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Abstract
Maximizing monotone submodular functions un-
der a matroid constraint is a classic algorithmic
problem with multiple applications in data mining
and machine learning. We study this classic prob-
lem in the fully dynamic setting, where elements
can be both inserted and deleted in real-time. Our
main result is a randomized algorithm that main-
tains an efficient data structure with an Õ(k2)
amortized update time (in the number of addi-
tions and deletions) and yields a 4-approximate
solution, where k is the rank of the matroid.

1. Introduction
Thanks to the ubiquitous nature of “diminishing returns”
functions, submodular maximization is a central problem in
unsupervised learning with multiple applications in different
fields, including video analysis (Zheng et al., 2014), data
summarization (Lin & Bilmes, 2011; Bairi et al., 2015),
sparse reconstruction (Bach, 2010; Das & Kempe, 2011),
and active learning (Golovin & Krause, 2011; Amanatidis
et al., 2022).

Given a submodular function f , a universe of elements
V , and a family F ⊆ 2V of subsets of V the submodu-
lar maximization problem consists in finding a set S ∈ F
that maximizes f(S). A classic choice for F are the ca-
pacity constraints (a.k.a. k-uniform matroid constraints)
where every subset S of cardinality at most k is feasible.
Another common restriction that generalizes capacity con-
straints and comes up in many real-world scenarios are ma-
troid constraints. Submodular maximization under matroid
constraints is NP-hard, although efficient approximation
algorithms exist for this task in both the centralized and
streaming setting (Fisher et al., 1978; Călinescu et al., 2011;
Chakrabarti & Kale, 2015; Ene & Nguyen, 2019).
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One fundamental limitation of these algorithms is that they
are not well-suited to handle highly dynamic datasets, where
elements are added and deleted continuously. Many real-
world applications exhibit such dynamic behaviour; for ex-
ample, Dey et al. (2012) crawled two snapshots of 1.4 mil-
lion New York City Facebook users several months apart
and reported that 52% of the users changed their profile
privacy settings during this period. Similarly, TikTok pro-
cesses millions of video uploads and deletions each day,
while also Snapchat processes millions of message uploads
and deletions daily. In such settings, it is essential to quickly
perform basic machine learning tasks, such as active learn-
ing or data summarization, so it is crucial to design fully
dynamic algorithms that can efficiently process streams con-
taining not only insertions but also an arbitrary number of
deletions, with small processing time per update.

For these reasons, many problems have been studied in the
dynamic setting, even if it is notoriously difficult to obtain
efficient algorithms in this model. For monotone submod-
ular maximization with a cardinality constraint, a (2 + ε)-
approximation algorithm with poly-logarithmic amortized
update time (with respect to the length of the stream) was
designed by Lattanzi et al. (2020); subsequently, this result
has been proved to be tight by Chen & Peng (2022). In the
case of submodular maximization with matroid constraints,
algorithms have been proposed only for specialized dynamic
settings, namely sliding windows (Chen et al., 2016; Epasto
et al., 2017) and deletion robustness (Dütting et al., 2022;
Mirzasoleiman et al., 2017; Zhang et al., 2022b).

Our contribution. In this paper we propose the first fully
dynamic algorithm for submodular maximization under a
matroid constraint with amortized running time that is sub-
linear in the length of the stream. Our randomized algorithm
processes a stream of arbitrarily interleaved insertions and
deletions with an (expected) amortized time per update that
is Õ(k2)∗. Crucially, it also continuously maintains a solu-
tion whose value is (deterministically), after each update, at
least 1

4 of the optimum on the available elements.

Technical challenges. While many algorithms are known
to handle insertions-only streams, it is challenging to ef-
ficiently handle deletions: removing one element from a

∗In this work, Õ hides factors poly-logarithmic in n (the num-
ber of elements in the stream) and k (the rank of the matroid).
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candidate solution may make necessary to recompute a new
solution from scratch using all the elements arrived in pre-
vious insertions. This is the reason why well-known tech-
niques for the centralized or streaming framework cannot
be applied directly in the dynamic setting without suffer-
ing a linear amortized update time Ω(n) (see Appendix C
for further discussion). The fully-dynamic algorithm for
cardinality constraint (Lattanzi et al., 2020) addresses this
phenomenon via a two-dimensional bucketing data struc-
ture that allows to efficiently recover elements with large
enough contribution to the current solution (and can be used
to quickly recompose a good solution after a deletion). Un-
fortunately, that approach crucially depends on the nature
of the constraint and does not extend to more structured
constraints as matroids. The key difficulty is that when an
element of an independent set in a matroid gets deleted, only
a subset of the elements can replace it, according to the ma-
troid constraint. This is a crucial difference with cardinality
constraints, where all elements are interchangeable.

Our techniques. In this paper, we also design and ana-
lyze a data structure that is organized in levels, each one
providing robustness at different scales. In addition, we
carefully design an update rule that simulates in real-time
the behavior of the classic SWAPPING algorithm for submod-
ular maximization under matroid constraint (Chakrabarti &
Kale, 2015). A key insight of our approach is that one can
reorder and delay the addition or swapping of the elements
with lower robustness without losing the simplicity and ef-
fectiveness of the SWAPPING algorithm. Interestingly, our
construction simplifies substantially that of Lattanzi et al.
(2020) as it removes one of the two dimensions of the dy-
namic data structure. Finally, we highlight a speed-up to
the swapping algorithm that reduces the number of matroid
independence queries by a factor (k/ log k). This result may
be of independent interest.

Additional related works. Independently and in parallel
from Lattanzi et al. (2020), Monemizadeh (2020) achieved
the same approximation guarantee with Õ(k2) amortized
update time were k is the cardinality constraint. An area
of research that is very close to the fully dynamic setting
is robust submodular optimization (Orlin et al., 2018; Bo-
gunovic et al., 2017; Mirzasoleiman et al., 2017; Mitrovic
et al., 2017; Kazemi et al., 2018; Avdiukhin et al., 2019;
Zhang et al., 2022a). In this setting, the goal is to select a
summary of the whole dataset that is robust to d adversarial
deletions; crucially the number d of deletions is known to
the algorithm and typically all the deletions happen after the
insertion in the stream. The results in this line of research
do not apply to our dynamic setting where the number of
deletions is arbitrary and deletions are interleaved with in-
sertions.

2. Preliminaries
We consider a set function f : 2V → R≥0 on a (poten-
tially large) ground set V . Given two sets X,Y ⊆ V , the
marginal gain ofX with respect to Y , f (X | Y ), quantifies
the change in value of adding X to Y and is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ).

When X consists of a singleton x, we use the shorthand
f(x | Y ) instead of f({x} | Y ). Function f is called
monotone if f (e | X) ≥ 0 for each set X ⊆ V and element
e ∈ V , and submodular if for any two sets X ⊆ Y ⊆ V
and any element e ∈ V \ Y we have

f (e | X) ≥ f (e | Y ) .

Throughout the paper, we assume that f is monotone and
that it is normalized, i.e., f(∅) = 0. We model access to
the submodular function f via a value oracle that computes
f(S) for given S ⊆ V .

Submodularity under a matroid constraint. A non-
empty family of sets M ⊆ 2V is called a matroid if it
satisfies the following properties:

• Downward-closure if A ⊆ B and B ∈ M, then A ∈
M

• Augmentation ifA,B ∈M with |A| < |B|, then there
exists e ∈ B such that A+ e ∈M.

For the sake of brevity, in this paper we slightly abuse the
notation and for a set X and an element e, use X + e to
denote X ∪ {e} and X − e for X \ {e}. We call a set
A ⊆ 2V independent, if A ∈M, and dependent otherwise.
An independent set that is maximal with respect to inclusion
is called a base; all the bases of a matroid share the same
cardinality k, which is referred to as the rank of the matroid.
The problem of maximizing a function f under a matroid
constraintM is defined as selecting a set S ⊆ V with S ∈
M that maximizes f(S). Similarly to what is done for the
submodular function, we assume access to an independence
oracle that takes in input S ⊆ V and outputs whether S is
independent with respect to the matroid or not.

Fully dynamic model. Consider a stream of exactly n
insertion and n deletion operations chosen by an oblivious
adversary. Denote by Vi the set of all elements inserted
and not deleted up to the i-th operation. Let Oi be an
optimum solution for Vi and denote OPTi = f(Oi). Our
goal is to design a dynamic data structure with two key
properties. On the one hand, we want the data structure to
maintain, at the end of each operation i, a good feasible
solution Si ⊆ Vi. In particular, we say that an algorithm
is an α-approximation of the best (dynamic) solution if
OPTi ≤ αf(Si), for all i = 1, . . . , 2n. On the other hand,
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Algorithm 1 SWAPPING

1: Environment: stream π, function f and matroidM
2: S ← ∅, S′ ← ∅
3: for each new arriving element e from π do
4: w(e)← f(e | S′)
5: if S + e ∈M then
6: S ← S + e, S′ ← S′ + e
7: else
8: se ← argmin{w(y) | y ∈ S, e+ S − y ∈M}
9: if 2w(se) < w(e) then

10: S ← S − se + e, S′ ← S′ + e
11: Return S

we are interested in updating our data structure efficiently.
We measure efficiency in terms of the amortized running
time, i.e., the average per-operation computation: we say
that an algorithm has amortized running time t if its expected
total running time to process any stream of 2n insertions and
deletions is at most 2nt.† Throughout this paper, we refer
to running time as the total number of submodular function
evaluations (value oracle) and independent set evaluations
with respect to the matroid (independence oracle). This is a
standard practice in submodular optimization as these two
oracles typically dominates the running time of optimization
algorithms.

Insertion-only streams. The fully dynamic model can be
considered — to some extent — a generalization of the
insertion-only streaming model. There, an arbitrary se-
quence of sole insertions is passed to the algorithm that
is tasked with retaining a good solution (with respect to the
offline optimum), while using only little “online” memory.
A key ingredient in our analysis is the SWAPPING algorithm
by Chakrabarti & Kale (2015) that is a simple yet pow-
erful routine for submodular maximization with matroid
constraint in the streaming setting. SWAPPING maintains
a feasible solution and, for each new arriving element, it
adds it to the solution if either it does not violate the matroid
constraint or it is possible to swap it with some low-value
element‡. We use a slightly modified version of the original
algorithm (see pseudocode for details); namely, the weight
of a new element is computed as its marginal value with
respect to the set S′ of all the elements that at some point
were in the solution. We refer to Appendix A for a formal
proof of the fact that our modified version of SWAPPING
still retains the approximation guarantees we want:

Theorem 2.1. For any (possibly adaptive) stream of
elements in V , SWAPPING outputs a deterministic 4-
approximation to the best (offline) independent set in V.
†We are interested in the asymptotic behaviour of the amortized

running time, therefore we can safely assume that the sequence
contains exactly n deletions.
‡With ties in line 8 solved in any consistent way.

3. The Algorithm
In the main body of the paper we present and analyze a
simplified version of our data structure whose amortized
running time depends poly-logarithmically on a parameter
∆ of the function f defined as:

∆ =
maxx∈V f(x)

minT⊆V,x/∈T0
f(x | T )

,

where with T0 we denote the set of all the elements with 0
marginal contribution with respect to T . In Appendix B, we
show how to replace this dependence in ∆ with a O(k/ε)
term for any chosen precision parameter ε that influences the
approximation factor in an additive way. To further simplify
the presentation, we also assume without loss of generality
that our algorithm knows the number n of insertions and
deletions in advance, and that n is a power of 2. We show
in Section 6 a simple way to avoid this assumption without
affecting the approximation guarantee.

We are ready to introduce our algorithm. At a high level, it
carefully maintains the stream of elements in a data structure
characterized by a small amortized update time and that
mimics the behavior of SWAPPING, at each insertion or
deletion operation. Our data structure contains L+ 1 levels,
with L = log n. Each one of these levels is characterized
by four sets of elements: a partial solution S`, an auxiliary
set S′` that contains S` and some elements that used to
belong to S` but were later swapped out from it, a set A`

of candidate elements, that meet certain criteria and are
considered good addition to the solution, and a buffer B` of
still not processed elements. Moreover, the invariants that
|A`| and |B`| are smaller than n/2` are enforced. We claim
that the solution of the last level, i.e., SL (that plays the role
of Si), is consistently a constant factor approximation of
OPTi, at the end of each operation i. We describe how the
data structure is maintained; this clarifies the details of our
approach.

Initialization. At the beginning of the stream, the routine
INITIALIZATION is called. It takes in input n and initializes
Θ(log n) empty sets; the ones described above: S`, S

′
`, A`

and B` for all ` = 0, 1, . . . , L.

Algorithm 2 INITIALIZATION

1: Input: n
2: L← log n
3: Initialize empty sets A`, S`, S

′
`, B` ∀ 0 ≤ ` ≤ L

Handling insertions. When a new element e is inserted,
it gets immediately added to all the buffers (line 1 of IN-
SERTION). This addition induces the call of another routine,
LEVEL-CONSTRUCT, on the level ` with smallest index
such that the bufferB` exceeds a certain cardinality (namely
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when |B`| ≥ n/2`, see line 2 of INSERTION). Note that
such a level always exists by our choice of L.

Algorithm 3 INSERTION(e)

1: B` ← B` + e ∀ 0 ≤ ` ≤ L
2: if there exists an index ` such that |B`| ≥ n

2` then
3: Let `? be such ` with lowest value
4: Call LEVEL-CONSTRUCT(`?)

Handling deletions. When an element e is deleted from
the stream, then the data structure is updated according to
DELETION. Element e is removed from all the candidate
elements sets A` and buffers B` (lines 1 and 2) and causes
a call of LEVEL-CONSTRUCT on the smallest-index level
such that e ∈ S` (line 5). While INSERTION always induces
a call of LEVEL-CONSTRUCT, DELETION only causes it if
the deleted element belongs to some partial solution S`.

Algorithm 4 DELETION(e)

1: A` ← A` − e ∀ 0 ≤ ` ≤ L
2: B` ← B` − e ∀ 0 ≤ ` ≤ L
3: if e ∈ S` for some ` then
4: Let ` be the smallest index such that e ∈ S`

5: Call LEVEL-CONSTRUCT(`)

LEVEL-CONSTRUCT. We now describe the main routine
of our data structure: LEVEL-CONSTRUCT. A call to this
routine at level ` triggers some operations relevant to sets at
level `, and it then recursively runs LEVEL-CONSTRUCT at
level `+1. Therefore LEVEL-CONSTRUCT(`) is essentially
responsible for reprocessing the whole data structure at all
levels `, ` + 1, · · · , L. When it is called on some level `,
all the sets associated to that level (S`, S

′
`, A` and B`) are

reinitialized: the candidate elements set A` is initialized
with the elements in A`−1 and B`−1 (line 1), the buffer
B` is erased (line 2), while S` and S′` are copied from the
previous level (lines 3 and 4). Then, the following iterative
procedure is repeated, until the cardinality of A` becomes
smaller or equal to n/2`: first, all the elements in A` that
would not be added to S` by SWAPPING are filtered out
(lines 9 to 11), then, if the cardinality of A` is still large
enough (i.e., |A`| ≥ n/2`, see line 12) an element e from it
is drawn uniformly at random and is added to the solution
and to S′` (lines 14 and 15); note that if S` + e /∈M, then e
needs to be swapped with some element se in the solution
(see line 8). Two important implementation details are worth
mentioning here: (i) every time an element e is added to a
partial solution S`, also the information about the weight
w(e) it has at the moment is stored in S`; (ii) the partial
solutions S` are maintained sorted in increasing order of
weight. Note that these two points do not entail any call of
the value or independence oracles.

Algorithm 5 LEVEL-CONSTRUCT(`)

1: A` ← A`−1 ∪B`−1

2: B` ← ∅
3: S` ← S`−1

4: S′` ← S′`−1

5: repeat
6: for any element e ∈ A` do
7: w(e)← f(e | S′`)
8: se ← argmin{w(y) | y ∈ S` ∧S`− y+ e ∈M}
9: E` ← {e ∈ A` | S` + e ∈M}

10: F` ← {e ∈ A` \ E` | w(e) > 2w(se)}
11: A` ← E` ∪ F`

12: if |A`| ≥ n
2` then

13: Pop e from A` uniformly at random
14: S` ← S` + e− se
15: S′` ← S′` + e
16: until |A`| < n

2`

17: if ` < L, call LEVEL-CONSTRUCT(`+ 1).

4. Approximation Guarantee
Fix any operation i, we want to show that the solution SL

maintained in the data structure at the end of the compu-
tation relative to operation i is a good approximation of
the best independent set Oi (of value OPTi) in Vi. To not
overload the notation, we omit the index i when it is clear
from the context, so that V stands for the elements that were
inserted but not deleted from the stream up to operation
i (included) and D stands for the set of elements deleted
from the stream up to operation i (included). Clearly the
set of all the elements arrived up to operation i is exactly
V ∪ D. We want to show that f(SL) is a (deterministic)
4-approximation of the independent set in V with largest
value. In the following, we actually we prove that f(SL) is
a 4-approximation of something that is at least OPT.

Up to operation i the content of the data structure has
changed multiple times, but for the sake of the analysis
it is enough to consider a subset of all these modifications.
Formally, for each level `, denote with i` the last operation
that triggered a call of LEVEL-CONSTRUCT (`) before or at
operation i. This may have happened either directly via an
insertion or a deletion at level ` or indirectly because some-
thing was inserted or removed at some level with smaller
index. Denote with X` the elements in Vi` that were added
to S` during the computation and with Y` the elements
that were filtered out due failure in the “swapping” test. For-
mally,X` = S`\S`−1 at the end of the computation relative
to operation i`, while Y` is made up of all the elements that
were in A` = B`−1 ∪ A`−1 at the beginning of that call
of LEVEL-CONSTRUCT (`), but that were neither passed
to the following level nor added to the solution during the
repeat loop of that call of LEVEL-CONSTRUCT. Note that,

4



Fully Dynamic Submodular Maximization over Matroids

by definition of i`, nothing happens in level ` between oper-
ations i` and i besides possibly some basic addition induced
by INSERTION (line 1) and deletions induced by DELETION
(lines 1 and 2), thus sets X`, Y` and S` do not change. We
start proving that all the X` and Y` are pair-wise disjoint.

Lemma 4.1. All the 2L + 2 sets X` and Y` are pair-wise
disjoint.

Proof. By definitions, it is immediate to see that X` ∩ Y` =
∅ for each level 0 ≤ ` ≤ L. Now, consider any two
levels ` and r, with ` < r. Since level ` has a smaller
index, the last operation i` during whose computation
LEVEL-CONSTRUCT(`) was called is precedent (or equal)
to ir, that is the equivalent operation for level r. This means
that any element e in X` ∪ Y` do not belong to Xr ∪ Yr: e
was not passed to level `+ 1 (and thus to any larger level, r
included) during the computation at operation i` and, by def-
inition of i` it was not considered (i.e., it did not appear in
any call of line 1 of LEVEL-CONSTRUCT) in any level with
larger index, for all the computations between operation i`
and operation i (ir included!).

Denote with X the (disjoint) union of all the X` and the Y`.
We prove that X is a superset of V .

Lemma 4.2. V is contained in X: for any e ∈ V there
exists (exactly) one level ` such that e ∈ X` or e ∈ Y`.

Proof. When a new element e ∈ V is inserted in the stream,
it is added to all buffers (line 1 of INSERTION) and triggers
a call of LEVEL-CONSTRUCT at some level `∗ (line 4 of
INSERTION). Thus it is either added to the solution or
filtered out at some level. However, this is not enough to
prove the Lemma, as it is possible that that call of LEVEL-
CONSTRUCT is not the last time that element e is considered.

To formally prove the Lemma we introduce two (moving)
auxiliary levels ue and de such that the following two invari-
ants hold from the operation in which e is added onwards
(up to operation i, included):

a) e belongs to the buffer B` for all ` < de

b) e belongs to A` for all de ≤ ` < ue

c) e belongs to either Xue
or Yue

, for some ue ≥ de.

Stated differently, we show that at the end of each operation
j that follows the insertion of e (included) up to operation
i, included, there exist two levels (possibly different for
each operation) such that a), b) and c) hold. For the sake of
clarity, we omit the dependence of ue and de from j.

When element e is inserted, it triggers LEVEL-CONSTRUCT
at some level (we call de such level and note that a) is
respected) and it is either added or filtered out at some

other level (we call ue such level so note that also b) and c)
are respected). By construction of LEVEL-CONSTRUCT, it
holds that ue ≥ de.

Note that e ∈ V , thus e is not deleted from the stream before
operation i. So we only need to show that any further call
of LEVEL-CONSTRUCT happening between the insertion of
e and operation i (included) does not affect the invariants.
We have three cases. For any LEVEL-CONSTRUCT that is
called for some ` > ue, nothing changes, as levels ` ≤ ue
are not touched. If LEVEL-CONSTRUCT is called for some
` < de, then element e belongs to the buffer B`−1 (by the
invariant a) and it is then added to either Xue or Yue for
some (new) ue ≥ `. We rename de the above `, and it is
easy to verify that all the invariants still hold. Finally, if
LEVEL-CONSTRUCT is called for some de ≤ ` < ue, then
by invariant b, it holds that e belongs to A`−1, thus it will
end up filtered out or added to the solution in some new
ue ≥ `. In this case we do not change de, and it is easy to
see that the invariants still hold. So the three invariants hold
during the execution of the entire stream. To conclude the
proof we just note that the invariants imply that e is only
contained in either one X` or one Y` for some `.

There is a natural notion of ordering on the elements of X ,
induced by the order in which they were considered by the al-
gorithm, i.e. in which they were either added to the solution
S` (line 3 of LEVEL-CONSTRUCT) or filtered out by the re-
computation ofE` and F` (line 11 of LEVEL-CONSTRUCT),
with ties broken arbitrarily. Call π this ordering. To have a
better intuition of π, note that it can be split into contiguous
intervals, the first corresponding to the elements considered
in the first level X0 ∪ Y0, then in the second X1 ∪ Y1, and
so on. In interval `, elements of X` ∪ Y` are ordered using
the same order in which they have been added or filtered
out in the last call of LEVEL-CONSTRUCT (`).

The crucial observation is that the solution S at the end of
operation i is exactly the output of SWAPPING on π. To see
why this is the case, consider the story of each element e
arriving in π. There are two cases to consider. If e is in
some X`, then our algorithm has added it to the candidate
solution S` during the operation i` because e was in either
E` or F`. Similarly, also SWAPPING would have added e to
its solution, with the exact same swap. If e is in Y`, then it
means that the algorithm has filtered it out during operation
i` because it failed to meet the swapping condition: thus it
would have been discarded also by SWAPPING. This implies,
by Theorem 2.1, that f(S) is a 4-approximation to the best
independent set in X , which is an upper bound on OPT (as
it is the best independent set on a larger set).

Theorem 4.3. For any operation i it holds that the solution
Si output by the algorithm at the end of the computation
relative to iteration i is a deterministic 4-approximation of
OPTi.
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5. Running Time Analysis
In this section, we analyze the amortized running time of
our algorithm. Recall that, throughout this paper, we refer
to running time as the total number of submodular function
evaluation plus the number of independent set evaluation of
the matroid. The computation of our algorithm is mainly
carried out by the LEVEL-CONSTRUCT function, which
exhibits a recursive structure: when INSERTION or DELE-
TION trigger LEVEL-CONSTRUCT (`), this induces a chain
of recursive calls of LEVEL-CONSTRUCT to higher levels.
Our proof structure is as follows. First, in Lemma 5.5, we
construct a deterministic upper bound on the computation in-
duced by any new chain of LEVEL-CONSTRUCT calls; then,
in Lemma 5.6 and Lemma 5.8 we measure the number of
times that INSERTION, respectively DELETION, induce new
chain of LEVEL-CONSTRUCT calls. Finally, we combine
these two steps in Lemma 5.9.

We start by showing some of the basic properties of the A
and B sets.

Observation 5.1. For any level 0 ≤ ` ≤ L, at the end of
LEVEL-CONSTRUCT(`), |A`| < n

2` and |B`| = 0.

Proof. It follows directly from Line 16 in LEVEL-
CONSTRUCT that A` <

n
2` , otherwise the loop does not

stop. Moreover, Line 2 in LEVEL-CONSTRUCT is the only
place where B` is changed and it is set to empty set.

Observation 5.2. For any level 0 ≤ ` ≤ L, during the
execution of the algorithm |B`| ≤ n

2` .

Proof. The only place where the size of B` increases is in
Line 1 of INSERTION, where it increases by at most one.
When |B`| = n

2` , then LEVEL-CONSTRUCT(`) is called
directly from Line 4 of INSERTION or indirectly in Line 17
of LEVEL-CONSTRUCT. In both cases |B`| = 0 due to
Observation 5.1.

Observation 5.3. For any level 0 ≤ ` ≤ L, during the
execution of the algorithm |A`| ≤ n

2`−2 .

Proof. For any level `, the cardinality of A` only varies
in two cases: when an element in A` is removed from
the stream (line 1 of DELETION) or during a call of
LEVEL-CONSTRUCT on level `. Since the former de-
creases the cardinality ofA`, we only study the latter. When
LEVEL-CONSTRUCT (`) is called, A` is initialized in line 1
and then its cardinality only decreases (Lines 11 and 13). To
conclude the proof is then sufficient to prove that, every time
A` is initialized in a new call of LEVEL-CONSTRUCT (`),
its cardinality is at most n

2`−1 . The set A` is initialized
with the elements in B`−1 and in A`−1. We know that

|B`−1| ≤ n
2`−1 at any time of the algorithm (Observa-

tion 5.2), while the cardinality of |A`−1| did not increase
since the end of last call of LEVEL-CONSTRUCT (` − 1).
All in all, using the bound in Observation 5.1 we get the
desired bound:

|A`| ≤
n

2`−1
+

n

2`−1
=

4n

2`
.

Before moving to LEVEL-CONSTRUCT, we show that it
is possible to compute the candidate swaps se in line 8 in
O(log k) calls of the independence oracle of the matroid.

Lemma 5.4. For any element e ∈ A` it is possible to find
the candidate swap se in line 8 of LEVEL-CONSTRUCT in
O(log k) calls of the independence oracle of the matroid.

Proof. Consider any iteration of the repeat loop in LEVEL-
CONSTRUCT, let S be the solution, A the candidate set (we
omit the dependence on ` for simplicity) and e any element
in it. If S + e ∈ M then se is set to the empty set and the
claim holds. Otherwise, call C the set of all elements in S
that can be swapped with e to obtain an independent set:

C = {y ∈ S | S − y + e ∈M}.

It is immediate to see that se ∈ argminy∈C w(y). We know
that the solution S = {x1, x2, . . . , xj} is maintained in
decreasing order of weights (resolving ties arbitrarily) and,
by the downward closure property of matroids, we can use
binary search to find

i∗ = max{i | {x1, . . . , xi−1}+ e ∈M}.

We claim that xi∗ is a good choice of se, i.e., that xi∗ ∈
argminy∈C w(y).

First, note that xi∗ belongs to C. To see this, consider the
set R = {x1, . . . xi∗−1} + e ∈ M, and recursively add
element from S to it while keeping R independent. By the
augmentation property, we know that this is possible until
|R| = |S|. A single element remains in S \ R and it has
to be xi∗ , as we know that {x1, . . . , xi∗}+ e is dependent,
thus S−xi∗ + e = R ∈M. Now, we show that no element
in C can have smaller weight (i.e. larger index) than xi∗ .
Assume toward contradiction that this is the case, i.e. that
there is an xj such that S − xj + e ∈ M and j < i∗.
This implies that {x1, . . . xj−1}+ e is independent, which
contradicts the minimality of i∗.

Lemma 5.5. For any level 0 ≤ ` ≤ L, the running time of
LEVEL-CONSTRUCT(`) is O(nk log ∆ log k

2` ).

Proof. We prove this Lemma in two steps. First, we con-
trol the running time of the non-recursive part of LEVEL-
CONSTRUCT (`) (i.e., all the algorithm but the recursive call
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in line 17), then we study, by induction, how these bounds
combine recursively.

We start proving that, for every level ` from 0 to L,
the running time of the non-recursive part of LEVEL-
CONSTRUCT (`) is dominated by cnk log k log ∆

2` , for some
positive constant c. Focus on any level ` and consider any
call of LEVEL-CONSTRUCT (`). The main computation is
performed in the repeat loop (Lines 5-16), which is repeated
at most k log ∆ times (due to the exponential increase of
the weight assigned to the elements, the fact we can at most
add k elements without swapping and the definition of ∆).
In each iteration of the repeat loop, the running time of
finding the swap elements in Lines 6-11 is at most order
of |A`| log k, which is in O(n log k

2` ) (recall, the cardinality
of A` is bounded in Observation 5.3). This concludes the
analysis of the non recursive part of LEVEL-CONSTRUCT:
there exists a constant c > 0 such that its running time is at
most cnk log k log ∆

2` , for every level ` from 0 to L.

We now conclude the proof of the Lemma by induc-
tion on ` from L to 0. More precisely, we show that
the (overall) running time of LEVEL-CONSTRUCT(`) is
bounded by 2cnk log k log ∆

2` for any level 0 ≤ ` ≤ L.
We start considering the base case ` = L. As there is
no recursive call, the inequality immediately descends on
the bound on the non-recursive running time of LEVEL-
CONSTRUCT (L). For the induction step, assume that
the running time of LEVEL-CONSTRUCT(` + 1) is upper
bounded by 2cnk log k log ∆

2`+1 and we show that the same holds
for level `. This is pretty easy to see: the interval running
time of LEVEL-CONSTRUCT (`) is at most cnk log k log ∆

2` ,
while the recursive call to LEVEL-CONSTRUCT (`+ 1) has
running time 2cnk log k log ∆

2`+1 by the inductive hypothesis.
Summing up these two terms yields the desired result.

We have just assessed a deterministic upper bound on
the computational complexity of each call of LEVEL-
CONSTRUCT. We now bound the number of times that
LEVEL-CONSTRUCT is called during the stream of inser-
tions and deletions. To do so, we bound separately the
number of times LEVEL-CONSTRUCT is directly induced
by INSERTION or DELETION. By “directly”, we mean that
LEVEL-CONSTRUCT (`) is called either in line 4 of INSER-
TION or in line 5 of DELETION, and not as part of a recursive
chain induced by some call of LEVEL-CONSTRUCT (`′),
for some `′ < `. We start by counting the number of calls
induced directly by INSERTION.
Lemma 5.6. For any level 0 ≤ ` ≤ L, the number of times
that the LEVEL-CONSTRUCT(`) function is called directly
from INSERTION is at most 2`.

Proof. The only place where the size of set B` increases
is in Line 1 of INSERTION, and it increases by at most
one per insertion. Moreover, B` is set to the empty set in

Line 2 of LEVEL-CONSTRUCT(`). Also there are at most n
insertions and LEVEL-CONSTRUCT(`) is called when the
size of B` is equal to n

2` . Therefore there are at most n 2`

n =

2` calls to LEVEL-CONSTRUCT(`) from INSERTION.

We move our attention to the number of calls to LEVEL-
CONSTRUCT directly induced by deletions. We call a period
between two direct invocations of LEVEL-CONSTRUCT(`)
from DELETION an `-epoch, and denote with N` the (ran-
dom) number of such epochs. We call an `-epoch short if
its length is less than n

k2`+1 log ∆
and long otherwise. The

next Lemma helps us bound the expected number of short
`-epochs.

Lemma 5.7. For any level 0 ≤ ` ≤ L, and any deletion
that induces a direct call to LEVEL-CONSTRUCT (`), the
probability that the new `-epoch is short is at most 1/2.

Proof. Fix any sequence of insertions and deletions, any
level 0 ≤ ` ≤ L and any history of the algorithm up to
the point where deletion operation i0 directly induces a call
of LEVEL-CONSTRUCT (`). Consider now the next T =

n
k2`+1 log ∆

operations§: from i1 = i0 + 1 to iT = i0 + T
and fix any history of the algorithm on these operations, but
only relative to computations happening in levels `′ < `.
This is well defined because what happens in upper levels
`′′ ≥ ` has no influence on what happens in lower levels
`′ < `. We now focus on the randomness of the algorithm at
level ` during the operations from i0 to iT and prove that the
probability that the `-epoch starting in i0 is short is at most
1/2. By the law of total probability, the arbitrary choice
of the history, and the arbitrary choice of the level ` and
deletion operation i0, this is sufficient to prove the Lemma.

The history of the algorithm up to operation i0, as well as
the history at levels `′ < ` is fixed. Some of the opera-
tions from i1 to iT induce calls of LEVEL-CONSTRUCT (`)
due to (i) direct insertion at level ` or (ii) recursive call of
LEVEL-CONSTRUCT starting in some lower level `′ < `.
The calls in (ii) happen regardless of the random choices
of the algorithm at level `, while (i) depends on them (be-
cause the cardinality of B` depends on the last LEVEL-
CONSTRUCT (`) call which, in turn, depends on whether
the `-epoch is still on-going). However, if the `-epoch does
not terminate before iT , then it is possible to determinis-
tically compute these insertion operations. Call the fixed
operations of type (i) and (ii) marked, and number them it1 ,
it2 , . . . , itj for some j ≤ T. Focus now on the remaining
deletions id1

, id2
, . . . between i0 and iT and group them

according to the last marked operation before them: D1

contains all the unmarked deletions between i1 and it1 − 1,

§For the sake of simplicity we assume T to be integer; if this is
not the case then it is sufficient to take the integer part and modify
by a constant factor the multiplicative constants in the rest of the
Lemma and in Lemma 5.8.
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D2 all the unmarked deletions between it1 + 1 and it2 − 1,
and so on, up to Dj , containing all the unmarked deletions
between itj + 1 and iT . For each unmarked deletion oper-
ation idh

, let it(h) be the corresponding marked operation
(so that idh

∈ Dt(h)).

With this notation there is a clear characterization of dele-
tion operations that may induce a direct call to LEVEL-
CONSTRUCT (`): a deletion operation idh

concludes the on-
going `-epoch started at i0 if and only if the element deleted
has been sampled in the solution S` during the LEVEL-
CONSTRUCT (`) call at operation it(h). Let Eh be the event
that the element deleted at operation idh

is in the solution
S` sampled in LEVEL-CONSTRUCT (`) at operation it(h).
We have the following:

P (Eh) ≤ 2`
k log ∆

n
. (1)

The reason is simple: in the LEVEL-CONSTRUCT (`) call at
operation it(h), at most k log ∆ elements have been sampled
and added to S` (and possibly swapped out of it). Each of
these elements is sampled from a candidate pool of at least
n
2` elements. Therefore the probability that the element
deleted in operation idh

is from the sampled elements is
at most k2` log ∆

n . Recall, the probability in Equation (1) is
conditioned with respect to overall history of the algorithm
up to operation i0, and the history on lower levels up to iT .

Let E be the event that the `-epoch starting at i0 is short, it
holds that E is given by the union of all the Eh (that are at
most T ). By union bound on these (at most) T events, by
the bound in Equation (1), and the definition of T we have
the following:

P (E) ≤
∑
j

P (Ej) ≤ T2`
k log ∆

n
=

1

2
.

Lemma 5.8. For any level 0 ≤ ` ≤ L, the expected number
of times that the LEVEL-CONSTRUCT (`) function is called
directly from DELETION is at most 2`+3k log ∆.

Proof. Denote with N−` and N+
` the number of short, re-

spectively long, `-epochs. By Lemma 5.7, we know that
the probability of a new epoch being short is at most 1/2,
therefore we have the following:

E
[
N−`

]
≤ 1

2
E [N`] =

1

2
E
[
N−`

]
+

1

2
E
[
N+

`

]
. (2)

Equation (2) implies that E
[
N−`

]
≤ E

[
N+

`

]
.

We know that the number N+
` of long epochs is at most the

total number of operations 2n, divided by the lower bound
on the cardinality of each long epoch, n

k2`+1 log ∆
. All in all,

N+
` ≤ 2`+2k log ∆. We are ready to conclude:

E [N`] = E
[
N−`

]
+ E

[
N+

`

]
≤ 2E

[
N+

`

]
≤ 2`+3k log ∆.

Lemma 5.9. The expected average running time per opera-
tion is O(k2 log k log2 ∆ log n).

Proof. The running time when an element is inserted or
deleted is O(L) = O(log n) beside the calls made to
LEVEL-CONSTRUCT . In what follows we focus on the to-
tal running time spent in LEVEL-CONSTRUCT . There are
two places that LEVEL-CONSTRUCT(`) can be called from
(beside the recursion in Line 17 of LEVEL-CONSTRUCT):
INSERTION and DELETION. By comparing Lemma 5.6 and
Lemma 5.8 it results that the number of calls induced by
DELETION dominates those induced by INSERTION. So
we only focus on the former term. Let c be the constant as
in the analysis of Lemma 5.5, we bound the total expected
running time by

2
∑

0≤`≤L

k2`+3 log ∆ ·
(

2c · nk log k log ∆

2`

)
= 32c

∑
0≤`≤L

nk2 log k log2 ∆

= 32c ·
(
nk2 log k log2 ∆ log n

)
.

6. Putting it Together
The results in the previous sections hold under the assump-
tion that the algorithm designer knows the number of inser-
tion and deletions (denoted by n) in advance. In this section
we present a well-known tool that enables our algorithm to
run without this assumption. We simply start by n = 1, and
whenever the number of insertions and deletions reaches to
n, we restart algorithm and double the value of n. There-
fore, if the total operations is m, then largest value n that
we use is the smallest power of 2 bigger than m, which
is at most 2m. Combining with Lemma 5.9 we get that
the total running time per operation is (up to multiplicative
constants) ∑

1≤n0≤log n

k2 log k log2 ∆n0

= k2 log k log2 ∆ log n2

= k2 log k log2 ∆ log2m. (3)

Combining Equation (3) and Theorem 4.3, we have the main
result of the paper.

Theorem 6.1. Our algorithm yields a 4-approximation
to the fully dynamic monotone submodular maximiza-
tion problem with matroid constraint and exhibit an
O(k2 log k log2 ∆ log2 n) expected amortized running time.

In Appendix B we also explain how one can avoid the depen-
dency on ∆ which requires: (i) designing and analyze a new
algorithm that combines swapping and thresholding (pre-
sented in Appendix A) and (ii) apply standard techniques
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to guess the value of OPT and run multiple copies of the
algorithm at the same time.

Corollary 6.2. For any constant ε > 0, there exists a
(4 + O(ε))-approximation to the fully dynamic monotone
submodular maximization problem with matroid constraint
that exhibits an O

(
k2

ε log k log2 n log3 k
ε

)
expected amor-

tized running time.

7. Conclusions and Future Directions
In this paper we design the first efficient algorithm for fully-
dynamic submodular maximization with matroid constraint.
An interesting open question stems immediately from our re-
sult: is it possible to reduce the amortized running to depend
only poly-logarithmically in k (currently it is Õ(k2))?

In this paper we focus on the crucial worst-case paradigm,
constructing an algorithm whose guarantees are robust to
any (oblivious) adversary that generates the stream of inser-
tions and deletions. An interesting open problem of research
is to study beyond-worst case analysis, when it is natural
to assume some “non-adversarial” structure on the stream,
similarly to what has been done, for instance, in the random-
order arrival model for insertion-only streams (Norouzi-Fard
et al., 2018; Liu et al., 2021; Feldman et al., 2022).
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A. SWAPPING algorithm
In this section we formally prove that the version of SWAPPING presented in Section 2 maintains the approximation
guarantees of the original algorithm by Chakrabarti & Kale (2015). Actually, we prove a more general result that is
instrumental to prove, in Appendix B, that it is possible to remove the dependence in ∆ from the amortized running time.

Consider the following version of SWAPPING, that we call THRESHOLD-SWAPPING, where all the elements with weight
below a given threshold are simply ignored by the algorithm. The details are given in the pseudocode. Note that when the
threshold is set to 0, THRESHOLD-SWAPPING and SWAPPING coincides. We prove now the following Theorem, that clearly
implies Theorem 2.1 by setting ε and τ to 0.

Algorithm 6 THRESHOLD-SWAPPING

1: Input: rank k of the matroid, precision parameter ε and threshold τ
2: Environment: stream π of elements, function f , matroidM
3: S ← ∅, S′ ← ∅
4: for each new arriving element e from π do
5: w(e)← f(e | S′)
6: if w(e) < ε

k τ then
7: Ignore e and continue
8: if S + e ∈M then
9: S ← S + e, S′ ← S′ + e

10: else
11: se ← argmin{w(y) | y ∈ S, x+ S − y ∈M}
12: if 2w(se) < w(e) then
13: S ← S − se + e, S′ ← e+ S′

14: Return S

Theorem A.1. For any ε > 0 and threshold τ < OPT, it holds that THRESHOLD-SWAPPING yields a (4 + O(ε))-
approximation to the optimal offline solution on the stream.

The proof of Theorem A.1 follows a similar analysis to the one of the original algorithm in Chakrabarti & Kale (2015); we
precede it here with some Lemmata.

Lemma A.2. Let K = S′ \ S be the set of elements that were in the solution and were later swapped out and extend by
linearity the function w to sets. Then the following three properties hold true:

(i) w(K) ≤ w(S)

(ii) w(S) ≤ f(S)

(iii) f(S′) = w(S′)

Proof. Crucially, the weight function w is linear and once an element enters S, its weight is fixed forever as the marginal
value it contributed when entering S but with respect to S′. During the run of the algorithm, every time an element
se is removed from S, the weight of S increases by w(e) − w(se) by its replacement with some element e. Moreover,
w(se) ≤ w(e)−w(se) for every element se ∈ K since 2 ·w(se) ≤ w(e). Summing up over all elements in K, it holds that

w(K) =
∑
se∈K

w(se) ≤
∑
se∈K

[w(e)− w(se)] ≤ w(S),

where the last inequality follows from a telescoping argument (for each chain of swaps we only retain with the positive sign
the final elements that remained in S). This establishes (i).

Consider now the second inequality (ii). We denote with S′e the version of set S′ when element e was added, and we denote
with Se = S′e ∩ S. We have the following:

f(S) =
∑
e∈S

f(e|Se) ≥
∑
e∈S

f(e|S′e) =
∑
e∈S

w(e) = w(S),
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where the crucial inequality is due to submodularity. Finally, the last point (iii) follows by the definition of w.

In the analysis of the approximation guarantees of THRESHOLD-SWAPPING we need to somehow account for all the
elements in the optimum that were initially added to the solution by the algorithm but then later swapped out. To analyze this
“chain of swaps” we need a useful combinatorial lemma: Lemma 13 of Feldman et al. (2018) (also Lemma 30 of Chekuri
et al. (2015)). It concerns directed acyclic graphs (DAGs) where the nodes are also elements of a matroid. Under some
assumption, it guarantees the existence of an injective mapping between elements in an independent set and of the sinks of
the DAG. As a convention, we denote with δ+(u) the out-neighborhood of any node u and we say that an independent set T
spans an element x if T + x /∈M.

Lemma A.3. Consider an arbitrary directed acyclic graph G = (V,E) whose vertices are elements of some matroidM. If
every non-sink vertex u of G is spanned by δ+(u) inM, then for every set S of vertices of G which is independent inM
there must exist an injective function ψ such that, for every vertex u ∈ S, ψ(u) is a sink of G which is reachable from u.

We clarify now how we intend to use the previous result to our problem, similarly to what is done in Dütting et al. (2022).

Lemma A.4. Let OPT be the optimal offline solution and denote with F the set of elements that failed the threshold test in
line 6 of THRESHOLD-SWAPPING. Then it holds that w(OPT \(S′ ∪ F )) ≤ 2w(S).

Proof. Consider the following procedure to construct a DAG whose nodes are given by the elements of the stream that
passed the weight test in line 6. When an element x arrives, call C the circuit¶ in S + x and y the element in C − x with
smaller weight. If y is swapped with x, then we add directed edges from y to all the elements in C − y, if x is not added,
then add directed edges from x to each element in C − x. If x is added without any swap, then its out-neighborhood is
empty. Every edge in this graph points from a vertex dropped or swapped out at some time to a vertex that is either never
deleted or removed at some time in the future. This time component makes the underlying graph a DAG. We now apply
Lemma A.3 on G, then there exists an injective function ψ that associates each element in OPT \(S′ ∪ F ) to an element in
S such that w(u) ≤ 2 · w(ψ(u)) for all u ∈ OPT \(S′ ∪ F ). To see this, consider that in each u-ψ(u) path there is at most
one swapping where the weight does not increase, and it has to be the first swap if the new element u of the stream was not
added to the solution because of some node in the solution whose weight was possibly smaller, but no more than a factor 2
smaller. This implies that w(OPT \(S′ ∪ F )) ≤ 2 · w(S).

We finally have all the ingredients to prove the Theorem.

Proof of Theorem A.1. The proof of the Theorem is just a simple chain of inequalities that uses the Lemmata:

f(OPT) ≤ f(OPT∪S′)
= f(S′) + f(OPT |S′)

≤ w(S) + w(K) +
∑

e∈OPT \S′
f(e|S′) (Property (iii) and submodularity)

≤ 2 · f(S) +
∑

e∈OPT \(S′∪F )

w(e) +
∑

e∈OPT∩F
w(e) (Properties (ii) + (i) and submodularity)

≤ 4 · f(S) +
∑

e∈OPT∩F
w(e) (Lemma A.4 and Property (ii))

≤ 4 · f(S) + εOPT . (Assumption on τ )

B. Removing the dependence on ∆

In this section, we show how to remove the dependence in ∆ of the amortized running time. Similarly to Lattanzi et al.
(2020), for any fixed choice of a precision parameter ε > 0, we run multiple instances of our algorithm in parallel, where
each instance is parametrized with a threshold τ = (1 + ε)j for various integer values of j. In each one of these instances,

¶A circuit is a dependent set that is minimal with respect to inclusion
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Algorithm 7 INSERTION(e) corresponding to threshold τ = (1 + ε)j , for some integer j

1: if (1 + ε)τ > f(e) ≥ ε
k τ then

2: B` ← B` + e ∀ 0 ≤ ` ≤ L
3: if there exists an index ` such that |B`| ≥ n

2` then
4: Let `? be such ` with lowest value
5: Call LEVEL-CONSTRUCT(`?)

all the elements with weight smaller than ε · τ/k are simply ignored. We return the best solution among these parallel runs
after each operation.

There are two modifications to the algorithm presented in the main body that we implement. One in the INSERTION routine,
and one in LEVEL-CONSTRUCT. We present here the pseudocodes and describe the changes.

The INSERTION routine is modified in a simple way: when an element is inserted, it is actually considered for insertion only
if its value is within a certain range. We refer to the pseudocode for the details. Given this modification and the geometric
construction of the thresholds τ = (1 + ε)j , we have an immediate bound on the number of parallel rounds of the algorithm
that any element is actually inserted into:
Observation B.1. Any element e is inserted in O( 1

ε log k
ε ) copies of the algorithm.

We move our attention towards LEVEL-CONSTRUCT. There, we modify the repeat loop to filter out all the elements whose
marginal contribution falls, at any point, below ε

k τ . More precisely, we add Line 9 in the following pseudocode.

Algorithm 8 LEVEL-CONSTRUCT(`) corresponding to threshold τ = (1 + ε)j , for some integer j

1: A` ← A`−1 ∪B`−1

2: B` ← ∅
3: S` ← S`−1

4: S′` ← S′`−1

5: repeat
6: for any element e ∈ A` do
7: w(e)← f(e | S′`)
8: se ← argmin{w(y) | y ∈ S` ∧ S` − y + e ∈M}
9: A` ← {e ∈ A` | f(e | S`) ≥ ε

k τ}
10: E` ← {e ∈ A` | S` + e ∈M}
11: F` ← {e ∈ A` \ E` | w(e) > 2w(se)}
12: A` ← E` ∪ F`

13: if |A`| ≥ n
2` then

14: Pop e from A` uniformly at random
15: S` ← S` + e− se
16: S′` ← S′` + e
17: until |A`| < n

2`

18: if ` < L, call LEVEL-CONSTRUCT(`+ 1).

Corollary 6.2. For any constant ε > 0, there exists a (4 +O(ε))-approximation to the fully dynamic monotone submodular

maximization problem with matroid constraint that exhibits an O
(

k2

ε log k log2 n log3 k
ε

)
expected amortized running time.

Proof. Let us start by the running time analysis. The crucial place of the analysis in the main body where ∆ appears is
when we use log ∆ to bound the length of any chain of swaps in any repeat loop of LEVEL-CONSTRUCT (Lemma 5.5 and
Lemma 5.8). This is because each swap increase the weight by at least a factor 2. Let nj denote the number of elements
inserted to the jth copy of the algorithm, corresponding to the threshold τ = (1 + ε)j . Our claim is that line 9 enables
us to bound the length of any chain of swaps by log k

ε . The argument is as follows: each element inserted into that copy
of the algorithm has value (and, by submodularity also weight) at most (1 + ε)τ = (1 + ε)j+1. Conversely, only swaps
with weight at least ε

k τ = ε
k (1 + ε)j can happen (by the filter in line 9 of LEVEL-CONSTRUCT). Putting these two bounds

together, we have the desired upper bound on the length of any chain of swaps.
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The previous argument allows us to replace O(log ∆) with O(log k
ε ) in the analysis of the running time of each copy of

the algorithm (Theorem 6.1): there the total running time is then O(nj · k2 log k log2 k
ε log2 nj). Summing up over all the

copies, we have that the total running time (up to multiplicative constants) is∑
j:nj>0

njk
2 log k log2 k

ε
log2 nj ≤

(
k2 log k log2 n log2 k

ε

) ∑
j:nj>0

nj ≤
(
k2 log k log2 n log3 k

ε

)
· n
ε

where in the first inequality inclusion we used the simple bound ni ≤ n and the second one follows from Observation B.1.
Therefore the amortized running time is

O

(
k2

ε
log k log2 n log3 k

ε

)
.

It remains to show that our new algorithm does not significantly worsen the approximation algorithm of the algorithm we
presented in the main body. Fix any operation i, and consider the copy of the algorithm corresponding to a threshold τ that
lies in the interval [OPTi /(1 + ε),OPTi]. We first observe that any element e ∈ Vi (any element currently part of the
instance) cannot have f(e) > (1 + ε)τ , since:

f(e) ≤ OPTi ≤ (1 + ε)τ .

Therefore, ignoring element e such that (1 + ε)τ > f(e) does not affect the approximation guarantee. The elements whose
value falls below ε

k τ ≥
ε
k OPTi /(1 + ε) (and thus not inserted in this copy of the algorithm due to the filter in line 1 of

INSERTION), on the other hand, only cause an extra additive O(ε) error in the approximation and can be ignored (similarly
to what has been used in the proof of Theorem A.1). Finally, from Theorem A.1 we know that the filter in line 11 of
LEVEL-CONSTRUCT only cause in another additive O(ε) error in the guarantee of SWAPPING. Using the same argument in
Section 4 we can then conclude that our algorithm mutuates the approximation guarantees of THRESHOLD-SWAPPING and
thus has a 4 +O(ε)-approximation guarantee.

C. LAZY-GREEDY and SWAPPING fails in the dynamic setting
In this section we show how two well known algorithms for submodular maximization subject to matroid constraints
(LAZY-GREEDY and SWAPPING) cannot be directly applied to the dynamic setting without suffering Ω(n) worst case update
time.

We define the two fully-dynamic algorithms: DYNAMIC-SWAPPING and DYNAMIC-GREEDY. They both maintain the set
Vi of elements that were inserted but not deleted in the first i operations and a candidate solution. When an element from the
candidate solution gets discarded they both recompute from scratch a feasible solution from Vi using their non-fully-dynamic
counterpart: DYNAMIC-SWAPPING uses SWAPPING on some ordering of the elements in Vi, while DYNAMIC-GREEDY
performs LAZY-GREEDY on Vi. The two algorithms differ on how they handle insertions. When an element is inserted,
DYNAMIC-GREEDY recomputes the solution from scratches on Vi as the new element may have changed drastically the
greedy structure of the instance. On the contrary, DYNAMIC-SWAPPING simply processes this new element as SWAPPING
would do; this is because SWAPPING is a streaming algorithm and thus handles efficiently insertions.

We construct here an instance where both DYNAMIC-SWAPPING and DYNAMIC-GREEDY exhibits an amortized running
time that is Ω(n). Consider a set V = {x1, . . . , xn} of n elements and an additive function f on it, with f(xi) = 3i. The
stream is simple: the elements are inserted one after the other in increasing order x1, x2, . . . and are then deleted one after
the other in decreasing order xn, xn−1, . . . We show that both algorithms have a large per-operation running time on this
instance.
Claim C.1. DYNAMIC-SWAPPING has worst case amortized running time that is Ω(n)

Proof. Consider the stream and the function presented above, with a cardinality constraint k = 1. We divide the analysis
of the running time into two parts. During the first n operations, the algorithm performs at least one value call and
one independence call. For each one of the deletion operations, the deleted element is — by construction — in the
solution maintained by DYNAMIC-SWAPPING. Let’s call xi this deleted element, the routine SWAPPING is called on the
sequence x1, . . . , xi−1, where it performs Ω(i) oracle calls. Summing up, the total number of oracle calls (both value and
independence calls) is Ω(n2), yielding an amortized running time of Ω(n).

Claim C.2. DYNAMIC-GREEDY has worst case amortized running time that is Ω(n)
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Proof. Consider the stream and the function presented above, with a cardinality constraint k = 1.Also here, we divide the
analysis of the running time into two parts. During the first n operations, the algorithm performs at least one value call
and one independence call (actually way more than that). For each one of the deletion operations, the deleted element is
— by construction — in the solution maintained by DYNAMIC-GREEDY. Let’s call xi this deleted element, the routine
LAZY-GREEDY is called on the sequence x1, . . . , xi, where it performs Ω(i) oracle calls. All in all, the total number of
oracle calls (both value and independence calls) is Ω(n2), yielding an amortized running time of Ω(n).
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