ganize the encoder input into four distinct blocks: 269

[Content;Token;Placeholder;Task], where [;] de- 270

notes concatenation. Specifically: 271

Content = [a1;a2; . . . ;ar] 272

Token = [g1, g2, . . .] 273

Placeholder = [p1,p2, . . .] 274

Task = [tj ;aj] 275

The Content block contains textual information ex- 276

tracted from the tool documentation, such as func- 277

tional descriptions, and is represented as {aj}mj=1, 278

where m denotes the number of distinct pieces 279

of information. The Token block consists of a se- 280

quence of V gist tokens (Mu et al., 2024), each with 281

learnable embeddings designed to extract and ag- 282

gregate information from the Content block. The 283

3

Figure 1: Overview of the SGTC framework. SGTC employs a three-stage training paradigm with multi-round itera-
tive refinement to progressively optimize tool representations. Initially, the LLM generates clustered, structure-aware
semantic code sequences that replace tool names in the corpus, forming a compact and expressive representation
space. The model then learns tool usage from Query-Tool pairs, procedural logic from execution trajectories, and
collaboration patterns from multi-tool interactions. Throughout iterations, tool knowledge and clustering co-evolve,
refining code sequences for better alignment with downstream retrieval and invocation. Finally, a generative agent is
trained to perform end-to-end tool calling.

Task block contains a special indicator token tj284

and the corresponding target output aj ; specifi-285

cally, for 0 < j ≤ r the task is reconstruction,286

whereas for r < j ≤ m it is generation. Finally,287

the Placeholder block is employed to ensure that288

the Task block can be effectively guided by the289

output of the Token block. In practice, its embed-290

ding is initialized with the output embedding of the291

Token block, thereby facilitating the reconstruction292

or generation process.293

Similarly, we adopt a cascaded attention mask-294

ing scheme to restrict Task output generation solely295

to the Token (and subsequent Placeholder) blocks.296

Each block applies a causal mask to capture in-297

ternal sequential dependencies, while only the298

Content block fully attends to the Token block and299

the Placeholder block to the Task block; all other300

inter-block attention is disabled.301

Deep residual clustering. After obtaining the302

Token block’s output embeddings, we cluster these303

embeddings to derive semantic codes with explicit304

classification signals. Although we initially ex-305

plored unsupervised k-means (Krishna and Murty,306

1999) – in contrast to training-dependent methods307

such as RQ-VAE (Lee et al., 2022) – our experi-308

ments show that a single-level k-means incurs a309

high collision rate and yields inaccurate tool parti- 310

tioning. To address this, we adopt a deep residual 311

clustering approach. 312

Specifically, let the Token block’s output embed- 313

dings be: 314

E =

e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

...
...

. . .
...

eV,1 eV,2 · · · eV,N

 , 315

where ei,j ∈ RD denotes the i-th gist token em- 316

bedding for the j-th tool (with D typically high, 317

e.g., 4098). We first apply principal component 318

analysis (PCA) (Maćkiewicz and Ratajczak, 1993) 319

to reduce each ei,j to a lower-dimensional vector 320

êi,j ∈ RD̂ (e.g., D̂ = 32). 321

For each gist token position i, let 322

Ê[i, :] = [êi,1, êi,2, ..., êi,N] 323

denote the reduced embeddings across the N tools. 324

We then adopt an L-level residual quantization 325

framework by applying k-means clustering on the 326

embedding space Ê; at each level l ∈ {1, ..., L}, a 327

codebook is learned as follows: 328

Cl = {zl
k ∈ RD̂ : k = 1, ...,K} 329

where K is the number of centroids and z is the 330

4

vector of centroids. For each reduced embedding331

êli,j at level l, we assign it to its nearest centroid332

(measured via Euclidean distance) and compute the333

residual for the next level:334

êl+1
i,j = êli,j − zl

k∗ ,335

with k∗ = argmin
k∈{1,...,K}

∥∥∥êli,j − zl
k

∥∥∥
2
.336

This process yields a sequence of discrete codes337

for each tool:338

cj = [c11,j , c
2
1,j , ..., c

L
1,j , c

1
2,j ..., c

L
V,j],339

where each cli,j ∈ {1, ...,K} corresponds to the340

centroid index assigned at level l for the i-th token.341

We generate m augmented copies for each train-342

ing sample to accommodate different tasks. In343

addition, we employ low-rank adaptation (LoRA)344

(Hu et al., 2021) and update only token and task345

blocks during training. The model is optimized346

using cross-entropy loss:347

Ltool = −
∑
(i,j)

logP (ai,j+1|ai,1, ai,2, ..., ai,j)348

where ai,j denotes the j-th token of ai. During349

inference, the next token is selected as350

ai,j+1 = argmin
w∈W

P (w|ai,1, ai,2, ..., ai,j)351

, and W is the token vocabulary.352

4.2 Generative Calling353

Reframe embedding. In the subsequent stage,354

to allow the model to generate and invoke tools355

as next-tokens during interaction, we integrate the356

learned codes into the language model vocabulary357

as new tokens. For instance, consider a semantic358

code sequence of length four, e.g., [154, 53, 48, 1].359

We represent it via unique tokens such as [<a_154>,360

<b_53>, <c_487>, <d_1>]. These tokens are then361

trained using Query-Tool examples and trajecto-362

ries.363

While explicit tool knowledge is transferred364

through these codes—multiple retrieval-capable365

tools may share the code <a_154> —further tool in-366

formation remains embedded in the Token block’s367

output embeddings. This aspect is often overlooked368

by previous works, which either fine-tune directly369

on downstream tasks (Wang et al., 2024b) or apply370

alignment objectives for refine-tuning (Liu et al.,371

2024b). We posit that this embedded knowledge372

can be implicitly transferred through shared net-373

work parameters. Hence, we reassign the out-374

put embeddings as the initial tool memory for the375

newly introduced tokens, allowing them to be up-376

dated in subsequent training. 377

However, we cannot directly assign zl
k to cl due 378

to dimensional mismatch (e.g., 32 ̸= 4028). To 379

address this, we aggregate the embeddings for each 380

residual level l of the gist tokens as follows: 381

El =

{
El, l = 0,

PCA−1(Êl), l ≥ 1
382

For l ≥ 1, we restore the low-dimensional residual 383

vectors via the inverse PCA transform; for l = 384

0, we simply use the original output embeddings. 385

Next, for each code cl with centroid index k, its 386

embedding is defined as the average of all tool 387

embeddings assigned to that code: 388

ecl =
1

|∆|
(
∑
δ∈∆

elδ), ∆ = {δ|cl ∈ cj}, elδ ∈ El 389

Ultimately, combining this reframed embedding 390

with the compression process equips the LLM with 391

fundamental tool knowledge and their associated 392

operations. 393

Domain-specific training. Following Wang et al. 394

(2024b), we implement generative tool calls using 395

two data-organization strategies derived from Tool- 396

Bench. First, using Query-Tool examples, we train 397

the model to generate the correct code sequences 398

cj conditioned on a user query q. We fine-tune the 399

LLM’s parameters θ using a next-token prediction 400

loss: 401

Lret =
∑
q∈Q

V ∗L∑
i=1

− logPθ(c
i
j |q) 402

Second, we fine-tune the model on trajectories 403

(described in Section 3) to enable it to function as 404

an intelligent agent. In this phase, the model learns 405

to determine a solution schema, select appropriate 406

tools, generate input parameters based on tool doc- 407

umentation, and produce a final answer from the 408

tools’ execution results. We employ cross entropy 409

based next-token prediction over the assistant’s re- 410

sponse within each dialogue: 411

Ltraj =
∑

u∈Traj

T u
a∑

v=1

−logPθ(a
u
v |qu, au1 , ..., a

(u)
v−1) 412

where qu is the user query for dialogue u, auv is the 413

v-th token in the assistant’s response, and T u
a is the 414

total number of tokens in that response. Only the 415

assistant tokens contribute to the loss, enabling the 416

model to jointly learn tool calling and final answer 417

generation. 418

Post-guided Training. Pre-generated code se- 419

quences may be suboptimal for downstream tasks, 420

5

as trajectory data contain collaboration signals sug-421

gesting that functionally similar tools should share422

similar code sequences, yet these signals remain423

underexploited. To address this limitation, we pro-424

pose a post-guided iterative training strategy. In the425

first round, the standard pipeline produces initial426

parameters θ0 for the final LLM. In subsequent427

rounds t ∈ T , we update the Token embeddings428

while keeping θt−1 fixed. At the end of each epoch,429

a new codebook Ct is generated to replace the pre-430

vious one. The trajectory loss Lt
traj is computed431

using the frozen θt−1, and the overall fine-tuning432

loss in round t is given by the sum Lt
tool + Lt

traj .433

After that, the updated code sequences serve as the434

foundation for the remaining training stages.435

Our experiments show that this multi-round strat-436

egy dynamically refines the code sequences and437

embeddings, yielding code sequences that better438

support downstream tasks and improve LLM per-439

formance.440

4.3 Inference441

During inference, we employ constrained beam442

search to ensure that generated tokens correspond443

to valid code sequences. To this end, we construct444

a code tree that encompasses all possible code com-445

binations, where each node’s children represent446

the feasible codes that can follow the current code.447

This tree restricts the search space by effectively448

blocking infeasible token combinations.449

Since the trajectory is divided into several steps450

(pi, di, ci, fi) and the model outputs the tool’s code451

sequence directly in the second step, we apply con-452

strained search only at that step, while standard453

beam search is used for the other steps.454

5 Experiments455

5.1 Experimental Setups456

Datasets. We evaluate our method on ToolBench457

(Qin et al., 2023b), a state-of-the-art, large-scale458

benchmark designed for instruction tuning in tool-459

use scenarios. ToolBench contains 16,464 real-460

world RESTful APIs sourced from the RapidAPI461

Hub1, each associated with a name, domain cate-462

gory, and a set of API functions. In this work, we463

treat each API function as a distinct tool, resulting464

in 46,985 unique and usable tools. For evalua-465

tion, we consider three scenarios: I1 (single-tool466

queries), I2 (multi-tool queries within the same cat-467

egory), and I3 (multi-tool queries within the same468

1https://rapidapi.com/hub

collection). Detailed dataset statistics and illustra- 469

tive examples are provided in Appendix A. 470

Baselines. We adopt several classical retrieval 471

methods as baselines, including BM25 (Robert- 472

son et al., 2009), Embedding Similarity (EmbSim) 473

(Kohane and Zitnik), and ToolRetriever (Qin et al., 474

2023b), to evaluate the effectiveness of our method 475

in retrieving tools relevant to a given query. In 476

addition, we compare our approach with Tool- 477

Gen (Wang et al., 2024b), a state-of-the-art gen- 478

erative tool usage model. For tool calling tasks, 479

we benchmark against GPT-4o-mini, ToolGen, and 480

ToolLlama-2 (Qin et al., 2023b). A comprehen- 481

sive description of all baselines is provided in Ap- 482

pendix B. 483

Metrics. To evaluate the effectiveness of each re- 484

trieval scheme in selecting the appropriate tool 485

for a given query, we employ Normalized Dis- 486

counted Cumulative Gain (NDCG), a standard met- 487

ric in information retrieval. We report NDCG@1, 488

NDCG@3, and NDCG@5 to assess ranking qual- 489

ity at varying depths. For tool calling evaluation, 490

we adopt the StableToolBench framework (Guo 491

et al., 2024), which provides two key metrics: Solv- 492

able Pass Rate (SoPR), indicating the proportion of 493

successfully completed queries, and Solvable Win 494

Rate (SoWR), measuring the percentage of cases 495

where the candidate model’s answer surpasses that 496

of the reference one (GPT-4o-mini based on ground 497

truth). 498

5.2 Experimental Results 499

As shown in Table 1, SGTC consistently achieves 500

the best performance across all settings, demon- 501

strating strong retrieval accuracy in both simple and 502

complex queries. Compared to ToolGen, SGTC 503

demonstrates notable gains(e.g., +4.5 NDCG@1 504

on I1, +6.5 on I2 and +8 on I3), validating the 505

benefit of its tokenization and training strategies. 506

Moreover, on subsets involving unseen tools (Tool. 507

and Cat.), SGTC still maintains top performance, 508

surpassing ToolGen by up to 7 NDCG@1 on I1- 509

Tool. and 8.54 on I2-Cat., highlighting its strong 510

compositional generalization and scalability to pre- 511

viously unseen tools. 512

Table 2 presents the task execution success rates 513

under two settings: (1) GT.: where the ground- 514

truth tool is provided in the query prompt, and 515

(2) Retrieval: where tools are retrieved from the 516

entire toolset without prior hints. SGTC and Tool- 517

Gen, which both directly integrate tool retrieval 518

into the generation process, consistently outper- 519

6

Table 1: Multi-domain tool retrieval and evaluation. We train all models on the full ToolBench dataset (I123)
and evaluate retrieval performance across all tools. BM25 and EmbSim serve as unsupervised baselines, while
ToolRetriever and ToolGen are supervised. ToolGen, like our method, is trained via next-token prediction. All
results are re-evaluated using publicly released checkpoints. In addition to unseen instruction subsets for I1, I2, and
I3, we also assess generalization to unseen tools in I1 and I2 (denoted as Tool. and Cat.).

Model NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

BM25 26.92 20.00 10.00 26.13 21.92 10.08 29.00 23.46 12.33
EmbSim 50.50 46.00 18.00 48.15 39.58 17.77 53.41 43.05 20.94
ToolRetriever 75.92 63.00 28.00 76.96 66.38 39.28 82.31 72.72 44.54
ToolGen 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
BM25 20.75 20.63 16.58 21.12 20.67 19.55 23.64 24.18 20.89
EmbSim 53.00 58.00 35.68 49.82 54.38 33.92 54.93 59.24 36.22
ToolRetriever 75.25 73.50 60.30 78.26 73.56 64.11 83.08 79.10 73.01
ToolGen 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97

Table 2: Task completion evaluation with ground-truth and retrieved tools. We evaluate model performance under
two settings: (1) using ground-truth candidate tools, and (2) retrieving candidates from the full toolset. Both GPT
and ToolLlama rely on external retrievers. All results are reported as the average of three runs using SoPR and
SoWR metrics. Bold indicates the best result under each setting.

Model Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

GPT-4o-mini GT. 52.66 43.40 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2 GT. 36.30 17.30 7.92 31.86 39.54 21.24 25.77 20.75 21.31 25.94 35.95 15.32
ToolGen GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
SGTC GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

GPT-4o-mini Retrieval 52.25 40.41 24.86 53.16 50.11 39.38 - - - - - -
ToolLlama-2 Retrieval 28.94 24.69 10.93 28.48 36.93 19.09 25.15 30.19 24.59 26.58 27.45 20.16
ToolGen 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

form retriever-dependent models (GPT-4o-mini,520

ToolLlama-2) in SoPR, demonstrating superior tool521

selection and end-to-end reasoning capabilities. Of522

course, SGTC clearly demonstrates superior per-523

formance. Interestingly, generative models such as524

SGTC and ToolGen perform better in the Retrieval525

setting than in the GT. setting. We hypothesize this526

counterintuitive result stems from potential interac-527

tion mismatch introduced by supervised fine-tuning528

(SFT) when ground-truth tools are forcefully in-529

jected, which may reduce robustness. We leave530

a detailed investigation of this phenomenon for531

future work. Regarding SoWR, SGTC also out-532

performs most generative baselines, confirming its533

ability to produce high-quality outputs. Despite534

SGTC achieving notably higher SoPR than the ref-535

erence model (GPT-4o-mini GT.), its SoWR re-536

mains below 50%. This suggests a systemic gap537

between model predictions and GPT-4o-mini’s in-538

ternal satisfaction criteria, raising broader ques-539

tions about evaluation alignment. 540

5.3 Further Analysis 541

Ablaiton Study. To evaluate the contribution of 542

key components in our method, we conduct ab- 543

lation experiments and present the results in Fig- 544

ure 2. The results show that removing either com- 545

ponent leads to consistent performance degradation 546

across all settings (I1, I2, I3). Notably, eliminat- 547

ing post-guided training causes significant drops 548

in NDCG@1, especially in I2 and I3, where the 549

performance drops by 5 and 10 points, respectively. 550

These results highlight the importance of seman- 551

tic transfer from language modeling and the ef- 552

fectiveness of iterative guidance in enhancing tool 553

discrimination and retrieval accuracy in complex 554

compositions. 555

Tokenization Strategy Evaluation. We compare 556

several tokenization strategies for tool retrieval. 557

Our structure-aware semantic tokenization, while 558

7

Table 3: Retrieval performance of different tokenization methods in the Multi-domain setting. All models are trained
on Query-Tool pairs and Trajectories. The results of ToolGen are directly adopted as the baseline for the Atomic.

Tokenization NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

Numerical 82.00 77.50 81.91 84.18 77.53 76.51 70.00 88.07 84.30
Hierarchical 87.50 77.50 79.00 86.11 78.82 81.44 89.91 83.81 87.47
Semantic 90.00 84.50 84.00 91.56 84.33 79.41 92.96 88.44 87.40
Atomic 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98

Table 4: Tool calling evaluation for different tokenization methods. Bold values denote the highest performance.

Tokenization Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

Numerical 21.98 9.12 11.20 20.68 26.14 17.20 16.56 16.04 16.39 20.89 23.53 14.52
Hierarchical 39.16 20.28 17.49 36.29 31.81 14.92 29.45 28.30 26.23 29.11 24.83 14.52
Semantic 50.20 29.72 16.39 33.02 51.42 27.02 39.26 29.24 32.79 29.11 43.79 22.58
Atomic 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

Figure 2: Ablation study for tool retrieval in the Multi-
domain setting. We evaluate the impact of removing
embedding initialization for code tokens and omitting
the second training iteration on SGTC’s performance.

conceptually related to Hierarchical and Semantic559

tokenizations, goes further by constructing code se-560

quences across both feature dimensions and resid-561

ual depth, and dynamically refining them using562

richer semantic and interaction signals. As reported563

in Table 3 and Table 4, our method consistently564

outperforms existing strategies, achieving stronger565

tool ranking (NDCG) and downstream invocation566

accuracy (SoPR/SoWR), especially on more am-567

biguous cases like I2 and I3.568

This performance gain stems from SGTC’s abil-569

ity to preserve interaction-aware structure during570

tokenization. While other strategies often rely571

on fixed hierarchies or shallow semantics, SGTC572

dynamically groups semantically related tool ac-573

tions and constructs trajectory-aligned code se-574

quences, reducing information loss across modali-575

ties. This leads not only to higher relevance rank-576

ing, but also to clearer contextual grounding for 577

accurate tool calling. For instance, improvements 578

in NDCG@3/5 translate into SoPR/SoWR gains 579

across both I1/I2/I3 and categorically split settings, 580

reflecting the method’s generalizability and real- 581

world robustness. 582

More results and implementation details can be 583

found in Appendix D and Appendix B. 584

6 Conclusions 585

We propose SGTC, a model-agnostic framework 586

that leverages a single LLM to perform genera- 587

tive tool retrieval and calling, thereby eliminating 588

the need for external retrievers. SGTC introduces 589

structure-aware semantic code sequences to con- 590

cisely and effectively represent large-scale toolsets, 591

while maintaining adaptability to the continual 592

expansion of new tools. Our method integrates 593

basic tool knowledge and inter-tool coordination 594

signals, and dynamically refines code sequences 595

through multistage iterative training. Extensive ex- 596

periments demonstrate the effectiveness of SGTC, 597

particularly in multi-tool scenarios. It consistently 598

outperforms strong baselines in accuracy, pass rate, 599

and win rate, and further shows clear advantages 600

over other tokenization strategies through structure- 601

aware semantic modeling. Our study provides a 602

promising direction for large-scale generative tool 603

execution and lays the groundwork for future ex- 604

tensions, such as combining generative agents with 605

reinforcement learning to further enhance tool-use 606

autonomy in LLMs. 607

8

Limitations608

While our structure-aware semantic tokenization609

method demonstrates strong scalability and gen-610

eralization in large-scale tool scenarios, its per-611

formance still relies on the initial quality of tool612

documentation and the stability of the clustering613

process. Specifically, when tool descriptions are614

sparse, ambiguous, or inconsistent across domains,615

the generated semantic identifiers may not fully616

capture functional nuances, potentially affecting617

downstream retrieval or planning accuracy. More-618

over, our current iterative training pipeline, though619

effective, involves non-negligible computational620

overhead, which may limit applicability in low-621

resource settings or rapid deployment scenarios.622

Ethical Considerations623

We recognize the ethical considerations in develop-624

ing large language models and have carefully used625

publicly available pretrained LLMs (e.g., Llama-2-626

7B, Llama-3-8B) and the ToolBench dataset. The627

ToolBench dataset is licensed under Apache 2.0,628

which permits free use and modification. Our use629

fully complies with its license terms and intended630

purposes. The data contain no sensitive personal631

information, and all ethical guidelines are observed632

in processing these resources.633

References634

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen635
Chebotar, Omar Cortes, Byron David, Chelsea Finn,636
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-637
man, et al. 2022. Do as i can, not as i say: Ground-638
ing language in robotic affordances. arXiv preprint639
arXiv:2204.01691.640

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and641
Hannaneh Hajishirzi. 2023. Self-rag: Learning to642
retrieve, generate, and critique through self-reflection.643
arXiv preprint arXiv:2310.11511.644

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-645
mann, Trevor Cai, Eliza Rutherford, Katie Milli-646
can, George Bm Van Den Driessche, Jean-Baptiste647
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.648
Improving language models by retrieving from tril-649
lions of tokens. In International conference on ma-650
chine learning, pages 2206–2240. PMLR.651

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen652
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli653
Ding, Danny Driess, Avinava Dubey, Chelsea Finn,654
et al. 2023a. Rt-2: Vision-language-action models655
transfer web knowledge to robotic control. arXiv656
preprint arXiv:2307.15818.657

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol 658
Hausman, Alexander Herzog, Daniel Ho, Julian 659
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023b. 660
Do as i can, not as i say: Grounding language in 661
robotic affordances. In Conference on robot learn- 662
ing, pages 287–318. PMLR. 663

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 664
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 665
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 666
Askell, et al. 2020. Language models are few-shot 667
learners. Advances in neural information processing 668
systems, 33:1877–1901. 669

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Maarten 670
de Rijke, Wei Chen, Yixing Fan, and Xueqi Cheng. 671
2023. Continual learning for generative retrieval 672
over dynamic corpora. In Proceedings of the 32nd 673
ACM International Conference on Information and 674
Knowledge Management, pages 306–315. 675

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 676
William W Cohen. 2022. Program of thoughts 677
prompting: Disentangling computation from reason- 678
ing for numerical reasoning tasks. arXiv preprint 679
arXiv:2211.12588. 680

Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan, 681
Qingze Wang, Vincent Cohen-Addad, Mohammad- 682
hossein Bateni, Chen-Yu Lee, and Tomas Pfister. 683
2024. Re-invoke: Tool invocation rewriting for zero- 684
shot tool retrieval. arXiv preprint arXiv:2408.01875. 685

Tri Dao. 2023. Flashattention-2: Faster attention with 686
better parallelism and work partitioning. arXiv 687
preprint arXiv:2307.08691. 688

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 689
Christopher Ré. 2022. Flashattention: Fast and 690
memory-efficient exact attention with io-awareness. 691
Advances in neural information processing systems, 692
35:16344–16359. 693

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, 694
Joya Chen, Zihan Fan, and Mike Zheng Shou. 2023a. 695
Assistgpt: A general multi-modal assistant that can 696
plan, execute, inspect, and learn. arXiv preprint 697
arXiv:2306.08640. 698

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 699
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 700
ham Neubig. 2023b. Pal: Program-aided language 701
models. In International Conference on Machine 702
Learning, pages 10764–10799. PMLR. 703

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, 704
and Yongfeng Zhang. 2022. Recommendation as 705
language processing (rlp): A unified pretrain, person- 706
alized prompt & predict paradigm (p5). In Proceed- 707
ings of the 16th ACM Conference on Recommender 708
Systems, pages 299–315. 709

Shijie Geng, Juntao Tan, Shuchang Liu, Zuohui Fu, 710
and Yongfeng Zhang. 2023. Vip5: Towards multi- 711
modal foundation models for recommendation. arXiv 712
preprint arXiv:2305.14302. 713

9

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,714
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and715
Yang Liu. 2024. Stabletoolbench: Towards stable716
large-scale benchmarking on tool learning of large717
language models. arXiv preprint arXiv:2403.07714.718

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-719
sual programming: Compositional visual reasoning720
without training. In Proceedings of the IEEE/CVF721
Conference on Computer Vision and Pattern Recog-722
nition, pages 14953–14962.723

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-724
pat, and Mingwei Chang. 2020. Retrieval augmented725
language model pre-training. In International confer-726
ence on machine learning, pages 3929–3938. PMLR.727

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.728
2023. Toolkengpt: Augmenting frozen language729
models with massive tools via tool embeddings. Ad-730
vances in neural information processing systems,731
36:45870–45894.732

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and733
Noah D Goodman. 2023. Solving math word prob-734
lems by combining language models with symbolic735
solvers. arXiv preprint arXiv:2304.09102.736

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan737
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,738
and Weizhu Chen. 2021. Lora: Low-rank adap-739
tation of large language models. arXiv preprint740
arXiv:2106.09685.741

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and742
Igor Mordatch. 2022a. Language models as zero-743
shot planners: Extracting actionable knowledge for744
embodied agents. In International conference on745
machine learning, pages 9118–9147. PMLR.746

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,747
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-748
datch, Sergey Levine, Karol Hausman, et al. 2023.749
Grounded decoding: Guiding text generation with750
grounded models for robot control. arXiv preprint751
arXiv:2303.00855.752

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,753
Jacky Liang, Pete Florence, Andy Zeng, Jonathan754
Tompson, Igor Mordatch, Yevgen Chebotar, et al.755
2022b. Inner monologue: Embodied reasoning756
through planning with language models. arXiv757
preprint arXiv:2207.05608.758

Bowen Jin, Hansi Zeng, Guoyin Wang, Xiusi Chen,759
Tianxin Wei, Ruirui Li, Zhengyang Wang, Zheng760
Li, Yang Li, Hanqing Lu, et al. 2023. Lan-761
guage models as semantic indexers. arXiv preprint762
arXiv:2310.07815.763

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.764
2024. Genegpt: Augmenting large language models765
with domain tools for improved access to biomedical766
information. Bioinformatics, 40(2):btae075.767

Wang-Cheng Kang and Julian McAuley. 2018. Self- 768
attentive sequential recommendation. In 2018 IEEE 769
international conference on data mining (ICDM), 770
pages 197–206. IEEE. 771

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 772
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 773
harwal. 2022. Decomposed prompting: A modular 774
approach for solving complex tasks. arXiv preprint 775
arXiv:2210.02406. 776

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 777
method for stochastic optimization. arXiv preprint 778
arXiv:1412.6980. 779

Varsha Kishore, Chao Wan, Justin Lovelace, Yoav 780
Artzi, and Kilian Q Weinberger. 2023. Incdsi: in- 781
crementally updatable document retrieval. In Inter- 782
national Conference on Machine Learning, pages 783
17122–17134. PMLR. 784

Isaac S Kohane and Marinka Zitnik. Deep learning for 785
diagnosing patients with rare genetic diseases. 786

K Krishna and M Narasimha Murty. 1999. Genetic 787
k-means algorithm. IEEE Transactions on Sys- 788
tems, Man, and Cybernetics, Part B (Cybernetics), 789
29(3):433–439. 790

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, 791
and Wook-Shin Han. 2022. Autoregressive image 792
generation using residual quantization. In Proceed- 793
ings of the IEEE/CVF Conference on Computer Vi- 794
sion and Pattern Recognition, pages 11523–11532. 795

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 796
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 797
2023a. Llm+ p: Empowering large language models 798
with optimal planning proficiency. arXiv preprint 799
arXiv:2304.11477. 800

Qijiong Liu, Hengchang Hu, Jiahao Wu, Jieming Zhu, 801
Min-Yen Kan, and Xiao-Ming Wu. 2024a. Discrete 802
semantic tokenization for deep ctr prediction. In 803
Companion Proceedings of the ACM on Web Confer- 804
ence 2024, pages 919–922. 805

Qijiong Liu, Jieming Zhu, Lu Fan, Zhou Zhao, and 806
Xiao-Ming Wu. 2024b. Store: Streamlining semantic 807
tokenization and generative recommendation with a 808
single llm. arXiv preprint arXiv:2409.07276. 809

Qijiong Liu, Jieming Zhu, Yanting Yang, Quanyu Dai, 810
Zhaocheng Du, Xiao-Ming Wu, Zhou Zhao, Rui 811
Zhang, and Zhenhua Dong. 2024c. Multimodal pre- 812
training, adaptation, and generation for recommen- 813
dation: A survey. In Proceedings of the 30th ACM 814
SIGKDD Conference on Knowledge Discovery and 815
Data Mining, pages 6566–6576. 816

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu- 817
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, 818
Kaiwen Men, Kejuan Yang, et al. 2023b. Agent- 819
bench: Evaluating llms as agents. arXiv preprint 820
arXiv:2308.03688. 821

10

Yulong Liu, Yunlong Yuan, Chunwei Wang, Jianhua822
Han, Yongqiang Ma, Li Zhang, Nanning Zheng, and823
Hang Xu. 2024d. From summary to action: Enhanc-824
ing large language models for complex tasks with825
open world apis. arXiv preprint arXiv:2402.18157.826

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-827
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and828
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-829
positional reasoning with large language models. Ad-830
vances in Neural Information Processing Systems,831
36:43447–43478.832

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,833
Delip Rao, Eric Wong, Marianna Apidianaki, and834
Chris Callison-Burch. 2023. Faithful chain-of-835
thought reasoning. arXiv preprint arXiv:2301.13379.836

Andrzej Maćkiewicz and Waldemar Ratajczak. 1993.837
Principal components analysis (pca). Computers &838
Geosciences, 19(3):303–342.839

Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa De-840
hghani, Vinh Q Tran, Jinfeng Rao, Marc Najork,841
Emma Strubell, and Donald Metzler. 2022. Dsi++:842
Updating transformer memory with new documents.843
arXiv preprint arXiv:2212.09744.844

Dheeraj Mekala, Jason Weston, Jack Lanchantin,845
Roberta Raileanu, Maria Lomeli, Jingbo Shang, and846
Jane Dwivedi-Yu. 2024. Toolverifier: Generaliza-847
tion to new tools via self-verification. arXiv preprint848
arXiv:2402.14158.849

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-850
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,851
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,852
Asli Celikyilmaz, et al. 2023. Augmented language853
models: a survey. arXiv preprint arXiv:2302.07842.854

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-855
ing to compress prompts with gist tokens. Advances856
in Neural Information Processing Systems, 36.857

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,858
Long Ouyang, Christina Kim, Christopher Hesse,859
Shantanu Jain, Vineet Kosaraju, William Saunders,860
et al. 2021. Webgpt: Browser-assisted question-861
answering with human feedback. arXiv preprint862
arXiv:2112.09332.863

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,864
Hannaneh Hajishirzi, Luke Zettlemoyer, and865
Marco Tulio Ribeiro. 2023. Art: Automatic multi-866
step reasoning and tool-use for large language mod-867
els. arXiv preprint arXiv:2303.09014.868

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:869
Tool augmented language models. arXiv preprint870
arXiv:2205.12255.871

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E872
Gonzalez. 2025. Gorilla: Large language model873
connected with massive apis. Advances in Neural874
Information Processing Systems, 37:126544–126565.875

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, 876
Tingwu Wang, Sanja Fidler, and Antonio Torralba. 877
2018. Virtualhome: Simulating household activities 878
via programs. In Proceedings of the IEEE conference 879
on computer vision and pattern recognition, pages 880
8494–8502. 881

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan 882
Liu, and Heng Ji. 2023. Creator: Tool creation for 883
disentangling abstract and concrete reasoning of large 884
language models. arXiv preprint arXiv:2305.14318. 885

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao 886
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding, 887
Huadong Wang, et al. 2023a. Webcpm: Interactive 888
web search for chinese long-form question answering. 889
arXiv preprint arXiv:2305.06849. 890

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 891
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, 892
Yufei Huang, Chaojun Xiao, et al. 2024. Tool learn- 893
ing with foundation models. ACM Computing Sur- 894
veys, 57(4):1–40. 895

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 896
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 897
Bill Qian, et al. 2023b. Toolllm: Facilitating large 898
language models to master 16000+ real-world apis. 899
arXiv preprint arXiv:2307.16789. 900

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 901
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 902
Wen. 2025. Tool learning with large language mod- 903
els: A survey. Frontiers of Computer Science, 904
19(8):198343. 905

Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. 906
2024. Tokenrec: Learning to tokenize id for llm- 907
based generative recommendation. arXiv preprint 908
arXiv:2406.10450. 909

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 910
and Yuxiong He. 2020. Zero: Memory optimizations 911
toward training trillion parameter models. In SC20: 912
International Conference for High Performance Com- 913
puting, Networking, Storage and Analysis, pages 1– 914
16. IEEE. 915

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghu- 916
nandan Hulikal Keshavan, Trung Vu, Lukasz Heldt, 917
Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. 918
2024. Recommender systems with generative re- 919
trieval. Advances in Neural Information Processing 920
Systems, 36. 921

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 922
probabilistic relevance framework: Bm25 and be- 923
yond. Foundations and Trends® in Information Re- 924
trieval, 3(4):333–389. 925

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 926
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 927
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 928
Toolformer: Language models can teach themselves 929
to use tools. Advances in Neural Information Pro- 930
cessing Systems, 36. 931

11

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,932
Weiming Lu, and Yueting Zhuang. 2023. Hugging-933
gpt: Solving ai tasks with chatgpt and its friends934
in hugging face. Advances in Neural Information935
Processing Systems, 36:38154–38180.936

Noah Shinn, Federico Cassano, Ashwin Gopinath,937
Karthik Narasimhan, and Shunyu Yao. 2024. Re-938
flexion: Language agents with verbal reinforcement939
learning. Advances in Neural Information Process-940
ing Systems, 36.941

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,942
and Jason Weston. 2021. Retrieval augmentation943
reduces hallucination in conversation. arXiv preprint944
arXiv:2104.07567.945

Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan946
Keshavan, Maheswaran Sathiamoorthy, Yilin Zheng,947
Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tan-948
don, et al. 2024. Better generalization with semantic949
ids: A case study in ranking for recommendations.950
In Proceedings of the 18th ACM Conference on Rec-951
ommender Systems, pages 1039–1044.952

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit953
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,954
Jesse Thomason, and Animesh Garg. 2023. Prog-955
prompt: Generating situated robot task plans using956
large language models. In 2023 IEEE International957
Conference on Robotics and Automation (ICRA),958
pages 11523–11530. IEEE.959

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,960
Han Qian, Mingbo Song, Hailiang Huang, Cheng961
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-962
necting large language models with real-world restful963
apis. arXiv preprint arXiv:2306.06624.964

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,965
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-966
quential recommendation with bidirectional encoder967
representations from transformer. In Proceedings of968
the 28th ACM international conference on informa-969
tion and knowledge management, pages 1441–1450.970

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang971
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,972
Dawei Yin, Maarten Rijke, and Zhaochun Ren. 2023.973
Learning to tokenize for generative retrieval. Ad-974
vances in Neural Information Processing Systems,975
36:46345–46361.976

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam977
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,978
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.979
2022. Lamda: Language models for dialog applica-980
tions. arXiv preprint arXiv:2201.08239.981

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural982
discrete representation learning. Advances in neural983
information processing systems, 30.984

Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and985
Ashish Kapoor. 2024. Chatgpt for robotics: Design986
principles and model abilities. IEEE Access.987

Boshi Wang, Hao Fang, Jason Eisner, Benjamin 988
Van Durme, and Yu Su. 2024a. Llms in the imaginar- 989
ium: tool learning through simulated trial and error. 990
arXiv preprint arXiv:2403.04746. 991

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timo- 992
thy Baldwin, and Haonan Li. 2024b. Toolgen: Uni- 993
fied tool retrieval and calling via generation. arXiv 994
preprint arXiv:2410.03439. 995

Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang, 996
Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat- 997
Seng Chua. 2024c. Learnable tokenizer for llm- 998
based generative recommendation. arXiv preprint 999
arXiv:2405.07314. 1000

Ye Wang, Jiahao Xun, Minjie Hong, Jieming Zhu, Tao 1001
Jin, Wang Lin, Haoyuan Li, Linjun Li, Yan Xia, Zhou 1002
Zhao, et al. 2024d. Eager: Two-stream generative 1003
recommender with behavior-semantic collaboration. 1004
In Proceedings of the 30th ACM SIGKDD Confer- 1005
ence on Knowledge Discovery and Data Mining, 1006
pages 3245–3254. 1007

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming 1008
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin 1009
Chi, Guoshuai Zhao, Zheng Liu, et al. 2022. A neural 1010
corpus indexer for document retrieval. Advances in 1011
Neural Information Processing Systems, 35:25600– 1012
25614. 1013

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong 1014
Wang, Zecheng Tang, and Nan Duan. 2023a. 1015
Visual chatgpt: Talking, drawing and editing 1016
with visual foundation models. arXiv preprint 1017
arXiv:2303.04671. 1018

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 1019
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 1020
Xiaoyun Zhang, and Chi Wang. 2023b. Auto- 1021
gen: Enabling next-gen llm applications via multi- 1022
agent conversation framework. arXiv preprint 1023
arXiv:2308.08155. 1024

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, 1025
and Harold Soh. 2023. Translating natural language 1026
to planning goals with large-language models. arXiv 1027
preprint arXiv:2302.05128. 1028

Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li. 1029
2024. Enhancing tool retrieval with iterative feed- 1030
back from large language models. arXiv preprint 1031
arXiv:2406.17465. 1032

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and 1033
Xindong Wu. 2023a. Chatgpt is not enough: Enhanc- 1034
ing large language models with knowledge graphs 1035
for fact-aware language modeling. arXiv preprint 1036
arXiv:2306.11489. 1037

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter 1038
Abbeel, and Dale Schuurmans. 2023b. Foundation 1039
models for decision making: Problems, methods, and 1040
opportunities. arXiv preprint arXiv:2303.04129. 1041

12

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak1042
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.1043
React: Synergizing reasoning and acting in language1044
models. arXiv preprint arXiv:2210.03629.1045

Yining Ye, Xin Cong, Yujia Qin, Yankai Lin, Zhiyuan1046
Liu, and Maosong Sun. 2023. Large language1047
model as autonomous decision maker. arXiv preprint1048
arXiv:2308.12519.1049

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen1050
Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023.1051
Where to go next for recommender systems? id-vs.1052
modality-based recommender models revisited. In1053
Proceedings of the 46th International ACM SIGIR1054
Conference on Research and Development in Infor-1055
mation Retrieval, pages 2639–2649.1056

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen,1057
Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.1058
2024a. Adapting large language models by integrat-1059
ing collaborative semantics for recommendation. In1060
2024 IEEE 40th International Conference on Data1061
Engineering (ICDE), pages 1435–1448. IEEE.1062

Yuanhang Zheng, Peng Li, Wei Liu, Yang Liu, Jian1063
Luan, and Bin Wang. 2024b. Toolrerank: Adap-1064
tive and hierarchy-aware reranking for tool retrieval.1065
arXiv preprint arXiv:2403.06551.1066

Yuanhang Zheng, Peng Li, Ming Yan, Ji Zhang, Fei1067
Huang, and Yang Liu. 2024c. Budget-constrained1068
tool learning with planning. arXiv preprint1069
arXiv:2402.15960.1070

Jieming Zhu, Mengqun Jin, Qijiong Liu, Zexuan Qiu,1071
Zhenhua Dong, and Xiu Li. 2024. Cost: Contrastive1072
quantization based semantic tokenization for gener-1073
ative recommendation. In Proceedings of the 18th1074
ACM Conference on Recommender Systems, pages1075
969–974.1076

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,1077
and Chao Zhang. 2023. Toolqa: A dataset for llm1078
question answering with external tools. Advances in1079
Neural Information Processing Systems, 36:50117–1080
50143.1081

A Dataset1082

The ToolBench dataset, introduced by Qin et al.1083

(2023b), was automatically constructed using Chat-1084

GPT and supports both single-tool and multi-tool1085

usage scenarios. It involves the generation of in-1086

structions and tool call sequences for RESTful1087

APIs. The dataset comprises 16,464 real-world1088

RESTful APIs spanning 49 categories, such as so-1089

cial media, e-commerce, and weather services, to-1090

taling 46,985 unique API functions. In our paper,1091

each API function is treated as an individual tool1092

and represented using a semantic code sequence.1093

Figure 4 illustrates a real RESTful API example,1094

where each entry in the api_list corresponds to a 1095

single API function. In our experiments, we utilize 1096

the following fields: "tool_name" and "name", 1097

"description", "categories", and "code". 1098

Following the setup of Qin et al. (2023b), we 1099

construct our training and evaluation sets based on 1100

three subsets: I1 for single-tool queries, I2 with 1101

multi-tool queries from the same category, and I3 1102

with multi-tool queries from the same collection. I2 1103

and I3 are created by randomly selecting 2–5 REST- 1104

ful APIs from the same category or collection in 1105

RapidAPI and sampling up to 3 API functions per 1106

RESTful API to form each instruction sample. The 1107

resulting subsets contain 87,413 (I1), 84,815 (I2), 1108

and 25,251 (I3) Query-Tool pairs, respectively. 1109

In the semantic compression stage, tool docu- 1110

mentation serves as input, and the objective is to 1111

reconstruct individual fields such as category, tool 1112

name, code, and description. Consequently, each 1113

tool document generates m = 4 training instances, 1114

one for each reconstruction target. 1115

For the domain-specific training stage, we ex- 1116

tract Query-Tool pairs from ToolBench, using the 1117

query as input and the semantic code sequence of 1118

the relevant tools as output. Figure 5 shows an 1119

example training instance. Further, for the tool 1120

calling stage, we follow the procedure from Wang 1121

et al. (2024b), removing the system prompt tool de- 1122

scriptions and adopting a three-stage output format 1123

(Thought, Action, Action Input). We replace tool 1124

names in the trajectories with our code sequences 1125

and construct a mapping dictionary between tool 1126

names and their corresponding codes to enable doc- 1127

ument lookup during execution. Figure 6 presents 1128

an illustrative training example. 1129

Finally, Table 5 summarizes the data scale across 1130

each training phase. 1131

B Baselines and Tokenization Methods 1132

Baseline Models. In the tool retrieval comparison 1133

experiment, we adopted the following representa- 1134

tive retrieval models as the baseline for comparison 1135

with SGTC: 1136

• BM25: An unsupervised retrieval model that 1137

ranks documents by query relevance, using 1138

normalized term frequency and document 1139

length. 1140

• Embedding Similarity (EmbSim): utilizes sen- 1141

tence embeddings generated by OpenAI’s text- 1142

embedding-3-large model to compute seman- 1143

13

Table 5: Dataset statistics for the three-stage training.

Dataset Tool Tokenization Retrieval Tool CallingI1 I2 I3 All

Train 49,936 194,086 222,783 72,833 489,702 183,336

tic similarity between queries and tool docu-1144

ments.1145

• ToolRetriever (Qin et al., 2023b): A BERT-1146

based retriever trained using contrastive learn-1147

ing to distinguish between relevant and irrel-1148

evant tools by maximizing the similarity be-1149

tween queries and corresponding tools.1150

• ToolGen (Wang et al., 2024b): A unified1151

framework that integrates tool retrieval and1152

calling within large language models by repre-1153

senting each tool as an atomic token, enabling1154

the model to generate tool calls and arguments1155

directly.1156

In Appendix D, under the In-domain setting, we1157

also made a comparison with Re-Invoke and Iter-1158

Feedback:1159

• Re-Invoke (Chen et al., 2024): An unsuper-1160

vised retrieval method that generates synthetic1161

queries to enrich tool documents and employs1162

large language models to extract user intent1163

during inference, using a multi-view similarity1164

ranking strategy to identify relevant tools.1165

• IterFeedback (Xu et al., 2024): A retrieval1166

method that incorporates iterative feedback1167

from large language models, using a BERT-1168

based retriever and prompting a language1169

model like gpt-3.5-turbo-0125 to refine re-1170

trieval over multiple rounds.1171

In the tool calling comparison experiment, apart1172

from the comparison with ToolGen, we further eval-1173

uate SGTC against the following baselines:1174

• GPT-4o-mini: We employ gpt-4o-mini-2024-1175

07-18 as a baseline, a cost-effective model in-1176

troduced by OpenAI, utilizing its tool-calling1177

capabilities to form a tool agent.1178

• ToolLlama-2 (Qin et al., 2023b): Developed1179

by fine-tuning the Llama-2 model on the Tool-1180

Bench dataset, enhancing its ability to interact1181

with external tools. In this article, we use1182

checkpoint which was open-sourced by Wang1183

et al. (2024b).1184

• ToolLlama (Wang et al., 2024b): Fine-tuned 1185

the Llama-3 model on the ToolBench dataset 1186

by Wang et al. (2024b). However, since they 1187

did not open source checkpoints, we directly 1188

used the data in their paper. 1189

Tokenization Methods. In 5.3, we compared 1190

structure-aware semantic with four tokenization 1191

methods: 1192

• Numerical: Use a unique numeric string to 1193

represent a tool. For example, if the toolkit 1194

contains 47,000 tools, then use a five-digit 1195

string to represent them, and the 3rd tool is 1196

represented as 0 0 0 0 3. 1197

• Hierarchical: Use a unique number to repre- 1198

sent a tool and at the same time use clustering 1199

to integrate all the numbers in the toolkit into 1200

a hierarchical tree. We continue to use the hi- 1201

erarchical coding of Wang et al. (2024b), like 1202

1 0 1 4 0. 1203

• Semantic: Represent a tool using one or more 1204

semantic tokens, for example, directly using 1205

the names of the API functions, for instance, 1206

compress_for_imagon. 1207

• Atomic: Each tool is represented by 1208

a single unique token. ToolGen en- 1209

codes this as the combined string << 1210

tool_name&&api_name >> as a token. 1211

For instance, the API function compress from 1212

the RESTful API IMAGON is tokenized as 1213

<< IMAGON&&compress >>. 1214

C Experimental Setups 1215

Settings. As proposed by ToolGen and others, we 1216

adopt two evaluation settings: In-domain and Multi- 1217

domain. In Appendix D, we provide a comprehen- 1218

sive evaluation under both settings, while in the 1219

main paper, we report only the results under the 1220

Multi-domain setting. In the In-domain scenario, 1221

models are restricted to retrieving and reasoning 1222

over tools within the same domain (I1, I2, and I3), 1223

whereas the Multi-domain setup requires operating 1224

14

Table 6: Tool retrieval evaluation across two settings: In-domain and Multi-domain. * represents the results
disclosed in Wang et al. (2024b), while the others are the results we re-implemented based on the open-source
checkpoints.

Model I1 I2 I3
NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

In-domain
BM25* 29.46 31.12 33.27 24.13 25.29 27.65 32.00 25.88 29.78
EmbSim* 63.67 61.03 65.37 49.11 42.27 46.56 53.00 46.40 52.73
Re-Invoke* 69.47 - 61.10 54.56 - 53.79 59.65 - 59.55
IterFeedback* 90.70 90.95 92.47 89.01 85.46 87.10 91.74 87.94 90.20
ToolRetriever* 80.50 79.55 84.39 71.18 64.81 70.35 70.00 60.44 64.70
ToolGen* 89.17 90.85 92.67 91.45 88.79 91.13 87.00 85.59 90.16
BM25 29.25 31.04 33.49 26.50 25.97 27.96 32.00 25.88 29.78
EmbSim 61.00 57.78 62.31 54.00 45.31 49.54 54.00 46.56 52.91
ToolRetriever 83.50 83.67 88.66 72.00 73.27 80.40 70.00 70.01 77.21
ToolGen 91.00 92.15 94.11 87.50 88.52 90.81 87.00 85.35 90.08
SGTC 94.50 95.13 96.44 93.50 93.20 94.88 89.00 88.98 92.46

Multi-domain
BM25* 22.77 22.64 25.61 18.29 20.74 22.18 10.00 10.08 12.33
EmbSim* 54.00 50.82 55.86 40.84 36.67 39.55 18.00 17.77 20.70
ToolRetriever* 72.31 70.30 74.99 64.54 57.91 63.61 52.00 39.89 42.92
ToolGen* 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79
BM25 26.92 26.13 29.00 20.00 21.92 23.46 10.00 10.08 12.33
EmbSim 50.50 48.15 53.41 46.00 39.58 43.05 18.00 17.77 20.94
ToolRetriever 75.92 76.96 82.31 63.00 66.38 72.72 28.00 39.28 44.54
ToolGen 88.50 88.83 91.65 84.00 85.65 89.02 81.00 80.83 85.83
SGTC 93.00 93.87 94.85 90.50 92.26 93.68 89.00 88.16 91.98

Table 7: Tool retrieval evaluation under In-domain and Multi-domain settings, including results on I1-Tool., I1-Cat.,
and I2-Cat. subsets.

Model I1-Tool. I1-Cat. I2-Cat.
NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

In-domain
BM25 28.00 31.37 33.06 31.12 30.87 33.13 21.75 24.75 27.44
EmbSim 61.50 58.74 62.99 69.00 66.43 71.00 44.22 39.18 43.50
ToolRetriever 79.50 81.54 86.78 80.50 81.68 87.15 70.35 74.09 81.45
ToolGen 89.50 91.61 93.34 87.50 88.79 91.21 88.44 88.85 91.34
SGTC 88.50 91.60 93.24 95.00 95.78 96.43 92.96 92.98 93.99

Multi-domain
BM25 20.75 21.12 23.64 20.63 20.67 24.18 16.58 19.55 20.89
EmbSim 53.00 49.82 54.93 58.00 54.38 59.24 35.68 33.92 36.22
ToolRetriever 75.25 78.26 83.08 73.50 73.56 79.10 60.30 64.11 73.01
ToolGen 84.00 86.40 89.52 89.50 89.95 92.01 83.42 86.06 88.47
SGTC 91.00 92.20 93.89 93.00 93.56 94.92 91.96 91.06 92.97

over the full toolset, making it considerably more1225

challenging.1226

For the tool calling experiments, we evaluate two1227

configurations: with Ground Truth Tools (GT.) and1228

with Retriever. These two settings are motivated1229

by the fact that methods like ChatGPT and ToolL-1230

lama require an explicit list of candidate tools to1231

be included in the prompt. Therefore, the choice1232

between ground truth tools and tools selected by1233

a retriever significantly impacts performance. Fol-1234

lowing ToolGen, we treat the tools provided by1235

ChatGPT as the Ground Truth Tools for a given1236

query, and we employ a unified retriever (ToolRe-1237

triever) for the Retriever-based setting. For ToolL-1238

lama, candidate tools are directly included in the1239

prompt. For ToolGen and our proposed SGTC, 1240

in the GT. setting, we constrain the candidate tool 1241

space during the planning phase via a prefix prompt. 1242

In the Retriever setting, we rely entirely on gener- 1243

ation without using any external retriever module. 1244

Implementation Details. i) In the first training 1245

iteration, we start from a pre-trained Llama-3-8B 1246

model to learn tool knowledge representations. We 1247

optimize using the Adam optimizer (Kingma and 1248

Ba, 2014) with a learning rate of 1e−3, weight 1249

decay of 1e−4, batch size of 12, and LoRA con- 1250

figurations set to rank 32, alpha 128, dropout 0.1. 1251

The token block size is set to 2. After obtaining 1252

the output embeddings from the token block, we 1253

apply PCA (Maćkiewicz and Ratajczak, 1993) to 1254

15

Table 8: Tool calling evaluation performance on unseen instructions and unseen tools under two settings. Bold
values denote the highest performance, considering only the results reproduced in our experimental setting.

Model Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

GPT-3.5* GT. 56.60 47.80 54.64 58.90 60.70 54.60 - - - - - -
ToolLlama-2* GT. 53.37 41.98 46.45 - - - 47.27 59.43 27.87 - - -
ToolLlama* GT. 55.93 48.27 52.19 57.38 58.61 56.85 50.31 53.77 31.15 43.04 50.31 54.84
ToolGen* GT. 61.35 49.53 43.17 52.32 40.46 39.65 51.53 57.55 31.15 39.24 38.56 40.32
GPT-4o-mini GT. 52.66 43.40 33.06 50.11 49.46 52.82 - - - - - -
ToolLlama-2 GT. 36.30 17.30 7.92 31.86 39.54 21.24 25.77 20.75 21.31 25.94 35.95 15.32
ToolGen GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
SGTC GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

GPT-3.5* Retrieval 51.43 41.19 34.43 57.59 53.05 46.51 53.37 53.77 37.70 46.20 54.25 54.81
ToolLlama-2* Retrieval 56.13 49.21 34.70 - - - 50.92 53.77 21.31 - - -
ToolLlama* Retrieval 54.60 49.96 51.37 57.70 61.76 45.43 49.08 61.32 31.15 48.73 50.98 44.35
ToolGen* 56.13 52.20 47.54 56.54 49.46 51.96 50.92 62.26 34.42 40.51 39.87 37.90
GPT-4o-mini Retrieval 52.25 40.41 24.86 53.16 50.11 39.38 47.24 52.83 44.26 49.37 50.33 42.74
ToolLlama-2 Retrieval 28.94 24.69 10.93 28.48 36.93 19.09 25.15 30.19 24.59 26.58 27.45 20.16
ToolGen 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

Table 9: Evaluating tool retrieval via ablation studies in Multi-domain settings.

Model NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
w/o reframe embedding 86.50 88.50 80.00 88.89 88.76 84.11 92.10 92.05 89.79
w/o post-guided 90.50 85.00 79.00 91.47 87.92 82.68 93.41 91.11 89.17

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
w/o reframe embedding 86.00 88.00 86.43 89.92 91.04 87.26 92.26 92.88 90.27
w/o post-guided 89.00 92.00 88.44 89.85 93.65 88.87 92.65 94.60 91.52

reduce the dimensionality to 32. We then cluster1255

each position into 512 clusters using a two-level1256

residual quantization scheme. The resulting coding1257

sequence length is 4. ii) Next, we replace all tool1258

mentions in the ToolBench training text with their1259

semantic code sequences, and we expand the vocab-1260

ulary of Llama-3-8B by adding 2,048 new tokens1261

(512× 4). These new tokens are initialized follow-1262

ing the method described in Section 4.1. iii) Based1263

on this extended model, we train it on two tasks:1264

Query-Tool pairs and Trajectories. We employ a1265

cosine learning rate scheduler with a 3% warm-up1266

ratio and a maximum learning rate of 4×10−5. For1267

trajectory inputs, the context length is truncated to1268

6144 tokens. The total batch size is set to 1× 64,1269

where 64 denotes the number of gradient accumu-1270

lation steps. iv) After completing the above steps,1271

we treat the resulting model as the base model for1272

the second iteration and repeat steps i, ii, and iii.1273

In terms of computation resources, step i is1274

trained on a single A100 GPU, while steps ii and1275

iii require 4×A100 GPUs. We leverage Deepspeed1276

ZeRO-3 (Rajbhandari et al., 2020) and FlashAt-1277

tention (Dao et al., 2022; Dao, 2023) to optimize1278

training efficiency. We conduct two full training 1279

iterations. Each iteration includes 5 epochs of tool 1280

retrieval training and 2 epochs of tool calling train- 1281

ing. For the tool representation learning phase, 1282

we employ an early stopping mechanism, with an 1283

average of 6 epochs per run. 1284

D Comprehensive Results 1285

D.1 Main experiments 1286

Tables 6 and 7 provide a more comprehensive eval- 1287

uation of the tool retrieval stage. Beyond the results 1288

presented in the main text, we include experiments 1289

under both In-domain and Multi-domain settings, 1290

and compare our reproduced results with those re- 1291

ported by Wang et al. (2024b). The close match 1292

between our results and theirs indicates that our 1293

data preparation and experimental configurations 1294

are well aligned. 1295

Notably, SGTC significantly outperforms Iter- 1296

Feedback, which is a more complex retrieval sys- 1297

tem involving multiple models and a feedback 1298

mechanism, across both settings, despite being a 1299

single-model solution. This highlights the strength 1300

and efficiency of our approach in addressing chal- 1301

16

lenging real-world retrieval tasks. Additionally,1302

since Wang et al. (2024b) did not report results on1303

the Tool. and Cat. datasets, we include them in1304

Table 7. SGTC demonstrates robust generalization1305

to unseen tools, maintaining strong performance1306

even in open-set conditions.1307

In Table 8, we include experimental results from1308

Wang et al. (2024b). Their reported SoPR scores1309

are generally higher than those we reproduced,1310

likely due to their use of GPT-3.5 as both the dialog1311

agent and evaluator—potentially enhanced through1312

additional tool-use-specific tuning. However, con-1313

sidering the significantly higher cost of GPT-3.51314

and the fact that it is no longer state-of-the-art, we1315

adopt GPT-4o-mini for evaluation in our experi-1316

ments. For consistency in SoWR evaluation, we1317

also use GPT-4o-mini (GT.) as the reference model.1318

While the effectiveness of this evaluation is par-1319

tially influenced by the choice of evaluator (GPT-1320

3.5 vs. GPT-4o-mini), our method, SGTC, still1321

demonstrates competitive performance without ad-1322

ditional intervention from the ground truth model1323

(GT.). Notably, on the I1 and I2 subsets, SGTC1324

surpasses GPT-3.5 (GT.) with task completion1325

rates of 62.78% and 52.04%, respectively. Even1326

against the retrieval-augmented GPT-3.5, SGTC1327

achieves comparable results, falling behind only on1328

I1-Tool. These findings highlight the robustness1329

of our approach in real-world scenarios involving1330

large-scale tool utilization.1331

Note that we do not report the SoWR results1332

of GPT-4o-mini Retrieval in the main text, as we1333

observed a strong preference for its own answers,1334

which introduces evaluation bias. To ensure a fair1335

comparison with other methods, we exclude these1336

results from the main discussion but provide the1337

complete results in the appendix.1338

D.2 Ablation experiment1339

Table 9 presents the complete ablation results, cor-1340

responding to the visualization shown in Figure 2.1341

D.3 Tokenization comparisons1342

we perform a statistical comparison of how many1343

subtokens are required to represent each tool across1344

different tokenization methods (see Figure 3). The1345

results show that structure-aware semantic tok-1346

enization achieves compact and efficient represen-1347

tations, with an average subtoken count second1348

only to Atomic (which uses exactly one token per1349

tool). In contrast, Semantic and Hierarchical strate-1350

gies exhibit highly variable subtoken lengths across1351

Figure 3: The distribution of the number of subtokens
per tool.

tools—some being very short, others excessively 1352

long—resulting in a scattered distribution that may 1353

hinder effective model learning. Notably, both our 1354

method and Numerical/Atomic use fixed-length se- 1355

quences, which contribute to greater stability and 1356

learnability in representation. 1357

Furthermore, We augment the experimental re- 1358

sults related to various tokenization strategies in 1359

Table 10 and Table 11, incorporating both repro- 1360

duced outcomes and reported results from Wang 1361

et al. (2024b). The more comprehensive compar- 1362

isons reveal that SGTC consistently outperforms 1363

all competing methods across all datasets, estab- 1364

lishing itself as the state-of-the-art in both tool re- 1365

trieval (NDCG) and tool calling (SoPR and SoPW) 1366

tasks. Notably, SGTC demonstrates clear advan- 1367

tages in long-tail retrieval scenarios, achieving im- 1368

provements of 2.91 to 6.15 NDCG@5 points over 1369

the Atomic baseline. This gain can be attributed to 1370

its fine-grained semantic modeling. In contrast, ap- 1371

proaches like Semantic and Atomic, while compet- 1372

itive in isolated scenarios (e.g., Semantic achieves 1373

92.96 NDCG@5 on I1), lack dynamic optimiza- 1374

tion mechanisms, which hinders their ability to 1375

generalize in multi-tool interaction settings. 1376

Interestingly, we observe that further training on 1377

Trajectories after pretraining with Query-Tool pairs 1378

tends to degrade NDCG performance. As shown 1379

in Table 10, the most significant drops are seen in 1380

the Numerical and Hierarchical methods, followed 1381

by Atomic. In contrast, Semantic and SGTC ex- 1382

perience only marginal degradation, with SGTC 1383

exhibiting the most stable performance across al- 1384

most all datasets. This degradation may stem from 1385

the distributional mismatch between the Query- 1386

Tool supervision and the sequential supervision 1387

in Trajectories. While Query-Tool pairs provide 1388

17

Table 10: Retrieval performance of different tokenization methods in the Multi-domain setting. The results of
ToolGen are directly adopted as the baseline for the Atomic. Results marked with ∗ are directly taken from the
original paper (Wang et al., 2024b). All other results are re-evaluated using open-source checkpoints. † indicates
models trained with Trajectories, while others are trained with Query-Tool pairs only.

Tokenization NDCG@1 NDCG@3 NDCG@5
I1 I2 I3 I1 I2 I3 I1 I2 I3

Numerical* 83.17 79.20 71.00 84.99 79.23 74.81 88.73 83.88 82.95
Hierarchical* 85.67 82.22 78.50 87.38 82.70 79.47 90.26 86.63 84.15
Semantic* 89.17 83.71 82.00 91.29 84.51 78.86 93.29 88.22 85.43
Atomic* 87.67 83.46 79.00 88.84 86.24 79.80 91.54 88.84 84.79
Numerical 82.00 77.50 81.91 84.18 77.53 76.51 70.00 88.07 84.30
Numerical† 58.50 ↓ 23.5 49.50↓ 28.0 45.00↓ 36.91 65.78↓ 18.4 56.86↓ 20.67 55.88↓ 20.63 73.62↑ 3.62 63.41↓ 24.66 65.96↓ 18.34
Hierarchical 87.50 77.50 79.00 86.11 78.82 81.44 89.91 83.81 87.47
Hierarchical† 66.00↓ 21.5 61.50↓ 16.0 62.00↓ 17.0 70.33↓ 15.78 64.50↓ 14.32 71.07↓ 10.37 77.89↓ 12.02 71.81↓ 12.0 80.01↓ 7.46
Semantic 90.00 84.50 84.00 91.56 84.33 79.41 92.96 88.44 87.40
Semantic† 86.50↓ 3.5 80.00↓ 4.5 72.00↓ 12.0 86.92↓ 4.64 78.21↓ 6.12 73.45↓ 5.96 90.51↓ 2.45 83.73↓ 4.71 83.34↓ 4.06
Atomic 88.50 84.00 81.00 88.83 85.65 80.83 91.65 89.02 85.83
Atomic† 86.5↓ 2.0 76.00↓ 8.0 73.00↓ 8.0 85.76↓ 3.07 75.68↓ 9.97 74.65↓ 6.18 89.99↓ 1.66 81.92↓ 7.1 83.15↓ 2.68
SGTC 93.00 90.50 89.00 93.87 92.26 88.16 94.85 93.68 91.98
SGTC† 89.00↓ 4.0 90.00↓ 0.5 84.00↓ 5.0 89.91↓ 3.96 86.21↓ 6.05 79.87↓ 8.29 92.44↓ 2.41 91.15↓ 2.53 87.11↓ 4.87

I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat. I1-Tool. I1-Cat. I2-Cat.
Numerical 83.50 81.50 79.39 85.04 85.57 80.90 88.06 88.88 85.13
Numerical† 68.50↓ 15.0 57.50↓ 24.0 50.75↓ 28.64 73.09↓ 11.95 63.43↓ 22.14 58.68↓ 22.22 77.19↓ 10.87 70.72↓ 18.16 65.25↓ 19.88
Hierarchical 80.50 87.50 86.43 85.48 88.59 86.08 88.19 91.19 89.04
Hierarchical† 72.00↓ 8.5 52.50↓ 35.0 62.81↓ 23.62 71.94↓ 13.54 62.76↓ 25.83 67.07↓ 19.01 79.44↓ 8.75 70.58↓ 20.61 74.33↓ 14.71
Semantic 87.50 89.50 82.91 89.98 90.45 84.44 92.12 93.26 88.03
Semantic† 85.50↓ 2.0 86.00↓ 3.5 72.36↓ 10.55 85.88↓ 4.1 85.96↓ 4.49 77.07↓ 7.33 89.67↓ 2.45 89.39↓ 3.87 82.33↓ 5.7
Atomic 84.00 89.50 83.42 86.40 89.95 86.06 89.52 92.01 88.47
Atomic† 78.00↓ 6.0 80.50↓ 9.0 70.85↓ 12.57 79.16↓ 7.24 82.42↓ 7.53 73.09↓ 12.97 84.08↓ 5.44 86.63↓ 5.38 78.44↓ 10.03
SGTC 91.00 93.00 91.96 92.20 93.56 91.06 93.89 94.92 92.97
SGTC† 88.00↓ 3.0 89.50↓ 3.5 88.44↓ 3.52 87.62↓ 4.58 89.57↓ 3.99 86.54↓ 4.52 91.75↓ 2.14 92.34↓ 2.58 90.69↓ 2.28

explicit relevance signals, Trajectories often intro-1389

duce noise or indirect supervision, which may mis-1390

lead models lacking strong semantic grounding.1391

The robustness of SGTC can likely be attributed to1392

its structure-aware and semantics-preserving tok-1393

enization, which helps maintain consistency across1394

different training paradigms.1395

18

Table 11: Tool calling evaluation for different tokenization methods. ∗ indicates results reproduced from Wang
et al. (2024b), where GPT-3.5 was used as the dialogue model, and GPT-3.5 GT. served as the reference model for
SoWR. In contrast, our experiments are conducted using GPT-4o-mini. Bold values denote the highest performance,
considering only the results reproduced in our experimental setting.

Tokenization Setting SoPR SoWR
I1 I2 I3 I1-Tool. I1-Cat. I2-Cat. I1 I2 I3 I1-Tool. I1-Cat. I2-Cat.

Numerical GT. 23.21 14.15 12.30 25.42 25.49 15.59 20.86 15.09 22.95 24.05 20.92 13.71
Hierarchical GT. 30.27 18.24 4.92 28.06 33.33 14.52 22.09 20.75 18.03 24.05 25.49 10.48
Semantic GT. 51.74 34.59 21.58 36.81 52.07 29.84 39.87 36.79 27.87 29.75 45.10 25.00
Atomic GT. 47.85 34.91 29.23 35.76 41.29 25.27 38.65 35.85 37.70 25.31 33.33 22.58
SGTC GT. 60.22 44.03 27.87 44.20 51.09 39.65 39.88 43.40 40.98 37.97 47.06 31.45

Numerical* 34.76 29.87 46.99 - - - 25.77 33.02 29.51 - - -
Hierarchical* 50.20 45.60 32.79 - - - 38.04 43.40 29.51 - - -
Semantic* 58.79 45.28 44.81 - - - 49.69 57.55 26.23 - - -
Atomic* 58.08 56.13 44.81 - - - 47.85 57.55 29.51 - - -
Numerical 21.98 9.12 11.20 20.68 26.14 17.20 16.56 16.04 16.39 20.89 23.53 14.52
Hierarchical 39.16 20.28 17.49 36.29 31.81 14.92 29.45 28.30 26.23 29.11 24.83 14.52
Semantic 50.20 29.72 16.39 33.02 51.42 27.02 39.26 29.24 32.79 29.11 43.79 22.58
Atomic 52.97 45.13 36.34 45.36 55.56 45.56 36.20 42.45 49.18 32.91 42.48 37.90
SGTC 62.78 52.04 41.26 52.53 57.19 56.99 42.94 46.23 45.90 42.41 47.71 37.90

Figure 4: A real RESTful API example. The RESTful API contains one API function (tool).

19

Figure 5: Datasets examples for tool retrieval training. We use "user" role to represent inputs and "assistant" role
to represent outputs.

Figure 6: An example for tool calling training.

20

	Introduction
	Related Work
	Preliminaries
	Proposed Approach: SGTC
	Tool Tokenization
	Generative Calling
	Inference

	Experiments
	Experimental Setups
	Experimental Results
	Further Analysis

	Conclusions
	Dataset
	Baselines and Tokenization Methods
	Experimental Setups
	Comprehensive Results
	Main experiments
	Ablation experiment
	Tokenization comparisons

