
A Joint Exponential Mechanism for Differentially
Private Top-k Set

Jenny Gillenwater
Google New York

Matthew Joseph
Google New York

Andrés Muñoz Medina
Google New York

Mónica Ribero
UT Austin∗

Abstract

We present a novel differentially private algorithm for releasing the set of k el-
ements with the highest counts from a data domain of d elements. We define a
“joint” instance of the exponential mechanism (EM) whose output space consists of
all O(dk) size-k subsets; yet, we are able to show how to sample from this EM in
only time Õ(dk3). Experiments suggest that this joint approach can yield utility
improvements over the existing state of the art for small problem sizes.

1 Introduction

Top-k selection is the problem of identifying the k elements with the highest counts from a data
domain of d elements. This is a basic data analysis question that arises in machine learning tasks
such as recommender systems, basket market analysis, and language learning tasks. In an effort to
solve these problems while guaranteeing privacy to the individuals contributing data, several works
have studied top-k under the additional constraint of differential privacy (DP) [5].

One popular approach to DP top-k selection uses “peeling” mechanisms [2, 4], which adaptively
applies the exponential mechanism (EM) k times to repeatedly “peel” off and remove from consider-
ation the highest-count element. Another approach [12] adds Laplace noise to each element count
and outputs the elements with the k highest noisy counts. These algorithms each admit an efficient
implementation in time O(d) and also possess the advantage of releasing an ordered sequence (not
set) of top-k items. We use them as baselines; more details appear in Section 4.

We depart from these approaches by applying an EM that chooses directly from sets of k items. Past
work has used this style of “joint EM” to privately estimate multiple quantiles [7] and output password
frequency lists [3], but it is not obvious how to directly extend either to the top-k problem. As with
previous work on joint EMs, our main contribution is showing that it is possible to sample exactly
from the mechanism in polynomial time, even though the size of the output space is exponential
(Theorem 8). We find that our joint approach can offer significant accuracy improvements (Section 4).

2 Preliminaries

We start by formally describing the top-k problem before moving on to general privacy preliminaries.
In keeping with past work on private top-k [4], we use an `∞ error metric.
Definition 1. Let X be a data domain of d items. In an instance of the top-k problem, there are n
users and each user i has an associated vector xi ∈ {0, 1}d. Given D = {xi}ni=1, let cj =

∑n
i=1 xi,j

denote the count of item j ∈ [d], and let Dc denote the (decreasing) vector of the top k counts. The
goal is to output a set of k items TOP-K(D) = arg minS⊂[d]k ‖Sc −Dc‖∞.

Note that in this setting each user contributes at most one to each item count, but may contribute
to up to arbitrarily many items. In general, we describe database D by the vector of counts for its

∗Part of this work done while an intern at Google New York.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

domain, D = (c1, . . . , cd). We also assume that the counts are distinct; a small amount of noise can
always be added to achieve this. Finally, note that our output is an unordered set, not a sequence.
Extending to sequences is a goal for future work. We now cover necessary privacy prerequisites.
Definition 2 ([5]). Two data sets D,D′ ∈ X ∗ are neighbors if D′ can be obtained from D by
adding or removing some data point x. We define N (D) as the set of neighboring data sets for D.
Mechanism M : X ∗ → Y is ε-differentially private (DP) if, for any two neighboring datasets D and
D′, and any S ⊆ Y , it holds that P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S).

The exponential mechanism (EM) is a general-purpose DP algorithm for selecting a “good” output
given some utility function over outputs.
Definition 3 ([10, 6]). Given utility function u : X ∗ × O → R with `1 sensitivity ∆u =
maxX∼X′,o∈O |u(X, o)− u(X ′, o)|, the exponential mechanism (EM) M has output distribution

PM (M(X) = o) ∝ exp (εu(X, o)/(2∆u)) ,

where ∝ elides the normalization factor. This mechanism is ε-DP.

One cost of this generality is that the EM definition provides no guidance for actually sampling from
the mechanism. As subsequent sections demonstrate, this can be the main obstacle to applying it.

3 A Joint Exponential Mechanism for Top-k

Our mechanism employs a utility function u∗ measuring how far a candidate collection of k items is
from being the true answer. This requires the following notion of distance between databases:
Definition 4. Given databases D,D′ ∈ X ∗, let d(D,D′) denote the smallest integer m such that
there is a sequence D0 = D,D1, D2, . . . , Dm = D′ where D1 ∈ N (D0), . . . , D′ ∈ N (Dm−1).

For candidate set of items S ⊆ [d] such that |S| = k, our utility function is

u∗(D,S) = − min
D′|TOP-K(D′)=S

d(D,D′).

u∗(S,D) thus penalizes candidate sets that are far from being optimal on D. This general approach of
a utility based on database distances has appeared in the DP literature under several names [9, 1, 11],
but it has not previously been applied to top-k. u∗ has two helpful properties: it is low-sensitivity and
is easy to compute. Let the true top-k counts be denoted c1 > . . . > ck, and consider a set S with
sorted counts cj1 > . . . > cjk . Then, because each user can contribute 1 to every count, we need
exactly as many users as the largest count difference to make S contain the true top-k counts.
Lemma 5. ∆u∗ = 1 and, for S with element counts sorted in decreasing order cj1 > · · · > cjk , and
true top k counts c1 > · · · > ck, we have that u∗(S,D) = −maxi∈[k][ci − cji].

We call this EM with utility u∗ JOINT. As an instance of the EM, its ε-DP privacy guarantee is
immediate from Definition 3. However, a naive implementation of JOINT requires computing O(dk)
output probabilities, one for each candidate output set S. The next section sketches a much more
efficient sampling algorithm.

3.1 Efficiently Sampling JOINT

Our sampling approach appears in Algorithm 1. The basic idea is to take advantage of the fact that,
although there are exponentially many possible output sets, there are only O(dk) possible utility
values for those sets. This is because, by Lemma 5, each utility value takes the form −(ci1 − ci2) for
some i1 ∈ [k] and some i2 ∈ [d]. We compute and store these utility values in matrix M (Line 1) and
sample a utility value for the eventual output set in Line 3. Once a utility value is selected we select a
set with the given utility uniformly at random (Line 4).

We now sketch proofs of the runtime and correctness of Algorithm 1. Line 1 takes time O(dk). Once
we have calculated U , Line 3 also takes time O(dk). It remains to explain Lines 2 and 4. For Line 2,
first observe that it suffices to compute the number of sets with utility at least −Mij for each Mij ,
since we can recover the number of sets with utility exactly −Mij by taking differences afterward.
The next step reduces this problem to counting paths through a matrix derived from M . First, define

2

Algorithm 1: An efficient implementation of JOINT

Input :Vector of (sorted) counts (c1, ..., cd), number of items to return k, privacy budget ε
Output :Differentially private set of k item indices S = {i1, . . . , ik}

1 Compute k × d matrix M where Mij = ci − cj if ci − cj ≥ 0, d− j ≥ k − i; ⊥ otherwise
2 For each entry Mij of M , compute the number Uij of sets with utility −Mij

3 Sample a utility value m = −Mij with probability ∝ Uij exp
(
−εMij

2

)
4 Output a set sampled uniformly from sets with utility m

(k + 1)× (d− k + 1) matrix M̂ to be M “left-aligned” to remove ⊥s, with a row of 1s appended to
the bottom. Second, define matrix Aij by Aij

`r = 1
M̂`r<M̂ij

. For example, for k = 3 and d = 5,

M =

[
c1 − c1 c1 − c2 c1 − c3 ⊥ ⊥
⊥ c2 − c2 c2 − c3 c2 − c4 ⊥
⊥ ⊥ c3 − c3 c3 − c4 c3 − c5

]
, M̂ =

c1 − c1 c1 − c2 c1 − c3
c2 − c2 c2 − c3 c2 − c4
c3 − c3 c3 − c4 c3 − c5

1 1 1

 ,

and with c3 − c4 < c2 − c3 and c1 − c2, we have the following A34 matrix: A34 =

1 0 0
1 0 0
1 1 0
1 1 1

.

The value of constructing Aij comes from the following lemma.

Lemma 6. The number of paths in Aij from Aij
1,1 to Aij

k+1,d−k+1, going only right and down and
avoiding 0s, is the number of sequences of decreasing counts with utility at least −Mij .

Proof. (Sketch): A sequence with utility≥ −Mij can be viewed as a path through Aij that only goes
right and down (since the sequence must have decreasing counts) and avoids 0s (since the sequence has
utility ≥ −Mij). The column indices where the path goes down determine the indices of the chosen
elements. For example, consider the path M̂11, M̂21, M̂31, M̂41, whose first three entries correspond
to M11,M22,M33. The column indices from these M entries indicate that we are considering the
sequence with item indices (1, 2, 3). Similarly, M̂11, M̂21, M̂22, M̂32, M̂42 corresponds to entries
M11,M22,M23,M34, so the item indices in this case are (1, 3, 4).

Denote the number of such paths through Aij by PAij . We now turn to computing PAij quickly.
Lemma 7. Given Aij constructed from k× d matrix M , we can compute PAij in time O(k2 log(k)).

Proof. (Sketch): We count paths through Aij by splitting it into O(k) submatrices with no 0s,
counting the paths going from left to right in each submatrix, and then stitching these paths together
to count the number of paths overall through Aij . For example, given some matrix

Aij =

a11 a12 a13 0 0 0 0 0

a21 a22 a23 a24 a25 0 0 0

a31 a32 a33 a34 a35 a36 0 0
a41 a42 a43 a44 a45 a46 a47 a48

1 1 1 1 1 1 1 1

the boundary columns for the submatrices are e1 = [a23, a33, a43, 1]T , e2 = [a35, a45, 1]T , e3 =
[a46, 1]T , and e4 = [1]T . We define a vector Q1, of length 4, that counts the number of paths from
a11 to elements of e1. Then we define a matrix Q2 of size 4×3 counts the number of paths from each
element of e1 to each element of e2, and so on. PAij can thus be computed as Q1 ·Q2 · · ·QO(k). The
elements of each Qj come directly from Pascal’s triangle, so we can compute each Qj in time O(k).
Moreover, each Qj is Toeplitz, so we can use the fast Fourier transform (FFT) to perform each matrix-
vector Toeplitz multiplication in time O(k log(k)). Hence, we can compute PAij = Q1 ·Q2 · · ·QO(k)

in total time O(k2 log(k)).

3

By Lemmas 6 and 7, Line 2 of Algorithm 1 takes time O(dk3 log(k)). After sampling a utility value
m = Mij in Line 3, we can use a similar counting argument in Line 4 to sample an actual set of
outputs with the given utility in time O(dk). We collect these guarantees in the following theorem.
Theorem 8. JOINT is an ε-DP algorithm for TOP-K that runs in time O(dk3 log(k)).

4 Experiments

We compare to the peeling mechanism [2, 4] (PEEL) and Laplace noise [12] (LAPLACE).2 In all
cases, we use the ε-DP variant of the algorithm. For PEEL, we use the Gumbel noise implementation:
add Gumbel noise with parameter k/ε to each count (see Section 4.1 in [4]) and take the k items with
the highest noisy counts. For LAPLACE, we instead add Laplace noise with parameter 2k/ε. The
first dataset is synthetic uniform data: given domain size d, we draw item counts from U(0, 10d).
The second dataset consists of movie ratings from the MovieLens 100k database [8]: given d, we
use the rating counts of the d most-rated movies. For each dataset, we evaluate JOINT, PEEL, and
LAPLACE at ε = 1 and ε = 0.1 for k = 5 and a range of d. Each point averages 100 trials, and we
measure l∞ error between true and estimated top k.

Overall, JOINT obtains the strongest utility. However, this advantage sometimes reverses for small ε.
This is possibly because the smaller ε most heavily penalizes JOINT’s extremely large output space.
In more detail: Note that the baseline mechanisms are essentially outputting vectors of noisy counts
in Rd (which we then post-process to get a top-k set). Normalizing over Rd can have very different
behaviour than normalizing over all size-k subsets of [d].

5 Future Directions

As the preliminary experiments above demonstrate, JOINT offers strong accuracy potential for top-k
(set). However, we close by highlighting a nontrivial obstacle to using it: the relevant quantities are
extremely large. Specifically, while each quantity in the submatrices Q1, . . . , QO(k) described in the
proof sketch of Lemma 7 can be computed in constant time, the quantities themselves can be as large
as O(dk), which leads to numerical issues in practical implementations. It is not clear how to solve
this by working with logarithmic quantities either, since this requires computing matrix multiplication
PAij = Q1 ·Q2 · · ·QO(k) in logspace. At the same time, we emphasize that this is a numerical issue,
not an algorithmic one. Resolving it is nonetheless necessary for applying JOINT to large databases.

2We also experimented with the Gamma mechanism [13], but it achieved poor error.

4

References
[1] Hilal Asi and John C Duchi. Instance-optimality in differential privacy via approximate inverse

sensitivity mechanisms. Neural Information Processing Systems (NeurIPS), 2020.

[2] Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta. Discovering
frequent patterns in sensitive data. In Knowledge Discovery and Data Mining (KDD), 2010.

[3] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. Differentially private password frequency
lists. In Network and Distributed System Security (NDSS), 2016.

[4] David Durfee and Ryan Rogers. Practical differentially private top-k selection with pay-what-
you-get composition. In International Conference on Machine Learning (ICML), 2019.

[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference (TCC), 2006.

[6] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 2014.

[7] Jennifer Gillenwater, Matthew Joseph, and Alex Kulesza. Differentially private quantiles. In
International Conference on Machine Learning (ICML), 2021.

[8] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
Transactions on Interactive Intelligent Systems (TiiS), 2015.

[9] Aaron Johnson and Vitaly Shmatikov. Privacy-preserving data exploration in genome-wide
association studies. In Knowledge Discovery and Data Mining (KDD), 2013.

[10] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Foundations
of Computer Science (FOCS), 2007.

[11] Andrés Muñoz Medina and Jenny Gillenwater. Duff: A dataset-distance-based utility function
family for the exponential mechanism. arXiv preprint arXiv:2010.04235, 2020.

[12] Gang Qiao, Weijie J Su, and Li Zhang. Oneshot differentially private top-k selection. In
International Conference on Machine Learning (ICML), 2021.

[13] Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy.
Journal of Privacy and Confidentiality (JPC), 2015.

5

	Introduction
	Preliminaries
	A Joint Exponential Mechanism for Top-k
	Efficiently Sampling Joint

	Experiments
	Future Directions

