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ABSTRACT

High-quality instance and panoptic segmentation has traditionally relied on dense
instance-level annotations such as masks, boxes, or points, which are costly, in-
consistent, and difficult to scale. Unsupervised and weakly-supervised approaches
reduce this burden but remain constrained by semantic backbone constraints and
human bias, often producing merged or fragmented outputs. We present TRACE
(TRAnsforming diffusion Cues to instance Edges), showing that text-to-image
diffusion models secretly function as instance edge annotators. TRACE identi-
fies the Instance Emergence Point (IEP) where object boundaries first appear in
self-attention maps, extracts boundaries through Attention Boundary Divergence
(ABDiv), and distills them into a lightweight one-step edge decoder. This design
removes the need for per-image diffusion inversion, achieving 81x faster inference
while producing sharper and more connected boundaries. On the COCO bench-
mark, TRACE improves unsupervised instance segmentation by +5.1 AP, and in
tag-supervised panoptic segmentation it outperforms point-supervised baselines
by +1.7 PQ without using any instance-level labels. These results reveal that dif-
fusion models encode hidden instance boundary priors, and that decoding these
signals offers a practical and scalable alternative to costly manual annotation.

1 INTRODUCTION

Panoptic segmentation unifies semantic and instance segmentation and underpins real-world ap-
plications, such as autonomous driving (Elharrouss et al., 2021; [Zendel et al., |[2022). However,
achieving reliable instance-level delineation has long relied on dense pixel-wise annotations such
as masks, boxes, or points, which are prohibitively expensive, inconsistent across annotators, and
fundamentally hard to scale. These limitations motivate the search for annotation-free alternatives
that can retain the fine granularity of supervised methods without the cost of labeling.

Recent unsupervised and weakly-supervised approaches (Sick et al., 2025; |Li et al.| [2024) attempt
to bypass dense labeling. Unsupervised instance segmentation (UIS) eliminates explicit annotation
by clustering semantic features from pretrained vision transformers (Caron et al.,[2021;|Oquab et al.|
2023)), but these models are inherently optimized for semantic similarity across images rather than
instance separation within an image. As shown in Fig. 2] existing UIS methods (Wang et al., 2023a;
Li & Shinl [2024) often merge adjacent objects of the same class or fragment single instances, and
rely on heuristic assumptions such as a predefined number of objects. Parallel advances in weakly-
supervised semantic segmentation have demonstrated near-supervised performance, achieving up
to 99% fully supervised accuracy on VOC 2012 (Everingham et al.| [2010) using only image-level
tags (Jo et al. [2023; |2024a). However, extending this success to the panoptic setup still requires
point or box annotations to disambiguate instances. These additional annotations remain costly and
error-prone, particularly when objects overlap or when annotators are inconsistent.

Our key insight is that self-attention maps of text-to-image diffusion models (Podell et al.| |2023}
Esser et al.| |2024) encode instance-aware cues early in denoising. As shown in Fig. Eka), Cross-
attention does not reliably separate adjacent objects even with an explicit prompt, whereas self-
attention at specific timesteps reveals instance-level structure. During the denoising process, the
model transitions from noise to instance-level structure and then to semantic content. This raises
a central question: can diffusion self-attention itself serve as an annotation-free source of instance-
level edge maps?
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Figure 1: Emergence and extraction of instance cues in diffusion attention. (a) In reverse pro-
cess, cross-attention remains semantic even with the prompt, whereas self-attention at specific steps
reveals instance-level structure. (b) TRACE selects the instance-emergent step using a temporal di-
vergence criterion, extracts non-parametric edges from self-attention differences, and refines them
via a one-step distillation with the diffusion backbone to refine instance boundaries.

To answer this, we introduce TRACE (TRAnsforming diffusion Cues to instance Edges), a frame-
work that decodes instance boundaries directly from pretrained text-to-image diffusion models. As
illustrated in Fig. [T(b), TRACE first identifies the Instance Emergence Point (IEP) by measuring
temporal divergence to select the timestep where the instance structure is most pronounced. It then
applies Attention Boundary Divergence (ABDiv) to score criss-cross differences in self-attention
and generate initial edge maps. At this stage, pixels within the same object exhibit nearly identical
self-attention distributions, whereas pixels across different objects diverge sharply; this divergence
peaks on true instance boundaries and provides a direct signal for instance edge extraction. To re-
duce the computational cost of the per-image forward process at test time, these edges are distilled
into a one-step predictor that integrates the diffusion backbone with an edge decoder. The result-
ing edges are used as boundary priors in downstream segmentation methods (Wang et al.}, [2023a}
20244), guiding the propagation to cleanly separate adjacent objects by splitting merged
regions along instance boundaries (Fig. [2).

Our key contributions are summarized as follows:

* We observe that self-attention in diffusion models briefly yet reliably reveals instance-level
structure during denoising, unlike common vision transformers (see Tab. [5).

* The proposed TRACE unifies two key ideas for annotation-free instance boundary discov-
ery: the Instance Emergence Point and Attention Boundary Divergence.

* TRACE enables annotation-free instance and panoptic segmentation: 1) Improves unsuper-
vised instance segmentation baselines by +4.4 AP with only 6% runtime overhead; 2) With
tag supervision, surpasses point-supervised panoptic models, up to +7.1 PQ on VOC 2012;
3) As seeds for SAM, outperforms open-vocabulary detectors by up to +16.5 PQ (stuff).

Ground Truth Baseline (MaskCut) ~ TRACE (Ours)  Baseline w/ TRACE MaskCut WS MaskCut + TRACE ProMerge ~ W ProMerge + TRACE
J )’ .-

Pl vOC 2012 COCO 2014 COCO 2017
Figure 2: Effect of TRACE. (Left) Our instance edges decoded from diffusion self-attention for
reconnection of fragmented masks and separation of adjacent objects, with white dotted circles
marking corrected boundaries. (Right) Consistent AP, gains over baselines (Wang et al., [2023a},

|2TT_2—4[) without instance-level annotations.
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2 RELATED WORK

Unsupervised Instance Segmentation. Instance segmentation aims to delineate individual objects
and typically requires pixel-level annotations. Early methods (Wang et al.,|2022; |Ishtiak et al., 2023)
learn pseudo masks from external features (Wang et al.l 2021)) but require training from scratch and
show limited accuracy. Recent approaches, such as MaskCut (Wang et al 2023al), U2Seg (Niu
et al.,2024), and UnSAM (Wang et al.,2024b), cluster features from pretrained vision transformers
like DINO (Caron et al., 2021)). These models strong at semantic grouping across images but are not
explicitly designed for separating instances within an image. Therefore, these clustering methods
often rely on heuristics such as a maximum number of instances or confidence thresholds and tend
to merge adjacent objects of the same category.

To improve instance separation, CutS3D (Sick et al., [2025)) and CUPS (Hahn et al., 2025)) incor-
porate monocular depth estimators (Ke et al., 2024} [Yang et al., 2024) to split objects at different
ranges. However, depth-based approaches struggle when neighboring objects lie at similar depth
and they degrade on distant or small objects where estimated depth becomes blurry. By contrast,
our diffusion-based strategy (TRACE) extracts instance boundaries from self-attention of pretrained
diffusion models (Peebles & Xie, 2023 |Bao et al.l [2023; [Podell et al., 2023} |[Esser et al., [2024).
This boundary-centric cue does not assume the number of instances, is robust to object scale and
distance, and refines existing unsupervised pipelines (Wang et al.,|2023a; |Li & Shin, 2024) without
any supervision or retraining, achieving up to 29.1% higher performance on COCO compared to
depth-based methods (see Tab. [T).

Weakly-supervised Semantic and Panoptic Segmentation. Panoptic segmentation jointly re-
quires semantic masks for “stuff” regions (e.g., grass) and instance masks for “thing” objects (e.g.,
person), which makes it one of the most annotation-intensive tasks in segmentation. To reduce
this labeling cost, weakly-supervised panoptic segmentation have been explored. Image-level class
tags (Shen et al.,|2021) alone cannot separate instances. Bounding boxes are ill-suited for panoptic
supervision because they provide only coarse rectangles for “thing” objects and cannot define the
non-overlapping pixel-wise regions required for “stuff” regions. Consequently, point annotations
(Fan et al.| 2022} [Li et al., 2023b; 2024) have become the dominant form of weak supervision.
However, points vary across annotators and are often placed near object centers, which produces
partial or missed instances and leaves adjacent objects merged (see Fig. 3).

Meanwhile, in weakly-supervised se- Image & GT Point Annotations TRACE (Ours)
mantic segmentation, recent tag- A
supervised approaches (Jo et al.|
2024a; Yang et al., 2025ajb) show
that image tags alone can reach about
95% of fully supervised accuracy on
the PASCAL VOC 2012 benchmark,
indicating that tags are sufficient for
semantics but not for instance sepa-
ration. Therefore, we revisit tag su-
pervision and inject instance structure using diffusion priors: TRACE attaches to a tag-supervised
semantic model (Jo et al.,|2023;|2024a) and converts its pseudo semantic masks into pseudo panoptic
masks by supplying instance-aware boundaries from diffusion self-attention. This model-agnostic
design uses only image-level tags, cleanly separates adjacent objects, and first surpasses point-
supervised panoptic baselines (Li et al., 2024) on VOC and COCO benchmarks (see Tab. [2).
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Figure 3: Example of human bias in COCO.

Diffusion-Driven and Open-Vocabulary Segmentation. Recent approaches, including DiffCut
(Couairon et al.| 2024), DiffSeg (Tian et al., 2024), and ConceptAttention (Helbling et al.| [2025)),
repurpose the self- and cross-attention maps of pretrained text-to-image diffusion models (Peebles
& Xie, 20235 Bao et al.| |2023; [Esser et al., [2024; Podell et al.| 2023)) for semantic segmentation by
analyzing attention at a fixed timestep without inversion. In parallel, open-vocabulary segmentation
builds on contrastive pretraining (Radford et al., |2021) to map free-form text to visual concepts,
enabling text-conditioned masks. Despite progress, such models (Liu et al.|[2024bj You et al.,2023;
Wang et al., 2025) typically underperform closed-vocabulary segmentation and struggle to produce
reliable seeds under multi-tag inputs because they are hard to obtain from captions with limited tag
coverage or in scenes containing multiple nearby objects. Compared to them, TRACE yields higher
panoptic quality than open-vocabulary detection when used as TRACE seeds for SAM in Sec. [
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Figure 4: Overview of TRACE. (a) Diffusion forward locates the instance emergence point ¢*
(IEP) via a KL peak and extracts the instance-aware attention SA(X;+); ABDiv converts it into
a pseudo edge map E. (b) One step self distillation at ¢=0 trains an edge decoder G, with E,
masking uncertain pixels. Training from E closes gaps in fragmented edges (green circles) and
yields connected boundaries E. Atinference, TRACE predicts Fina single pass w/o IEP or ABDiv.

3 METHOD

In this section, we outline an overview of TRACE in Fig. [ for a comprehensive understanding of
our framework. Section @ introduces the Instance Emergence Point (IEP), which selects the de-
noising step where instance structure is most pronounced. Section [3.3|describes Attention Boundary
Divergence (ABDiv), which converts criss-cross self-attention differences into a pseudo edge map.
Section [3.4] details a one-step distillation that trains an edge decoder with the diffusion backbone to
produce connected edges and enable real-time inference. Section[3.5]shows how our edges integrate
with downstream segmentation models through Background-Guided Propagation (BGP).

3.1 BACKGROUND

Models. Diffusion (Rombach et al., [2022; [Podell et al [2023) and flow matching models
let al] 2024; [Lipman et al., 2022) generate images by learning a reverse process from noise to data.
Although their objectives differ, both families use similar transformer backbones with self- and
cross-attention. We refer to either as a diffusion model since our method is compatible with both.
In typical text-to-image implementations, a VAE encoder £ maps an input image I into a latent
Xo = &(I), a denoising network ¢ iteratively predicts noise (or velocity) on latents X; conditioned

on an optional text embedding ¢, and a VAE decoder D turns a generated image I = D(XO).
TRACE reads only self-attention maps from a diffusion model and does not require text prompts.

Self-Attention Collection and Aggregation. For a latent X; € REW >4 at step ¢, we form queries
Q: = X:Wg and keys K; = X,Wp. The self-attention for block k (averaged over heads, rows

sum to 1) is SA¥(X;) = softmax(Q; K, /v/d) € [0, 1]7W*HW: we ignore cross-attention and do
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not provide prompts. To fuse maps from blocks £ = 1,..., N that may operate at different spatial
sizes wy, (e.g., multi-scale stages in U-Net; for single-scale DiT-style backbones Uf is identity), we
upsample 0 wyax and average: SA(X;) = + Zszl Up—max(SAF(X;)). We implement this
with PyTorch forward hooks # on attention blocks; on each forward of the denoising network
€p with inputs (Xo,t), the hook collects {SAF}, performs the aggregation, and returns the map,
H(ep, Xo,t) = SA(X:), without altering model outputs.

3.2 IDENTIFYING THE INSTANCE-AWARE DENOISING STEP

We next ask: at which point of the denoising trajectory does self-attention truly become instance-
aware? Early in denoising, self-attention maps are almost indistinguishable from noise. As steps
proceed, we observe a sharp rise in the Kullback—Leibler (KL) divergence between consecutive
maps. This peak coincides with the emergence of clear object boundaries, after which divergence
gradually decreases as object shape stabilizes while semantics continue to refine. During inversion,
the trajectory unfolds in reverse order: semantic — instance — noise.

Motivated by our observation, we propose the Instance Emergence Point (IEP) as the timestep ¢*
where this divergence is maximized:

t* = argmax Dy (SA(Xy,,) || SA(X:)) (1)
te{r,....,TN}
where 79 < --- < 7N are discrete timesteps (with ¢ = 7, tpey = 7Tr—1). The self-attention

map at this point, SA(X;«), is denoted as S A, and serves as our instance-aware representation.
Specifically, KL divergence is a natural choice (Tian et al., 2024) because each row of SA(X}) is
a probability distribution. Unlike mean-squared or absolute differences, KL’s log-scale sensitivity
amplifies subtle but meaningful variations in high-dimensional self-attention that directly align with
boundary emergence (see Tab. [). In practice, we adopt a fixed inversion stride of 100 steps for
efficiency and accuracy. A detailed analysis of step size and the distribution of the optimal timestep
t* across diffusion backbones is provided in Fig. [7]

3.3 EXTRACTING INSTANCE EDGES FROM SELF-ATTENTION

SAi;j | SAija | B
(a) Instance Boundary (ABDiv: 0.114) (b) Instance Interior (ABDiv: 0.027)

Figure 5: Illustration of Attention Boundary Divergence (ABDiv). Boundary regions (a) exhibit

sharp attention divergence between opposite neighbors, whereas interior regions (b) remain stable,

producing much smaller ABDiv values.

Neighboring pixels within the same instance exhibit similar self-attention maps, whereas those
across instance boundaries differ, as shown in Fig. [5] We convert this contrast into edges with
Attention Boundary Divergence (ABDiv), a simple non-parametric score that transforms instance-
aware self-attention maps into boundary maps without clustering or annotations. We apply ABDiv
on the instance-aware map SAi s = SA(Xy+) identified in Sec. For a pixel (,j), ABDiv
aggregates the divergence between opposite 4-neighbors:

ABDIV(SA)Z,J = DKL(SAi—i-l,j || SAi—l,j) -+ DKL(SAi,jJ,-l || SAZ'J_l). (2)

By default, ABDiv is computed with a 4-neighborhood using opposite pairs (left/right and
top/bottom) as defined in Eq. [2] An 8-neighborhood extension that adds diagonal pairs achieves the
same accuracy while increasing computation by approximately 2 x, so we adopt the 4-neighborhood
in all experiments.
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3.4 ONE-STEP SELF-DISTILLATION WITH EDGE DECODER

Starting from the instance-aware self-attention map S Ainst = SA(X:+) identified in Sec. we
obtain an initial edge map E by applying ABDiv as defined in Eq. [2] Inspired by pseudo-labeling
strategies for weak supervision (Ahn et al., [2019b; Jo et al.l 2024a), we adopt a reliability-based
thresholding to mitigate label noise from ambiguous self-attention signals. Specifically, we define a
ternary map using the mean . and standard deviation o of ABDiv scores: pixels > p + o are edges
1, < p — o are interior 0, and the intermediate range is marked as uncertain —1. These uncertain
pixels are explicitly excluded from the loss computation, which effectively suppresses false positives
while maintaining high recall (see ablation in Appendix [E.T]and Tab. 9).

To replace a per-image IEP+ABDiv computation at inference with a single pass, we fine-tune the
diffusion backbone using Low-Rank Adaptation (Hu et al.l|2022)) and jointly train an edge decoder
Gs. Beyond efficiency, the decoder also learns to complete fragmented edges, following common
practice in boundary detection (Xie & Tu, 2015} Xiao et al., 2018; [Su et al., [2023)). Let I, Ic
RH*Wx3 be the original and reconstructed images, E, E = G4(H(eg, [,t = 0)) € [—1,1]7*W be
the pseudo edge map of ABDiv and the edge predicted by G,. Our training objective is £(6, ¢) =
Lrec(0) + Leage(0,9) = ||I — I||> + DiceLoss(E, E). After training, a single forward pass at
t=0 produces a connected and precise edge map and removes the need for IEP and ABDiv during
inference, as shown in Fig. ] Full algorithmic details are provided in Appendix [C]

3.5 SEMANTIC-TO-INSTANCE MASK REFINEMENT WITH INSTANCE EDGES

We now use our instance edges to regularize
and complete segmentation masks. Given seg-
mentation masks, connected component labeling
treats the TRACE edges as separators and assigns
unique labels to connected regions that are not cut

Initial Fragmented Masks Final Output

Input Image _

Merged

by edges. Inspired by (Ahn et al.l 2019a), we de- [ g‘;:?)l ] Boundary-G;xli;gld))Propagation]

sign the Background-Guided Propagation (BGP), — 4

as shown in Fig. [6] propagate each fragmented |4v— )

mask inside its instance boundaries to close gaps L0 4 o
and produce smooth regions. We then iteratively R .

merge overlapping masks whose intersection over o,y e fage Our Propagated Masks ToU = 0.53 > mep
union exceeds Tsgp = 0.5 until convergence.

Figure 6: Illustration of Boundary-Guided
Propagation. Fragmented masks spread within
instance edges, and intersections (yellow) are
resolved by edge respecting merging.

This produces complete instance masks with our
edges. We empirically find that performance re-
mains stable over typical choices of Tggp on
VOC, so we simply use 0.5 in all experiments.

4 EXPERIMENTS

Implementation Details. For fair comparison, we follow standard protocols (Wang et al.,[2023a} |Li
et al., [2023b)) and run all experiments on a single NVIDIA A100 GPU. Stable Diffusion 3.5 Large
(SD3.5-L) (Esser et al., 2024), our default backbone, performs best overall among five diffusion
backbones evaluated (Tab. [5), with VOC and COCO as the main benchmarks and five additional
datasets reported in Appendix [E] Training details and evaluation metrics appear in Appendix [C]

Unsupervised Instance Segmentation. In Tab. [T} TRACE refines masks produced by existing UIS
methods |Wang et al.| (2023a); |[Li & Shin| (2024)); Wang et al.| (2024b) and consistently improves
performance AP™" with gains ranging from +3.6 to +5.3 points. For clarity, we group results into
training-free and fine-tuned methods, where the latter relies on a Mask R-CNN [He et al.| (2017)
trained on pseudo instance masks. In particular, compared to the depth prior (Sick et al.| [2025),
TRACE attains higher AP™* on COCO (+2.2/4+2.1 on 2014/2017), highlighting the advantage of
diffusion-driven instance edges. Qualitative results appear in Fig.

Weakly-supervised Panoptic Segmentation. We refine semantic masks from tag-supervised meth-
ods (Jo et al.| [2023};[2024a) with instance-aware edges to form pseudo panoptic masks and then train
a standard Mask2Former (Cheng et al., [2022) following the common evaluation protocol. In partic-
ular, DHR (Jo et al., [2024a) with TRACE surpasses point-supervised counterparts (Li et al.,[2023bj
2024) by using only image-level tags (see Tab. [2]and Fig. [3), indicating that our edges provide the
instance geometry that tag supervision lacks. Qualitative examples are provided in Fig. [16]
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Table 1: Performance of unsupervised instance segmentation.

(a) Training-free UIS (b) Fine-tuned UIS

VOC 2012 | COCO 2014 | COCO 2017 VOC 2012 | COCO 2014 | COCO 2017
Method APm}c AR?(L)]E) ‘ APmk ARY[L]}[B ‘ APmk ART{HB Method APmk AR?})’F} ‘APmk ARiY[L)]E) ‘ APmk AR71’[LJ}EJ
MaskCut* 5.8 14.0 3.0 6.7 2.3 6.5 CutLER* 11.2 342 89 251 87 249
+ UnSAM* 6.1 145 | 3.3 6.9 2.5 6.8 + CutS3D - - 10.9 - 10.7 -
+TRACE (Ours) 9.7 184 | 79 126 | 75 9.8 +TRACE (Ours) 148 453 131 34.6 | 128 339
ProMerge* 5.0 139 | 3.1 7.6 2.5 7.5 ProMerge+* 1.1 331 | 90 253 89 251

+TRACE (Ours) 94 182 | 82 131 | 78 112 +TRACE (Ours) 150 438 133 351 | 13.0 258

Table 2: Performance of weakly-supervised panoptic segmentation.

| VOC 2012 | COCO 2017
Method Backbone Superv1s10n‘ PQ PQ™ PQ* SQ RQ ‘ PQ PQ" PQ" SQ RQ
Panoptic FCN (Li et al.|[2021) ResNet-50 M 679 66.6 929 - - |43.6 49.3 35.0 80.6 52.6
Mask2Former* (Cheng et al.|[2022)  ResNet-50 M 73.6 72.6 93.5 90.6 80.5|51.9 57.7 430 - -
PSPS (Fan et al.|[2022) ResNet-50 P 49.8 478 895 - - 1293 293 294 - -
Panoptic FCN (Li et al.||2021) ResNet-50 P 48.0 462 852 - - |31.2 357 243 - -
Point2Mask* (L1 et al.|[2023b) ResNet-50 P 53.8 519 905 - - 1324 32,6 322 75.1 415
EPLD (Li et al.[[2024) ResNet-50 P 56.6 549 89.6 - - |342 336 353 - -
Point2Mask* (L1 et al.}|2023b) Swin-L P 61.0 594 930 - - |37.0 37.0 369 75.8 47.2
EPLD (Li et al.[[2024) Swin-L P 68.5 673 934 - - |41.0 399 427 - -
JTSM (Shen et al.||2021) ResNet-18-WS s 39.0 371 777 - - |53 84 07 308 7.8
MARS* (Jo et al.|[2023) ResNet-50 s 414 39.8 853 83.0 57.8|11.7 133 10.2 58.3 11.8
+ TRACE (Ours) ResNet-50 T 504 485 889 86.6 60.1 29.5 31.1 289 62.5 39.3
DHR* (Jo et al.|[2024a) ResNet-50 s 450 433 883 833 59.8|18.3 17.5 18.1 69.3 14.8
+ TRACE (Ours) ResNet-50 7 56.9 552 91.0 88.4 63.4 328 32.7 329 755 425
+ TRACE (Ours) Swin-L T 69.8 684 96.2 94.5 71.2 43.1 42.5 43.5 83.8 55.3

M: Full mask supervision (upper bound), P: One point per instance, Z: Image-level tags only (no instance annotations)
* Reproduced results using the publicly accessible code. The rest are the values reported in the publication.

5 ABLATION STUDY

Component Ablation. Table [3| shows how  ypie 3. Effect of key components on COCO 2014
each stage steers TRACE from purely seman- with the UIS baseline (Li & Shinl, 2024).
tic cues toward instance delineation. Because

the Instance Emergence Point (IEP) marks IEP ABDiv Distill

the timestep where semantic attention first be- (Sec.B2) (Sec.B3) (Sec.B4) ApP™F
comes instance-aware, it cannot be evaluated (a) % % « 31

on its own: without the boundary scoring of  (p) > v % 32

ABDiv there is no measurable edge signal. Ac- (c) v v X 4.8

cordingly, case (b) applies Attention Bound- = (d) v v v 8.2

ary Divergence (ABDiv) at a purely semantic
timestep, following prior diffusion approaches (Tian et al.,|2024; Couairon et al., [2024), and yields
almost no gain, confirming that semantic self-attention alone cannot reveal instance edges. Intro-
ducing IEP in case (c) pinpoints the denoising step where diffusion self-attention transitions from
semantic grouping to instance structure, enabling ABDiv to capture instance boundaries. Finally,
case (d) adds one-step self-distillation to compress these transient cues into a single-pass predictor,
eliminating per-image IEP and ABDiv at inference and cutting latency from 3682 ms to just 45 ms
per image (about 81 x faster) while preserving and even strengthening edge connectivity.

Self-Distillation with Reconstruction. During one-step self-distillation (Sec. we jointly opti-
mize edge prediction and image reconstruction. While the edge loss Lcqq. compels the student to
reproduce the teacher’s instance boundaries, edges alone can overfit to noisy or incomplete super-
vision. Adding a reconstruction loss L. anchors the decoder to global image structure, stabilizing
training and suppressing artifacts along low-contrast boundaries. This auxiliary objective yields
smoother and more coherent edges and provides measurable gains in both accuracy and perceptual
quality (AP™F from 8.9 to 9.4; SSIM from 0.71 to 0.83) without adding inference cost.

Instance Emergence Analysis. Figure[/|evaluates the Instance Emergence Point (IEP) along two
axes. In Fig.[/(a), enlarging the denoising step size reduces the number of self-attention accumula-
tion and thus latency, with negligible loss in AP™F. A step size of 100 strikes the best balance, main-
taining about 9.4 AP™* with roughly 3 s of IEP search per image. In Fig. b), the optimal timestep
t* clusters tightly across five diffusion backbones, indicating a model-agnostic semantic-to-instance
transition and supporting a fixed step size without per-image or per-model tuning. Extensive results
in Appendix further confirm the robustness of IEP, demonstrating consistent ¢* distributions
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Figure 7: Analysis of IEP. (a) Accuracy—latency trade-off across different IEP step sizes. (b) Dis-
tribution of optimal timestep ¢* showing a consistent semantic-to-instance transition.

Image & GT SDL.5 SDXL SD3.5-L SD3.5-L
[ with TEP with IEP without IEP

across datasets and random seeds, as well as the empirical superiority of our KL criterion over
alternative metrics (e.g., Entropy and Wasserstein).

KL vs. Other Metrics. To ensure Table 4: Similarity metrics for I[EP and ABDiv.
our similarity choice is principled,
we compared the Kullback-Leibler

IEP Metric Latency/img AP™" | ABDiv Metric Latency/img AP™"

. . . KL (Ours) 3,082 ms 9.4 KL (Ours) 600 ms 9.4
(KL) divergence with alternative met- 1SD S120ms 94 1SD 080 ms 92
rics for both IEP and ABDiv. In MSE (L2)  1,232ms 3.8 MSE (L2) 425ms 6.8
Tab. @] Jensen—Shannon divergence =~ MAELD  924ms 35 MAELD)  412ms 67

(JSD) achieves the similar AP™* but requires computing two KL terms against a mixture distri-
bution, increasing latency by more than 60%. Mean-squared (L2) and mean-absolute (L1) losses
reduce computation but sharply degrade accuracy, confirming KL as the most effective balance of
precision and efficiency.

6 DISCUSSION

Superiority of Generative Diffusion Priors. To Table 5: Diffusion vs. Non-Diffusion.
verify whether instance-aware cues are specific t0  TRACE fine-tuning results on COCO 2014.
diffusion models, we evaluate TRACE across 10 dif- Blue rows indicate diffusion backbones.

ferent backbones, including 5 diffusion and 5 non-

mk mk
diffusion foundation models (Oquab et al] 2023} Method  Backbone ~ Params AP™ ARioo

Fang et al.| [2024; [Liu et al| [2024a; Siméoni et al, ~ ProMerge - - 3.1 7.6
2025; [Podell et al. 2023) (see Tab. Eb Note that Non-diffusion backbones (ABDiv only)
for non-diffusion backbones lacking temporal trajec-  + TRACE DINOv2-G  1.1B 2.6 7.7

tories, we apply ABDiv (Sec. [3.3) directly to their ~ + TRACE EVA02-E 50B 32 79
self-attention maps. Remarkably, even the small- +TRACE DINOv3 70B 43 89
est diffusion model, PixArt-o (0.6B) +¥§:€g LLaV[;‘ SVL ;;g 251; gg
, achieves 7.1 AP™F, significantly outper- - Quwen2.5- i i

forming the massive 72B-parameter Qwen2.5-VL  Diffusion backbones (IEP + ABDiv)
(Bai et al.}

2025) (4.1 AP™F). This confirms that + IRACE SDI.5 tgs Gl e

. . + TRACE PixArt-a 06B 7.1 118

TRACE leverages the unique generative nature of | TpRACE SDXL 258 74 123
diffusion models, where instance boundaries emerge . TRACE SD3.5-L 81B 82 13.1
during denoising (IEP; Sec.[3.2), rather than typical ~ + TRACE FLUX.1 12B 83 134

semantic features found in discriminative or multi-
modal models. Figure [§] visualizes this distinction: diffusion self-attention tightens along object
boundaries at IEP, whereas non-diffusion attention collapses into coarse semantic blobs, failing to
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Figure 9: Importance of TRACE. (a) White dotted boxes mark regions where tag-supervised
semantic masks are converted into panoptic masks by TRACE, cleanly separating adjacent in-
stances. (b) Quantitative results show TRACE+SAM outperforming open-vocabulary detectors and

TRACE+WSS (e.g., DHR) surpassing point-supervised baselines.

GT Instance Mask Canny HED

TRACE (Ours)

Baseline w/ TRACE w/ PiDiNet w/ DiffusionEdge

Baseline (ProMerge

Figure 10: Instance-aware edge comparison with existing edge alternatives.

separate adjacent instances. Furthermore, within the diffusion family, performance correlates posi-
tively with model capacity (SD1.5 — FLUX.1), demonstrating that TRACE effectively scales with
stronger generative priors while remaining model-agnostic in its applicability.

Why Annotation-Free Instance Edges? Recent efforts toward instance and panoptic segmentation
often combine open-vocabulary detectors (Liu et all, 2024b} [You et al, 2023} [Wang et all, [2025))
with SAM (Kirillov et al. [2023)), where the detector supplies instance-level boxes and SAM refines
them into masks. Despite this progress, such pipelines still depend on box annotations and struggle
when scenes involve many adjacent objects or ambiguous text prompts. TRACE provides a different
alternative: it extracts instance edges directly from diffusion self-attention, requiring no instance
supervision while offering clean separation of objects (Fig. [9). These edges are complementary
to SAM, since SAM excels at refining seeds into precise instance masks while TRACE provides
those seeds. This combination exceeds all supervised open-vocabulary baselines. In addition, when
integrated with tag-supervised semantic models, TRACE supplies the missing instance geometry
and converts their outputs into complete panoptic masks, outperforming point-supervised methods
on VOC and COCO.

(b) Ground-Truth Panoptic Mask  (c¢) Ground-Truth Instance Edge

LA"\J"‘

(a) Input Image

Figre 11: Example of ground-truth instance boundary generation. (a) Input image. (b) Ground-
truth panoptic mask. (c) Ground-truth instance boundaries extracted from (b).
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Limitations of Conventional Edge Detectors. Figure [10| tests whether conventional edges can
replace TRACE for instance segmentation by swapping each detector’s edge map into our BGP
pipeline (Sec. . AP falls from 9.4 (TRACE) to 1.2 with Canny (Canny, 1986), 3.7 with HED
[2015), 4.1 with PiDiNet [2023), and 4.3 with DiffusionEdge (Ye et al.| [2024).
The gap reflects an objective mismatch: these methods are trained to predict RGB intensity-change
contours (not instance edges), which makes them sensitive to texture and illumination.

Quantitative Evaluation of Instance Boundaries. Table 6: Instance Edge Quality. Evalua-
Standard edge detection benchmarks (e.g., BSDS tion on COCO 2014 validation set against

(Arbelaez et al., 2010) prioritize low-level texture or ground-truth instance boundaries.
color contrast, which is misaligned with the goal of

. . . Method ODS OIS cIDice
instance boundary detection. To evaluate instance-

aware boundary quality, we construct a new bench- ~ Canny 0.129 0.202 0.134
mark from COCO 2014 panoptic masks, defining ~ HED 0.347 0443 0.446
pixels between distinct segments as ground-truth ~ PiDiNet 0.362  0.450  0.574

edges (see Fig. [[I). To assess quality, we report DiffusionEdge ~ 0.428  0.485  0.576
ODS and OIS metrics Su et al] TRACE (Ours) 0.889 0.899 0.826
2023)) for boundary precision and clDice (Shit et al.
2021) for topological connectivity (see details in Appendix [F). Table [6] compares TRACE against
representative edge detectors (Canny, [1986]; Xie & Tul 2015} [Su et all, 2023}, [Ye et al. 2024).
TRACE achieves an ODS of 0.889, more than doubling the performance of the strongest baseline
(DiffusionEdge, 0.428). Conventional methods suffer from high false positives due to their sensitiv-
ity to internal textures, resulting in low precision for instance delineation. In contrast, TRACE effec-
tively suppresses non-boundary gradients by leveraging diffusion priors. Furthermore, the superior
clDice score (0.826) confirms that TRACE produces topologically connected boundaries, which is
a critical property for successfully separating adjacent instances in downstream segmentation tasks.

Limitations. While TRACE demonstrates consistent improvements across 11 real-world bench-
marks, including autonomous driving (see results in Tabs. [T} 2] [T2] and [T3)), we identify limitations
in specialized domains. First, for tiny instances (= 0.01% area) in satellite imagery
2020; (Waqas Zamir et al, 2019), performance degrades due to the spatial compression of the VAE
in latent diffusion models. Second, on out-of-distribution medical images (e.g., histopathology)
(Kumar et al [2020; [Naylor et al., [2019), the natural-image priors of standard diffusion backbones
result in misaligned instance boundaries. We provide detailed quantitative results (Tabs. [I4] and [T3))
and qualitative failure cases (Fig.[T3) for these scenarios in Appendix [E-4]

Computational Overhead. In Tab. Table 7: Computational Overhead of TRACE.
TRACE introduces minimal additional
cost across different evaluation settings. _ Phase (Dataset) ~ TRACE (SDXL) TRACE (SD3.5-L)

For training-free unsupervised instance  Train (ImageNet) 8 days 10 days
segmentation in Tab. [[(a), TRACE re-  Test(VOC2012) 0.1 hrs 0.2 hrs
fines each image’s masks during inference, ~ Test (COCO2014) 2.0 hrs 2.4 hrs

which increases latency by only about 2% _YRAM Usage 20GB 32GB
compared to the ProMerge 2024). In contrast, for weakly-supervised panoptic segmen-
tation (Tab. [T(b), Tab. [Z), TRACE is used only once during training to refine pseudo instance or
panoptic masks before the teacher network (e.g., Mask2Former) is trained, so there is no runtime
overhead at inference.

7 CONCLUSION

TRACE demonstrates that text-to-image diffusion models naturally encode recoverable instance
structure. By locating the Instance Emergence Point, extracting boundaries through self-attention,
and compressing them into a fast one-step decoder, TRACE delivers sharp and connected instance
edges in real time without any prompts, points, or boxes, or masks. Our extensive evaluation across
diverse diffusion architectures confirms that this capability is intrinsic to the generative diffusion
prior, consistently yielding superior instance boundary precision and topological connectivity com-
pared to non-diffusion baselines and conventional edge detectors. These edges act as annotation-free
instance seeds that boost both interactive systems like SAM and unsupervised/weakly-supervised
pipelines, surpassing point- and box-supervised alternatives. Looking forward, the same principle
opens opportunities for video panoptic segmentation, medical imaging, and open-vocabulary group-
ing where text and TRACE can be combined for scalable panoptic perception.

10
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8 REPRODUCIBILITY STATEMENT

We provide the complete codebase (training, inference, and evaluation pipelines) together with de-
tailed instructions in the accompanying Supplementary Material.zip. This enables full
verification of our results and facilitates independent reproduction. For baseline comparisons, we
relied on publicly available implementations to ensure fairness and transparency. Additional imple-
mentation details and algorithmic descriptions are provided in Appendix
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A LLM USAGE DISCLOSURE

We used a large-language model (LLM) only for minor text editing, such as correcting typos and
adjusting wording to a formal academic tone. The LLM was not involved in research ideation,
experimental design, implementation, or analysis. All scientific content and claims were conceived
and written by the authors, who take full responsibility for the entire paper.

B COMPREHENSIVE REVIEW OF RELATED WORK

B.1 DIFFUSION MODELS IN SEGMENTATION

Text-to-image diffusion models (Peebles & Xie,[2023;[Bao et al,[2023}; [Chen et al., [CLR 24} [Podell
are trained on image-caption pairs to learn complex visual-text relationships, with re-
cent versions such as SDXL (Podell et all, [2023) and SD3 (Esser et al., [2024)) offering finer con-
trol through transformer-based architectures. These models generate refined images by iteratively
denoising latent representations, making them effective for detailed image synthesis. Recently, dif-
fusion models have shown potential for segmentation tasks by generating pseudo-masks and aiding
unsupervised segmentation. Relevant methods include:

* Diffusion-based Segmentation. Recent approaches repurpose the internal representations
of diffusion models for segmentation tasks. DiffCut (Couairon et al, [2024) and DiffSeg
apply clustering algorithms, such as normalized cuts or K-means clus-
tering, directly to self-attention maps to generate class-agnostic semantic masks. However,
these methods often require heuristic threshold tuning and struggle to distinguish adjacent
instances of the same class. EmerDiff (Namekata et all, [2024) explores the emergence
of pixel-level semantic knowledge by aggregating attention features across timesteps and
finding semantic correspondences. While effective for semantic segmentation, EmerDiff
(Namekata et all, 2024) focuses on gathering stable semantic signals rather than detect-
ing the transient structural boundaries between instances. Consequently, these clustering-
and aggregation-based methods inherently prioritize semantic grouping (merging same-
class pixels) over instance separation. By contrast, TRACE specifically targets the Instance
Emergence Point (IEP; Sec. [3.2) and leverages Attention Boundary Divergence (ABDiv;
Sec. 3:3) to capture high-frequency boundary signals, enabling the precise delineation of
individual instances without annotations.

Diffusion-Driven Dataset Generation. Several approaches leverage diffusion models to
synthesize training data with pixel-level annotations. DatasetDM and
Dataset Diffusion (Nguyen et al,[2023)) generate synthetic image-mask pairs to train down-
stream segmentation networks. MosaicFusion adopts a tiling strategy for
instance segmentation data: it generates single-object images from simple prompts (e.g.,
“A photo of a cat”) and composites them into a 2 x 2 grid, assigning distinct instance IDs
based on grid positions. While effective for data augmentation, this mosaic approach artifi-
cially avoids the challenge of segmenting naturally adjacent or overlapping objects within
a coherent scene. In stark contrast, TRACE is not a data-synthesis pipeline but a decoding
Jframework. We reveal that the early denoising steps of a pretrained text-to-image model
already contain rich, recoverable instance-level cues. Unlike MosaicFusion’s reliance on
synthetic composition, TRACE directly extracts precise instance boundaries from a sin-
gle real image by exploiting the intrinsic Instance Emergence Point (IEP) and Attention
Boundary Divergence (ABDiv), successfully separating complex adjacent instances with-
out additional training or prompts.

Existing diffusion-based segmentation methods (Couairon et al, 2024} Tian et al., 2024) focus on
later timesteps in the inversion process, when image structures are nearly complete. However, this
focus limits their ability to identify and separate multiple instances, as instance-specific information
appears in the early timesteps but fades as the model builds the overall semantic structure. This novel
use of early diffusion features enables TRACE to capture instance-level information and perform
instance segmentation effectively.
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B.2 OPEN-VOCABULARY SEGMENTATION

Recent methods combining multimodal models (MLLM/VLM) with segmentation frameworks,
such as SAM (Kirillov et al.l |2023) or its unsupervised counterpart UnSAM (Wang et al. |2024b)
have enabled open-vocabulary panoptic segmentation. Numerous approaches utilizing CLIP (Rad-
ford et al.l 2021)) demonstrated that free-form text prompts can guide segmentation (Zhou et al.,
2022} |Cha et al., [2023; Jo et al.| 2024b; Barsellotti et al.| [2025); however, these methods generally
underperform compared to specialized segmentation models that rely on precise mask annotations
(Cheng et al.| 2022)). More recent advancements, such as Grounding DINO (Liu et al., 2024b) and
Ferret (You et al., [2023), have incorporated box annotations and language models to improve de-
tection. Despite this progress, these models often struggle to generate accurate instance seeds from
multi-tag inputs, failing to distinguish visually similar classes. Extending its efficacy beyond un-
supervised and weakly-supervised segmentation (Tabs. [T] and [Z), TRACE effectively complements
open-vocabulary frameworks by injecting robust instance-aware boundaries, yielding consistent per-
formance improvements across multiple benchmarks (see Appendix and Tab. [T3).

B.3 INSTANCE SEGMENTATION

Instance segmentation (IS) aims to delineate and label individual object instances within images.
Traditional IS approaches rely on pixel-level annotations, which can be resource-intensive, partic-
ularly for large datasets. More recent work has expanded into unsupervised methods to address
scalability concerns. Meanwhile, panoptic segmentation (PS) methods, designed to handle both
semantic and instance segmentation in a unified task, often serve as competitive baselines for in-
stance segmentation capabilities. Panoptic models distinguish between “’things” (countable objects)
and “stuff” (amorphous regions) and can separate multiple instances of the same class. Here, we
categorize recent IS and PS methods based on their reliance on annotations.

Fully-supervised Segmentation. Many established methods (Cheng et al., 2022 |L1 et al., [2022bj
Zhang et al.|[2021;|Cheng et al., 2021} |L1 et al.l 2021} Kirillov et al.||2019; |Xu et al., 2023), such as
Mask2Former (Cheng et al.,|2022) and Panoptic SegFormer (Li et al., 2022b)), require dense, pixel-
level annotations(i.e., masks) to achieve accurate instance segmentation but face scalability issues
due to high annotation costs. These models are designed for panoptic segmentation, but serve as
baselines for instance segmentation. We refer to these methods as ”panoptic models”.

Point- and Box-Supervised Segmentation. These weakly-supervised methods (Li et al., [2023b;
Fan et al., 2022; |Li et al.| 2018} |2023a; Jiang et al., [2024)) aim to reduce annotation costs by using
less detailed - but instance-specific - labels like points or boxes for each instance. These methods (Li
et al., 2023b; [Fan et al., [2022) typically operate in two stages: first, they generate pseudo-panoptic
masks from weak annotations, and then a panoptic model (e.g., Mask2Former) is trained using
these pseudo-masks instead of ground-truth annotations. Although annotation effort is reduced, the
reliance on manual points and boxes still presents a substantial cost. However, TRACE is annotation
free.

Tag-Supervised Segmentation. Tag-supervised instance segmentation uses image-level tags (e.g.,
“person”) without any instance-level details (e.g., location of each person). While only a single
image-level tag is required per image, depending on the number of instances, multiple instance-
level annotations may be required. Hence, tag supervision is significantly cheaper than instance-
level annotations.

* Instance Segmentation with Class Activation Maps (CAM) (Zhou et al., 2016). CAM-
based instance segmentation methods (Kim et all [2022; [Zhou et al., 2018)) leverage
heatmap and class tags for rough localization of class-related regions. However, CAM
was initially designed for semantic segmentation, and its lack of precision in localizing
specific instances limits its effectiveness for instance-level segmentation.

* Weakly-supervised Semantic Segmentation (WSS). WSS methods (Yang et al [2025bj
Rong et al.| 2023} Kim et al., 2023} [Kweon et al.,|2023; Deng et al.l 2023} |Yi et al., 2023}
Jo et al.l 2023; |Zhu et al.| 2023} [Lin et al., 2023; [Ru et al., 2023} Jo et al.l 2022; Xu
et al., [2022; [Li et al., [2022a; ILiu et al., [2022; |(Chen et al.| 2022} [ Xie et al., [2022; [Fan
et al., 2018) use image-level tags or captions and offer promising results in class-level
segmentation. However, WSS alone cannot produce instance-level masks without further
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refinement. TRACE provides the instance-level refinement that can extend WSS methods
to tag-supervised PS methods.

We note that the use of class tags is the minimal possible annotation which allows models to focus
on specific classes in an image, crucial for evaluating performance in PS tasks. Methods that do
not incorporate class tags (e.g., U2Seg (Niu et al., [2024)) are excluded from our comparisons with
PS methods, as they cannot produce specific class labels. U2Seg attempts unsupervised panoptic
segmentation by combining MaskCut (Wang et al. [2023a) for unsupervised instance segmentation
with STEGO (Hamilton et al., 2022) for unsupervised semantic segmentation. However, without tag
supervision, U2Seg cannot generate correct class labels, generating labels such as “class 1” instead
of “cat 17, which restricts its applicability. Some methods, like JTSM (Shen et al., [2021]), use class
tags but demonstrate limited PS performance, further indicating a gap in this domain. Remarkably,
TRACE+WSS, which uses only tag supervision in the WSS method, outperforms methods using
point supervision.

Unsupervised Instance Segmentation (UIS). UIS aims to perform instance segmentation without
relying on any annotations. Existing UIS methods can be broadly categorized based on their archi-
tectural foundation: DINO-based methods (Niu et al., |2024; |Wang et al., [2024a}; |2023a; |Li & Shin,
2024) like MaskCut (Wang et al., 2023a)) and ProMerge (Li & Shin| |2024) apply feature clustering
with the graph cut algorithm on pretrained self-supervised vision transformer(i.e., DINO (Caron
et al., 2021)) backbones to separate instances. SOLO-based approaches (Wang et al., [2022; Ishtiak’
et al., 2023) rely on CNN-based (e.g., DenseCL (Wang et al., 2021))) pseudo-mask generation but
show poor performance and requires training from scratch, making them computationally expensive.
UIS serves as a direct baseline for TRACE, as these methods attempt instance separation without
any labels. TRACE stands out from existing instance segmentation literature by taking a fully unsu-
pervised, edge-oriented approach instead of clustering features via graph cut. Also, instead of DINO
or SOLO-based backbones, TRACE leverages a generative diffusion model.

B.4 ADDITIONAL ANALYSIS OF UNSUPERVISED INSTANCE SEGMENTATION

Our method tackles the root causes of problems. Problem A. Adjacent instance merging stems
from UIS methods (Wang et al.| 2023a) relying on semantic backbones [Caron et al.|(2021)), lacking
instance-level distinction. We resolve this using instance-aware diffusion self-attention maps via
IEP/ABDiv. Problem B. Single instance fragmentation arises from fixed hyperparameters (7, n) in
graph-cut methods (Wang et al., | 2023a)), leading to inconsistent granularity. We resolve these issues
via non-parametric instance edge & BGP. Figure Figure and Figure |16| provide qualitative
validation. Appendix [B.4]and Table[§|give detailed analysis.

Component Main Role Contributions to Problem A Contributions to Problem B
IEP Finds optimal step for instance boundaries ~ Separates adjacent instances in feature space Provides initial edge information for merging
ABDiv Converts self-attention maps to edge maps  Detects edge seeds between adjacent instances ~ Provides instance-aware edge maps for merging
Distill Enhances connectivity in edge maps Completes edges between adjacent instances Refines instance edges to resolve fragmentation
BGP Instance-aware random walk propagation Separates instances using refined edges Propagates and merges fragmented instance masks

Table 8: Component contributions to solve (A) adjacent instance merging and (B) single in-
stance fragmentation. Each step builds on the previous one, with BGP finalizing adjacent instance
separation and fragmentation resolution using the refined edges generated by IEP, ABDiv, and fine-
tuning.

B.4.1 PROBLEM A. ADJACENT INSTANCE MERGING

Root Cause of Problem A: Limitations of Existing Backbones. Unsupervised Instance Segmen-
tation (UIS) methods (Niu et al., [2024; Wang et al., 2024a; 2023a} |Li & Shin, [2024) depend on
pretrained “backbones” (e.g., DINOv1 (Caron et al.,[2021)) to extract feature maps, which are sub-
sequently partitioned into instance masks through techniques like graph cut (Wang et al., [2023b).
However, these backbones were originally designed to distill information primarily about semantic
segmentation—identifying and classifying foreground objects from the background, rather than dis-
tinguishing individual instances within a class. This inherent design limitation makes it difficult to
achieve true instance separation (e.g., distinguishing two adjacent boats in the top of Fig. [I2) using
only semantic features.
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MLLM Backbones Share This Limitation, and More Parameters Do Not Resolve It. When
prompted with “Describe this image” in Fig. 8] LLaVA-13B’s self-attention maps only capture se-
mantic features, while diffusion models (e.g., SD1.5) separate instances, a capability absent in other
foundation models. In Tab. [5 diffusion backbones substantially outperform CLIP/DINO/MLLM
counterparts with comparable and fewer parameters.
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Figure 12: Additional examples of problem A and B and our solution.

Our Solution for Problem A. To overcome the limitations of semantic-oriented backbones, we
introduce TRACE, a framework that leverages the inherent spatial attention in diffusion models to
generate instance-aware edges without requiring pixel-level annotations. TRACE harnesses self-
attention maps from pretrained diffusion models, which capture instance boundaries through at-
tention mechanisms tuned during pretraining. By introducing two novel metrics, IEP and AB-
Div, TRACE autonomously identifies and reinforces instance boundaries, ensuring that adjacent
instances are effectively separated, even when traditional feature maps fall short. Unlike conven-
tional UIS methods (Niu et al., [2024; [Wang et al.| [2024a; 2023a} |Li & Shinl [2024) that rely on se-
mantic segmentation backbones, TRACE uses a self-supervised fine-tuning step that enhances edge
connectivity, achieving precise instance delineation across classes. This enables TRACE to address
the issue of adjacent object merging by focusing specifically on instance edges, demonstrating su-
perior separation accuracy across challenging datasets (e.g., VOC (Everingham et al.,[2010), COCO
(Lin et al.;,2014)), as shown in our experimental results (see Tab. E]and Tab. E]) Our diffusion-based
approach addresses the adjacency issue by focusing on instance-level edge generation rather than
relying solely on semantic features, making it a scalable solution for UIS.

B.4.2 PROBLEM B. SINGLE INSTANCE FRAGMENTATION

Root Cause of Problem B: Limitations of Graph Cut. Graph-cut based UIS methods (Wang
et al.l 2023bja; L1 & Shin, [2024) require a hyperparameter, 7, which acts as a threshold for the
initial graph construction. In this approach, the image is represented as a graph, where each pixel
(or patch) corresponds to a vertex, and each edge represents the degree of similarity (i.e., affinity)
between two pixels (or patches). The affinity A; ; between vertices ¢ and j is measured using the
cosine similarity S; ; of their respective feature maps. If S; ; > 7, vertices ¢ and j are connected by
an edge; otherwise, they are not connected.

Intuitively, 7 determines the sensitivity of the UIS method to similarities between feature maps. For
instance, if 7 is close to 1, only pixels with nearly identical feature maps are considered connected.
Conversely, if 7 = 0, every pixel is connected to every other pixel. The graph-cut algorithm then
partitions the graph into two partitions—a foreground partition and a background partition—by
minimizing the number of edges that need to be removed. The foreground object is identified using
a heuristic rule, and the corresponding partition is presented as an instance mask. For the UIS
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n MaskCut Results with Various Hyperparameter Combinations

Ground Truth

Ours+MaskCut

0.10 0.15 0.20 0.25 0.30 0.35 0.40 T
Figure 13: Drawbacks of MaskCut with various n, 7 combinations. Due to the semantic-oriented
nature of the DINO backbone used in MaskCut, increasing n or decreasing 7 does not result in the
successful separation of the two adjacent instances. Rather, changing the hyperparameters leads to
fragmentation and detection of false positives in the background.

method to detect at most n distinct instances, this process needs to be repeated for n iterations,
where n is a fixed hyperparameter.

The value of 7 impacts the granularity of the instance masks produced by graph-cut based methods
(see Fig. [I3). A fixed 7 often leads to fragmentation of single instances or merging of multiple in-
stances, as it cannot be dynamically adjusted for each image. Additionally, methods that fix iteration
counts, n, cannot detect more than n instances, failing in instance-dense images. This fixed tuning
for 7 and n» may work on the average case, but does not generalize well across different images.

Our Solution for Problem B. By contrast, TRACE predicts edges between adjacent instances with-
out tuning hyperparameters (e.g., n, 7) related to instance count, making it more flexible and robust.
Experimentally, TRACE-generated edges effectively resolve fragmentation and separate adjacent
instances, achieving both conceptual and practical advantages. Since TRACE-generated edges ac-
curately delineate each instance, we can use the edge map to construct a transition probability matrix
for a random walk on the pixel space. This spreads out the masks within the edges (increased IoU be-
tween masks of the same instance) while effectively stopping masks from spreading over the edges
(restricted IoU between masks of distinct instances, even if the instances are adjacent). As a result,
our edge-generation approach allows TRACE to handle both adjacent instance merging and single
instance fragmentation, enhancing existing UIS methods (L1 & Shin, 2024} Wang et al.| [2023a).

C METHOD DETAILS

C.1 REPRODUCIBILITY

Training follows standard diffusion model fine-tuning regardless of the backbone. During the one-
step distillation stage (Sec. [3.4), LoRA adapters with rank 64 are optimized using Adam with a
weight decay of 4e-5. Input images are randomly resized to the native resolution of each backbone,
namely 512 x 512 for SD1.5 and 1024 x 1024 for SDXL and SD3.5-L. For UIS and WPS, dataset
splits, augmentations, and evaluation protocols strictly follow the corresponding prior works (Jo
et al.l 2024a; L1 et al.,2023b; [Wang et al., [2023a)) to ensure a fair comparison; hyperparameters not
specified above are inherited from the respective baselines.

C.2 DIFFUSION MODELS AND FLOW MATCHING MODELS

Diffusion models (Rombach et al.,2022; |Podell et al., 2023 and Flow Matching models (Esser et al.}
2024; [Lipman et al.l [2022)) are generative models that learn to produce realistic data by reversing
a gradual noising process. We use the term diffusion model to refer to both, as our method is
compatible with either. Starting from a clean image Xy ~ pg, noise is progressively added over
time to obtain X;:

Xt = OétX0+Ut€, ENN(O,I) (3)

Here, o, and oy vary with time ¢ and control how much of the image and noise are mixed. Early
steps keep the image mostly intact; later steps produce nearly pure noise. This design enables the
model to learn different levels of structure across time, from coarse to fine.
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A neural network eg (X4, t) is trained to predict the noise €, minimizing the loss:
0 = argm@inEXO)t7€||eg(Xt,t) — |3 4)
After training, the original image can be approximately recovered by removing the predicted noise:
: 1
Xo = o (Xt — orep-(Xy, 1)) ®)
t
We denote this forward-and-reverse process as Reconstruct(eg-, Xo, t).

Flow Matching models follow a similar principle but learn the velocity X, of the diffusion process
using a network vg. They minimize Ex, ¢ ¢ ||ve (Xy,t) — (X0 + dte)||§ with reconstruction given
by Xo = a% (vo(X¢, t) — G€).

C.3 SELF-ATTENTION ACCUMULATION

For a noised image X; at time step ¢, the self-attention mechanism computes spatial dependencies
using weights Wq, Wi

Qi = X Wq, Ki = X, Wy € R4 (6)
Qi Kl HWxHW
SA(X;) = softmax 7 € [0,1] @)

where d is the dimensionality of the attention heads, and H, W are the height and width of the
self-attention map.

In text-to-image diffusion models, multiple self-attention maps SA;, ..., S AN are produced at var-
ious resolutions w1, ..., wn (w; is the width of the ¢th SA map). We accumulate these maps by
upsampling each to the resolution of the highest-resolution map, followed by averaging across all
maps:

N . .
. 1 i
SA[Z,j,Z,:] :NZSAIC |:(5’6j’:’::| (8)
1 k Ok
B
0 = = ©
wy,

The hook function H(eg, Xo,t) extracts all self-attention maps evaluated in the forward pass at
timestep ¢ given input image X and returns the accumulated attention map in Eq. [§]

C.4 DETAILS OF IEP AND ABDIV

Algorithm [T] IEP; Sec. B.2): Identifies the optimal diffusion timestep ¢t* for instance separation
by locating the peak in the Kullback-Leibler (KL) divergence between consecutive attention maps.
As derived in Appendix [C.6] this peak theoretically corresponds to the point of maximum Fisher
information with respect to the noise level, marking the rapid emergence of structural instance cues.
Empirical consistency of this metric across diverse models and random seeds is further validated in

Appendix [E2]
Algorithm 1 IEP : X (Image) — SAjng

Require: Image X, Sequence of timesteps 79 < 71 < - - - < Tn, Frozen Diffusion Model €p- (-, -)
1: Initialize: KL-gap<— 0, SAjpg < 0

20 X Reconstruct(eg«, Xo, 1) Hook H
3: SA(X.,-O) — H(Eg*,Xo,To)

4: forn =1to N do

5: Xy < Reconstruct(eg+, Xo, 7) Hook H
6:  SA(X.,) < H(eor, Xo,Tn)

7:  if KL-gap< Dxi(SA(X.,_,) || SA(X,,)) then

§  Kl-gape Do (SA(X;, ) || SA(X:)

9: SAips < normalized SA(X,)

10:  end if

11: end for

12: return SAjng
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Algorithm 2| (ABDiv; Sec. 3.3): Transforms instance-aware self-attention maps into pseudo-edge
maps without annotations. Crucially, this algorithm implements a reliability-based filtering step:
pixels with ABDiv scores in the intermediate range (i — o, t + o) are labeled as uncertain (E; ; =
—1) because they typically correspond to ambiguous texture gradients or noise rather than definitive
instance boundaries. By explicitly masking these regions, we prevent the introduction of label noise
during the subsequent self-distillation phase, ensuring that the edge decoder learns only from high-
confidence boundary signals.

Algorithm 2 ABDiv: SA;, — F (Pseudo Instance Edge)

Require: Self-Attention Map SAjng
: Initialize: Fy <+ Ogxw
for (i,7) in [H] x [W] do

Eoli, j] < ABDiv(4, j; SAing)
end for
1 < mean of Fj
o < standard deviation of Ej

1:-[Ey > p+o] Edge Pixel
7. E=¢0-[Ey <p—o| Interior Pixel
(—1) - [otherwise] Uncertain Pixel

8: return

SAAN A

C.5 DETAILS OF ONE-STEP SELF-DISTILLATION WITH EDGE DECODER

Algorithm [3] (Sec. [3.4): Fine-tunes the transformer layers of text-to-image diffusion models and
trains a new edge generator G, from scratch. For the architecture of G4, we use a lightweight CNN
decoder for simplicity, and in Tab.[I0]we show that replacing it with heavier designs such as U-Net or
Mask2Former-style decoders yields negligible gains, indicating that most of the instance-boundary
detail already resides in the TRACE edge cues themselves.

Algorithm 3 One-step Self-Distillation of TRACE

Require: Image Dataset Z, Pseudo-Edge Set {E;} ez
Edge Generator G,
Pretrained Text-to-Image Diffusion Model €y

1: for Epochinl... N do

22 L<+0

3: forIinZdo

4 I < Reconstruct(eg, I, 7 = 0) Hook H
5 E < Gy(H(ep, I, ™ = 0)) Predicted Edge
6: FE <+ FEr Pseudo-Edge
7 L« L+||I —I|? + DiceLoss(E, E)

8:  end for

9:  Backprop on L(0, ¢)
10: end for

Dice loss is computed as follows:

2 Wi,Ei B

DiceLoss(E, E) = 1 (10)

and the weighting W, ; = 1[E; ; # —1] excludes uncertain pixels. We exclude uncertain pixels
(where £ = —1) from the dice loss computation via W to allow the model to focus on confident
edge and interior points.
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C.6 DETAILS OF BOUNDARY-GUIDED PROPAGATION

Algorithm 4 UIS/WSS Segmentation Masks with TRACE

Require: Image /
Trained Edge Decoder G-
Fine-Tuned Diffusion Model €y«
Masks My, ..., My from a UIS/WSS Method

1 ]+ Reconstruct(egp, I, t =0) Hook H
2 E Gy (H(ege, I, t =0)) Predicted Edge
3: Identify Connected Components using E and CCL

4: M} «+Propagate Mask M,, via BGP Figure|[6]
5: Merge Masks with an IoU > 756p

6: Return Final Masks

We apply the random-walk methods proposed in (Ahn et al.l|2019a; |/Ahn & Kwakl 2018). Here, we
outline a high-level overview of the propagation technique.

1. Sparse Affinity Construction: From a pseudo-edge map E, construct sparse affinity ma-
trix Agparse by calculating affinities between each pixel and its neighbors along predefined
paths. Paths with edges (indicating boundaries) have low affinities, while edge-free paths
have affinities closer to 1.

2. Sparse to Dense Affinity: Convert Agre into a dense matrix Agense by filling in affinities
for every pixel pair. For symmetric consistency, if a path exists between pixels 7 and 7, then
both Agense[i, 7] and Agense[J, ¢] are assigned the same value.

3. Seed Propagation: Compute the transition matrix 7' = D=1A%P | where D normalizes

dense’
rows of Agfnse. After t iterations, updated masks are generated via:

vec(M}) =T - vec(M, ® (1 — E)), (11)

where (1 — E) prevents edge pixels from influencing neighbors, focusing propagation on
non-edge regions.

This method creates more coherent and complete instance masks.

D INFORMATION THEORETIC VIEW OF IEP

Setup and Assumptions. Fix a query pixel ¢ and let the ¢-th self-attention row at step t be the
softmax distribution:

L eXp(VtSij .
pii19) = Z20) 76y S explssy) (12)
Zt (2) ;
where s;; = ﬁqzkj is a time-invariant "clean” similarity of 7, j (similarity in the clean image) and
¢ > 0 is an effective inverse temperature. We assume throughout:
A.1. (Monotone schedule.) v; is C?, takes values in [0, 1], and is strictly decreasing along the

forward trajectory ¢ 1 (noise increases), with v;—g = 1 (clean image) and y;—1000 =~ 0
(pure noise).

A.2. (Bounded logits.) There exists S < oo such that |s;;| < S for all 4, j
A.3. (Non-degenerate row.) For a given 1, the set of similarity values {s;;}; contains at least wo
distinct values.

High-level Intuition. Under the standard forward diffusion parameterization z; = oz + 016, € ~
N (0, 1), the signal-to-noise ratio (SNR) o7 /o7 decreases along the forward trajectory as ¢ 1. Thus,
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it is natural and empirically accurate to model ~; as a strictly decreasing function of ¢ such that
vt & SNR(t). At pure noise (e.g., t = 1000), a lower value of 7; gives higher entropy; at pure signal

(e.g., t = 0), a high value of ; yields peaked assignments.

These minimal assumptions suffice for the identities below.

D.1 ROW ENTROPY AND ITS TIME DERIVATIVE

For the row entropy H:(i) = —3_;pt(j | i)logpe(j | i), classical exponential-family algebra
[Amari & Nagaokal (2000) gives:
. . OH (i
Hy(i) = log Zi(i) — %Ep, (i) [5i-], a;( ) _ = Vary, (i [si ] (13)
t

because dl%Epttli) [si.] = Vary,(.|s[s:.] and di% log Z; = Ey, (.5)[s:.]. By the chain rule,

dH, (i)  dH,(i) . .
dtt( - dftyi )% = —Jeye Vary, .js)[si ] (14)

Since 4; < 0 along the forward trajectory (A.1.), Eq. [[4]says row entropy increases from the clean
end toward the noise end (’slow-fast-slow” in magnitude, as we soon show), with the rate controlled
by the variance of s;. under the current row distribution.

Endpoint Behavior and Boundedness. By A.2., the variance of s;. under p;(- | 7) is bounded by:
Vary, (jalsi] = > pe(j | §)(si5 — Ep, 1) [s1])* < 9% < 00 (15)
J

dH, (i)

Hence, | 2| < 7¢|34]S2.

* At pure noise. At the noise end, v; — 0, so |dH(i)/dt| — 0 regardless of the exact vari-
ance. This theoretical result matches the small temporal change of near-uniform attention
observed before IEP.

* At pure signal. At the clean image end, a different mechanism makes |dH,(7)/dt| small:
if for j* = arg max; s;; and the top-2 similarity gap A; := s;;+ — max;-;« s;; > 0, then
p¢(- | i) concentrates on j* and Var,, (.|;)[s;.] shrinks.

Empirically, we see small temporal change at both ends and a single interior region of rapid change
which aligns with our theory.

D.2 INTER-STEP KL AND FISHER INFORMATION

Inter-step KL Peaks at Maximal Fisher information. Recall that the Fisher information in ~; is
defined by

Zi(v) :=E

| %}

o ’ o ? 2
<a% 10gpt> \ %] =E l((a%(%sij — log Zt)> | ’Yt] =E |:(5ij —Ep 1ylsi])

=Vary, [s]

As in our implementation, we consider the KL divergence between consecutive attention rows at
steps t — At and ¢. For small At, a second-order expansion of the row KL divergence yields:

1
KL(pe—ae(- [ )lpe(- 1) = 53¢ = m-a0)* Vary, [s] +o((A%)?) (16)
Ay =TZ; ()

where Z;(v;) is the Fisher information of the one-parameter family p;(j | i) o< exp(7y:s;;) with
respect to ;.
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Thus, the Instance Emergence Point t* that maximizes the row-wise temporal KL coincides (to
second order) with the point of maximal Fisher information for that row. Averaging rows (as we
do operationally when measuring the KL over full maps) preserves the same interpretation at the
map level. We also remark that any f-divergence has the same local quadratic form with the Fisher
information Nielsen & Hadjeres|(2019) by a difference of a factor ¢y > 0,

Dy(pe-ae(- | )llpe(- [4) = cp - (Am)? Vary, [s] +o((Ay)?)
——

=Z;(ve)

explains why KL, JSD, and other f-divergences all produce the same IEP location (up to small
higher-order effects), as highlighted in Tab. [

E COMPREHENSIVE ANALYSIS AND DISCUSSION

E.1 ABLATION STUDIES ON DESIGN CHOICES

Impact of Uncertainty Masking. In Algorithm [2]and Eq. pixels whose ABDiv score falls into
the “uncertain” range (assigned value —1) are ignored from the loss by a binary mask, so that only
pixels labeled as 0 (non-edge/background) or 1 (edge/foreground) contribute to the supervision. This
strategy follows common practice in weakly-supervised segmentation (Ahn et al 2019a; Jo et al
[2024a)), where ambiguous regions are ignored to reduce label noise in pseudo semantic masks. We
adopt the same idea for the pseudo instance-edge map F, using ABDiv as a reliability cue.

Table 0] quantifies the impact of this design. When we threshold ABDiv only at  and treat all
pixels as confident (i.e., label E;; = 1 if ABDiv;; > p and E;; = 0 otherwise), the instance
segmentation metrics improve over ProMerge but remain limited, and the edge
precision at ODS drops to 0.572. This large decrease compared to the proposed p + o scheme
(0.852) indicates a substantial increase in false-positive edge pixels. In contrast, masking uncertain
pixels between 2 — o and i + o during training not only yields larger gains in AP™ and ARTY,, but
also improves edge precision by about 1.5x while keeping ODS-recall within ~ 1% of the p-only
variant. This suggests that excluding uncertain regions effectively suppresses noisy edges without
sacrificing recall, leading to a more favorable balance between false positives and false negatives in
the distilled edge supervision.

Sensitivity to Instance-aware Text Prompts. All main results of TRACE are obtained without
instance-aware prompts (e.g., A photo of two cats), using only a null-text prompt. To assess the
potential benefit of such supervision, we conduct an additional experiment in which, during training,
we exploit the instance annotations in ImageNet (Krizhevsky et al 2012) to construct descriptive
prompts of the form “A photo of [number of boxes] [class]”, and at inference we mirror this setup on
COCO by building prompts from its instance annotations in the same way while
keeping all other components of TRACE fixed. In this setting, AP™* increases slightly from 8.2
(null-text) to 8.3 (instance-count prompt), indicating that explicit instance-aware text information
can provide a small but marginal gain compared to the overall improvement brought by TRACE
itself. Moreover, under the same conditions as Fig. Bkb), the diffusion trajectories with null-text
and instance-count prompts are almost indistinguishable, and we do not observe any systematic
shift in the optimal timestep ¢*. These observations support our claim that TRACE does not rely
on instance-aware text supervision: the crucial instance-boundary cues are already encoded in the
early diffusion timesteps conditioned on the image alone, with instance-count prompts offering only
minor additional refinement.

Table 9: Ablation on pseudo-labeling schemes for ABDiv (Sec. [3.3). ODS-Precision and ODS-
Recall denote the precision and recall at the optimal dataset scale (ODS) for instance edges, from
which the ODS (F-measure) is computed.

Method Pseudo-Labeling for ABDiv  AP™  ARTX,  ODS-Prec. ODS-Rec. ODS
ProMerge (Li & Shin}[2024 - 3.1 7.6 - - -

+ TRACE 7 6.4 11.4 0.572 0.963 0.717
+ TRACE pEto 8.2 13.1 0.852 0.950 0.889
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Influence of Decoder Capacity. A natural Table 10: Effect of edge decoder capacity. We
question is whether sharper instance boundaries  replace our lightweight CNN edge decoder in
actually require a heavier edge decoder. To TRACE with heavier alternatives and evaluate
isolate the effect of decoder capacity, we re- performance of unsupervised instance segmenta-
place our lightweight edge decoder G, with tion on COCO 2014.
two representative alternatives Mothod

let all 2015} [Cheng et al.l 2022), while keeping o

Params. of Dec. AP™k

the TRACE instance-edge cues (i.e., the accu- Pr%gzrgg UN 2 l_le gé
mulated multi-scale self-attention maps #(+)) ITR ACE EM_aslitz)Former) 558 MB 84
fixed. As shown in Tab.[I0] upgrading the edge |, TRACE 0.1MB 32

decoder from our 0.1 MB 1-layer CNN to a
34 MB U-Net (Ronneberger et al., 2015) leaves
AP™ unchanged (8.2 vs. 8.2), and even a 258 MB Mask2Former-style decoder (Cheng et al., 2022)

ields only a marginal gain (8.4 AP™). By contrast, adding TRACE on top of ProMerge (Li &
already increases AP™ from 3.1 to 8.2. These results indicate that sharp, instance-
aware boundaries primarily come from the TRACE instance-edge cues themselves; once these cues
are available, a minimal 1-layer CNN decoder is sufficient, and substantially larger decoders bring
negligible additional benefit.

E.2 IN-DEPTH CHARACTERIZATION OF IEP

Evaluation of Similarity Metrics. To assess whether Table 11: Similarity metrics for IEP.
our KL criterion is a special case or a broadly effective Metric Latency/img VOC COCO
choice, we extend the comparison in Tab. El and evalu-
ate additional similarity measures used as IEP scores,
summarized in Tab. [T Besides symmetric KL apd MSE (L2) 1,232 ms 13 35
standard regression losses (MSE/L2, MAE/L1), we in- MAE (L1) 924 ms 35 33
c!ude an entropy-based score and the Wa§sersteln—1 Entropy 2.070 ms 51 41
distance WW;. For the entropy-based metric, we use e 3434 ms 6.2 5.0
the absolute entropy difference between two probabil-
ity maps p and ¢ (i.e., |H(p) — H(q)| with H(p) = — ", pilog p;). For the Wasserstein distance,
we measure a 1D Wasserstein-1 distance on the flattened distribution. Empirically, KL achieves
the highest instance segmentation performance (AP™ = 9.4) with moderate latency (3,082 ms
per image). Jensen—Shannon divergence (JSD) attains the same AP™ but is substantially slower
(5,120 ms), offering no practical advantage over KL. Entropy difference and Wasserstein distance
are clearly inferior in AP™* (5.1 for entropy, 6.2 for ) despite comparable or higher computational
cost. We note that JSD can be written as JSD(p, ¢) = $KL(p|[m)+ KL (q|/m) with m = (p+q),
and is equal to the mutual information between samples and a binary index variable, so this ablation
also serves as a mutual-information—style variant of our IEP score. Overall, these results support our
choice of KL as the primary IEP metric: it provides the best trade-off between accuracy and effi-
ciency, while entropy- and Wasserstein-based alternatives underperform and the mutual-information
variant (JSD) yields similar AP at higher latency.

KL (Ours) 3,082 ms 94 8.2
JSD 5,120 ms 94 8.1

Distributional Consistency of ¢*. To further characterize the distributional patterns of IEP (Sec.
beyond Fig.[/[b), we extend the analysis to different datasets and object categories, as shown in
Fig.|14] Figure ﬁa) reproduces the VOC 2012 train-set distribution of optimal timesteps ¢* used in
Fig.), while Fig.[T4|b) shows the corresponding distribution on the much larger COCO 2014 train
set (82,783 images). Across all five diffusion backbones, the COCO histograms closely match those
from VOC, with t* consistently concentrating in the same instance-aware range, indicating that the
semantic-to-instance transition is stable across datasets and scales. In Fig.[T4|c), we further restrict
the analysis of IEP to images containing two most frequent classes in COCO and plot the per-class
distributions of ¢*. Although there are mild class-dependent shifts, the instance-aware timesteps for
all four classes lie predominantly in the noise-like instance regime rather than the semantic regime,
and they remain largely concentrated between 30-60% of the diffusion trajectory, consistent with
the global patterns observed in Fig.[T4|b).

E.3 EXTENDED BENCHMARKING ON DIVERSE DOMAINS

Generalization to Diverse UIS Benchmarks. To rigorously evaluate the generalization capability
of TRACE across varied domains, we extend our unsupervised instance segmentation (UIS) exper-
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Figure 14: Histograms of the optimal timestep ¢* across datasets, diffusion backbones, and
object categories. (a) VOC 2012 train set. (b) COCO 2014 train set. (c) Top-2 COCO classes
(person and car). In all cases, the optimal timesteps ¢* for five diffusion models concentrate in a
shared instance-aware region, indicating a consistent semantic-to-instance transition and stable IEP
behavior across models, datasets, and categories.

iments to seven benchmarks: COCO 2014 (Lin et al.| 2014), COCO 2017 (Caesar et al., [2018]),

LVIS (Gupta et all 2019), KITTI (Geiger et al.,[2012)), Objects365 (Shao et al.;[2019), SA-1B
illov et al.,[2023), and VOC 2012 (Everingham et al., 2010). We compare TRACE (with SD3.5-L

backbone (Esser et al [2024)) against three representative UIS methods: TokenCut
[2023b), MaskCut (Wang et al| [2023a)), and ProMerge [2024). For fair comparison,
we strictly reproduce these baselines using their official public checkpoints and evaluation proto-
cols (see Appendix [F| for details). Crucially, to align with the standard UIS protocol where models
(Wang et al| [2023bja) are typically fine-tuned on the ImageNet train set (Krizhevsky et al., 2012),
we also fine-tune our diffusion backbone and edge generator on ImageNet. This allows us to gen-
erate TRACE-based instance edges using the ImageNet-trained model and apply them directly to
downstream datasets without any target-specific adaptation. As shown in Tab. TRACE con-
sistently outperforms all baselines across all datasets, achieving an average AP™" of 5.1, which
corresponds to a 2.3 x improvement over the strongest baseline (ProMerge). Notably, on the chal-
lenging LVIS dataset (Gupta et al.,[2019)), which features a long-tail distribution, TRACE more than
doubles the performance (1.1 — 2.5 AP™*), indicating superior handling of rare and diverse objects.
Similarly, in the dense scenes of Objects365 2019), TRACE achieves a significant boost
(1.7 — 4.3 AP™"), proving its efficacy in separating heavily occluded instances where traditional
feature clustering often fails. These results confirm that the instance-aware cues extracted from
diffusion priors capture fundamental structural boundaries rather than dataset-specific semantics.
Consequently, this demonstrates that the refined instance edges produced by TRACE are robust and

Table 12: Performance of unsupervised instance segmentation on multiple benchmarks. To
ensure a fair comparison with existing UIS models (Wang et al.,[2023ba)) fine-tuned on the ImageNet

train set (Krizhevsky et al] 2012), we also fine-tune our diffusion model (SD3.5-L (Esser et al],

[2024)) and edge generator on the ImageNet train set (Krizhevsky et al.l [2012). This allows us to
generate TRACE-based instance edges from the ImageNet-trained model and apply them directly

to other seven datasets (Everingham et al., 2010} [Lin et all, 2014} [Gupta et al, 2019} [Geiger et al
2012} [Shao et al.| 2019; Kirillov et al., 2023) without further fine-tuning.

VOC2012 COCO2014 COCO2017  LVIS KITTI ~ Objects365  SA-1B Average
AP ARTHS AP™F ARTH APTF ARJY APTF ARYH AP™F ARTH AP™F ARTH AP™F ART AP™F ARTH
TokenCut 6.1%* 10.6* 27 46 20 44 09 18 03 15 11 21 10 03 20 36
MaskCut  5.8% 14.0% 3.0% 67% 23* 65% 09% 26% 02¢ 19% L7¢ 40% 08 06% 21 52

ProMerge 5.0* 13.9*% 3.01* 7.6* 25% 7.5% 1.1% 34%¥ 02*% 16% 22%¥ 6.1*% 12% 0.8% 22 5.8
+TRACE 94 182 82 131 78 112 25 4.7 1.2 2.6 4.3 9.5 2.0 1.6 5.1 8.7

* Reproduced results using publicly accessible code for a fair comparison. The rest are the values reported in the publication.

Method
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generalizable, effectively bridging the gap between semantic grouping and instance separation even
in zero-shot transfer scenarios.

Enhancement of Open-Vocabulary Segmentation Table 13: Performance of open-vocabulary
Frameworks. While most of our experiments fo- gsegmentation. We attach TRACE to two
cus on closed-set benchmarks, we additionally eval-  gpen-vocabulary segmentation methods and
uate TRACE in open-vocabulary segmentation set- evyaluate on five benchmarks.

tings by attaching it to recent open-vocabulary mod- -
els. Specifically, we integrate TRACE with TTD (Jo| Method YOC _ Comext Swff ADE Cly
et al and Talk2DINO PTRACE 649 403 243 183 313
2025) and measure performance on five standard — oo T o o o oo o
open-vocabulary segmentation benchmarks: VOC +TRACE 684 448 321 239 402
2012 (Everingham et al., [2010), Pascal Context

(Mottaghi et al., 2014), COCO-Stuff (Caesar et al, 2018), ADE20K (Zhou et al] 2019), and
Cityscapes (Cordts et al] 2016). As shown in Tab. [I3] refined instance boundaries from TRACE

consistently improve open-vocabulary segmentation quality. On top of TTD [2024b),
TRACE yields gains of 0.6-3.8 points across datasets (e.g., from 61.1 to 64.9 on VOC and from
27.9 to 31.3 on Cityscapes), and on top of Talk2DINO (Barsellotti et all,[2023)) it further improves
performance by 1.4-2.6 points (e.g., from 65.8 to 68.4 on VOC and from 38.1 to 40.2 on Cityscapes).
These results indicate that the instance-aware cues extracted by TRACE transfer beyond closed-set
UIS and WPS (Tabs. [I]and [2) and provide consistent benefits for open-vocabulary segmentation,
including real-world scenes, by sharpening object boundaries while preserving the underlying open-
vocabulary recognition capability of the backbone models.

E.4 LIMITATIONS AND FUTURE DIRECTIONS

Challenges in Satellite Imagery (Tiny Instances). Table 14: Performance on satellite
While TRACE substantially improves instance segmenta-  penchmarks. For a fair comparison, we
tion on natural-image benchmarks (see Tabs. [Tland[2), we  evaluate instance segmentation perfor-
observe a clear limitation on datasets dominated by very mance on HRSID and iSAID test sets
small objects (i.e., instances occupying only about 0.01%  in terms of AP™2k

of the image area). Table 14| reports results on two satel- -
lite benchmarks such as }I%I{SID and ~_Method HRSID ISAID
iSAID (Waqas Zamir et al,[2019), evaluated on their of- ~ Mask R-CNN 65.4 25.6
ficial test sets using AP™¥, When added on top of Mask _* TRACE 503¢5.1) 202(54)
R-CNN (ResNet-101+FPN) 2017), TRACE

leads to a degradation of 5.1 AP™* on HRSID (65.4 — 50.3) and 5.4 AP™* on iSAID (25.6 —
20.2). We attribute this failure mode to the resolution loss inherent in latent diffusion models: before
denoising, all images are encoded by a VAE into a low-resolution latent grid (up to a 16x spatial
downsampling), as shown in Fig. [d] which severely compresses tiny structures. As a consequence,
closely packed small objects tend to share blurred or merged boundaries in latent space, and the de-
coded instance-edge cues from TRACE cannot reliably separate individual instances in high-density
satellite scenes. Qualitatively (see Fig.[T5|a)), we often observe multiple nearby targets fused into
a single instance mask. Addressing this limitation likely requires diffusion backbones with higher-
resolution latents or hybrid schemes that combine TRACE with high-resolution, task-specific feature
extractors for small-object regimes.

Applicability to Medical Imaging (Out-of- Table 15: Performance on medical bench-
DiStl‘ibutiOl‘l). TRACE is built on teXt-tO-image marks. For a fair Comparison’ we evalu-

diffusion models trained on natural images, which ate panoptic Segmentation performance on

raises concerns about its behavior on out-of- MoNuSeg/TNBC test sets in terms of PQ.
distribution domains such as histopathology images.

In Tab. [T3] we evaluate two cell instance segmenta- _victhod MoNuSeg TNBC
tion methods, SSA (Sahasrabudhe et al., 2020) and SSA 0.185 0.253
COIN D025), on the MoNuSeg (Kumar] _+TRACE 0148 (0.037) 0.209 (:0.044)
2020) and TNBC (Naylor et al] 2019) test ~coIN 0.536 0.540

sets using PQ. Adding TRACE on top of these +TRACE 0.439 (-0.097) 0.426 (-0.114)
backbones consistently degrades performance: PQ
drops from 0.185 to 0.148 on MoNuSeg and from 0.253 to 0.209 on TNBC for SSA, and from 0.536
to 0.439 (MoNuSeg) and 0.540 to 0.426 (TNBC) for COIN. We hypothesize that this limitation
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Input Image Ground-Truth Mask

TRACE (Ours) TRACE (Ours)

Original Resolution

4x Zoom

(a) Satellite Benchmarks (e.g., HRSID)
Figure 15: Failure cases on satellite and medical benchmarks. Two examples illustrate key limi-
tations of TRACE on tiny objects and out-of-distribution domains.

stems from a domain mismatch between natural-image diffusion priors and medical imagery: the
diffusion backbones we use are trained on photographs, not histopathology slides, and their latent
representations tend to emphasize color and texture patterns that do not align with cell boundaries.
Consequently, incomplete instance edges predicted by TRACE often undersegment cells, as seen
in Fig. [I5[b). These results indicate that directly applying TRACE to highly out-of-distribution
medical images can be harmful, and suggest that future extensions should either adapt the diffusion
prior to the medical domain (e.g., via domain-specific diffusion training) or combine TRACE with
medical-specific feature extractors and supervision.

F DATASETS AND METRICS FOR EVALUATION

Datasets for Unsupervised Instance Segmentation. We evaluate our TRACE on seven bench-
marks including COCO2014 (Lin et al., 2014) and COCO2017 (Caesar et al [2018), LVIS (Gupta
et al.;, 2019), KITTI (Geiger et al.,|2012), Objects365 (Shao et al.} 2019), and SA-1B (Kirillov et al.,
2023). COCO02014 (Lin et al.,[2014) and COC02017 (Caesar et al., |2018]) are standard datasets for
object detection and segmentation. COCO2014 has 80 classes, 83K training images and 41K vali-
dation images. COCO2017 is composed of 118K and 5K images for training and validation splits
respectively. For results on COCO2014 and COCO2017, we use the images in the validation split.
LVIS has densely-annotated instance masks, making it more challenging for segmentation. We test
our performance on the validation set containing 245K instances on 20K images. For KITTI and
Objects365, we evaluate on 7K images and a subset of 44K images in the val split, respectively.
Lastly, for SA-1B, we assess on a subset of 11K images, which come with 100+ annotations per
image on average.

Datasets for Weakly-supervised Panoptic Segmentation. Pascal VOC (Everingham et al., [2010)
consists of 20 "thing” and 1 ”stuff” categories. It contains 11K images for training and 1.4K images
for validation. COCO2017 (Caesar et al.,|2018) has 80 ’thing” and 53 “’stuff” categories, which is a
challenging benchmark for PS. We validate TRACE on the 5K images in the validation dataset.

Datasets for Instance Edge Evaluation. To directly evaluate instance-edge quality, we construct an
instance-aware edge benchmark from the COCO 2014 validation set (Lin et al., 2014). For each of
the 41K validation images, we start from the ground-truth panoptic segmentation masks and extract
instance boundaries by labeling pixels that lie on the borders between distinct panoptic segments
as positive edges, and all remaining pixels as background, as shown in Fig. [TT] The resulting bi-
nary instance-edge maps are used as ground truth for all our edge-quality experiments (ODS/OIS
and connectivity metrics (Shit et al., 2021)) on real images, enabling a direct comparison between
TRACE and conventional edge detectors | Xie & Tu| (2015);|Su et al.|(2023) under an instance-aware
boundary supervision rather than generic low-level contour annotations.

Evaluation Metrics for Edge Quality. To evaluate the quality of instance boundaries, we follow the
standard evaluation protocols widely adopted in general edge detection methods such as HED (Xie
& Tul 2015) and PiDiNet (Su et al., [2023]). We report the standard F1-score (or F-measure, defined

%) using two standard metrics: Optimal Dataset Scale (ODS) and Optimal Image
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Scale (OIS). ODS computes the Fl-score using a global threshold that is optimal across the entire
test dataset, providing a measure of generalizability. OIS selects the optimal threshold for each
individual image to maximize the F1-score, reflecting the best possible performance per image.

Furthermore, since pixel-wise metrics often fail to capture the topological correctness of thin bound-
ary structures, we additionally employ the clDice (centerline Dice) metric (Shit et al.,2021). Unlike
the standard Dice coefficient, clDice calculates the overlap between the skeletons (centerlines) of
the predicted edges and the ground truth. This allows for a more robust evaluation of topological
connectivity and structural preservation of the instance edges.

Evaluation Metrics for Instance Segmentation. We evaluate the performance comparison of UIS
methods with and without TRACE based on average precision (AP) and average recall (AR) on
Pascal VOC and MS COCO dataset. Precision and Recall are defined as

Precisi TP Recall TP (17
recision = ————— Recall = ———

BN TP TP + FN
where TP, FN, FP are short for True Positive, False Negative, and False Positive, respectively. Intu-
itively, a high precision means the method has a low rate of making false positives, but it does not
imply that all the positives were found. A high recall means the method has a low rate of making
false negatives.

AP measures the precision across different recall levels. A high AP means the method finds most
objects(recall) while minimizing false positives (precision). On COCO, AP is calculated over dif-
ferent IoU thresholds and object sizes, then averaged. For Pascal VOC, mAP is used, averaging AP
across classes at a single IoU threshold (0.5). COCO uses mAP@IoU=0.5:0.95, meaning it averages
AP across ten IoU thresholds(0.50, 0.55, ..., 0.95).

1
AP = / precision(r)dr (18)
0
AP, AP, AP,
mAPeoco — mALys0 +m 0.1565 + -+ mALFps (19)

Average Recall (AR) is calculated as the area under the recall-threshold curve. Like AP, it is aver-
aged over multiple IoU thresholds. AR reflects how well the method recalls true objects rather than
balancing precision and recall. In COCO, AR is reported as AR@100, AR@100 (small), AR@100
(medium), and AR@100 (large), corresponding to the average recall with up to 100 detections per
image across different object sizes.

Evaluation Metrics for Panoptic Segmentation. We report evaluation results on the standard
evaluation metrics of panoptic segmentation task, including panoptic quality (PQ), segmentation
quality (SQ) and recognition quality (RQ). PQ is defined for matched segments (IoU > 0.5 between
predicted and ground truth masks) and combines SQ and RQ:

_ Z(p,gt)ETP TIoU(p, gt)
~ |TP|+0.5|FP|+0.5|FN|

PQ (20)

Segmentation quality (SQ) measures the accuracy of segment boundaries, focusing only on segments
that were correctly identified and ignoring false positives and false negatives. SQ is defined as:

SQ N Z(p,gt)ETP IOU(p, gt)
; ITP|

21

Recognition quality (RQ) measures the model’s ability to correctly classify instances, accounting
for both precision and recall for detected instances. RQ combines recall (finding all objects) with
precision (only detecting true objects), focusing on instance recognition rather than segmentation
quality. RQ is defined as:

_ [TP|
~ |TP|+0.5|FP|+0.5|FN|

RQ (22)
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Table 16: Evaluation Segmentation Metrics on Pascal VOC and COCO datasets.

Metric Intuitive Meaning
AP Balance between precision and recall
AR Ability to recall true objects
PQ Combined segmentation quality and recognition quality
SQ Accuracy of segmentation shapes
RQ Correct classification of instances
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Image Ground Truth Point2Mask Ours+DHR

Figure 16: Qualitative results in WPS with ours (TRACE+DHR (Jo et al., 2024a)) and point-
supervised Point2Mask (Li et al., 2023b) on the VOC2012 (Everingham et al., 2010) validation
set. (Ours) We trained a Mask2Former using a ResNet-50 backbone with pseudo panoptic masks
generated from TRACE+DHR. The samples in this figure are the outputs from Mask2Former trained
with our masks.
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Ground Truth TRACE (Ours) ProMerge Ours+ProMerge MaskCut Ours+MaskCut

Figure 17: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and exist-
ing methods (ProMerge (Li & Shinl [2024), MaskCut (Wang et al.| 2023a))) on the COC02014 (Lin
et al., |2014) validation set.
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Ground Truth  TRACE (Ours) ProMerge Ours+ProMerge MaskCut OurstMaskCut

h)

Figure 18: More Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and
existing methods (ProMerge (L1 & Shin| 2024), MaskCut (Wang et al., | 2023a)) on the COC0O2014
(Lin et al.l [2014) validation set.
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Ground Truth  TRACE (Ours) ProMerge Ours+ProMerge MaskCut Ours+MaskCut

o "

\

Figure 19: More Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and
existing methods (ProMerge (L1 & Shin} 2024)), MaskCut (Wang et al., 2023a))) on the COC02014
(Lin et al.| 2014) validation set.
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Ground Truth TRACE (Ours) ProMerge Ours+ProMerge MaskCut Ours+MaskCut

N

Figure 20: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and ex-
isting methods (ProMerge (Li & Shin, 2024), MaskCut (Wang et al., 2023a)) on the COCO2017
(Caesar et al.,[2018)) validation set.
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Ground Truth  TRACE (Ours) ProMerge Ours+ProMerge MaskCut OurstMaskCut

| —

Figure 21: Qualitative results in UIS with ours (TRACE+ProMerge, TRACE+MaskCut) and ex-
isting methods (ProMerge (Li & Shin| |2024), MaskCut (Wang et al., |2023a))) on the VOC2012
(Everingham et al.| [2010) validation set.
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