
Under review as a conference paper at ICLR 2024

IMPROVING GRADIENT-GUIDED NESTED SAMPLING
FOR POSTERIOR INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a performant, general-purpose gradient-guided nested sampling algo-
rithm, GGNS, combining the state of the art in differentiable programming, Hamil-
tonian slice sampling, clustering, mode separation, dynamic nested sampling, and
parallelization. This unique combination allows GGNS to scale well with dimen-
sionality and perform competitively on a variety of synthetic and real-world prob-
lems. We also show the potential of combining nested sampling with generative
flow networks to obtain large amounts of high-quality samples from the posterior
distribution. This combination leads to faster mode discovery and more accurate
estimates of the partition function.

1 INTRODUCTION

Bayesian parameter estimation and model comparison are key to most scientific disciplines and
remain challenging problems, especially in high-dimensional and multimodal settings. While tradi-
tionally Markov chain Monte Carlo (MCMC) methods have been used to perform Bayesian infer-
ence, differentiable programming has enabled the development of new, more efficient algorithms,
such as variational inference (MacKay, 2003), Hamiltonian Monte Carlo (Duane et al., 1987; Neal
et al., 2011), and Langevin dynamics (Besag, 1994; Roberts & Tweedie, 1996; Roberts & Rosenthal,
1998); as well as more recent learning-based methods such as the Path Integral Sampler (Zhang &
Chen, 2022) and generative flow networks (Bengio et al., 2023; Lahlou et al., 2023).
From the perspective of differential programming, less attention has been paid in recent years to
nested sampling (Skilling, 2006; Buchner, 2021; Ashton et al., 2022), which is a widely used algo-
rithm for Bayesian parameter inference and model comparison. Nested sampling has been used in a
range of applications in the natural sciences, from cosmology (Mukherjee et al., 2006; Handley et al.,
2015a) and astrophysics (Lavie et al., 2017; Günther & Daylan, 2021) to particle physics (Yallup
et al., 2022) and biology (Russel et al., 2018). Furthermore, it provides both samples from the
posterior distribution and an estimate of the Bayesian evidence, which can be used for model com-
parison (Marshall et al., 2006) or to test compatibility between datasets (Handley & Lemos, 2019).
The key challenge in implementing a nested sampling algorithm is constructing a method that gen-
erates samples drawn from the prior, subject to a hard likelihood constraint. Whilst there is a wide
variety of publicly available implementations for doing so (see Buchner, 2021; Ashton et al., 2022,
for an exhaustive list), these methods are only capable of scaling to hundreds of dimensions (Hand-
ley, 2023).
One way to improve the performance of nested sampling algorithms is to use the information about
the gradient of the likelihood to propose new points. However, gradient-guided sampling on con-
strained domains is not straightforward. Whilst the materials science and chemistry literature has
made extensive use of gradient-guided nested sampling (Baldock et al., 2017; Pártay et al., 2021;
Habeck, 2015; Nielsen, 2013), these methods are often generally bespoke to their physical problems
of interest and are not suitable as general-purpose Bayesian samplers. Previous works, such as Be-
tancourt (2011); Speagle (2020) have shown the potential of reflective slice sampling (Neal, 2003),
also known as Galilean Monte Carlo (GMC) (Feroz & Skilling, 2013) or Hamiltonian slice sampling
(HSS) (Zhang et al., 2016; Bloem-Reddy & Cunningham, 2016), for general-purpose sampling, in-
cluding the case of non-smooth functions (Mohasel Afshar & Domke, 2015). However, these ap-
proaches have found HSS to be “substantially less efficient (and in general less reliable) than other
gradient-based approaches”.1 Another alternative is recent work in proximal nested sampling (Cai
et al., 2022; McEwen et al., 2023), which uses proximal operators to propose new points. However,
this method only works for log-concave likelihoods.

1Verbatim from the documentation of the dynesty algorithm.

1

Under review as a conference paper at ICLR 2024

In this work, we combine ideas from across the nested sampling literature and learning-based sam-
plers and create a new gradient-guided nested sampling (GGNS) algorithm. The four key differ-
ences with previous work are 1) the use of self-tuning HSS in combination with gradients calculated
through differentiable programming to propose new points, 2) incorporating parallel updates using
ideas from dynamic nested sampling (Higson et al., 2019; Speagle, 2020; Handley et al., 2015b) to
increase the speed of calculations, 3) A novel termination criterion, and 4) cluster identification to
avoid mode collapse. We show that with these changes in combination, our GGNS algorithm scales
to significantly higher-dimensional problems without necessitating a proportional increase in the
number of live points with respect to dimensionality. This allows GGNS to perform fast and reliable
inference for high-dimensional problems.
We show that the GGNS method presented in this work can be used to perform inference in a wide
range of problems and that it can be used to improve the performance of existing nested sampling
algorithms. Furthermore, we compare our method to existing algorithms for posterior inference and
show that it outperforms them, particularly when dealing with highly multimodal distributions. One
of the main advantages of the proposed approach is that it requires little hyperparameter tuning and
can be used out-of-the-box in a wide range of problems.
Finally, we show the potential of combining nested sampling with generative flow net-
works (GFlowNets, Bengio et al., 2021; 2023), which are policy learning algorithms that are trained
to generate samples from a target distribution and can flexibly be trained off-policy (Malkin et al.,
2023). We show how we can use nested sampling to guide GFlowNet training, leading to faster
mode finding and convergence of evidence estimates than with traditional GFlowNets. Conversely,
we also show how the amortization achieved by GFlowNets can be used to obtain large amounts of
high-quality samples from the posterior distribution.

2 BACKGROUND AND RELATED WORK

2.1 NESTED SAMPLING

Nested sampling is used for estimating the marginal likelihood, also known as the evidence, in
Bayesian inference problems (Skilling, 2006):

Z =

∫
L(𝜃)𝜋(𝜃)𝑑𝜃, (1)

where L(𝜃) is the likelihood function, and 𝜋(𝜃) is the prior distribution. This integral is often in-
tractable due to the high dimensionality and complexity of modern statistical models. In the process
of calculating this integral, nested sampling also produces samples from the posterior distribution.
At its core, nested sampling transforms the evidence integral into a one-dimensional nested sequence
of likelihood-weighted prior mass, allowing for efficient exploration of the parameter space. The
key idea is to enclose the region of high likelihood within a series of nested iso-likelihood contours.
This is achieved by introducing a set of live points distributed within the prior space and successively
updating this set by iteratively replacing the point with the lowest likelihood with a new point drawn
from the prior while ensuring the likelihood remains above a likelihood threshold.
As nested sampling progresses, it adaptively refines the prior volume containing higher-likelihood
regions. By constructing a sequence of increasing likelihood thresholds, nested sampling naturally
focuses on the most informative regions of parameter space. Consequently, nested sampling offers
several advantages, including robustness to multimodality in posterior distributions, convergence
guarantees, and the ability to estimate posterior probabilities and model comparison metrics. A
more detailed review of the algorithm can be found in appendix A.
The number of nested sampling likelihood evaluations scales as (Skilling, 2006; Handley, 2023):

𝑛like ∝ 𝑛live × 𝑓sampler × DKL (P|Π), (2)

where 𝑛live is the number of live points, 𝑓sampler is the efficiency of the live point generation
method (the average number of likelihood evaluations required to generate each new sample), and
DKL (P|Π) is the Kullback-Leibler divergence between the posterior and the prior.
To understand the scaling of nested sampling with dimensionality, we should consider the three
terms separately. Here, DKL (P|Π) is fixed by the problem at hand (so cannot be modified without
substantial adjustment of the meta-algorithm (Petrosyan & Handley, 2022)), and is usually assumed
to scale linearly with the number of dimensions. 𝑛live for most algorithms scales linearly with di-
mensionality for two independent reasons: First since the uncertainty in the log-evidence estimation

2

Under review as a conference paper at ICLR 2024

is approximately (Skilling, 2006)

𝜎(log 𝑍) ≈
√︁
DKL (P|Π)/𝑛live, (3)

if we wish to keep this constant we must scale 𝑛live with DKL (P|Π), which as discussed before scales
linearly with dimension. Second, most practical live point generation methods require a minimum
number of points to tune their internal parameters (such as ellipsoidal/cholesky decompositions or
neural network training), and this minimum number scales with dimensionality. In the next section,
we describe 𝑓sampler scaling.

2.2 PREVIOUS WORK

The key difficulty in nested sampling is that to generate a new point, one needs to sample points
from the prior subject to a hard likelihood constraint:

{𝜃 ∼ 𝜋 : L(𝜃) > L∗} . (4)

Broadly, the mechanisms for achieving this fall into two classes: region sampling and step sam-
pling (Ashton et al., 2022). Region samplers have excellent performance in low dimensions, but
have a computational cost that scales exponentially with dimensionality 𝑓sampler ∼ O(𝑒𝑑/𝑑0), where
𝑑0 ∼ O(10) is both method and problem dependent. Step samplers have a live point generation cost
that scales linearly with dimensionality 𝑓sampler ∼ O(𝑑), so are less efficient in low dimensions.
Region samplers use the current set of live points to define a proxy that encapsulates the
likelihood-constrained region eq. (4), and then appropriately samples from this proxy. For example
MultiNest (Feroz & Hobson, 2008; Feroz et al., 2009; Feroz et al., 2019) achieves this with an
ellipsoidal decompsition fit to the current set of live points, nessai (Williams et al., 2021; 2023)
trains a normalising flow and ultranest (Buchner, 2021) places ellipsoidal kernels on each live
point.
Step samplers run a Markov chain starting from one of the current live points, terminating when
one has decorrelated from the initial point and then using the final point of the chain as new point.
Whilst Skilling (Skilling, 2006) originally envisaged a Metropolis Hastings step, in practice on its
own this is a poor choice for sampling from hard-bounded regions. proxnest (Cai et al., 2022;
McEwen et al., 2023) uses prox-guided Langevin diffusion, DNest (Brewer & Foreman-Mackey,
2016) offers a flexible framework for programming one’s own stepper, neuralnest (Moss, 2020)
uses normalizing flow guided Metropolis steps and PolyChord (Handley et al., 2015a;b) uses
slice sampling. Finally, dynesty (Speagle, 2020) and ultranest (Buchner, 2021) offer Python
re-implementations of many of the above within a single package, with a default dimensionality-
dependent switching between region and path sampling.
Dynamic nested sampling (Higson et al., 2019; Speagle, 2020) is a variant of nested sampling which
proposes eliminating and replacing multiple points at each iteration. It was initially implemented in
the dyPolyChord2 and dynesty3 packages, but now is common to many implementations (Ash-
ton et al., 2022). It has two main use-cases; increasing the number of posterior samples generated
by nested sampling, and implementing parallelization schemes.

2.3 HAMILTONIAN SLICE SAMPLING

HSS was first introduced in the context of slice sampling (Neal, 2003), as a variant of Hamiltonian
Monte Carlo. As in slice sampling, the algorithm initially selects an initial point from the current
set of live points and a direction. An initial momentum variable 𝑝ini, which is a 𝑑-dimensional array
(where 𝑑 is the dimension of the space), is also defined, typically by randomly sampling a unit
vector. The algorithm then proceeds by simulating the trajectory of a particle located at the initial
point with the chosen initial velocity integrated with some time step Δ𝑡, such that at each step the
position of the particle is updated according to 𝑥′ = 𝑥 + 𝑝Δ𝑡. When the particle goes beyond the
slice, it is reflected back into the slice. This reflection is performed by updating the momentum from
𝑝 to 𝑝′ using the equation

𝑝′ = 𝑝 − 2(𝑝 · 𝑛)𝑛, 𝑛 := ∇L(𝜃)/∥∇L(𝜃)∥ , (5)

where 𝑛 is the unit vector in the direction of the likelihood gradient and thus the normal vector to an
iso-likelihood surface. Note that, because we are only using the direction of the gradient, one can

2https://dypolychord.readthedocs.io/en/latest/
3https://dynesty.readthedocs.io/en/stable/

3

https://dypolychord.readthedocs.io/en/latest/
https://dynesty.readthedocs.io/en/stable/

Under review as a conference paper at ICLR 2024

equivalently use the gradient of the log-likelihood, i.e. the score, which is more efficient to compute.
We summarize the algorithm in appendix B.
As highlighted in Neal (2003), eq. (5) is only exact when the point where the reflection of the
trajectory of the particle takes place is exactly on the boundary L(𝜃) = L∗. In practice, we can
either use a small tolerance 𝜖 to define a neighborhood around the slice and reflect a trajectory
whenever the particle is within this neighborhood, or reflect a trajectory whenever the particle lands
at a point outside the boundary. The latter method has a theoretical risk of a particle getting “stuck”
behind the boundary (in which case the trajectory would be rejected, and a new initial momentum
would be chosen).
HSS (or GMC) has been used for nested sampling before (Betancourt, 2011; Feroz & Skilling, 2013;
Speagle, 2020). However, the dynesty implementation and defaults of HSS lacks the efficiency
and reliability of other sampling methods. In addition, in these public implementations, a score has
to be manually provided since the package is not compatible with modern differentiable program-
ming frameworks.

3 CONTRIBUTIONS

In this section, we outline the key combination of ingredients in GGNS we use to significantly im-
prove its performance in high-dimensional settings in comparison with existing publicly available
tools.
In brief: we introduce trimming & adaptive step size techniques to remove the hyperparameter
tuning difficulties that have beset previous implementations, bring in the current state-of-the-art in
parallelization and cluster recognition, and implement in differentiable programming which removes
the requirement of providing a score function. With these innovations we find that one only needs
∼ O(1) bounces to have decorrelated the chain from the start point, allowing sublinear 𝑓sampler
scaling. Finally, for maximum posterior scaling, the fact that gradients guide the path means one
no longer requires 𝑛live ∼ O(𝑑), giving an in-principle linear scaling with dimensionality for the
purposes of posterior estimation.
This linear scaling has a theoretical basis. For methods such as slice sampling, taking 𝑛 steps in
a 𝑑 dimensional space leads to sampling an 𝑛-dimensional subspace. Therefore, we need to reach
O(𝑑) steps to explore the full space. For Hamiltonian slice sampling, on the other hand, every
time we use the gradient for a reflection, we get information about the full 𝑑 dimensional space.
Therefore, each step is exploring the full volume, leading to the requirement of O(1) reflections.
This is a similar argument to the better scaling with the dimensionality of Hamiltonian Monte Carlo
methods, compared to methods such as random walk Metropolis-Hastings.
In detail, our contributions are the following. We include a complete algorithm in Appendix H
ablation studies showing the importance of various components in Appendix G.
Adaptive Time Step Control We add an adaptive time-step control mechanism in the HSS algo-
rithm. In HSS, particles move in straight lines and eventually reflect off the hard likelihood boundary.
To ensure the trajectories between reflections strike a balance between efficiency and accuracy, we
introduce the concept of a variable time step, denoted as d𝑡. This time step is adjusted dynamically
during the course of the algorithm. By monitoring the number of reflections, we increase or decrease
d𝑡 to optimize the computational efficiency while maintaining trajectory integrity. This approach,
inspired by Neal’s work in (Neal, 2003), enables us to employ larger time steps, thereby reducing
the number of reflections without compromising trajectory quality.
Trajectory Preservation In our second enhancement, we introduce a novel approach to preserv-
ing and utilizing trajectory4 information during the HSS updates. Specifically, we store all points
along the trajectory after a designated number of reflections, where min ref < max ref. This
archive of trajectory points allows us to efficiently select a new live point by uniformly sampling
the stored trajectories in a fully parallel manner. We also perturb trajectories by adding some noise
delta p, to achieve faster decorrelation of the samples.
Pruning Mechanism To further enhance efficiency, we introduce a “pruning” mechanism during
the HSS process. Points that have remained outside the slice for an extended duration are identi-
fied and removed from consideration. These pruned points are then reset to their initial positions,
and new momenta are randomly assigned. This mechanism significantly improves the computa-

4The term trajectory here refers to the states of the chain, not the intermediate states of a Hamiltonian
trajectory, as in Nishimura & Dunson (2020).

4

Under review as a conference paper at ICLR 2024

Figure 1: Comparison of likelihood evaluations (left panel) and error in the estimation of logZ
for different dimensionalities between this work (blue), and other nested sampling algorithms
(PolyChord in green and dynesty in orange; showing more efficient log-log linear scaling while
achieving a higher-fidelity estimate. All comparisons are done for a Gaussian likelihood with a di-
agonal covariance matrix. The error bars show the standard deviation over 10 runs. Error bars
for PolyChord and dynesty are also present, but barely visible. Note that the last point for
dynesty is not shown, as it is too large to fit in the plot.

tional efficiency of the proposed method, as we do not waste computational resources evaluating the
likelihood of points that have drifted far away from the slice.
Parallel Evolution of Live Points As in Burkoff et al. (2012); Henderson & Goggans (2014);
Martiniani et al. (2014); Handley et al. (2015b), we implement a dynamic approach to live point
management, whereby half of the live points are “killed” at each iteration and replaced with new
points. The new set of live points evolves with our HSS algorithm entirely in parallel, given that the
HSS algorithm boils down to simulating simple dynamics for all the live points. This parallelism
dramatically accelerates the algorithm’s execution.
Mode Collapse Mitigation To address the issue of mode collapse, we incorporate a clustering
recognition and evolution algorithm as developed and implemented in PolyChord (Handley et al.,
2015b). During the execution of the nested sampling process, we identify clusters of points and
keep track of the volume of each cluster. Then, we spawn points proportionally to this volume. This
addition helps maintain diversity among live points, preventing them from converging prematurely
to a single mode.
Robust Termination Criterion Our final contribution involves the introduction of an alternative
termination criterion, which we find to more robust. Unlike previous implementations of nested
sampling that rely on the remaining prior volume X, we utilize the property that the quantity 𝑋L(𝜃)
follows a characteristic trajectory—initially increasing, reaching a peak, and then decreasing. We
terminate the algorithm when 𝑋L(𝜃) has decreased by a predetermined fraction from its maximum
value. This termination is further explained in appendix I. This criterion proves to be more resilient
to variations in hyperparameters, including the number of live points.
Differentiable Programming Whilst nested sampling algorithms written in differential program-
ming languages exist in jax (Albert, 2020) and torch (Paszke et al., 2019; Anau Montel et al.,
2023), these do not make use of gradients in guiding the choice of a new live point, Therefore, their
choice of using a differentiable programming language is motivated mainly by the advantages of
GPU interoperability. To our knowledge, ours is the first algorithm utilizing the gradients derived
by differentiable programming to guide the choice of a new live point. Furthermore, this adaptation
of nested sampling to hardware intended for modern machine learning workflows, featuring massive
parallelization on GPUs; is particularly important in data processing settings that combine nested
sampling with deep learning, such as when the prior or likelihood models are given by deep neu-
ral networks. We show an example of this when we combine nested sampling and generative flow
networks in Section 5.
We summarize the hyperparameters in appendix C and provide an ablation study in appendix G.

5

Under review as a conference paper at ICLR 2024

Table 1: Log-evidence function estimation
bias (mean and standard deviation over 10
runs). The first rows are from our method,
while the rest are from Zhang & Chen
(2022); Lahlou et al. (2023). Note that the
last three methods are using importance-
weighted bound 𝐵RW. In bold font, we show
the estimates that are unbiased at the one
standard deviation level.

Method Gaussian mixture Funnel

HMC −1.876 ± 0.527 −0.835 ± 0.257
SMC −0.362 ± 0.293 −0.216 ± 0.157
On-policy PIS-NN −1.192 ± 0.482 −0.018 ± 0.020
Off-policy GFlowNet TB −0.003 ± 0.011 −0.026 ± 0.020
On-policy GFlowNet TB −1.301 ± 0.434 −0.012 ± 0.108
Ours 0.029 ± 0.132 −0.051 ± 0.353

4 EXPERIMENTS

4.1 COMPARISON WITH OTHER NESTED SAMPLING METHODS

We compare the performance of gradient-guided nested sampling with two popular nested sampling
algorithms, already introduced in Section 2: PolyChord and dynesty. We use the same likeli-
hood function for all algorithms, which is a Gaussian likelihood with a diagonal covariance matrix,
and therefore has DKL (P|Π) ∝ 𝑑.
For PolyChord, since 𝑓sampler ∝ 𝑛repeats = 5𝑑, from eq. (2) we therefore expect 𝑛like ∝ 𝑛live × 5𝑑2.
For dynesty, its default mode swaps between a region sampler with 𝑛like ∝ 𝑛live × 𝑒𝑑/𝑑0𝑑 in
low dimensions to a slice sampler with 𝑛repeats = 𝑑, giving 𝑛like ∝ 𝑛live × 𝑑2. For GGNS, since
𝑓sampler ∼ max ref ∼ O(1), we instead expect 𝑛like ∝ 𝑛live × 𝑑.
For demonstrating the various competing effects discussed in Sections 2.1, 2.2 and 3, we set
𝑛𝑙𝑖𝑣𝑒 = 200, independent of dimensionality. Note that constant 𝑛live mode is not usually recom-
mended for these samplers, since as discussed in Section 2.1 we need a minimum number of live
points to tune the live point generation hyperparameters. Since GGNS uses gradients to guide the
choice of live points, it is not restricted in this way.
The results are shown in Figure 1. We observe the scaling expected from the discussion above.
At constant 𝑛live, PolyChord has quadratic scaling with dimensionality, providing good evidence
estimates until the dimensionality becomes similar to the 𝑛live = 200. dynesty is most efficient but
exponentially scaling in low dimensions, and swaps to quadratic scaling in higher dimensions when
it moves over to slice sampling, at a lower constant than PolyChord due to its default 𝑛repeats = 𝑑
in comparison with 5𝑑. Note however that this factor of 5 default efficiency is traded off against
poor evidence estimates, even in low dimensions, once it is in slice sampling mode.
GGNS, as predicted, has by far the best (linear) scaling and performs evidence estimation accurately
even as the dimensionality approaches the number of live points since its live point generation is
guided by gradients rather than the other live points. Note, however, that as expected from eq. (3)
the error increases with the square root of the dimensionality at fixed 𝑛live.

4.2 CALCULATION OF EVIDENCE

The calculation of the Bayesian evidence is a good way to evaluate the performance of inference
algorithms. In this section, we confirm the performance of gradient-guided nested sampling with
other methods to sample from a target density. We compare with the following methods: Hamilto-
nian Monte Carlo (HMC, MacKay, 2003; Hoffman et al., 2014), Sequential Monte Carlo (SMC,
Halton, 1962; Gordon et al., 1993; Chopin, 2002; Del Moral et al., 2006), Path Integral Sampler (PIS,
Zhang & Chen, 2022) and generative flow networks (GFlowNet Bengio et al., 2021; 2023; Lahlou
et al., 2023). For SMC, the settings follow the code release of Arbel et al. (2021)5. For PIS, we
compare with the on-policy version alone, as it obtains better results than the off-policy version. For
GFlowNet, we compare with the off and on policy versions, as they perform differently for different
tasks, the former being better for multimodal distributions as it is better at exploration, and the lat-
ter requiring less samples to converge. We focus on GFlowNets trained with the trajectory balance
loss (Malkin et al., 2022).
We compare these methods with GGNS in two tasks, already introduced in (Hoffman et al., 2014;
2019; Zhang & Chen, 2022; Lahlou et al., 2023): The first one is the funnel distribution, which
is a 10D distribution with a funnel shape. The second one is a Gaussian mixture in 2-dimension,
which consists of a mixture of 9 mode-separated Gaussians.

5https://github.com/deepmind/annealed_flow_transport.git.

6

https://github.com/deepmind/annealed_flow_transport.git

Under review as a conference paper at ICLR 2024

Figure 2: First row: The true image and noise that
we aim to reconstruct. Second row: The mean from
out gradient-guided nested sampling and the standard
deviation. We see how the GGNS posterior matches
the expected one.

Tr
ut

h

Mean

1.0

0.5

0.0

0.5

1.0
Standard Deviation

0.00

0.05

0.10

0.15

0.20

0.25

N
es

te
d

Sa
m

pl
in

g

1.0

0.5

0.0

0.5

1.0

0.00

0.05

0.10

0.15

0.20

0.25
Residual

0.0

0.1

0.2

0.3

Figure 3: The error in the estimate of the nor-
malization of the reward function for the torus
task, as a function of the dimensionality of the
problem. We see that GGNS obtains consistent
estimates of the normalization, even in high di-
mensional settings.

As our benchmark, we use the accuracy of the estimate in the log-evidence, or log-partition func-
tion. We report the mean and standard deviation of the estimation bias over 10 independent runs
in Section 4.2. We observe that gradient-guided nested sampling obtains unbiased estimates in both
tasks, something that does not happen for any of the other methods studied in this work. While
our standard deviation is higher than that of other methods, these can be reduced by adjusting the
hyperparameters of our method. However, eq. (3) shows that the nested sampling log-evidence error
can only be reduced sublinearly by increasing the number of live points 𝑛live, which increases the
computational cost. We cannot therefore expect substantial improvements in GGNS log-evidence
error bars without innovations in the nested sampling algorithm itself.

4.3 IMAGE GENERATION

We also tested the performance of GGNS on a high-dimensional problem, sampling the posterior
distribution over image pixels. To do this, we chose the problem of inferring the pixel values of
background galaxies in strong gravitational lensing systems (e.g., Adam et al., 2022). We assumed a
correlated (and non-zero mean) normal prior distribution for the background source. A sample from
the prior was generated (representing the background galaxy) and was distorted by a the potential
of a foreground lens. Gaussian noise was then added to produce a noisy simulated data. Given the
data, the posterior of a model (a pixelated image of the undistorted background source) could be
calculated by adding the likelihood and the prior terms. Furthermore since the model is perfectly
linear (and known) and the noise and the prior are Gaussian, the posterior is a high-dimensional
Gaussian posterior that could be calculated analytically, allowing us to compare the samples drawn
with GGNS with the analytic solution.
Figure 2 shows a comparison between the true image, and its noise, and the one recovered by GGNS.
We see that we can recover both the correct image, and the noise distribution. We emphasize that
this is a uni-modal problem and that the experiment’s goal is to demonstrate the capability of GGNS
to sample in high dimensions (in this case, 256), such as images, and to test the agreement between
the samples and a baseline analytic solution.

4.4 SYNTHETIC MOLECULE TASK

Finally, we test GGNS on task, inspired by molecular conformations6. First, we build a reward
function on an 𝑛 dimensional torus, which extends the reward function introduced in Lahlou et al.
(2023) to higher dimensional spaces. We define the reward function as:

𝑅𝑛 (x, 𝛼, 𝛽, 𝑐) =
©­«

𝑛∑︁
𝑖 even

sin(𝛼𝑥𝑖) +
𝑛∑︁

𝑗 odd
cos(𝛽𝑥 𝑗) + 𝑐

ª®¬
3

, 𝑥𝑖 ∈ [0, 2𝜋). (6)

6To apply this to real molecular configurations, we need a fully differentiable chemical simulator. We leave
this for future work

7

Under review as a conference paper at ICLR 2024

FAB Gradient-Guided Nested Sampling

Figure 4: Contour lines for the target distribution, and samples, for the first four dimensions of the
32-dimensional “Many Wells” problem. On the left, we show results for Flow Annealed Importance
Sampling Boostrap (FAB) with a replay buffer, and on the right for GGNS. Unlike FAB, GGNS
recovers all modes.

This reward function models the multimodality we expect in molecular conformations, but has the
advantage of having a normalization that can be calculated analytically, as detailed in appendix F.
This means that we can assess the accuracy of GGNS by comparing the estimated normalization with
the true value in high dimensional settings. The results are shown in Section 4.4, where we see that
GGNS obtains consistent estimates of the normalization, even in high dimensional settings.
We also compare our method to Flow Annealed Importance Sampling Boostrap (FAB, Midgley
et al., 2022), with a replay buffer. This method has achieved state of the art results in sampling
tasks, and was already applied to the Boltzmann distribution of the alanine dipeptide molecule. We
use GGNS in two synthetic tasks first introduced in Midgley et al. (2022): A mixture of 40 Gaussians
in two dimensions, and the 32-dimensional “Many Well” problem 7. The Many Well problem is a
particularly challenging one, due to the high its high dimensionality. We show results for the first
four dimensions in Figure 4. We see how GGNS does an even better job than FAB at recovering
all existing modes. We show visual comparison for the torus reward eq. (6) and the mixture of 40
Gaussians in appendix D.

5 COMBINATION WITH GENERATIVE FLOW NETWORKS

We show how the samples obtained from the proposed nested sampling procedure can augment
amortized sampling algorithms, such as the generative flow networks considered in Section 4.2.
In Lahlou et al. (2023), it was shown that Euler-Maruyama integration of a stochastic differential
equation (SDE) can be viewed as the generative process of a generative flow network. The drift
and diffusion terms of the SDE can be trained as the GFlowNet’s forward policy to sample from a
target distribution given by an unnormalized density. In particular, GFlowNet objectives can be used
to learn the reverse to a Brownian bridge between a target distribution and a point, amounting to
approximating the reverse to particular kind of diffusion process. The trajectory balance objective –
which directly optimizes for agreement of the forward and reverse path measures – is equivalent in
expected gradient to the objective of the path integral sampler (Zhang & Chen, 2022) when trained
using on-policy forward exploration, but can also be trained using off-policy trajectories to accelerate
mode discovery, which was found to be beneficial in Lahlou et al. (2023); Malkin et al. (2023).
Extending the setup of Zhang & Chen (2022); Lahlou et al. (2023), we consider the problem of
sampling from a mixture of 25 well-separated Gaussians (see Figure 5), with horizontal and vertical
spacing of 5 between the component means and each component having variance 0.3. The learned
sampler integrates the SDE 𝑑x𝑡 = 𝝁(x, 𝑡) 𝑑𝑡 + 5 𝑑w𝑡 , where 𝝁 is the output of a neural network (a
small MLP) taking x and 𝑡 as input, with initial condition x0 = 0 up to time 𝑡 = 1. The reward for x1 is
the density of the target distribution. The neural network architecture and training hyperparameters
are the same as in Lahlou et al. (2023).

7We use the publicly available implementations of these reward functions at this URL.

8

https://github.com/lollcat/fab-torch

Under review as a conference paper at ICLR 2024

We generate a dataset D of 2715 approximate samples from the target distribution first using GGNS,
and then we use bootstrapping to generate equally weighted samples, using the bootstrapping algo-
rithm in Handley (2019). We consider five algorithms for training the SDE drift 𝝁:
(1) On-policy TB: We train 𝝁 by optimizing the trajectory balance objective on trajectories ob-

tained by integration of the SDE being trained (equivalent to the path integral sampler objective
and to minimization of the KL divergence between forward and reverse path measures).

(2) Exploratory TB: We optimize the trajectory balance objective on trajectories obtained from a
noised version of the SDE, which adds Gaussian noise with standard deviation 𝜎 to the drift
term at each step. Consistent with Lahlou et al. (2023), we linearly reduce 𝜎 from 0.1 to 0 over
the first 2500 training iterations. Such exploration is expected to aid in discovery of modes.

(3) Backward TB: We optimize the trajectory balance objective on trajectories sampled from the
reverse (diffusion) process begun at samples from D.

(4) Backward MLE: We sample trajectories from the reverse process begun at samples from D
and train 𝝁 so as to maximize the log-likelihood of these trajectories under the forward process.
This objective amounts to training a diffusion model or score-based generative model (Song &
Ermon, 2019; Ho et al., 2020) on D, as the optimal 𝝁 is the score of the target distribution
convolved with a Gaussian and appropriately scaled.

(5) Forward + backward TB: We optimize the trajectory balance objective both on trajectories
obtained by integrating the SDE forward from samples from D and on reverse trajectories begun
at samples from D. This method resembles the training policy used by Zhang et al. (2022).

Forward on-policy TB
log Z (VLB): 1.540

Forward exploratory TB
log Z (VLB): 1.261

Backward TB
log Z (VLB): 3.914

Backward MLE
log Z (VLB): 0.340

Forward + backward TB
log Z (VLB): 0.225

Ground truth
log Z = 0

1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Z
(v

ar
ia

tio
na

l l
ow

er
 b

ou
nd

)

Forward on-policy TB
Forward exploratory TB
Backward TB
Backward MLE
Forward + backward TB

Figure 5: Above: KDE plots of samples from
trained stochastic control models (ground truth
distribution at lower right). Mixing forward
sampling with noising trajectories initialized at
nested sampling outputs results in all modes being
modelled accurately. Below: Variational lower
bound on the partition function for the five sam-
plers. The theoretical maximum – achieved by the
Schrödinger bridge between the Dirac distribution
at the origin and the target distribution – is 𝑍 = 1.

KDE plots of samples from the trained mod-
els, as well as training metric plots, are shown
in Figure 5. Training with on-policy TB alone
(1) results in mode collapse, a typical effect of
training with a reverse KL objective (Malkin
et al., 2023). We see that while noise introduced
in forward exploration (2) helps mode discov-
ery, it is insufficient for all modes to be found.
Training using trajectory balance on backward
trajectories (3) results in spurious modes, as
the model is unlikely to see states that are far
from those seen along reverse trajectories from
D during training. Maximum (4) discovers all
modes of the distribution, as they are repre-
sented in D, but closer inspection reveals that
they are not modeled as accurately; this effect is
more pronounced when the dataset D is small.
The best sampling performance is reached by
models that perform a mix of forward explo-
ration and reverse trajectories from the dataset
samples.
It is important to note that with well-tuned ex-
ploratory policies – as in (2) – it is possible
to coax the model into discovering all of the
modes and modeling them with high fidelity.
However, the model is highly sensitive to the
exploration parameters: if the exploration rate
is too high or not reduced slowly enough, the
model is slow to converge and blurs of ‘fat-
tens’ the modes, while an exploration rate that
is too low results in mode collapse. On the other
hand, mixing forward exploration with back-
ward trajectories from the approximate samples
allows the sampler to model all of the modes
accurately without such tuning. Notably, we
found that the forward trajectories in (5) can
be sampled either on-policy or from a tempered
policy, with little difference in performance.

9

Under review as a conference paper at ICLR 2024

6 DISCUSSION AND CONCLUSIONS

We have introduced a new nested sampling algorithm based on Hamiltonian Slice Sampling.
Gradient-guided nested sampling improves on previous nested sampling algorithms by removing
the linear dependence of the number of live points on dimensionality. It also makes use of the power
of differentiable programming frameworks and parallelization for significant speed improvements.
We have shown that the proposed method scales much better with dimensionality than other nested
sampling algorithms, thanks to the use of gradient information. This better scaling allows us to
apply nested sampling in high-dimensional problems that were too computationally expensive for
previous methods. We have also shown that GGNS can be combined with generative flow networks
to obtain large numbers of samples from complex posterior distributions. Applications of GGNS to
difficult real-world inference problems, both on its own and in combination with amortized sampling
methods, are left for future work.

REPRODUCIBILITY STATEMENT

We include with this submission an implementation of GGNS in PyTorch (Paszke et al., 2019),
along with notebooks to reproduce the results from the experiments, in the supplementary materials.

REFERENCES

Alexandre Adam, Adam Coogan, Nikolay Malkin, Ronan Legin, Laurence Perreault-Levasseur,
Yashar Hezaveh, and Yoshua Bengio. Posterior samples of source galaxies in strong gravitational
lenses with score-based priors. arXiv preprint arXiv:2211.03812, 2022.

Joshua G. Albert. JAXNS: a high-performance nested sampling package based on JAX. arXiv
e-prints, art. arXiv:2012.15286, December 2020. doi: 10.48550/arXiv.2012.15286.

Noemi Anau Montel, James Alvey, and Christoph Weniger. Scalable inference with Autoregressive
Neural Ratio Estimation. arXiv e-prints, art. arXiv:2308.08597, August 2023. doi: 10.48550/
arXiv.2308.08597.

Michael Arbel, Alexander G. D. G. Matthews, and Arnaud Doucet. Annealed flow transport monte
carlo. International Conference on Machine Learning (ICML), 2021.

Greg Ashton, Noam Bernstein, Johannes Buchner, Xi Chen, Gábor Csányi, Andrew Fowlie, Farhan
Feroz, Matthew Griffiths, Will Handley, Michael Habeck, et al. Nested sampling for physical
scientists. Nature Reviews Methods Primers, 2(1):39, 2022.

Robert J. N. Baldock, Noam Bernstein, K. Michael Salerno, Lı́via B. Pártay, and Gábor Csányi.
Constant-pressure nested sampling with atomistic dynamics. Physical Review E, 96(4):043311,
October 2017. doi: 10.1103/PhysRevE.96.043311.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24:1–76, 2023.

Julian Besag. Comments on “representations of knowledge in complex systems” by u. grenander
and mi miller. J. Roy. Statist. Soc. Ser. B, 56(591-592):4, 1994.

Michael Betancourt. Nested sampling with constrained Hamiltonian Monte Carlo. In AIP Confer-
ence Proceedings, volume 1305, pp. 165–172. American Institute of Physics, 2011.

Benjamin Bloem-Reddy and John Cunningham. Slice sampling on hamiltonian trajectories. In
Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Re-
search, pp. 3050–3058, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/bloem-reddy16.html.

Brendon J. Brewer and Daniel Foreman-Mackey. DNest4: Diffusive Nested Sampling in C++ and
Python. arXiv e-prints, art. arXiv:1606.03757, June 2016. doi: 10.48550/arXiv.1606.03757.

10

https://proceedings.mlr.press/v48/bloem-reddy16.html
https://proceedings.mlr.press/v48/bloem-reddy16.html

Under review as a conference paper at ICLR 2024

Johannes Buchner. UltraNest - a robust, general purpose Bayesian inference engine. The Journal of
Open Source Software, 6(60):3001, April 2021. doi: 10.21105/joss.03001.

Johannes Buchner. Nested sampling methods. arXiv preprint arXiv:2101.09675, 2021.

Nikolas S Burkoff, Csilla Várnai, Stephen A Wells, and David L Wild. Exploring the energy land-
scapes of protein folding simulations with bayesian computation. Biophysical journal, 102(4):
878–886, 2012.

Xiaohao Cai, Jason D McEwen, and Marcelo Pereyra. Proximal nested sampling for high-
dimensional bayesian model selection. Statistics and Computing, 32(5):87, 2022.

Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539–552,
2002.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics letters B, 195(2):216–222, 1987.

F. Feroz and M. P. Hobson. Multimodal nested sampling: an efficient and robust alternative to
Markov Chain Monte Carlo methods for astronomical data analyses. Monthly Notices of the Royal
Astronomical Society, 384(2):449–463, February 2008. doi: 10.1111/j.1365-2966.2007.12353.x.

Farhan Feroz and John Skilling. Exploring multi-modal distributions with nested sampling. In AIP
Conference Proceedings, volume 1553, pp. 106–113. American Institute of Physics, 2013.

Farhan Feroz, MP Hobson, and Michael Bridges. MultiNest: an efficient and robust bayesian infer-
ence tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical Society,
398(4):1601–1614, 2009.

Farhan Feroz, Michael P. Hobson, Ewan Cameron, and Anthony N. Pettitt. Importance Nested
Sampling and the MultiNest Algorithm. The Open Journal of Astrophysics, 2(1):10, November
2019. doi: 10.21105/astro.1306.2144.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE proceedings F (radar and signal processing), volume 140, pp.
107–113. IET, 1993.

Maximilian N Günther and Tansu Daylan. allesfitter: Flexible star and exoplanet inference from
photometry and radial velocity. The Astrophysical Journal Supplement Series, 254(1):13, 2021.

Michael Habeck. Nested sampling with demons. In Bayesian Inference and Maximum Entropy
Methods in Science and Engineering (MAXENT 2014), volume 1641 of American Institute of
Physics Conference Series, pp. 121–129, January 2015. doi: 10.1063/1.4905971.

John H Halton. Sequential monte carlo. In Mathematical Proceedings of the Cambridge Philosoph-
ical Society, volume 58, pp. 57–78. Cambridge University Press, 1962.

Will Handley. anesthetic: nested sampling visualisation. The Journal of Open Source Software, 4
(37):1414, Jun 2019. doi: 10.21105/joss.01414. URL http://dx.doi.org/10.21105/
joss.01414.

Will Handley. The scaling frontier of nested sampling. MaxEnt proceedings (under review), October
2023.

Will Handley and Pablo Lemos. Quantifying tensions in cosmological parameters: Interpreting the
des evidence ratio. Physical Review D, 100(4):043504, 2019.

WJ Handley, MP Hobson, and AN Lasenby. Polychord: nested sampling for cosmology. Monthly
Notices of the Royal Astronomical Society: Letters, 450(1):L61–L65, 2015a.

WJ Handley, MP Hobson, and AN Lasenby. POLYCHORD: next-generation nested sampling.
Monthly Notices of the Royal Astronomical Society, 453(4):4384–4398, 2015b.

11

http://dx.doi.org/10.21105/joss.01414
http://dx.doi.org/10.21105/joss.01414

Under review as a conference paper at ICLR 2024

R Wesley Henderson and Paul M Goggans. Parallelized nested sampling. In AIP Conference Pro-
ceedings, volume 1636, pp. 100–105. American Institute of Physics, 2014.

Edward Higson, Will Handley, Michael Hobson, and Anthony Lasenby. Dynamic nested sampling:
an improved algorithm for parameter estimation and evidence calculation. Statistics and Comput-
ing, 29:891–913, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and Srinivas
Vasudevan. NeuTra-lizing bad geometry in Hamiltonian Monte Carlo using neural transport.
arXiv preprint arXiv:1903.03704, 2019.

Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. International Conference on Machine Learning (ICML), 2023.

Baptiste Lavie, João M Mendonça, Christoph Mordasini, Matej Malik, Mickaël Bonnefoy, Brice-
Olivier Demory, Maria Oreshenko, Simon L Grimm, David Ehrenreich, and Kevin Heng. Helios–
retrieval: an open-source, nested sampling atmospheric retrieval code; application to the hr 8799
exoplanets and inferred constraints for planet formation. The Astronomical Journal, 154(3):91,
2017.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. GFlowNets and variational inference. International Conference on Learning
Representations (ICLR), 2023.

Phil Marshall, Nutan Rajguru, and Anže Slosar. Bayesian evidence as a tool for comparing datasets.
Physical Review D, 73(6):067302, 2006.

Stefano Martiniani, Jacob D Stevenson, David J Wales, and Daan Frenkel. Superposition enhanced
nested sampling. Physical Review X, 4(3):031034, 2014.

Jason D. McEwen, Tobı́as I. Liaudat, Matthew A. Price, Xiaohao Cai, and Marcelo Pereyra.
Proximal nested sampling with data-driven priors for physical scientists. arXiv e-prints, art.
arXiv:2307.00056, June 2023. doi: 10.48550/arXiv.2307.00056.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

Hadi Mohasel Afshar and Justin Domke. Reflection, refraction, and hamiltonian monte carlo. Ad-
vances in neural information processing systems, 28, 2015.

Adam Moss. Accelerated Bayesian inference using deep learning. Monthly Notices of the Royal
Astronomical Society, 496(1):328–338, July 2020. doi: 10.1093/mnras/staa1469.

Pia Mukherjee, David Parkinson, and Andrew R Liddle. A nested sampling algorithm for cosmo-
logical model selection. The Astrophysical Journal, 638(2):L51, 2006.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

12

Under review as a conference paper at ICLR 2024

Steven O. Nielsen. Nested sampling in the canonical ensemble: Direct calculation of the parti-
tion function from NVT trajectories. The Journal of Chemical Physics, 139(12):124104, 09
2013. ISSN 0021-9606. doi: 10.1063/1.4821761. URL https://doi.org/10.1063/
1.4821761.

Akihiko Nishimura and David Dunson. Recycling intermediate steps to improve hamiltonian monte
carlo. 2020.

Livia B. Pártay, Gábor Csányi, and Noam Bernstein. Nested sampling for materi-
als. The European Physical Journal B, 94(8):159, Aug 2021. ISSN 1434-6036.
doi: 10.1140/epjb/s10051-021-00172-1. URL https://doi.org/10.1140/epjb/
s10051-021-00172-1.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Aleksandr Petrosyan and William James Handley. SuperNest: accelerated nested sampling applied
to astrophysics and cosmology. arXiv e-prints, art. arXiv:2212.01760, December 2022. doi:
10.48550/arXiv.2212.01760.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations to Langevin
diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):
255–268, 1998.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions and
their discrete approximations. Bernoulli, pp. 341–363, 1996.

Patricio Maturana Russel, Brendon J Brewer, Steffen Klaere, and Remco R Bouckaert. Model
Selection and Parameter Inference in Phylogenetics Using Nested Sampling. Systematic Biology,
68(2):219–233, 06 2018. ISSN 1063-5157. doi: 10.1093/sysbio/syy050. URL https://doi.
org/10.1093/sysbio/syy050.

John Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1(4):833 –
859, 2006. doi: 10.1214/06-BA127. URL https://doi.org/10.1214/06-BA127.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Neural Information Processing Systems (NeurIPS), 2019.

Joshua S Speagle. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors
and evidences. Monthly Notices of the Royal Astronomical Society, 493(3):3132–3158, 2020.

Michael J. Williams, John Veitch, and Chris Messenger. Nested sampling with normalizing flows
for gravitational-wave inference. Physical Review D, 103(10):103006, May 2021. doi: 10.1103/
PhysRevD.103.103006.

Michael J. Williams, John Veitch, and Chris Messenger. Importance nested sampling with normal-
ising flows. Machine Learning: Science and Technology, 4(3):035011, September 2023. doi:
10.1088/2632-2153/acd5aa.

David Yallup, Timo Janßen, Steffen Schumann, and Will Handley. Exploring phase space with
nested sampling. The European Physical Journal C, 82(8):678, 2022.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sam-
pling. International Conference on Learning Representations (ICLR), 2022.

Yizhe Zhang, Xiangyu Wang, Changyou Chen, Ricardo Henao, Kai Fan, and Lawrence Carin. To-
wards unifying Hamiltonian Monte Carlo and slice sampling. Advances in Neural Information
Processing Systems, 29, 2016.

13

https://doi.org/10.1063/1.4821761
https://doi.org/10.1063/1.4821761
https://doi.org/10.1140/epjb/s10051-021-00172-1
https://doi.org/10.1140/epjb/s10051-021-00172-1
https://doi.org/10.1093/sysbio/syy050
https://doi.org/10.1093/sysbio/syy050
https://doi.org/10.1214/06-BA127

Under review as a conference paper at ICLR 2024

Algorithm 1 A simple nested sampling algorithm. Note that more sophisticated implementations in-
clude clustering of live points, a calculation of the error in the estimate of log 𝑍 , and other techniques
to improve performance.

1: Initialise 𝑛live live points from the prior 𝜋(𝜃).
2: Initialise an empty set of dead points.
3: Evaluate the likelihood L𝑖 = L(𝜃𝑖) for each live point.
4: Set 𝑋 = 1.
5: Set 𝑍 = 0.
6: while 𝑋𝑁 > tol · 𝑍 do
7: Select the live point with the lowest likelihood L 𝑗 , and move it from the set of live points to

the set of dead points.
8: Sample a new point 𝜃new from the prior 𝜋(𝜃), under the condition L(𝜃new) > L 𝑗 .
9: Set 𝑍 → 𝑍 + 1

𝑛live+1𝑋L 𝑗 .
10: Set 𝑋 → 𝑋

𝑛live
𝑛live+1 .

11: Add 𝜃new to the set of live points.
12: end while
13: for i = 1, ..., 𝑛live do
14: Select the live point with the lowest likelihood L 𝑗 , and move it from the set of live points to

the set of dead points.
15: Set 𝑍 → 𝑍 + 1

𝑛live+1𝑋L 𝑗 .
16: Set 𝑋 → 𝑋

𝑛live
𝑛live+1 .

17: end for

A NESTED SAMPLING REVIEW

Nested sampling was initially introduced as a method to calculate the Bayesian evidence or marginal
likelihood:

Z =

∫
L(𝜃)𝜋(𝜃)𝑑𝜃, (7)

where L(𝜃) is the likelihood function, and 𝜋(𝜃) is the prior distribution.
The key idea of nested sampling is to define a new variable called the cumulative prior mass or the
prior volume as:

𝑋 (𝜃) =
∫
L(𝜃 ′)>L(𝜃)

𝜋(𝜃′)𝑑𝜃′, (8)

which is the fraction of the prior mass that has a likelihood greater than the likelihood of the current
point. This variable is bounded between 0 and 1, and can be used to rewrite the evidence as:

Z =

∫ 1

0
L(𝑋)𝑑𝑋, (9)

which is a one-dimensional integral. Therefore, we can evaluate the likelihoods of a set of points
{𝜃𝑖} sorted by their likelihood, and use them to estimate the evidence by approximating the integral
in eq. (9) as a sum:

Z ≈
∑︁
𝑖

L(𝑋𝑖)Δ𝑋𝑖 , (10)

where Δ𝑋𝑖 = 𝑋𝑖−1 − 𝑋𝑖 is the difference in prior volume between the 𝑖-th and the (𝑖 − 1)-th point.
This approximation is exact in the limit of an infinite number of points, and can be used to estimate
the evidence to arbitrary precision.
The key idea of nested sampling is the following: We start by sampling a set of 𝑛live live points
from the prior distribution. We then find the point with the lowest likelihood, and remove it from
the set, adding it to the set of dead points. We then replace it with a new point sampled from
the prior, subject to the constraint that its likelihood is greater than the likelihood of the point that

14

Under review as a conference paper at ICLR 2024

was removed. This means that, while it is unfeasible to calculate 𝑋 (𝜃) for each of the new points
exactly, we can approximate it by using the fact that, at each iteration, the prior volume is contracted
by approximately:

Δ𝑋𝑖 ≈
𝑛live

𝑛live + 1
. (11)

This process is repeated until the remaining posterior mass is smaller than some fraction of the
current estimate of Z. The set of points that we have sampled can then be used to estimate the
evidence using eq. (10).
Furthermore, GGNS can be used for parameter inference. To do that, we assign the following impor-
tance weight to each point:

𝑝𝑖 =
L(𝑤𝑖)
𝑍

, (12)

where 𝑤𝑖 is the prior volume of the shell that was used to sample the 𝑖-th point:

𝑤𝑖 = 𝑋𝑖−1 − 𝑋𝑖 . (13)

An example implementation of a nested sampling algorithm is shown in algorithm 1.

B HAMILTONIAN SLICE SAMPLING ALGORITHM

Algorithm 2 Hamiltonian or Reflective Slice Sampling
1: Choose a point 𝜃 from the existing set of live points.
2: Choose a direction 𝑑.
3: Choose an initial momentum 𝑝ini ∼ N(0, 1).
4: Set 𝑝 = 𝑝ini.
5: Set 𝑥 = 𝜃.
6: Set 𝑡 = 0.
7: while 𝑡 < 𝑇 do
8: Set 𝑥 = 𝑥 + 𝑝 d𝑡.
9: if 𝑥 is outside the slice then

10: Take 𝑛 = ∇L(𝜃)/∥∇L(𝜃)∥
11: Set 𝑝 = 𝑝 − 2(𝑝 · 𝑛)𝑛.
12: end if
13: Set 𝑡 = 𝑡 + d𝑡.
14: end while
15: Set 𝜃′ = 𝑥.

We show an example implementation of the Hamiltonian or Reflective Slice Sampling algorithm in
algorithm 2.

C HYPERPARAMETERS OF GGNS

Table table 2, shows the different hyperparameters of GGNS. This shows the little tuning required
for GGNS to perform unbiased sampling.

D COMPARISON WITH FLOW ANNEALED IMPORTANCE SAMPLING
BOOSTRAP

We show the comparison with Flow Annealed Importance Sampling Boostrap (FAB) on the mixture
of 40 Gaussians used in Midgley et al. (2022), in Figure 6. The image shows GGNS samples all
the modes of the distribution more accurately than FAB. We also show in appendix D the results
from GGNS in the torus reward introduced in eq. (6). We see that GGNS can successfully sample the
distribution. We do not show a comparison with FAB on this task, as we could not easily train it on
a torus.

15

Under review as a conference paper at ICLR 2024

Table 2: Log-evidence function estimation bias (mean and standard deviation over 10 runs). The
first rows are from our method, while the rest are from Zhang & Chen (2022); Lahlou et al. (2023).
Note that the last three methods are using importance-weighted bound 𝐵RW. In bold font, we show
the estimates that are unbiased at the one standard deviation level.

Parameter Default Value Description

nlive Number of live points. A higher number leads to better
mode coverage.

2008

tol Tolerance. The stopping criterion. GGNS terminates
when L𝑖𝑋𝑖/max(L𝑖𝑋𝑖) < tol.

0.01

min ref The minimum number of reflections. We sample
points after they have reflected of the boundary at least
min ref.

1

max ref The maximum number of reflections. We stop each HSS
iteration after the point has reflected max ref times off
the boundary.

3

delta p The number of noise added to the momentum at each
HSS step, to decorrelate samples faster.

0.05

FAB Nested Sampling

Figure 6: Contour lines for the target distribution, and samples, for the mixture of 40 Gaussians
from Midgley et al. (2022). On the left, we show results for Flow Annealed Importance Sampling
Boostrap (FAB), and on the right for GGNS.

E SAMPLING COMPLEX DISTRIBUTIONS

We further test the capacity of GGNS to model several complex distributions that are for different
reasons challenging for inference algorithms. For these examples, we use a visual comparison with
samples from the true distribution. We increase the number of live points to 2000 for these exam-
ples, to ensure that we have enough samples to compare with the true distribution. Because nested
sampling produces weighted samples, all the figures use an alpha blending of the samples, with the
alpha value proportional to the importance weight.
Firstly, we re-use the Gaussian mixture distribution from the previous example, but we increase the
number of modes to 81. This distribution is difficult due to its very high multimodality. The results
are shown in the top panel of Figure 8, where we see that our method successfully recovers all
modes.
Secondly, the ”five Swiss rolls” example consists of five copies of the ”Swiss roll” distribution in
two dimensions. It combines multimodality with the difficulty of sampling the complex structure

16

Under review as a conference paper at ICLR 2024

Figure 7: Contour lines for the target distri-
bution, and GGNS samples, for the torus re-
ward eq. (6). We do not show Flow Annealed Im-
portance Sampling Boostrap (FAB) samples for
this task, as we failed to train it successfully.

Figure 8: Comparison between the proposed method (left) and the truth (right) on the ”five Swiss
rolls” distribution. We show our method successfully recovers every model of this highly multi-
modal distribution.

of each mode of the distribution. As shown in the bottom panel of Figure 8, the proposed method
successfully samples the distribution.

F TORUS REWARD FUNCTION

F.1 NORMALIZATION

As stated in the main text, for the following reward:

17

Under review as a conference paper at ICLR 2024

𝑅𝑛 (x, 𝛼, 𝛽, 𝑐) = ©­«
𝑛∑︁

𝑖 even
sin(𝛼𝑥𝑖) +

𝑛∑︁
𝑗 odd

cos(𝛽𝑥 𝑗) + 𝑐ª®¬
3

, 𝑥𝑖 ∈ [0, 2𝜋) (14)

the normalization, defined as:

𝑍𝑛 (𝛼, 𝛽, 𝑐) =
∫

𝑅𝑛 (𝛼, 𝛽, 𝑐) dx (15)

This can be found with the following recursive formula:

𝑍𝑛 (𝛼, 𝛽, 𝑐) = 2𝜋𝑍𝑛−1 (𝛼, 𝛽, 𝑐) + 3𝜋𝑐(2𝜋)𝑛−1, 𝑍1 (𝛼, 𝛽, 𝑐) = 2𝜋𝑐3 + 3𝜋𝑐. (16)
As long as 𝛼, 𝛽 ∈ Q
The easiest way to prove it is by induction: It is trivially true for 𝑍1:∫

(sin(𝛼𝑥) + 𝑐)3 d𝑥 = 2𝜋𝑐3 + 3𝜋𝑐, ∀𝛼 ∈ Q, ∀𝑐. (17)

Note that this also applies if we swap a sine for a cosine, which will become relevant later.
So, all that is left is to prove that, if the statement holds for 𝑍𝑛−1, it also holds for 𝑍𝑛. Lets assume,
without loss of generality, that 𝑛 is even

𝑍𝑛 (𝛼, 𝛽, 𝑐) =
∫ ©­«

𝑛∑︁
𝑖 even

sin(𝛼𝑥𝑖) +
𝑛∑︁

𝑗 odd
cos(𝛽𝑥 𝑗) + 𝑐

ª®¬
3

d𝑥1...d𝑥𝑛 (18)

=

∫ 
∫ ©­«sin(𝑎𝑥𝑛) +

𝑛−1∑︁
𝑖 even

sin(𝛼𝑥𝑖) +
𝑛−1∑︁
𝑗 odd

cos(𝛽𝑥 𝑗) + 𝑐ª®¬
3

d𝑥𝑛
 d𝑥1...d𝑥𝑛−1. (19)

Let’s define:

𝐾 ≡
𝑛−1∑︁
𝑖 even

sin(𝛼𝑥𝑖) +
𝑛−1∑︁
𝑗 odd

cos(𝛽𝑥 𝑗) + 𝑐. (20)

Note that 𝐾 does not depend on 𝑥𝑛. With this:

𝑍𝑛 (𝛼, 𝛽, 𝑐) =
∫ [∫

(sin(𝑎𝑥𝑛) + 𝐾)3 d𝑥𝑛
]

d𝑥1...d𝑥𝑛−1. (21)

The key realization here is that the thing inside the bracket is the same as eq. (17). Therefore:

𝑍𝑛 (𝛼, 𝛽, 𝑐) =
∫ (

2𝜋𝐾3 + 3𝜋𝐾
)

d𝑥1...d𝑥𝑛−1. (22)

= 2𝜋
∫

𝐾3d𝑥1...d𝑥𝑛−1 + 3𝜋
∫

𝐾d𝑥1...d𝑥𝑛−1 (23)

The first integral is simply 𝑍𝑛−1 (𝛼, 𝛽, 𝑐). The second is

∫
𝐾d𝑥1...d𝑥𝑛−1 =

∫ 
𝑛−1∑︁
𝑖 even

sin(𝛼𝑥𝑖) +
𝑛−1∑︁
𝑗 odd

cos(𝛽𝑥 𝑗) + 𝑐
 d𝑥1...d𝑥𝑛−1 (24)

= (2𝜋)𝑛−1𝑐, (25)

because all the sine and cosine integrals cancel. Therefore:

18

Under review as a conference paper at ICLR 2024

Figure 9: Change in the Kullback-Leibler di-
vergence with dimensionality, for the molecule
example shown in Section 4.4. As described
by eq. (3), the error in the estimate of log 𝑍 is
proportional to D𝐾𝐿 (P|Π), therefore, the un-
usual decrease of D𝐾𝐿 (P|Π) with dimensional-
ity, explains the reduced errors on high dimen-
sions for the estimate of log 𝑍 .

𝑍𝑛 (𝛼, 𝛽, 𝑐) = 2𝜋
∫

𝐾3d𝑥1...d𝑥𝑛−1 + 3𝜋
∫

𝐾d𝑥1...d𝑥𝑛−1 (26)

= 2𝜋𝑍𝑛−1 (𝛼, 𝛽, 𝑐) + 3𝜋𝑐(2𝜋)𝑛−1 (27)

Q.E.D.

F.2 BEHAVIOUR ON DIFFERENT DIMENSIONS

Our nested sampling log 𝑍 estimates for the synthetic molecule reward, show an unusual pattern of
behaviour, as we can see in Section 4.4: The error goes down as the dimensionality increases. This
section offers some intuition about why this happens. As described by eq. (3), the nested sampling
error in the estimate of log 𝑍 is proportional to

√︁
DKL (P|Π)/𝑛live. Because our problem keeps 𝑛live

fixed, observed behaviour is due to a change in DKL (P|Π) as the dimensionality increases.
DKL (P|Π) is a measure of how much information we gain when we go from the prior to the poste-
rior. Therefore, in more cases, it increases with dimensionality. However, as shown by appendix E,
in this particular example, DKL (P|Π) goes down with dimensionality, which explains why the er-
ror goes down with dimensionality in Section 4.4. The reason why DKL (P|Π) is likely caused by
cancellations in the various terms of the sum eq. (6), as dimensionality increases, but will be further
explored in future work.

G ABLATION STUDY

Given the multiple different components included in our algorithm, described in Section 3, it is
important to perform an ablation study to fully understand how the different parts of the algorithm
contribute to the observed improvements in performance. Therefore, this section removes each of
the improvements introduced in Section 3 one by one and analyses the effect of these changes on the
sampling performance. We use the task introduced in Section 4.1 to perform this comparison unless
otherwise specified.

G.1 ADAPTIVE TIME STEP CONTROL

We repeat the analysis of Section 4.1 with a fixed time step in the Hamiltonian slice sampling steps
instead of using adaptive time step control. We attempt three different time steps: d𝑡 = 0.5 and
d𝑡 = 0.1. Note that, in Section 4.1, we start with d𝑡 = 0.1 but adapt it as the algorithm progresses.
The results, shown in Figure 10, show that when we use a large d𝑡 we can reduce the number of
likelihood evaluations, as we achieve the minimum number of reflections faster, but we get a biased
estimate of log 𝑍 , as we fail to appropriately sample each slice. For small d𝑡, on the other hand, we
get less bias in log 𝑍 , but the number of likelihood evaluations goes up.
In general, the advantage of the adaptive step is that as the algorithm progresses, the volume of the
region defined by eq. (4) we are exploring decreases. Therefore, a step size that is appropriate at a
given point will become too large eventually as the algorithm progresses.

19

Under review as a conference paper at ICLR 2024

4 8 16 32 64 128
of Dimensions

104

105

106

107

108

#
 o

f L
ik

el
ih

oo
d

E
va

lu
at

io
ns

GGNS
dt = 0.1
dt = 0.5

4 8 16 32 64 128
of Dimensions

-10

-5

0

5

lo
gZ

Adaptive Time Step Control

Figure 10: Comparison of likelihood evaluations (left panel) and error in the estimation of logZ for
different dimensionalities between baseline GGNS (blue), and GGNS without adaptive step control
(d𝑡 = 0.5 in green and d𝑡 = 0.1 in orange)

4 8 16 32 64 128
of Dimensions

104

105

106

107

108

#
 o

f L
ik

el
ih

oo
d

E
va

lu
at

io
ns

GGNS
Nsteps = 20
Nsteps = 200

4 8 16 32 64 128
of Dimensions

-15

-10

-5

0

5

lo
gZ

Trajectory Preservation

Figure 11: Comparison of likelihood evaluations (left panel) and error in the estimation of logZ for
different dimensionalities between baseline GGNS (blue), and GGNS without trajectory preservation
(𝑁steps = 200 in green and 𝑁steps = 20 in orange). Both of these lead to correlated estimates of log 𝑍 ,
as shown by the right panel.

G.2 TRAJECTORY PRESERVATION

GGNS uses a novel approach to sample the trajectories and to ensure that samples are correlated,
where we ensure a certain number of boundary reflections. We compare what happens when we
use the simpler approach of integrating our trajectory for a fixed number of steps 𝑛steps and simply
keeping the last sample. We repeat the analysis for 𝑛steps = 20 and 𝑛steps = 200.
Figure 11 shows the results. We see that a fixed number of steps leads to a biased estimate of log 𝑍 .
The argument for this, similarly to what it was for trajectory preservation, is that the volume of the
region eq. (4) decreases as the algorithm progresses.
We also study what happens when we use trajectory preservation but do not add noise 𝛿p to achieve
a faster decorrelation of the samples. The results, shown in Figure 12, are intuitive: No noise in
the trajectories reduces the likelihood evaluations, as trajectories are less noisy but lead to biased
evidence estimates, as the samples are not fully decorrelated.

G.3 MODE COLLAPSE MITIGATION

To study the effect of this, we need a multimodal distribution. We use a mixture of nine Gaussians,
shown in Figure 13. To study the effect of our mode collapse mitigation, we run nested sampling
on this problem, with and without this setting. The main hyperparameter that affects the number of
modes found, is the number of live points 𝑛live. Therefore, we run nested sampling on this problem
for different values of this hyperparameter. For each configuration, we run the algorithm 10 times,

20

Under review as a conference paper at ICLR 2024

4 8 16 32 64 128
of Dimensions

104

105

106

107

108

#
 o

f L
ik

el
ih

oo
d

E
va

lu
at

io
ns

GGNS
delta_p= 0

4 8 16 32 64 128
of Dimensions

-10

-5

0

5

lo
gZ

Trajectory Noise

Figure 12: Comparison of likelihood evaluations (left panel) and error in the estimation of logZ
for different dimensionalities between baseline GGNS (blue), and GGNS without adding noise to the
trajectories (orange). Less noise decreases the number of evaluations but leads to a biased log 𝑍
estimate.

GGNS Truth

Figure 13: The distribution used for our ablation study on mode collapse mitigation, true samples
on the right, and samples with GGNS (𝑛live = 100) on the left.

and count the number of modes found. We define a mode as being found, if at least one of the
samples is within a distance 𝜎 of the center of the mode.
The results are shown in table 3. We see how, generally, mode collapse mitigation helps us find a
higher number of modes. Although the number of live points is the most important hyperparameter
when it comes to mode finding, the ability to find all modes for a fixed 𝑛live is higher when using
mode collapse mitigation.

G.4 TERMINATION CRITERION

Finally, we repeat the analysis of Section 4.1 using the termination criterion used by other nested
sampling algorithms such as DyNesty and PolyChord, in which we terminate the algortihm
when Lmax𝑋𝑖 < tol, for some tolerance hyperparameter. We used a tolerance 0.01, a value often
used by nested sampling practitioners.
We show the results in Figure 14. The number of likelihood evaluations appears similar, but at high
dimensions, the previous termination leads to a biased estimate of log 𝑍 . Indeed, while the number
of likelihood estimations is of the same order of magnitude, the termination used by GGNS leads
to slightly more evaluations (∼ 5.8 · 106)than the previous one (∼ 5.4 · 106) for 𝑑 = 128. These
400, 000 evaluations are likely to drive the underestimation of the evidence by the previous method.

21

Under review as a conference paper at ICLR 2024

Table 3: The average number of modes found over 10 nested sampling runs, sampling the distri-
bution shown in Figure 13, with and without mode collapse mitigation, for varying number of live
points.
Method 𝑛live = 20 𝑛live = 50 𝑛live = 100 𝑛live = 200
Without Mode Collapse Mitigation 3.6 6.4 8.2 8.9
With Mode Collapse Mitigation 4.1 6.4 8.4 9

4 8 16 32 64 128
of Dimensions

104

105

106

107

108

#
 o

f L
ik

el
ih

oo
d

E
va

lu
at

io
ns

GGNS
Previous Termination

4 8 16 32 64 128
of Dimensions

-10

-5

0

5

lo
gZ

Termination Criterion

Figure 14: Comparison of likelihood evaluations (left panel) and error in the estimation of logZ for
different dimensionalities between baseline GGNS (blue), and GGNS using the termination criterion
used by MultiNest, PolyChord and DyNesty.

G.5 OTHER CHANGES

We could not study other changes, such as the pruning mechanism or parallel Evolution of live
points, as this would have led to a full rewrite of the algorithm. We leave this study for future work.

G.6 CONCLUSIONS

The main conclusion of this ablation study is that naive changes to GGNS quickly lead to biased
sampling. It is the combination of the contributions introduced in Section 3 that leads to robust
evidence on high dimensions. Of course, it is true that for each of these parts, there are settings that
will work for any problem, i.e. we can always make the step size small enough, the number of steps
high enough, etc. However, the main advantage of our algorithm is that it works without the need
for fine-tuning all these parameters.

H GGNS ALGORITHM

We show the full GGNS algorithm in algorithm 3. Our cluster-finding algorithm and our Hamiltonian
slice sampling algorithm are shown in algorithm 4 and algorithm 5 respectively and are both used
in algorithm 3. The cluster statistics formalism presented in this section follows (Handley et al.,
2015b). We refer the reader to the original paper for derivations on where these formulas come
from.
The summary statistics are initiated using the following equation:

22

Under review as a conference paper at ICLR 2024

Algorithm 3 The GGNS algorithm
1: Initialise 𝑛live live points from the prior 𝜋(𝜃).
2: Initialise an empty set of dead points.
3: Evaluate the likelihood L𝑖 = L(𝜃𝑖) for each live point.
4: Initiate summary statistics

{
𝑍, 𝑋, 𝑍𝑝 , ...

}
, using eq. (28) to eq. (39).

5: Set Δ(𝑋L) = 0.
6: Set (𝑋L)max = 0.
7: Set 𝑛clusters = 1.
8: Set 𝑑𝑡 = 𝑑𝑡ini.
9: while Δ(𝑋L) > tol do

10: for i = 1, ..., 𝑛clusters do
11: Use cluster finding algorithm 4
12: If new clusters are found, initiate them by splitting the cluster 𝑖, using eq. (50) to eq. (56)
13: end for
14: for j = 1, ..., 𝑛live//2 do
15: Select the point with the lowest likelihood L 𝑗 and remove them from the set of live points

to the set of dead points.
16: Update the summary statistics, using eq. (40) to eq. (49).
17: If a cluster has no points, remove it, and set 𝑛clusters− = 1
18: end for
19: Generate the cluster labels for the next points 𝑛live//2, proportionally to 𝑋𝑝
20: Sample 𝑥 ∼ 𝜃live, from the appropriate clusters
21: Use algorithm 5, to get 𝜃new, and out frac, under the condition L(𝜃new) > L 𝑗 ∀𝜃new.
22: if out frac > 0.15 then
23: Set 𝑑𝑡 = 𝑑𝑡 ∗ 0.9
24: else if out frac < 0.05 then
25: Set 𝑑𝑡 = 𝑑𝑡 ∗ 1.1
26: end if
27: Add 𝜃new to the set of live points.
28: Set (𝑋L)max = max (𝑋Lmax, (𝑋L)max), where Lmax is the maximum likelihood amongst the

live points.
29: Set (Δ𝑋L) = 𝑋Lmax/(𝑋L)max
30: end while
31: for i = 1, ..., 𝑛live do
32: Select the live point with the lowest likelihood L 𝑗 and move it from the set of live points to

the set of dead points.
33: Set 𝑍 = 𝑍 + 1

𝑛live+1𝑋L 𝑗 .
34: Set 𝑋 = 𝑋

𝑛live
𝑛live+1 .

35: end for

Algorithm 4 The cluster finding algorithm used in algorithm 3, for a cluster containing 𝑛𝑝𝑜𝑖𝑛𝑡𝑠
points.

1: Initialise prev sizes = None.
2: for k = 2, ... , 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 do
3: Run k-nearest-neighbours (KNN) on the cluster points, with value 𝑘
4: Set cluster sizes as the number of points in each KNN cluster
5: if cluster sizes = prev sizes then
6: Break
7: else
8: Set prev sizes = cluster sizes
9: end if

10: end for
11: return The number of KNN clusters.

23

Under review as a conference paper at ICLR 2024

Algorithm 5 The Hamiltonian slice sampling algorithm used in algorithm 3, starting from 𝑛 points
with position 𝑥, and with step size 𝑑𝑡; and with a likelihood barrier Lmin

1: Set num out steps = 0, num in steps = 0
2: Set 𝑝 ∼ N(0, 1).
3: Set num reflections[1, ..., 𝑛] < −0
4: Set x saved = {}
5: while min(num reflections) < max reflections do
6: Set 𝑥+ = 𝑝 ∗ 𝑑𝑡
7: Call the likelihood function, to get L and ∇L
8: Set outside[1, ..., 𝑛] = L < Lmin
9: Take 𝑛 = ∇L/∥∇L)∥

10: Set 𝑝 [outside] = 𝑝 [outside] − 2(𝑝 · 𝑛)𝑛[outside].
11: Set 𝜖 ∼ N(0, 1)
12: Set 𝑝 = 𝑝 ∗ (1 + 𝜖 ∗ delta p)
13: Set num reflections+ = outside
14: if min(num reflections) < min reflections then
15: Add 𝑥 [∼ outside] to x saved
16: end if
17: Set num out steps+ =

∑(outside)
18: Set num in steps+ =

∑(∼ outside)
19: end while
20: Set out frac = num out steps/(num out steps + num in steps)
21: Samples 𝜃 ∼ x saved
22: return 𝜃, out frac

𝑍 = 0, (28)

𝑍𝑝 =

{
𝑍

}
, (29)

𝑍2 = 0, (30)

𝑍2
𝑝 =

{
𝑍2

}
, (31)

𝑍𝑋 = 0, (32)

𝑍𝑋𝑝 =

{
𝑍𝑋

}
, (33)

𝑍𝑝𝑋𝑝 =

{
𝑍𝑋

}
, (34)

𝑋 = 1, (35)

𝑋𝑝 =

{
𝑋

}
, (36)

𝑋2
𝑝 =

{
𝑋2

}
, (37)

𝑋𝑝𝑋𝑞 = 0 (𝑞 ≠ 𝑝), (38)
(39)

where 𝑝 and 𝑞 refer to the cluster numbers, initially 1. To update the summary statistics, we use:

24

Under review as a conference paper at ICLR 2024

Z → Z +
𝑋 𝑝L
𝑛𝑝 + 1

, (40)

Z𝑝 → Z𝑝 +
𝑋 𝑝L
𝑛𝑝 + 1

, (41)

𝑋 𝑝 →
𝑛𝑝𝑋 𝑝

𝑛𝑝 + 1
, (42)

Z2 → Z2 +
2Z𝑋𝑝L𝑝

𝑛𝑝 + 1
+

2𝑋2
𝑝L2

(𝑛𝑝 + 1) (𝑛𝑝 + 2) , (43)

Z2
𝑝 → Z2

𝑝 +
2Z𝑝𝑋𝑝L
𝑛𝑝 + 1

+
2𝑋2

𝑝L2

(𝑛𝑝 + 1) (𝑛𝑝 + 2) , (44)

Z𝑋𝑝 →
𝑛𝑝Z𝑋𝑝

𝑛𝑝 + 1
+

𝑛𝑝𝑋
2
𝑝L

(𝑛𝑝 + 1) (𝑛𝑝 + 2) , (45)

Z𝑋𝑞 → Z𝑋𝑝 +
𝑋𝑝𝑋𝑞L
(𝑛𝑝 + 1) (𝑞 ≠ 𝑝), (46)

Z𝑝𝑋𝑝 →
𝑛𝑝Z𝑝𝑋𝑝

𝑛𝑝 + 1
+

𝑛𝑝𝑋
2
𝑝L

(𝑛𝑝 + 1) (𝑛𝑝 + 2) , (47)

𝑋2
𝑝 →

𝑛𝑝𝑋
2
𝑝

𝑛𝑝 + 2
, (48)

𝑋𝑝𝑋𝑞 →
𝑛𝑝𝑋𝑝𝑋𝑞

𝑛𝑝 + 1
(𝑞 ≠ 𝑝). (49)

When we need to split a cluster 𝑝 into multiple clusters 𝑖, we use:

𝑋𝑖 =
𝑛𝑖

𝑛
𝑋 𝑝 , (50)

𝑋2
𝑖
=
𝑛𝑖 (𝑛𝑖 + 1)
𝑛(𝑛 + 1) 𝑋

2
𝑝 , (51)

𝑋𝑖𝑋 𝑗 =
𝑛𝑖𝑛 𝑗

𝑛(𝑛 + 1) 𝑋
2
𝑝 , (52)

𝑋𝑖𝑌 =
𝑛𝑖

𝑛
𝑋𝑝𝑌 𝑌 ∈ {𝑍, 𝑍𝑝 , 𝑋𝑞}, (53)

𝑍𝑖 =
𝑛𝑖

𝑛
𝑍 𝑝 , (54)

𝑍𝑖𝑋𝑖 =
𝑛𝑖 (𝑛𝑖 + 1)
𝑛(𝑛 + 1) 𝑍𝑝𝑋𝑝 , (55)

𝑍2
𝑖
=
𝑛𝑖 (𝑛𝑖 + 1)
𝑛(𝑛 + 1) 𝑍

2
𝑝 . (56)

(57)

I TERMINATION CRITERION EXPLAINED

appendix E explains the intuition behind the new termination criterion introduced in Section 3. In
nested sampling, the likelihood increases as the algorithm progresses, corresponding to going from
right (𝑋 = 1) to left (𝑋 = 0) in the figure. However, the product of the prior volume 𝑋 and
the likelihood L always follow the same pattern: It starts low, reaches a peak, and then decreases

25

Under review as a conference paper at ICLR 2024

Figure 15: In nested sampling, the likelihood L
(dotted line) goes up, as the algorithm progresses
from 𝑋 = 1 to 𝑋 = 0 (right to left in the plot).
However, the product 𝑋L(𝑋) starts low, as the
likelihood is small, peaks, end goes down again.
Therefore, our termination criterion checks when
𝑋L(𝑋) has peaked, and again gone close to zero.
Image credit (Handley et al., 2015b).

logX

XL(X)
L(X)

106 107

of Likelihood Evaluations

-10

-5

0

5

10

lo
gZ

D = 32

106 107

of Likelihood Evaluations

-10

-5

0

5

10

lo
gZ

D = 64
GGNS
DyNesty default
PolyChord

Figure 16: The bias in the estimate of log 𝑍 as a function of number of likelihood evaluations, for
GGNS (blue), and other nested sampling algorithms (PolyChord in green and dynesty in orange
). We achieve different numbers of like evaluations by changing the number of live points. We run
each algorithm with 𝑛live = {50, 100, 200, 400}. Note that the dynesty runs with 𝑛live = 50 and

𝑛live = 100 are not in the plot, as they are too far up in the y-axis.

towards zero again. Therefore, our termination criterion consists of checking the ratio of the current
value of 𝑋L to the maximum value that 𝑋L has reached throughout the algorithm. When that
fraction is smaller than some threshold, we stop the algorithm.

J EVIDENCE ESTIMATION AS A FUNCTION OF LIKELIHOOD EVALUATIONS

In this appendix, we study the relationship between the number of likelihood evaluations, and the
estimate of Δ log 𝑍 . The easiest way to vary the number of likelihood evaluations, is by varying the
number of live points used. We repeat the analysis of Section 4.1, for two values of the number of
dimensions 𝑑 = 32 and 𝑑 = 64, for each of the algorithms; varying the number of live points in the
range 𝑛live = {50, 100, 200, 400}.
We see how, in both cases, dynesty can lead to very biased inference, if the number of live
points is low. On the other hand, PolyChord reliably achieves unbiased inference, at the expense
of a much higher number of likelihood evaluations. GGNS gets the best of each, by achieving
unbiased inference with less likelihood evaluations. We also see how our algorithm scales better
with dimensionality, when we compare its performance between the left and the right plots, with the
other algorithms.

26

	Introduction
	Background and Related Work
	Nested Sampling
	Previous Work
	Hamiltonian Slice Sampling

	Contributions
	Experiments
	Comparison with Other Nested Sampling Methods
	Calculation of Evidence
	Image Generation
	Synthetic Molecule Task

	Combination with Generative Flow Networks
	Discussion and Conclusions
	Nested Sampling Review
	Hamiltonian Slice Sampling Algorithm
	Hyperparameters of GGNS
	Comparison with Flow Annealed Importance Sampling Boostrap
	Sampling Complex Distributions
	Torus Reward Function
	Normalization
	Behaviour on different dimensions

	Ablation Study
	Adaptive Time Step Control
	Trajectory preservation
	Mode Collapse Mitigation
	Termination Criterion
	Other changes
	Conclusions

	GGNS algorithm
	Termination Criterion Explained
	Evidence Estimation as a Function of Likelihood Evaluations

