

000 001 002 003 004 005 TRACE: YOUR DIFFUSION MODEL IS SECRETLY 006 AN INSTANCE EDGE DETECTOR 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 High-quality instance and panoptic segmentation has traditionally relied on dense
028 instance-level annotations such as masks, boxes, or points, which are costly, in-
029 consistent, and difficult to scale. Unsupervised and weakly-supervised approaches
030 reduce this burden but remain constrained by semantic backbone constraints and
031 human bias, often producing merged or fragmented outputs. We present TRACE
032 (TRAnsforming diffusion Cues to instance Edges), showing that text-to-image
033 diffusion models secretly function as instance edge annotators. TRACE identi-
034 fies the Instance Emergence Point (IEP) where object boundaries first appear in
035 self-attention maps, extracts boundaries through Attention Boundary Divergence
036 (ABDiv), and distills them into a lightweight one-step edge decoder. This design
037 removes the need for per-image diffusion inversion, achieving 81 \times faster inference
038 while producing sharper and more connected boundaries. On the COCO bench-
039 mark, TRACE improves unsupervised instance segmentation by +5.1 AP, and in
040 tag-supervised panoptic segmentation it outperforms point-supervised baselines
041 by +1.7 PQ without using any instance-level labels. These results reveal that dif-
042 fusion models encode hidden instance boundary priors, and that decoding these
043 signals offers a practical and scalable alternative to costly manual annotation.
044

1 INTRODUCTION

045 Panoptic segmentation unifies semantic and instance segmentation and underpins real-world ap-
046 plications, such as autonomous driving (Elharrouss et al., 2021; Zendel et al., 2022). However,
047 achieving reliable instance-level delineation has long relied on dense pixel-wise annotations such
048 as masks, boxes, or points, which are prohibitively expensive, inconsistent across annotators, and
049 fundamentally hard to scale. These limitations motivate the search for annotation-free alternatives
050 that can retain the fine granularity of supervised methods without the cost of labeling.
051

052 Recent unsupervised and weakly-supervised approaches (Sick et al., 2025; Li et al., 2024) attempt
053 to bypass dense labeling. Unsupervised instance segmentation (UIS) eliminates explicit annotation
054 by clustering semantic features from pretrained vision transformers (Caron et al., 2021; Oquab et al.,
055 2023), but these models are inherently optimized for semantic similarity across images rather than
056 instance separation within an image. As shown in Fig. 2, existing UIS methods (Wang et al., 2023a;
057 Li & Shin, 2024) often merge adjacent objects of the same class or fragment single instances, and
058 rely on heuristic assumptions such as a predefined number of objects. Parallel advances in weakly-
059 supervised semantic segmentation have demonstrated near-supervised performance, achieving up
060 to 99% fully supervised accuracy on VOC 2012 (Everingham et al., 2010) using only image-level
061 tags (Jo et al., 2023; 2024a). However, extending this success to the panoptic setup still requires
062 point or box annotations to disambiguate instances. These additional annotations remain costly and
063 error-prone, particularly when objects overlap or when annotators are inconsistent.
064

065 Our key insight is that *self-attention maps of text-to-image diffusion models* (Podell et al., 2023;
066 Esser et al., 2024) *encode instance-aware cues early in denoising*. As shown in Fig. 1(a), cross-
067 attention does not reliably separate adjacent objects even with an explicit prompt, whereas self-
068 attention at specific timesteps reveals instance-level structure. During the denoising process, the
069 model transitions from noise to instance-level structure and then to semantic content. This raises
070 a central question: can diffusion self-attention itself serve as an annotation-free source of instance-
071 level edge maps?
072

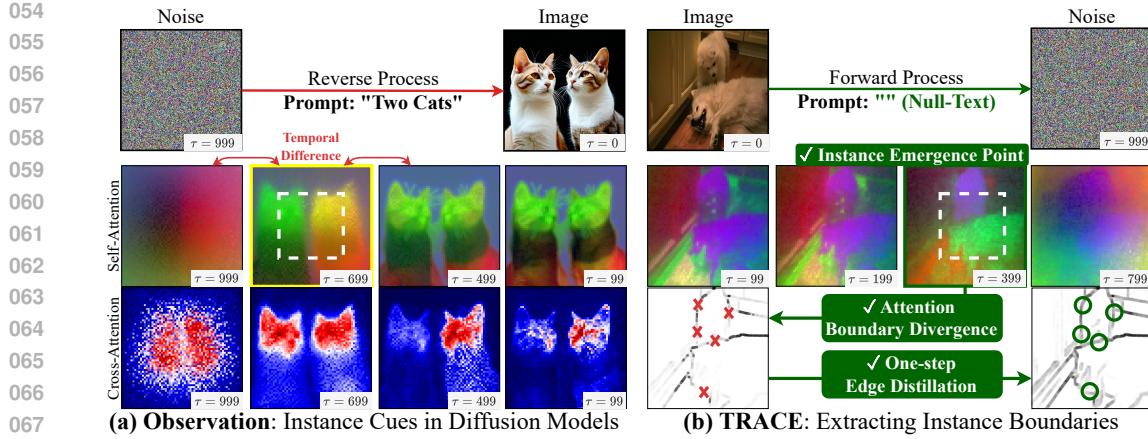


Figure 1: **Emergence and extraction of instance cues in diffusion attention.** (a) In reverse process, cross-attention remains semantic even with the prompt, whereas self-attention at specific steps reveals instance-level structure. (b) TRACE selects the instance-emergent step using a temporal divergence criterion, extracts non-parametric edges from self-attention differences, and refines them via a one-step distillation with the diffusion backbone to refine instance boundaries.

To answer this, we introduce **TRACE** (TRAnsforming diffusion Cues to instance Edges), a framework that decodes instance boundaries directly from pretrained text-to-image diffusion models. As illustrated in Fig. 1(b), TRACE first identifies the Instance Emergence Point (IEP) by measuring temporal divergence to select the timestep where the instance structure is most pronounced. It then applies Attention Boundary Divergence (ABDiv) to score criss-cross differences in self-attention and generate initial edge maps. At this stage, pixels within the same object exhibit nearly identical self-attention distributions, whereas pixels across different objects diverge sharply; this divergence peaks on true instance boundaries and provides a direct signal for instance edge extraction. To reduce the computational cost of the per-image forward process at test time, these edges are distilled into a one-step predictor that integrates the diffusion backbone with an edge decoder. The resulting edges are used as boundary priors in downstream segmentation methods (Wang et al., 2023a; Jo et al., 2024a), guiding the propagation to cleanly separate adjacent objects by splitting merged regions along instance boundaries (Fig. 2).

Our key contributions are summarized as follows:

- We observe that self-attention in diffusion models briefly yet reliably reveals instance-level structure during denoising, unlike common vision transformers (see Tab. 5).
- The proposed TRACE unifies two key ideas for annotation-free instance boundary discovery: the Instance Emergence Point and Attention Boundary Divergence.
- TRACE enables annotation-free instance and panoptic segmentation: 1) Improves unsupervised instance segmentation baselines by +4.4 AP with only 6% runtime overhead; 2) With tag supervision, surpasses point-supervised panoptic models, up to +7.1 PQ on VOC 2012; 3) As seeds for SAM, outperforms open-vocabulary detectors by up to +16.5 PQ (stuff).

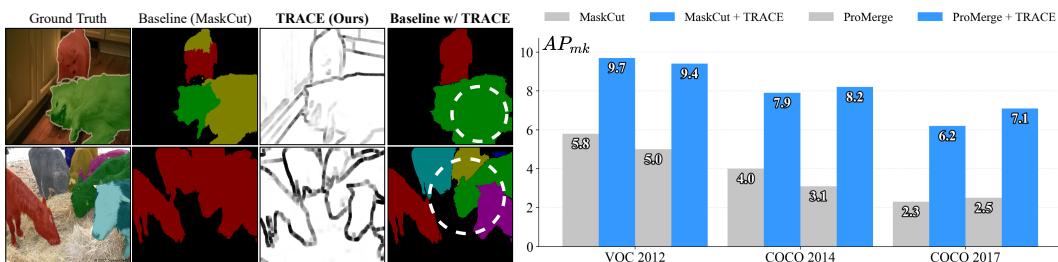


Figure 2: **Effect of TRACE.** (Left) Our instance edges decoded from diffusion self-attention for reconnection of fragmented masks and separation of adjacent objects, with white dotted circles marking corrected boundaries. (Right) Consistent AP_{mk} gains over baselines (Wang et al., 2023a; Li & Shin, 2024) without instance-level annotations.

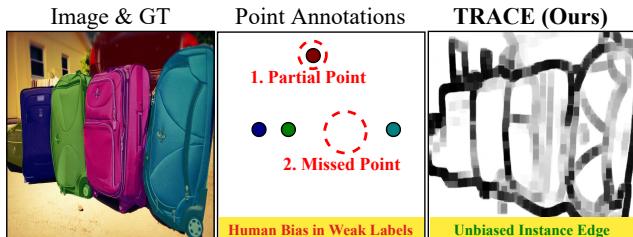
108 **2 RELATED WORK**

110 **Unsupervised Instance Segmentation.** Instance segmentation aims to delineate individual objects
 111 and typically requires pixel-level annotations. Early methods (Wang et al., 2022; Ishtiaq et al., 2023)
 112 learn pseudo masks from external features (Wang et al., 2021) but require training from scratch and
 113 show limited accuracy. Recent approaches, such as MaskCut (Wang et al., 2023a), U2Seg (Niu
 114 et al., 2024), and UnSAM (Wang et al., 2024b), cluster features from pretrained vision transformers
 115 like DINO (Caron et al., 2021). These models are strong at semantic grouping across images but are not
 116 explicitly designed for separating instances within an image. Therefore, these clustering methods
 117 often rely on heuristics such as a maximum number of instances or confidence thresholds and tend
 118 to merge adjacent objects of the same category.

119 To improve instance separation, CutS3D (Sick et al., 2025) and CUPS (Hahn et al., 2025) incor-
 120 porate monocular depth estimators (Ke et al., 2024; Yang et al., 2024) to split objects at different
 121 ranges. However, depth-based approaches struggle when neighboring objects lie at similar depth
 122 and they degrade on distant or small objects where estimated depth becomes blurry. By contrast,
 123 our diffusion-based strategy (TRACE) extracts instance boundaries from self-attention of pretrained
 124 diffusion models (Peebles & Xie, 2023; Bao et al., 2023; Podell et al., 2023; Esser et al., 2024).
 125 This boundary-centric cue does not assume the number of instances, is robust to object scale and
 126 distance, and refines existing unsupervised pipelines (Wang et al., 2023a; Li & Shin, 2024) without
 127 any supervision or retraining, achieving up to 29.1% higher performance on COCO compared to
 128 depth-based methods (see Tab. 1).

129 **Weakly-supervised Semantic and Panoptic Segmentation.** Panoptic segmentation jointly re-
 130 quires semantic masks for “stuff” regions (*e.g.*, grass) and instance masks for “thing” objects (*e.g.*,
 131 person), which makes it one of the most annotation-intensive tasks in segmentation. To reduce
 132 this labeling cost, weakly-supervised panoptic segmentation have been explored. Image-level class
 133 tags (Shen et al., 2021) alone cannot separate instances. Bounding boxes are ill-suited for panoptic
 134 supervision because they provide only coarse rectangles for “thing” objects and cannot define the
 135 non-overlapping pixel-wise regions required for “stuff” regions. Consequently, point annotations
 136 (Fan et al., 2022; Li et al., 2023b; 2024) have become the dominant form of weak supervision.
 137 However, points vary across annotators and are often placed near object centers, which produces
 138 partial or missed instances and leaves adjacent objects merged (see Fig. 3).

139 Meanwhile, in weakly-supervised semantic seg-
 140 mentation, recent tag-
 141 supervised approaches (Jo et al.,
 142 2024a; Yang et al., 2025a;b) show
 143 that image tags alone can reach about
 144 95% of fully supervised accuracy on
 145 the PASCAL VOC 2012 benchmark,
 146 indicating that tags are sufficient for
 147 semantics but not for instance separa-
 148 tion. Therefore, we revisit tag sup-
 149 vision and inject instance structure using diffusion priors: TRACE attaches to a tag-supervised
 150 semantic model (Jo et al., 2023; 2024a) and converts its pseudo semantic masks into pseudo panoptic
 151 masks by supplying instance-aware boundaries from diffusion self-attention. This model-agnostic
 152 design uses only image-level tags, cleanly separates adjacent objects, and first surpasses point-
 153 supervised panoptic baselines (Li et al., 2024) on VOC and COCO benchmarks (see Tab. 2).



154 Figure 3: Example of human bias in COCO.

155 **Diffusion-Driven and Open-Vocabulary Segmentation.** Recent approaches, including DiffCut
 156 (Couairon et al., 2024), DiffSeg (Tian et al., 2024), and ConceptAttention (Helbling et al., 2025),
 157 repurpose the self- and cross-attention maps of pretrained text-to-image diffusion models (Peebles
 158 & Xie, 2023; Bao et al., 2023; Esser et al., 2024; Podell et al., 2023) for semantic segmentation by
 159 analyzing attention at a fixed timestep without inversion. In parallel, open-vocabulary segmentation
 160 builds on contrastive pretraining (Radford et al., 2021) to map free-form text to visual concepts,
 161 enabling text-conditioned masks. Despite progress, such models (Liu et al., 2024b; You et al., 2023;
 162 Wang et al., 2025) typically underperform closed-vocabulary segmentation and struggle to produce
 163 reliable seeds under multi-tag inputs because they are hard to obtain from captions with limited tag
 164 coverage or in scenes containing multiple nearby objects. Compared to them, TRACE yields higher
 165 panoptic quality than open-vocabulary detection when used as TRACE seeds for SAM in Sec. 6.

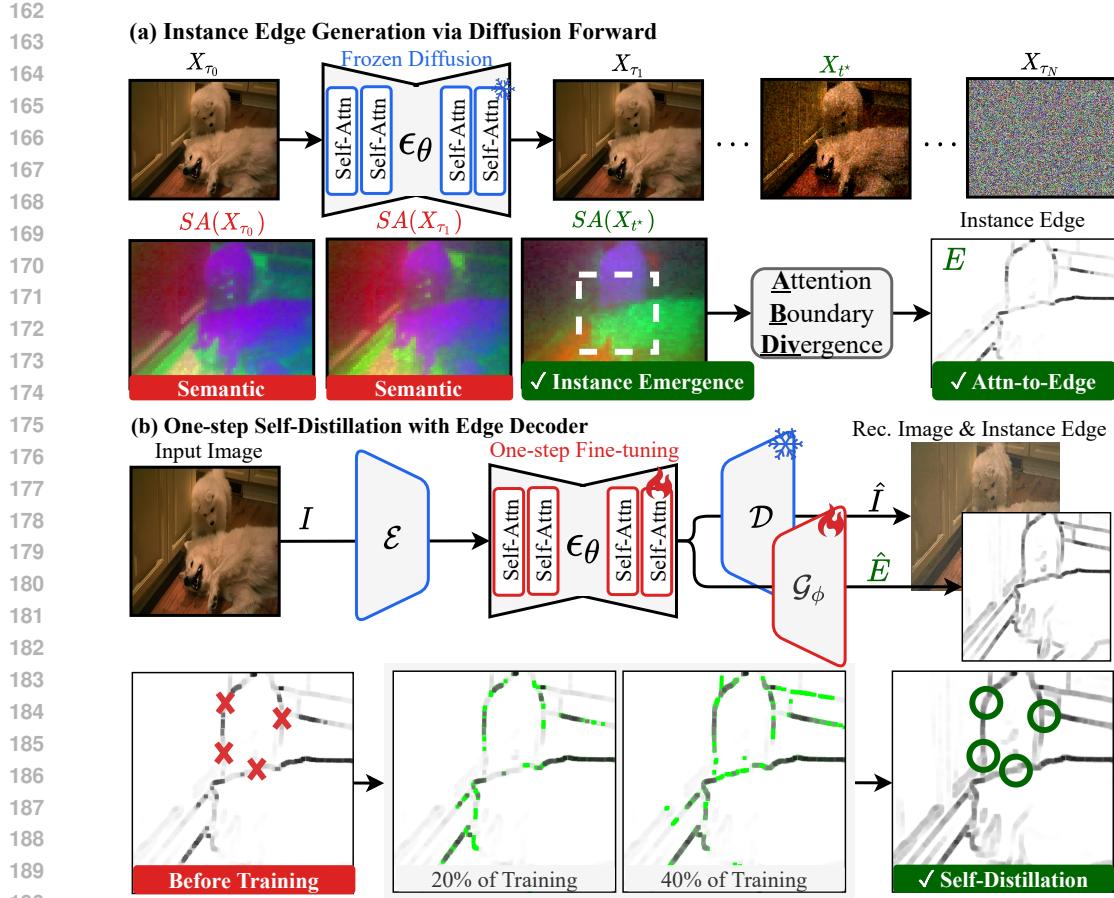


Figure 4: **Overview of TRACE.** (a) Diffusion forward locates the instance emergence point t^* (IEP) via a KL peak and extracts the instance-aware attention $SA(X_{t^*})$; ABDiv converts it into a pseudo edge map E . (b) One step self distillation at $t=0$ trains an edge decoder \mathcal{G}_ϕ with E , masking uncertain pixels. Training from E closes gaps in fragmented edges (green circles) and yields connected boundaries \hat{E} . At inference, TRACE predicts \hat{E} in a single pass w/o IEP or ABDiv.

3 METHOD

In this section, we outline an overview of TRACE in Fig. 4 for a comprehensive understanding of our framework. Section 3.2 introduces the Instance Emergence Point (IEP), which selects the denoising step where instance structure is most pronounced. Section 3.3 describes Attention Boundary Divergence (ABDiv), which converts criss-cross self-attention differences into a pseudo edge map. Section 3.4 details a one-step distillation that trains an edge decoder with the diffusion backbone to produce connected edges and enable real-time inference. Section 3.5 shows how our edges integrate with downstream segmentation models through Background-Guided Propagation (BGP).

3.1 BACKGROUND

Models. Diffusion (Rombach et al., 2022; Podell et al., 2023) and flow matching models (Esser et al., 2024; Lipman et al., 2022) generate images by learning a reverse process from noise to data. Although their objectives differ, both families use similar transformer backbones with self- and cross-attention. We refer to either as a diffusion model since our method is compatible with both. In typical text-to-image implementations, a VAE encoder \mathcal{E} maps an input image I into a latent $X_0 = \mathcal{E}(I)$, a denoising network ϵ_θ iteratively predicts noise (or velocity) on latents X_t conditioned on an optional text embedding c , and a VAE decoder \mathcal{D} turns a generated image $\hat{I} = \mathcal{D}(\hat{X}_0)$. TRACE reads only self-attention maps from a diffusion model and does not require text prompts.

Self-Attention Collection and Aggregation. For a latent $X_t \in \mathbb{R}^{HW \times d}$ at step t , we form queries $Q_t = X_t W_Q$ and keys $K_t = X_t W_K$. The self-attention for block k (averaged over heads, rows sum to 1) is $SA_t^k(X_t) = \text{softmax}(Q_t K_t^\top / \sqrt{d}) \in [0, 1]^{HW \times HW}$; we ignore cross-attention and do

not provide prompts. To fuse maps from blocks $k = 1, \dots, N$ that may operate at different spatial sizes w_k (e.g., multi-scale stages in U-Net; for single-scale DiT-style backbones \mathcal{U} is identity), we upsample to w_{\max} and average: $SA(X_t) = \frac{1}{N} \sum_{k=1}^N \mathcal{U}_{k \rightarrow \max}(SA_t^k(X_t))$. We implement this with PyTorch forward hooks \mathcal{H} on attention blocks; on each forward of the denoising network ϵ_θ with inputs (X_0, t) , the hook collects $\{SA_t^k\}$, performs the aggregation, and returns the map, $\mathcal{H}(\epsilon_\theta, X_0, t) = SA(X_t)$, without altering model outputs.

3.2 IDENTIFYING THE INSTANCE-AWARE DENOISING STEP

We next ask: *at which point of the denoising trajectory does self-attention truly become instance-aware?* Early in denoising, self-attention maps are almost indistinguishable from noise. As steps proceed, we observe a sharp rise in the Kullback–Leibler (KL) divergence between consecutive maps. This peak coincides with the emergence of clear object boundaries, after which divergence gradually decreases as object shape stabilizes while semantics continue to refine. During inversion, the trajectory unfolds in reverse order: semantic \rightarrow instance \rightarrow noise.

Motivated by our observation, we propose the Instance Emergence Point (IEP) as the timestep t^* where this divergence is maximized:

$$t^* = \underset{t \in \{\tau_1, \dots, \tau_N\}}{\operatorname{argmax}} D_{\text{KL}}(SA(X_{t_{\text{prev}}}) \parallel SA(X_t)) \quad (1)$$

where $\tau_0 < \dots < \tau_N$ are discrete timesteps (with $t = \tau_k$, $t_{\text{prev}} = \tau_{k-1}$). The self-attention map at this point, $SA(X_{t^*})$, is denoted as SA_{inst} and serves as our instance-aware representation. Specifically, KL divergence is a natural choice (Tian et al., 2024) because each row of $SA(X_t)$ is a probability distribution. Unlike mean-squared or absolute differences, KL’s log-scale sensitivity amplifies subtle but meaningful variations in high-dimensional self-attention that directly align with boundary emergence (see Tab. 4). In practice, we adopt a fixed inversion stride of 100 steps for efficiency and accuracy. A detailed analysis of step size and the distribution of the optimal timestep t^* across diffusion backbones is provided in Fig. 7.

3.3 EXTRACTING INSTANCE EDGES FROM SELF-ATTENTION

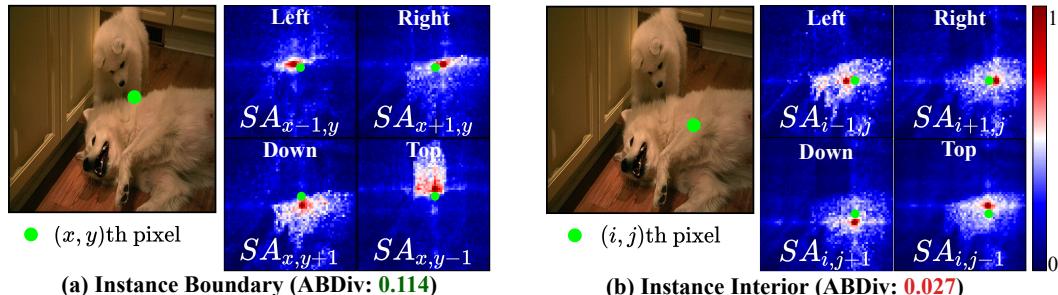


Figure 5: **Illustration of Attention Boundary Divergence (ABDiv).** Boundary regions (a) exhibit sharp attention divergence between opposite neighbors, whereas interior regions (b) remain stable, producing much smaller ABDiv values.

Neighboring pixels within the same instance exhibit similar self-attention maps, whereas those across instance boundaries differ, as shown in Fig. 5. We convert this contrast into edges with Attention Boundary Divergence (ABDiv), a simple non-parametric score that transforms instance-aware self-attention maps into boundary maps without clustering or annotations. We apply ABDiv on the instance-aware map $SA_{\text{inst}} = SA(X_{t^*})$ identified in Sec. 3.2. For a pixel (i, j) , ABDiv aggregates the divergence between opposite 4-neighbors:

$$\text{ABDiv}(SA)_{i,j} := D_{\text{KL}}(SA_{i+1,j} \parallel SA_{i-1,j}) + D_{\text{KL}}(SA_{i,j+1} \parallel SA_{i,j-1}). \quad (2)$$

By default, ABDiv is computed with a 4-neighborhood using opposite pairs (left/right and top/bottom) as defined in Eq. 2. An 8-neighborhood extension that adds diagonal pairs achieves the same accuracy while increasing computation by approximately 2 \times , so we adopt the 4-neighborhood in all experiments.

270 3.4 ONE-STEP SELF-DISTILLATION WITH EDGE DECODER
271

272 Starting from the instance-aware self-attention map $SA_{inst} = SA(X_{t^*})$ identified in Sec. 3.2, we
273 obtain an initial edge map E by applying ABDiv as defined in Eq. 2. **Inspired by pseudo-labeling**
274 **strategies for weak supervision** (Ahn et al., 2019b; Jo et al., 2024a), we adopt a reliability-based
275 thresholding to mitigate label noise from ambiguous self-attention signals. Specifically, we define a
276 ternary map using the mean μ and standard deviation σ of ABDiv scores: pixels $> \mu + \sigma$ are edges
277 1, $< \mu - \sigma$ are interior 0, and the intermediate range is marked as uncertain -1 . These uncertain
278 pixels are explicitly excluded from the loss computation, which effectively suppresses false positives
279 while maintaining high recall (see ablation in Appendix E.1 and Tab. 9).

280 To replace a per-image IEP+ABDiv computation at inference with a single pass, we fine-tune the
281 diffusion backbone using Low-Rank Adaptation (Hu et al., 2022) and jointly train an edge decoder
282 \mathcal{G}_ϕ . Beyond efficiency, the decoder also learns to complete fragmented edges, following common
283 practice in boundary detection (Xie & Tu, 2015; Xiao et al., 2018; Su et al., 2023). Let $I, \hat{I} \in \mathbb{R}^{H \times W \times 3}$ be the original and reconstructed images, $E, \hat{E} = \mathcal{G}_\phi(\mathcal{H}(\epsilon_\theta, I, t=0)) \in [-1, 1]^{H \times W}$ be
284 the pseudo edge map of ABDiv and the edge predicted by \mathcal{G}_ϕ . Our training objective is $\mathcal{L}(\theta, \phi) =$
285 $\mathcal{L}_{rec}(\theta) + \mathcal{L}_{edge}(\theta, \phi) = \|I - \hat{I}\|^2 + \text{DiceLoss}(E, \hat{E})$. After training, a single forward pass at
286 $t=0$ produces a connected and precise edge map and removes the need for IEP and ABDiv during
287 inference, as shown in Fig. 4. **Full algorithmic details are provided in Appendix C.**

288 3.5 SEMANTIC-TO-INSTANCE MASK REFINEMENT WITH INSTANCE EDGES
289

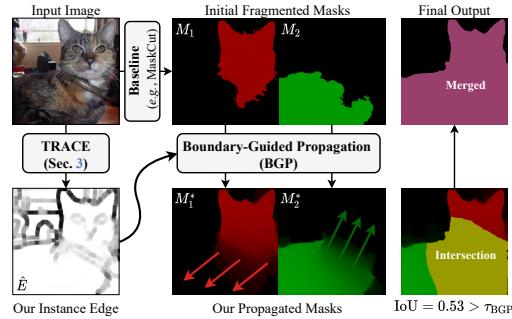
290 We now use our instance edges to regularize
291 and complete segmentation masks. Given seg-
292 mentation masks, connected component labeling
293 treats the TRACE edges as separators and assigns
294 unique labels to connected regions that are not cut
295 by edges. Inspired by (Ahn et al., 2019a), we de-
296 sign the Background-Guided Propagation (BGP),
297 as shown in Fig. 6, propagate each fragmented
298 mask inside its instance boundaries to close gaps
299 and produce smooth regions. We then iteratively
300 merge overlapping masks whose intersection over
301 union exceeds $\tau_{BGP} = 0.5$ until convergence.
302 This produces complete instance masks with our
303 edges. We empirically find that performance re-
304 mains stable over typical choices of τ_{BGP} on
305 VOC, so we simply use 0.5 in all experiments.

306 4 EXPERIMENTS
307

308 **Implementation Details.** For fair comparison, we follow standard protocols (Wang et al., 2023a; Li
309 et al., 2023b) and run all experiments on a single NVIDIA A100 GPU. Stable Diffusion 3.5 Large
310 (SD3.5-L) (Esser et al., 2024), our default backbone, performs best overall among five diffusion
311 backbones evaluated (Tab. 5), with VOC and COCO as the main benchmarks and five additional
312 datasets reported in Appendix E. Training details and evaluation metrics appear in Appendix C.

313 **Unsupervised Instance Segmentation.** In Tab. 1, TRACE refines masks produced by existing UIS
314 methods Wang et al. (2023a); Li & Shin (2024); Wang et al. (2024b) and consistently improves
315 performance AP^{mk} with gains ranging from +3.6 to +5.3 points. For clarity, we group results into
316 training-free and fine-tuned methods, where the latter relies on a Mask R-CNN He et al. (2017)
317 trained on pseudo instance masks. In particular, compared to the depth prior (Sick et al., 2025),
318 TRACE attains higher AP^{mk} on COCO (+2.2/+2.1 on 2014/2017), highlighting the advantage of
319 diffusion-driven instance edges. Qualitative results appear in Fig. 17.

320 **Weakly-supervised Panoptic Segmentation.** We refine semantic masks from tag-supervised meth-
321 ods (Jo et al., 2023; 2024a) with instance-aware edges to form pseudo panoptic masks and then train
322 a standard Mask2Former (Cheng et al., 2022) following the common evaluation protocol. In partic-
323 ular, DHR (Jo et al., 2024a) with TRACE surpasses point-supervised counterparts (Li et al., 2023b;
324 2024) by using only image-level tags (see Tab. 2 and Fig. 3), indicating that our edges provide the
325 instance geometry that tag supervision lacks. Qualitative examples are provided in Fig. 16.



326 **Figure 6: Illustration of Boundary-Guided
327 Propagation.** Fragmented masks spread within
328 instance edges, and intersections (yellow) are
329 resolved by edge respecting merging.

324 **Table 1: Performance of unsupervised instance segmentation.**
 325 (a) Training-free UIS (b) Fine-tuned UIS

Method	VOC 2012				COCO 2014				COCO 2017				Method	VOC 2012				COCO 2014			
	AP ^{mk}	AR ^{mk} ₁₀₀		AP ^{mk}	AR ^{mk} ₁₀₀	AP ^{mk}	AR ^{mk} ₁₀₀	AP ^{mk}	AR ^{mk} ₁₀₀												
MaskCut*	5.8	14.0	3.0	6.7	2.3	6.5								CutLER*	11.2	34.2	8.9	25.1	8.7	24.9	
+ UnSAM*	6.1	14.5	3.3	6.9	2.5	6.8								+ CutS3D	-	-	10.9	-	10.7	-	
+ TRACE (Ours)	9.7	18.4	7.9	12.6	7.5	9.8								+ TRACE (Ours)	14.8	45.3	13.1	34.6	12.8	33.9	
ProMerge*	5.0	13.9	3.1	7.6	2.5	7.5								ProMerge+*	11.1	33.1	9.0	25.3	8.9	25.1	
+ TRACE (Ours)	9.4	18.2	8.2	13.1	7.8	11.2								+ TRACE (Ours)	15.0	43.8	13.3	35.1	13.0	25.8	

332 **Table 2: Performance of weakly-supervised panoptic segmentation.**

Method	Backbone	Supervision	VOC 2012						COCO 2017					
			PQ	PQ th	PQ st	SQ	RQ	PQ	PQ th	PQ st	SQ	RQ		
Panoptic FCN (Li et al., 2021)	ResNet-50	\mathcal{M}	67.9	66.6	92.9	-	-	43.6	49.3	35.0	80.6	52.6		
Mask2Former* (Cheng et al., 2022)	ResNet-50	\mathcal{M}	73.6	72.6	93.5	90.6	80.5	51.9	57.7	43.0	-	-		
SPSPS (Fan et al., 2022)	ResNet-50	\mathcal{P}	49.8	47.8	89.5	-	-	29.3	29.3	29.4	-	-		
Panoptic FCN (Li et al., 2021)	ResNet-50	\mathcal{P}	48.0	46.2	85.2	-	-	31.2	35.7	24.3	-	-		
Point2Mask* (Li et al., 2023b)	ResNet-50	\mathcal{P}	53.8	51.9	90.5	-	-	32.4	32.6	32.2	75.1	41.5		
EPLD (Li et al., 2024)	ResNet-50	\mathcal{P}	56.6	54.9	89.6	-	-	34.2	33.6	35.3	-	-		
Point2Mask* (Li et al., 2023b)	Swin-L	\mathcal{P}	61.0	59.4	93.0	-	-	37.0	37.0	36.9	75.8	47.2		
EPLD (Li et al., 2024)	Swin-L	\mathcal{P}	68.5	67.3	93.4	-	-	41.0	39.9	42.7	-	-		
JTSM (Shen et al., 2021)	ResNet-18-WS	\mathcal{T}	39.0	37.1	77.7	-	-	5.3	8.4	0.7	30.8	7.8		
MARS* (Jo et al., 2023)	ResNet-50	\mathcal{T}	41.4	39.8	85.3	83.0	57.8	11.7	13.3	10.2	58.3	11.8		
+ TRACE (Ours)	ResNet-50	\mathcal{T}	50.4	48.5	88.9	86.6	60.1	29.5	31.1	28.9	62.5	39.3		
DHR* (Jo et al., 2024a)	ResNet-50	\mathcal{T}	45.0	43.3	88.3	83.3	59.8	18.3	17.5	18.1	69.3	14.8		
+ TRACE (Ours)	ResNet-50	\mathcal{T}	56.9	55.2	91.0	88.4	63.4	32.8	32.7	32.9	75.5	42.5		
+ TRACE (Ours)	Swin-L	\mathcal{T}	69.8	68.4	96.2	94.5	71.2	43.1	42.5	43.5	83.8	55.3		

\mathcal{M} : Full mask supervision (upper bound), \mathcal{P} : One point per instance, \mathcal{T} : Image-level tags only (no instance annotations)

* Reproduced results using the publicly accessible code. The rest are the values reported in the publication.

5 ABLATION STUDY

Component Ablation. Table 3 shows how each stage steers TRACE from purely semantic cues toward instance delineation. Because the Instance Emergence Point (IEP) marks the timestep where semantic attention first becomes instance-aware, it cannot be evaluated on its own: without the boundary scoring of ABDiv there is no measurable edge signal. Accordingly, case (b) applies Attention Boundary Divergence (ABDiv) at a purely semantic timestep, following prior diffusion approaches (Tian et al., 2024; Couairon et al., 2024), and yields almost no gain, confirming that semantic self-attention alone cannot reveal instance edges. Introducing IEP in case (c) pinpoints the denoising step where diffusion self-attention transitions from semantic grouping to instance structure, enabling ABDiv to capture instance boundaries. Finally, case (d) adds one-step self-distillation to compress these transient cues into a single-pass predictor, eliminating per-image IEP and ABDiv at inference and cutting latency from 3682 ms to just 45 ms per image (about 81× faster) while preserving and even strengthening edge connectivity.

Self-Distillation with Reconstruction. During one-step self-distillation (Sec. 3.4, we jointly optimize edge prediction and image reconstruction. While the edge loss $\mathcal{L}_{\text{edge}}$ compels the student to reproduce the teacher’s instance boundaries, edges alone can overfit to noisy or incomplete supervision. Adding a reconstruction loss \mathcal{L}_{rec} anchors the decoder to global image structure, stabilizing training and suppressing artifacts along low-contrast boundaries. This auxiliary objective yields smoother and more coherent edges and provides measurable gains in both accuracy and perceptual quality (AP^{mk} from 8.9 to 9.4; SSIM from 0.71 to 0.83) without adding inference cost.

Instance Emergence Analysis. Figure 7 evaluates the Instance Emergence Point (IEP) along two axes. In Fig. 7(a), enlarging the denoising step size reduces the number of self-attention accumulation and thus latency, with negligible loss in AP^{mk}. A step size of 100 strikes the best balance, maintaining about 9.4 AP^{mk} with roughly 3 s of IEP search per image. In Fig. 7(b), the optimal timestep t^* clusters tightly across five diffusion backbones, indicating a model-agnostic semantic-to-instance transition and supporting a fixed step size without per-image or per-model tuning. [Extensive results in Appendix E.2 further confirm the robustness of IEP, demonstrating consistent \$t^*\$ distributions](#)

346 **Table 3: Effect of key components on COCO 2014**
 347 with the UIS baseline (Li & Shin, 2024).

	IEP (Sec. 3.2)	ABDiv (Sec. 3.3)	Distill (Sec. 3.4)	AP ^{mk}
(a)	×	×	×	3.1
(b)	×	✓	×	3.2
(c)	✓	✓	×	4.8
(d)	✓	✓	✓	8.2

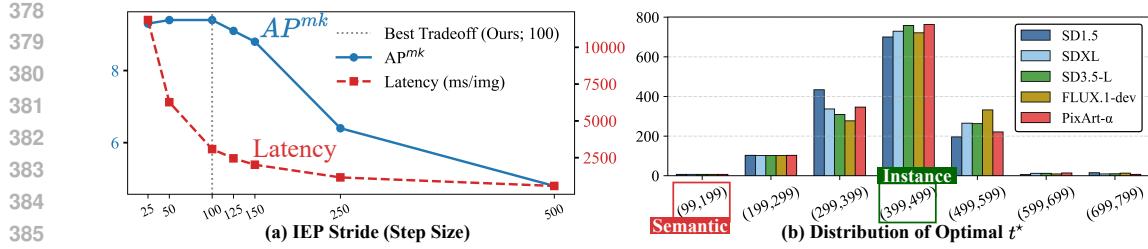


Figure 7: **Analysis of IEP.** (a) Accuracy–latency trade-off across different IEP step sizes. (b) Distribution of optimal timestep t^* showing a consistent semantic-to-instance transition.

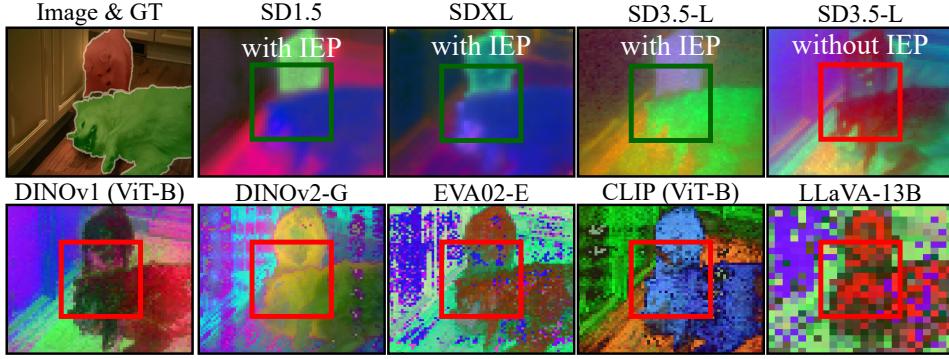


Figure 8: Visualization of self-attention maps with PCA.

across datasets and random seeds, as well as the empirical superiority of our KL criterion over alternative metrics (e.g., Entropy and Wasserstein).

KL vs. Other Metrics. To ensure our similarity choice is principled, we compared the Kullback–Leibler (KL) divergence with alternative metrics for both IEP and ABDiv. In Tab. 4, Jensen–Shannon divergence (JSD) achieves the similar AP^{mk} but requires computing two KL terms against a mixture distribution, increasing latency by more than 60%. Mean-squared (L2) and mean-absolute (L1) losses reduce computation but sharply degrade accuracy, confirming KL as the most effective balance of precision and efficiency.

6 DISCUSSION

Superiority of Generative Diffusion Priors. To verify whether instance-aware cues are specific to diffusion models, we evaluate TRACE across 10 different backbones, including 5 diffusion and 5 non-diffusion foundation models (Oquab et al., 2023; Fang et al., 2024; Liu et al., 2024a; Siméoni et al., 2025; Podell et al., 2023) (see Tab. 5). Note that for non-diffusion backbones lacking temporal trajectories, we apply ABDiv (Sec. 3.3) directly to their self-attention maps. Remarkably, even the smallest diffusion model, PixArt- α (0.6B) (Chen et al., ICLR’24), achieves 7.1 AP^{mk} , significantly outperforming the massive 72B-parameter Qwen2.5-VL (Bai et al., 2025) (4.1 AP^{mk}). This confirms that TRACE leverages the unique generative nature of diffusion models, where instance boundaries emerge during denoising (IEP; Sec. 3.2), rather than typical semantic features found in discriminative or multi-modal models. Figure 8 visualizes this distinction:

Table 5: **Diffusion vs. Non-Diffusion.** TRACE fine-tuning results on COCO 2014. Blue rows indicate diffusion backbones.

Method	Backbone	Params	AP^{mk}	AR_{100}^{mk}
ProMerge	–	–	3.1	7.6
<i>Non-diffusion backbones (ABDiv only)</i>				
+ TRACE	DINOv2-G	1.1B	2.6	7.7
+ TRACE	EVA02-E	5.0B	3.2	7.9
+ TRACE	DINOv3	7.0B	4.3	8.9
+ TRACE	LLaVA	13B	3.8	8.4
+ TRACE	Qwen2.5-VL	72B	4.1	8.5
<i>Diffusion backbones (IEP + ABDiv)</i>				
+ TRACE	SD1.5	0.8B	6.8	11.2
+ TRACE	PixArt- α	0.6B	7.1	11.8
+ TRACE	SDXL	2.5B	7.4	12.3
+ TRACE	SD3.5-L	8.1B	8.2	13.1
+ TRACE	FLUX.1	12B	8.3	13.4

diffusion self-attention tightens along object boundaries at IEP, whereas non-diffusion attention collapses into coarse semantic blobs, failing to

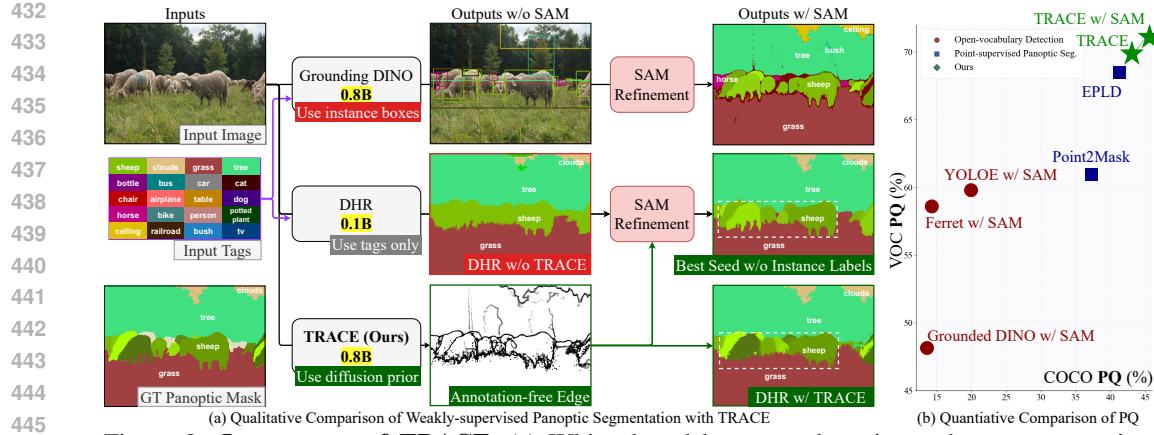


Figure 9: **Importance of TRACE.** (a) White dotted boxes mark regions where tag-supervised semantic masks are converted into panoptic masks by TRACE, cleanly separating adjacent instances. (b) Quantitative results show TRACE+SAM outperforming open-vocabulary detectors and TRACE+WSS (e.g., DHR) surpassing point-supervised baselines.

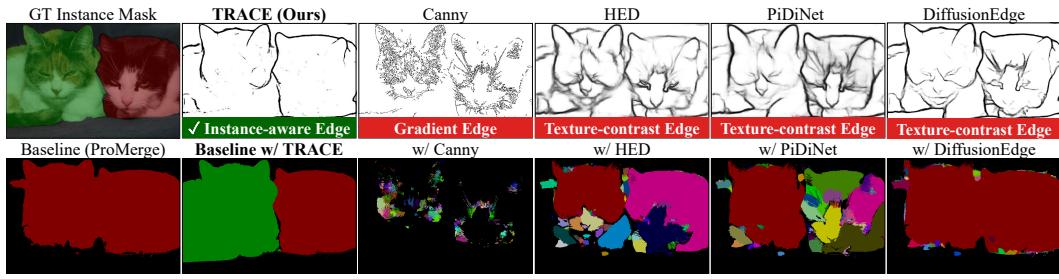


Figure 10: Instance-aware edge comparison with existing edge alternatives.

separate adjacent instances. Furthermore, within the diffusion family, performance correlates positively with model capacity (SD1.5 → FLUX.1), demonstrating that TRACE effectively scales with stronger generative priors while remaining model-agnostic in its applicability.

Why Annotation-Free Instance Edges? Recent efforts toward instance and panoptic segmentation often combine open-vocabulary detectors (Liu et al., 2024b; You et al., 2023; Wang et al., 2025) with SAM (Kirillov et al., 2023), where the detector supplies instance-level boxes and SAM refines them into masks. Despite this progress, such pipelines still depend on box annotations and struggle when scenes involve many adjacent objects or ambiguous text prompts. TRACE provides a different alternative: it extracts instance edges directly from diffusion self-attention, requiring no instance supervision while offering clean separation of objects (Fig. 9). These edges are complementary to SAM, since SAM excels at refining seeds into precise instance masks while TRACE provides those seeds. This combination exceeds all supervised open-vocabulary baselines. In addition, when integrated with tag-supervised semantic models, TRACE supplies the missing instance geometry and converts their outputs into complete panoptic masks, outperforming point-supervised methods on VOC and COCO.

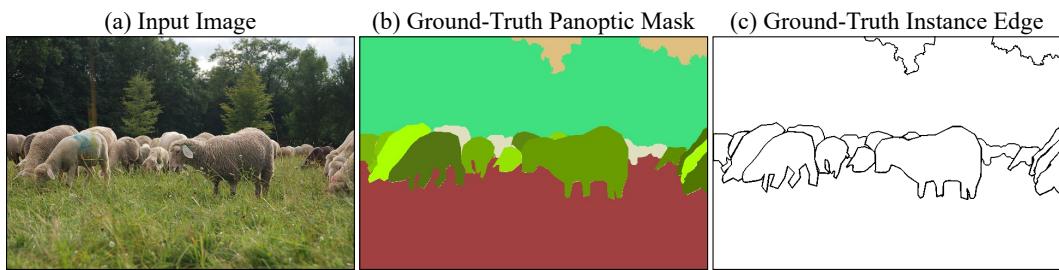


Figure 11: **Example of ground-truth instance boundary generation.** (a) Input image. (b) Ground-truth panoptic mask. (c) Ground-truth instance boundaries extracted from (b).

486 **Limitations of Conventional Edge Detectors.** Figure 10 tests whether conventional edges can
 487 replace TRACE for instance segmentation by swapping each detector’s edge map into our BGP
 488 pipeline (Sec. 3.5). AP^{mk} falls from 9.4 (TRACE) to 1.2 with Canny (Canny, 1986), 3.7 with HED
 489 (Xie & Tu, 2015), 4.1 with PiDiNet (Su et al., 2023), and 4.3 with DiffusionEdge (Ye et al., 2024).
 490 The gap reflects an objective mismatch: these methods are trained to predict RGB intensity-change
 491 contours (not instance edges), which makes them sensitive to texture and illumination.

492 **Quantitative Evaluation of Instance Boundaries.** Standard edge detection benchmarks (e.g., BSDS
 493 (Arbelaez et al., 2010)) prioritize low-level texture or
 494 color contrast, which is misaligned with the goal of
 495 instance boundary detection. To evaluate instance-
 496 aware boundary quality, we construct a new bench-
 497 mark from COCO 2014 panoptic masks, defining
 498 pixels between distinct segments as ground-truth
 499 edges (see Fig. 11). To assess quality, we report
 500 ODS and OIS metrics (Xie & Tu, 2015; Su et al.,
 501 2023) for boundary precision and cIDice (Shit et al.,
 502 2021) for topological connectivity (see details in Appendix F). Table 6 compares TRACE against
 503 representative edge detectors (Canny, 1986; Xie & Tu, 2015; Su et al., 2023; Ye et al., 2024).
 504 TRACE achieves an ODS of **0.889**, more than doubling the performance of the strongest baseline
 505 (DiffusionEdge, 0.428). Conventional methods suffer from high false positives due to their sensitiv-
 506 ity to internal textures, resulting in low precision for instance delineation. In contrast, TRACE effec-
 507 tively suppresses non-boundary gradients by leveraging diffusion priors. Furthermore, the superior
 508 cIDice score (**0.826**) confirms that TRACE produces topologically connected boundaries, which is
 509 a critical property for successfully separating adjacent instances in downstream segmentation tasks.

510 **Limitations.** While TRACE demonstrates consistent improvements across 11 real-world bench-
 511 marks, including autonomous driving (see results in Tabs. 1, 2, 12, and 13), we identify limitations
 512 in specialized domains. First, for tiny instances ($\approx 0.01\%$ area) in satellite imagery (Wei et al.,
 513 2020; Waqas Zamir et al., 2019), performance degrades due to the spatial compression of the VAE
 514 in latent diffusion models. Second, on out-of-distribution medical images (e.g., histopathology)
 515 (Kumar et al., 2020; Naylor et al., 2019), the natural-image priors of standard diffusion backbones
 516 result in misaligned instance boundaries. We provide detailed quantitative results (Tabs. 14 and 15)
 517 and qualitative failure cases (Fig. 15) for these scenarios in Appendix E.4.

518 **Computational Overhead.** In Tab. 7, TRACE introduces minimal additional
 519 cost across different evaluation settings.
 520 For training-free unsupervised instance
 521 segmentation in Tab. 1(a), TRACE re-
 522 fines each image’s masks during inference,
 523 which increases latency by only about 2%
 524 compared to the ProMerge (Li & Shin, 2024). In contrast, for weakly-supervised panoptic seg-
 525 mentation (Tab. 1(b), Tab. 2), TRACE is used only once during training to refine pseudo instance or
 526 panoptic masks before the teacher network (e.g., Mask2Former) is trained, so there is no runtime
 527 overhead at inference.

528 7 CONCLUSION

530 TRACE demonstrates that text-to-image diffusion models naturally encode recoverable instance
 531 structure. By locating the Instance Emergence Point, extracting boundaries through self-attention,
 532 and compressing them into a fast one-step decoder, TRACE delivers sharp and connected instance
 533 edges in real time without any prompts, points, or boxes, or masks. Our extensive evaluation across
 534 diverse diffusion architectures confirms that this capability is intrinsic to the generative diffusion
 535 prior, consistently yielding superior instance boundary precision and topological connectivity com-
 536 pared to non-diffusion baselines and conventional edge detectors. These edges act as annotation-free
 537 instance seeds that boost both interactive systems like SAM and unsupervised/weakly-supervised
 538 pipelines, surpassing point- and box-supervised alternatives. Looking forward, the same principle
 539 opens opportunities for video panoptic segmentation, medical imaging, and open-vocabulary group-
 ing where text and TRACE can be combined for scalable panoptic perception.

Table 6: **Instance Edge Quality.** Evaluation on COCO 2014 validation set against ground-truth instance boundaries.

Method	ODS	OIS	cIDice
Canny	0.129	0.202	0.134
HED	0.347	0.443	0.446
PiDiNet	0.362	0.450	0.574
DiffusionEdge	0.428	0.485	0.576
TRACE (Ours)	0.889	0.899	0.826

Table 7: Computational Overhead of TRACE.

Phase (Dataset)	TRACE (SDXL)	TRACE (SD3.5-L)
Train (ImageNet)	8 days	10 days
Test (VOC2012)	0.1 hrs	0.2 hrs
Test (COCO2014)	2.0 hrs	2.4 hrs
VRAM Usage	20 GB	32 GB

540 8 REPRODUCIBILITY STATEMENT
541

542 We provide the complete codebase (training, inference, and evaluation pipelines) together with de-
543 tailed instructions in the accompanying *Supplementary Material.zip*. This enables full
544 verification of our results and facilitates independent reproduction. For baseline comparisons, we
545 relied on publicly available implementations to ensure fairness and transparency. Additional imple-
546 mentation details and algorithmic descriptions are provided in Appendix C.

548 REFERENCES
549

550 Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic affinity with image-level supervision
551 for weakly supervised semantic segmentation. In *The IEEE Conference on Computer Vision and*
552 *Pattern Recognition (CVPR)*, June 2018.

553 Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly supervised learning of instance segmentation
554 with inter-pixel relations. In *The IEEE Conference on Computer Vision and Pattern Recognition*
555 (*CVPR*), June 2019a.

556 Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly supervised learning of instance segmentation
557 with inter-pixel relations. In *IEEE CVPR*, pp. 2209–2218, 2019b.

559 Shun-ichi Amari and Hiroshi Nagaoka. *Methods of information geometry*, volume 191. American
560 Mathematical Soc., 2000.

562 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hi-
563 erarchical image segmentation. *IEEE transactions on pattern analysis and machine intelligence*,
564 33(5):898–916, 2010.

565 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
566 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*,
567 2025.

569 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
570 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on*
571 *computer vision and pattern recognition*, pp. 22669–22679, 2023.

572 Luca Barsellotti, Lorenzo Bianchi, Nicola Messina, Fabio Carrara, Marcella Cornia, Lorenzo
573 Baraldi, Fabrizio Falchi, and Rita Cucchiara. Talking to dino: Bridging self-supervised vision
574 backbones with language for open-vocabulary segmentation. In *Proceedings of the IEEE/CVF*
575 *International Conference on Computer Vision*, pp. 22025–22035, 2025.

576 Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and stuff classes in context.
577 In *IEEE CVPR*, pp. 1209–1218, 2018.

579 John Canny. A computational approach to edge detection. *IEEE Transactions on Pattern Analysis*
580 *and Machine Intelligence*, PAMI-8(6):679–698, 1986. doi: 10.1109/TPAMI.1986.4767851.

582 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
583 Armand Joulin. Emerging properties in self-supervised vision transformers. In *IEEE ICCV*, pp.
584 9650–9660, 2021.

585 Junbum Cha, Jonghwan Mun, and Byungseok Roh. Learning to generate text-grounded mask for
586 open-world semantic segmentation from only image-text pairs. In *IEEE CVPR*, pp. 11165–11174,
587 2023.

588 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
589 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer
590 for photorealistic text-to-image synthesis, ICLR’24.

592 Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng Hua, Hanwang Zhang, and Qianru Sun.
593 Class re-activation maps for weakly-supervised semantic segmentation. In *IEEE CVPR*, pp. 969–
978, 2022.

594 Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
 595 for semantic segmentation. *Advances in neural information processing systems*, 34:17864–17875,
 596 2021.

597 Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
 598 attention mask transformer for universal image segmentation. In *IEEE CVPR*, pp. 1290–1299,
 599 2022.

600 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
 601 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
 602 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern
 603 recognition*, pp. 3213–3223, 2016.

604 Paul Couairon, Mustafa Shukor, Jean-Emmanuel Haugéard, Matthieu Cord, and Nicolas Thome.
 605 Diffcut: Catalyzing zero-shot semantic segmentation with diffusion features and recursive nor-
 606 malized cut, 2024. URL <https://arxiv.org/abs/2406.02842>.

607 Songhe Deng, Wei Zhuo, Jinheng Xie, and Linlin Shen. Qa-clsms: Question-answer cross language
 608 image matching for weakly supervised semantic segmentation. In *ACM MM*, pp. 5572–5583,
 609 2023.

610 Omar Elharrouss, Somaya Al-Maadeed, Nandhini Subramanian, Najmath Ottakath, Noor Al-
 611 maadeed, and Yassine Himeur. Panoptic segmentation: A review. *arXiv preprint
 612 arXiv:2111.10250*, 2021.

613 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 614 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
 615 glish, and Robin Rombach. Scaling rectified flow transformers for high-resolution image syn-
 616 thesis. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=FPnUhsQJ5B>.

617 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
 618 The pascal visual object classes (VOC) challenge. *IJCV*, 88(2):303–338, 2010.

619 Junsong Fan, Zhaoxiang Zhang, and Tieniu Tan. Pointly-supervised panoptic segmentation. In
 620 *European Conference on Computer Vision*, pp. 319–336. Springer, 2022.

621 Ruochen Fan, Qibin Hou, Ming-Ming Cheng, Gang Yu, Ralph R Martin, and Shi-Min Hu. Associ-
 622 ating inter-image salient instances for weakly supervised semantic segmentation. In *Proceedings
 623 of the European conference on computer vision (ECCV)*, pp. 367–383, 2018.

624 Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
 625 visual representation for neon genesis. *Image and Vision Computing*, 149:105171, 2024.

626 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
 627 vision benchmark suite. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*,
 628 pp. 3354–3361, 2012. doi: 10.1109/CVPR.2012.6248074.

629 Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
 630 tation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 631 (CVPR)*, June 2019.

632 Oliver Hahn, Christoph Reich, Nikita Araslanov, Daniel Cremers, Christian Rupprecht, and Stefan
 633 Roth. Scene-centric unsupervised panoptic segmentation. In *Proceedings of the Computer Vision
 634 and Pattern Recognition Conference*, pp. 24485–24495, 2025.

635 Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and William T. Freeman. Un-
 636 supervised semantic segmentation by distilling feature correspondences. In *ICLR*, 2022. URL
 637 <https://openreview.net/forum?id=SaKO6z6H10c>.

638 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask r-cnn. In *2017 IEEE
 639 International Conference on Computer Vision (ICCV)*, pp. 2980–2988, 2017.

648 Alec Helbling, Tuna Han Salih Meral, Ben Hoover, Pinar Yanardag, and Duen Horng Chau. Conceptattention: Diffusion transformers learn highly interpretable features, 2025. URL <https://arxiv.org/abs/2502.04320>.

649

650

651

652 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZevKeeFYf9>.

653

654

655

656 Taoseef Ishtiaq, Qing En, and Yuhong Guo. Exemplar-freesolo: Enhancing unsupervised instance segmentation with exemplars. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15424–15433, 2023.

657

658

659

660 Guangfeng Jiang, Jun Liu, Yuzhi Wu, Wenlong Liao, Tao He, and Pai Peng. Mwsis: Multimodal weakly supervised instance segmentation with 2d box annotations for autonomous driving. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 2507–2515, 2024.

661

662

663

664 Sanghyun Jo, In-Jae Yu, and Kyungsu Kim. Recurseed and edgepredictmix: Single-stage learning is sufficient for weakly-supervised semantic segmentation. *arXiv preprint arXiv:2204.06754*, 2022.

665

666

667 Sanghyun Jo, In-Jae Yu, and Kyungsu Kim. Mars: Model-agnostic biased object removal without additional supervision for weakly-supervised semantic segmentation. In *IEEE ICCV*, pp. 614–623, October 2023.

668

669

670 Sanghyun Jo, Fei Pan, In-Jae Yu, and Kyungsu Kim. Dhr: Dual features-driven hierarchical rebalancing in inter- and intra-class regions for weakly-supervised semantic segmentation. In *European Conference on Computer Vision (ECCV)*, 2024a.

671

672

673

674 Sanghyun Jo, Soohyun Ryu, Sungyub Kim, Eunho Yang, and Kyungsu Kim. Ttd: Text-tag self-distillation enhancing image-text alignment in clip to alleviate single tag bias. In *European Conference on Computer Vision*, pp. 341–357. Springer, 2024b.

675

676

677 Sanghyun Jo, Seo Jin Lee, Seungwoo Lee, Seohyung Hong, Hyungseok Seo, and Kyungsu Kim. Coin: Confidence score-guided distillation for annotation-free cell segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 20324–20335, 2025.

678

679

680

681 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9492–9502, 2024.

682

683

684

685

686 Beomyoung Kim, Youngjoon Yoo, Chae Eun Rhee, and Junmo Kim. Beyond semantic to instance segmentation: Weakly-supervised instance segmentation via semantic knowledge transfer and self-refinement. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4278–4287, 2022.

687

688

689

690 Sangtae Kim, Daeyoung Park, and Byonghyo Shim. Semantic-aware superpixel for weakly supervised semantic segmentation. In *AAAI*, pp. 1142–1150, 2023.

691

692

693 Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6399–6408, 2019.

694

695

696

697 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. *arXiv preprint arXiv:2304.02643*, 2023.

698

699

700 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *NeurIPS*, 25:1097–1105, 2012.

702 Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri Onder, Efstratios
 703 Tsougenis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu, Yunzhi Wang, Navid Alemi
 704 Koohbanani, Mostafa Jahanifar, Neda Zamani Tajeddin, Ali Gooya, Nasir Rajpoot, Xuhua Ren,
 705 Sihang Zhou, Qian Wang, Dinggang Shen, Cheng-Kun Yang, Chi-Hung Weng, Wei-Hsiang Yu,
 706 Chao-Yuan Yeh, Shuang Yang, Shuoyu Xu, Pak Hei Yeung, Peng Sun, Amirreza Mahbod, Gerald
 707 Schaefer, Isabella Ellinger, Rupert Ecker, Orjan Smedby, Chunliang Wang, Benjamin Chidester,
 708 That-Vinh Ton, Minh-Triet Tran, Jian Ma, Minh N. Do, Simon Graham, Quoc Dang Vu, Jin Tae
 709 Kwak, Akshaykumar Gunda, Raviteja Chunduri, Corey Hu, Xiaoyang Zhou, Dariush Lotfi, Reza
 710 Safdari, Antanas Kascenas, Alison O’Neil, Dennis Eschweiler, Johannes Stegmaier, Yanping Cui,
 711 Baocai Yin, Kailin Chen, Xinmei Tian, Philipp Gruening, Erhardt Barth, Elad Arbel, Itay Remer,
 712 Amir Ben-Dor, Ekaterina Sirazitdinova, Matthias Kohl, Stefan Brauneck, Yuexiang Li, Xin-
 713 peng Xie, Linlin Shen, Jun Ma, Krishanu Das Baksi, Mohammad Azam Khan, Jaegul Choo,
 714 Adrián Colomer, Valery Naranjo, Linmin Pei, Khan M. Iftekharuddin, Kaushiki Roy, Debotosh
 715 Bhattacharjee, Anibal Pedraza, Maria Gloria Bueno, Sabarinathan Devanathan, Saravanan Rad-
 716 hakrishnan, Praveen Koduganty, Zihan Wu, Guanyu Cai, Xiaojie Liu, Yuqin Wang, and Amit
 717 Sethi. A multi-organ nucleus segmentation challenge. *IEEE Transactions on Medical Imaging*,
 718 39(5):1380–1391, 2020. doi: 10.1109/TMI.2019.2947628.

719 Hyeokjun Kweon, Sung-Hoon Yoon, and Kuk-Jin Yoon. Weakly supervised semantic segmentation
 720 via adversarial learning of classifier and reconstructor. In *IEEE CVPR*, pp. 11329–11339, 2023.

721 Dylan Li and Gyungin Shin. Promerge: Prompt and merge for unsupervised instance segmentation.
 722 In *European Conference on Computer Vision (ECCV)*, 2024.

723 Jing Li, Junsong Fan, and Zhaoxiang Zhang. Towards noiseless object contours for weakly super-
 724 vised semantic segmentation. In *IEEE CVPR*, pp. 16856–16865, 2022a.

725 Jing Li, Junsong Fan, and Zhaoxiang Zhang. Point-supervised panoptic segmentation via estimating
 726 pseudo labels from learnable distance. In *European Conference on Computer Vision (ECCV)*.
 727 Springer, 2024. URL https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/02430.pdf.

728 Qizhu Li, Anurag Arnab, and Philip H.S. Torr. Weakly- and semi-supervised panoptic segmentation.
 729 In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.

730 Ruihuang Li, Chenhang He, Yabin Zhang, Shuai Li, Liyi Chen, and Lei Zhang. Sim: Semantic-
 731 aware instance mask generation for box-supervised instance segmentation. In *Proceedings of the
 732 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7193–7203, 2023a.

733 Wentong Li, Yuqian Yuan, Song Wang, Jianke Zhu, Jianshu Li, Jian Liu, and Lei Zhang.
 734 Point2mask: Point-supervised panoptic segmentation via optimal transport. In *Proceedings of
 735 the IEEE/CVF International Conference on Computer Vision*, pp. 572–581, 2023b.

736 Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun, and Jiaya Jia. Fully
 737 convolutional networks for panoptic segmentation. In *Proceedings of the IEEE/CVF conference
 738 on computer vision and pattern recognition*, pp. 214–223, 2021.

739 Zhiqi Li, Wenhui Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, Ping Luo,
 740 and Tong Lu. Panoptic segformer: Delving deeper into panoptic segmentation with transformers.
 741 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 742 1280–1289, 2022b.

743 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 744 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In *ECCV*, pp.
 745 740–755. Springer, 2014.

746 Yuqi Lin, Minghao Chen, Wenxiao Wang, Boxi Wu, Ke Li, Binbin Lin, Haifeng Liu, and Xiaofei
 747 He. Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic
 748 segmentation. In *IEEE CVPR*, pp. 15305–15314, June 2023.

749 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 750 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

756 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 757 *in neural information processing systems*, 36, 2024a.
 758

759 Sheng Liu, Kangning Liu, Weicheng Zhu, Yiqiu Shen, and Carlos Fernandez-Granda. Adaptive
 760 early-learning correction for segmentation from noisy annotations. In *IEEE CVPR*, pp. 2606–
 761 2616, 2022.

762 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 763 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 764 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 765 2024b.

766

767 Rozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
 768 Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmen-
 769 tation in the wild. In *IEEE CVPR*, pp. 891–898, 2014.

770 Koichi Namekata, Amirmojtaba Sabour, Sanja Fidler, and Seung Wook Kim. Emerdiff: Emerging
 771 pixel-level semantic knowledge in diffusion models, 2024. URL <https://arxiv.org/abs/2401.11739>.

772

773 Peter Naylor, Marick Laé, Fabien Reyal, and Thomas Walter. Segmentation of nuclei in histopathol-
 774 ogy images by deep regression of the distance map. *IEEE Transactions on Medical Imaging*, 38
 775 (2):448–459, 2019. doi: 10.1109/TMI.2018.2865709.

776

777 Quang Nguyen, Truong Vu, Anh Tran, and Khoi Nguyen. Dataset diffusion: Diffusion-
 778 based synthetic data generation for pixel-level semantic segmentation. In A. Oh, T. Nau-
 779 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 780 *Information Processing Systems*, volume 36, pp. 76872–76892. Curran Associates, Inc.,
 781 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/f2957e48240c1d90e62b303574871b47-Paper-Conference.pdf.

782

783 Frank Nielsen and Gaëtan Hadjeres. On power chi expansions of f -divergences. *arXiv preprint*
 784 *arXiv:1903.05818*, 2019.

785

786 Dantong Niu, Xudong Wang, Xinyang Han, Long Lian, Roei Herzig, and Trevor Darrell. Unsuper-
 787 vised universal image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer*
 788 *Vision and Pattern Recognition*, pp. 22744–22754, 2024.

789

790 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 791 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 792 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 793 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 794 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 2023.

795

796 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 797 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

798

799 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 800 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 801 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

802

803 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 804 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 805 models from natural language supervision. In *ICML*, pp. 8748–8763. PMLR, 2021.

806

807 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 808 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 809 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

810

811 Shenghai Rong, Bohai Tu, Zilei Wang, and Junjie Li. Boundary-enhanced co-training for weakly
 812 supervised semantic segmentation. In *IEEE CVPR*, pp. 19574–19584, June 2023.

810 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 811 image segmentation. In *International Conference on Medical image computing and computer-
 812 assisted intervention*, pp. 234–241. Springer, 2015.

813 Lixiang Ru, Heliang Zheng, Yibing Zhan, and Bo Du. Token contrast for weakly-supervised semantic
 814 segmentation. In *IEEE CVPR*, pp. 3093–3102, 2023.

815 Mihir Sahasrabudhe, Stergios Christodoulidis, Roberto Salgado, Stefan Michiels, Sherene Loi, Fab-
 816 rice André, Nikos Paragios, and Maria Vakalopoulou. Self-supervised nuclei segmentation in
 817 histopathological images using attention, 2020. URL <https://arxiv.org/abs/2007.08373>.

818 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 819 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the
 820 IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2019.

821 Yunhang Shen, Liujuan Cao, Zhiwei Chen, Feihong Lian, Baochang Zhang, Chi Su, Yongjian Wu,
 822 Feiyue Huang, and Rongrong Ji. Toward joint thing-and-stuff mining for weakly supervised
 823 panoptic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 824 Pattern Recognition*, pp. 16694–16705, 2021.

825 Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey
 826 Zhylka, Josien PW Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel topology-preserving
 827 loss function for tubular structure segmentation. In *Proceedings of the IEEE/CVF conference on
 828 computer vision and pattern recognition*, pp. 16560–16569, 2021.

829 Leon Sick, Dominik Engel, Sebastian Hartwig, Pedro Hermosilla, and Timo Ropinski. Cuts3d:
 830 Cutting semantics in 3d for 2d unsupervised instance segmentation. In *International Conference
 831 on Computer Vision (ICCV)*, 2025.

832 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 833 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv
 834 preprint arXiv:2508.10104*, 2025.

835 Zhuo Su, Jiehua Zhang, Longguang Wang, Hua Zhang, Zhen Liu, Matti Pietikäinen, and Li Liu.
 836 Lightweight pixel difference networks for efficient visual representation learning. *IEEE Transac-
 837 tions on Pattern Analysis and Machine Intelligence*, 45(12):14956–14974, 2023.

838 Junjiao Tian, Lavisha Aggarwal, Andrea Colaco, Zsolt Kira, and Mar Gonzalez-Franco. Diffuse
 839 attend and segment: Unsupervised zero-shot segmentation using stable diffusion. In *Proceedings
 840 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3554–
 841 3563, June 2024.

842 Ao Wang, Lihao Liu, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yoloe: Real-time
 843 seeing anything, 2025. URL <https://arxiv.org/abs/2503.07465>.

844 Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning for
 845 self-supervised visual pre-training. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition
 846 (CVPR)*, 2021.

847 Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz, Anima Anandkumar, Chunhua Shen, and
 848 Jose M Alvarez. Freesolo: Learning to segment objects without annotations. In *Proceedings of
 849 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14176–14186, 2022.

850 Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra. Cut and learn for unsupervised object
 851 detection and instance segmentation. In *Proceedings of the IEEE/CVF conference on computer
 852 vision and pattern recognition*, pp. 3124–3134, 2023a.

853 Xudong Wang, Ishan Misra, Ziyun Zeng, Rohit Girdhar, and Trevor Darrell. Videocutler: Sur-
 854 prisingly simple unsupervised video instance segmentation. In *Proceedings of the IEEE/CVF
 855 Conference on Computer Vision and Pattern Recognition*, pp. 22755–22764, 2024a.

856 XuDong Wang, Jingfeng Yang, and Trevor Darrell. Segment anything without supervision. In
 857 *NeurIPS*, 2024b.

864 Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L Crowley, and
 865 Dominique Vaufreydaz. Tokencut: Segmenting objects in images and videos with self-supervised
 866 transformer and normalized cut. *IEEE transactions on pattern analysis and machine intelligence*,
 867 2023b.

868 Syed Waqas Zamir, Aditya Arora, Akshita Gupta, Salman Khan, Guolei Sun, Fahad Shahbaz Khan,
 869 Fan Zhu, Ling Shao, Gui-Song Xia, and Xiang Bai. isaid: A large-scale dataset for instance
 870 segmentation in aerial images. In *Proceedings of the IEEE/CVF conference on computer vision*
 871 and *pattern recognition workshops*, pp. 28–37, 2019.

872

873 Shunjun Wei, Xiangfeng Zeng, Qizhe Qu, Mou Wang, Hao Su, and Jun Shi. Hrsid: A high-
 874 resolution sar images dataset for ship detection and instance segmentation. *Ieee Access*, 8:
 875 120234–120254, 2020.

876 Weijia Wu, Yuzhong Zhao, Hao Chen, Yuchao Gu, Rui Zhao, Yefei He, Hong Zhou,
 877 Mike Zheng Shou, and Chunhua Shen. Datasetdm: Synthesizing data with per-
 878 ception annotations using diffusion models. In A. Oh, T. Naumann, A. Globerson,
 879 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 880 cessing Systems*, volume 36, pp. 54683–54695. Curran Associates, Inc., 2023. URL
 881 https://proceedings.neurips.cc/paper_files/paper/2023/file/ab6e7ad2354f350b451b5a8e14d04f51-Paper-Conference.pdf.

882

883 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
 884 scene understanding. In *European Conference on Computer Vision*. Springer, 2018.

885

886 Jiahao Xie, Wei Li, Xiangtai Li, Ziwei Liu, Yew Soon Ong, and Chen Change Loy. Mosaicfusion:
 887 Diffusion models as data augmenters for large vocabulary instance segmentation. *International
 888 Journal of Computer Vision*, 133(4):1456–1475, 2025.

889

890 Jinheng Xie, Jianfeng Xiang, Junliang Chen, Xianxu Hou, Xiaodong Zhao, and Linlin Shen. C2am:
 891 Contrastive learning of class-agnostic activation map for weakly supervised object localization
 892 and semantic segmentation. In *IEEE CVPR*, pp. 989–998, 2022.

893

894 Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In *Proceedings of the IEEE
 895 international conference on computer vision*, pp. 1395–1403, 2015.

896

897 Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, and Shalini De Mello. Open-
 898 vocabulary panoptic segmentation with text-to-image diffusion models. In *Proceedings of the
 899 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2955–2966,
 900 June 2023.

901

902 Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu. Multi-class token
 903 transformer for weakly supervised semantic segmentation. In *IEEE CVPR*, pp. 4310–4319, 2022.

904

905 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
 906 anything: Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF
 907 conference on computer vision and pattern recognition*, pp. 10371–10381, 2024.

908

909 Zhiwei Yang, Yucong Meng, Kexue Fu, Feilong Tang, Shuo Wang, and Zhijian Song. Exploring
 910 clip’s dense knowledge for weakly supervised semantic segmentation. In *Proceedings of the Computer
 911 Vision and Pattern Recognition Conference*, pp. 20223–20232, 2025a.

912

913 Ziqian Yang, Xinqiao Zhao, Xiaolei Wang, Quan Zhang, and Jimin Xiao. Ffr: Frequency feature
 914 rectification for weakly supervised semantic segmentation. In *Proceedings of the Computer Vision
 915 and Pattern Recognition Conference*, pp. 30261–30270, 2025b.

916

917 Yunfan Ye, Kai Xu, Yuhang Huang, Renjiao Yi, and Zhiping Cai. Diffusionedge: Diffusion prob-
 918 abilistic model for crisp edge detection. In *Proceedings of the AAAI conference on artificial
 919 intelligence*, volume 38, pp. 6675–6683, 2024.

920

921 Muyang Yi, Quan Cui, Hao Wu, Cheng Yang, Osamu Yoshie, and Hongtao Lu. A simple frame-
 922 work for text-supervised semantic segmentation. In *Proceedings of the IEEE/CVF Conference on
 923 Computer Vision and Pattern Recognition (CVPR)*, pp. 7071–7080, June 2023.

918 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
919 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
920 *arXiv preprint arXiv:2310.07704*, 2023.

921
922 Oliver Zendel, Matthias Schörghuber, Bernhard Rainer, Markus Murschitz, and Csaba Beleznai.
923 Unifying panoptic segmentation for autonomous driving. In *Proceedings of the IEEE/CVF Con-*
924 *ference on Computer Vision and Pattern Recognition*, pp. 21351–21360, 2022.

925 Wenwei Zhang, Jiangmiao Pang, Kai Chen, and Chen Change Loy. K-net: Towards unified image
926 segmentation. *Advances in Neural Information Processing Systems*, 34:10326–10338, 2021.

927
928 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
929 features for discriminative localization. In *IEEE CVPR*, pp. 2921–2929, 2016.

930 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
931 Semantic understanding of scenes through the ade20k dataset. *IJCV*, 127:302–321, 2019.

932
933 Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In *ECCV*, pp.
934 696–712. Springer, 2022.

935 Yanzhao Zhou, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Weakly supervised instance
936 segmentation using class peak response. In *Proceedings of the IEEE conference on computer*
937 *vision and pattern recognition*, pp. 3791–3800, 2018.

938 Lianghui Zhu, Yingyue Li, Jieming Fang, Yan Liu, Hao Xin, Wenyu Liu, and Xinggang Wang.
939 Weaktr: Exploring plain vision transformer for weakly-supervised semantic segmentation. *arXiv*
940 *preprint arXiv:2304.01184*, 2023.

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Appendix

972	A LLM Usage Disclosure	20
973		
974		
975	B Comprehensive Review of Related Work	20
976		
977	B.1 Diffusion Models in Segmentation	20
978	B.2 Open-Vocabulary Segmentation	21
979	B.3 Instance Segmentation	21
980	B.4 Additional Analysis of Unsupervised Instance Segmentation	22
981	B.4.1 Problem A. Adjacent Instance Merging	22
982	B.4.2 Problem B. Single Instance Fragmentation	23
983		
984		
985	C Method Details	24
986		
987	C.1 Reproducibility	24
988	C.2 Diffusion Models and Flow Matching Models	24
989	C.3 Self-Attention Accumulation	25
990	C.4 Details of IEP and ABDiv	25
991	C.5 Details of One-step Self-Distillation with Edge Decoder	26
992	C.6 Details of Boundary-Guided Propagation	27
993		
994		
995	D Information Theoretic View of IEP	27
996		
997	D.1 Row entropy and its time derivative	28
998	D.2 Inter-step KL and Fisher information	28
999		
1000		
1001	E Comprehensive Analysis and Discussion	29
1002		
1003	E.1 Ablation Studies on Design Choices	29
1004	E.2 In-depth Characterization of IEP	30
1005	E.3 Extended Benchmarking on Diverse Domains	30
1006	E.4 Limitations and Future Directions	32
1007		
1008		
1009	F Datasets and Metrics for Evaluation	33
1010		
1011		
1012		
1013		
1014		
1015		
1016		
1017		
1018		
1019		
1020		
1021		
1022		
1023		
1024		
1025		

1026

A LLM USAGE DISCLOSURE

1028 We used a large-language model (LLM) only for minor text editing, such as correcting typos and
 1029 adjusting wording to a formal academic tone. The LLM was not involved in research ideation,
 1030 experimental design, implementation, or analysis. All scientific content and claims were conceived
 1031 and written by the authors, who take full responsibility for the entire paper.

1033

B COMPREHENSIVE REVIEW OF RELATED WORK

1034

B.1 DIFFUSION MODELS IN SEGMENTATION

1038 Text-to-image diffusion models (Peebles & Xie, 2023; Bao et al., 2023; Chen et al., ICLR’24; Podell
 1039 et al., 2023) are trained on image-caption pairs to learn complex visual-text relationships, with re-
 1040 cent versions such as SDXL (Podell et al., 2023) and SD3 (Esser et al., 2024) offering finer con-
 1041 trol through transformer-based architectures. These models generate refined images by iteratively
 1042 denoising latent representations, making them effective for detailed image synthesis. Recently, dif-
 1043 fusion models have shown potential for segmentation tasks by generating pseudo-masks and aiding
 1044 unsupervised segmentation. Relevant methods include:

- 1045 • **Diffusion-based Segmentation.** Recent approaches repurpose the internal representations
 1046 of diffusion models for segmentation tasks. DiffCut (Couairon et al., 2024) and DiffSeg
 1047 (Tian et al., 2024) apply clustering algorithms, such as normalized cuts or K-means clus-
 1048 tering, directly to self-attention maps to generate class-agnostic semantic masks. However,
 1049 these methods often require heuristic threshold tuning and struggle to distinguish adjacent
 1050 instances of the same class. EmerDiff (Namekata et al., 2024) explores the emergence
 1051 of pixel-level semantic knowledge by aggregating attention features across timesteps and
 1052 finding semantic correspondences. While effective for semantic segmentation, EmerDiff
 1053 (Namekata et al., 2024) focuses on gathering stable semantic signals rather than detect-
 1054 ing the transient structural boundaries between instances. Consequently, these clustering-
 1055 and aggregation-based methods inherently prioritize semantic grouping (merging same-
 1056 class pixels) over instance separation. By contrast, TRACE specifically targets the Instance
 1057 Emergence Point (IEP; Sec. 3.2) and leverages Attention Boundary Divergence (ABDiv;
 1058 Sec. 3.3) to capture high-frequency boundary signals, enabling the precise delineation of
 1059 individual instances without annotations.
- 1060 • **Diffusion-Driven Dataset Generation.** Several approaches leverage diffusion models to
 1061 synthesize training data with pixel-level annotations. DatasetDM (Wu et al., 2023) and
 1062 Dataset Diffusion (Nguyen et al., 2023) generate synthetic image-mask pairs to train down-
 1063 stream segmentation networks. MosaicFusion (Xie et al., 2025) adopts a tiling strategy for
 1064 instance segmentation data: it generates single-object images from simple prompts (*e.g.*,
 1065 “A photo of a cat”) and composites them into a 2×2 grid, assigning distinct instance IDs
 1066 based on grid positions. While effective for data augmentation, this mosaic approach artifi-
 1067 cially avoids the challenge of segmenting naturally adjacent or overlapping objects within
 1068 a coherent scene. In stark contrast, TRACE is not a data-synthesis pipeline but a *decoding*
 1069 *framework*. We reveal that the early denoising steps of a pretrained text-to-image model
 1070 already contain rich, recoverable instance-level cues. Unlike MosaicFusion’s reliance on
 1071 synthetic composition, TRACE directly extracts precise instance boundaries from a sin-
 1072 gle real image by exploiting the intrinsic Instance Emergence Point (IEP) and Attention
 1073 Boundary Divergence (ABDiv), successfully separating complex adjacent instances with-
 1074 out additional training or prompts.

1075 Existing diffusion-based segmentation methods (Couairon et al., 2024; Tian et al., 2024) focus on
 1076 later timesteps in the inversion process, when image structures are nearly complete. However, this
 1077 focus limits their ability to identify and separate multiple instances, as instance-specific information
 1078 appears in the early timesteps but fades as the model builds the overall semantic structure. This novel
 1079 use of early diffusion features enables TRACE to capture instance-level information and perform
 instance segmentation effectively.

1080 B.2 OPEN-VOCABULARY SEGMENTATION
1081

1082 Recent methods combining multimodal models (MLLM/VLM) with segmentation frameworks,
1083 such as SAM (Kirillov et al., 2023) or its unsupervised counterpart UnSAM (Wang et al., 2024b)
1084 have enabled open-vocabulary panoptic segmentation. Numerous approaches utilizing CLIP (Rad-
1085 fford et al., 2021) demonstrated that free-form text prompts can guide segmentation (Zhou et al.,
1086 2022; Cha et al., 2023; Jo et al., 2024b; Barsellotti et al., 2025); however, these methods generally
1087 underperform compared to specialized segmentation models that rely on precise mask annotations
1088 (Cheng et al., 2022). More recent advancements, such as Grounding DINO (Liu et al., 2024b) and
1089 Ferret (You et al., 2023), have incorporated box annotations and language models to improve de-
1090 tection. Despite this progress, these models often struggle to generate accurate instance seeds from
1091 multi-tag inputs, failing to distinguish visually similar classes. **Extending its efficacy beyond un-**
1092 **supervised and weakly-supervised segmentation (Tabs. 1 and 2), TRACE effectively complements**
1093 **open-vocabulary frameworks by injecting robust instance-aware boundaries, yielding consistent per-**
1094 **formance improvements across multiple benchmarks (see Appendix E.3 and Tab. 13).**

1095 B.3 INSTANCE SEGMENTATION
1096

1097 Instance segmentation (IS) aims to delineate and label individual object instances within images.
1098 Traditional IS approaches rely on pixel-level annotations, which can be resource-intensive, partic-
1099 ularly for large datasets. More recent work has expanded into unsupervised methods to address
1100 scalability concerns. Meanwhile, panoptic segmentation (PS) methods, designed to handle both
1101 semantic and instance segmentation in a unified task, often serve as competitive baselines for in-
1102 stance segmentation capabilities. Panoptic models distinguish between "things" (countable objects)
1103 and "stuff" (amorphous regions) and can separate multiple instances of the same class. Here, we
1104 categorize recent IS and PS methods based on their reliance on annotations.

1105 **Fully-supervised Segmentation.** Many established methods (Cheng et al., 2022; Li et al., 2022b;
1106 Zhang et al., 2021; Cheng et al., 2021; Li et al., 2021; Kirillov et al., 2019; Xu et al., 2023), such as
1107 Mask2Former (Cheng et al., 2022) and Panoptic SegFormer (Li et al., 2022b), require dense, pixel-
1108 level annotations(*i.e.*, masks) to achieve accurate instance segmentation but face scalability issues
1109 due to high annotation costs. These models are designed for panoptic segmentation, but serve as
1110 baselines for instance segmentation. We refer to these methods as "panoptic models".

1111 **Point- and Box-Supervised Segmentation.** These weakly-supervised methods (Li et al., 2023b;
1112 Fan et al., 2022; Li et al., 2018; 2023a; Jiang et al., 2024) aim to reduce annotation costs by using
1113 less detailed - but instance-specific - labels like points or boxes for each instance. These methods (Li
1114 et al., 2023b; Fan et al., 2022) typically operate in two stages: first, they generate pseudo-panoptic
1115 masks from weak annotations, and then a panoptic model (*e.g.*, Mask2Former) is trained using
1116 these pseudo-masks instead of ground-truth annotations. Although annotation effort is reduced, the
1117 reliance on manual points and boxes still presents a substantial cost. However, TRACE is annotation
1118 free.

1119 **Tag-Supervised Segmentation.** Tag-supervised instance segmentation uses image-level tags (*e.g.*,
1120 "person") without any instance-level details (*e.g.*, location of each person). While only a single
1121 image-level tag is required per image, depending on the number of instances, multiple instance-
1122 level annotations may be required. Hence, tag supervision is significantly cheaper than instance-
1123 level annotations.

- 1124 • **Instance Segmentation with Class Activation Maps (CAM) (Zhou et al., 2016).** CAM-
1125 based instance segmentation methods (Kim et al., 2022; Zhou et al., 2018) leverage
1126 heatmap and class tags for rough localization of class-related regions. However, CAM
1127 was initially designed for semantic segmentation, and its lack of precision in localizing
1128 specific instances limits its effectiveness for instance-level segmentation.
- 1129 • **Weakly-supervised Semantic Segmentation (WSS).** WSS methods (Yang et al., 2025b;
1130 Rong et al., 2023; Kim et al., 2023; Kweon et al., 2023; Deng et al., 2023; Yi et al., 2023;
1131 Jo et al., 2023; Zhu et al., 2023; Lin et al., 2023; Ru et al., 2023; Jo et al., 2022; Xu
1132 et al., 2022; Li et al., 2022a; Liu et al., 2022; Chen et al., 2022; Xie et al., 2022; Fan
1133 et al., 2018) use image-level tags or captions and offer promising results in class-level
1134 segmentation. However, WSS alone cannot produce instance-level masks without further

1134 refinement. TRACE provides the instance-level refinement that can extend WSS methods
 1135 to tag-supervised PS methods.
 1136

1137 We note that the use of class tags is the minimal possible annotation which allows models to focus
 1138 on specific classes in an image, crucial for evaluating performance in PS tasks. Methods that do
 1139 not incorporate class tags (e.g., U2Seg (Niu et al., 2024)) are excluded from our comparisons with
 1140 PS methods, as they cannot produce specific class labels. U2Seg attempts unsupervised panoptic
 1141 segmentation by combining MaskCut (Wang et al., 2023a) for unsupervised instance segmentation
 1142 with STEGO (Hamilton et al., 2022) for unsupervised semantic segmentation. However, without tag
 1143 supervision, U2Seg cannot generate correct class labels, generating labels such as "class 1" instead
 1144 of "cat 1", which restricts its applicability. Some methods, like JTS (Shen et al., 2021), use class
 1145 tags but demonstrate limited PS performance, further indicating a gap in this domain. Remarkably,
 1146 TRACE+WSS, which uses only tag supervision in the WSS method, outperforms methods using
 1147 point supervision.

1148 **Unsupervised Instance Segmentation (UIS).** UIS aims to perform instance segmentation without
 1149 relying on any annotations. Existing UIS methods can be broadly categorized based on their archi-
 1150 tectural foundation: DINO-based methods (Niu et al., 2024; Wang et al., 2024a; 2023a; Li & Shin,
 1151 2024) like MaskCut (Wang et al., 2023a) and ProMerge (Li & Shin, 2024) apply feature clustering
 1152 with the graph cut algorithm on pretrained self-supervised vision transformer(*i.e.*, DINO (Caron
 1153 et al., 2021)) backbones to separate instances. SOLO-based approaches (Wang et al., 2022; Ishtiaq
 1154 et al., 2023) rely on CNN-based (e.g., DenseCL (Wang et al., 2021)) pseudo-mask generation but
 1155 show poor performance and requires training from scratch, making them computationally expensive.
 1156 UIS serves as a direct baseline for TRACE, as these methods attempt instance separation without
 1157 any labels. TRACE stands out from existing instance segmentation literature by taking a fully unsu-
 1158 pervised, edge-oriented approach instead of clustering features via graph cut. Also, instead of DINO
 1159 or SOLO-based backbones, TRACE leverages a generative diffusion model.

1160 B.4 ADDITIONAL ANALYSIS OF UNSUPERVISED INSTANCE SEGMENTATION

1162 Our method tackles the root causes of problems. **Problem A. Adjacent instance merging** stems
 1163 from UIS methods (Wang et al., 2023a) relying on semantic backbones Caron et al. (2021), lacking
 1164 instance-level distinction. We resolve this using instance-aware diffusion self-attention maps via
 1165 IEP/ABDiv. **Problem B. Single instance fragmentation** arises from fixed hyperparameters (τ, n) in
 1166 graph-cut methods (Wang et al., 2023a), leading to inconsistent granularity. We resolve these issues
 1167 via non-parametric instance edge & BGP. Figure 20, Figure 21, and Figure 16 provide qualitative
 1168 validation. Appendix B.4 and Table 8 give detailed analysis.

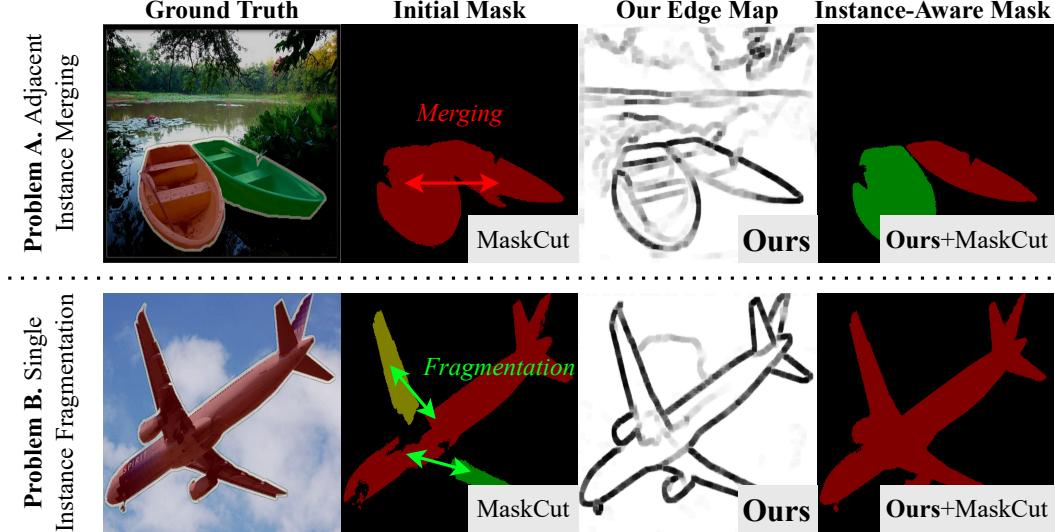
Component	Main Role	Contributions to Problem A	Contributions to Problem B
IEP	Finds optimal step for instance boundaries	Separates adjacent instances in feature space	Provides initial edge information for merging
ABDiv	Converts self-attention maps to edge maps	Detects edge seeds between adjacent instances	Provides instance-aware edge maps for merging
Distill	Enhances connectivity in edge maps	Completes edges between adjacent instances	Refines instance edges to resolve fragmentation
BGP	Instance-aware random walk propagation	Separates instances using refined edges	Propagates and merges fragmented instance masks

1173 **Table 8: Component contributions to solve (A) adjacent instance merging and (B) single in-
 1174 stance fragmentation.** Each step builds on the previous one, with BGP finalizing adjacent instance
 1175 separation and fragmentation resolution using the refined edges generated by IEP, ABDiv, and fine-
 1176 tuning.

1177 1178 B.4.1 PROBLEM A. ADJACENT INSTANCE MERGING

1180 **Root Cause of Problem A: Limitations of Existing Backbones.** Unsupervised Instance Seg-
 1181 mentation (UIS) methods (Niu et al., 2024; Wang et al., 2024a; 2023a; Li & Shin, 2024) depend on
 1182 pretrained "backbones" (e.g., DINOv1 (Caron et al., 2021)) to extract feature maps, which are sub-
 1183 sequently partitioned into instance masks through techniques like graph cut (Wang et al., 2023b).
 1184 However, these backbones were originally designed to distill information primarily about *semantic*
 1185 segmentation—identifying and classifying foreground objects from the background, rather than dis-
 1186 tinguishing individual instances within a class. This inherent design limitation makes it difficult to
 1187 achieve true instance separation (e.g., distinguishing two adjacent boats in the top of Fig. 12) using
 1188 only semantic features.

1188
 1189 **MLLM Backbones Share This Limitation, and More Parameters Do Not Resolve It.** When
 1190 prompted with “Describe this image” in Fig. 8, LLaVA-13B’s self-attention maps only capture se-
 1191 mantic features, while diffusion models (*e.g.*, SD1.5) separate instances, a capability absent in other
 1192 foundation models. In Tab. 5, diffusion backbones substantially outperform CLIP/DINO/MLLM
 1193 counterparts with comparable and fewer parameters.



1211 Figure 12: Additional examples of problem A and B and our solution.
 1212

1213
 1214 **Our Solution for Problem A.** To overcome the limitations of semantic-oriented backbones, we
 1215 introduce TRACE, a framework that leverages the inherent spatial attention in diffusion models to
 1216 generate instance-aware edges without requiring pixel-level annotations. TRACE harnesses self-
 1217 attention maps from pretrained diffusion models, which capture instance boundaries through at-
 1218 tention mechanisms tuned during pretraining. By introducing two novel metrics, IEP and AB-
 1219 Div, TRACE autonomously identifies and reinforces instance boundaries, ensuring that adjacent
 1220 instances are effectively separated, even when traditional feature maps fall short. Unlike conven-
 1221 tional UIS methods (Niu et al., 2024; Wang et al., 2024a; 2023a; Li & Shin, 2024) that rely on se-
 1222 mantic segmentation backbones, TRACE uses a self-supervised fine-tuning step that enhances edge
 1223 connectivity, achieving precise instance delineation across classes. This enables TRACE to address
 1224 the issue of adjacent object merging by focusing specifically on instance edges, demonstrating su-
 1225 perior separation accuracy across challenging datasets (*e.g.*, VOC (Everingham et al., 2010), COCO
 1226 (Lin et al., 2014)), as shown in our experimental results (see Tab. 1 and Tab. 2). Our diffusion-based
 1227 approach addresses the adjacency issue by focusing on instance-level edge generation rather than
 1228 relying solely on semantic features, making it a scalable solution for UIS.
 1229

B.4.2 PROBLEM B. SINGLE INSTANCE FRAGMENTATION

1230 **Root Cause of Problem B: Limitations of Graph Cut.** Graph-cut based UIS methods (Wang
 1231 et al., 2023b;a; Li & Shin, 2024) require a hyperparameter, τ , which acts as a threshold for the
 1232 initial graph construction. In this approach, the image is represented as a graph, where each pixel
 1233 (or patch) corresponds to a vertex, and each edge represents the degree of similarity (*i.e.*, affinity)
 1234 between two pixels (or patches). The affinity $A_{i,j}$ between vertices i and j is measured using the
 1235 cosine similarity $S_{i,j}$ of their respective feature maps. If $S_{i,j} \geq \tau$, vertices i and j are connected by
 1236 an edge; otherwise, they are not connected.

1237 Intuitively, τ determines the sensitivity of the UIS method to similarities between feature maps. For
 1238 instance, if τ is close to 1, only pixels with nearly identical feature maps are considered connected.
 1239 Conversely, if $\tau = 0$, every pixel is connected to every other pixel. The graph-cut algorithm then
 1240 partitions the graph into two partitions—a foreground partition and a background partition—by
 1241 minimizing the number of edges that need to be removed. The foreground object is identified using
 a heuristic rule, and the corresponding partition is presented as an instance mask. For the UIS

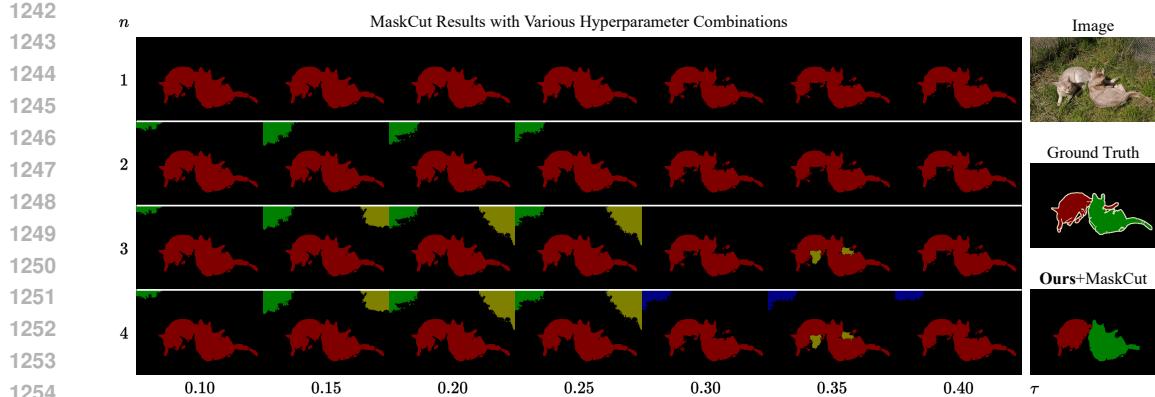


Figure 13: **Drawbacks of MaskCut with various n, τ combinations.** Due to the semantic-oriented nature of the DINO backbone used in MaskCut, increasing n or decreasing τ does not result in the successful separation of the two adjacent instances. Rather, changing the hyperparameters leads to fragmentation and detection of false positives in the background.

method to detect at most n distinct instances, this process needs to be repeated for n iterations, where n is a fixed hyperparameter.

The value of τ impacts the granularity of the instance masks produced by graph-cut based methods (see Fig. 13). A fixed τ often leads to fragmentation of single instances or merging of multiple instances, as it cannot be dynamically adjusted for each image. Additionally, methods that fix iteration counts, n , cannot detect more than n instances, failing in instance-dense images. This fixed tuning for τ and n may work on the average case, but does not generalize well across different images.

Our Solution for Problem B. By contrast, TRACE predicts edges between adjacent instances without tuning hyperparameters (e.g., n, τ) related to instance count, making it more flexible and robust. Experimentally, TRACE-generated edges effectively resolve fragmentation and separate adjacent instances, achieving both conceptual and practical advantages. Since TRACE-generated edges accurately delineate each instance, we can use the edge map to construct a transition probability matrix for a random walk on the pixel space. This spreads out the masks within the edges (increased IoU between masks of the same instance) while effectively stopping masks from spreading over the edges (restricted IoU between masks of distinct instances, even if the instances are adjacent). As a result, our **edge-generation approach** allows TRACE to handle both adjacent instance merging and single instance fragmentation, enhancing existing UIS methods (Li & Shin, 2024; Wang et al., 2023a).

C METHOD DETAILS

C.1 REPRODUCIBILITY

Training follows standard diffusion model fine-tuning regardless of the backbone. During the one-step distillation stage (Sec. 3.4), LoRA adapters with rank 64 are optimized using Adam with a weight decay of 4e-5. Input images are randomly resized to the native resolution of each backbone, namely 512×512 for SD1.5 and 1024×1024 for SDXL and SD3.5-L. For UIS and WPS, dataset splits, augmentations, and evaluation protocols strictly follow the corresponding prior works (Jo et al., 2024a; Li et al., 2023b; Wang et al., 2023a) to ensure a fair comparison; hyperparameters not specified above are inherited from the respective baselines.

C.2 DIFFUSION MODELS AND FLOW MATCHING MODELS

Diffusion models (Rombach et al., 2022; Podell et al., 2023) and Flow Matching models (Esser et al., 2024; Lipman et al., 2022) are generative models that learn to produce realistic data by reversing a gradual noising process. We use the term *diffusion model* to refer to both, as our method is compatible with either. Starting from a clean image $X_0 \sim p_0$, noise is progressively added over time to obtain X_t :

$$X_t = \alpha_t X_0 + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (3)$$

Here, α_t and σ_t vary with time t and control how much of the image and noise are mixed. Early steps keep the image mostly intact; later steps produce nearly pure noise. This design enables the model to learn different levels of structure across time, from coarse to fine.

1296 A neural network $\epsilon_\theta(X_t, t)$ is trained to predict the noise ϵ , minimizing the loss:
 1297
$$\theta^* = \arg \min_{\theta} \mathbb{E}_{X_0, t, \epsilon} \|\epsilon_\theta(X_t, t) - \epsilon\|_2^2 \quad (4)$$

1299 After training, the original image can be approximately recovered by removing the predicted noise:
 1300
$$\hat{X}_0 = \frac{1}{\alpha_t} (X_t - \sigma_t \epsilon_{\theta^*}(X_t, t)) \quad (5)$$

1302 We denote this forward-and-reverse process as $\text{Reconstruct}(\epsilon_{\theta^*}, X_0, t)$.
 1304 Flow Matching models follow a similar principle but learn the velocity \dot{X}_t of the diffusion process
 1305 using a network v_θ . They minimize $\mathbb{E}_{X_0, t, \epsilon} \|v_\theta(X_t, t) - (\dot{\alpha}_t X_0 + \dot{\sigma}_t \epsilon)\|_2^2$ with reconstruction given
 1306 by $\hat{X}_0 = \frac{1}{\dot{\alpha}_t} (v_\theta(X_t, t) - \dot{\sigma}_t \epsilon)$.
 1307

1308 C.3 SELF-ATTENTION ACCUMULATION

1310 For a noised image X_t at time step t , the self-attention mechanism computes spatial dependencies
 1311 using weights W_Q, W_K :

$$1312 Q_t = X_t W_Q, \quad K_t = X_t W_K \in \mathbb{R}^{HW \times d} \quad (6)$$

$$1313 1314 SA(X_t) = \text{softmax} \left(\frac{Q_t K_t^T}{\sqrt{d}} \right) \in [0, 1]^{HW \times HW} \quad (7)$$

1315 where d is the dimensionality of the attention heads, and H, W are the height and width of the
 1316 self-attention map.

1317 In text-to-image diffusion models, multiple self-attention maps SA_1, \dots, SA_N are produced at var-
 1318 ious resolutions w_1, \dots, w_N (w_i is the width of the i th SA map). We accumulate these maps by
 1319 upsampling each to the resolution of the highest-resolution map, followed by averaging across all
 1320 maps:

$$1321 1322 SA[i, j, :, :] = \frac{1}{N} \sum_{k=1}^N SA_k \left[\frac{i}{\delta_k}, \frac{j}{\delta_k}, :, : \right] \quad (8)$$

$$1324 1325 \delta_k = \frac{\max_{1 \leq j \leq N} w_j}{w_k} \quad (9)$$

1326 The hook function $\mathcal{H}(\epsilon_\theta, X_0, t)$ extracts all self-attention maps evaluated in the forward pass at
 1327 timestep t given input image X_0 and returns the accumulated attention map in Eq. 8.
 1328

1329 C.4 DETAILS OF IEP AND ABDIV

1330 **Algorithm 1 (IEP; Sec. 3.2):** Identifies the optimal diffusion timestep t^* for instance separation
 1331 by locating the peak in the Kullback-Leibler (KL) divergence between consecutive attention maps.
 1332 As derived in Appendix C.6, this peak theoretically corresponds to the point of maximum Fisher
 1333 information with respect to the noise level, marking the rapid emergence of structural instance cues.
 1334 Empirical consistency of this metric across diverse models and random seeds is further validated in
 1335 Appendix E.2.

1336 **Algorithm 1 IEP :** X_0 (Image) \mapsto SA_{inst}

1338 **Require:** Image X_0 , Sequence of timesteps $\tau_0 < \tau_1 < \dots < \tau_N$, Frozen Diffusion Model $\epsilon_{\theta^*}(\cdot, \cdot)$

1339 1: Initialize: $KL\text{-gap} \leftarrow 0$, $SA_{\text{inst}} \leftarrow \emptyset$
 1340 2: $\hat{X}_0 \leftarrow \text{Reconstruct}(\epsilon_{\theta^*}, X_0, \tau_1)$ Hook \mathcal{H}
 1341 3: $SA(X_{\tau_0}) \leftarrow \mathcal{H}(\epsilon_{\theta^*}, X_0, \tau_0)$
 1342 4: **for** $n = 1$ to N **do**
 1343 5: $\hat{X}_0 \leftarrow \text{Reconstruct}(\epsilon_{\theta^*}, X_0, \tau_n)$ Hook \mathcal{H}
 1344 6: $SA(X_{\tau_n}) \leftarrow \mathcal{H}(\epsilon_{\theta^*}, X_0, \tau_n)$
 1345 7: **if** $KL\text{-gap} < D_{\text{KL}}(SA(X_{\tau_{n-1}}) \parallel SA(X_{\tau_n}))$ **then**
 1346 8: $KL\text{-gap} \leftarrow D_{\text{KL}}(SA(X_{\tau_{n-1}}) \parallel SA(X_{\tau_n}))$
 1347 9: $SA_{\text{inst}} \leftarrow \text{normalized } SA(X_{\tau_n})$
 10: **end if**
 11: **end for**
 12: **return** SA_{inst}

1350 **Algorithm 2 (ABDiv; Sec. 3.3):** Transforms instance-aware self-attention maps into pseudo-edge
 1351 maps without annotations. Crucially, this algorithm implements a reliability-based filtering step:
 1352 pixels with ABDiv scores in the intermediate range $(\mu - \sigma, \mu + \sigma)$ are labeled as uncertain ($E_{i,j} =$
 1353 -1) because they typically correspond to ambiguous texture gradients or noise rather than definitive
 1354 instance boundaries. By explicitly masking these regions, we prevent the introduction of label noise
 1355 during the subsequent self-distillation phase, ensuring that the edge decoder learns only from high-
 1356 confidence boundary signals.

Algorithm 2 ABDiv: $SA_{inst} \mapsto E$ (Pseudo Instance Edge)

Require: Self-Attention Map SA_{inst}

```

1: Initialize:  $E_0 \leftarrow \mathbf{0}_{H \times W}$ 
2: for  $(i, j)$  in  $[H] \times [W]$  do
3:    $E_0[i, j] \leftarrow \text{ABDiv}(i, j; \text{SA}_{\text{inst}})$ 
4: end for
5:  $\mu \leftarrow \text{mean of } E_0$ 
6:  $\sigma \leftarrow \text{standard deviation of } E_0$ 
7:  $E = \begin{cases} \mathbf{1} \cdot [E_0 > \mu + \sigma] & \text{Edge Pixel} \\ \mathbf{0} \cdot [E_0 < \mu - \sigma] & \text{Interior Pixel} \\ (-1) \cdot [\text{otherwise}] & \text{Uncertain Pixel} \end{cases}$ 
8: return  $E$ 

```

C.5 DETAILS OF ONE-STEP SELF-DISTILLATION WITH EDGE DECODER

Algorithm 3 (Sec. 3.4): Fine-tunes the transformer layers of text-to-image diffusion models and trains a new edge generator \mathcal{G}_ϕ from scratch. For the architecture of \mathcal{G}_ϕ , we use a lightweight CNN decoder for simplicity, and in Tab. 10 we show that replacing it with heavier designs such as U-Net or Mask2Former-style decoders yields negligible gains, indicating that most of the instance-boundary detail already resides in the TRACE edge cues themselves.

Algorithm 3 One-step Self-Distillation of TRACE

Require: Image Dataset \mathcal{I} , Pseudo-Edge Set $\{E_I\}_{I \in \mathcal{I}}$
 Edge Generator \mathcal{G}_ϕ
 Pretrained Text-to-Image Diffusion Model ϵ_θ

```

1: for Epoch in  $1 \dots N$  do
2:    $\mathcal{L} \leftarrow 0$ 
3:   for  $I$  in  $\mathcal{I}$  do
4:      $\hat{I} \leftarrow \text{Reconstruct}(\epsilon_\theta, I, \tau = 0)$  Hook  $\mathcal{H}$ 
5:      $\hat{E} \leftarrow \mathcal{G}_\phi(\mathcal{H}(\epsilon_\theta, I, \tau = 0))$ 
6:      $E \leftarrow E_I$  Predicted Edge
7:      $\mathcal{L} \leftarrow \mathcal{L} + \|I - \hat{I}\|^2 + \text{DiceLoss}(E, \hat{E})$  Pseudo-Edge
8:   end for
9:   Backprop on  $\mathcal{L}(\theta, \phi)$ 
10:  end for

```

Dice loss is computed as follows:

$$\text{DiceLoss}(E, \hat{E}) = 1 - \frac{2 \sum W_{i,j} E_{i,j} \hat{E}_{i,j}}{\sum W_{i,j} E_{i,j}^2 + \sum W_{i,j} \hat{E}_{i,j}^2} \quad (10)$$

1402 and the weighting $W_{i,j} = \mathbb{1}[E_{i,j} \neq -1]$ excludes uncertain pixels. We exclude uncertain pixels
 1403 (where $E = -1$) from the dice loss computation via W to allow the model to focus on confident
 edge and interior points.

1458 it is natural and empirically accurate to model γ_t as a strictly decreasing function of t such that
 1459 $\gamma_t \propto \text{SNR}(t)$. At pure noise (e.g., $t = 1000$), a lower value of γ_t gives higher entropy; at pure signal
 1460 (e.g., $t = 0$), a high value of γ_t yields peaked assignments.
 1461

1462 These minimal assumptions suffice for the identities below.
 1463
 1464

1465 D.1 ROW ENTROPY AND ITS TIME DERIVATIVE

1466 For the row entropy $H_t(i) = -\sum_j p_t(j \mid i) \log p_t(j \mid i)$, classical exponential-family algebra
 1467 Amari & Nagaoka (2000) gives:
 1468

$$1469 \quad H_t(i) = \log Z_t(i) - \gamma_t \mathbb{E}_{p_t(\cdot \mid i)}[s_{i \cdot}], \quad \frac{\partial H_t(i)}{\partial \gamma_t} = -\gamma_t \text{Var}_{p_t(\cdot \mid i)}[s_{i \cdot}] \quad (13)$$

1470 because $\frac{d}{d\gamma_t} \mathbb{E}_{p_t(\cdot \mid i)}[s_{i \cdot}] = \text{Var}_{p_t(\cdot \mid i)}[s_{i \cdot}]$ and $\frac{d}{d\gamma_t} \log Z_t = \mathbb{E}_{p_t(\cdot \mid i)}[s_{i \cdot}]$. By the chain rule,
 1471

$$1472 \quad \frac{dH_t(i)}{dt} = \frac{dH_t(i)}{d\gamma_t} \dot{\gamma}_t = -\dot{\gamma}_t \gamma_t \text{Var}_{p_t(\cdot \mid i)}[s_{i \cdot}] \quad (14)$$

1473 Since $\dot{\gamma}_t < 0$ along the forward trajectory (A.1), Eq. 14 says row entropy *increases* from the clean
 1474 end toward the noise end ("slow-fast-slow" in magnitude, as we soon show), with the rate controlled
 1475 by the variance of $s_{i \cdot}$ under the current row distribution.
 1476

1477 **Endpoint Behavior and Boundedness.** By A.2., the variance of $s_{i \cdot}$ under $p_t(\cdot \mid i)$ is bounded by:
 1478

$$1479 \quad \text{Var}_{p_t(\cdot \mid i)}[s_{i \cdot}] = \sum_j p_t(j \mid i) (s_{ij} - \mathbb{E}_{p_t(j \mid i)}[s_{ij}])^2 \leq S^2 < \infty \quad (15)$$

1480 Hence, $\left| \frac{dH_t(i)}{dt} \right| \leq \gamma_t |\dot{\gamma}_t| S^2$.
 1481

- 1482 • **At pure noise.** At the noise end, $\gamma_t \rightarrow 0$, so $|dH_t(i)/dt| \rightarrow 0$ regardless of the exact vari-
 1483 ance. This theoretical result matches the small temporal change of near-uniform attention
 1484 observed before IEP.
- 1485 • **At pure signal.** At the *clean image* end, a different mechanism makes $|dH_t(i)/dt|$ small:
 1486 if for $j^* = \arg \max_j s_{ij}$ and the top-2 similarity gap $\Delta_i := s_{ij^*} - \max_{j \neq j^*} s_{ij} > 0$, then
 1487 $p_t(\cdot \mid i)$ concentrates on j^* and $\text{Var}_{p_t(\cdot \mid i)}[s_{i \cdot}]$ shrinks.
 1488

1489 Empirically, we see small temporal change at both ends and a single interior region of rapid change
 1490 which aligns with our theory.
 1491

1492 D.2 INTER-STEP KL AND FISHER INFORMATION

1493 **Inter-step KL Peaks at Maximal Fisher information.** Recall that the Fisher information in γ_t is
 1494 defined by
 1495

$$1496 \quad \mathcal{I}_i(\gamma_t) := \mathbb{E} \left[\left(\frac{\partial}{\partial \gamma_t} \log p_t \right)^2 \mid \gamma_t \right] = \mathbb{E} \left[\left(\frac{\partial}{\partial \gamma_t} (\gamma_t s_{ij} - \log Z_t) \right)^2 \mid \gamma_t \right] = \underbrace{\mathbb{E} \left[(s_{ij} - \mathbb{E}_{p_t(\cdot \mid i)}[s_{i \cdot}])^2 \mid \gamma_t \right]}_{= \text{Var}_{p_t}[s]}$$

1497 As in our implementation, we consider the KL divergence between consecutive attention rows at
 1498 steps $t - \Delta t$ and t . For small Δt , a second-order expansion of the row KL divergence yields:
 1499

$$1500 \quad \text{KL}(p_{t-\Delta t}(\cdot \mid i) \| p_t(\cdot \mid i)) = \frac{1}{2} \underbrace{(\gamma_t - \gamma_{t-\Delta t})^2}_{\Delta \gamma_t} \underbrace{\text{Var}_{p_t}[s]}_{=\mathcal{I}_i(\gamma_t)} + o((\Delta \gamma_t)^2) \quad (16)$$

1501 where $\mathcal{I}_i(\gamma_t)$ is the Fisher information of the one-parameter family $p_t(j \mid i) \propto \exp(\gamma_t s_{ij})$ with
 1502 respect to γ_t .
 1503

1512 Thus, the Instance Emergence Point t^* that maximizes the row-wise temporal KL coincides (to
 1513 second order) with the *point of maximal Fisher information* for that row. Averaging rows (as we
 1514 do operationally when measuring the KL over full maps) preserves the same interpretation at the
 1515 map level. We also remark that *any* f -divergence has the same local quadratic form with the Fisher
 1516 information Nielsen & Hadjeres (2019) by a difference of a factor $c_f > 0$,

$$1517 \quad D_f(p_{t-\Delta t}(\cdot | i) \| p_t(\cdot | i)) = c_f \cdot (\Delta \gamma_t)^2 \underbrace{\text{Var}_{p_t}[s]}_{=I_i(\gamma_t)} + o((\Delta \gamma_t)^2)$$

$$1518$$

$$1519$$

1520 explains why KL, JSD, and other f -divergences all produce the same IEP location (up to small
 1521 higher-order effects), as highlighted in Tab. 4.

1524 E COMPREHENSIVE ANALYSIS AND DISCUSSION

1528 E.1 ABLATION STUDIES ON DESIGN CHOICES

1529 **Impact of Uncertainty Masking.** In Algorithm 2 and Eq. 10, pixels whose ABDiv score falls into
 1530 the “uncertain” range (assigned value -1) are ignored from the loss by a binary mask, so that only
 1531 pixels labeled as 0 (non-edge/background) or 1 (edge/foreground) contribute to the supervision. This
 1532 strategy follows common practice in weakly-supervised segmentation (Ahn et al., 2019a; Jo et al.,
 1533 2024a), where ambiguous regions are ignored to reduce label noise in pseudo semantic masks. We
 1534 adopt the same idea for the pseudo instance-edge map E , using ABDiv as a reliability cue.

1535 Table 9 quantifies the impact of this design. When we threshold ABDiv only at μ and treat all
 1536 pixels as confident (*i.e.*, label $E_{ij} = 1$ if $\text{ABDiv}_{ij} \geq \mu$ and $E_{ij} = 0$ otherwise), the instance
 1537 segmentation metrics improve over ProMerge (Li & Shin, 2024) but remain limited, and the edge
 1538 precision at ODS drops to 0.572. This large decrease compared to the proposed $\mu \pm \sigma$ scheme
 1539 (0.852) indicates a substantial increase in false-positive edge pixels. In contrast, masking uncertain
 1540 pixels between $\mu - \sigma$ and $\mu + \sigma$ during training not only yields larger gains in AP^{mk} and $\text{AR}_{100}^{\text{mk}}$, but
 1541 also improves edge precision by about $1.5 \times$ while keeping ODS-recall within $\sim 1\%$ of the μ -only
 1542 variant. This suggests that excluding uncertain regions effectively suppresses noisy edges without
 1543 sacrificing recall, leading to a more favorable balance between false positives and false negatives in
 1544 the distilled edge supervision.

1545 **Sensitivity to Instance-aware Text Prompts.** All main results of TRACE are obtained without
 1546 instance-aware prompts (*e.g.*, A photo of two cats), using only a null-text prompt. To assess the
 1547 potential benefit of such supervision, we conduct an additional experiment in which, during training,
 1548 we exploit the instance annotations in ImageNet (Krizhevsky et al., 2012) to construct descriptive
 1549 prompts of the form “A photo of [number of boxes] [class]”, and at inference we mirror this setup on
 1550 COCO (Lin et al., 2014) by building prompts from its instance annotations in the same way while
 1551 keeping all other components of TRACE fixed. In this setting, AP^{mk} increases slightly from 8.2
 1552 (null-text) to 8.3 (instance-count prompt), indicating that explicit instance-aware text information
 1553 can provide a small but marginal gain compared to the overall improvement brought by TRACE
 1554 itself. Moreover, under the same conditions as Fig. 8(b), the diffusion trajectories with null-text
 1555 and instance-count prompts are almost indistinguishable, and we do not observe any systematic
 1556 shift in the optimal timestep t^* . These observations support our claim that TRACE does not rely
 1557 on instance-aware text supervision: the crucial instance-boundary cues are already encoded in the
 1558 early diffusion timesteps conditioned on the image alone, with instance-count prompts offering only
 1559 minor additional refinement.

1560 **Table 9: Ablation on pseudo-labeling schemes for ABDiv (Sec. 3.3).** ODS-Precision and ODS-
 1561 Recall denote the precision and recall at the optimal dataset scale (ODS) for instance edges, from
 1562 which the ODS (F-measure) is computed.

Method	Pseudo-Labeling for ABDiv	AP^{mk}	$\text{AR}_{100}^{\text{mk}}$	ODS-Prec.	ODS-Rec.	ODS
ProMerge (Li & Shin, 2024)	—	3.1	7.6	—	—	—
+ TRACE	μ	6.4	11.4	0.572	0.963	0.717
+ TRACE	$\mu \pm \sigma$	8.2	13.1	0.852	0.950	0.889

1566
 1567 **Influence of Decoder Capacity.** A natural
 1568 question is whether sharper instance boundaries
 1569 actually require a heavier edge decoder. To
 1570 isolate the effect of decoder capacity, we re-
 1571 place our lightweight edge decoder \mathcal{G}_ϕ with
 1572 two representative alternatives (Ronneberger
 1573 et al., 2015; Cheng et al., 2022), while keep-
 1574 ing the TRACE instance-edge cues (*i.e.*, the
 1575 accumulated multi-scale self-attention maps $\mathcal{H}(\cdot)$)
 1576 fixed. As shown in Tab. 10, upgrading the edge
 1577 decoder from our 0.1 MB 1-layer CNN to a
 1578 34 MB U-Net (Ronneberger et al., 2015) leaves
 1579 AP^{mk} unchanged (8.2 vs. 8.2), and even a 258 MB Mask2Former-style decoder (Cheng et al., 2022)
 1580 yields only a marginal gain (8.4 AP^{mk}). By contrast, adding TRACE on top of ProMerge (Li &
 1581 Shin, 2024) already increases AP^{mk} from 3.1 to 8.2. These results indicate that sharp, instance-
 1582 aware boundaries primarily come from the TRACE instance-edge cues themselves; once these cues
 1583 are available, a minimal 1-layer CNN decoder is sufficient, and substantially larger decoders bring
 negligible additional benefit.

1584 E.2 IN-DEPTH CHARACTERIZATION OF IEP

1585 **Evaluation of Similarity Metrics.** To assess whether
 1586 our KL criterion is a special case or a broadly effective
 1587 choice, we extend the comparison in Tab. 4 and eval-
 1588 uate additional similarity measures used as IEP scores,
 1589 summarized in Tab. 11. Besides symmetric KL and
 1590 standard regression losses (MSE/L2, MAE/L1), we in-
 1591 clude an entropy-based score and the Wasserstein-1
 1592 distance W_1 . For the entropy-based metric, we use
 1593 the absolute entropy difference between two probabili-
 1594 ty maps p and q (*i.e.*, $|H(p) - H(q)|$ with $H(p) = -\sum_i p_i \log p_i$). For the Wasserstein distance,
 1595 we measure a 1D Wasserstein-1 distance on the flattened distribution. Empirically, KL achieves
 1596 the highest instance segmentation performance ($AP^{mk} = 9.4$) with moderate latency (3,082 ms
 1597 per image). Jensen–Shannon divergence (JSD) attains the same AP^{mk} but is substantially slower
 1598 (5,120 ms), offering no practical advantage over KL. Entropy difference and Wasserstein distance
 1599 are clearly inferior in AP^{mk} (5.1 for entropy, 6.2 for W_1) despite comparable or higher computational
 1600 cost. We note that JSD can be written as $JSD(p, q) = \frac{1}{2}KL(p\|m) + \frac{1}{2}KL(q\|m)$ with $m = \frac{1}{2}(p+q)$,
 1601 and is equal to the mutual information between samples and a binary index variable, so this ablation
 1602 also serves as a mutual-information–style variant of our IEP score. Overall, these results support our
 1603 choice of KL as the primary IEP metric: it provides the best trade-off between accuracy and effi-
 1604 ciency, while entropy- and Wasserstein-based alternatives underperform and the mutual-information
 1605 variant (JSD) yields similar AP at higher latency.

1606 **Distributional Consistency of t^* .** To further characterize the distributional patterns of IEP (Sec.
 1607 3.2) beyond Fig. 7(b), we extend the analysis to different datasets and object categories, as shown in
 1608 Fig. 14. Figure 14(a) reproduces the VOC 2012 train-set distribution of optimal timesteps t^* used in
 1609 Fig. 7(b), while Fig. 14(b) shows the corresponding distribution on the much larger COCO 2014 train
 1610 set (82,783 images). Across all five diffusion backbones, the COCO histograms closely match those
 1611 from VOC, with t^* consistently concentrating in the same instance-aware range, indicating that the
 1612 semantic-to-instance transition is stable across datasets and scales. In Fig. 14(c), we further restrict
 1613 the analysis of IEP to images containing two most frequent classes in COCO and plot the per-class
 1614 distributions of t^* . Although there are mild class-dependent shifts, the instance-aware timesteps for
 1615 all four classes lie predominantly in the noise-like instance regime rather than the semantic regime,
 1616 and they remain largely concentrated between 30–60% of the diffusion trajectory, consistent with
 1617 the global patterns observed in Fig. 14(b).

1618 E.3 EXTENDED BENCHMARKING ON DIVERSE DOMAINS

1619 **Generalization to Diverse UIS Benchmarks.** To rigorously evaluate the generalization capability
 1620 of TRACE across varied domains, we extend our unsupervised instance segmentation (UIS) exper-

Table 10: **Effect of edge decoder capacity.** We replace our lightweight CNN edge decoder in TRACE with heavier alternatives and evaluate performance of unsupervised instance segmentation on COCO 2014.

Method	Params. of Dec.	AP^{mk}
ProMerge	-	3.1
+ TRACE (U-Net)	34 MB	8.2
+ TRACE (Mask2Former)	258 MB	8.4
+ TRACE	0.1 MB	8.2

Table 11: Similarity metrics for IEP.

Metric	Latency/img	VOC	COCO
KL (Ours)	3,082 ms	9.4	8.2
JSD	5,120 ms	9.4	8.1
MSE (L2)	1,232 ms	3.8	3.5
MAE (L1)	924 ms	3.5	3.3
Entropy	2,070 ms	5.1	4.1
W_1	3,434 ms	6.2	5.0

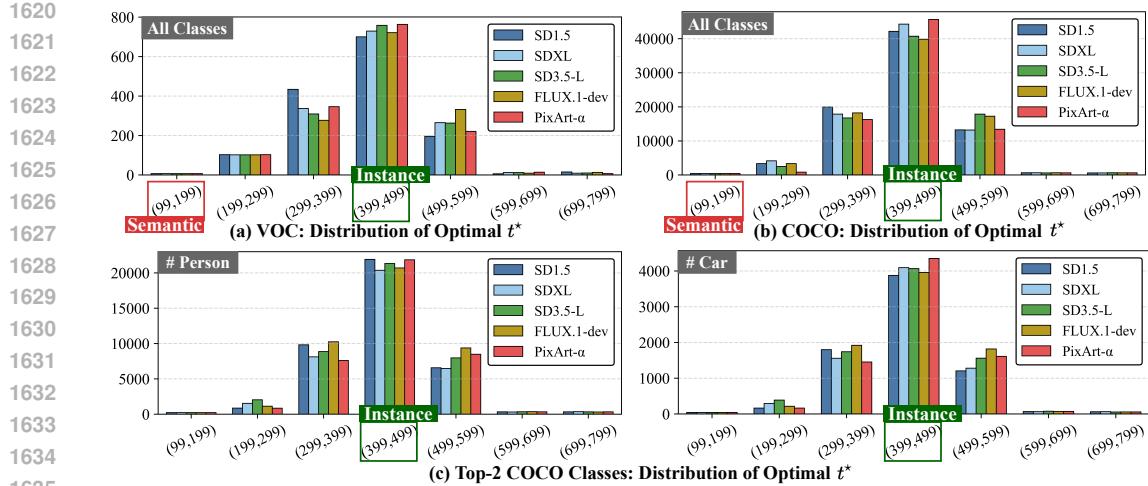


Figure 14: **Histograms of the optimal timestep t^* across datasets, diffusion backbones, and object categories.** (a) VOC 2012 train set. (b) COCO 2014 train set. (c) Top-2 COCO classes (*person* and *car*). In all cases, the optimal timesteps t^* for five diffusion models concentrate in a shared instance-aware region, indicating a consistent semantic-to-instance transition and stable IEP behavior across models, datasets, and categories.

iments to seven benchmarks: COCO 2014 (Lin et al., 2014), COCO 2017 (Caesar et al., 2018), LVIS (Gupta et al., 2019), KITTI (Geiger et al., 2012), Objects365 (Shao et al., 2019), SA-1B (Kirillov et al., 2023), and VOC 2012 (Everingham et al., 2010). We compare TRACE (with SD3.5-L backbone (Esser et al., 2024)) against three representative UIS methods: TokenCut (Wang et al., 2023b), MaskCut (Wang et al., 2023a), and ProMerge (Li & Shin, 2024). For fair comparison, we strictly reproduce these baselines using their official public checkpoints and evaluation protocols (see Appendix F for details). Crucially, to align with the standard UIS protocol where models (Wang et al., 2023b;a) are typically fine-tuned on the ImageNet train set (Krizhevsky et al., 2012), we also fine-tune our diffusion backbone and edge generator on ImageNet. This allows us to generate TRACE-based instance edges using the ImageNet-trained model and apply them directly to downstream datasets without any target-specific adaptation. As shown in Tab. 12, TRACE consistently outperforms all baselines across all datasets, achieving an average AP^{mk} of **5.1**, which corresponds to a **2.3 \times** improvement over the strongest baseline (ProMerge). Notably, on the challenging LVIS dataset (Gupta et al., 2019), which features a long-tail distribution, TRACE more than doubles the performance ($1.1 \rightarrow 2.5 AP^{mk}$), indicating superior handling of rare and diverse objects. Similarly, in the dense scenes of Objects365 (Shao et al., 2019), TRACE achieves a significant boost ($1.7 \rightarrow 4.3 AP^{mk}$), proving its efficacy in separating heavily occluded instances where traditional feature clustering often fails. These results confirm that the instance-aware cues extracted from diffusion priors capture fundamental structural boundaries rather than dataset-specific semantics. Consequently, this demonstrates that the refined instance edges produced by TRACE are robust and

Table 12: **Performance of unsupervised instance segmentation on multiple benchmarks.** To ensure a fair comparison with existing UIS models (Wang et al., 2023b;a) fine-tuned on the ImageNet train set (Krizhevsky et al., 2012), we also fine-tune our diffusion model (SD3.5-L (Esser et al., 2024)) and edge generator on the ImageNet train set (Krizhevsky et al., 2012). This allows us to generate TRACE-based instance edges from the ImageNet-trained model and apply them directly to other seven datasets (Everingham et al., 2010; Lin et al., 2014; Gupta et al., 2019; Geiger et al., 2012; Shao et al., 2019; Kirillov et al., 2023) without further fine-tuning.

Method	VOC 2012		COCO 2014		COCO 2017		LVIS		KITTI		Objects365		SA-1B		Average	
	AP^{mk}	AR_{100}^{mk}														
TokenCut	6.1*	10.6*	2.7	4.6	2.0	4.4	0.9	1.8	0.3	1.5	1.1	2.1	1.0	0.3	2.0	3.6
MaskCut	5.8*	14.0*	3.0*	6.7*	2.3*	6.5*	0.9*	2.6*	0.2*	1.9*	1.7*	4.0*	0.8*	0.6*	2.1	5.2
ProMerge	5.0*	13.9*	3.1*	7.6*	2.5*	7.5*	1.1*	3.4*	0.2*	1.6*	2.2*	6.1*	1.2*	0.8*	2.2	5.8
+ TRACE	9.4	18.2	8.2	13.1	7.8	11.2	2.5	4.7	1.2	2.6	4.3	9.5	2.0	1.6	5.1	8.7

* Reproduced results using publicly accessible code for a fair comparison. The rest are the values reported in the publication.

1674 generalizable, effectively bridging the gap between semantic grouping and instance separation even
 1675 in zero-shot transfer scenarios.
 1676

1677 **Enhancement of Open-Vocabulary Segmentation**

1678 **Frameworks.** While most of our experiments focus on closed-set benchmarks, we additionally evaluate TRACE in open-vocabulary segmentation settings by attaching it to recent open-vocabulary models. Specifically, we integrate TRACE with TTD (Jo et al., 2024b) and Talk2DINO (Barsellotti et al., 2025) and measure performance on five standard open-vocabulary segmentation benchmarks: VOC 2012 (Everingham et al., 2010), Pascal Context

1681 (Mottaghi et al., 2014), COCO-Stuff (Caesar et al., 2018), ADE20K (Zhou et al., 2019), and
 1682 Cityscapes (Cordts et al., 2016). As shown in Tab. 13, refined instance boundaries from TRACE
 1683 consistently improve open-vocabulary segmentation quality. On top of TTD (Jo et al., 2024b),
 1684 TRACE yields gains of 0.6–3.8 points across datasets (e.g., from 61.1 to 64.9 on VOC and from
 1685 27.9 to 31.3 on Cityscapes), and on top of Talk2DINO (Barsellotti et al., 2025) it further improves
 1686 performance by 1.4–2.6 points (e.g., from 65.8 to 68.4 on VOC and from 38.1 to 40.2 on Cityscapes).
 1687 These results indicate that the instance-aware cues extracted by TRACE transfer beyond closed-set
 1688 UIS and WPS (Tabs. 1 and 2) and provide consistent benefits for open-vocabulary segmentation,
 1689 including real-world scenes, by sharpening object boundaries while preserving the underlying open-
 1690 vocabulary recognition capability of the backbone models.
 1691

1692 **Table 13: Performance of open-vocabulary**
 1693 **segmentation.** We attach TRACE to two
 1694 open-vocabulary segmentation methods and
 1695 evaluate on five benchmarks.

Method	VOC	Context	Stuff	ADE	City
TTD	61.1	37.4	23.7	17.0	27.9
+ TRACE	64.9	40.3	24.3	18.3	31.3
Talk2DINO	65.8	42.4	30.2	22.5	38.1
+ TRACE	68.4	44.8	32.1	23.9	40.2

1696 E.4 LIMITATIONS AND FUTURE DIRECTIONS

1697 **Challenges in Satellite Imagery (Tiny Instances).**

1698 While TRACE substantially improves instance segmentation on natural-image benchmarks (see Tabs. 1 and 2), we
 1699 observe a clear limitation on datasets dominated by very
 1700 small objects (*i.e.*, instances occupying only about 0.01%
 1701 of the image area). Table 14 reports results on two sat-
 1702ellite benchmarks such as HRSID (Wei et al., 2020) and
 1703 iSAID (Waqas Zamir et al., 2019), evaluated on their of-
 1704 ficial test sets using AP^{mask} . When added on top of Mask
 1705 R-CNN (ResNet-101+FPN) (He et al., 2017), TRACE
 1706 leads to a degradation of 5.1 AP^{mask} on HRSID (65.4 → 50.3) and 5.4 AP^{mask} on iSAID (25.6 →
 1707 20.2). We attribute this failure mode to the resolution loss inherent in latent diffusion models: before
 1708 denoising, all images are encoded by a VAE into a low-resolution latent grid (up to a $16 \times$ spatial
 1709 downsampling), as shown in Fig. 4, which severely compresses tiny structures. As a consequence,
 1710 closely packed small objects tend to share blurred or merged boundaries in latent space, and the de-
 1711 coded instance-edge cues from TRACE cannot reliably separate individual instances in high-density
 1712 satellite scenes. Qualitatively (see Fig. 15(a)), we often observe multiple nearby targets fused into
 1713 a single instance mask. Addressing this limitation likely requires diffusion backbones with higher-
 1714 resolution latents or hybrid schemes that combine TRACE with high-resolution, task-specific feature
 1715 extractors for small-object regimes.
 1716

1717 **Table 14: Performance on satellite**
 1718 **benchmarks.** For a fair comparison, we
 1719 evaluate instance segmentation performance
 1720 on HRSID and iSAID test sets in terms of AP^{mask} .

Method	HRSID	iSAID
Mask R-CNN	65.4	25.6
+ TRACE	50.3 (-5.1)	20.2 (-5.4)

1721 **Applicability to Medical Imaging (Out-of- 1722 Distribution).** TRACE is built on text-to-image

1723 diffusion models trained on natural images, which
 1724 raises concerns about its behavior on out-of-
 1725 distribution domains such as histopathology images.
 1726 In Tab. 15, we evaluate two cell instance segmentation
 1727 methods, SSA (Sahasrabudhe et al., 2020) and
 1728 COIN (Jo et al., 2025), on the MoNuSeg (Kumar
 1729 et al., 2020) and TNBC (Naylor et al., 2019) test
 1730 sets using PQ. Adding TRACE on top of these
 1731 backbones consistently degrades performance: PQ
 1732 drops from 0.185 to 0.148 on MoNuSeg and from 0.253
 1733 to 0.439 (MoNuSeg) and 0.540 to 0.426 (TNBC) for COIN. We hypothesize that this limitation

1734 **Table 15: Performance on medical bench-
 1735 marks.** For a fair comparison, we eval-
 1736 uate panoptic segmentation performance on
 1737 MoNuSeg/TNBC test sets in terms of PQ.

Method	MoNuSeg	TNBC
SSA	0.185	0.253
+ TRACE	0.148 (-0.037)	0.209 (-0.044)
COIN	0.536	0.540
+ TRACE	0.439 (-0.097)	0.426 (-0.114)

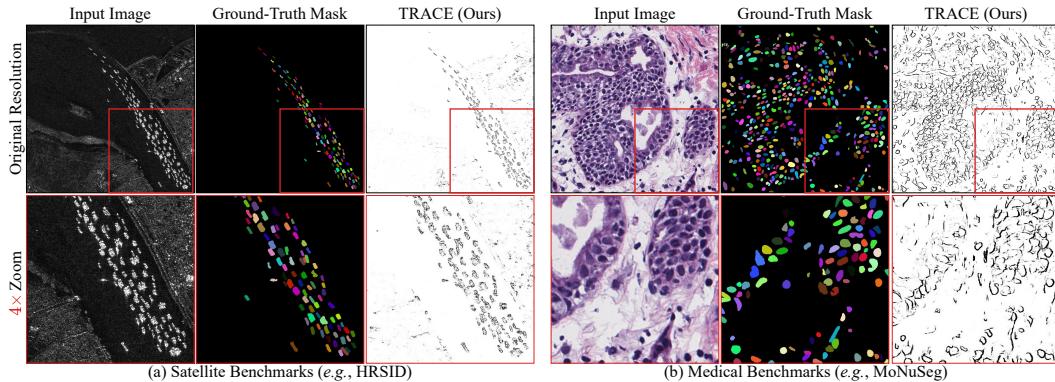


Figure 15: **Failure cases on satellite and medical benchmarks.** Two examples illustrate key limitations of TRACE on tiny objects and out-of-distribution domains.

stems from a domain mismatch between natural-image diffusion priors and medical imagery: the diffusion backbones we use are trained on photographs, not histopathology slides, and their latent representations tend to emphasize color and texture patterns that do not align with cell boundaries. Consequently, incomplete instance edges predicted by TRACE often undersegment cells, as seen in Fig. 15(b). These results indicate that directly applying TRACE to highly out-of-distribution medical images can be harmful, and suggest that future extensions should either adapt the diffusion prior to the medical domain (e.g., via domain-specific diffusion training) or combine TRACE with medical-specific feature extractors and supervision.

F DATASETS AND METRICS FOR EVALUATION

Datasets for Unsupervised Instance Segmentation. We evaluate our TRACE on seven benchmarks including COCO2014 (Lin et al., 2014) and COCO2017 (Caesar et al., 2018), LVIS (Gupta et al., 2019), KITTI (Geiger et al., 2012), Objects365 (Shao et al., 2019), and SA-1B (Kirillov et al., 2023). COCO2014 (Lin et al., 2014) and COCO2017 (Caesar et al., 2018) are standard datasets for object detection and segmentation. COCO2014 has 80 classes, 83K training images and 41K validation images. COCO2017 is composed of 118K and 5K images for training and validation splits respectively. For results on COCO2014 and COCO2017, we use the images in the validation split. LVIS has densely-annotated instance masks, making it more challenging for segmentation. We test our performance on the validation set containing 245K instances on 20K images. For KITTI and Objects365, we evaluate on 7K images and a subset of 44K images in the val split, respectively. Lastly, for SA-1B, we assess on a subset of 11K images, which come with 100+ annotations per image on average.

Datasets for Weakly-supervised Panoptic Segmentation. Pascal VOC (Everingham et al., 2010) consists of 20 “thing” and 1 “stuff” categories. It contains 11K images for training and 1.4K images for validation. COCO2017 (Caesar et al., 2018) has 80 “thing” and 53 “stuff” categories, which is a challenging benchmark for PS. We validate TRACE on the 5K images in the validation dataset.

Datasets for Instance Edge Evaluation. To directly evaluate instance-edge quality, we construct an instance-aware edge benchmark from the COCO 2014 validation set (Lin et al., 2014). For each of the 41K validation images, we start from the ground-truth panoptic segmentation masks and extract instance boundaries by labeling pixels that lie on the borders between distinct panoptic segments as positive edges, and all remaining pixels as background, as shown in Fig. 11. The resulting binary instance-edge maps are used as ground truth for all our edge-quality experiments (ODS/OIS and connectivity metrics (Shit et al., 2021)) on real images, enabling a direct comparison between TRACE and conventional edge detectors Xie & Tu (2015); Su et al. (2023) under an instance-aware boundary supervision rather than generic low-level contour annotations.

Evaluation Metrics for Edge Quality. To evaluate the quality of instance boundaries, we follow the standard evaluation protocols widely adopted in general edge detection methods such as HED (Xie & Tu, 2015) and PiDiNet (Su et al., 2023). We report the standard F1-score (or F-measure, defined as $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$) using two standard metrics: Optimal Dataset Scale (ODS) and Optimal Image

1782 Scale (OIS). ODS computes the F1-score using a global threshold that is optimal across the entire
 1783 test dataset, providing a measure of generalizability. OIS selects the optimal threshold for each
 1784 individual image to maximize the F1-score, reflecting the best possible performance per image.

1785 Furthermore, since pixel-wise metrics often fail to capture the topological correctness of thin bound-
 1786 ary structures, we additionally employ the clDice (centerline Dice) metric (Shit et al., 2021). Unlike
 1787 the standard Dice coefficient, clDice calculates the overlap between the skeletons (centerlines) of
 1788 the predicted edges and the ground truth. This allows for a more robust evaluation of topological
 1789 connectivity and structural preservation of the instance edges.

1790 **Evaluation Metrics for Instance Segmentation.** We evaluate the performance comparison of UIS
 1791 methods with and without TRACE based on average precision (AP) and average recall (AR) on
 1792 Pascal VOC and MS COCO dataset. Precision and Recall are defined as

$$1794 \quad \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}, \quad \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \quad (17)$$

1795 where TP, FN, FP are short for True Positive, False Negative, and False Positive, respectively. Intu-
 1796 itively, a high precision means the method has a low rate of making false positives, but it does not
 1797 imply that all the positives were found. A high recall means the method has a low rate of making
 1798 false negatives.

1799 AP measures the precision across different recall levels. A high AP means the method finds most
 1800 objects(recall) while minimizing false positives (precision). On COCO, AP is calculated over dif-
 1801 ferent IoU thresholds and object sizes, then averaged. For Pascal VOC, mAP is used, averaging AP
 1802 across classes at a single IoU threshold (0.5). COCO uses mAP@IoU=0.5:0.95, meaning it averages
 1803 AP across ten IoU thresholds(0.50, 0.55, ..., 0.95).

$$1804 \quad AP = \int_0^1 \text{precision}(r)dr \quad (18)$$

$$1805 \quad mAP_{\text{COCO}} = \frac{mAP_{0.50} + mAP_{0.55} + \dots + mAP_{0.95}}{10} \quad (19)$$

1806 Average Recall (AR) is calculated as the area under the recall-threshold curve. Like AP, it is aver-
 1807 aged over multiple IoU thresholds. AR reflects how well the method recalls true objects rather than
 1808 balancing precision and recall. In COCO, AR is reported as AR@100, AR@100 (small), AR@100
 1809 (medium), and AR@100 (large), corresponding to the average recall with up to 100 detections per
 1810 image across different object sizes.

1811 **Evaluation Metrics for Panoptic Segmentation.** We report evaluation results on the standard
 1812 evaluation metrics of panoptic segmentation task, including panoptic quality (PQ), segmentation
 1813 quality (SQ) and recognition quality (RQ). PQ is defined for matched segments (IoU > 0.5 between
 1814 predicted and ground truth masks) and combines SQ and RQ:

$$1815 \quad PQ = \frac{\sum_{(p,gt) \in TP} \text{IoU}(p, gt)}{|TP| + 0.5|FP| + 0.5|FN|} \quad (20)$$

1816 Segmentation quality (SQ) measures the accuracy of segment boundaries, focusing only on segments
 1817 that were correctly identified and ignoring false positives and false negatives. SQ is defined as:

$$1818 \quad SQ = \frac{\sum_{(p,gt) \in TP} \text{IoU}(p, gt)}{|TP|} \quad (21)$$

1819 Recognition quality (RQ) measures the model’s ability to correctly classify instances, accounting
 1820 for both precision and recall for detected instances. RQ combines recall (finding all objects) with
 1821 precision (only detecting true objects), focusing on instance recognition rather than segmentation
 1822 quality. RQ is defined as:

$$1823 \quad RQ = \frac{|TP|}{|TP| + 0.5|FP| + 0.5|FN|} \quad (22)$$

Table 16: Evaluation Segmentation Metrics on Pascal VOC and COCO datasets.

Metric	Intuitive Meaning
AP	Balance between precision and recall
AR	Ability to recall true objects
PQ	Combined segmentation quality and recognition quality
SQ	Accuracy of segmentation shapes
RQ	Correct classification of instances

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

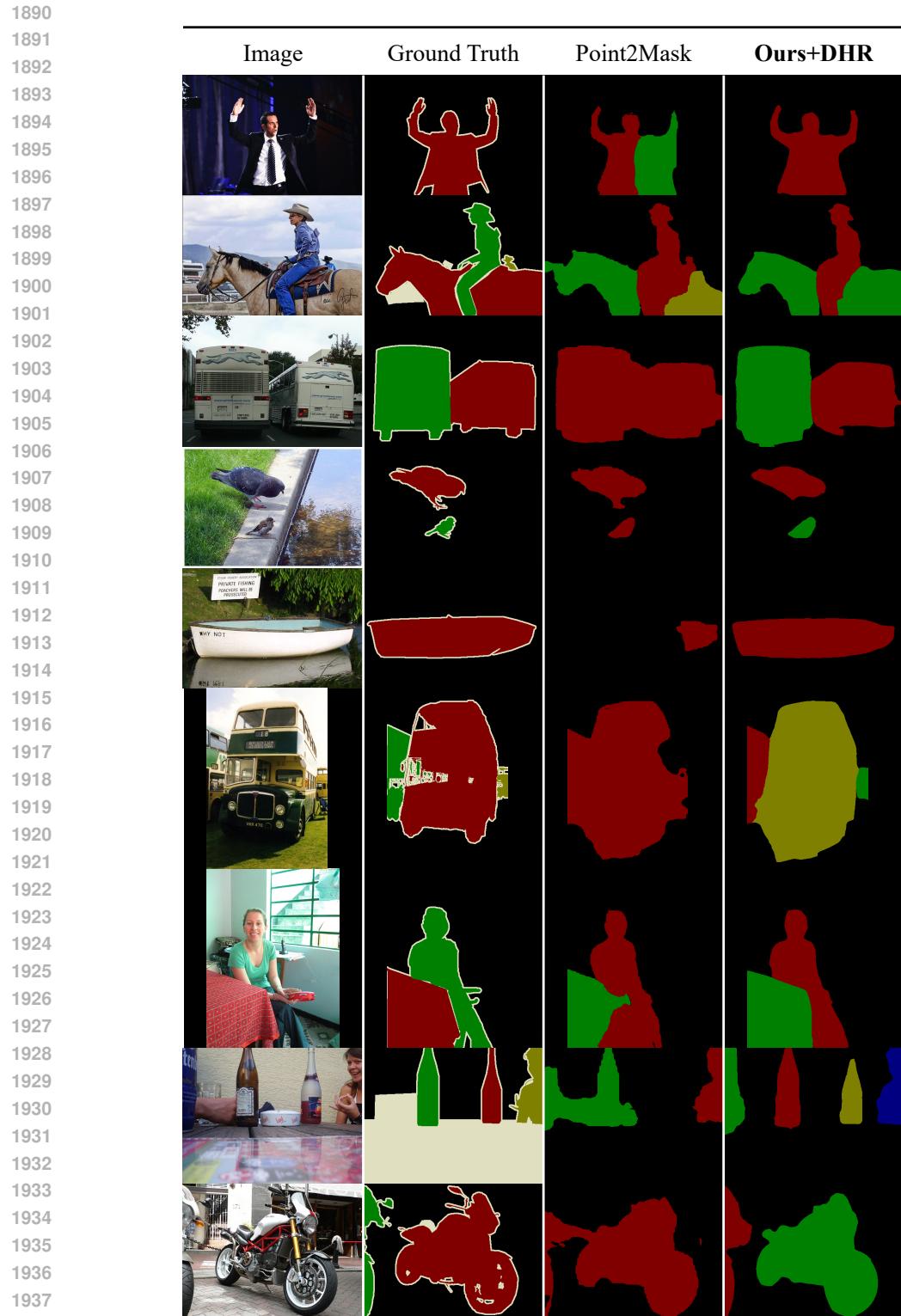


Figure 16: **Qualitative results in WPS with ours (TRACE+DHR (Jo et al., 2024a)) and point-supervised Point2Mask (Li et al., 2023b) on the VOC2012 (Everingham et al., 2010) validation set.** (Ours) We trained a Mask2Former using a ResNet-50 backbone with pseudo panoptic masks generated from TRACE+DHR. The samples in this figure are the outputs from Mask2Former trained with our masks.

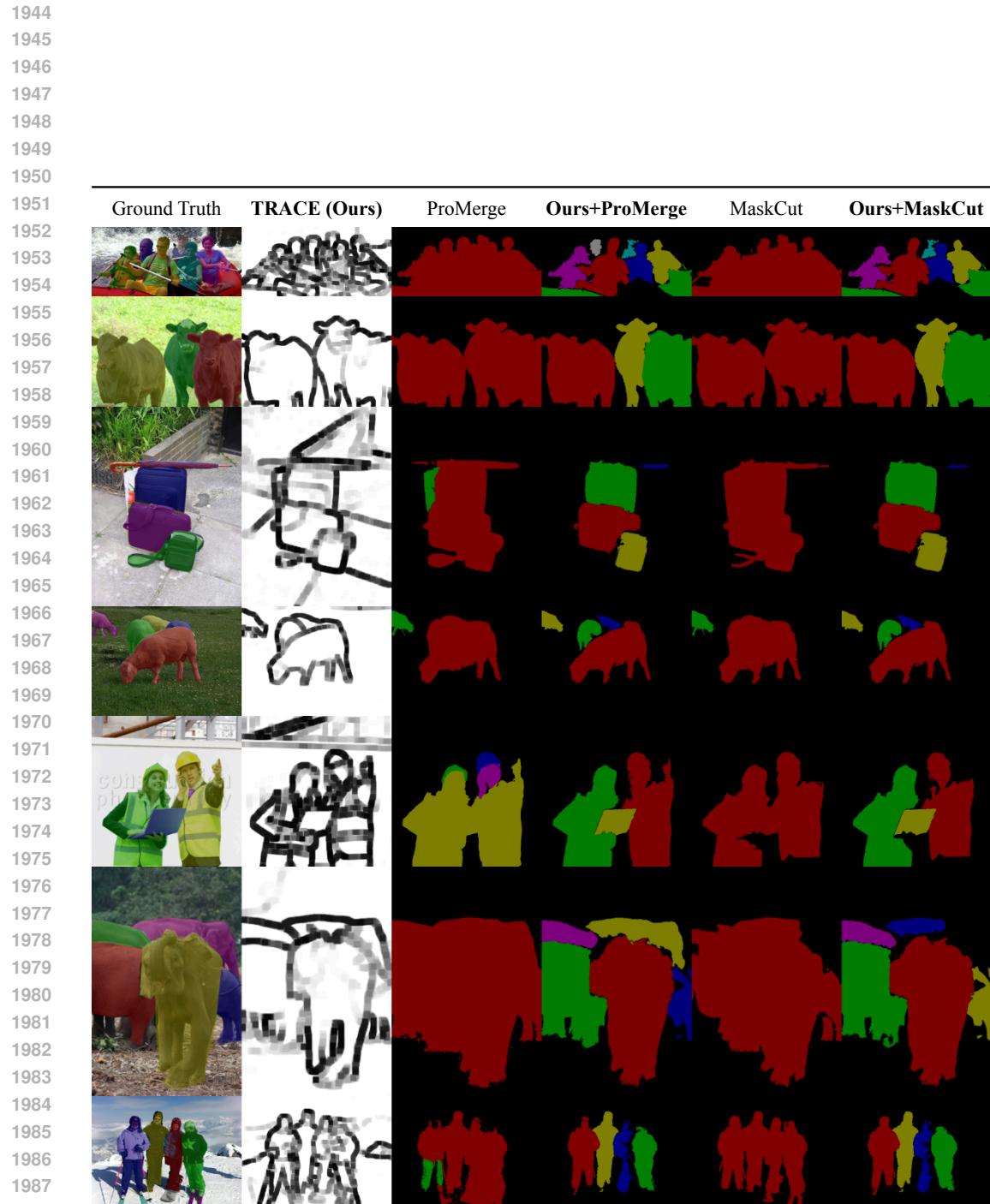


Figure 17: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and existing methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a)) on the COCO2014 (Lin et al., 2014) validation set.

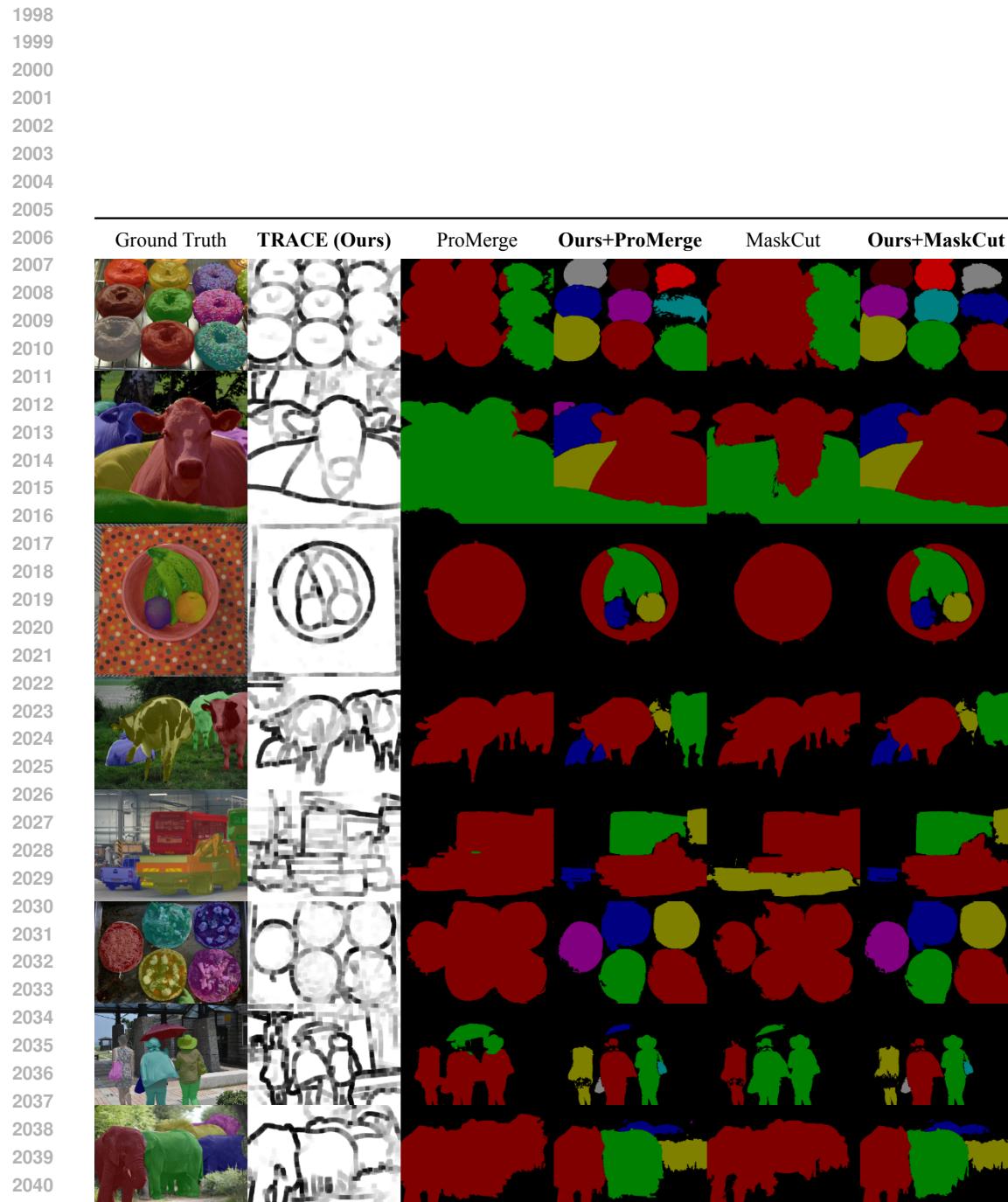


Figure 18: More Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and existing methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a) on the COCO2014 (Lin et al., 2014) validation set.

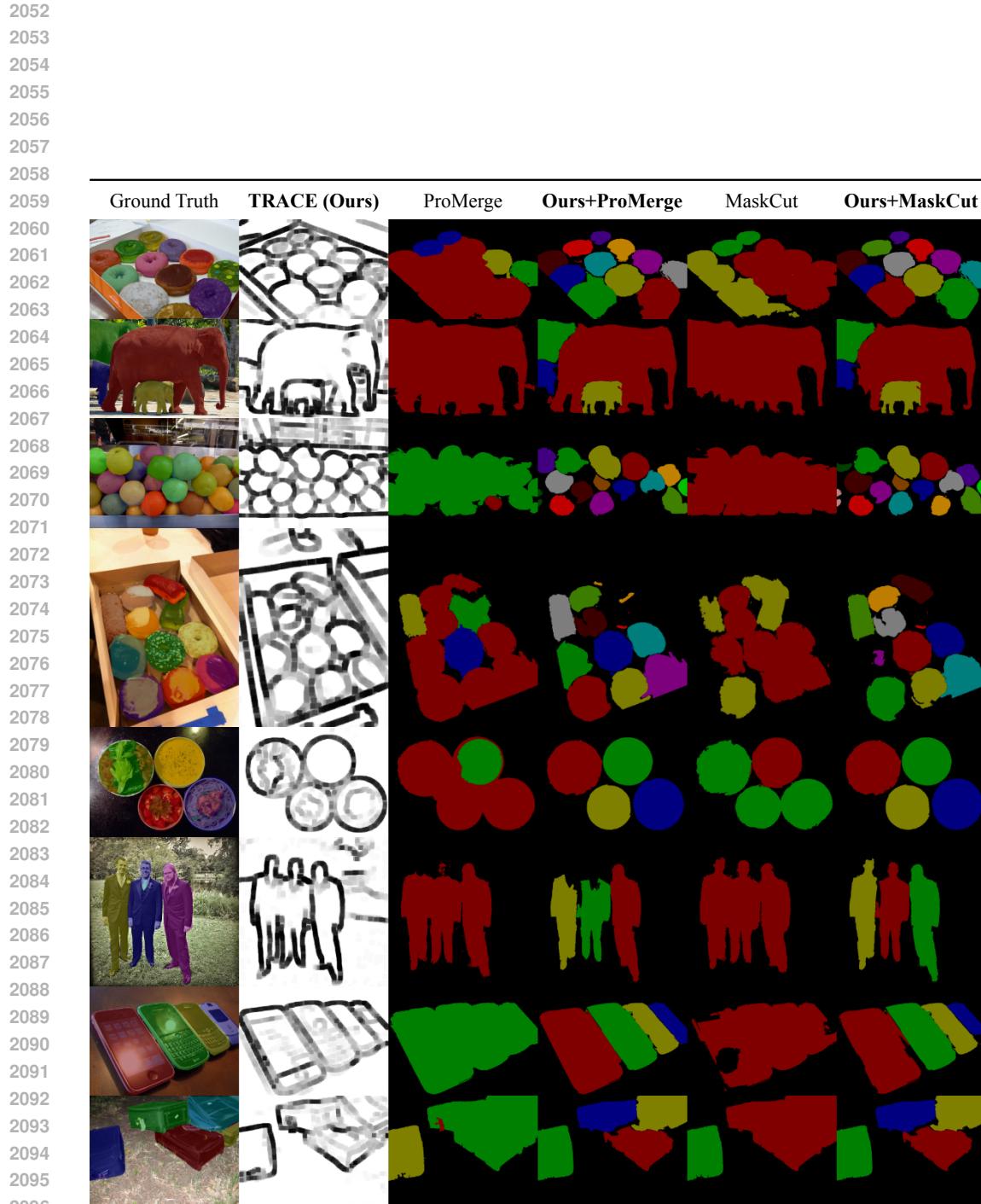
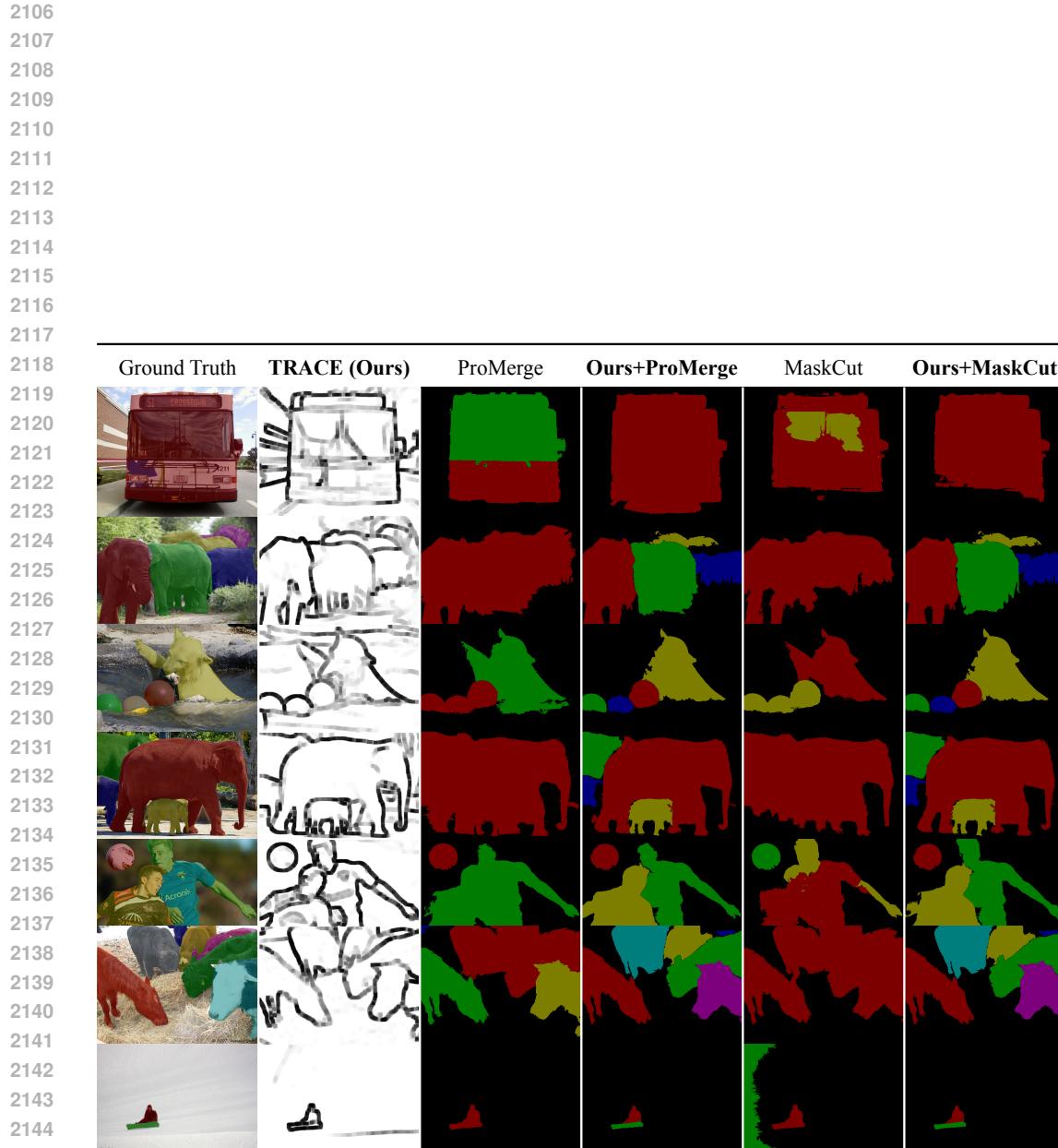


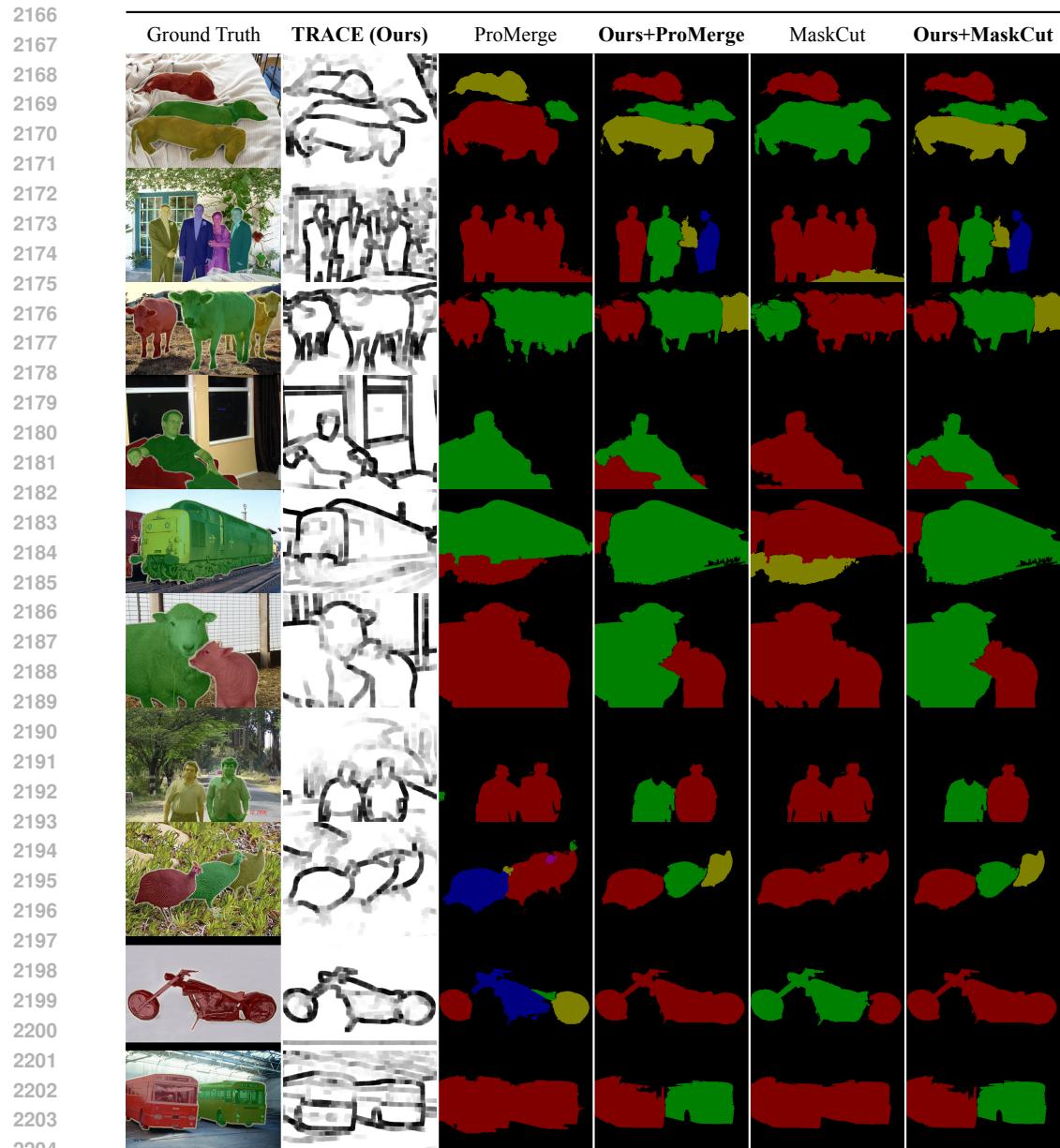
Figure 19: More Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and existing methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a)) on the COCO2014 (Lin et al., 2014) validation set.



2146 Figure 20: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and ex-
2147 isting methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a)) on the COCO2017
2148 (Caesar et al., 2018) validation set.

2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2160
2161
2162
2163
2164
2165



2205
2206
2207
2208
2209
2210
2211
2212
2213
Figure 21: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and existing methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a)) on the VOC2012 (Everingham et al., 2010) validation set.