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Abstract

Convolutional Neural Networks exhibit inherent equivariance to image translation,1

leading to efficient parameter and data usage, faster learning, and improved ro-2

bustness. The concept of translation equivariant networks has been successfully3

extended to rotation transformation using group convolution for discrete rotation4

groups and harmonic functions for the continuous rotation group encompassing5

360◦. We explore the compatibility of the Self-Attention mechanism with full rota-6

tion equivariance, in contrast to previous studies that focused on discrete rotation.7

We introduce the Harmformer, a harmonic transformer with a convolutional stem8

that achieves equivariance for both translation and continuous rotation. Accompa-9

nied by an end-to-end equivariance proof, the Harmformer not only outperforms10

previous equivariant transformers, but also demonstrates inherent stability under11

any continuous rotation, even without seeing rotated samples during training.12

Figure 1: Equivariance of the Harmformer feature and attention maps in response to rotation of the
input image: While the maps themselves are rotated, the magnitudes in the maps remain the same.

1 Introduction13

A key strength that positions Convolutional Neural Networks (CNNs) [1] as a superior architecture14

for computer vision tasks is the weight sharing across the spatial domain. This design ensures that15

CNN feature maps retain their values as the input is translated, only being shifted according to16

the input. Formally known as translation equivariance, this property provides CNNs with inherent17

robustness and efficiency in managing translations. Equivariance can be extended to other groups18

of transformations, such as rotation, scaling, or mirroring. The advantage of equivariant models is19
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that they ensure a tractable response of the model to the transformation of the input. As a result, the20

model can eliminate the effects of the transformations and produce predictions that are invariant to21

them. For instance, to achieve translation invariance in conventional CNNs, the feature maps are22

commonly aggregated by global average pooling before the classification layer.23

Group Equivariant Convolutional Neural Networks (G-CNNs) [2] show that CNNs can be modified24

to become equivariant to any discrete transformation group, such as rotation by a discrete set of25

angles. An extension to continuous rotation and translation group was introduced by Worrall et al.26

[3]. The authors proposed Harmonic Networks (H-Nets), which restrict the convolution filters to27

a family of harmonic functions ideal for expressing full rotation equivariance. Both approaches28

improve the generalization and efficiency of training for the chosen group, similarly to how CNNs29

benefit from translation equivariance. For example, rotation equivariant networks are well suited30

for object detection in aerial imagery because such images lack natural orientation and equivariant31

networks inherently accommodate all rotations. Beyond aerial imagery [4, 5], equivariant CNNs are32

effective in many other applications, such as microscopy [6, 7], histology [8], and remote sensing [9].33

With the adoption of transformer architectures in computer vision, the Self-Attention mechanism34

has also been integrated into equivariant networks [10, 11, 12]. Equivariant transformers are gaining35

importance especially in domains such as graph-based structures (e.g. molecules) [13, 14, 15, 16],36

vector fields [17], manifolds [18], and generic geometric data [19, 20]. In the 2D domain, Romero37

and Cordonnier [21] proposed a transformer equivariant to discrete rotation and translation groups by38

using the principle of G-CNNs in the positional encoding of the Self-Attention (SA). The formulation39

was further improved by Xu et al. [22]. In both cases, the computational complexity of the equivariant40

SA increases quadratically with the number of angles in the considered rotation group, which limits41

the model angular resolution. Equivariance to continuous rotation presents a versatile solution.42

In this paper, we introduce Harmformer, the first vision transformer capable of achieving continuous43

2D roto-translation equivariance. The name is derived from circular harmonics [23] which provide44

the equivariance property preserved throughout the architecture. To ensure computational efficiency,45

our network starts with an equivariant convolutional stem based on Harmonic networks [3], where46

we redesign the key components, such as activations, normalization layers, and introduce equivariant47

residual connections. The stem output is divided into equivariant patches, which are then passed to48

the transformer. Alongside a novel self-attention SA mechanism, we introduce layer normalization49

and linear layers to guarantee end-to-end equivariance. The equivariance property allows Harmformer50

to remove the effect of roto-translation just before classification, preserving all relevant information51

at earlier stages (see Fig. 1).52

Through experimental validation, we show that Harmformer surpasses all previous discrete equivariant53

transformers [21, 22] on established benchmarks [24, 25, 26]. It also outperforms earlier invariant54

models [27, 28, 29] on classification tasks where the model is trained solely on non-rotated data.55

2 Related Work56

We review the three foundational concepts from prior research that Harmformer builds upon: the57

SA mechanism, equivariant convolution networks, and transformers with a convolutional stem stage.58

Additionally, we discuss other equivariant transformer architectures.59

Visual Self-Attention The well-known SA mechanism originates from natural language processing60

[30] and is widely used in computer vision since the publication of the Visual Transformer (ViT)61

[31]. Transformers, unlike CNNs, exhibit larger model capacities but require substantial amounts62

of data and have quadratic complexity with respect to input size. Transformers closely related to63

Harmformer include CoAtNet [32] and, more specifically, ViTp [33]. These architectures begin with64

a convolution stem to downscale the input and thereby reduce the computational complexity of the65

subsequent application of SA. However, these architectures are not equivariant to roto-translation.66

Equivariant Convolutions Since the publishing of the G-CNNs [2], the concept of equivariant67

convolutional networks has expanded across various modalities and transformation groups. In 2D,68

these transformations include rotation [3, 34], scaling [35, 36, 37], and general E(2) transformations69

[38]. In 3D, applications cover SO(3) transformations in volumetric data [39, 40] and point clouds70

[41], as well as spherical CNNs [42]. Equivariant networks are also applied to graphs [43] and71

non-Euclidean manifolds [44]. Harmformer builds on and extends the H-Nets published by Worrall72
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et al. [3], which are purely convolutional networks equivariant to continuous 360◦ rotation. In our73

implementation of H-Nets, we incorporate the improvements introduced in H-NeXt [27].74

Equivariant Transformers As previously mentioned, equivariant networks have integrated the SA75

mechanism in various domains, including 3D graphs and point clouds using irreducible representations76

[10, 15, 14], operations on Lie algebras [12], and general geometric data using geometric algebras77

[19, 20]. Particularly relevant to our work are the planar roto-translation equivariant transformers,78

such as Group Equivariant Self-Attention Networks (GSA-Nets) [21] and E(2)-Equivariant Vision79

Transformer (GE-ViT), which reformulate relative positional encoding to construct equivariant80

transformers. However, GSA-Nets and GE-ViT operate only on discrete rotation groups such as81 {
k π

2 | k ∈ Z
}

, where finer angular sampling substantially increases the computational complexity.82

3 On Equivariance in Vision Transformers83

We analyze the roto-translation equivariance of the ViT architecture, a well-known representative84

of vision transformers. First, we formalize the notion of equivariance. Intuitively, a function f85

is equivariant to a transformation ag if the transformation and the function commute, f(ag(x)) =86

ag(f(x)). For example, processing a rotated input image has the same effect as directly rotating the87

features of the unrotated image. In practice, such a definition would be too restrictive. The function88

f (layer or network) typically has a different domain and codomain, so the transformation may act89

differently on each. The core idea remains the same: the model response to the input transformation is90

predictable. To formally define equivariance, we draw upon the seminal work of Cohen and Welling91

[2] or the more recent one formulated by Weiler et al. [45].92

Definition 3.1 (Equivariance). A function f : X → Y (a whole network or a single layer) is called93

group equivariant with respect to a group G if for every element g in G, represented by a linear map94

ag : X → X , there exists a corresponding linear map bg : Y → Y such that the following holds:95

f(ag(x)) = bg(f(x)) for all x ∈ X and g ∈ G. (1)

A composition f2(f1(x)) of two equivariant functions f1 : X → Y and f2 : Y → Z is equivariant.96

We call invariance a special case of equivariance when bg is the identity for all g in G.97

Self-Attention A key mechanism that distinguishes transformers from previous architectures is the98

SA layer [30]. Before discussing the properties of SA, let us formally define it.99

Definition 3.2 (Self-Attention). Given an input matrix Y ∈ Rn×d, where each row of Y represents a100

feature vector of dimension d, usually called a patch. The matrices Q (queries), K (keys), and V101

(values) are computed as linear projections of Y :102

[Q,K, V ] = [YWq, Y Wk, Y Wv] Wq,k,v ∈ Rd×dh , (2)

where dh is the dimension within the SA layer. The output of the self-attention layer, SA(Y ), is a103

weighted sum of the vectors in V , where the weights are defined as the softmax-normalized pairwise104

similarity scores between the vectors in Q and K:105

A = softmax(QKT /
√
dh) A ∈ Rn×n, (3)

SA(Y ) = AV. (4)

In practice, SA is typically extended to Multi-Head Self-Attention (MSA), in which multiple SA106

layers with different embedding matrices W(k,v,q) are computed in parallel and then combined.107

The construction of SA implies its well-known property, in the literature often referred to as permu-108

tation invariance [46]. According to Def. 3.2, it is more accurate to call the SA layer permutation109

equivariant rather than permutation invariant. For if we change the order of the rows in Y , the SA(Y )110

remains the same except for the same change in the order of its output rows.111

What makes ViT non-equivariant? As rotation and translation are special cases of permutation,112

the permutation equivariance of SA might suggest the roto-translation equivariance of the whole113

ViT. However, the permutation-equivariance of SA holds at the patch level and not at the pixel level,114

where translation or rotation takes place. In the initial stage of ViT, before the first SA layer, the115

image is split into n non-overlapping patches of fixed size, typically 16×16 pixels. These are linearly116

transformed and flattened to form the rows of the input matrix Y of the first SA layer. This patch-wise117
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operation breaks the direct rotation (or translation) equivariance of ViT at the image level, because118

for an image rotation ag in Eq. (1) corresponding to an angle g from the rotation group G, there is no119

b acting on the patches that can be expressed as a rotation bg by g; the same holds for translation.120

A solution typically used by previous equivariant approaches [21, 22] is to consider pixel-level121

“patches” of size 1×1 pixel. Then the image rotation is equivalent to patch-level permutation, and122

the corresponding transformer model remains equivariant, assuming that interpolation errors and123

boundary effects are minimal. This approach, however, has two major drawbacks. As seen from124

Eq. (3), the SA has a quadratic complexity with respect to the number of patches n, so operating125

on a pixel grid (as opposed to 16×16) incurs an almost 105 penalty factor in memory requirements126

and correspondingly increases the processing time. To mitigate this, GSA-Nets and GE-ViT reduce127

complexity by using local SA [47] that restricts the attention field to the 7×7 neighborhood of the128

patch. The second drawback is that the local self-attention in the first layers is not very informative,129

because nearby pixels are usually highly correlated.130

Position Encoding During construction of the input matrix Y for the first SA layer, the patches are131

also given absolute position encoding that provides information about their locations. This breaks132

equivariance as the patches of a transformed image will receive different encoding compared to their133

counterparts in the original image. Equivariant transformers [21, 22] replace the absolute encoding134

with circular relative encoding, similar to iRPE introduced by Wu et al. [48].135

In Harmformer, we address these challenges with a convolutional stem stage that initially reduces136

spatial dimensions and extracts high-level features. Subsequently, we create 1×1 patches from these137

high-level features and process them by the SA layers. To maintain spatial correspondence among138

the patches while ensuring equivariance, Harmformer also uses circular relative position encoding.139

4 Harmonic Convolutions and Equivariance to Continuous Roto-Translation140

To understand the equivariance property of Harmformer, it is essential to understand the concept of141

harmonic convolutions introduced in H-Nets [3], as they are employed in the stem and affect the142

subsequent transformer layers. The main difference from the traditional CNNs is that the convolution143

filters based on circular harmonic functions are specifically designed to encode rotational symmetries.144

The filters are defined as follows.145

Definition 4.1 (Harmonic Filter). A harmonic filter Wm : R2 → C parameterized by a rotation order146

m is given by:147

Wm(r, θ) = R(r)ei(mθ+β), (5)

where (r, θ) are polar coordinates. Here, R : R → R is a learnable radial function and β ∈ R is a148

learnable phase shift. The rotation order m is a parameter that determines the filter symmetry.149

As translation equivariance is inherently provided by convolution, we will focus solely on rotation in150

the following discussion and denote the rotation operator by [·]α, where α is the angle of rotation. Let151

us look in detail at how the rotation applied to the input affects feature maps generated by harmonic152

convolution. The H-Nets features are represented as complex values in polar form.153

Lemma 4.1 (Harmonic Convolution Property). Let I be an input image and Wm1 a harmonic filter.154

Under image rotation by angle α, convolution of I with Wm1
is given by:155

[I]
α ⊛Wm1

= eim1α [I ⊛Wm1
]
α
. (6)

This equation shows that rotating the image only results in a phase shift of the feature values, while156

the spatial coordinates are rotated accordingly. This property also holds for subsequent convolution157

layers. If the first feature map is denoted as Fm1
([I]

α
), then convolution with another harmonic filter158

Wm2
is given by:159

Fm1
([I]

α
)⊛Wm2

= ei(m1+m2)α [Fm1
(I)⊛Wm2

]
α
. (7)

The authors of H-Nets also construct activation, batch normalization, and pooling layers that preserve160

this property. As a result, their classifier can be independent of input rotation and translation. To161

remove the influence of rotation, they extract only the magnitude from the last feature map and162

discard the phase. To aggregate spatial information, they use global average pooling. Note that for163
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tasks where the orientation of the object is relevant, phase can be used as no information is lost due164

to equivariance.165

To unify the equivariance property within the Harmformer architecture, we define Harmonic Equiv-166

ariance (HE), which is motivated by Lemma 4.1 and satisfies the general definition of equivariance167

(Def. 3.1). HE describes how features transform with respect to the rotation of an input image. By168

showing that each Harmformer layer satisfies HE, we establish the relationship between the features169

and the rotation of an input throughout the model.170

Definition 4.2 (Harmonic Equivariance – HE). A layer Fm(·) associated with a rotation order m is171

said to be HE, if for any rotation by angle α and admissible input I , it is transformed as follows:172

Fm([I]
α
) = eimα [Fm(I)]

α
. (8)

Here [Fm(I)]
α are features obtained from an unrotated input I and then rotated. The phase is shifted173

by a multiple of the rotation angle, where the factor is given by the rotation order of the layer. The174

process is illustrated in Fig. 3a.175

5 Harmformer Architecture176

The architecture of Harmformer is shown in Figure 2 and its layers will be discussed one by one.177

HE (Def. 4.2) of each layer is proved in Appendix A, demonstrating the end-to-end continuous178

rotation and translation equivariance. The architecture begins with a stem stage based on H-Nets,179

which we have further improved by refining activation and normalization layers and incorporating180

residual connections. The stem is followed by an equivariant encoder tailored to maintain HE, and181

the last component is a classifier, which takes the HE output of the encoder and computes an invariant182

representation for classification.183

Figure 2: Overview of the Harmformer architecture, divided into four stages: S1 - downscaling the
input, S2 - constructing patches from feature maps, S3 - Harmonic Encoder, and S4 - Classifier.

5.1 Harmformer: S1 Stem Stage184

The main role is to prepare features for the Harmonic Encoder (S3) so that they are HE and have185

lower spatial resolution to keep the computational complexity of SA manageable, as discussed in Sec.186

3. To this end, we design the stage to comprise r iterations of H-Conv blocks, followed by average187

pooling, as shown in Fig. 2. Each iteration increases the number of channels while decreasing the188

spatial dimension.189

The stage starts with an input that formally satisfies HE for the rotation order m = 0, expressed as190

[I]
α
= ei0α [I]

α, followed by the first H-Conv block shown in Figure 3b.191

Rotation Order Streams The HE and the definition of Harmonic Convolution have already been192

detailed in Lemma 4.1 and Def. 4.1. An important aspect that remains to be addressed is the selection193

of rotation orders for the harmonic filters. In our initial convolution with the input image (often called194

lifting convolution), we employ harmonic filters of rotation orders −1, 0, and 1. This setup produces195

three streams of feature maps, each corresponding to one of these rotation orders.196

Our experiments, along with the results reported in [27, 3], indicate that generating feature maps of197

higher rotation orders does not significantly improve performance but increases the computational198

complexity. Based on this evidence, we limit rotation orders to −1, 0, and 1.199

Most layers process these streams independently and those that interact across streams are indicated200

in the diagrams by a "spoon" symbol, as in the case of Harmonic Convolution in Figure 3b. Streams201
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Figure 3: (a) Phase shift of HE feature values when the input is rotated; (b) Harmonic Convolution
(H-Conv) Block of the stem stage; (c) Interaction of harmonic filters Wm with feature maps Fm

within the Harmonic Convolution layer of the H-Conv Block, where m is the rotation order.

in the Harmonic Convolution block are mixed similarly as in H-Nets. The proposed mixing strategy202

is shown in Figure 3c and follows from the Harmonic Convolution property in (7), which states that203

F out
m =

∑
m=m1+m2

F in
m1

⊛Wm2
, (9)

where m, m1, and m2 are the rotation orders of the output, input, and harmonic filter, respectively.204

Layers Operating on Magnitude Because rotation affects only the phase of the features leaving the205

magnitude untouched, element-wise functions, such as normalization or activation, operating only206

on magnitudes preserve the HE property. In contrast with previous H-Nets [27, 3], we restrict the207

codomain of every element-wise function f transforming magnitudes to non-negative numbers, f :208

R → R+
0 , since negative magnitudes inadvertently flip the phase, thus violating the HE property. This209

consideration leads us to propose a novel normalization fused together with activation (HBatchNorm210

and C-ReLu), detailed in Appendix A.4. Restricting the codomain and fusing the normalization with211

the activation has a positive impact on performance, as shown in Ablation B.1.212

Residual Connection The final stem element is the residual connection, previously unused in213

H-Nets. Residual connections are also used within our encoder blocks. As in standard CNNs, they214

improve gradient flow and reduce training time. With respect to rotation orders, they process streams215

independently, thus preserving HE according to the following lemma:216

Lemma 5.1 (HE of Residual Connections). A residual connection between feature maps of the same217

rotation order, Fm(I) and F ′
m(I), preserves HE property:218

F ′
m([I]

α
) + Fm([I]

α
) = eimα [(F ′

m(I) + Fm(I))]
α
. (10)

5.2 Harmformer: S2 Construction of the Patches219

To integrate the stem output with the encoder, the final stem feature maps are divided into 1×1-sized220

patches, as illustrated in Figure 4a. The patches are constructed separately for all three streams of221

rotation orders. The resulting stack of patches then comprises three matrices F−1, F0, F1 ∈ C(h·w)×d,222

each representing a single rotation order, where h, w, and d denote the height, width, and number223

of channels of the last feature maps, respectively. We keep this notation for encoder feature maps224

(patches), as they correspond to the stem feature maps, just reshuffled.225

Neglecting small interpolation errors, the spatial transformation of the input translates only into226

a permutation of the stack of patches Fm as discussed in Sec. 3. For clarity, we use a discrete227

representation but it should be noted that the encoder can be modeled using a functional framework,228

as shown by Romero and Cordonnier [21].229

Before feeding the SA with patches, transformer networks typically apply a linear projection to adjust230

the dimension d. We use a linear layer that processes the patches independently with respect to their231

order of rotation to preserve HE:232
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Lemma 5.2 (HE of Linear Layer). A linear layer applied to a HE feature map Fm([I]
α
) ∈ C(hw)×din233

preserves the rotation order m. Formally, we have:234

Fm([I]
α
)W = emiα [Fm(I)W ]

α
, (11)

where W ∈ Cdin×dout represents a shared weight matrix applied independently over all spatial235

positions of the input feature map.236

Figure 4: a) Construction of the patches (colors represent rotation orders) and the Harmonic Encoder
structure. b) Diagram depicting the interaction of SA mechanisms across different rotation orders.

5.3 Harmformer: S3 Harmonic Encoder237

This section outlines our encoder, which is designed to preserve the HE property. The encoder is238

organized into several k blocks, each containing Multi-Head Self-Attention (MSA) and Multi-Layer239

Perceptron (MLP) components, as shown in Figure4a. Along with the layers presented in the previous240

sections, we propose a SA mechanism and a layer normalization, both of which preserve the HE.241

As the following lemma shows, the layer normalization can be adapted to satisfy HE by operating242

independently on the streams of rotation orders.243

Lemma 5.3 (HE of Layer Norm). A feature map Fm([I]
α
) ∈ C(hw)×d with a rotation order m244

preserves HE when normalized by its mean and standard deviation:245

Fm([I]
α
)− µ

σ + ϵ
= eimα [Fm(I)]

α − µ

σ + ϵ
, (12)

where µ, σ are the sample means and standard deviations of the original feature maps computed over246

their spatial dimensions, respectively, and ϵ is a small constant added for numerical stability.247

Self-Attention The essential components of the encoder are MSA layers. The proposed MSA mixes248

features with different rotation orders. In the first step, queries, keys and values are generated for249

each rotation order −1, 0, and 1 independently, which preserves HE as follows from Lemma 5.2. We250

split the SA calculation (Eq. (3),(4)) into two operations: dot product and matrix multiplication, and251

demonstrate their properties by the following lemmas.252

Lemma 5.4 (Dot product subtracts rotation orders). Consider two HE feature maps Qm1([I]
α
) ∈253

C(hw)×d and Km2
([I]

α
) ∈ C(hw)×d that represent queries and keys, respectively. The dot product254

of these feature maps is HE and has the rotation order m1 −m2. Formally, we have:255

Qm1
([I]

α
)Km2

([I]
α
)T = ei(m1−m2)α

[
Qm1

(I)Km2
(I)T

]α
, (13)

where Km2
([I]

α
)T denotes the complex conjugate transpose of Km2

([I]
α
).256

Lemma 5.5 (Matrix multiplication sums rotation orders). Consider a HE feature map Am1([I]
α
) ∈257

C(hw)×(hw) representing an attention matrix and HE feature map Vm2
([I]

α
) ∈ C(hw)×d representing258

values. The result of their matrix multiplication is HE with a rotation order m = m1 +m2:259

Am1
([I]

α
)Vm2

([I]
α
) = ei(m1+m2)α [Am1

(I)Vm2
(I)]

α
. (14)

where [Am1
(I)]

α and [Vm2
(I)]

α are feature maps created from unrotated I and rotated afterwards.260
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After these operations, the relative circular encodings [48] are added to the result of the dot product261

before it undergoes the softmax activation. The Harmformer softmax operates only on magnitudes262

and its codomain is within R+
0 to avoid breaking HE.263

We have shown that the dot product between queries Qm1
and keys Km2

results in a rotation order264

of m = m1 −m2. Similarly, matrix multiplication between the attention matrix Am1
and values265

Vm2 yields a feature map with a rotation order of m = m1 +m2. The final task is to combine these266

rotation orders to produce output feature maps with the same number of rotation orders as the input267

feature maps, i.e. -1, 0, and 1.268

Mixing Orders in MSA Since there are multiple strategies for combining rotation orders, we269

explored several of them and provide details on other configurations in Ablation B.2. The optimal270

approach, according to our experiments, is shown in Figure 4 and involves:271

1. Dot Product Calculation: The dot product is computed only between the same rotation272

orders, separately. According to Lemma 5.4, this results in three feature maps with the273

rotation order 0 and dimension C(hw)×(hw).274

2. Attention Matrix Formation: These results are summed to form a single matrix of275

rotation order 0. A softmax function is then applied to form a single attention matrix276

A0 ∈ C(hw)×(hw), preserving the rotation order 0, because softmax function operates only277

on magnitudes and outputs non-negative numbers.278

3. Self-Attention Output: Finally, the self-attention output is produced by matrix multiplica-279

tion of the attention matrix (rotation order zero) with the values of each rotation order. This280

process results in a triplet of outputs with the target rotation orders (−1, 0, 1).281

Other layers, such as linear layers and residual connections, have been introduced in previous sections.282

By stacking HE layers, the last feature map coming from our encoder will maintain the HE property.283

5.4 Harmformer: S4 Classification284

Spatial position and orientation are generally redundant for classification tasks, except when classify-285

ing directional objects such as arrows. In the final stage, we remove this redundant information from286

the feature maps and produce an invariant feature vector. The feature maps entering the classification287

stage form a matrix of the shape C3×n×d. To aggregate over different rotation orders, we keep only288

the magnitude, resulting in Rn×3d. The spatial information is then eliminated by applying global289

average pooling over the dimension n (patches), reducing the shape to R3d. The final feature vector,290

which is roto-translation invariant, is processed by a single linear layer for classification.291

6 Experiments292

To validate the properties of Harmformer, we conducted experiments on four benchmarks listed in293

Table 1. For detailed experimental configurations and an ablation study of architectural modifications,294

see Appendices C and B, respectively. Addition segmentation experiment is included in Appendix D.295

Table 1: Dataset overview, detailing sizes and whether training and test sets contain rotated images.

Dataset Name Sample Size Train/Test/Val. Size Rot. Train/Test Ref. Scenario

mnist-rot-test 28× 28× 1 50k / 10k / 10k ✗/✓ [27] 1
cifar-rot-test 32× 32× 3 42k / 10k / 8k ✗/✓ [27] 1
rotated MNIST 28× 28× 1 10k / 2k / 50k ✓/✓ [24] 2
PCam 96× 96× 3 262k / 32k / 32k ✗/✗ [25, 26] 2

Model Architecture The models are designed to match the number of parameters of the previous296

state-of-the-art models while maintaining the same overall architecture. Depending on the benchmark,297

the stem stage consists of 2-4 blocks to reduce resolution, followed by 3-4 harmonic encoder298

blocks. To ensure that the equivariant properties emerge from the architecture, we avoid any data299

augmentation. Consistent with H-NeXt [27], the inputs are initially upscaled by a factor of two to300

mitigate interpolation errors.301
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Table 2: Error on mnist-rot-test

Model Error Param.

ResNets-50 [28] 57.6%
SWN-GCN [28] 8.20% 2.7M
H-Nets [3] 7.11% 33k
H-NeXt [27] 1.30% 28k
Harmformer 0.82% 29.7k

Table 3: Error on cifar10-rot-test

Model Error Param.

ResNets-50 [28] 63.90%
SWN-GCN [28] 49.50% 2.7M
H-NeXt[27] 38.54% 118k
Harmformer 31.41% 118k
Harmformer (Large) 29.29% 217k

Table 4: Error on rotated MNIST

SA model Error Param.

GSA-Nets[21] 2.03% 44.7k
GE-ViT[22] 1.99% 45k
Harmformer 1.18% 30k

CNNs model

G-CNNs[2] 1.69% 73.1k

Table 5: PCam

Error Param.

15.24% 206k
16.18%
12.47% 146k

10.88% 141k

Table 6: Average Error

Dataset Avg %±Std

rotMNIST 1.26±0.055
PCam 14.2±0.986

mnist-rot-test 0.91±0.142
cifar-rot-test 31.9±0.636
cifar-rot-test (Large) 29.7±0.203

Invariance Benchmarks In the first scenario, we verify the equivariance of Harmformer by training302

the model exclusively on upright (non-rotated) data and testing it on randomly rotated data; the first303

two datasets in Tab. 1. Since the model is trained only on upright images, any equivariant properties304

must arise purely from the model design, not from the training data.305

We outperform previous methods on both datasets, as shown in Tables 2 and 3. Harmformer306

improves the robustness to rotation, as we discuss further in Section B.4, which partially explains307

the performance gain on mnist-rot-test. Stability under rotation is less enhanced on cifar-rot-test308

(Sec. B.4), and the superior results there are likely due to the higher model capacity of the transformer309

architecture, which improves the overall detection performance.310

Equivariance Benchmarks In the second scenario, we compare the performance of the Harmformer311

on established equivariance benchmarks for roto-translation where there is no significant distribution312

shift between the training and test sets, either containing rotated samples or not. This evaluation313

assesses how our method stacks up against previous equivariant transformers that are equivariant to314

discrete rotation and translation. Tables 4 and 5 show the top results on the rotated MNIST and PCam315

datasets, respectively. Harmformer outperforms previous equivariant transformers and narrows the316

performance gap between equivariant transformers and convolution-based models.317

For completeness, we include the average performance in each benchmark listed in Table 6. The318

accuracy on the PCam dataset was slightly unstable, probably due to the characteristics of the dataset.319

Methods specifically designed for PCam, such as [8], use extensive augmentation techniques, which320

were avoided in our case to ensure unbiased results.321

7 Conclusion and Future Work322

The proposed Harmformer is the first transformer model to achieve end-to-end equivariance to323

continuous rotation and translation in 2D. This was accomplished by designing an equivariant self-324

attention inspired by harmonic convolution. Along with the novel SA, we introduced several layers325

specifically tailored for equivariance, including linear layers, layer normalization, batch normalization,326

activations, and residual connections. Our model outperforms previous equivariant transformers,327

narrowing the performance gap with convolution-based equivariant networks.328

We hypothesize that the full potential of transformers may not be realized due to the nature of329

traditional benchmarks. The 2D equivariant transformers have so far been tested on datasets containing330

relatively small images that lack global dependencies. Therefore, future research should explore331

the application of equivariant transformers on larger datasets where, similar to ViT, they could332

demonstrate their potential. In addition, the proposed model can be extended to other modalities333

while maintaining its equivariance properties. For example, the harmonic networks that form the334

basis of our approach can also be adapted for 3D applications.335
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A Proofs of Harmformer Equivariance555

In this section, we systematically formulate the proofs of the HE property (Definition 4.2) for each556

layer of the Harmformer. The central concept of the architecture is the handling of three streams557

corresponding to different rotation orders. By oversimplifying the interactions of rotation orders, two558

main properties of the harmonic function should be highlighted:559

1. Feature maps with the same rotation order can be summed:560

eimαF1 + eimαF2 = eimα(F1 + F2)

2. Multiplication of feature maps results in the sum of their rotation orders:561

eim1αF1 · eim2αF2 = ei(m1+m2)α(F1 · F2)

Interactions between these streams occur in layers harmonic convolution or Multi-Head Attention562

(MSA). Other layers, such as layer normalization, process feature maps of the different rotation order563

independently. Additionally, some operations, such as batch normalization and activation functions,564

operate solely on the magnitudes of complex numbers leaving the phase untouched.565

A.1 Equivariance of Harmonic Convolutions566

Note that the proof of H-Conv equivariance was originally formulated by Worrall et al. [3]. For the567

sake of completeness, we have provided a highly simplified version of these proofs. However, we568

encourage readers to read the more comprehensive work on G-steerable convolution kernels and the569

theory of steerable equivariant convolution networks in [45] (Chapters 4-5), which provides a broader570

perspective and demonstrates the equivalence with G-CNNs.571

Lemma A.1 (Rotation of a Harmonic Filter). When the coordinates of a harmonic filter are rotated572

by an angle α, it only changes by a factor eimα, where m is the rotation order of the harmonic filter573

and Rα is a corresponding 2D rotation matrix.574

Proof.

Wm(R−1
α x) ≡ W̃m(r, θ − α) = R(r) · e−im(θ−α)

= eimαW̃m(r, θ) ≡ eimαWm(x),
(15)

where x is the spatial coordinates. □575

Let us denote an input image I that is rotated by the angle α and translated by vector t as576

[I]
α
t (x) ≡ I(R−1

α x+ t). (16)

Theorem A.1 (Harmonic convolution sums the rotation orders). When an input image I is rotated by577

α and translated by t, the output of a multiple successive harmonic convolution is given by:578

[Wm1 ⊛Wm2 ⊛ · · ·⊛ [I]
α
t ] (x) = ei(m1+m2+··· )α [Wm1 ⊛Wm2 ⊛ · · ·⊛ I] (Rαx+ t) (17)

Proof. We start with the very first harmonic convolution.579

[Wm1
⊛ [I]

α
t ] (x) =

∫
R2

Wm1
(z) [I]

α
t (x− z)dz (18)

=

∫
R2

Wm1(z)I(Rα(x− z) + t)dz (Eq.16) (19)

=

∫
R2

Wm1
(R−1

α z′)I(Rαx− z′ + t) dz′ (z′ = Rαz)
1 (20)

= eim1α

∫
R2

Wm1
(z′)I((Rαx+ t)− z′)dz′ (Lemma A.1) (21)

= eim1α [Wm1
⊛ I] (Rαx+ t) (22)
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Denote the first feature map as F , if we roto-translate the input image:580

[F ]
α
t (x) ≡ eim1αF (Rαx+ t) (23)

The following harmonic convolution is given by a similar equation.581

[Wm2 ⊛ [F ]
α
t ] (x) =

∫
R2

Wm2(z) [F ]
α
t (x− z)dz (24)

= eim1α

∫
R2

Wm2
(z)F (Rαx−Rαz+ t)dz (25)

= ei(m1+m2)α

∫
R2

Wm2
(z′)F ((Rαx+ t)− z′)dz′ (z′ = Rαz) (26)

= ei(m1+m2)α [Wm2
⊛ F ] (Rαx+ t) (27)

Accordingly for all following harmonic convolution layers. □582

A.2 Layers Operating on Magnitudes583

This section describes the original H-Nets layers that operate on magnitudes as formulated by Worrall584

et al. [3], and introduces our proposed enhancements.585

Definition A.1 (C-ReLU).
C-ReLUb(Xeiθ) = ReLU(X + b)eiθ, (28)

where Xeiθ represents a complex number in exponential form, and b ∈ R is a learnable bias parameter586

of the activation function.587

Definition A.2 (Harmformer C-ReLU).
C-ReLUa,b(Xeiθ) = ReLU(a ·X + b)eiθ, (29)

where Xeiθ is a complex number in exponential form, and a, b ∈ R are learnable parameters of the588

activation function.589

Definition A.1 uses only the bias parameter b. Such an activation function cannot zero out higher590

values while leaving lower values unaffected. To allow this, our enhanced C-ReLU also incorporates591

a multiplication by the parameter a.592

A.3 Complex Batch Normalization in Harmonic Networks593

In H-Nets, batch normalization is adapted from its traditional definition. The layer standardizes only594

the magnitudes of the complex numbers, leaving the phase components unaffected. The C-BN can be595

formally defined as follows:596

Definition A.3 (C-BN).

C-BNγ,β(Xeiθ) =

(
γ

(
X − µ√
σ2 + ϵ

)
+ β

)
eiθ = BNγ,β(X)eiθ, (30)

where Xeiθ represents a complex number in exponential form, and γ, β ∈ R are learnable scaling597

and shifting parameters, respectively. Here, µ and σ denote the running sample mean and variance,598

which are estimated during the training phase and fixed during inference.599

However, this formulation can produce negative magnitudes, thus inverting the phase and violating600

HE. Therefore in Harmformer we instead use a batch normalization integrated with an activation601

function, that can be defined as:602

Definition A.4 (Harmformer HBatchNorm + C-ReLU).

C-BN-ReLUa,b(Xeiθ) = ReLU
(
a

(
X − µ√
σ2 + ϵ

)
+ b

)
eiθ, (31)

where Xeiθ represents a complex number in exponential form, and a, b ∈ R are learnable scaling603

and shifting parameters, respectively. Here, µ and σ denote the running sample mean and variance,604

which are estimated during the training phase and fixed during inference.605
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Our formulation uses the ReLU function, which maps R to R+, to ensure that changes in magnitudes606

are always positive. Additionally, by integrating the scaling and shifting parameters a and b into607

batch normalization, the number of learnable parameters is reduced. See section B.1 for a comparison608

of different normalization layers.609

A.4 Discrete Representation610

The normalization layers are the last from the stem stage, as can be seen in Figure 2. For the sake611

of clarity, we will make the transition to discrete space and focus only on rotation for the following612

layers, as mentioned in Section 5.2. Suppose that the feature maps (stack of patches) Fm(I) ∈ Cn×d,613

extracted from the input image I , transforms under a rotation of the input as follows614

Fm([I]
α
) = eimα [Fm(I)]

α
, (32)

where m is the rotation order and α is the rotation angle of the image I . Here n is the number of615

patches and d is the dimension of each patch.616

This property implies that [·]α is a linear operator, thus for the feature maps the following applies:617

[Fm1(I)]
α
+ [Fm2(I)]

α
= [Fm1(I) + Fm2(I)]

α (33)

[Fm1
(I)]

α · [Fm2
(I)]

α
= [(Fm1

(I) · Fm2
(I)]

α (34)

A.5 Residual Connection618

Lemma A.2 (HE of Residual Connections (Lemma 5.1)). A residual connection between feature619

maps of the same rotation order, Fm(I) and F ′
m(I), preserves HE property:620

F ′
m([I]

α
) + Fm([I]

α
) = eimα [(F ′

m(I) + Fm(I))]
α
. (35)

Proof. By the properties of harmonic equivariance, we have:621

F ′
m([I]

α
) + Fm([I]

α
) = (eimα [F ′

m(I)]
α
) + (eimα [Fm(I)]

α
) (36)

= eimα([F ′
m(I)]

α
+ [Fm(I)]

α
) (37)

Since [·]α is a linear operator, we can combine the rotated feature maps:622

= eimα [(F ′
m(I) + Fm(I))]

α (38)

□623

A.6 Linear Layers624

Lemma A.3 (HE of Linear Layer (Lemma 5.2)). A linear layer applied to a HE feature map625

Fm([I]
α
) ∈ C(hw)×din preserves the rotation order m. Formally, we have:626

Fm([I]
α
)W = emiα [Fm(I)W ]

α
, (39)

where W ∈ Cdin×dout represents a shared weight matrix applied independently over all spatial627

positions of the input feature map.628

Proof. As the matrix W has a rotation order m = 0 because it doesn’t change under an input rotation.629

Then the property comes trivially from Eq (34). □630

A.7 Multi-Head Self-Attention631

Lemma A.4 (HE of Layer Norm (Lemma 5.3)). A feature map Fm([I]
α
) ∈ C(hw)×d with a rotation632

order m preserves HE when normalized by its mean and standard deviation:633

Fm([I]
α
)− µ

σ + ϵ
= eimα [Fm(I)]

α − µ

σ + ϵ
, (40)

where µ, σ are the sample means and standard deviations of the original feature maps computed over634

their spatial dimensions, respectively, and ϵ is a small constant added for numerical stability.635
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Proof.

Fm([I]
α
)− µ̂

σ̂ + ϵ
=

Fm([I]
α
)−

∑
Fm([I]α)
h·w

σ̂ + ϵ
(41)

By the properties of HE, we express Fm([I]
α
) = eimαFm(I). Sigma of does not change under636

rotation, because its equal to standard deviation of magnitude in complex numbers.637

=
eimα [Fm(I)]

α −
∑

eimα[Fm(I)]α

h·w
σ + ϵ

(42)

= eimα [Fm(I)]
α −

∑
[Fm(I)]α

h·w
σ + ϵ

(43)

The sum of the feature map is invariant to its rotation.638

= eimα [Fm(I)]
α − µ

σ + ϵ
(44)

□639

Lemma A.5 (Dot product subtracts rotation orders (Lemma 5.4)). Consider two HE feature maps640

Qm1
([I]

α
) ∈ C(hw)×d and Km2

([I]
α
) ∈ C(hw)×d that represent queries and keys, respectively. The641

dot product of these feature maps is HE and has the rotation order m1 −m2. Formally, we have:642

Qm1
([I]

α
)Km2

([I]
α
)T = ei(m1−m2)α

[
Qm1

(I)Km2
(I)T

]α
, (45)

where Km2([I]
α
)
T

denotes the complex conjugate transpose of Km2
([I]

α
).643

Proof. By the properties of harmonic equivariance, we express:644

Qm1
([I]

α
) = eim1α [Qm1

(I)]
α
,

Km2
([I]

α
) = eim2α [Km2

(I)]
α
.

Taking the complex conjugate transpose of Km2
([I]

α
), we obtain:645

Km2
([I]

α
)T = eim2α [Km2

(I)T ]
α
= e−im2α

[
Km2

(I)T
]α

.

As is derived from the commutativity of the scalar multiplication with the matrix multiplication.646

Qm1([I]
α
)Km2([I]

α
)T = eim1α [Qm1(I)]

α
e−im2α

[
Km2(I)

T
]α

= ei(m1−m2)α [Qm1
(I)]

α
[
Km2

(I)T
]α

= ei(m1−m2)α
[
Qm1

(I)Km2
(I)T

]α
.

This shows that the dot product result is also HE with a rotation order of m1 −m2. □647

Lemma A.6 (Matrix multiplication sums rotation orders (Lemma 5.5)). Consider a HE feature648

map Am1([I]
α
) ∈ C(hw)×(hw) representing an attention matrix, and HE feature map Vm2([I]

α
) ∈649

C(hw)×d representing values. The result of their matrix multiplication is HE with a rotation order650

m = m1 +m2:651

Am1
([I]

α
)Vm2

([I]
α
) = ei(m1+m2)α [Am1

(I)Vm2
(I)]

α
. (46)

where [Am1(I)]
α, [Vm2(I)]

α are feature maps created from unrotated I and rotated afterwards.652

Proof. Proof is analogical to Lemma 5.4 By the properties of harmonic equivariance, the HE feature653

maps Am1
([I]

α
) and Vm2

([I]
α
) can be represented as:654

Am1
([I]

α
) = eim1α [Am1

(I)]
α
,

Vm2
([I]

α
) = eim2α [Vm2

(I)]
α
.
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Multiplying these matrices, we find:655

Am1
([I]

α
)Vm2

([I]
α
) = (eim1α [Am1

(I)]
α
)(eim2α [Vm2

(I)]
α
)

= eim1αeim2α [Am1
(I)]

α
[Vm2

(I)]
α

= ei(m1+m2)α [Am1(I)]
α
[Vm2(I)]

α
.

= ei(m1+m2)α [Am1
(I)Vm2

(I)]
α
.

This confirms that the product is HE and preserves the combined rotation order of m1 +m2. □656

B Ablation Study and Additional Experiments657

In addition to the experiments in the main text that compare the Harmformer to other methods, we658

include an ablation study that demonstrates its rotational robustness and explores other architectural659

choices. We have omitted the PCam benchmark due to computational constraints, as its training time660

was extremely long.661

B.1 Ablation: Normalization Layers in Stem Stage (S1)662

In Section A.4, we propose a modification of batch normalization by integrating it with an activation663

function. Specifically, we first apply batch normalization to the feature magnitudes, followed by664

a ReLU activation on these normalized values. This approach is more consistent with the original665

purpose of batch normalization as formulated by Ioffe and Szegedy [49], which is to standardize the666

distribution of activations across layers.667

To test this novel normalization approach, we replaced our normalization layers in the Harmformer H-668

Conv block (see Figure 3b) with the original H-Nets batch normalization [3] followed by a C-ReLU.669

We also evaluated how our proposed layer normalization used in the encoder block would perform in670

the H-Conv block.671

The results depicted in Figure 5 show that our proposed normalization (blue bar) outperforms the672

original H-Nets normalization layer (red bar) across all three benchmarks, significantly reducing673

variance across different runs. It also exceeds the performance of layer normalization (yellow bar)674

in the rotated MNIST and mnist-rot-test, although it slightly underperforms in the cifar-rot-test. In675

addition, the layer normalization was more computationally expensive according to our experiments.676

Figure 5: Ablation study on different normalization layers. The rows represent different normalization
layers in the H-Conv block. Each plot is aggregated from 5 different runs. The error bars represent
the standard deviation.

B.2 Ablation: Mixing Rotation Orders in Self-Attention Mechanism677

As mentioned in the main text (Section 5), determining how queries, keys, and values should678

interact based on their rotation order is not intuitive. Therefore, we have extensively tested various679

configurations and listed the most promising ones in this section. In choosing the final solution, in680

addition to performance, we focused on the principles that the number of streams should not increase681

and that the method should not require extensive computation.682
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Figure 6: Ablation study on mixing rotation orders within the SA mechanism. a) The principle used
in Harmformer b) Mixing all possible combinations of queries, keys and values c) Cross Values a
method of mixing only values of different rotation orders.

In Lemmas 5.4 and 5.5, we demonstrate that the dot product subtracts the rotation orders and matrix683

multiplication sums the rotation orders. Based on this, we propose several configurations, illustrated684

in Figure 6. Apart from those mentioned here, we investigated learnable weights for each rotation685

order combination and different placements of softmax or combinations of these configurations686

together, but none yielded significant improvements. The final configuration used in Harmformer is687

shown in Figure 6a. The configuration in Figure 6b allows all possible combinations to produce the688

three streams (1, 0, -1). The last configuration, Cross Values, illustrated in Figure 6c, uses higher689

rotation orders only for values. Similarly, we tested Cross Keys and Cross Queries only for keys and690

queries, respectively.691

Figure 7 presents the performance of these configurations on our benchmarks. The only configuration692

surpassing Harmformer (Figure 6a) was Mixing All (Figure 6b) in the case of rotated MNIST and693

mnist-rot-test. Since the performance difference was minor and the computational demands were694

significantly higher, we did not use Mixing All in our final architecture.695

Figure 7: Ablation study on different SA mixing configurations. Each plot is aggregated from 5
different runs. The error bars represent the standard deviation.

B.3 Ablation: Relative Positional Encoding (RPE)696

In Harmformer, we use relative circular encoding similar to those published in iRPE [48]. The697

encoding is added immediately after calculating the dot product between keys and queries. RPE sig-698

nificantly improves performance, as demonstrated in Figure 8, which shows Harmformer performance699

with and without RPE.700
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Figure 8: Ablation study on the use of relative circular position encoding (RPE) in the Harmformer.
The error bars represent the standard deviation.

B.4 Experiments: Stability of Classification w.r.t. Input Rotation701

In these experiments, we investigate the influence of input interpolation errors on performance,702

following previous invariant models [29, 28, 27]. Stability is primarily examined using the invariance703

benchmarks mnist-rot-test and cifar-rot-test, where the training data consists of non-rotated images,704

while the test data consists of randomly rotated images. Note that this implies that the training images705

consist of original sharp images, but the test images contain images with interpolation errors. In706

contrast, the rotated MNIST dataset contains rotated images in both the training and test sets, resulting707

in interpolation errors in both sets.708

The test accuracy with respect to the input rotation is shown in Figure 9. Since the rotated MNIST709

dataset does not contain all images rotated by all angles, we use the original MNIST dataset [1] for710

this experiment. As a result, the test set, and therefore its accuracy, is different from that described in711

Section 6 of the main text.712

For the mnist-rot-test, we observe very small oscillations, almost the same as for rotated MNIST. The713

accuracy reaches maxima at 0◦, 90◦, 180◦, and 270◦, where there is no interpolation effect. For the714

cifar-rot-test, the oscillations are more significant due to the low resolution of the dataset relative715

to the complexity of the objects, with minima at 45◦, 135◦, 225◦, and 315◦, where the interpolation716

errors are greatest.717

Figure 9: Classification stability with respect to input image rotation. The angle in the circular
plots represents the rotation angle of the input image, and the radius represents the test accuracy on
specified benchmarks.

For comparison with previous invariant models, we have included Table 7. For the mnist-rot-test,718

there is a significant improvement in ∆, which represents the difference in accuracy between the719

interpolation-free and interpolation-affected images. However, for the cifar-rot-test, the gap between720

these cases remains almost the same. For the MNIST datasets, the results are almost the same whether721

training with rotated or unrotated data. This leads to the hypothesis that if the resolution of the dataset722
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Table 7: Test accuracy comparison of the Harmformer and H-NeXt [27] at specific angles of rotation
of inputs.

mnist-rot-test cifar-rot-test

Model 0◦ 45◦ ∆ 0◦ 45◦ ∆

H-NeXt [27] 98.9% 97.8% 1.1% 64.5% 57.4% 7.1%
Harmformer 99.2% 99.1% 0.1% 73.4% 66.1% 7.3%

matches the complexity of the recognition task, the Harmformer should not suffer from interpolation723

errors. However, this hypothesis would require further testing on large-scale datasets, which is beyond724

the scope of this paper.725

B.5 Experiments: Evaluating the Role of Harmonic Convolutions726

To investigate the importance of the convolutional stem and the encoder, we conducted an experiment727

using a minimal stem stage with an enlarged attentive field. The purpose of this setup was to ensure728

that the recognition was not due to convolution alone. This configuration contained only three729

convolutional layers and a single pooling layer.730

The results, as shown in Table 8, indicate that the model performance remains within the expected731

error range despite the simplified convolutional stem. This suggested that the encoder plays a crucial732

role in the final classification. Notably, the inclusion of a single pooling layer significantly enhances733

the complexity of subsequent attention mechanisms. Due to the increased GPU RAM requirements,734

this configuration was exclusively tested on the rotated MNIST dataset.

Table 8: Performance comparison of the Harmformer architecture with a shallow stem stage on the
rotated MNIST dataset.

Model SA Input Shape Test Error Params.

Shallow Stem Stage 32× 32× 16 1.29% 40k
Harmformer 16× 16× 16 1.26%± 0.055 30k

735

C Experimental Setup736

C.1 Compute Resource737

Each experiment was run on a single GPU within our shared, small but diverse cluster comprising 17738

GPUs. The cluster includes Tesla P100, V100, and A100 models, NVIDIA GeForce RTX 2080 Ti,739

3080, 4090, RTX A5000, and a Quadro P5000. Despite its limited size, our setup allowed for flexible740

and scalable computation using various GPU configurations. To provide a better overview, Table 9741

lists the epoch training time across each experiment on the NVIDIA GTX 4090.742

Table 9: Training time of one epoch across different benchmarks on the NVIDIA GTX 4090.

GPU Model mnist-rot-test cifar-rot-test rotated MNIST PCam

Epoch Training time (mm:ss) 01:02 02:18 00:16 37:40
Number of Training Samples 52k 42k 10k 262k
Batch Size 32 32 32 8

C.2 Computation Complexity w.r.t. Non-Equivariant Convolution and SA Mechanism743

In general, equivariant networks usually due to their properties impose higher computation complexity744

than their classical counterparts. For example, a single classical convolution has complexity O(N2 ·745

n2), where N × N is the spatial dimension of the output feature map and n × n is the size of746
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the filter. In contrast, the original G-CNN equivariant to rotation and translation has complexity747

O(N2 ·n2 · |θ|2), where θ is the number of elements in the rotation group. Thus, a G-CNN equivariant748

to 90-degree rotations and translation would have |θ| = 4.749

Harmformer Convolution In Harmformer stem stage, we use convolution layers similar to H-Nets.750

This has a complexity of O(N2 · n2 · |o|2), where |o| is the number of rotation orders of the input751

and output feature maps.752

Harmformer SA mechanism Classical global SA mechanism has a complexity of O(N2 ·d+N ·d2),753

where N is the number of patches and each patch has dimension d. Our SA mechanism, as shown in754

Figure 4b, adds multiplication by rotation orders o for matrix multiplication and dot product, resulting755

in a complexity of O(o ·N2 · d+ o ·N · d2).756

Additional Computational Considerations Harmformer operates in the complex domain, where757

each multiplication requires four times and each addition requires two times more operations than758

their real counterparts. Additionally, the computational load increases due to upscaling the input and759

using large convolution kernels, as recommended in H-NeXt [27]. These factors also contribute to760

the overall complexity of Harmformer.761

C.3 Configurations of Experiments762

This subsection details the specific configurations of the Harmformer architecture used in the experi-763

ments described in Section 6. For convenience, Figure 10, which depicts the complete Harmformer764

architecture, is included. The parameters for each dataset are enumerated in the following tables:765

Tables 12 and 13 for the MNIST-rot-test and rotated MNIST datasets; Tables 14 and 15 for the766

CIFAR-rot-test dataset; and Tables 10 and 11 for the PCam dataset.767

Figure 10: Reproduced from Figure 2 to detail the number of parameters for each experiment.
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Table 10: PCam: Architecture

Parameter Value

Number of S1 Blocks (r) 4
Convolution per S1 Block 2
Number of S1 Channels (d1) [4, 8, 16, 32]
S1 Channels Dropout [0, 0.2, 0.3, 0.4]

Number of S3 Encoders (k) 4
Number of S3 Heads 4
Shape of S3 Patches (d3) 8
MSA&MLP Dropout 0.4

Table 11: PCam: Training Settings

Parameter Value

Epochs 100
Batch Size 8
Learning Rate 0.0007
Label Smoothing 0.1
Scheduler Cosine
Optimizer AdamW
Weight Decay 0.01
Runs 5
Input Padding 0

Table 12: MNIST datasets: Architecture

Parameter Value

Number of S1 Blocks (r) 2
Convolution per S1 Block 2
Number of S1 Channels (d1) [8, 16]
S1 Channels Dropout [0, 0]

Number of S3 Encoders (k) 3
Number of S3 Heads 1
Shape of S3 Patches (d3) 16
MSA&MLP Dropout 0.1

Table 13: MNIST datasets: Training Settings

Parameter Value

Epochs 100
Batch Size 32
Learning Rate 0.007
Label Smoothing 0.1
Scheduler Reduce LR on Plateau
Optimizer AdamW
Weight Decay 0.01
Runs 5
Input Padding 2

Table 14: cifar-rot-test: Architecture

Parameter Value

Number of S1 Blocks (r) 2
Convolution per S1 Block 3
Number of S1 Channels (d1) [8, 16]
S1 Channels Dropout [0, 0.1]

Number of S3 Encoders (k) 4
Number of S3 Heads 4
Shape of S3 Patches (d3) 8
MSA&MLP Dropout 0.2

Table 15: cifar-rot-test: Training Settings

Parameter Value

Epochs 200
Batch Size 32
Learning Rate 0.007
Label Smoothing 0.1
Scheduler Cosine
Optimizer AdamW
Weight Decay 0.01
Runs 5
Input Padding 0
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D Segmentation experiment: Retina blood vessel segmentation768

To demonstrate the generalizability and scalability of our architecture beyond classification tasks,769

we introduce Harmformer for retinal blood vessel segmentation using the DRIVE dataset [50]. The770

DRIVE is binary segmentation task, where the goal is to extract retinal blood vessels from an RGB771

image.772

The dataset contains 262,080 samples for training and 65,520 samples for validation, similar to the773

settings of [51]. Each sample consists of an input image of size 3× 64× 64 and a target segmentation774

mask of size 64×64. These samples were generated from 17 training images and 3 validation images,775

each of which is 768× 584 pixels and represents a different patient.776

To use Harmformer as an image-to-image model, we adopt a U-Net [52] architecture in Fig 11a.777

Unlike our classification models (Section 6), this model processes the images at their original778

resolution, without any upscaling before they enter the network. For the output, we use only the779

magnitude of the final feature maps. To merge the hidden features (channels) into a single output780

layer, we apply a standard 2D convolution layer at the end.781

Figure 11: (a) Diagram of the Harmformer architecture for image segmentation. (b) Example of an
image from the DRIVE dataset: the RGB image and the target segmentation mask.

We trained the U-Net Harmformer for 20 epochs with the AdamW optimizer, a learning rate of782

0.001 and 64 batch size. For augmentation, we used horizontal and vertical flipping, color jitter, and783

auto-contrast. We ran 4 different experiments with different seeds.784

The results are shown in Table 16, using the area under the receiver operating characteristic curve785

(AUC) as the evaluation metric. For completeness, we have also included the performance of G-CNNs786

and the current state-of-the-art model FR-UNet [53]. As expected, these results are consistent with the787

findings in the paper, with Harmformer slightly underperforming compared to equivariant convolution788

architectures. Nevertheless, we show that our architecture is versatile and can also be applied to789

non-classification tasks.790

Table 16: AUC for DRIVE segmentation [50].

Model AUC Equivariant model

Harmformer 0.9746± 0.0002 ✓
G-CNNs [51] 0.9784± 0.0001 ✓
FR-UNet [53] 0.9889 ✗
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E Differences Between 2D and 3D Equivariant Transformers791

While 2D equivariant transformers [21, 22] have been relatively understudied, 3D equivariant trans-792

formers [17, 14, 15, 18, 12, 10] have received more attention. In this section, we aim to highlight793

the key differences that make the 2D case unique, and compare Harmformer with the most closely794

related SE(3)-Transformer, which operates in 3D but also uses steerable basis representations.795

An important distinction lies in the nature of the input data, which directly influences the transformer796

architecture. While 2D datasets typically consist of dense pixels with highly correlated neighborhoods,797

3D equivariant datasets, often represented as graphs or point clouds, tend to be sparse. In 3D,798

neighboring elements can vary significantly; for example, in molecular graphs [14, 15], atoms can799

fulfill entirely different roles within the structure.800

Patches The properties of the input data determine how to prepare patches in an equivariant manner.801

In the case of the SE(3)-Transformer, each node of the graph can be directly treated as a patch,802

eliminating the need for a stem stage. For Harmformer, on the other hand, it is necessary to aggregate803

low-level correlated data into a higher-level representation. Additionally, the classical (16 × 16)804

ViT [30] grid cannot be used, as discussed in Section 3. Therefore, we employ a convolutional stem805

stage, where the convolution kernels are expressed using circular harmonics to maintain equivariance.806

This reliance on harmonic representations is a common feature between Harmformer and the SE(3)-807

Transformer. While Harmformer uses circular harmonics, the SE(3)-Transformer uses spherical808

harmonics. Both approaches leverage steerable basis functions [23], which are widely used in809

equivariant networks [39, 34, 54]. These steerable bases change predictably under rotation, allowing810

the effects of rotation to be effectively neutralized—via phase shifts in circular harmonics and via811

the Wigner-D matrix in spherical harmonics. It is important to note that the use of steerable bases812

predates both transformers, as shown in [23, 39, 54].813

Queries, Keys, and Values In Harmformer, queries (Q), keys (K), and values (V) are generated814

independently from individual patches through a linear layer, we proposed in Section 5.2. In contrast,815

the SE(3)-Transformer creates them by applying convolutions across points (i.e., patches), using816

steerable spheres that aggregate information from the local neighborhood.817

Attention The SE(3)-Transformer focuses exclusively on invariant attention (type-0) and applies818

only local attention. In contrast, Harmformer explores multiple strategies for mixing attention819

and values of various orders (types), while performing global attention across the entire image.820

Additionally, Harmformer introduces an equivariant layer normalization at the beginning of the821

attention layer, while the SE(3)-Transformer does not use any layer normalization. Other minor822

distinctions include Harmformer’s use of an improved activation function and relative embeddings.823
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NeurIPS Paper Checklist824

1. Claims825

Question: Do the main claims made in the abstract and introduction accurately reflect the826

paper’s contributions and scope?827

Answer: [Yes]828

Justification: All claims are supported by either theoretical proofs or experiments.829

2. Limitations830

Question: Does the paper discuss the limitations of the work performed by the authors?831

Answer: [Yes]832

Justification: All the limitations are discussed in the last section of the paper and all833

assumptions are clearly stated.834

3. Theory Assumptions and Proofs835

Question: For each theoretical result, does the paper provide the full set of assumptions and836

a complete (and correct) proof?837

Answer: [Yes]838

Justification: All theoretical statements are accompanied by proofs. The proofs are included839

in the Appendix.840

4. Experimental Result Reproducibility841

Question: Does the paper fully disclose all the information needed to reproduce the main ex-842

perimental results of the paper to the extent that it affects the main claims and/or conclusions843

of the paper (regardless of whether the code and data are provided or not)?844

Answer: [Yes]845

Justification: The code is included in the submission, we only use open source datasets. All846

trained models are also included and their settings are clearly stated in the appendix.847

5. Open access to data and code848

Question: Does the paper provide open access to the data and code, with sufficient instruc-849

tions to faithfully reproduce the main experimental results, as described in supplemental850

material?851

Answer: [Yes]852

Justification: Yes, we have included our source code with the submission. If the submission853

is accepted, we will publish the code on github. The code includes preparation, download854

scripts for all datasets, and the experimental settings.855

6. Experimental Setting/Details856

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-857

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the858

results?859

Answer: [Yes]860

Justification: This information is listed in the Appendix and is also included in the code861

submission.862

7. Experiment Statistical Significance863

Question: Does the paper report error bars suitably and correctly defined or other appropriate864

information about the statistical significance of the experiments?865

Answer: [Yes]866

Justification: We show the best results along with the average and standard deviation of at867

least 5 runs with the performance of our models.868

8. Experiments Compute Resources869

Question: For each experiment, does the paper provide sufficient information on the com-870

puter resources (type of compute workers, memory, time of execution) needed to reproduce871

the experiments?872
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Answer: [Yes]873

Justification: We enlisted the compute resources in appendix.874

9. Code Of Ethics875

Question: Does the research conducted in the paper conform, in every respect, with the876

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?877

Answer: [Yes]878

Justification: To the best of our knowledge, we have not violated any part of the NeurIPS879

Code of Ethics.880

10. Broader Impacts881

Question: Does the paper discuss both potential positive societal impacts and negative882

societal impacts of the work performed?883

Answer: [NA]884

Justification: Our paper focuses on representation learning and model robustness to transfor-885

mations. We believe that there is no direct path to negative applications.886

11. Safeguards887

Question: Does the paper describe safeguards that have been put in place for responsible888

release of data or models that have a high risk for misuse (e.g., pretrained language models,889

image generators, or scraped datasets)?890

Answer: [NA]891

Justification: This paper poses no such risks that we are aware of.892

12. Licenses for existing assets893

Question: Are the creators or original owners of assets (e.g., code, data, models), used in894

the paper, properly credited and are the license and terms of use explicitly mentioned and895

properly respected?896

Answer: [Yes]897

Justification: We provide a citation to the paper presenting the benchmarks, models, and898

the code included in the supplemental materials contains references to the libraries or899

repositories from which we drew inspiration.900

13. New Assets901

Question: Are new assets introduced in the paper well documented and is the documentation902

provided alongside the assets?903

Answer: [NA]904

Justification: This paper does not release new assets.905

14. Crowdsourcing and Research with Human Subjects906

Question: For crowdsourcing experiments and research with human subjects, does the paper907

include the full text of instructions given to participants and screenshots, if applicable, as908

well as details about compensation (if any)?909

Answer: [NA]910

Justification: This paper does not involve crowdsourcing nor research with human subjects.911

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human912
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Question: Does the paper describe potential risks incurred by study participants, whether914

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)915

approvals (or an equivalent approval/review based on the requirements of your country or916

institution) were obtained?917

Answer: [NA]918

Justification: This paper does not involve crowdsourcing nor research with human subjects.919
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