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Abstract

Masked Autoencoders (MAEs) have shown competitive results in audio classification by
learning rich semantic representations through an efficient self-supervised reconstruction task.
However, general-purpose models fail to generalize well when applied directly to fine-grained
audio domains. Specifically, bird-sound classification requires distinguishing subtle inter-
species differences and managing high intra-species acoustic variability, thereby revealing the
performance limitations of general-domain Audio-MAE models. This work demonstrates
that bridging this domain gap requires more than domain-specific pretraining data; adapting
the entire training pipeline is crucial. We systematically revisit and adapt the pretraining
recipe, fine-tuning methods, and frozen feature utilization to bird sounds using BirdSet, a
large-scale bioacoustic dataset comparable to AudioSet. Our resulting Bird-MAE achieves
new state-of-the-art results in BirdSet’s multi-label classification benchmark. Additionally, we
introduce the parameter-efficient prototypical probing, enhancing the utility of frozen MAE
representations and closely approaching fine-tuning performance in low-resource settings.
Bird-MAE’s prototypical probes outperform linear probing by up to 37%p in MAP and
narrow the gap to fine-tuning to approximately 3.3%p on average across BirdSet downstream
tasks. Bird-MAE also demonstrates robust few-shot capabilities with prototypical probing in
our newly established few-shot benchmark on BirdSet, highlighting the potential of tailored
self-supervised learning pipelines for fine-grained audio domains.

1 Introduction

Representation learning through self-supervised learning (SSL) has emerged as a dominant paradigm in audio
classification (Huang et al., 2022; Chen et al., 2023; 2024a), mirroring its impact in computer vision (He et al.,
2022; Oquab et al., 2024) and NLP (Devlin et al., 2019; Touvron et al., 2023). By leveraging vast amounts of
unlabeled data, SSL models learn robust and generalizable representations, often surpassing task-specific
supervised models on downstream tasks (Brown et al., 2020).

Figure 1: Visual comparison of input modalities. Left: Natural image exhibits strong local spatial
correlations. Center: General audio spectrogram (AudioSet) shows distinct time-frequency structures. Right:
Bird sound spectrogram (BirdSet) often contain sparse, harmonic structures specific to vocalizations.

The recent success of masked image modeling (MIM) (He et al., 2022; Chen et al., 2020a) has established
it as one of the prevalent SSL pretraining paradigms in vision (Alkin et al., 2025) and audio (Huang et al.,
2022). In particular, masked autoencoders (MAEs) (He et al., 2022) efficiently learn rich representations
by reconstructing masked inputs, making them scalable for pretraining on large datasets (Bao et al., 2022).
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However, adapting MAEs from vision to general audio requires addressing the structural properties of
spectrograms, such as their distinct local redundancies and time-frequency correlations compared to natural
images (cf. Figure 1). This motivated the development of the general-domain Audio-MAE (Huang et al.,
2022), pretrained on AudioSet (Gemmeke et al., 2017).

While fine-tuned Audio-MAEs demonstrate competitive performance on broad audio benchmarks beyond
AudioSet, such as ESC-50 (Piczak, 2015) or Speech Commands (Warden, 2018), their direct transfer to
fine-grained audio tasks is limited. For instance, general-purpose models exhibit a notable performance gap
in specialized tasks such as bird sound classification compared to domain-specific supervised models (Ghani
et al., 2023; Hamer et al., 2023) due to the diverging acoustic characteristics of bird calls versus general audio.
Additionally, MAE’s reconstruction objective yields representations that require fine-tuning, providing limited
utility as readily available frozen representations (Alkin et al., 2025), a drawback common among audio SSL
methods (Chen et al., 2023; 2024a). Adapting a general-purpose model to new domains via fine-tuning is
resource-intensive, requiring high computational resources and extensive labeled data (Han et al., 2024).
Leveraging frozen representations with lightweight probes offers a more efficient solution, potentially achieving
strong performance with less labeled data if the representations are truly domain-relevant. The distinct
evolution of SSL for general audio versus speech processing (Baevski et al., 2020) further suggests benefits
from a domain-adapted SSL model. Thus, achieving optimal performance with efficient models in fine-grained
audio tasks necessitates more than off-the-shelf MAEs: it calls for a domain-aware adaptation of the entire
SSL pipeline, including pretraining, fine-tuning, and frozen feature utilization.

Bird species classification exemplifies these challenges. It involves not only a domain shift from general
audio but also the fine-grained task of distinguishing subtly different species with low inter-class variation
amidst high intra-class variability (Rauch et al., 2024). These complexities are compounded by scarce labeled
data (e.g., rare species) and computational constraints for edge deployment (Bellafkir et al., 2023). Current
state-of-the-art (SOTA) models, such as Perch (Hamer et al., 2023), rely on supervised learning, failing to
capitalize on the vast amounts of unlabeled bioacoustic data available for SSL. With the introduction of
BirdSet (Rauch et al., 2024), a large-scale benchmark comparable to AudioSet but explicitly tailored to
avian bioacoustics, bird sound classification emerges as an ideal scenario to investigate the benefits of a
domain-specific SSL model. To address these challenges, this work examines the efficacy of a holistically
adapted, domain-specific SSL pipeline for bird sound classification. We introduce the Bird-MAE model
pretrained exclusively on bird vocalizations. Additionally, to better leverage its frozen representations in
computationally efficient few-shot settings, we propose prototypical probing inspired by recent advancements
in prototype-based learning (Heinrich et al., 2025). Our key contributions are summarized as follows:

Contributions

(1) We empirically demonstrate the domain gap between a general-purpose model and a domain-
specific model. We emphasize the necessity of domain-specific SSL for fine-grained audio tasks.

(2) We holistically adapt the MAE pipeline for bird sound classification.a We revisit design
choices in the pretraining recipe, fine-tuning methods, and utilization of frozen representations.

(3) We introduce and open-source Bird-MAEb, a domain-specific MAE pretrained on BirdSet
with various backbone sizes. Bird-MAE achieves SOTA results on BirdSet’s multi-label benchmark,
improving MAP by an average of 15%p across downstream tasks over prior best models.

(4) We propose prototypical probing, a parameter-efficient probing technique that significantly
enhances the utility of frozen MAE representations in bird sound classification. Prototypical probing
boosts MAP by up to 37%p over linear probing on BirdSet tasks, reducing the performance gap
relative to full fine-tuning to an average of just 3.3%p.

(5) We establish a novel few-shot multi-label classification benchmark for BirdSet. With prototyp-
ical probing, Bird-MAE enables performance in the few-shot benchmark close to that achieved using
the full training dataset, highlighting its efficiency in low-data regimes.

ahttps://anonymous.4open.science/r/Bird-MAE-0202/README.md
bhttps://huggingface.co/anonymous-birder/Bird-MAE/tree/main.
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2 Related Work

SSL in audio classification. SSL in audio classification has advanced the field, spanning from environmental
sounds like ESC-50 (Piczak, 2015) to large-scale benchmarks like AudioSet that covers a wide range of sounds
(e.g., human, animal, musical). Analogous to ImageNet (Deng et al., 2009) in vision, AudioSet provides a
large-scale dataset for pretraining SSL models and evaluating their learned representations. While speech SSL
models like Wav2vec2 (Baevski et al., 2020) usually operate on waveforms, general audio classification succeeds
by adapting vision-based SSL techniques to spectrograms, achieving SOTA results on AudioSet (Chen et al.,
2023; 2024a). MIM has successfully transitioned to audio classification by reconstructing masked spectrogram
patches, introducing the Audio-MAE (Huang et al., 2022). This pretraining paradigm offers computational
efficiency and fosters the learning of rich audio representations from unlabeled data. Subsequent work, such
as BEATs (Chen et al., 2023) and EAT (Chen et al., 2024a), further progress audio MIM, incorporating
a teacher-student approach. Our work centers on the MAE architecture. Its conceptual simplicity and
pretraining efficiency make it an ideal baseline for isolating the impact of domain-specific adaptation and
assessing the efficacy of novel probing techniques.

Transfer learning in audio classification. General-purpose audio SSL models have proven effective for
diverse downstream tasks (Turian et al., 2022; Saeed et al., 2021). BEATs (Chen et al., 2023), EAT (Chen et al.,
2024a) and Audio-MAE (Huang et al., 2022) demonstrate their performance on tasks such as speech emotion
recognition or environmental sound classification. However, recent studies reveal a notable performance
degradation when these general-purpose models are applied to highly specialized domains, particularly
bioacoustics (Hamer et al., 2023; Ghani et al., 2023). Benchmarks designed for transfer learning, such as
HEAR (Turian et al., 2022), and bioacoustic benchmarks like BirdSet (Rauch et al., 2024) or BIRB (Hamer
et al., 2023) highlight this limitation. Specifically, Audio-MAE (Huang et al., 2022) performs worse than
spectrogram-based features from supervised models in bioacoustic tasks (Ghani et al., 2023). This performance
drop underscores the current limitations of relying on general-domain pretraining for more fine-grained audio
tasks and motivates the development of domain-specific solutions. In this work, we address this limitation
by introducing and evaluating Bird-MAE specifically adapted to bird sound classification, quantifying the
benefits of domain-specific solutions for fine-grained classification in audio.

Downstream task adaptation in SSL. Adapting models to downstream tasks typically involves full
fine-tuning or utilizing frozen representations with lightweight probes (Marks et al., 2025). While fine-tuning
often yields the highest performance, it can be computationally expensive and may lead to overfitting on
smaller datasets. Thus, utilizing frozen representations has gained notable interest in vision (Oquab et al.,
2024; El-Nouby et al., 2024; Xie et al., 2022; Assran et al., 2023). Standard approaches involve extracting
features (e.g., via global average pooling or the cls-token) and training a simple classifier, such as linear
probing (Oquab et al., 2024), k-NN probing (Zhou et al., 2021; Kakogeorgiou et al., 2022; Lehner et al.,
2024), or shallow MLP probing (Dubois et al., 2022; Fuller et al., 2023; Tschannen et al., 2023). However,
it is widely observed that representations learned via generative tasks like MIM underperform with linear
probing compared to contrastive methods (Alkin et al., 2025; He et al., 2022; Park et al., 2023). To mitigate
this gap in MIM, upstream feature refinement (Alkin et al., 2025) or alternative probing methods have been
explored in vision. Notably, attentive probing (El-Nouby et al., 2024; Lee et al., 2019) applies an attention
mechanism over patch tokens and improves frozen representations with low computational overhead (Yu
et al., 2022; Chen et al., 2024b; Darcet et al., 2025). Another probing paradigm involves prototypical
networks (Snell et al., 2017; Palanisamy et al., 2024; Tian et al., 2024), which extract class centroids from
frozen representations for a similarity-based class assignment without retraining. Despite these advancements
in vision, current best-performing audio SSL models (Huang et al., 2022; Chen et al., 2023; 2024a) rely on
full-model fine-tuning, suggesting their frozen representations offer suboptimal performance or are not properly
utilized. In our setting, we evaluate standard parametric probing methods for downstream adaptation using
frozen representations, including linear, MLP, and attentive probing. Additionally, we propose and analyze
prototypical probing, adapted from prototypical networks in bioacoustics (Heinrich et al., 2025), designed to
utilize spatial MAE features effectively.

Bird sound classification. Supervised learning has dominated research in bird sound classification, typically
employing convolutional architectures that remain the top performers on bioacoustic benchmarks (Stowell,
2021; Rauch et al., 2024). For instance, Google’s Perch model (Hamer et al., 2023) is based on the EfficientNet
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architecture (Tan & Le, 2019). The feasibility of large-scale supervised training stems from community-driven
platforms like Xeno-Canto (XC) (Vellinga & Planqué, 2015), which currently hosts over 850k weakly-labeled
bird recordings. Perch and BirdNeXt (Rauch et al., 2024) derive their training data from XC. However,
reliance on manually curated, non-standardized datasets from these platforms has hindered comparison
across studies and methods (Rauch et al., 2024). The introduction of the BirdSet dataset and multi-label
bird classification benchmark, which contains volumes of pretraining data comparable to AudioSet, makes
this comparison possible for domain-specific SSL. While SSL has shown promise in speech and general
audio classification, its evaluation in bioacoustics is less mature. NatureLM-audio (Robinson et al., 2025)
presents the first audio-language model tailored to general bioacoustics, demonstrating competitive zero-shot
performance on BirdSet. Existing domain-specific SSL models for bioacoustics, such as BirdAVES (Hagiwara,
2023) and contrastive models (Moummad et al., 2024), have not yet been evaluated under the standardized
conditions provided by BirdSet. This work introduces the domain-specific Bird-MAE and comprehensively
evaluates it on BirdSet, establishing a new SOTA.

3 Model and Training Methodology for Domain-Specification

This section details the methodological modifications applied to the baseline Audio-MAE architecture and
training procedure as part of our holistic domain specification to bird sounds. We organize these modifications
into three modules. First, the pretraining module (M1) outlines our changes to the pretraining recipe of
the baseline Audio-MAE. Second, we introduce two modules addressing the main downstream adaptation
strategies for a pretrained SSL model. The fine-tuning module (M2) involves modifications for the full model
training process, while the frozen representations module (M3) investigates the pretrained model as a fixed
feature extractor. In the following, we motivate and detail the modifications within each module.

3.1 Pretraining (M1)

Pretraining lays the foundation for effective SSL by learning representations adaptable to downstream
tasks. The core of the Audio-MAE baseline is the pretrained encoder hα : X ⊆ RF×T → RH×W×D with
parameters α from AudioSet. Here, F represents the number of frequency bins and T the number of time
frames of an input spectrogram x ∈ X . The encoder maps x to a patch-based feature map hα(x), where
H and W denote the number of non-overlapping patches along the height and width dimensions, and D
is the feature dimension per patch. For instance, given an AudioSet spectrogram image with F =128 and
T =1024 with a patch size of 16×16, the encoder hα produces a feature map hα(x) of dimension 8×64×D.
Our proposed modifications result in an encoder h, pretrained on bird sounds, denoted hβ . The key changes
from the baseline Audio-MAE pretraining from Huang et al. (2022) are listed in Table 1 with the detailed
ablations in Section 5.2. The modifications within this module include:

Model Dataset Img Decoder Epochs Masking Batch Mean Std Mixup LR WD

Audio-MAE AS-2M 1024×128 Swin 32 0.8 512 -4.2 4.569 0 2e-4 1e-4
Bird-MAE XCL-1.7M 512×128 ViT 150 0.75 1024 -7.2 4.43 0.3 2e-4 1e-4

Table 1: Comparison of pretraining parameters of Audio-MAE (baseline) and Bird-MAE (our model).

Data source. The choice of pretraining data influences downstream performance, especially when adapting
models from coarse-grained to fine-grained classification tasks. General-purpose datasets like AudioSet
encompass a broad spectrum of acoustically distinct classes (high inter-class variation), encouraging models
to learn discriminative general features. However, fine-grained domains like bird sound classification require
distinguishing between subtle different species (low inter-class variation) while handling acoustic variability
within each species (high intra-class variation) (Rauch et al., 2024). AudioSet, despite including some animal
sounds, does not adequately prepare models for these fine-grained bioacoustic nuances. Therefore, to develop
a model tailored for this challenge, we replace AudioSet with domain-specific pretraining data derived from
BirdSet (XCL-1.7M after curation, see Section 4).
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Data processing. The raw pretraining dataset from BirdSet contains over 3 million event samples. However,
the raw audio collection suffers from redundancy (e.g., multiple events per file, similar background noise)
and class imbalance, which can degrade SSL performance (Balestriero et al., 2023). Inspired by the curation
process from Oquab et al. (2024), we apply a small selection procedure based on available metadata to reduce
redundancy. Specifically, we limit the maximum number of event samples retained per species and recording
file. This process results in our curated pretraining dataset XCL-1.7M, approximately halving the original
size of 3.4 million vocalization events in BirdSet. This curated set is used to train the encoder hβ . Further
details on the curation process and the results are provided in Section 5 and the Appendix A.

Training parameters. Optimizing the pretraining recipe can yield substantial performance gains in
SSL (Oquab et al., 2024). Thus, we systematically examine the training recipe of the Audio-MAE baseline
and identify modifications that yield improvements for bird sound classification through model optimization.
These include adjustments to the decoder architectures, increasing the number of training epochs, refining
the masking ratio, increasing the batch size, and incorporating mixup augmentation (Zhang et al., 2018)
during pretraining. These key changes are summarized in Table 1, with detailed ablation studies in Section 5.

3.2 Fine-tuning (M2)

During downstream adaptation through fine-tuning, the baseline Audio-MAE applies average pooling to
the encoder’s output feature map hα(x) to obtain a compact embedding h̄α(x) ∈ RD. This embedding is
then fed into a linear classification head fψ : RD → RC (with parameters ψ and C classes) trained along the
encoder to produce logits z = fψ(h̄α(x)). This module details modifications applied during this process.

Domain augmentations. To bridge the inherent domain shift between training and test data in BirdSet1,
we utilize domain-specific augmentations while fine-tuning the encoder. While Audio-MAE also employs
augmentations, it does not apply strategies tailored to bioacoustics. Our augmentations, informed by results
from Rauch et al. (2024), are designed to simulate common acoustic variations in bird recordings, such
as diverse background noises (i.e., noise mixing), varying signal strengths (i.e., gain mixing), and the co-
occurrence of multiple vocalizations (i.e., mixup). We supplement these with spectrogram-level augmentations,
including frequency and time masking. Further details on the augmentations are provided in Table 9.

Prototypical pooling. Inspired by the performance improvements of the supervised AudioProtoPNet (Hein-
rich et al., 2025; Chen et al., 2019; Donnelly et al., 2022) in bioacoustics, we introduce a prototypical pooling
layer fϕ. The prototypical layer explicitly pools the spatial structure of the pretrained encoder’s patch
embeddings hβ(x) ∈ RH×W×D, comparable to attentive pooling (El-Nouby et al., 2024). For each class
c ∈ {1, . . . , C}, we learn a set of J class-specific prototype vectors {pc,j}Jj=1, with each prototype pc,j ∈ RD.
These prototypes are randomly initialized as learnable parameters, distinct from the encoder’s weights. We
then compute the cosine similarity scores between each prototype pc,j and every patch embedding hβ(x)h,w.
The resulting similarity scores are then aggregated via max-pooling across all spatial dimensions to obtain
the highest similarity score for each prototype of class c:

s̄c,j = max
h,w

pc,j · hβ(x)h,w
∥pc,j∥∥hβ(x)h,w∥

, h = 1, . . . ,H; w = 1, . . . ,W. (1)

This yields J similarity scores (s̄c,1, . . . , s̄c,J ) for each class c. The prototypical layer fϕ then transforms these
class-specific similarity scores into logits. Following Heinrich et al. (2025), this transformation is implemented
for each class c by a dedicated linear layer, gc : RJ → R, which takes the J similarity scores for that class
as input to produce a single scalar logit z̄c. Each gc uses weights that are constrained to be non-negative,
ensuring that a higher similarity to a class prototype contributes positively to the class logit. We adopt the
initialization from Heinrich et al. (2025): weights are set to 1 for uniform initial prototype weighting and
biases to -2. This yields a near-zero sigmoid probability for instances with no similarity to the prototypes
of a class, which is suitable for multi-label classification. The final logit vector for all classes is formed by
concatenating these individual class logits. This design ensures that the prediction for each class is based
solely on the evidence from its associated prototypes, leveraging local spatial features for robust classification.

1BirdSet training data consists of focal (directed) recordings, contrasting to test data from omnidirectional soundscapes.
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To encourage diversity among the learned prototypes within each class and prevent redundancy, the overall
training loss incorporates an equally weighted orthogonality loss term, adapted from Donnelly et al. (2022).

3.3 Frozen Representations (M3)

Frozen representations offer a computationally efficient alternative to full fine-tuning (Oquab et al., 2024;
Touvron et al., 2023). However, MIM representations primarily capture reconstruction-oriented patterns
rather than discriminative features (Alkin et al., 2025; Oquab et al., 2024). This limits their direct usability,
as the task may dilute critical classification features across reconstructed regions (Walmer et al., 2023). While
fully fine-tuning the encoder h typically addresses this issue (He et al., 2022; Park et al., 2023), it can be
computationally expensive and unsuitable for tasks with little available labeled data. Thus, this module
investigates probing techniques to leverage frozen representations from the pretrained MAE encoder hβ .

Prototypical probing. We propose prototypical probing as a parameter-efficient method to leverage frozen
features. This involves attaching only the prototypical pooling layer fϕ (as described in M2) to the frozen
encoder hβ . Only the parameters of the prototype vectors {pc,j}Jj=1 for all classes c and the final class-specific
linear layers {gc}Cc=1 are trained. Similar to attentive pooling, prototypical probing utilizes the full spatial
feature map hβ(x) ∈ RH×W×D, preserving local structural information. This might be beneficial for bird
sounds, as vocalizations typically occupy small regions of the spectrogram, where global averaging may
dilute this information. Additionally, prototypical probing is parameter-efficient as the additional trainable
parameters only consist of the prototypes J ·C ·D and the final linear layer with a total of J ·C+C parameters.
While this scales linearly with the number of classes and prototypes, its total size remains negligible compared
to the encoder. For instance, with the ViT-L encoder (approx. 300M parameters), prototypical probing for
the HSN task adds only about 430k parameters (Table 5). Furthermore, it is often smaller than the overhead
of attentive probing, which adds approximately 2D2 +D parameters (El-Nouby et al., 2024). Prototypical
probing retains the low parameter characteristic of linear probing while efficiently exploiting non-linear spatial
information crucial for discriminative performance with frozen MAE features.

4 Data and Processing

Dataset. Our experiments utilize BirdSet (Rauch et al., 2024), a comprehensive benchmark for multi-label
bird sound classification (i.e., classifying bird species based on their vocalizations). Unlike AudioSet, where
each 10-second sample captures a wide array of sounds, bird calls are typically shorter (within 5 seconds,
comparable to ESC-50 (Piczak, 2015)) and are confined to narrow frequency bands. BirdSet aggregates the
training data from XC (Vellinga & Planqué, 2015), encompassing approximately 520,000 unique recordings
(weakly labeled at the file level) from nearly 10,000 bird species, totaling over 3 million vocalization events.

Dataset |Train| Recordings |Train| Events |Test| Segments #Classes

Pretraining
Xeno-Canto Large XCL 528,434 1,724,598 - 9,735

Downstream Tasks
High Sierra Nevada HSNval 5,460 17,938 12,000 21
Powdermill Nature POW 14,911 2,586 4,560 48
Amazon Basin PER 16,802 5,743 15,120 132
Colombia Costa Rica NES 16,117 4,034 24,480 89
Hawaiian Islands UHH 3,626 12,978 36,637 27
France and Spain NBP 24,327 76,438 563 51
Sapsucker Woods SSW 28,403 4,285 205,200 81
Sierra Nevada SNE 19,390 2,557 23,756 56

Table 2: Dataset overview of BirdSet for pretraining and downstream tasks. |Train| Recordings
contains the number of recordings, |Train| Segments is the number of extracted samples per task in our
experiments, and |Test| is the number of 5-second segments. HSNval is used for validation and ablations.
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For evaluation, BirdSet provides eight downstream tasks, each consisting of a dedicated training subset and a
test set derived from fully annotated soundscape recordings from different geographical regions (e.g., High
Sierras Nevada (HSN) or Amazon Basin (PER)). The test sets are segmented into 5-second intervals, where
each interval receives multi-label annotations indicating the presence (one or multiple) or absence of birds.
This structure explicitly captures challenges like domain shift between training (focal) and test (soundscape)
data, as detailed in Rauch et al. (2024). Table 2 provides a detailed overview of the datasets.

Processing and evaluation. Audio segments are standardized to 5 seconds and sampled to 32 kHz. We
extract 128-dimensional log-mel filterbank features, following common practice in audio SSL (Huang et al.,
2022; Chen et al., 2024a). The resulting input dimensions are fixed at 128×512. All results in ablations and
benchmark studies are averaged over three repetitions. We report the class-based mean average precision
(MAP). Since BirdSet provides no typical validation split per downstream task for dedicated training, we
repurpose the HSN downstream task (with only 21 classes) as our development set for hyperparameter tuning
and ablation studies. After finalizing all design choices, we retrain the model once on each downstream task’s
training data and report performance on their test sets.

5 Ablation Studies
This section presents ablation studies to validate the design choices and quantify the impact of each
modification module (M1, M2, M3) introduced in Section 3. We analyze these components by sequentially
applying them to a baseline Audio-MAE configuration, which uses the original implementation from Huang
et al. (2022) detailed in Table 1. We illustrate the cumulative improvements with full fine-tuning in Figure 3.

Settings. For modifications related to the pretraining (M1, Section 5.1) and fine-tuning (M2, Section 5.2)
modules, we evaluate performance via full model fine-tuning. For frozen representations (M3, Section 5.3), we
ablate the effectiveness of different probing techniques (linear, MLP, attentive), compared to our prototypical
probing when using the best-performing settings from M1 and M2. For each experiment, we report the
average over three random seeds to account for variability in training. All ablation experiments are performed
on the HSN multi-label downstream task from BirdSet. Further experimental details and hyperparameters are
provided in the Appendix D.

5.1 Pretraining (M1)

Data source. Figure 3 shows that replacing the AudioSet pretraining data with BirdSet for the base
model yields a modest performance gain of 2.45%p in fine-tuning. Even if extensive fine-tuning on large
downstream datasets can mitigate pretraining domain mismatch, domain-specific pretraining data provides a
clear advantage, especially for the performance of probing techniques (see Section 5.3). However, the most
decisive gains emerge from a holistic adaptation of the entire SSL pipeline to the target domain. Thus,
swapping in domain-specific data is necessary but insufficient: aligning both objective and downstream
training with the structure of bird vocalizations in the domain unlocks most of the benefit.

Data processing. The quality and size of the pretraining dataset are crucial for SSL. To quantify the
impact of dataset size, we begin with the full XCL-3.4MR training dataset with all available sound events and
progressively reduce it to 50%, 25%, and 12.5% by random sampling. As shown in Table 3a, pretraining
performance generally scales with dataset size when using randomly sampled subsets, although gains diminish
beyond 1.7 million samples in our use case. Noticeably, applying our data curation strategy (balancing classes,
reducing redundancy via metadata) to create the curated 1.7 million sample dataset (XCL-1.7M) results in
better performance compared to using an uncurated dataset of the same size or even the full, uncurated 3.4
million sample dataset. This highlights the benefit of data curation, outweighing data volume in this setting.
More details of the curation process are available in the Appendix A.

Pretraining recipe. Optimizing the pretraining recipe beyond just the data source further enhances
performance. As summarized in Figure 3, modifications like increased epochs, adjusted masking ratio, larger
batch size, and mixup (see Table 3b) sequentially improve downstream results. While changing the decoder
architecture did not yield direct performance gains in isolation, it improved training stability. Figure 2
confirms the benefit of extended pretraining, showing MAP improvements across different ViT sizes up to
approximately 150 epochs, after which gains saturate.
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Table 3: Detailed ablations on (a) dataset size and cura-
tion in SSL, (b) mixup in SSL and (c) pooling in fine-tuning.

Figure 2: Model size and training epochs comparison
on HSN. We report the MAP score at different pretraining
checkpoints in all model sizes.

Figure 3: Ablations for improving the
base Audio-MAE. The MAP results are
reported on HSN. The + symbol indicates
a new component, while ↑ and ↓ denote an
increase and a decrease in a parameter.

5.2 Fine-tuning (M2)

Domain augmentations. Adapting the fine-tuning process with domain-specific data augmentations is
crucial. Our sequential ablation in Figure 3 shows that applying the baseline Audio-MAE to HSN without
domain-adapted augmentations yields inferior results (23.71%). Introducing domain-specific augmentations
(detailed in the Appendix D) during fine-tuning provides a substantial performance uplift, increasing MAP by
circa 29%p over the baseline implementation. This highlights the importance of domain-aware adaptations,
ensuring models can deal with the challenges in the domain data (e.g., domain shift in BirdSet).

Prototypical pooling. Replacing global averaging or the cls token with prototypical pooling further
enhances classification performance when fully fine-tuning the model, setting new SOTA results. For the
Bird-MAE-L model on HSN, this final modification elevates the MAP score to 55.28% from 53.15% when using
global average pooling. Prototypical pooling also outperforms alternative advanced pooling mechanisms such
as attentive pooling (see Table 3c). This improvement contributes to more than doubling the performance of
the initial Audio-MAE baseline (23.71% MAP, before any domain specifications). As shown in Table 5, the
parameter overhead of this prototypical pooling operation is minimal compared to the ViT encoder.

5.3 Frozen Representations (M3)

Prototypical probing. We ablate the quality of frozen representations using various probing methods in
Table 4. We use the best-performing settings from M1 and M2, including all augmentations. All experiments
use J=20 prototypes. The impact of varying J is shown in Appendix F. Consistent with findings in
MIM (Alkin et al., 2025), our results confirm that standard probing techniques applied to features extracted
via global average pooling (linear, MLP) perform poorly with frozen MAE representations, even with
the domain-specific Bird-MAE. MAP scores remain notably lower than full fine-tuning. However, methods
explicitly leveraging the spatial feature map achieve considerable performance gains. Attentive probing notably
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improves results across model sizes. Our prototypical probing further boosts performance, outperforming
attentive probing across all Bird-MAE model sizes while remaining more parameter-efficient (Table 5) with
approximately 20% of parameters compared to attentive probing for this dataset. Interestingly, prototypical
probing performs worse than attentive probing when applied to the general-purpose Audio-MAE, highlighting
that prototype-based methods might benefit from domain-specific pretraining. For the Bird-MAE-L model,
prototypical probing achieves a MAP of 49.97%, a substantial gain from MLP probing (+34.75%p) and only
5.31%p below the full fine-tuning result (55.28%). This demonstrates that by effectively utilizing the spatial
information preserved in the frozen MAE feature map, prototypical probing addresses the limitations of
frozen MIM representations for discriminative tasks. It offers an efficient alternative to full fine-tuning.

ViT Technique Linear MLP Attentive Prototypical

Fine-tuning: 43.11
B/16 Audio-MAE 9.35 10.45 31.43 20.89

Fine-tuning: 52.06
B/16 Bird-MAE 13.06 17.23 43.12 43.84

Fine-tuning: 55.28
L/16 Bird-MAE 13.29 15.22 47.81 49.97

Fine-tuning: 54.05
H/16 Bird-MAE 13.83 18.71 45.73 47.52

Table 4: Frozen representation ablations on HSN, evaluated
with probing techniques. Linear and MLP utilize the global
average, attentive and prototypical (J= 20) the feature map.

Probing Parameters HSN

ViT-L parameters: 307M

Linear C(D + 1) 21k

MLP H(D + 1) + C(H + 1) 535k

Attentive 2D2 + (C + 1)D + C 2.1M

Prototypical C ·
[
J(D + 1) + 1

]
430k

Table 5: Parameters for probing with
example values of HSN: D = 1024, C =
21, H = 512, and J = 20.

6 Benchmark Results

This section presents the empirical evaluation of our domain-specific Bird-MAE model on the BirdSet
downstream tasks, comprising multi-label classification of bird species vocalizations. We assess performance
under two conditions: BirdSet’s multi-label classification using all available training data and our novel
few-shot multi-label probing benchmark with limited labeled examples. Our evaluation aims to (1) showcase
the importance of a domain-specific SSL in audio, (2) validate the effectiveness of prototypical probing for
leveraging frozen representations, and (3) establish new SOTA results on BirdSet.

Baselines and evaluation. We compare Bird-MAE against several relevant models. Our baseline is the
Audio-MAE-Base2 pretrained on AudioSet and fine-tuned with prototypical pooling. First, we compare
against other bird-specific SSL models: BirdAVES (Hagiwara, 2023) and a SimCLR (Chen et al., 2020b)
implementation from Moummad et al. (2024), both pretrained on custom XC data. Second, we include
results from the best-performing supervised models in bird sound classification: Google’s Perch (Hamer et al.,
2023) and BirdSet’s BirdNeXt (Rauch et al., 2024), also pretrained on XC data. We report Bird-MAE results
using ViT-Base, ViT-Large, and ViT-Huge backbones, incorporating all modifications from Section 3. Our
domain-specific augmentation pipeline is applied during fine-tuning and probing to all models where feasible
to ensure fair comparison in both tasks. We exclude spectrogram-level augmentations for the waveform-based
BirdAVES model. For Perch, which is not publicly available for fine-tuning, we follow the inference protocol of
masking logits for classes not present in the downstream task’s label set (Rauch et al., 2024). Hyperparameters
for all models are tuned once on HSN before final evaluation across downstream tasks. More details and
hyperparameters can be found in Appendix D.

6.1 Multi-Label Classification

Settings. In this section, we first evaluate the performance of the pretrained Bird-MAE on BirdSet’s
multi-label classification benchmark with full training data. We present the fine-tuning results in Table 6 and
the frozen representation results in Table 7. For each experiment, we report the mean over three randomly
initialized runs. More detailed results are available in Section E.1.

2Larger model checkpoints are not available from the source paper (Huang et al., 2022).
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Model Arch. Pretraining HSNval POW PER NES UHH NBP SSW SNE

Supervised
Perch EffNet-B1 Xeno-Canto∗ 41.84 41.12 18.77 39.12 27.81 63.62 28.11 29.45
BirdNeXt ConvNeXt XCL BirdSet 45.72 37.97 20.98 31.84 22.69 66.56 33.23 26.13

Self-Supervised
BirdAVES HuBERT Xeno-Canto∗ 42.63 11.33 5.18 5.72 21.97 70.09 4.45 7.08
SimCLR CvT-13 Xeno-Canto∗ 39.33 34.84 16.85 23.54 20.72 65.69 18.67 15.99
Audio-MAE ViT-B/16 AS-2M 44.69 39.03 21.32 29.83 26.43 67.02 26.94 22.44

Bird-MAE
ViT-B/16 XCL-1.7M 52.06 45.24 27.58 37.12 28.48 62.86 32.83 28.04
ViT-L/16 XCL-1.7M 55.28 55.26 34.64 41.50 30.17 71.69 40.82 33.82
ViT-H/16 XCL-1.7M 54.80 54.05 33.29 39.28 29.81 69.35 41.32 32.18

Table 6: Fine-tuning results on the multi-label classification benchmark with full data (MAP%).
Comparison of SL and SSL models, following the evaluation protocol of BirdSet. Best and second best
results are highlighted. Xeno-Canto∗ denotes pretraining on unspecified subsets of XC data.

What is the performance gain of a domain-specific MAE? Table 6 confirms results from our ablation
studies: Domain specification via Bird-MAE yields substantial performance improvements across the BirdSet
benchmark compared to the general-purpose Audio-MAE. While the Bird-MAE-B also offers notable gains
over the available Audio-MAE baseline, the benefits become more pronounced with larger architectures. For
instance, our Bird-MAE-L achieves notably higher MAP scores than the baseline, with performance gains
of +15%p on POW (+7%p Bird-MAE-B) or +13%p on PER (+6%p Bird-MAE-B). Furthermore, Bird-MAE
consistently and notably outperforms the other domain-specific SSL baselines AVES and SimCLR across all
datasets, often by margins exceeding 15-20%p MAP on average.

How does the model compare to supervised models? We compare Bird-MAE against the current
best-performing supervised models (Perch and BirdNeXt). Our fine-tuned Bird-MAE models consistently
achieve new SOTA results across the BirdSet benchmark. Specifically, Bird-MAE-L outperforms the BirdNeXt
and Perch baselines on all eight datasets, often by considerable margins. For example, on SSW, Bird-MAE-L
achieves 40.82% MAP compared to Perch’s 28.11% MAP (+12.7%p), and on PER, it achieves 34.64% MAP
versus Perch’s 18.77% MAP (+15.9%p). These results demonstrate the effectiveness of domain-specific SSL
combined with modern transformer architectures and higher parameter counts compared to prior supervised
CNN-based approaches in bird sound classification.

Model Arch. Probing HSNval POW PER NES UHH NBP SSW SNE

Self-Supervised

BirdAVES HuBERT linear 14.91 12.60 5.41 6.36 11.76 33.68 4.55 7.86
proto 32.52 19.98 5.14 11.87 15.41 39.85 7.71 9.59

SimCLR CvT-13 linear 17.29 17.89 6.66 10.64 7.43 26.35 6.99 8.92
proto 18.00 17.02 3.37 7.91 7.08 26.60 5.36 8.83

Audio-MAE ViT-B/16 linear 8.77 10.36 3.72 4.48 10.78 24.70 2.50 5.60
proto 19.42 19.58 9.34 15.53 16.84 35.32 8.81 12.34

Bird-MAE

ViT-B/16 linear 13.06 14.28 5.63 8.16 14.75 34.57 5.59 8.16
proto 43.84 37.67 20.72 28.11 26.46 62.68 22.69 22.16

ViT-L/16 linear 12.44 16.20 6.63 8.31 15.41 41.91 5.75 7.94
proto 49.97 51.73 31.38 37.80 29.97 69.50 37.74 29.96

ViT-H/16 linear 13.25 14.82 7.29 7.93 12.99 38.71 5.60 7.84
proto 47.52 49.65 30.43 35.85 28.91 69.13 35.83 28.31

Table 7: Probing results on the multi-label classification benchmark with full data (MAP%).
Comparison of linear probing vs. prototypical probing using frozen encoder representations. Models follow
the evaluation protocol of BirdSet. Best and second best results are highlighted.
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Can we freeze the representations? While audio SSL currently relies on fine-tuning (Chen et al., 2023;
2024a), efficient deployment is highly desirable for edge applications in bioacoustics (Höchst et al., 2022). We
evaluate the performance of frozen representations using linear versus our proposed prototypical probing in
Table 7. Linear probing performs poorly for Audio-MAE and Bird-MAE across backbone sizes, confirming the
difficulty of using frozen MIM representations directly. However, prototypical probing drastically improves
performance by leveraging the spatial feature map: it closes the gap to fine-tuning to approximately 3%p
MAP on average across downstream tasks. Bird-MAE with prototypical probing also achieves substantial
gains over Audio-MAE with prototypical probing (e.g., +27.3%p base performance on NBP). Additionally, it
notably outperforms other SSL models (AVES, SimCLR) using either probing method and also surpasses the
fully supervised Perch model (from Table 6) on nearly all datasets using only frozen representations. This
challenges the notion that MAE features are unsuitable for probing and demonstrates prototypical probing
as a highly effective and efficient alternative to fine-tuning in bird sound classification. While prototypical
probing enhances performance for the masking-based BirdAVES model, it seems to degrade performance for
the contrastive SimCLR model, suggesting probing effectiveness interacts with the SSL pretraining objective.

6.2 Few-Shot Multi-Label Probing

Settings. In this section, we evaluate the few-shot learning capabilities of Bird-MAE, introducing a few-shot
multi-label classification benchmark in BirdSet. This setup maintains the standard test sets and domain shifts
but restricts the training data to k ∈ {1, 5, 10} event instances per class for each downstream task’s training
subset. We only report our best-performing Bird-MAE-L model with an average of over three repetitions and
three randomly sampled subsets per shot. We focus on the performance of SSL models’ frozen representations
in low data regimes. Detailed results are available in Appendix E.2, and the few-shot sampling strategy is
described in more detail in Appendix A.

How does few-shot prototypical probing compare to other methods? Figure 4 shows that the
advantages of prototypical probing are even more pronounced in low-data regimes. While linear probing yields
very low MAP scores across all k-shot settings, prototypical probing delivers substantially better performance,
even with just one shot per class on the file level. Attentive probing also provides a clear improvement over
linear probing but consistently underperforms compared to prototypical probing across all shot counts. These
trends are observed uniformly across all eight datasets, underscoring the effectiveness of prototypical probing
in leveraging MAE embeddings for few-shot learning.

Figure 4: Few-shot probing results. We compare linear, attentive and prototypical probes using frozen
Bird-MAE-L features at k ∈ {1, 5, 10} shots per class. Results are averaged over three runs on three subsets
per shot with the standard deviation. The dashed line marks the upper probing bound on the full dataset.
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Can few-shot prototypical probing rival full dataset probing? Figure 4 demonstrates that prototypical
probing with only 10 shots per class achieves performance close to full-data probing. For instance, on the
PER, 10-shot prototypical probing reaches approximately 29.31% MAP, approaching the 29.97% MAP of
full-data prototypical probing and the 34.64% MAP of full fine-tuning. While attentive probing also shows
data efficiency in few-shot settings compared to linear probing, it generally does not reach the same level of
proximity to full-dataset performance as prototypical probing. Comparable trends appear across all datasets,
illustrating the data efficiency by combining Bird-MAE’s features with prototypical probing.

7 Conclusion and Future Work

Figure 5: Activation heatmap of a
prototype superimposed on a spectro-
gram (Heinrich et al., 2025).

Conclusion. In this work, we addressed the limitations of general-
purpose SSL models in audio classification. We demonstrated the
efficacy of a holistically adapted, domain-specific masked image mod-
eling pipeline for bird sound classification: We revised the entire
training process, including pretraining (e.g., replacing AudioSet with
BirdSet), fine-tuning (e.g., adding prototypical pooling), frozen rep-
resentations (e.g., utilizing prototypical probing), leading to the
development of our Bird-MAE model. Bird-MAE achieves novel
state-of-the-art performance on the BirdSet multi-label classification
benchmark, strongly outperforming the general-purpose Audio-MAE
and prior best-performing supervised models. Our findings highlight
that while domain-specific pretraining is crucial, the full benefits of
such adaptations become particularly evident when leveraging frozen
representations. Specifically, our parameter-efficient prototypical
probing substantially narrows the gap to full fine-tuning to 3%p
MAP on average across downstream tasks. It boosts it up to 37%p
compared to linear probing. These results underscore the importance
of domain-aware pretrained features and effective probing methods.
Furthermore, Bird-MAE with prototypical probing delivers strong
few-shot performance, offering an efficient alternative for resource-
constrained bioacoustic applications. Our study shows that achieving
optimal results in more fine-grained audio tasks such as bioacoustics
requires moving beyond generic SSL approaches towards holistic,
domain-aware pipeline adaptations.

Future work and limitations. Several promising research directions emerge from our findings and the
limitations of this work. First, exploring the generalizability and broader applicability of prototypical
pooling and probing beyond bird sound classification is crucial. Learning discriminative prototypes and
leveraging spatial feature maps is not intrinsically tied to bioacoustics. It suggests the potential for enhancing
downstream task adaptation across SSL methods and modalities, including general audio, vision, and
text. For instance, our preliminary results in Table 8 indicate that our prototypical pooling also notably
improves the fine-tuning performance of the base Audio-MAE on AS-20k. Notably, this simple pooling
replacement not only surpasses the original Audio-MAE performance reported by Huang et al. (2022)

Model AS-20k

A-MAEbase 37.3
A-MAEproto 38.6
BEATsiter2 38.3

Table 8: Impact of pro-
totypical pooling on fine-
tuning in general audio.

but also outperforms the advanced BEATs model (Chen et al., 2023) on this
task. This result hints at the potential for prototypical layers to unlock greater
performance from existing SSL backbones across different audio domains. Sec-
ond, the learned prototypes (see Figure 5) can be further exploited beyond
performance improvements: analyzing prototypes could improve model robust-
ness, add model-based event detection, and provide insights for domain experts.
Lastly, the strong few-shot performance of Bird-MAE with prototypical probing
highlights its potential for real-world applications, particularly in scenarios where
acquiring large amounts of labeled data is prohibitive or computing resources
are limited. Our work contributes to developing more effective domain-specific

SSL in bioacoustics and other challenging low-resource domains.
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A Data Curation

This appendix details our data curation pipeline, a component for both the training of our models and the
evaluation of their performance. We apply distinct curation strategies for: (1) the large-scale pretraining
dataset, (2) the few-shot learning subsets, and (3) the full datasets for downstream task evaluation. The
specifics of each methodology are outlined below.

A.1 Pretraining Data

We derive our pretraining set from BirdSet’s XCL collection using the provided file-level species labels, the
event detector and the sampling algorithm from BirdSet (Rauch et al., 2024). Since each recording may
contain multiple bird-call events, we first split every recording into its detected events. To mitigate class
imbalance, where some species have many events and others few, we enforce three constraints: (a) a maximum
number of events per species, (b) a per-recording event cap, and (c) at least one event per recording. We
implement these rules via a simple sampling algorithm that iteratively trims over-represented recordings
until all class and event limits are met. We set the number of maximum events per species to 500 and
a per-recording event cap to 2. This leads to our XCL-1.7M pretraining dataset. The uncurated dataset
XCL-3.4MR contains all the detected events.

A.2 Few-shot Data

For our few-shot learning evaluation, we construct k-shot subsets with k ∈ {1, 5, 10} from each BirdSet
downstream training split so that every species contributes exactly k audio clips (on file-level). To assess
sampling variability, we generate three independent subsets per k using different random seeds. Because
BirdSet’s labels are weakly labeled, we prioritize recordings under 5 seconds to reduce label noise (i.e.,
increasing the chance that the annotated species on file-level is actually present in each extracted event). In
the following, we describe the k-shot subset creation pipeline:

1. Initial filtering: We first go through all recordings in the original training split for a given BirdSet
task. The preferred recordings are up to 5 seconds, aligning with the 5-second input file length of the
model to mitigate label noise. However, since there are not always even 5-second recordings for each
species, we also include 20 seconds samples, but only if they contained just one primary bird species
(no secondary species listed).

2. Sample extraction from recording: From each selected recording (which can contain multiple
vocalization events), we extract individual 5-second audio samples centered around these events based
on the given events from the BirdSet metadata. To avoid over-representing any single long recording,
if a recording yields multiple 5-second samples, one is randomly chosen as a primary sample for that
recording, and the others are considered leftover samples.

3. Selecting k samples per class: We first try to pick k samples from the primary sample associated
with that species (if available). If there are not enough primary samples (less than k), we then try to
fill the remaining spots using the leftover samples from that species. If, a class still has fewer than k
samples, we do not fill up further from recordings that failed the initial filtering. This means some
classes in the few-shot set might have fewer than k samples if not enough suitable recordings are
available. If a species has more than k suitable samples, we randomly selected k samples from the
available pool for that species.

4. Dataset construction: The selected k samples per class form the new train split for that specific
k-shot, seeded dataset. The original BirdSet test split (5-second segments) is kept as is for evaluation.

A.3 Full Downstream Data

The BirdSet dataset provides file-level (weak) labels for recordings that may contain multiple vocalization
events, necessitating downstream processing to generate task-specific datasets (Rauch et al., 2024). Our
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preliminary experiments on small focal validation sets on all downstream tasks and models indicated that
a uniform sampling strategy across all BirdSet’s tasks is suboptimal. Consequently, we adopted tailored
approaches: For the datasets HSN, UHH, and NBP that have the lowest class counts across tasks, we utilized
BirdSet’s inherent sampling strategy by adding a species cap of 500 and extracting a maximum of 5 events
per recording, following Rauch et al. (2024). More details are available in the BirdSet implementations.
Conversely, the datasets SNE, POW, NES, PER, and SSW are characterized by larger data volumes and higher class
counts. We found it more advantageous to employ our few-shot sampling approach with k = 64 to further
reduce label noise and class imbalance. This proved beneficial for experiments involving both fine-tuning and
frozen representations across all models. The final number of samples curated for each dataset in our study is
detailed in the main text in Table 2.

B Metrics

This appendix provides a detailed description of the evaluation metrics employed to assess model performance
throughout this study. We evaluate model performance in the main paper with the mean average precision
(MAP) as the metric in multi-label classification (Huang et al., 2022; Chen et al., 2023; 2024a; Rauch
et al., 2024). In the additional results in Appendix E, we also report the area under the receiver operating
characteristic curve (AUROC), and top-1 accuracy (T1-Acc), following the multi-label benchmark from
BirdSet.

• MAP, also referred to as class-wise MAP (cmAP) (Rauch et al., 2024), first calculates the average
precision (AP) for each class c independently and then computes the macro-average of these AP scores
across all C classes:

MAP = 1
C

C∑
c=1

AP(c). (2)

MAP reflects the model’s ability to rank positive instances higher than negative ones for each class across
all decision thresholds, providing a comprehensive assessment of retrieval performance. By averaging
class-wise AP scores, MAP gives equal weight to each class, regardless of its prevalence in the dataset.
While robust, it can be sensitive to classes with very few positive instances (van Merriënboer et al., 2024).

• AUROC quantifies the model’s ability to discriminate between positive and negative instances across
all possible classification thresholds. It is equivalent to the probability that a randomly chosen positive
instance is ranked higher by the model than a randomly chosen negative instance (Heinrich et al., 2025).
For a multi-label setting, it is often computed as the average AUROC across all classes:

AUROC = 1
C

C∑
c=1

 1
|Y+,c| · |Y−,c|

∑
n∈Y+,c

∑
m∈Y−,c

I{ŷn,c > ŷm,c}

 ,

where Y+,c and Y−,c are the sets of indices for positive and negative instances for class c respectively,
ŷn,c is the predicted score for instance n and class c, and I{·} is the indicator function. AUROC is
threshold-independent and provides a balanced view of performance, where a random classifier yields an
AUROC of 0.5 (van Merriënboer et al., 2024).

• T1-Acc assesses whether the class assigned the highest predicted confidence score by the model is among
the set of true labels for a given instance (Rauch et al., 2024):

T1-Acc = 1
N

N∑
n=1

I{ŷ(top)
n ∈ Yn,:},

where N is the total number of instances, ŷ(top)
n is the class with the highest predicted score for instance

n, Yn,: is the set of true labels for instance n, and I{·} is the indicator function. While not a canonical
multi-label metric, T1-Acc offers an intuitive measure of whether the model’s most confident prediction
is correct, which is relevant in practical applications where identifying at least one present species is a
primary goal.
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C Implementation and Infrastructure

To facilitate reproduction, experiments were run under the following conditions: Models were trained and
evaluated on a compute cluster using NVIDIA L40s and A100 GPUs. CPU types included Intel Xeon Gold
6252 and AMD EPYC 7662, with nodes having approximately 600 GB RAM. The software environment
consisted of Ubuntu OS, Python 3.9, PyTorch (Paszke et al., 2019), and PyTorch Lightning (Falcon & The
PyTorch Lightning team, 2019). Small-scale testing was performed on a workstation using an NVIDIA RTX
4090 GPU and an AMD Ryzen 9 7950X CPU.

D Model Training

This appendix outlines the specific training configurations and hyperparameters employed for our experiments,
including both the ablation studies and the final benchmark evaluations.

D.1 Augmentations

Our data augmentation pipeline, applied during to all experiments, including few-shot multi-label classification
and probing variants, is adapted from the strategies outlined in BirdSet (Rauch et al., 2024). We empirically
tuned the application probability for each selected augmentation based on preliminary experiments on the
validation data HSN. A key component of our pipeline is waveform-level mixup, implemented using TorchAu-
diomentations (Jordal et al., 2024), which demonstrated superior performance compared to spectrogram-based
or standard linear mixup. For augmentations requiring external audio, such as background noise addition
and no-call mixing, we utilized environmental recordings sourced from BirdSet’s VOX dataset. Additional
waveform and spectrogram-level augmentations, along with their specific parameters, are detailed in Table 9.

Augmentation Probability Parameters

Waveform-level augmentations

cyclic rolling start 1.0 -
multi-label mixup 0.9 min-snr=2.0, max-snr=30.0, mix-target=union, max-samples=3
background noise 0.5 min-snr=3.0, max-snr=30.0
colored noise 0.2 min-snr=3.0, max-snr=30.0, min-f-decay=-2, max-f-decay=2
gain adjustment 0.2 min-gain=-18, max-gain=6
no-call mixing 0.075 -

Spectrogram-level augmentations

frequency masking 0.3 freq-mask-param=50, iid-masks=True
time masking 0.3 time-mask-param=100, iid-masks=True

Table 9: Data augmentation techniques and parameters applied during all experiments in the paper.
This includes fine-tuning and probing on the complete dataset as well as few-shot probing across all techniques.

D.2 Hyperparameters

This section details the hyperparameters used for fine-tuning our models in both the ablation studies and
the main BirdSet benchmark experiments. These parameters, including learning rates, batch sizes, and
optimizers, were empirically validated on the HSN dataset. After validation, the hyperparameters were fixed
across all downstream tasks. All models utilize the asymmetric loss for multi-label classification (Ridnik et al.,
2021). The same core settings were also applied to the few-shot learning benchmark, with minor adjustments
primarily to the learning rate and number of training epochs to suit the reduced data regime.

For each model, whether we fine tune it on the full data or probe frozen representations, we validate two
hyperparameters: the learning rate and the weight decay. With prototypical pooling or probing we additionally
explore the number of prototypes $J$ (see Table 13) and the learning rate of the prototype vectors. Every
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model and setting combination is trained for 30 epochs in the full data regime and 50 epochs in the few shot
regime, using random search over these discrete grids:

• Learning rate: {1×10−5, 1×10−4, 2×10−4, 3×10−4, 4×10−4, 5×10−4, 1×10−3, 5×10−3}

• Weight decay: {1×10−4, 2×10−4, 3×10−4, 4×10−4, 5×10−4}

• Number of prototypes J : {5, 10, 15, 20, 25, 30}

• Prototype learning rate: {2×10−2, 4×10−2, 5×10−2}

Parameter BirdAVES
(Hagiwara, 2023)

SimCLR
(Moummad et al., 2024)

Audio-MAE
(Huang et al., 2022) Bird-MAE

Model Training (Fine-Tuning / Probing on full data)
Input Type Waveform Spectrogram Spectrogram (fbank) Spectrogram (fbank)
Batch size 64 128 128 128,128,64
# Epochs 30 30 30 30
Gradient clip 0.5 0.1 2 2
Precision 16-mixed 16-mixed 16-mixed 16-mixed
Learning rate 1e-5 4e-4 3e-4 3e-4
Optimizer AdamW AdamW AdamW AdamW
Loss Asymmetric Asymmetric Asymmetric Asymmetric
Weight decay 1e-4 3e-4 3e-4 3e-4
Layer decay - - 0.75 0.75
Pooling mean mean prototypical prototypical
Scheduler Cos-Annealing Cos-Annealing Cos-Annealing Cos-Annealing

Model Training (Few-shot probing)
Learning Rate - - - 4e-4
Epochs - - - 50

Processing
# fft - 1024 ∼800 ∼800
# Mels - 128 128 128
Sampling Rate 16 kHz 16 kHz 32 kHz 32 kHz
Norm Mean - 0.5347 -4.2 -7.2
Norm Std - 0.0772 4.57 4.43
Fmin-Fmax - 50-8000 Hz full band full band
Window Type - Hanning Hanning Hanning
Frame Shift - 320 samples 10 ms 10 ms
Log Scale - AmplitudeToDB log FBANK log FBANK

Pretraining
Type SSL SSL SSL SSL
Architecture HuBERT-L CvT-13 ViT-B/16 ViT-{B,L,H}/16
# Params [M] 317 20 86 86,307,632
Dataset Xeno-Canto∗ Xeno-Canto∗ AS-2M XCL-1.7M

Prototypical Pooling / Probing
# Prototypes 20 20 20 20
Protoype LR 4e-2 4e-2 4e-2 4e-2
Focal Similarity True True True True
Orthogonality Loss True True True True

Attentive Pooling / Probing
# Attention heads - - 12 12

Table 10: Training hyperparameters for models evaluated in this paper. These settings cover
evaluations using frozen representations, full fine-tuning (ablation studies), and both techniques for multi-
label classification on the benchmark results. For the multi-label few-shot classification benchmark, we largely
retained the same hyperparameter settings, with specific adjustments primarily to the learning rate and
number of training epochs.
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E Additional Benchmark Results

This appendix presents complementary results to the main multi-label and few-shot classification benchmarks
discussed in the main text. These additional evaluations provide further insights into model performance
with BirdSet’s metric suite.

E.1 Multi-Label Classification

Fine-Tuning Prototypical Probing Linear Probing
Model AUROC MAP T1-Acc AUROC MAP T1-Acc AUROC MAP T1-Acc

HSN

BirdAVES 0.86 ± 0.03 0.43 ± 0.01 0.55 ± 0.03 0.79 ± 0.00 0.33 ± 0.00 0.25 ± 0.01 0.81 ± 0.00 0.15 ± 0.00 0.13 ± 0.00
SimCLR 0.83 ± 0.00 0.39 ± 0.00 0.54 ± 0.01 0.73 ± 0.01 0.18 ± 0.00 0.18 ± 0.01 0.70 ± 0.00 0.17 ± 0.00 0.12 ± 0.00
Audio-MAE 0.83 ± 0.00 0.19 ± 0.00 0.10 ± 0.00 0.19 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.68 ± 0.00 0.09 ± 0.00 0.06 ± 0.00
Bird-MAE-B 0.86 ± 0.00 0.52 ± 0.01 0.58 ± 0.01 0.89 ± 0.01 0.44 ± 0.05 0.37 ± 0.16 0.77 ± 0.00 0.13 ± 0.00 0.07 ± 0.01
Bird-MAE-L 0.90 ± 0.00 0.55 ± 0.00 0.64 ± 0.01 0.90 ± 0.00 0.49 ± 0.01 0.38 ± 0.01 0.72 ± 0.00 0.12 ± 0.00 0.07 ± 0.00
Bird-MAE-H 0.91 ± 0.00 0.55 ± 0.00 0.65 ± 0.00 0.91 ± 0.00 0.48 ± 0.01 0.46 ± 0.08 0.76 ± 0.00 0.13 ± 0.00 0.10 ± 0.00

POW

BirdAVES 0.60 ± 0.01 0.11 ± 0.02 0.10 ± 0.03 0.66 ± 0.00 0.20 ± 0.01 0.28 ± 0.03 0.68 ± 0.01 0.15 ± 0.00 0.31 ± 0.04
SimCLR 0.81 ± 0.00 0.35 ± 0.01 0.67 ± 0.04 0.64 ± 0.01 0.17 ± 0.00 0.27 ± 0.05 0.71 ± 0.01 0.18 ± 0.00 0.39 ± 0.01
Audio-MAE 0.82 ± 0.01 0.39 ± 0.01 0.75 ± 0.00 0.74 ± 0.00 0.20 ± 0.00 0.26 ± 0.02 0.60 ± 0.00 0.10 ± 0.00 0.09 ± 0.01
Bird-MAE-B 0.86 ± 0.00 0.45 ± 0.01 0.83 ± 0.00 0.85 ± 0.01 0.38 ± 0.01 0.74 ± 0.02 0.67 ± 0.00 0.13 ± 0.00 0.23 ± 0.06
Bird-MAE-L 0.90 ± 0.00 0.55 ± 0.01 0.91 ± 0.00 0.90 ± 0.00 0.52 ± 0.00 0.89 ± 0.01 0.67 ± 0.01 0.14 ± 0.00 0.22 ± 0.06
Bird-MAE-H 0.89 ± 0.00 0.54 ± 0.01 0.89 ± 0.00 0.89 ± 0.01 0.50 ± 0.01 0.86 ± 0.01 0.67 ± 0.00 0.15 ± 0.00 0.32 ± 0.04

NES

BirdAVES 0.75 ± 0.03 0.06 ± 0.00 0.13 ± 0.02 0.65 ± 0.01 0.12 ± 0.01 0.23 ± 0.03 0.70 ± 0.00 0.08 ± 0.00 0.12 ± 0.02
SimCLR 0.85 ± 0.01 0.24 ± 0.01 0.39 ± 0.01 0.62 ± 0.01 0.08 ± 0.01 0.20 ± 0.02 0.75 ± 0.00 0.11 ± 0.00 0.11 ± 0.01
Audio-MAE 0.87 ± 0.00 0.30 ± 0.00 0.42 ± 0.01 0.87 ± 0.00 0.16 ± 0.00 0.25 ± 0.01 0.70 ± 0.00 0.04 ± 0.00 0.07 ± 0.01
Bird-MAE-B 0.90 ± 0.00 0.37 ± 0.00 0.47 ± 0.00 0.92 ± 0.00 0.28 ± 0.00 0.41 ± 0.01 0.78 ± 0.00 0.08 ± 0.00 0.11 ± 0.01
Bird-MAE-L 0.91 ± 0.00 0.41 ± 0.01 0.52 ± 0.00 0.93 ± 0.00 0.38 ± 0.00 0.47 ± 0.00 0.75 ± 0.00 0.06 ± 0.00 0.22 ± 0.01
Bird-MAE-H 0.89 ± 0.00 0.39 ± 0.00 0.51 ± 0.01 0.92 ± 0.00 0.36 ± 0.01 0.47 ± 0.01 0.75 ± 0.00 0.11 ± 0.00 0.22 ± 0.01

SNE

BirdAVES 0.65 ± 0.03 0.07 ± 0.00 0.04 ± 0.04 0.59 ± 0.00 0.10 ± 0.01 0.27 ± 0.01 0.67 ± 0.01 0.08 ± 0.00 0.20 ± 0.01
SimCLR 0.75 ± 0.01 0.16 ± 0.00 0.40 ± 0.03 0.58 ± 0.00 0.09 ± 0.01 0.12 ± 0.04 0.61 ± 0.01 0.09 ± 0.00 0.18 ± 0.03
Audio-MAE 0.81 ± 0.01 0.22 ± 0.00 0.42 ± 0.01 0.75 ± 0.00 0.12 ± 0.00 0.13 ± 0.04 0.62 ± 0.01 0.06 ± 0.00 0.01 ± 0.01
Bird-MAE-B 0.83 ± 0.01 0.28 ± 0.01 0.52 ± 0.01 0.84 ± 0.00 0.22 ± 0.00 0.35 ± 0.02 0.67 ± 0.01 0.08 ± 0.00 0.04 ± 0.01
Bird-MAE-L 0.88 ± 0.00 0.34 ± 0.00 0.61 ± 0.01 0.86 ± 0.00 0.30 ± 0.00 0.54 ± 0.01 0.64 ± 0.01 0.08 ± 0.00 0.20 ± 0.01
Bird-MAE-H 0.85 ± 0.01 0.32 ± 0.00 0.62 ± 0.01 0.85 ± 0.01 0.28 ± 0.01 0.48 ± 0.02 0.61 ± 0.01 0.09 ± 0.00 0.18 ± 0.03

SSW

BirdAVES 0.76 ± 0.02 0.04 ± 0.00 0.10 ± 0.02 0.62 ± 0.00 0.08 ± 0.03 0.20 ± 0.03 0.73 ± 0.00 0.06 ± 0.00 0.16 ± 0.01
SimCLR 0.83 ± 0.02 0.19 ± 0.02 0.44 ± 0.01 0.60 ± 0.01 0.05 ± 0.00 0.16 ± 0.02 0.74 ± 0.00 0.07 ± 0.00 0.18 ± 0.01
Audio-MAE 0.89 ± 0.00 0.27 ± 0.00 0.52 ± 0.01 0.86 ± 0.00 0.09 ± 0.00 0.25 ± 0.02 0.69 ± 0.01 0.03 ± 0.00 0.10 ± 0.01
Bird-MAE-B 0.88 ± 0.00 0.33 ± 0.01 0.62 ± 0.00 0.94 ± 0.00 0.23 ± 0.00 0.49 ± 0.00 0.77 ± 0.00 0.05 ± 0.00 0.14 ± 0.00
Bird-MAE-L 0.93 ± 0.00 0.41 ± 0.00 0.70 ± 0.00 0.94 ± 0.00 0.38 ± 0.00 0.62 ± 0.00 0.77 ± 0.00 0.05 ± 0.00 0.14 ± 0.00
Bird-MAE-H 0.91 ± 0.00 0.41 ± 0.00 0.68 ± 0.00 0.94 ± 0.00 0.36 ± 0.02 0.60 ± 0.02 0.74 ± 0.00 0.07 ± 0.00 0.18 ± 0.01

PER

BirdAVES 0.58 ± 0.02 0.05 ± 0.01 0.11 ± 0.02 0.54 ± 0.00 0.05 ± 0.00 0.14 ± 0.00 0.60 ± 0.00 0.05 ± 0.00 0.13 ± 0.01
SimCLR 0.73 ± 0.00 0.17 ± 0.01 0.43 ± 0.01 0.52 ± 0.00 0.03 ± 0.00 0.06 ± 0.02 0.63 ± 0.01 0.06 ± 0.00 0.13 ± 0.01
Audio-MAE 0.77 ± 0.00 0.21 ± 0.00 0.49 ± 0.00 0.71 ± 0.00 0.09 ± 0.00 0.17 ± 0.00 0.60 ± 0.00 0.04 ± 0.00 0.09 ± 0.00
Bird-MAE-B 0.77 ± 0.00 0.28 ± 0.00 0.54 ± 0.00 0.79 ± 0.00 0.21 ± 0.00 0.49 ± 0.01 0.63 ± 0.00 0.05 ± 0.00 0.13 ± 0.00
Bird-MAE-L 0.82 ± 0.00 0.35 ± 0.00 0.60 ± 0.01 0.82 ± 0.00 0.31 ± 0.00 0.59 ± 0.00 0.63 ± 0.01 0.05 ± 0.00 0.13 ± 0.00
Bird-MAE-H 0.81 ± 0.00 0.33 ± 0.00 0.59 ± 0.00 0.82 ± 0.00 0.30 ± 0.01 0.58 ± 0.01 0.66 ± 0.01 0.07 ± 0.00 0.18 ± 0.02

UHH

BirdAVES 0.82 ± 0.01 0.22 ± 0.01 0.47 ± 0.02 0.71 ± 0.01 0.15 ± 0.01 0.29 ± 0.00 0.72 ± 0.00 0.12 ± 0.00 0.28 ± 0.00
SimCLR 0.76 ± 0.00 0.21 ± 0.00 0.37 ± 0.01 0.57 ± 0.07 0.07 ± 0.03 0.19 ± 0.08 0.76 ± 0.00 0.15 ± 0.00 0.29 ± 0.00
Audio-MAE 0.82 ± 0.00 0.26 ± 0.00 0.38 ± 0.00 0.74 ± 0.00 0.17 ± 0.00 0.26 ± 0.00 0.67 ± 0.00 0.11 ± 0.00 0.29 ± 0.00
Bird-MAE-B 0.81 ± 0.01 0.28 ± 0.01 0.41 ± 0.04 0.83 ± 0.01 0.26 ± 0.03 0.32 ± 0.04 0.76 ± 0.00 0.15 ± 0.00 0.29 ± 0.00
Bird-MAE-L 0.82 ± 0.01 0.30 ± 0.00 0.42 ± 0.00 0.83 ± 0.00 0.30 ± 0.00 0.36 ± 0.00 0.76 ± 0.00 0.15 ± 0.00 0.28 ± 0.00
Bird-MAE-H 0.80 ± 0.01 0.30 ± 0.00 0.41 ± 0.02 0.82 ± 0.01 0.29 ± 0.00 0.35 ± 0.02 0.71 ± 0.05 0.13 ± 0.03 0.19 ± 0.07

NBP

BirdAVES 0.93 ± 0.00 0.70 ± 0.00 0.78 ± 0.01 0.79 ± 0.02 0.40 ± 0.01 0.45 ± 0.01 0.79 ± 0.00 0.34 ± 0.00 0.37 ± 0.01
SimCLR 0.92 ± 0.00 0.66 ± 0.00 0.73 ± 0.01 0.73 ± 0.01 0.27 ± 0.01 0.30 ± 0.00 0.73 ± 0.00 0.34 ± 0.00 0.37 ± 0.01
Audio-MAE 0.93 ± 0.00 0.67 ± 0.01 0.68 ± 0.01 0.81 ± 0.00 0.35 ± 0.00 0.37 ± 0.00 0.75 ± 0.00 0.25 ± 0.00 0.21 ± 0.00
Bird-MAE-B 0.91 ± 0.00 0.63 ± 0.01 0.66 ± 0.02 0.92 ± 0.03 0.63 ± 0.07 0.65 ± 0.06 0.79 ± 0.00 0.34 ± 0.00 0.45 ± 0.01
Bird-MAE-L 0.94 ± 0.00 0.72 ± 0.00 0.72 ± 0.01 0.92 ± 0.00 0.69 ± 0.00 0.69 ± 0.01 0.92 ± 0.00 0.42 ± 0.00 0.42 ± 0.00
Bird-MAE-H 0.94 ± 0.00 0.69 ± 0.00 0.70 ± 0.01 0.92 ± 0.01 0.69 ± 0.02 0.69 ± 0.02 0.80 ± 0.00 0.25 ± 0.00 0.21 ± 0.00

Table 11: Fine-tuning, prototypical probing and linear probing results on BirdSet’s multi-label
classification benchmark (MAP, AUROC, T1-Acc.). Comparison of SSL models with full training data,
following the evaluation protocol of BirdSet. Best results are highlighted. This complements Table 6 from
the main text.
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E.2 Few-Shot Multi-Label Classification

1-shot 5-shot 10-shot
AUROC MAP T1-Acc AUROC MAP T1-Acc AUROC MAP T1-Acc

POW
Proto 72.05 ± 0.86 25.22 ± 1.55 45.15 ± 7.33 83.75 ± 0.36 41.46 ± 0.53 74.37 ± 1.11 85.25 ± 0.36 42.95 ± 0.60 87.61 ± 0.53
Linear 52.26 ± 1.73 7.05 ± 0.36 9.93 ± 9.48 57.01 ± 0.26 11.25 ± 0.32 7.26 ± 3.89 62.05 ± 0.49 12.53 ± 0.28 26.15 ± 10.65
Attentive 57.45 ± 1.41 10.28 ± 0.83 6.14 ± 4.26 70.35 ± 1.20 23.11 ± 0.70 54.30 ± 8.62 75.89 ± 0.64 31.88 ± 0.40 75.88 ± 2.01

HSN
Proto 60.55 ± 7.23 9.91 ± 4.44 2.03 ± 1.94 82.54 ± 1.85 27.88 ± 3.91 15.95 ± 6.26 86.35 ± 0.56 38.65 ± 2.08 21.58 ± 2.52
Linear 52.46 ± 2.18 3.21 ± 0.28 5.39 ± 6.84 54.62 ± 1.17 3.57 ± 0.29 0.67 ± 0.23 55.10 ± 1.87 4.06 ± 0.44 1.15 ± 0.61
Attentive 60.03 ± 2.82 6.48 ± 0.80 3.20 ± 3.22 71.26 ± 1.75 19.01 ± 2.75 11.97 ± 3.01 80.26 ± 0.94 31.58 ± 2.35 22.01 ± 2.67

PER
Proto 70.50 ± 0.69 14.36 ± 0.50 18.81 ± 7.67 80.00 ± 0.37 26.83 ± 0.40 58.94 ± 2.42 81.22 ± 0.14 29.33 ± 0.11 62.10 ± 1.26
Linear 52.96 ± 1.31 2.49 ± 0.05 4.89 ± 5.36 60.09 ± 1.03 4.09 ± 0.21 4.94 ± 2.14 63.01 ± 1.07 5.41 ± 0.12 7.02 ± 0.70
Attentive 55.89 ± 1.03 3.17 ± 0.24 2.15 ± 1.12 68.45 ± 1.83 14.08 ± 0.56 39.55 ± 2.15 74.22 ± 1.06 20.69 ± 1.08 50.83 ± 2.29

NES
Proto 78.78 ± 1.27 12.03 ± 0.93 13.70 ± 1.56 88.97 ± 0.80 28.65 ± 1.02 41.11 ± 2.10 91.44 ± 0.31 33.86 ± 0.51 46.91 ± 0.42
Linear 55.95 ± 1.73 1.06 ± 0.17 0.29 ± 0.17 64.77 ± 0.97 3.65 ± 0.31 2.64 ± 1.17 68.96 ± 0.73 5.71 ± 0.11 7.82 ± 0.94
Attentive 62.20 ± 1.52 3.58 ± 0.46 2.89 ± 1.57 83.38 ± 0.90 20.98 ± 0.13 32.76 ± 4.37 87.76 ± 0.76 28.78 ± 0.64 42.53 ± 1.44

UHH
Proto 67.89 ± 1.30 9.82 ± 0.82 10.59 ± 2.02 73.73 ± 0.70 14.96 ± 0.52 35.36 ± 0.44 75.24 ± 0.63 21.06 ± 0.80 48.78 ± 1.97
Linear 57.27 ± 2.36 5.54 ± 0.09 8.92 ± 12.29 58.21 ± 1.85 6.04 ± 0.36 22.25 ± 5.36 60.18 ± 2.22 5.74 ± 0.36 17.72 ± 7.57
Attentive 60.62 ± 0.86 7.23 ± 0.85 8.74 ± 2.80 65.01 ± 1.01 9.26 ± 0.33 17.74 ± 5.48 66.57 ± 1.58 13.00 ± 1.53 45.12 ± 2.22

NBP
Proto 69.10 ± 0.94 22.81 ± 1.35 17.89 ± 3.92 84.51 ± 0.71 47.81 ± 0.60 49.13 ± 2.81 86.37 ± 1.11 54.53 ± 1.60 55.88 ± 1.26
Linear 53.09 ± 0.35 5.44 ± 0.26 4.08 ± 0.40 58.00 ± 0.51 8.18 ± 1.02 4.33 ± 0.76 61.96 ± 0.24 11.69 ± 1.05 7.73 ± 0.89
Attentive 58.05 ± 1.02 9.08 ± 0.67 5.63 ± 0.95 77.83 ± 0.74 36.80 ± 1.63 41.25 ± 2.22 82.58 ± 0.76 47.06 ± 0.93 55.35 ± 1.79

SSW
Proto 81.33 ± 2.53 12.61 ± 0.68 26.87 ± 3.96 90.08 ± 0.28 25.87 ± 0.80 45.11 ± 0.98 92.54 ± 0.17 32.64 ± 0.13 50.01 ± 0.54
Linear 61.94 ± 2.05 1.15 ± 0.09 0.38 ± 0.32 67.25 ± 1.65 2.35 ± 0.23 6.07 ± 3.48 68.00 ± 0.79 3.68 ± 0.30 12.16 ± 0.29
Attentive 55.86 ± 0.95 2.25 ± 0.64 3.42 ± 1.53 79.93 ± 0.87 18.16 ± 0.73 38.35 ± 0.54 85.81 ± 0.48 27.20 ± 0.65 49.50 ± 1.27

SNE
Proto 68.86 ± 0.90 9.05 ± 1.66 7.23 ± 3.56 81.03 ± 0.25 22.53 ± 0.20 38.15 ± 0.40 83.01 ± 0.74 25.60 ± 0.19 47.15 ± 2.48
Linear 54.18 ± 1.86 3.19 ± 0.27 0.57 ± 0.51 56.28 ± 1.06 4.53 ± 0.44 2.38 ± 1.27 58.56 ± 1.16 6.09 ± 0.68 4.40 ± 1.58
Attentive 53.39 ± 2.00 4.56 ± 0.33 2.80 ± 1.61 68.66 ± 1.80 13.01 ± 0.49 27.63 ± 2.57 75.99 ± 0.97 19.43 ± 1.31 37.30 ± 4.32

Table 12: Frozen representation results for prototypical, linear and attentive probing on our
few-shot multi-label classification benchmark (MAP, AUROC, T1-Acc.). Comparison of our best-performing
Bird-MAE-L model with few-shot training data, following the evaluation protocol of (Rauch et al., 2024).
Best results are highlighted. This complements Table 7 from the main text.

F Additional Ablations

This appendix contains supplementary ablation studies. As in the main text, all ablations are performed on
the HSN validation set with the best-performing model modifications and parameters.

J Probing Fine-tuning
5 39.16 52.22
10 43.78 54.07
15 47.47 54.16
20 49.92 54.91
25 49.92 54.91
30 49.97 54.71

Table 13: Ablation on number of prototypes (J) on HSN with the Bird-MAE-L model (MAP%).
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