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Abstract

Machine learning models are often personalized with information that is protected,
sensitive, self-reported, or costly to acquire. These models use information about
people but do not facilitate nor inform their consent. Individuals cannot opt out
of reporting personal information to a model, nor tell if they benefit from person-
alization in the first place. We introduce a family of classification models, called
participatory systems, that let individuals opt into personalization at prediction
time. We present a model-agnostic algorithm to learn participatory systems for
personalization with categorical group attributes. We conduct a comprehensive
empirical study of participatory systems in clinical prediction tasks, benchmarking
them with common approaches for personalization and imputation. Our results
demonstrate that participatory systems can facilitate and inform consent while
improving performance and data use across all groups who report personal data.

1 Introduction

Machine learning models routinely assign predictions to people — be it to screen a patient for a
mental illness [35], their risk of mortality in an ICU [44], or their likelihood of responding to
treatment [1]. Many models in such applications are designed to target heterogeneous subpopulations
using features that explicitly encode personal information. Typically, models are personalized with
categorical attributes that define groups [i.e., “categorization” as per 27]. In medicine, for example,
clinical prediction models use group attributes that are protected (e.g., sex in the ASCVD Score
for cardiovascular disease), sensitive (e.g., HIV_status in the VA COVID-19 Mortality Score),
self-reported (e.g., alcohol_use in the HAS-BLED Score for Major Bleeding Risk), or costly to
acquire (e.g., leukocytosis in the Alvarado Appendicitis Score).

Individuals expect the right to opt out of providing personal data and the ability to understand how
it will be used [see, e.g., personal data guidelines in GDPR, OECD privacy guidelines 26, 40]. In
many contexts, personalized models do not provide such functionality: individuals cannot opt out
of reporting data used to personalize their predictions nor tell if it would improve their predictions.
At the same time, practitioners assume that data available for training will be available at inference
time. In practice, this assumption has led to a proliferation of models that use information that
individuals may be unwilling or unable to report at prediction time [see e.g., the Denver HIV Risk
Score 29, which asks patients to report age, gender, race, and sexual_practices]. In tasks
where individuals self-report, they may not voluntarily report information that could improve their
predictions or may report incorrect information.

The broader need to facilitate and inform consent in personalized prediction tasks stems from the
fact that personalization may not improve performance for each group that reports personal data [51].
In practice, a personalized model can perform worse or the same as a generic model fit without
personal information for a group with specific characteristics. Such models violate the implicit
promise of personalization as individuals report personal information without receiving a tailored
performance gain in return. These instances of “worsenalization” are prevalent, hard to detect,
and hard to resolve [see 42, 51]. However, they would be resolved if individuals could opt out of
personalization and understand its expected gains (see Fig. 1).
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Figure 1: Classification task where participation improves accuracy and minimizes data use. We consider a
dataset that has no features, two group attributes G = sex X age, n~ = 51 negative examples and n™ = 50
positive examples. Here, the best personalized linear model » : X x G — ) with a one-hot encoding of G
makes 24 mistakes, and the best generic model ho : X x ) makes 50 mistakes as it predicts the majority class
(—). Under traditional personalization, individuals report group membership to receive personalized predictions
from h. As shown, personalization benefits the population as a whole by reducing overall error from 50 to 24
(ARg(h, ho) = 26). However, personalization has a detrimental effect on [female, 01d], who receive less
accurate predictions from the personalized model (ARg(h, ho) = —24), and no effect on [male, young]
who receive the same predictions from the personalized and generic models(ARg(h, ho) = 0). In a minimal
participatory system, individuals opt in to personalization, choosing to receive predictions from & or ho. Here,
individuals in groups [female, 01d] and [male, young] opt out of personalization, leading to an overall error
of 0 (ARg(h, ho) = 50) and a reduction in unnecessary data collection (2).

This work introduces a family of classification models that operationalize informed consent called
participatory systems. Participatory systems facilitate consent by allowing individuals to report
personal information at prediction time. Moreover, they inform consent by showing how reporting
personal information will change their predictions. Models that facilitate consent operate as markets
in which individuals trade personal information for performance gains. This work seeks to develop
systems that perform as well as possible both when individuals opt-in — to incentivize voluntary
reporting — and when they opt out — to safeguard against abstention. Our main contributions include:

1. We present a variety of participatory systems that provide opportunities for individuals to make
informed decisions about data provision. Each system ensures that individuals who opt into
personalization will receive the most accurate possible predictions possible.

2. We develop a model-agnostic algorithm to learn participatory systems. Our approach can produce
a variety of systems that promote participation and minimize data use in deployment.

3. We conduct a comprehensive study of participatory systems in real-world clinical prediction tasks.
The results show how our approach can facilitate and inform consent in a way that improves
performance and minimizes data use.

4. We provide a Python library to build and evaluate participatory systems.

Related Work Participatory systems support modern principles of responsible data use articulated
in OECD privacy guidelines [40], the GDPR [26], and the California Consumer Privacy Act [16].
These include: informed consent, i.e., that data should be collected with the data subject’s consent;
and collection limitation, i.e., that data collected should be restricted to only what is necessary. These
principles stem from extensive work on the right to data privacy [33]. They are motivated, in part, by
research showing that individuals care deeply about their ability to control personal data [4, §, 10]
but differ considerably in their desire or capacity to share it [see e.g. 5, 7, 9, 17, 18, 39, 41]. Our
proposed systems let decision subjects report personal data in exchange for performance, which is
aligned with principles articulated in recent work on data privacy [13, 46] and related to work in
designing incentive-compatible prediction functions [24].

We consider models that are personalized with categorical attributes that encode personal charac-
teristics [i.e., “categorization” rather than “individualization™ as per 27]. Modern techniques for
learning with categorical attributes [see e.g., 2, 48] use them to improve performance at a population
level — e.g., by accounting for higher-order interaction effects [14, 38, 58] or recursive partition-
ing [11, 12, 15, 25]. Our methods can be used to achieve these goals in tasks where models use
features that are optional or costly to acquire [see e.g., 6, 7, 52, 61].

Our work is related to algorithmic fairness in that we seek to improve model performance at a group
level. Recent work shows that personalization with group attributes does not uniformly improve
performance and can reduce accuracy at a group level [see 42, 51, 57]. Our systems can safeguard
against such instances of “worsenalization" by informing users of the gains in reporting and allowing
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them to opt out of reporting. This line of broad work complements research on preference-based
fairness [22, 36, 57, 59, 62], on ensuring fairness across complex group structures [28, 30, 34], and
promoting privacy across subpopulations [13, 53].

2 Participatory Systems

We consider a classification task where we personalize a model with categorical attributes. We start
with a dataset {(x;, y;,g;)}", where each example consists of a feature vector z; € RY, a label
y; € Y, and a vector of m categorical attributes g; = [gi1,-- -, gim] € G1 X ... X Gy, = G. We refer
to G as group attributes, and to g; as the group membership of person i. We use ng := |{i |g; = g}|
denote the size of group g, and use |G| to denote the number of categories for group attribute .

We use the dataset to train a personalized model i : X X G — ) via empirical risk minimization
with a loss function ¢ : Y x Y — R,. Given a model h, we denote its empirical risk and true risk
as R(h) and R(h), respectively, and evaluate model performance at the group level. We denote the
empirical risk and true risk of a model ~ on group g € G as

1
Mg i:gi=g
We consider tasks where every individual prefers more accurate predictions.
Assumption 1. Given models h and /’, individuals in group g prefer i to b’ when Rg4(h) < Rg(h').

Assumption 1 holds in settings where every individual prefers more accurate predictions —e.g., clinical
prediction tasks such as screening or diagnosing illnesses [49, 56]. It does not hold in applications
where some individuals prefer predictions that may be inaccurate — e.g., such as predicting the risk of
organ failure for a transplant [see e.g., 43, for other “polar” clinical applications].

Operationalizing Consent We consider models where individuals consent to personalization by
deciding whether or not to report their group attributes at prediction time. We let & denote an attribute
that was not reported, and let r; = [r;1,...,7%] € R C G x &. For example, a person with
g; = [female, HIV = +] would report r; = [female, &] if they only disclose sex, and would report
r; = @ := [&, @] if they opt out of reporting entirely.

We associate each model with a set of reporting options R. A traditional model, which requires each
person to report group attributes, has R = G. A model where each person could report any subset of
group attributes has R = G x &. We represent individual decisions to opt into personalization at
prediction time through a reporting interface defined below.

Definition 1. Given a personalized classification task with group attributes G, a reporting interface
is a tree T' whose nodes represent attributes reported at prediction time. The tree is rooted at
root(T) = [, ..., 2] and branches as a person reports personal attributes. Given a node 7, we
denote its parent as pa(r). Each parent-child pair represents a reporting decision, and the height of
the tree represents the maximum number of reporting decisions.

Definition 2. Given a personalized classification task with group attributes G, a participatory system
with reporting interface 7" is a prediction model f7 : X x R — ) that obeys the following properties:

(P1) Baseline Performance: Opting out of personalization entirely guarantees the expected perfor-
mance from a generic model trained without group attributes hy € argmin, o, R(h).

R, (fr(-,@)) = Ry (ho) for all reporting groups r € R.

(P2) Incentive Compatibility: Opting into personalization improves expected performance
R.(fr(-,7)) < R(fr(-,7")) for all nested reporting groups 7,7’ € G x & such that ' = pa(r).
Here, the Baseline Performance property ensures that individuals who choose not to share personal

information receive the performance of a generic model — i.e., the most accurate model that could be
trained without this information. This property also ensures individuals retain the ability to opt out
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Figure 2: Participatory systems for a personalized classification task with group attributes sex x age =
[male, female] X [01ld, young]. Each system allows a person to opt out of personalization by reporting
& and informs their choice by showing the expected gains of personalization (e.g., +0 . 2% gain in accuracy).
Systems minimize data use by removing reporting options that do not improve accuracy (see grey-striped boxes).
Here, [young, female] is pruned in all systems as it leads to a gain < 0.0%.

of personalization —i.e., & € R. The Incentive Compatibility property ensures that personalization
will improve expected performance — i.e., when individuals report personal data, the system can
effectively leverage that data to deliver more accurate predictions in expectation. Together, these
properties lead to data minimization, as systems that obey these properties will not request data from
a reporting group when it will not lead to an improvement in expected performance.

On Data Minimization via Imputation An alternative approach to allow individuals to opt out of
reporting personal information at prediction time is to impute their group membership. Imputation
allows individuals to opt out of personalization but does not guarantee the accuracy of their predictions.
As aresult, individuals who opt out of personalization by reporting » = & may receive a less accurate
prediction than they would receive from a generic model. In the best-case scenario where we could
perfectly impute group membership, a group might be assigned better predictions from a generic
model (see Fig. 1). In the worst case, imputation may be incorrect, leading to even more inaccurate
predictions than those of the generic or personalized model. We highlight these effects on real-world
datasets in our experiments in Section 4.

Characterizing System Performance One of the key differences between traditional models and
participatory systems is that their performance depends on individual reporting decisions. In what
follows, we characterize the performance under a general model of individual disclosure. Given a
participatory system fr, we assume that each individual reports personal information to maximize an
individual utility function of the form:

ui(r; fr) = bi(r; fr) — ci(r) (1)

Here, ¢;() and b;(-) denote the cost and benefit that individual i receives from reporting 7 to fr
respectively. We assume that individuals incur no cost when they do not report any attributes such
that ¢; (&) = 0, and incur costs that increase monotonically with information disclosed such that
ci(r) < ¢;i(r') for r C r'. We assume that benefits increase monotonically with expected gains in
true risk so that R,.(fr(-,7)) < Rn(fr(-,7")) = bi(r, fr) > b;(v', fr).



In Fig. 3, we show how the system performance for each reporting group can change with respect
to participation when we simulate individual disclosure decisions from a model that satisfies the
assumptions listed above. When a personalized model h requires individuals to report information
that reduces performance as in Fig. 1, individuals incur a cost of disclosure without receiving a
benefit in return. In such cases, individuals who interact with a minimal system would opt out of
worsenalization and receive more accurate predictions from a generic model, thereby improving the
overall performance of the system.

We observe that the maximum utility that each individual can receive from a participatory system
can only increase as we add more reporting options. Thus, flat and sequential systems should exhibit
better performance than a minimal system.

Given a participatory system fr with reporting options R, a participatory system fr with more
reporting options R’ O R can only improve performance, —i.e., R(f7/) < R(fr). Similarly, the
system with more reporting options can only improve utility, — i.e., u;(v; fr+) > u;(7; fr) for all
individuals <.
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Figure 3: Performance profile of participatory systems for the saps dataset for each intersectional group in the
saps dataset. We plot out-of-sample performance for different levels of participation in the target population.
‘We control participation by varying the reporting cost in a simulated model of individual disclosure. As shown,
minimal and sequential systems outperform a generic model at a group level regardless of participation. In
regimes where the cost of disclosure is low, participation is high. Consequently, a minimal system will achieve
the same performance as a personalized model, and a sequential system will achieve the performance of the
component model for each supgroup. We provide details and results in Appendix D.

3 Learning Participatory Systems

This section describes a model-agnostic algorithm to learn participatory systems that ensures incentive
compatibility and baseline performance in deployment. We outline our procedure in Algorithm 1
to learn the three kinds of participatory systems in Fig. 2. The procedure takes as input a pool of
candidate models M, a dataset for model assignment D*¢" and a dataset for pruning DP™"°, It
outputs a collection of participatory systems that obey the properties described in Definition 2 on test
data. The procedure combines three routines to (1) generate viable reporting interfaces (Line 1); (2)
assign models over the interface (Line 3); (3) prune the system to limit unnecessary data collection
(Line 4). We present complete procedures for each routine in Appendix A and discuss them below.



Algorithm 1 Learning Participatory Systems

Input: M : {h XX G — y} . pool of candidate models
Input: DaSSign = {(a:z, gi, yl)};;&;gn assignment dataset
Input: pPne — {(ml, g, yl)}ﬂ"{ne pruning dataset
1: T+ ViabIeTrees(g, ’Damgn) |T| = 1 for minimal & flat systems
2: forT € T do
3: T + AssignModeIs(T, M, ’DaSSign) assign models
4 T + PruneLeaves(T, szrune) prune models
5: end for

Output T, collection of participatory systems

Model Pool Our procedure takes as input a pool of candidate models M to assign over a reporting
interface. At a minimum, every pool should contain two models: a personalized model h for
individuals who opt into personalization, and a generic model hy for individuals who opt out
of personalization. A single personalized model can perform unreliably across reporting groups
due to differences in the data distribution or trade-offs between groups. Using a pool of models
safeguards against these effects by drawing on models from different model classes that have been
personalized using different techniques for each reporting group. By default, we include models
trained specifically on the data for each reporting group, as such models can perform well on
heterogeneous subgroups [51, 57].

Enumerating Interfaces We call the ViableTrees routine in Line 1 to enumerate viable reporting
interfaces. We only call this routine for sequential systems since minimal and flat systems use a
single reporting interface that is known a priori. ViableTrees takes as input a group attributes G and
a dataset D*#"_ It returns all m-ary trees that obey constraints on sample size and reporting (e.g.,
users who report male should report age before HIV). By default, we only generate trees so that we
have sufficient data to estimate gains at each node of the reporting interface'. In general, ViableTrees
scales to tasks with < 8 group attributes. Beyond this limit, one can reduce the enumeration size by
specifying ordering constraints or a threshold number of trees to enumerate before stopping. For
a task with three binary group attributes, T contains 24 3-ary trees of depth 3. Given a complete
ordering of all 3 group attributes, however, T would have 1 tree. We can also consider a greedy
algorithm (see Appendix A.4), which may be practical for large-scale problems.

Model Assignment We assign each reporting group a model using the AssignModels routine in
Line 3. Given a reporting group 7, we consider all models that could use any subset of group attributes
in r. Thus, a group that reports age and sex could be assigned predictions from a model that requires
age, sex, both, or neither. This implies that we can always assign the generic model to any reporting
group, ensuring that the model at each node performs as well as the generic model on out-of-sample
data (i.e., baseline performance in Definition 2).

Pruning Reporting Options AssignModels may output trees that violate incentive compatibility
by requesting personal information that fails to improve performance. This can happen when the
routine assigns a model that performs equally well to nested reporting groups — see, e.g., Fig. 2 where
the Flat system assigns hg to [female, @] and [female, young].

We can avoid requesting data from reporting groups in such cases by calling the Prune routine in
Line 4. This routine takes as input a participatory system fr and a pruning dataset DP™"® and outputs
a system fr, with a pruned interface 7" C T . The routine uses a bottom-up pruning procedure that
calls a one-sided hypothesis test at each node:

Hy: Ap(r,pa(r)) <0 Hy : Ap(r,pa(r)) >0

The test checks if each reporting group 7 receives more accurate predictions from the personalized
model assigned to its current node or 7 its parent pa(r). Here, Hy assumes a reporting group prefers
the parent model. Thus, we reject Hy when we can reliably tell that f7(-, ) performs better for r on
the pruning dataset. The exact test should chosen based on the performance metric for the underlying

"For example, trees whose leaves contain at least one positive sample, one negative sample, and n, > d + 1
samples to avoid overfitting



prediction task. In general, we can use a bootstrap hypothesis test [20] and draw on more powerful
tests for salient performance metrics [e.g., 19, 21, 50, for accuracy and AUC].

On Computation Our approach provides several options to moderate the computation cost of
training a pool of models. For example, we can train only two models and build a minimal system.
Alternatively, we can also build a flat or sequential system using a limited number of models in
the pool. In practice, the primary bottleneck when building participatory systems is data rather
than compute. Given a finite sample dataset, we are limited in the number of categorical attributes
used for personalization. This is because we require a minimum number of samples for each
intersectional group to train a personalized model and evaluate its performance. Given that the
number of intersectional groups increases exponentially with each attribute, we quickly enter a regime
where we cannot reliably evaluate model performance for assignment and pruning [see 42].

On Customization Our procedure allows practitioners to learn systems for prediction tasks by
specifying the performance metric used in assignment and pruning. A suitable performance metric
should represent the gains we would show users (e.g., error for a diagnosis, AUC for triage, ECE for
risk assessment). Using a pool of models allows practitioners to optimize performance across groups,
which translates to gains at the population level. For sequential systems, the procedure outputs all
configurations, allowing practitioners to choose between systems based on criteria not known at
training time. For example, one can swap the trees to use a system that always requests HIV status
last. By default, we select the configuration that minimizes data collection across groups, such that
the ordering of attributes results leads to the most significant number of data requests pruned.

4 Experiments

We benchmark participatory systems on real-world clinical prediction tasks. Our goal is to evaluate
these approaches in terms of performance, data usage, and consent in applications where individuals
have a low reporting cost. We include code to reproduce these results in an Python library.

4.1 Setup

We consider six classification tasks for clinical decision support where we personalize a model with
group attributes that are protected or sensitive (see Table 2 and Appendix B). Each task pertains to
an application where we expect individuals to have a low cost of reporting and to report personal
information when there is any expected gain. This is because the information used for personalization
is readily available, relevant to the prediction task, and likely to be disclosed given legal protec-
tions related to the confidentiality of health data [4, 10, 54]. One exception is cardio_eicu and
cardio_mimic, which are personalized based on race and ethnicity. > We split each dataset into a
test sample (20% for evaluating out-of-sample performance) and a training sample (80% for training,
pruning, assignment, and estimating gains to show users). We train three kinds of personalized
models for each dataset:

e Static: These models are personalized using a one-hot encoding of group attributes (1Hot), and a
one-hot encoding of intersectional groups (mHot)

o Imputed: These are variants of static models where we impute the group membership for each person
(KNN-1Hot, KNN-mHot). In practice, personalized systems with imputation will range between the
performance for these systems and the performance of 1Hot and mHot.

 Participatory: These are participatory systems built using our approach. These include Minimal, a
minimal system built from 1Hot and its generic counterpart; and Flat and Seq, flat and sequential
systems built from 1Hot, mHot and their generic counterparts.

We train all models — personalized models and the components of participatory systems — from the
same model class and evaluate them using the metrics in Table 1. We repeat the experiments four
times, varying the model class (logistic regression, random forests) and the target performance metric
(error rate for decision-making tasks, AUC for ranking tasks) to evaluate the sensitivity of our findings
with respect to model classes and use cases.

The use of race in clinical risk scores should be approached with caution [60]; participatory systems offer
one way to safeguard against inappropriate use.
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Metric Definition Description

Overall 29 Ry (hg) Population-level performance of a personalized system/model, com-

Performance  g¢€¢ puted as a weighted average over all groups

Overall Gain 29 Ag(g, @) Population-level gain in performance of a personalized system/model
9€9 over its generic counterpart

Group Gains min / max Ag(g,2) Range of group-level gains of a personalized system/model over its
9= e generic counterpart across all groups

Rationality > Tfreject Ho) Number of rationality violations detected using a bootstrap test with
Violations g€g 100 resamples at a significance of 10% where Hy : Ag(g, &) > 0.
Imputation min Ag(g,9") Worst-case loss in performance due to incorrect imputation. This
Risk g metric can only be computed for static models

Options RIS Proportion of reporting options pruned from a system/model. Here, R
Pruned denotes all reporting options and R (k) denotes those after A is pruned
Data Use e % Proportion of group :?lttributes requested by h from each group, aver-

9€g aged over all groups in G

Table 1: Metrics used to evaluate performance, data use, and consent of personalized models and systems. We
report performance on a held-out test sample. We assume that individuals report group membership to static
models, do not report group membership to imputed models, and only report to participatory systems when
informed that it would lead to a strictly positive gain, as computed on the validation set in the training sample.

4.2 Discussion

We show results for logistic regression models and error rate in Table 2 and results for other model
classes and classification tasks in Appendix C. In what follows, we discuss these results.

On Performance Our results in Table 2 show that participatory systems can improve performance
across reporting groups. Here, Flat and Seq achieve the best overall performance on 6/6 datasets
and improve the gains from personalization for every reporting group on 5/6 datasets. In contrast,
traditional models improve overall performance while reducing performance at a group level (see
rationality violations on five datasets for 1Hot, mHot). The performance benefits from participatory
systems stem from (i) allowing users to opt out of these instances of “worsenalization” and (ii)
assigning personalized predictions with multiple models. Using Table 2, we can measure the impact
of (i) by comparing the performance of Minimal vs. 1Hot, and the impact of (ii) by comparing
the performance of Minimal to Flat (or Seq). For example, on apnea, 1Hot exhibits a significant
rationality violation for group [30_to_60, male], meaning they would have been better off with a
generic model. By comparing the performance of 1Hot to Minimal, we see that allowing users to opt
out of worsenalization reduces test error from 29.1% to 28.9%. By comparing the performance on
Minimal to Flat and Seq, we see that using multiple models can further reduce test error from 28.9%
t0 24.1%.

On Informed Consent Our results show how Flat and Seq systems can inform consent by allowing
users to report a subset of group attributes (e.g., by including reporting options such as [30+, &
or [@, HIV+]). Although both Flat and Seq systems allow for partial personalization, their capacity
to inform consent differs. In a flat system, users may inaccurately gauge the marginal benefit of
reporting an attribute by comparing the gains between reporting options. For example, in Fig. 4, users
who are HIV positive would see a gain of 3.7% for reporting [&, HIV+], and 16.7% for reporting
[30+, HIV+] and may mistakenly conclude that the gain of reporting age is 16.7% — 3.7% = 13.0%.
This estimate incorrectly presumes that the gains of 3.7% were distributed equally across age groups.
Sequential systems directly inform users of the gains for partial reporting. In the sequential system,
group [30+, HIV+] is informed that they would see a marginal gain of 21.5% for reporting age, while
group [<30, HIV+] is informed they would see a marginal gain of reporting age of 0.0%.

On Data Minimization Our results show that participatory systems perform better across all
groups while requesting less personal data on 6/6 datasets. For example, on cardio_eicu, Seq
reduces error by 11.3% compared to 1Hot while requesting, on average, 83.3% of the data needed by
1Hot. In general, participatory systems can limit data use where personalization does not improve



STATIC IMPUTED PARTICIPATORY
Dataset Metrics  1Hot mHot KNN-1Hot ~ KNN-mHot  Minimal Flat Seq
Overall Performance 29.1% 29.3% 29.0% 27.9% 28.9% 24.1% 24.3%
apnea Overall Gain 0.1% -0.1% 0.2% 1.3% 0.3% 51% 4.9%
n =1152,d = 26 Group Gains ~ -1.1%-12% -08%-04% -1.1%-12% -0.8%-04% 00%-12% 0.0%-138% -0.4% - 13.8%
G ={age,sex} Worsenalization 1 1 1 1 0 0 0
|G| = 6 groups Imputation Risk -4.9% -5.2%
Ustun et al. [55] Options Pruned 0/6 0/6 0/12 0/12 4/7 5/12 6/12
Data Use 100.0% 100.0% 0.0% 0.0% 33.3% 83.3% 58.3%
Overall Performance 21.4% 21.5% 21.6% 22.1% 21.6% 10.2% 10.2%
cardio_eicu Overall Gain 0.4% 0.3% 0.3% -0.2% 0.3% 11.7% 11.7%
n=1341,d =49 Group Gains ~ -1.3% -2.6% -2.7%-3.0% -13%-2.6% -2.7%-3.0% 0.0%-2.6% 3.1%-209% 3.1%-20.9%
G ={age, sex,race} Worsenalization 1 1 1 1 0 0 0
|G| = 8 groups Imputation Risk -4.6% -5.4%
Pollard et al. [44] Options Pruned 0/8 0/8 0/27 027 6/9 10727 9/27
Data Use 100.0% 100.0% 0.0% 0.0% 25.0% 100.0% 83.3%
Overall Performance 19.4% 19.3% 19.3% 20.1% 19.2% 15.7% 15.7%
cardio_mimic Overall Gain -0.1% -0.0% -0.0% -0.8% 0.1% 3.5% 3.5%
n = 5289,d = 49 Group Gains  -09% -04% -09%-0.5% -09%-04% -09%-05% 0.0%-04% -1.6% —9.8% -1.6% - 9.8%
G = {age,sex,race} Worsenalization 3 2 3 2 0 1 1
|G| = 8 groups Imputation Risk -1.1% -1.1%
Johnson et al. [32] Options Pruned 0/8 0/8 0/27 027 6/9 6/27 8127
Data Use 100.0% 100.0% 0.0% 0.0% 25.0% 100.0% 91.7%
Overall Performance 37.0% 36.7% 37.0% 36.9% 37.0% 36.6% 36.1%
coloncancer Overall Gain 0.1% 0.4% 0.1% 0.2% 0.1% 0.5% 1.0%
n=29211,d =72 Group Gains ~ -04%-03% -0.1%-1.1% -04%-03% -0.1%-11% 0.0%-03% 0.0%-1.7% 02% - 1.7%
G ={age, sex} Worsenalization 1 0 1 0 0 0 0
|G| = 6 groups Imputation Risk -1.4% 0.9%
Scosyrev et al. [45] Options Pruned 0/6 0/6 0/12 0/12 5/7 7712 5/12
Data Use 100.0% 100.0% 0.0% 0.0% 16.7% 50.0% 75.0%
Overall Performance 19.6% 19.6% 19.9% 19.8% 19.5% 18.9% 18.9%
lungcancer Overall Gain -0.1% -0.1% -0.3% -0.2% 0.0% 0.6% 0.6%
n =120641,d = 84 Group Gains  -04%-0.2% -03%-02% -04%-02% -03%-02% 0.0%-0.0% 0.0%-0.9% 0.3% - 0.9%
G ={age, sex} Worsenalization 4 4 4 4 0 0 0
|G| = 6 groups Imputation Risk -0.5% -0.5%
Scosyrev et al. [45] Options Pruned 0/6 0/6 0/12 0/12 6/7 3/12 712
Data Use 100.0% 100.0% 0.0% 0.0% 0.0% 83.3% 58.3%
Overall Performance 20.4% 20.7% 20.4% 29.4% 20.4% 11.1% 11.1%
saps Overall Gain 1.3% 1.0% 1.3% -1.7% 1.3% 10.6% 10.6%
n ="7797,d = 36 Group Gains ~ 0.0% — 3.6% 0.0% - 2.7% 0.0% - 3.6% 0.0% —2.7% 0.0% -3.6% 43%—-172% 4.3% —17.2%
G ={HIV,age} Worsenalization 0 0 0 0 0 0 0
|G| = 4 groups Imputation Risk 0.0% -2.4%
Allyn et al. [3] Options Pruned 0/4 0/4 0/9 0/9 1/5 1/9 3/9
Data Use 100.0% 100.0% 0.0% 0.0% 75.0% 100.0% 75.0%

Table 2: Participatory systems and personalized models for all datasets. We summarize metrics in Table 1 and
present results for other model classes and prediction tasks in Appendix C. The best performance across each
system is highlighted in green with bold text, and instances of worsenalization are highlighted in red.

performance, e.g., on lungcancer. Even as attributes like sex or age may be readily reported
by patients for any performance benefit, limiting data use is valuable when there is a tangible cost
associated with data collection — e.g., when models make use of rating scale for a mental disorder
that must be administered by a clinician [47]. The potential for data minimization varies substantially
across prediction tasks. On apnea, for example, we can prune six reporting options when building
a Seq for decision making (which optimizes error) but four options for Seq for ranking (which
optimizes AUC; see Appendix C.1). Overall, participatory systems satisfy “global data minimization’
as proposed in [13], in that they minimize the amount of per-user data requested while achieving the
quality of a system with access to the full data on average.

il

On the Benefits of a Model-Agnostic Approach Our findings highlight some of the benefits of a
model-agnostic approach, in which we can draw on a rich set of models to achieve better performance
while mitigating harm. The resulting system can balance training costs with performance benefits.
We can also ensure generalization across reporting groups — e.g., by including a generic model fit
from a complex model class and personalized models fit from a simpler model class. As expected,
fitting for a complex model class can lead to considerable changes in overall accuracy — e.g., we
can reduce overall test error for a personalized model from 20.4% to 14.1% on saps by fitting a
random forest rather than a logistic regression model (see Appendix C). However, a gain in overall
performance does not always translate to gains at the group level. On saps, for example, using a
random forest also introduces a rationality violation for one group.

On the Pitfalls of Imputation One of the simplest approaches to allow individuals to opt out
of personalization is to pair a personalized model with an imputation technique. Although this
approach can facilitate consent, it may violate the requirements in 2. Consider a personalized
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Figure 4: Participatory systems for the saps dataset. These models predict ICU mortality for groups defined
by G = HIV X age = [+, -] X [<30, 30+] using logistic regression component models. Here, hg is a
generic model, h; is a 1Hot model fit with a one-hot encoding of G, and hz - - - hy, are 1Hot and mHot models
fit for each reporting group. We show the gains of each reporting option above each box and highlight pruned
options in grey. For example, in Seq, the group (HIV+, 30+) sees an estimated 21.5% error reduction after
reporting HIV if they report age. In contrast, the group (HIV+, <30) sees no gain from reporting age in
addition to HIV status, so this option is pruned.

model that exhibits “worsenalization” in Fig. 1. Even if one could correctly impute the group
membership for every person, individuals may receive more accurate predictions from a generic
model hg. In practice, imputation is imperfect — as individuals who opt out of reporting their group
membership to a personalized model may be assigned “worse” predictions because they are imputed
the group membership of a different group. In such cases, opting out may be beneficial, making it
difficult for model developers to promote participation while informing consent. Our results highlight
the prevalence of these effects in practice. For example, on cardio_eicu the estimated “risk of
imputation” is —4.6% , indicating that every intersectional group can experience an increase of 4.6%
in the error rate as a result of incorrect imputation. The results for KNN-1Hot show that this potential
harm can be realized in practice using KNN-imputation, as we find that the imputed system leads to
rationality violations on 5/6 datasets.

S Concluding Remarks

We introduced a new family of classification models that allow individuals to report personal data
at prediction time. Our work focuses on personalization with group attributes; our approach could
be used to facilitate and inform consent in a broader class of prediction tasks. In such cases, the
key requirement for building a participatory system is that we can reliably estimate the gains of
personalization for each person who reports personal data.

Our results show that participatory systems can inform consent while improving performance and
reducing data use across groups. Reaping these benefits in practice will hinge on the ability to
effectively inform decision subjects on the impact of their reporting decisions. [4]. Even as there
may be good “default practices” for what kind of information we should show decision subjects,
practitioners should tailor this information to the application and target audience [23].

One common concern in using a participatory system arises when practitioners wish to collect data
from a model in deployment to improve its performance in the future. In practice, a participatory
system can thwart data collection in such settings by allowing individuals to opt out. In such cases,
we would note that this issue should be resolved in a way that is aligned with the principle of
purpose specification [40]. If the goal of data collection is to improve a model, then individuals could
always be asked to report information voluntarily for this purpose. If the goal of data collection is to
personalize predictions, then individuals should be able to opt out, especially when it may lead to
worse performance.
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A Supporting Material for Section 3

A.1 Enumeration Routine for Algorithm 1

We summarize the Enumeration routine in Algorithm 2. Algorithm 2 takes as input a set of group attributes G
and a dataset D and outputs a collection of reporting interfaces T that obey ordering and plausibility constraints.

Algorithm 2 Enumerate All Possible Reporting Trees for Reporting Options G
1: procedure VIABLETREES(G, D)

2: if dim(G) = 1 return [T5] base case: we are left with only a single attribute on which to branch
3: T+ []
4: for each group attribute A € [G1,...,Gi] do
5: T4 < reporting tree of depth 1 with |.A| leaves
6: S ViabIeTrees(g \ .A, D) all subtrees using all attributes except A
7: for IT in VaIidAssignments(& .A, D) do: each assignment is a permutation of | A| to leaves of T
8: T+ Tu TA.assign(H) extends the tree by assigning subtrees to each leaf
9: end for

10: end for

11: return T, reporting interfaces for group attributes G that obey plausibility and ordering constraints

12: end procedure

The routine enumerates all possible reporting interfaces for a given set of group attributes G through a recursive
branching process. Given a set of group attributes, the routine is called for each attribute that has yet to be
considered in the tree Line 4, ensuring a complete enumeration. We note that the routine is only called for
building Sequential systems since there is only one possible reporting interface for Minimal and Flat systems.

Enumerating all possible trees ensures we can recover the best tree given the selection criteria and allows
practitioners to choose between models based on other criteria. We generate trees that meet plausibility
constraints based on the dataset, such as having at least one negative and one positive sample and at least s total
samples at each leaf. In settings constrained by computational resources, we can impose additional stopping
criteria and modify the ordering to enumerate more plausible trees first or exclusively (e.g., by changing the
ordering of G or imposing constraints in VALIDASSIGNMENTS).

A.2  Assignment Routine for Algorithm 1

We summarize the routine for AssignModels procedure in Algorithm 3.

Algorithm 3 Assigning Models
1: procedure ASSIGNMODELS(T, M, D)

2: Q — [T I’OOT] initialize with the root of the tree, reporting group &
3: while @ is not empty do
4: T+ Q.pop()
5: M, ViabIeModeIs(M, ’I') filter M to models that can be assigned to r
6: h" argmin ér (h, D) assign the model with the best training performance
heMy

7: T.set_model(r, h*)
8: for r’ ¢ T.get_subg roups(r) do iterate through the children reporting groups of v
9: Q.enqueue(r’)

10: end for

11: end while

12: return 7" that maximizes gain for each reporting group

13: end procedure

Algorithm 3 takes as inputs a reporting tree 7", a pool candidate models M, and an assignment (training) dataset
D and outputs a tree 1" that maximizes the gains of reporting group information. The pool of candidate models is
filtered to viable models for each reporting group. Since the pool of candidate models includes the generic model
ho, each reporting group will have at least one viable model. We assign each reporting group the best-performing
model on the training set and default to the generic model ho when a better-performing personalized model is
not found. We assign performance on the training set and then prune using performance on the validation set to
avoid biased gain estimations.

15



A.3 Pruning Routine for Algorithm 1

We summarize the routine used for the PrunelLeaves procedure in Algorithm 1. The PrunelLeaves routine

Algorithm 4 Pruning Participatory Systems
1: procedure PRUNELEAVES(T, D)

2: Stack + [T.Ieaves} initialize stack with all leaves
3 repeat
4: r + Stack.pop()
5: h « T.get_model(r)
6: h' « T.get_model(pa(r))
7: if not Test(r, h, h/, D) then test gains to see if parent model is as good as leaf model
8: T.prune(r)
9: end if
10: if T.get_children (pa(r)) is empty then consider pruning the parent if the parent has become a leaf
11: Stack.enqueue(pa(r))
12: end if
13: until Stack is empty
14: return 7', reporting interface that ensures data collection leads to gain

15: end procedure

Algorithm 1 takes as input a reporting interface 7" and a validation sample D, and performs a bottom-up pruning
to output a reporting interface 7 that asks individuals to report attributes that are expected to lead to a gain. The
pruning decision at each leaf is based on a hypothesis test that evaluates the gains of reporting for a reporting
group on a validation dataset. This test has the form:

Ho: Rg(h) < Rg(h') vs. Ha: Rg(h) > Rg(h')

This procedure evaluates the gains of reporting by comparing the performance of a model assigned at a leaf
node h and a model assigned at a parent node h’ which does not use the reported information. Here, the null
hypothesis Hy assumes that the parent model performs as well as the leaf model — and thus, we reject the null
hypothesis when there is sufficient evidence to suggest that reporting will improve performance in deployment.
Our routine allows practitioners to specify the hypothesis test to compute the gains. By default, we use the
McNemar test for accuracy [21] and the Delong test for AUC [19, 50]. In general, we can use a bootstrap
hypothesis test [20].

A4 Greedy Induction of Sequential Reporting Interface

We present an additional routine to construct reporting interfaces for sequential systems in Algorithm 5. We
include this routine as an alternative option that can be used to construct a reporting interface in settings where it
may be impractical or undesirable to enumerate all possible reporting interfaces. The procedure results in a valid
reporting interface that ensures gains. However, it does not guarantee an optimal tree in terms of maximizing the
overall gain and does not allow to practitioners to choose between reporting interfaces after training.

Algorithm 5 Greedy Induction Routine for Sequential Reporting Interfaces
1: procedure GREEDYTREE(R)

2: T < empty reporting interface

3 repeat

4 for r € leaves(T") do

5 {AT-} — G ’I'[’L] =g { A} contains all heretofore unused attributes
6 A" < argmax 4 ¢ 4,.) Mily cr spit(A) A (r')r)

7: T .Sp“t(.A*) Split on attribute that maximizes worse-case gain
8 end for

9 until no splits are added

0 return 7', reporting interface that ensures gains for reporting each R.

1:

10:
11: end procedure

Algorithm 5 takes as input a collection of reporting options R and outputs a single reporting interface using a
greedy tree induction routine that chooses the attribute to report to maximize the minimum gain at each step.
The procedure uses the reporting options to iteratively construct a reporting tree that branches on all of the
attributes in R. The procedure considers each unused attribute for each splitting point and splits on the attribute
that provides the greatest minimum gain for the groups contained at that node.
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B Description of Datasets used in Section 4 — Experiments

We include additional information about the datasets used in Section 4.

Dataset Reference Outcome Variable n d m g

apnea Ustun et al. [55] patient has obstructive sleep apnea 1,152 28 6 {age, sex}
cardio_eicu Pollard et al. [44] patient with cardiogenic shock dies 1,341 49 8 {age, sex, race}
cardio_mimic Johnson et al. [32] patient with cardiogenic shock dies 5,280 49 8 {age, sex, race}
coloncancer Scosyrev et al. [45]  patient dies within 5 years 29,211 72 6 {age, sex}
lungcancer Scosyrev et al. [45]  patient dies within 5 years 120,641 84 6 {age, sex}
saps Allyn et al. [3] ICU mortality 7,797 36 4 {age, HIV}

Table 3: Datasets used to fit clinical prediction models in Section 4. Here: n denotes the number of examples in
each dataset; d denotes the number of features; G denotes the group attributes that are used for personalization;
and m = |G| denotes the number of intersectional groups. Each dataset is de-identified and available to the
public. The cardio_eicu, cardio_mimic, lungcancer datasets require access to public repositories
listed under the references. The saps and apnea datasets must be requested from the authors. The support
dataset can be downloaded directly from the URL below.

apnea We use the obstructive sleep apnea (OSA) dataset outlined in Ustun et al. [55]. This dataset includes a
cohort of 1,152 patients where 23% have OSA. We use all available features (e.g. BMI, comorbidities, age, and
sex) and binarize them, resulting in 26 binary features.

cardio_eicu & cardio_mimic Cardiogenic shock is an acute condition in which the heart cannot
provide sufficient blood to the vital organs [31]. These datasets are designed to predict cardiogenic shock for
patients in intensive care. Each dataset contains the same features, group attributes, and outcome variables
for patients in different cohorts. The cardio_eicu dataset contains records for a cohort of patients in the
Collaborative Research Database V2.0 [44]. The cardio_eicu dataset contains records for a cohort of
patients in the MIMIC-III [32] database. Here, the outcome variable indicates whether a patient in the ICU with
cardiogenic shock will die while in the ICU. The features encode the results of vital signs and routine lab tests
(e.g. systolic BP, heart rate, hemoglobin count) that were collected up to 24 hours before the onset of cardiogenic
shock.

lungcancer We consider a cohort of 120,641 patients who were diagnosed with lung cancer between
2004-2016 and monitored as part of the National Cancer Institute SEER study [45]. Here, the outcome variable
indicates if a patient dies within five years from any cause, and 16.9% of patients died within the first five years
from diagnosis. The cohort includes patients from Greater California, Georgia, Kentucky, New Jersey, and
Louisiana, and does not cover patients who were lost to follow-up (censored). Age and Sex were considered as
group attributes. The features reflect the morphology and histology of the tumor (e.g., size, metastasis, stage,
node count and location, number and location of notes) as well as interventions that were administered at the
time of diagnosis (e.g., surgery, chemo, radiology).

coloncancer We consider a cohort of 120,641 patients who were diagnosed with colorectal cancer between
2004-2016 and monitored as part of the National Cancer Institute SEER study [45]. Here, the outcome variable
indicates if a patient dies within five years from any cause, and 42.1% of patients die within the first five years
from diagnosis. The cohort includes patients from Greater California. Age and Sex were considered as group
attributes. The features reflect the morphology and histology of the tumor (e.g., size, metastasis, stage, node
count and location, number and location of notes) as well as interventions that were administered at the time of
diagnosis (e.g., surgery, chemo, radiology).

saps The Simplified Acute Physiology Score II (SAPS II) score predicts the risk of mortality of critically-ill
patients in intensive care [37]. The data contains records of 7,797 patients from 137 medical centers in 12
countries. Here, the outcome variable indicates whether a patient dies in the ICU, with 12.8% patient of patients
dying. The features reflect comorbidities, vital signs, and lab measurements.
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C Results for Different Model Classes and Prediction Tasks

In this Appendix, we present experimental results for additional model classes and prediction tasks. We produce
these results using the setup in Section 4.1, and summarize them in the same way as Table 2. We refer to them in
our discussion in Section 4.2.

C.1 Logistic Regression for Ranking (AUC)

STATIC IMPUTED PARTICIPATORY
Dataset Metrics  1Hot mHot KNN-1Hot KNN-mHot ~ Minimal Flat Seq
Overall Performance 0.774 0.774 0.776 0.776 0.776 0.851 0.851
apnea Overall G'?\in -0.002 -0.002 0.000 -0.000 0.000 0.074 0.074
n—1152.d = 26 Group Gains  -0.002-0.002  -0.002-0.003  -0.002-0.002 -0.002-0.003  0.000-0.002 0.004-0.115  0.004-0.115
G= {agé sex} Max Disparity 0.004 0.005 0.004 0.005 0.002 0.111 0.111
16l =6 gr(;ups Rat. Vi.olali(?ns 2 2 2 2 0 0 0
Ustun et al. [55] Imputation Risk -0.002 -0.002
Options Pruned 0/6 0/6 0/12 0/12 517 4/12 4/12
Data Use 100.0% 100.0% 0.0% 0.0% 16.7% 100.0% 83.3%
Overall Performance 0.864 0.863 0.863 0.862 0.865 0.966 0.966
cardio eicu Overall Gain 0.002 0.001 0.000 -0.001 0.002 0.103 0.103
n— 1341.7d — 49 Group Gains ~ -0.005-0.003  -0.010-0.010  -0.005-0.003 -0.010-0.010  0.000-0.003 0.010-0.180  0.010-0.180
G— {agé‘ sex, race} Max I?ispefrily 0.009 0.019 0.009 0.019 0.003 0.170 0.170
1G] = 8 groups ’ Rat. Vl.olaugns 3 3 3 3 0 0 0
Pollard et al, [44] Imputation Risk -0.005 -0.010
Options Pruned 0/8 08 0/27 0/27 6/9 13/27 11/27
Data Use 100.0% 100.0% 0.0% 0.0% 25.0% 100.0% 95.8%
Overall Performance 0.881 0.881 0.882 0.880 0.881 0.914 0.914
. L Overall Gain 0.000 0.000 0.002 -0.000 0.000 0.034 0.034
cardio_mimic N
n — 5280.d — 49 Group Gains  -0.001 -0.001  -0.001-0.001  -0.001-0.001  -0.001-0.001  0.000-0.001 0.008-0.057 0.008-0.057
G= {agé sex,race} Max Disparity 0.002 0.002 0.002 0.002 0.001 0.049 0.049
16l=8 gr(;ups ’ Rat. Vi.olali(?ns 3 3 3 3 0 0 0
Johnson et al. [32] Imputation Risk -0.001 -0.001
o Options Pruned 0/8 0/8 0/27 027 6/9 927 8127
Data Use 100.0% 100.0% 0.0% 0.0% 25.0% 100.0% 91.7%
Overall Performance 0.685 0.685 0.683 0.683 0.685 0.700 0.700
coloncancer Overall Gain 0.001 0.002 -0.000 -0.000 0.001 0.016 0.016
n—29211.d— 72 Group Gains ~ -0.001 -0.002  -0.001-0.001  -0.001-0.002 -0.001 -0.001  0.000-0.001 0.001 -0.021  0.001 -0.021
G = {age. sex} Max I?ispefrily 0.003 0.002 0.003 0.002 0.001 0.020 0.020
1G] = 6 groups Rat. Vl.olaugns 3 2 3 2 0 0 0
Scosyrev et al. [43] Imputation Risk -0.001 -0.002
Options Pruned 0/6 0/6 0/12 0/12 517 2/12 512
Data Use 100.0% 100.0% 0.0% 0.0% 16.7% 100.0% 75.0%
Overall Performance 0.855 0.855 0.852 0.854 0.855 0.861 0.861
lungcancer Overall G'?\in 0.001 0.001 -0.002 0.000 0.001 0.006 0.006
n— 120641, d — 84 Group Gains ~ -0.000-0.000  -0.000-0.000  -0.000-0.000  -0.000-0.000  0.000-0.000 0.001-0.012  0.001-0.012
G = {age ;ex} Max Disparity 0.001 0.001 0.001 0.001 0.000 0.011 0.011
16l =6 gr(;ups Rat. Vi.olali(?ns 2 2 2 2 1 0 0
Scosyrev et al. [45] Imputation Risk -0.000 -0.000
Options Pruned 0/6 0/6 0/12 0/12 417 2/12 2/12
Data Use 100.0% 100.0% 0.0% 0.0% 33.3% 100.0% 91.7%
Overall Performance 0.875 0.877 0.875 0.857 0.875 0.960 0.960
saps Overall Gain 0.010 0.011 0.010 -0.008 0.009 0.095 0.095
n— 7797.d — 36 Group Gains ~ -0.000-0.016  -0.002-0.019  -0.000-0.016  -0.002-0.019  0.000-0.016  0.035-0.141  0.035-0.141
G— {HI\’L age} Max I?ispefrily 0.017 0.021 0.017 0.021 0.016 0.106 0.106
1G] = 4 groups Rat. Vl.olaugns 1 1 1 1 0 0 0
Allyn et al. 3] Imputation Risk -0.000 -0.002
: Options Pruned 0/4 0/4 0/9 0/9 /5 2/9 3/9
Data Use 100.0% 100.0% 0.0% 0.0% 75.0% 100.0% 87.5%

Table 4: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test auc. We show the performance of models and systems built using logistic regression.
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C.2 Random Forests for Decision-Making (Error)

STATIC IMPUTED PARTICIPATORY
Dataset Metrics ~ 1Hot mHot KNN-1Hot ~ KNN-mHot  Minimal Flat Seq
Overall Performance 26.3% 26.0% 25.9% 27.4% 26.3% 12.2% 12.2%
apnea Overall Gain 1.5% 1.8% 1.9% 0.4% 1.5% 15.6% 15.6%
n=1152.d = 26 Group Gains ~ -0.8% -4.2% 04%-38%  -08%-42% 04%-38% 00%-42% 53%-222% 53%-222%
G= {agé. sex} Max ]?ispe?rity 5.0% 3.4% 5.0% 3.4% 4.2% 16.9% 16.9%
16/ =6 grdups Rat. V{()]atl(?ns 1 0 1 0 0 0 0
Ustun et al. [55] Imputation Risk -1.2% -1.2%
Options Pruned 0/6 0/6 0/12 0/12 217 1/12 2/12
Data Use 100.0% 100.0% 0.0% 0.0% 66.7% 100.0% 91.7%
Overall Performance 18.6% 17.8% 18.2% 18.6% 18.4% 5.7% 6.0%
cardio eicu Overall Gain -0.2% 0.6% 0.2% -0.2% 0.0% 12.7% 12.4%
n— 1341 d — 49 Group Gains ~ -3.5% - 1.4% -22%-3.0% -35%-14% -22%-3.0% 00%-00% 6.0%-149% 6.0% —14.9%
G= {agé sex, race} Max Disparity 4.9% 5.3% 4.9% 5.3% 0.0% 8.9% 8.9%
1] =8 gro’ups ’ Rat. Violations 2 2 2 2 0 0 0
Pollard et al. [44] Imputation Risk -3.5% -2.2%
) Options Pruned 0/8 0/8 0/27 0/27 8/9 11727 8/27
Data Use 100.0% 100.0% 0.0% 0.0% 0.0% 100.0% 91.7%
Overall Performance 19.9% 20.1% 19.9% 20.2% 19.6% 11.5% 11.4%
cardio mimic Overall Gain -0.3% -0.5% -0.3% -0.6% 0.0% 8.1% 8.1%
= 5280 d — 49 Group Gains ~ -1.1%-13% -13%-05% -11%-13% -13%-05% 00%-0.0% 10%-149% 1.0% -14.9%
G= {agé sex, race} Max ]?ispe?rity 2.4% 1.7% 2.4% 1.7% 0.0% 13.8% 13.8%
1] =8 gro’l.lps ’ Rat. V{o]atl(?ns 5 6 5 6 0 0 0
Johnson et al. [32] Imputation Risk -1.1% -1.3%
Options Pruned 0/8 0/8 0/27 0/27 8/9 6/27 527
Data Use 100.0% 100.0% 0.0% 0.0% 0.0% 100.0% 87.5%
Overall Performance 37.2% 37.0% 37.2% 37.0% 37.0% 35.9% 35.9%
coloncancer Overall Gain -0.2% 0.0% -0.2% -0.0% 0.0% 1.0% 1.0%
n—20211.d =172 Group Gains ~ -0.7%-0.1% -03%-02% -0.7%-0.1% -03%-02% 0.0%-0.0% 0.1% -3.2% 0.1% - 3.2%
G = {age, sex} Max ]?ispz?rity 0.7% 0.5% 0.7% 0.5% 0.0% 3.1% 3.1%
16/ =6 ﬂro’ups Rat. V{o]atl(?ns 4 1 4 1 0 0 0
Scosyrevbel al, [45] Imputation Risk -0.7% -0.3%
Options Pruned 0/6 0/6 0/12 0/12 6/7 3/12 5/12
Data Use 100.0% 100.0% 0.0% 0.0% 0.0% 100.0% 75.0%
Overall Performance 20.0% 20.2% 20.0% 20.3% 20.0% 19.3% 19.3%
lungcancer Overall Gain 0.1% -0.1% 0.1% -0.2% 0.1% 0.8% 0.7%
"= 120641, d — 84 Group Gains ~ -0.3%-0.2% -0.5%-0.0% -03%-02% -0.5%-0.0% 00%-02% 0.0%-2.3% 0.0% - 2.2%
G = {age ;ex) Max l?ispe?rity 0.6% 0.5% 0.6% 0.5% 0.2% 2.3% 2.1%
16 = 6 ﬂr(;ups Rat. V{o]atl(?ns 1 4 1 4 0 0 0
Scosyrevbel al, [45] Imputation Risk -0.3% -0.5%
Options Pruned 0/6 0/6 0/12 0/12 3/7 1/12 3/12
Data Use 100.0% 100.0% 0.0% 0.0% 50.0% 100.0% 83.3%
Overall Performance 14.1% 15.0% 14.1% 15.7% 13.9% 9.8% 9.8%
saps Overall Gain 0.9% -0.0% 0.9% -0.7% 1.1% 52% 52%
n = TT97.d = 36 Group Gains ~ -0.8% -3.4% -0.5%-03% -08%-34% -05%-03% 00%-34% 0.0%-164% 0.0% —16.4%
G= {HI\} age} Max D.ispérity 4.2% 0.8% 4.2% 0.8% 3.4% 16.4% 16.4%
6] =4 gr(;ups Rat. Vl.olatlcfns 1 1 1 1 0 0 0
Allyn etal. [3] Imputation Risk -0.8% -0.7%
Options Pruned 0/4 0/4 0/9 0/9 2/5 1/9 19
Data Use 100.0% 100.0% 0.0% 0.0% 50.0% 75.0% 87.5%

Table 5: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test error. We show the performance of models and systems built using random forests.
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C.3 Random Forests for Ranking (AUC)

STATIC IMPUTED PARTICIPATORY
Dataset Metrics  1Hot mHot KNN-1Hot KNN-mHot ~ Minimal Flat Seq
Overall Performance 0.825 0.824 0.822 0.806 0.823 0.944 0.942
apnea Overall Gain 0.008 0.006 0.004 -0.012 0.005 0.126 0.124
ko o Group Gains ~ -0.004 - 0.009  -0.005-0.012  -0.004 -0.009  -0.005-0.012  0.000-0.009  0.058-0.157  0.058 - 0.157
n = 1152,d =26 Max Disparity 0.012 0.017 0.012 0.017 0.009 0.098 0.098
|gg\7:{2(§reo,uisex} Rat. Vi.olali(?ns 2 3 2 3 0 0 0
Ustun et al. [55] Imputation Risk -0.004 -0.005
Options Pruned 0/6 0/6 0/12 0/12 317 2/12 4/12
Data Use 100.0% 100.0% 0.0% 0.0% 50.0% 100.0% 75.0%
Overall Performance 0.896 0.896 0.897 0.886 0.894 0.987 0.987
cardio eicu Overall Gfain 0.003 0.003 0.004 -0.007 0.001 0.094 0.094
n— 1341.*(1 — 49 GmuP Gal.ns -0.008 -0.011  -0.005-0.011 -0.008-0.011  -0.005-0.011  0.000-0.004 0.010-0.132  0.010-0.130
G— {agé sex, race} Max I?lsp:.nmy 0.020 0.016 0.020 0.016 0.004 0.122 0.120
Gl=8 grk;ups Rat. V{ola[l(?ns 3 4 3 4 0 0 0
Pollard et al. [44] Imputation Risk -0.008 -0.005
Options Pruned 078 08 0727 0/27 719 10/27 10/27
Data Use 100.0% 100.0% 0.0% 0.0% 12.5% 100.0% 87.5%
Overall Performance 0.884 0.883 0.884 0.881 0.885 0.955 0.954
cardio mimic Overall G‘?in 0.000 -0.001 0.001 -0.002 0.001 0.071 0.071
n— 5289 d — 49 Group Gains ~ -0.005-0.006  -0.006-0.013  -0.005-0.006 -0.006-0.013  0.000-0.006 0.016-0.108  0.016-0.107
B ’ Max Disparity 0.011 0.019 0.011 0.019 0.006 0.092 0.090
|gg\7:{§§reo,uise& race} Rat. Vi.olali(?ns 3 7 3 7 0 0 0
Johnson et al. [32] Imputation Risk -0.005 -0.006
Options Pruned 0/8 0/8 0/27 0/27 59 6/27 6/27
Data Use 100.0% 100.0% 0.0% 0.0% 37.5% 100.0% 83.3%
Overall Performance 0.684 0.682 0.681 0.680 0.683 0.696 0.696
Overall Gain 0.002 0.000 -0.001 -0.002 0.001 0.014 0.014
coloncancer .
n—29211.d— 72 GmuP Gal.ns -0.002 -0.004  -0.004-0.002 -0.002-0.004 -0.004-0.002 0.000-0.004 0.004-0.035 0.004-0.031
G- {age' sex} Max I?lsp:.nmy 0.006 0.007 0.006 0.007 0.004 0.030 0.026
G =6 grk;ups Rat. V{ola[l(?ns 0 0 0 0 0 0 0
Scosyrev et al. [43] Imputation Risk -0.002 -0.004
Options Pruned 0/6 0/6 0712 0/12 3/7 2/12 5/12
Data Use 100.0% 100.0% 0.0% 0.0% 50.0% 100.0% 75.0%
Overall Performance 0.849 0.849 0.848 0.849 0.848 0.856 0.856
lungcancer Overall Gain 0.002 0.001 0.001 0.001 0.000 0.008 0.008
o Group Gains ~ -0.001 —0.003  -0.001 —0.002  -0.001-0.003  -0.001 —0.002  0.000-0.003  0.002-0.020  0.002 - 0.020
n=120641,d =84 Max Disparity 0.004 0.003 0.004 0.003 0.003 0.018 0.018
|gg\7:{22reo,uisex} Rat. Vi.olali(?ns 1 1 1 1 0 0 0
Scosyrev et al. [45] Imputation Risk -0.001 -0.001
Options Pruned 0/6 0/6 0/12 0/12 217 112 2/12
Data Use 100.0% 100.0% 0.0% 0.0% 66.7% 100.0% 91.7%
Overall Performance 0.921 0.922 0.922 0.906 0.921 0.966 0.966
saps Overall Gfain 0.003 0.004 0.003 -0.012 0.002 0.048 0.048
n— 7797.d — 36 Group Gains ~ -0.002-0.010  -0.002-0.013  -0.002-0.010  -0.002-0.013  0.000-0.010  0.009-0.109  0.009 - 0.109
G- {HI\} age} Max ]?isp:.xrily 0.012 0.015 0.012 0.015 0.010 0.100 0.100
Gl =4 grk;ups Rat. V{ola[l(?ns 2 2 2 2 0 0 0
Allyn et al. [3] Imputation Risk -0.002 -0.002
Options Pruned 0/4 074 0/9 0/9 2/5 2/9 2/9
Data Use 100.0% 100.0% 0.0% 0.0% 50.0% 100.0% 87.5%

Table 6: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test auc. We show the performance of models and systems built using random forests.
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D Supporting Material for Performance Profiles

In the performance profiles, we measure the benefit of disclosure in terms of their expected performance gain and
simulate the cost of reporting for each individual by sampling their reporting cost from a uniform distribution
—i.e., for each individual ¢, we sample ¢; as ¢; ~ Uniform(0, v), where y € [0, 0.2]. For each value of -, we
sample reporting costs ten times and average over the per group performance error for each sampled cost.
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