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ABSTRACT

Contrastive objectives power state-of-the-art multimodal models, but their training
remains slow, relying on long stochastic optimization. We propose a Unified
Framework for Efficient Contrastive Alignment via Kernels (UniCon), which spans
linear and nonlinear encoders as well as one-to-one and many-to-many alignments.
At its core, UniCon introduces the contrastive similarity weight matrix S(γ),
which enables closed-form global solutions that provably replace minibatch back-
propagation with exact updates. Through the lens of reproducing kernel Hilbert
spaces (RKHS), UniCon provides a kernelized perspective that unifies contrastive
alignment and reveals its connection to spectral methods. To validate the theory,
we conduct experiments on synthetic, unimodal, multimodal, and zero-shot tasks,
demonstrating that UniCon achieves substantial efficiency gains while preserving
generality and strong empirical performance.

1 INTRODUCTION

Learning semantically aligned representations across different modalities, such as vision and language,
has long been a central goal in machine learning (Ngiam et al., 2011; Srivastava & Salakhutdinov,
2012). In particular, Multimodal Contrastive Learning (MMCL)(Huang et al., 2024) has recently
achieved remarkable success in zero-shot classification (Radford et al., 2021; Jia et al., 2021), cross-
modal retrieval (Mu et al., 2022; Goel et al., 2022), and general visual understanding (Surís et al.,
2023; Lin et al., 2023). These models typically train modality-specific encoders, e.g., a vision encoder
and a language encoder, such that paired inputs are mapped to nearby representations in a shared space,
while unpaired inputs are mapped far apart. At the heart of MMCL lies contrastive representation
learning (Chopra et al., 2005; Gutmann & Hyvärinen, 2010; Sohn, 2016; Oord et al., 2018; Chen
et al., 2020; Radford et al., 2021). Its versatility has made it a core component across diverse domains,
including NLP (Gao et al., 2022; Izacard et al., 2021), bioimaging (Sanchez-Fernandez et al., 2023;
Taleb et al., 2022; Han et al., 2022), recommendation (Xie et al., 2022; Yu et al., 2023; Jing et al.,
2023; Yang et al., 2023), and graph learning (Kipf et al., 2019; You et al., 2020). The typical pipeline
involves feature extraction via deep encoders and the optimization of contrastive loss.

Despite the impressive empirical performance of contrastive learning across vision, language, and
multimodal domains, the theoretical foundations underlying its success remain only partially under-
stood. There are works on the analysis of loss and training dynamics(Wang & Liu, 2021; Tian, 2022;
HaoChen & Ma, 2022), provably guarantee of the model generalization (HaoChen et al., 2021; 2022;
Tosh et al., 2021; Parulekar et al., 2023), duality between contrastive and non-contrastive method(Tian
et al., 2021; Balestriero & LeCun, 2022). A growing body of theoretical work has sought to formalize
contrastive learning (Saunshi et al., 2019; Tian et al., 2021; Jing et al., 2021; Wen & Li, 2021), often
by simplifying the problem to single-modality settings. Recent advancements in contrastive learning
have introduced novel loss functions and analytical frameworks to enhance representation quality
and training efficiency.(Xu et al., 2023; Wang et al., 2024; Schuhmann et al., 2022). Analytical
studies have examined contrastive learning from different perspectives. For example, Shi et al.
(2024) interpret the CLIP loss through the lens of optimal transport; while Tian (2022); Nakada
et al. (2023) analyze multimodal contrastive learning using SVD- and PCA-based formulations,
showing that, under linear encoders, contrastive loss minimization reduces to calculating a weighted
covariance matrix. Yet, this insight has not been translated into nonlinear encoder settings and
practical implementations.
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We introduce UniCon, a Unified Framework for Efficient Contrastive Alignment via Kernels, which
leverages a structured contrastive similarity weight matrix S(γ) to directly solve contrastive objectives.
As illustrated in Figure 1, UniCon departs from gradient-based training and instead: (i) in the linear
setting(Nakada et al., 2023), solves a single spectral decomposition yielding optimal encoder matrices
in closed form (ii) in a general nonlinear setting, provides a unified kernelized framework that enables
fast alignment via implicit representation inference.

Our key contributions are as follows:

• Theoretically, we provide a kernel-based perspective that unifies linear and nonlinear en-
coders, showing that minimizing contrastive loss is equivalent to a spectral update. This
leads to a provably optimal solution in closed form and connects contrastive learning to
spectral methods.

• Beyond one-to-one matching, our framework generalizes to many-to-many alignment,
broadening the applicability of contrastive alignment.

• Empirically, we demonstrate that UniCon converges fast and achieves competitive
or superior performance across synthetic, unimodal (CIFAR-10), and multimodal
(Flickr30k,MSCOCO) and zero-shot transfer (image-text retrieval), offering up to 461×
speed-up over minimizing CLIP loss by stochastic gradient descent.

Figure 1: Unified Framework for Efficient Contrastive Alignment via Kernels (UniCon). Starting
from paired inputs, UniCon builds a contrastive similarity weight matrix S(γ) using hyper-spherical
similarities, then computes either (i) a closed-form spectral update in the linear case (orange) or (ii) a
kernelized solution in the nonlinear case (blue).

2 BACKGROUND

Contrastive Representation. Contrastive learning (Chopra et al., 2005; Gutmann & Hyvärinen,
2010; Sohn, 2016; Oord et al., 2018; Chen et al., 2020; Radford et al., 2021) leverages paired
inputs as a form of supervision. The central goal is to learn a representation space where positive
(matching) pairs are mapped to nearby embeddings, while negative (non-matching) pairs are pushed
apart. Learning representations on the hypersphere leads to better performance than in Euclidean
space(Wang et al., 2017), as it avoids conflicting forces between attractive and repulsive gradients.
(Wang & Isola, 2020) further shows that the distribution of representations on the unit hypersphere is
encouraged to be uniform.

Contrastive Loss Contrastive loss (Hadsell et al., 2006) was first proposed in Siamese networks
to pull together positive pairs and push apart negatives. The formulation was later unified under
the InfoNCE loss (Oord et al., 2018), which serves as the basis for many self-supervised methods,
including SimCLR (Chen et al., 2020). Supervised Contrastive (SupCon) loss (Khosla et al., 2020)
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extended contrastive learning to the supervised setting, where each anchor can have multiple positive
samples from the same class. Building on the general family of contrastive losses introduced by (Tian,
2022), (Nakada et al., 2023) showed that these multimodal contrastive objectives can be connected to
singular value decomposition (SVD) under linear setting.

Kernel Method Given a positive finite measure µ over a parameter space Θ, we define a kernel
k : X × X → R by k(x, x̃) = ⟨ϕ(x; θ), ϕ(x̃; θ)⟩µ :=

∫
Θ
ϕ(x; θ)ϕ(x̃; θ) dµ(θ), which induces a

Reproducing Kernel Hilbert Space (RKHS). Any function f in this space admits the representation
f(x) =

∑m
j=1 wj k(x, xj), wj ∈ R. Kernels are commonly used to learn representations (Kornblith

et al., 2019; Klabunde et al., 2025), as they capture the relative structure among samples, critical for
many learning algorithms (Aronszajn, 1950; Hofmann et al., 2008; Müller et al., 2018; Gong et al.,
2025).

3 METHODOLOGY

We observe N paired samples {(xi,yi)}Ni=1, where xi ∈ Rd1 and yi ∈ Rd2 . The objective of
contrastive learning is to learn encoders fθ1 : Rd1 → Rr and fθ2 : Rd2 → Rr with modality-specific
parameters θ1 and θ2, such that paired inputs are mapped to similar representations in a shared r-
dimensional embedding space, while non-paired inputs remain dissimilar.

In the sections that follow, we first formalize the general contrastive learning framework, then analyze
it under a linear representation setting, and finally unify our analysis spanning nonlinear encoders in
RKHS. The proof can be found in the Appendix B.

Definition 1 (Hyper-spherical similarity). Define the similarity between xi and yi as the inner
product on the hyper-sphere:

sij = ⟨fθ1(xi), fθ2(yj)⟩Sr−1⊂Rr =

〈
fθ1(xi)

∥fθ1(xi)∥2
,

fθ2(yj)

∥fθ2(yj)∥2

〉
Rr

=
f⊤θ1(xi)fθ2(yj)

∥fθ1(xi)∥2 ∥fθ2(yj)∥2
. (1)

Definition 2 (Generalized contrastive loss). Given N paired samples {(xi,yi)}Ni=1, we write the
similarity matrix [sij ]. With ϕ, ψ : R→R+ monotonically increasing, scaling factor ν ≥ 1, and
weights ϵij ∈ [0, 1], the bidirectional general contrastive loss is

L(θ1, θ2) =
1

2n

n∑
i=1

1

|Px(i)|
∑

k∈Px(i)

ϕ(
∑

j /∈Px(i)

ϵijψ(sij − νsik) + ϵikψ(sik − νsik)) (2)

+
1

2n

n∑
i=1

1

|Py(i)|
∑

k∈Py(i)

ϕ(
∑

j /∈Py(i)

ϵijψ(sji − νski) + ϵikψ(ski − νski)) +R(θ1, θ2)

where Px(i) denotes the index set of all samples in {yi} paired with xi while Py(j) denotes the index
set of all samples in {xi} paired with yj . |Px(i)| is the cardinality of the set Px(i); and R is an
optional regularizer.

This formulation naturally extends from one-to-one alignment (Tian, 2022) to many-to-many align-
ment: for example, a single image may correspond to multiple valid captions, and data augmentation
can be viewed as creating diverse positive pairs. The scaling factor ν ≥ 1 adjusts the relative
influence of positive pairs, while ϵij ≥ 0 controls which pairs contribute to the loss (often ϵij = 1
for all negatives). The functions ϕ and ψ are typically convex and monotonic, shaping the loss for
optimization. By choosing specific forms for ψ and ϕ, we can recover familiar losses. More detailed
examples can be found in Appendix A.

Definition 3 (Contrastive similarity weight matrix). Consider the general contrastive loss L(θ1, θ2),
and a batch of paired samples {(xi,yi)}ni=1. Denote {ei}ni=1 as the elementary basis vectors of Rn.
The contrastive similarity weight is then defined as:

S(γ) = − 1

n

∑
i,j

1

2

(
γij
|Px(i)|

+
γ̄ji
|Py(j)|

)
eie

⊤
j , (3)
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with weight coefficients

γij =

{
ϕ′ij ·

(
ϵij(1− ν)ψ′((1− ν)sij)− ν

∑
m/∈Px(i)

ϵimψ
′(sim − νsij)

)
, if j ∈ Px(i)∑

k∈Px(i)
ϕ′ik · (ϵijψ′(sij − νsik)), if j /∈ Px(i)

(4)

γ̄ij =

{
ϕ̄′ij ·

(
ϵji(1− ν)ψ′((1− ν)sji)− ν

∑
m/∈Py(i)

ϵmiψ
′(smi − νsji)

)
, if j ∈ Py(i)∑

k∈Py(i)
ϕ̄′ik · (ϵjiψ′(sji − νski)), if j /∈ Py(i)

(5)

where

ϕ′ij =ϕ
′(ϵijψ((1− ν)sij) +

∑
m/∈Px(i)

ϵimψ(sim − νsij)), (6)

ϕ̄′ij =ϕ
′(ϵjiψ(1− ν)sji +

∑
m/∈Py(i)

ϵmiψ(smi − νsji))

The contrastive similarity weight matrix S(γ) weighs pairwise interactions. We now show that
minimizing the contrastive loss is equivalent to maximizing a new objective function with the
constructed S(γ).
Lemma 4 (Gradient equivalence). Consider minimizing the general contrastive loss (see Equation
2), the gradient of the contrastive loss with respect to encoder parameters satisfies:

∂L
∂θk

= −
∂ tr

(
Fθ1(X)S(γ)F⊤

θ2
(Y)

)
∂θk

∣∣∣∣∣
γ=γ(θ1,θ2)

+
∂R (θ1, θ2)

∂θk
, k ∈ {1, 2} (7)

where
X = [x1, · · · ,xn] ∈ Rd1×n,Y = [y1, · · · ,yn] ∈ Rd2×n

Fθ1(X) = [fθ1(x1) · · · fθ1(xn)] ∈ Rr×n,Fθ2(Y) = [fθ2(y1) · · · fθ2(yn)] ∈ Rr×n.

This result reveals that the gradient of the contrastive loss in Equation 2 is the negative of the gradient
of the proposed objective function in Equation 8. Hence, minimizing the contrastive loss is equivalent
to maximizing the objective with contrastive similarity weight matrix S(γ):

tr
(
Fθ1(X)S(γ)F⊤

θ2(Y)
)
−R (θ1, θ2) . (8)

3.1 LINEAR REPRESENTATION SETTING

We first specialize the general framework to the linear representation case. Here the encoders
are parameterized as matrix multiplications: fθ1(x) = F1x, fθ2(y) = F2y, where F1 ∈ Rr×d1 ,
F2 ∈ Rr×d2 are learnable projection matrices.
Definition 5 (Weighted contrastive covariance). Define the weighted contrastive covariance as:

C(γ) = XS(γ)Y⊤ = − 1

n

∑
i,j

1

2

(
γij
|Px(i)|

+
γ̄ji
|Py(j)|

)
xiy

⊤
j (9)

with coefficients γij share the same definition with Definition 3.
Remark 6. Note that the definition of C(γ) exactly matches the definition of S(β) in Nakada et al.
(2023) under one-to-one alignment setting, which is proved in details in Appendix B.1. The structure
of C(γ) captures positive and negative pairs relationships, weighted appropriately. Our expression
keeps the diagonal correction (αii+ᾱii)/2 that prior work reduced to 1 by assuming that ϕ and ψ are
identity functions. This modification improves both theoretical generality and empirical performance.
Proposition 7. Under the linear setting, the Lemma 4 is specialized as

∂L
∂Fk

=−
∂ tr

(
F1C(γ)F

⊤
2

)
∂Fk

∣∣∣∣∣
γ=γ(F1,F2)

+
∂R (F1, F2)

∂Fk
, k ∈ {1, 2} (10)

To solve the optimization problem induced by our reformulated objective, we characterize its maxi-
mizer in the linear setting. We arrive at the following theorem, which establishes that the convergence
of the contrastive loss can be replaced by a closed-form spectral update.
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Theorem 8 (Spectral characterization (Nakada et al., 2023)). Consider minimizing the contrastive
loss function L (F1, F2), with R(F1, F2) =

ρ
2 ||F

T
1 F2||2F . Then,

argmin
F1,F2

L (F1, F2) = argmax
F1∈Rr×d1 ,F2∈Rr×d2

tr
(
F1C(γ)F

⊤
2

)
− (ρ/2)

∥∥F⊤
1 F2

∥∥2
F

(11)

= {(F1, F2) ∈ Rr×d1 × Rr×d2 : F⊤
1 F2 =

1

ρ

r∑
i=1

σiuiv
⊤
i } (12)

where {σi, ui, vi}ri=1 are the top-r singular values and vectors of C(γ) according to the
Eckart–Young–Mirsky theorem.

Consequently, in linear case, the global minimum is achieved by projecting the contrastive covariance
C(γ) onto its top-r singular components. Thus, gradient descent on any loss in the contrastive family
(ϕ, ψ) merely tracks the dominant singular subspace of C(γ). Our algorithm UniCon performs this
update in closed form, replacing thousands of SGD steps by one spectral factorization.

3.2 KERNELIZED REPRESENTATION SETTING

Why leave the linear world? The linear setting reveals a clean spectral structure for contrastive
alignment, but cross–modal relations (e.g., vision↔ language) are typically nonlinear. Moreover,
with frozen or partially frozen pretrained encoders, the residual alignment is rarely captured by mere
linear heads. We therefore lift the analysis to nonlinear encoders while keeping the output space Rr

shared across modalities. Kernelization provides a tractable route with explicit spectral solutions that
reduce to the linear case.

RKHS representation. Let (HX , kX) and (HY , kY ) be RKHSs with canonical feature maps
ϕX(x) = kX(·,x) ∈ HX , ϕY (y) = kY (·,y) ∈ HY , (13)

satisfying the reproducing property f(x) = ⟨f, ϕX(x)⟩HX
for all f ∈ HX (and analogously for

HY ). For r-dimensional outputs, the a-th coordinate (a = 1, . . . , r) admits the representer form

f
(a)
θ1

(·) =
n∑

i=1

Aia kX(xi, ·), f
(a)
θ2

(·) =
n∑

j=1

Bja kY (yj , ·), (14)

with A,B ∈ Rn×r. Let KX = [kX(xi,xj)] and KY = [kY (yi,yj)]. The batch embeddings are

Fθ1(X) = A⊤KX ∈ Rr×n, Fθ2(Y) = B⊤KY ∈ Rr×n. (15)

The contrastive trace term becomes
tr
(
Fθ1(X)S(γ)Fθ2(Y)⊤

)
= tr

(
A⊤KX S(γ)KYB

)
. (16)

With the RKHS parameterization above and the kernelized trace form in equation 16, the entire
objective can be written purely in terms of the Gram matrices. Under this notation, the optimizer is
governed by the principal singular structure of M := K

1/2
X S(γ)K

1/2
Y , as formalized below.

Theorem 9 (Kernelized spectral characterization (unified form)). Let ρ > 0 and define the regularizer
R(A,B) =

∥∥ (K1/2
X A)⊤(K

1/2
Y B)

∥∥2
F
. Then minimizing the contrastive loss is equivalent to the

kernelized maximization

max
A,B∈Rn×r

tr
(
A⊤KX S(γ)KYB

)
− ρ

2

∥∥ (K1/2
X A)⊤(K

1/2
Y B)

∥∥2
F
. (17)

Let A′ := A⊤K
1/2
X , B′ := B⊤K

1/2
Y ,M := K

1/2
X S(γ)K

1/2
Y . Then equation 17 rewrites

max
A′,B′

tr(A′MB′⊤)− ρ

2
∥A′⊤B′∥2F . (18)

If M = UΣV ⊤ is an SVD and Mr =
∑r

i=1 σiuiv
⊤
i its best rank-r approximation by

Eckart–Young–Mirsky theorem, then all maximizers satisfy the relation

(A′)⊤B′ =
1

ρ
Mr ⇐⇒ AB⊤ =

1

ρ
K

−1/2
X MrK

−1/2
Y . (19)

If KX or KY is singular, replace inverse square roots by Moore–Penrose pseudo–inverse square
roots.

5
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One explicit optimal choice is A⋆ = K
−1/2
X Ur and B⋆ = K

−1/2
Y Vr Σr/ρ, where Ur = [u1, . . . , ur],

Vr = [v1, . . . , vr], Σr = diag(σ1, . . . , σr) are SVD of M .
Corollary 10 (Kernel inference (out-of-sample)). Let D = {(xi,yi)}ni=1 be the reference
batch used to build contrastive similarity weight S(γ) and let k be a positive definite ker-
nel. For a new pair (x∗,y∗), set κX(x∗) = [kX(x1,x

∗), . . . , kX(xn,x
∗)]⊤ and κY (y

∗) =
[kY (y1,y

∗), . . . , kY (yn,y
∗)]⊤. With an optimal (A⋆, B⋆) from Theorem 9,

fθ1(x
∗) = (A⋆)⊤κX(x∗), fθ2(y

∗) = (B⋆)⊤κY (y
∗), (20)

and the similarity

s(x∗,y∗) =
κX(x∗)⊤A⋆B⋆⊤κY (y

∗)

∥A⋆⊤κX(x∗)∥2∥B⋆⊤κY (y∗)∥2
. (21)

In practice we observe that a simple angular kernel k(u, v) = 1
π∥u∥∥v∥ (sin θ + (π − θ) cos θ) , θ =

arccos
(

u⊤v
∥u∥∥v∥

)
yields the best trade-off between speed and accuracy.

3.3 UNIFIED SPECTRAL VIEW (LINEAR AS A SPECIAL CASE OF KERNEL)

Our kernel formulation strictly generalizes the linear setting. For linear kernels kX(x, x′) = ⟨x, x′⟩,
kY (y, y

′) = ⟨y, y′⟩, the Gram matrices reduce to KX = X⊤X and KY = Y⊤Y. Setting F1 =
A⊤X⊤ and F2 = B⊤Y ⊤ yields R×(A,B) = ∥F⊤

1 F2∥2F = tr(F1F
⊤
1 F2F

⊤
2 ), exactly matching

the penalty used in the linear section. In the linear analysis we considered the weighted contrastive
covariance matrix C(γ) = X S(γ)Y ⊤, while in the RKHS analysis the central operator is M =

K
1/2
X S(γ)K

1/2
Y . When the kernels are linear, M = (X⊤X)1/2S(γ)(Y ⊤Y )1/2.

Let reduced SVDs be X = UXΣXV
⊤
X and Y = UY ΣY V

⊤
Y , and define T = ΣXV

⊤
X S(γ)VY ΣY

with SVD T = UTΣTV
⊤
T . Then we obtain

C(γ) = UXTU
⊤
Y = (UXUT )ΣT (UY VT )

⊤, M = VXTV
⊤
Y = (VXUT )ΣT (VY VT )

⊤. (22)

Hence left/right multiplication by orthonormal matrices maps C(γ) and M to the same nonzero
singular values ΣT . In particular, their best rank–r approximations select the same spectrum
(Eckart–Young–Mirsky). When X or Y is rank-deficient (or for general kernels where KX ,KY may
be singular), all statements hold on the effective subspace using Moore–Penrose square roots.

Thus the kernel SVD of M is the exact RKHS analogue of the linear SVD of C(γ), and the linear
setting is recovered as the special case of the linear kernel.

Unified consequence. Theorem9 provides a unified spectral view for understanding contrastive
alignment:

contrastive loss minimization ⇐⇒ best rank–r approximation with RKHS.

with S(γ) encoding the particular contrastive objective (e.g., InfoNCE, CLIP, triplet) and the kernel
selecting the nonlinear feature space in which the alignment is performed.

3.4 SCALABLE TRAINING

Batch aggregation. In practical scenarios, particularly in large-scale vision-language or multimodal
applications, N can be substantial, leading to prohibitive computational and memory demands. We
therefore aggregate mini-batch contrastive similarity weight matrix S(b)(γ) by our closed-form
solution. The final S(γ) by taking quality weighted sum.

Numerical stability. If KX or KY is ill-conditioned or singular, form square roots with a Tikhonov
regularization when needed, replacing K by K+λI with λ > 0 in K±1/2. This enhances robustness
to near-singular Gram matrices and stabilizes the closed-form update. For low rank approximation
step, one can use randomized SVD (Halko et al., 2011) onM or Nyström approximations ofKX ,KY

to reduce both memory and time.

6
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4 EXPERIMENTS

During implementation, UniCon directly leverages the contrastive similarity weight S(γ) for con-
trastive alignment. The full computation of S(γ) is provided in Appendix C.1. We start with synthetic
data and then extend to evaluate the practical utility of UniCon on unimodal and multimodal datasets.
In the unimodal setting, we test on CIFAR-100, where the goal is image-to-image alignment. In
the multimodal setting, we test on FLICKR30K and MS-COCO for image–text retrieval. Across
both settings, we compare UniCon against standard CLIP-style contrastive learning trained with
stochastic gradient descent (SGD–CLIP). All experiments are run on a single NVIDIA L40S GPU,
and wall-clock times are reported for reference.

4.1 SYNTHETIC DATA

To verify our theoretical results in a fully controlled environment, we conduct synthetic experiments
in both linear and nonlinear regimes. Details of setup could be found in AppendixC.2.

Linear Latent-Factor Model. We generate synthetic data from latent vectors z ∈ Rr that are
sampled around K = 3 cluster centers in latent space. We compare our method UniCon, which
performs a spectral update using the closed-form SVD of the weighted covariance C(γ), against
a standard baseline trained via stochastic gradient descent (SGD) on the CLIP loss with AdamW
optimizer (lr = 2× 10−3). As shown in Figure 2, UniCon achieves 100% matching accuracy after
just 0.02 seconds. CLIP-SGD requires 400 epochs (0.32 seconds) to reach the same accuracy. This
demonstrates that UniCon not only preserves structure in the latent space but also converges faster
than gradient-based methods.

Figure 2: Visualization of cross-modal alignment using t-SNE embeddings of the shared represen-
tation space. Modality 1 (cross) and modality 2 (circle) are projected from different spaces into a
shared representation space Rr. Colors indicate ground-truth clusters, and lines connect matched
image–text pairs. Both SGD-CLIP (left) and UniCon (right) successfully align paired samples while
preserving cluster structure. The visual similarity between the two plots is expected: UniCon achieves
a comparable aligned representation to SGD-CLIP with substantially less training time.

Nonlinear Latent-Factor Model. We further evaluate the method under a nonlinear transformation
of the latent space. The baseline model trains nonlinear MLP encoder via SGD on CLIP loss and
AdamW optimizer. Our method UniCon calculates a sequence of ⟨Fθ1(x)Fθ2(y)⟩ each for one
training batch. Then we apply batch aggregation on validation data to calculate the weight for
each training batch. The performance is evaluated by the correctly matched pairs of test data using
the kernel-weighted generalization. UniCon converges in 2 epochs (0.04 seconds), achieving 86%
matching accuracy, while CLIP-SGD reaches 84% after 500 epochs (0.65 seconds).

Summary. In both linear and nonlinear settings, UniCon demonstrates rapid convergence and
strong alignment performance, validating the theoretical claims that contrastive learning objectives
can be solved via a single spectral step. Figure 3 confirm that UniCon achieves consistent cross-modal
alignment.
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(a) Initial S(γ) (b) After epoch 1 (c) After epoch 2 (converged)

Figure 3: Evolution of the contrastive similarity weight matrix S(γ) in the nonlinear latent-factor
model across training.

4.2 IMAGE-IMAGE ALIGNMENT ON CIFAR-10 (UNIMODAL)

Setup. We evaluate UniCon on a unimodal image alignment task using CIFAR-10, a benchmark
dataset containing 10 object categories. Following the convention of SimCLR (Chen et al., 2020),
we treat two augmentations derived from the same image as a positive pair, while augmentation
pairs from different images are treated as negative. Feature embeddings are extracted using a frozen
ResNet-18 encoder. The objective is to align these embeddings such that images from the same class
are pulled closer together in the shared feature space, thereby facilitating unimodal classification.

We conduct this experiment under a nonlinear setting. For baseline, we train a lightweight projection
encoder g(·) on frozen ResNet-18 features with bidirectional InfoNCE optimized by SGD. The
encoder is a two-layer MLP encoder. We optimize with SGD for 300 epochs. The trained encoder is
then frozen for linear probing with a small classifier on the 128-dimensional embeddings. UniCon
learns a kernelized projection from frozen ResNet-18 features by a spectral closed-form solution.
Given two augmented views (z1, z2), we compute an angular kernel between features and iteratively
estimate a batch-wise feature map A. After learning an average of A, we freeze it and train a small
linear classifier on the 128-dimensional embeddings for linear probing, mirroring the SGD setup for
fair comparison.

(a) Contrastive classification (b) UniCon (c) SGD-CLIP

Figure 4: Visualizations of unimodal alignment on CIFAR-10. (a) Self-supervised contrastive
learning clusters semantically similar images and uniformly distributes clusters on the hypersphere.
(b–c) Unimodal confusion matrices for UniCon and SGD-CLIP, showing predicted vs. true class
accuracy. The near-identity structure and visual similarity of both matrices indicate that UniCon and
SGD-CLIP achieve comparable discriminative performance in unimodal contrastive alignment.

Results. To evaluate classification performance, we report the confusion matrix in Figure 4(b-c),
which summarizes the number of correct and incorrect predictions for each class. Each row of the
matrix corresponds to the predicted class, while each column represents the ground truth. Specifically,
the diagonal entries indicate the number of correctly classified samples, and the off-diagonal entries
capture misclassifications between classes. This allows a detailed analysis of model behavior beyond
overall accuracy. Numerically, UniCon can achieve the average accuracy of 61.82% with 23.38s while
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SGD can achieve the average accuracy of 62.21% with 41.98s. Empirically, UniCon can converge
within 2 epochs while SGD requires various iterations to converge to a comparable optimal point.

4.3 IMAGE–TEXT RETRIEVAL AND ZERO-SHOT TRANSFER (MULTIMODAL)

Setup. To evaluate UniCon in a multimodal setting, we benchmark on the standard image–text
retrieval tasks from FLICKR30K and MSCOCO. We consider three backbone choices for image x and
text y: (a) ResNet-18 (He et al., 2016) for images with Sentence-BERT (all-mpnet-base-v2)
(Reimers & Gurevych, 2019) for text; (b) ResNet-50 + Sentence-BERT; (c) the pretrained CLIP
ViT-B/32 model as a frozen visual–textual feature extractor. UniCon is compared against an SGD-
optimized CLIP baseline (SGD–CLIP) under matched training/evaluation settings; both are trained to
convergence.

Results. Table 1 summarizes top-1/10 recall in both directions. Across all backbones, UniCon
attains competitive or superior accuracy while reducing training time by 25–50×. With CLIP ViT-
B/32 features, UniCon further improves accuracy despite requiring only a single spectral update.
Notably, UniCon on Resnet50+SBERT backbone achieves comparable averaged top-10 retrieval
accuracy with CLIP ViT-B/32 backbone aligned SGD-CLIP. These findings are consistent with our
theory: the spectral step efficiently recovers the dominant cross-modal structure that iterative SGD
approximates over many epochs.

Table 1: Image-text retrieval on FLICKR30K. We report Recall@1 and Recall@10 for both
image→text and text→image directions.

Backbone Method Train time Image→Text Text→Image Average

R@1 R@10 R@1 R@10 R@1 R@10

RN-18 + SBERT SGD–CLIP 45.6 s .043 .221 .041 .217 .042 .219
UniCon 1.7 s .020 .145 .087 .361 .054 .253

RN-50 + SBERT SGD–CLIP 45.0 s .043 .221 .041 .217 .042 .219
UniCon 0.81 s .134 .464 .188 .567 .161 .515

CLIP ViT-B/32 SGD–CLIP 45.3 s .231 .595 .241 .600 .236 .597
UniCon 0.76 s .284 .636 .421 .777 .353 .701

Table 2: Retrieval on MSCOCO and zero-shot transfer to FLICKR30K. All models are trained
on MSCOCO. We report image to text (I→T) and text to image (T→I) on MSCOCO and zero-shot
on FLICKR30K (no fine-tuning).

Backbone Method Train (s) Dir. MSCOCO FLICKR30K (zero-shot)

R@1 R@10 R@5 R@10

RN-50 + SBERT

SGD–CLIP 5121.72 I→T .053 .253 — —
T→I .060 .286

UniCon 11.11 I→T .105 .388 .171 .261
T→I .129 .439 .249 .353

CLIP ViT-B/32

SGD–CLIP 1066.60 I→T .128 .415 — —
T→I .123 .427

UniCon 11.15 I→T .329 .685 .808 .879
T→I .292 .644 .766 .848

Table 2 augments our results with MSCOCO retrieval and zero-shot transfer to FLICKR30K. Our
training follows the standard retrieval protocol on MSCOCO with each image paired with 5 captions,
and report test retrieval accuracy on 5,000 held-out pairs. UniCon achieves higher accuracy than
SGD–CLIP on MSCOCO while being 96–461× faster. Beyond scalability, the learned alignment
transfers robustly: models trained on MSCOCO maintain strong performance on FLICKR30K
without any adaptation. Despite distribution shifts in both image and text domains, UniCon maintains
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strong retrieval accuracy. These results underscore UniCon’s scalability, generality, and cross-dataset
transfer, reavealing its potential in real world tasks.

5 DISCUSSION

We propose UniCon, a theoretically grounded and computationally efficient framework for contrastive
alignment, that unifies linear and nonlinear encoders through kernels. We show that minimizing
contrastive loss is equivalent to maximizing a kernelized trace objective, which in turn reduces to
a best rank-r spectral approximation in an RKHS. The closed form update is driven by explicitly
constructing a contrastive similarity weight matrix S(γ). In the linear reduction, UniCon recovers a
projection onto the top-r singular directions of the weighted contrastive cross-covariance. This yields
a clear spectral lens on contrastive learning, interpreting alignment as r-rank structure discovery in
high-dimensional feature spaces.

Computation Efficiency. UniCon achieves rapid stabilization of the alignment subspace through
derived spectral updates, which bypass many small gradient steps, demonstrating computational
efficiency. Details can be found in Appendix C.1. Empirically, we observe an interesting phenomenon
that M (or C(γ) in the linear case) converges in 2 or a few steps. We provide an intuitive explanation:
Unlike gradient-based methods that take small local steps, each spectral update directly jumps to the
global maximizer of the surrogate objective, making the update much more informative.

Data Efficiency. Additionally, on MSCOCO, using only 200 images (0.24% of the dataset), with
each image paired with 5 captions, already yields meaningful retrieval alignment (66.45% avg
R@10), demonstrating both subspace convergence and data efficiency. As we discussed in Section 3,
alignment is a r-rank discovery problem, which gives an intuition that we don’t need massive datasets
to find the principal axes.

Static vs. Evolving Input Spaces. The theoretical optimality results with r-rank aproximation is
derived under the assumption that the input space of UniCon is static. It includes two cases: (a) Input
space is data space (raw modalities), where UniCon itself performs end-to-end alignment. (b) Input
space is embedding space from frozen encoders. In both cases, UniCon provides a globally optimal
spectral solution to contrastive loss minimization from the perspective of r-rank approximation. When
encoders are trainable (non-static input space), UniCon is applied during jointly optimizing encoders,
the spectral update becomes a conditionally optimal subproblem, i.e., optimal for the current encoder
outputs.

Broader Opportunities. We see two concrete directions: (i) structure-exploiting kernels, for
example random features, to reduce K’s rank and cost; (ii) hybrid spectral–SGD strategy or warm-
start strategy when the input space is non-static (e.g. finetuning for domain adaptation), and we
briefly discuss this potential future direction in Appendix C.5. With the theoretical grounding, and
competitive empirical results, UniCon advances understanding contrastive learning for unimodal
representation learning, multimodal alignment and beyond.

ETHICS STATEMENT

We affirm that this work complies with the ICLR Code of Ethics. Our study does not involve human
subjects, sensitive personal data, or potentially harmful applications. All datasets used are publicly
available (e.g., CIFAR-10) and contain no personally identifiable information. We acknowledge
the importance of fairness and responsible AI development and have taken care to ensure that our
methods do not propagate bias or cause unintended harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All implementation details, including
model architectures, hyperparameters, and training procedures, are described in the Appendix C. We
provide pseudocode for our algorithm in Appendix A and include complete proofs of theoretical
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results in Appendix B. All datasets used in this study are publicly available, and we will release
source code and experiment scripts as supplementary materials later to facilitate replication of our
results.
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LLM Usage We used a large language model (LLM) solely as a writing aid to polish wording, and
improve grammar/clarity. All technical content (definitions, theorems, proofs, experiments, figures,
and tables) was authored and verified by the paper’s authors.
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A CONTRASTIVE LOSS

Under the assumption of one-to-one alignment, let Eθ1 : X →Rr and Eθ2 : Y →Rr denote two
modality-specific encoders with trainable parameters θ1, θ2. Given N paired samples {(xi,yi)}Ni=1
we form the similarity matrix S = [sij ]. All contrastive objectives used in practice can be written in
the bidirectional general form (Tian, 2022; Nakada et al., 2023)

L(θ1, θ2) =
1

2N

N∑
i=1

[
ϕ
(∑N

j=1 ϵij ψ
(
sij−ν sii

))
+ϕ
(∑N

j=1 ϵij ψ
(
sji−ν sii

))]
+ R(θ1, θ2), (23)

with

• ψ, ϕ : R→R increasing (shape of the loss),

• ν : relative weight on the positive pair,

• ϵij ∈ [0, 1] : which pairs are used,

• R : optional regulariser (e.g. weight decay).

Remark Because the embeddings are length-normalised, sij ∈ [−1, 1] and all geometry lives on the
unit hypersphere.

By choosing specific forms for ψ and ϕ, we can recover familiar losses. For example, choosing
ϕ(x) = τ log(x), ψ(x) = exp(x/τ) and including positive pairs in the normalization (ϵij = 1 for
positive pair (i, j)), recovers the CLIP(Radford et al., 2021) loss, and the InfoNCE(Oord et al., 2018)
loss is the same instantiation appears as a simplified variant focusing only on one direction. And
choosing ϕ(x) = x, ψ(x) = [−x+ ϵ]+ gives triplet loss(Schroff et al., 2015). Equation 2 thus unifies
a wide spectrum of contrastive objectives via variant choices of (ϕ, ψ, ν, ϵ), providing a common lens
for analysing and extending multimodal representation learning. This formulation allows for distinct
temperature scaling of positive and negative similarities.
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Derivation for CLIP Radford et al. (2021) / InfoNCE Oord et al. (2018) Loss. Set ψ(x) =

ex/τ , ϕ(x) = τ log x, ν = 1, ϵij = 1− δij in equation 23, and omit R. We define

δij =


1, if i = j

0, if i ̸= j

(24)

This gives the loss

L ≜
1

2n

∑
i

ϕ

∑
j∈[n]

ϵijψ (sij − νsii)

+
1

2n

∑
i

ϕ

∑
j∈[n]

ϵijψ (sji − νsii)

+R (θ1, θ2)

(25)

=
τ

2n

∑
i

log

∑
j∈[n]

exp

(
sij − sii

τ

)+
τ

2n

∑
i

log

∑
j∈[n]

exp

(
sji − sii

τ

) (26)

=
τ

2n

∑
i

log

(∑
j∈[n] exp

( sij
τ

)
exp

(
sii
τ

) )
+

τ

2n

∑
i

log

(∑
j∈[n] exp

( sji
τ

)
exp

(
sii
τ

) )
(27)

=
τ

2n

∑
i

[
− log

(
exp

(
sii
τ

)∑
j∈[n] exp

( sij
τ

))− log

(
exp

(
sii
τ

)∑
j∈[n] exp

( sji
τ

))] (28)

= LCLIP (29)

For InfoNCE loss, we keep the first term (i.e. only one-directional loss), then

LInfoNCE =
τ

n

∑
i

[
− log

exp sii∑
j exp sij

]

Derivation for triplet loss Schroff et al. (2015). With a margin ϵ > 0, choose ψ(x) = [ϵ −
x]+, ϕ(x) = x, ν = 1, ϵij = 1− δij ,

L ≜
1

2n

∑
i

ϕ

∑
j∈[n]

ϵijψ (sij − νsii)

+
1

2n

∑
i

ϕ

∑
j∈[n]

ϵijψ (sji − νsii)

+R (θ1, θ2)

(30)

=
1

2n

n∑
i=1

[ n∑
j=1
j ̸=i

[
ϵ−

(
sij − sii

)]
+
+
∑

j=1
j ̸=i

n[
ϵ−

(
sji − sii

)]
+

]
(31)

We can also only keep one direction:

L =
1

n

n∑
i=1

[ n∑
j=1
j ̸=i

[
ϵ−

(
sij − sii

)]
+

]
=

1

n

n∑
i=1

[ n∑
j=1
j ̸=i

max{0, sii − sij + ϵ}
]

(32)

where sij captures distance between negative pairs, and sii captures distance between positive pairs.

Equation equation 23 thus provides a general form that captures various contrastive loss, making it
possible to analyze them collectively and design new variants with principled control over positive /
negative balance, temperature, and weighting.

Many-to-many aligment contrastive loss(Khosla et al., 2020) Note that the loss in Equation equa-
tion 23 is defined with (xi, yi) being the positive pairs for all i. However, in many cases, a single xi
may have multiple positive pairs. (Khosla et al., 2020) extended contrastive learning to the supervised
setting with the Supervised Contrastive (SupCon) loss, which is not restricted to one-to-one pairs.
This loss encourages embeddings from the same class to be pulled together while pushing apart
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embeddings from different classes. Formally, given a minibatch of normalized embeddings zi with
labels yi, the SupCon loss is defined as

Lsup
out =

∑
i∈I

Lsup
out,i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
. (33)

where P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices of all positives in the multiviewed batch
distinct from i and |P (i)| is its cardinality.

Therefore, we extend the general form of the contrastive loss in equation 23 to handle many-to-many
alignment scenarios. We define the unified form as

L(θ1, θ2) =
1

2n

n∑
i=1

1

|Px(i)|
∑

k∈Px(i)

ϕ(
∑

j /∈Px(i)

ϵijψ(sij − νsik) + ϵikψ(sik − νsik)) (34)

+
1

2n

n∑
i=1

1

|Py(i)|
∑

k∈Py(i)

ϕ(
∑

j /∈Py(i)

ϵijψ(sji − νski) + ϵikψ(ski − νski)) +R(θ1, θ2)

where Px(i) and Py(j) denote the index sets of all samples in {yk}, {xk} paired with xi and yj ,
respectively. The term |Px(i)| denotes the cardinality of Px(i), and R is an optional regularization
term. We incorporate this loss function in the following sections.

B THEORETICAL PROOFS

Definition 3
Contrastive Similarity Weight Matrix

S(γ)

Lemma 4
Gradient bridge

Prop. 7
(linear specialization)

Theorem 8
Spectral Characterization

Nakada et al. (2023)

Theorem 9
Kernelized Spectral

characterization
(unified form)

Cor. 10
Kernel inference
(out-of-sample)

Theory Road-map

Linear case Non-linear case

Definition 3 (Contrastive-Covariance Similarity Matrix) Consider the general contrastive loss
L(θ1, θ2) in Equation equation 34 with choice of (ϕ, ψ, ϵ, ν), and a batch of samples {(xi,yi)}ni=1.
Denote {ei}ni=1 as the elementary basis vectors of Rn. The contrastive-covariance similarity matrix
is then defined as:

S(γ) = − 1

n

∑
i,j

1

2

(
γij
|Px(i)|

+
γ̄ji
|Py(j)|

)
eie

⊤
j , (35)

with weight coefficients

γij =


ϕ′ij ·

(
ϵij(1− ν)ψ′((1− ν)sij)− ν

∑
m/∈Px(i)

ϵimψ
′(sim − νsij)

)
, if j ∈ Px(i)

∑
k∈Px(i)

ϕ′ik · (ϵijψ′(sij − νsik)), if j /∈ Px(i)

(36)
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γ̄ij =


ϕ̄′ij ·

(
ϵji(1− ν)ψ′((1− ν)sji)− ν

∑
m/∈Py(i)

ϵmiψ
′(smi − νsji)

)
, if j ∈ Py(i)

∑
k∈Py(i)

ϕ̄′ik · (ϵjiψ′(sji − νski)), if j /∈ Py(i)

(37)

where we define

ϕ′ij =ϕ
′

ϵijψ((1− ν)sij) + ∑
m/∈Px(i)

ϵimψ(sim − νsij)

 , (38)

ϕ̄′ij =ϕ
′

ϵjiψ(1− ν)sji + ∑
m/∈Py(i)

ϵmiψ(smi − νsji)

 (39)

Lemma 4 (Gradient Equivalence) Consider minimizing the general contrastive loss (see Equa-
tion equation 2), the gradient of the contrastive loss with respect to encoder parameters satisfies:

∂L
∂θk

= −
∂ tr

(
Fθ1(X)S(γ)F⊤

θ2
(Y)

)
∂θk

∣∣∣∣∣
γ=γ(θ1,θ2)

+
∂R (θ1, θ2)

∂θk
, k ∈ {1, 2} (40)

where
X = [xi, · · · ,xn] ∈ Rd1×n,Y = [yi, · · · ,yn] ∈ Rd2×n

Fθ1(X) = [fθ1(x1) fθ1(x2) · · · fθ1(xn)] ∈ Rr×n

Fθ2(Y) = [fθ2(y1) fθ2(y2) · · · fθ2(yn)] ∈ Rr×n.

Proof. Let θk,ℓ be the ℓ-th component of θk. We have

∂θk,ℓL =∂θk,ℓ

[ 1

2n

∑
i

1

|Px(i)|
∑

k∈Px(i)

ϕ

ϵikψ((1− ν)sik) +
∑

m/∈Px(i)

ϵimψ (sim − νsik)

 (41)

+
1

2n

∑
i

1

|Py(i)|
∑

k∈Py(i)

ϕ

ϵkiψ((1− ν)ski) +
∑

m/∈Py(i)

ϵmiψ (smi − νski)

+R (θ1, θ2)
]
(42)

=
1

2n

n∑
i=1

1

|Px(i)|
∑

k∈Px(i)

ϕ′

ϵikψ((1− ν)sik) +
∑

m/∈Px(i)

ϵimψ (sim − νsik)

 (43)

·
[
ϵikψ

′((1− ν)sik)(1− ν)∂θk,ℓsik +
∑

m/∈Px(i)

ϵimψ
′ (sim − νsik)

(
∂θk,ℓsim − ν∂θk,ℓsik

)]

+
1

2n

n∑
i=1

1

|Py(i)|
∑

k∈Py(i)

ϕ′

ϵkiψ((1− ν)ski) +
∑

m/∈Py(i)

ϵmiψ (smi − νski)

 (44)

·
[
ϵkiψ

′((1− ν)ski)(1− ν)∂θk,ℓski +
∑

m/∈Py(i)

ϵmiψ
′ (smi − νski)

(
∂θk,ℓsmi − ν∂θk,ℓski

)]
+ ∂θk,ℓR

(45)

=
1

2n

n∑
i=1

1

|Px(i)|

 ∑
k∈Px(i)

γik∂θk,ℓsik +
∑

m/∈Px(i)

γim∂θk,ℓsim

 (46)

+
1

2n

n∑
i=1

1

|Py(i)|

 ∑
k∈Py(i)

γ̄ik∂θk,ℓski +
∑

m/∈Py(i)

γ̄im∂θk,ℓsmi

+ ∂θk,ℓR (47)

=
1

2n

n∑
i=1

n∑
j=1

(
γij

|Px(i)|
+

γ̄ji
|Py(j)|

)
∂θk,ℓsij (48)
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Define

γij =


ϕ′
ij ·
(
ϵij(1− ν)ψ′((1− ν)sij)− ν

∑
m/∈Px(i) ϵimψ

′(sim − νsij)
)
, if j ∈ Px(i)

∑
k∈Px(i) ϕ

′
ik · (ϵijψ′(sij − νsik)), if j /∈ Px(i)

(49)

γ̄ij =


ϕ̄′
ij ·
(
ϵji(1− ν)ψ′((1− ν)sji)− ν

∑
m/∈Py(i)

ϵmiψ
′(smi − νsji)

)
, if j ∈ Py(i)

∑
k∈Py(i)

ϕ̄′
ik · (ϵjiψ′(sji − νski)), if j /∈ Py(i)

(50)

where we define

ϕ′
ij =ϕ′

ϵijψ((1− ν)sij) +
∑

m/∈Px(i)

ϵimψ(sim − νsij)

 , (51)

ϕ̄′
ij =ϕ′

ϵjiψ(1− ν)sji +
∑

m/∈Py(i)

ϵmiψ(smi − νsji)

 (52)

To simplify the notation, we assume that the encoded representations fθ1(xi) and fθ2(yj) are already ℓ2-
normalized. Then the gradient follows that

∂θk,ℓL =
1

2n

n∑
i=1

n∑
j=1

(
γij

|Px(i)|
+

γ̄ji
|Py(j)|

)
∂θk,ℓ(f

⊤
θ1(xi)fθ2(yj)) + ∂θk,ℓR (53)

=∂θk,ℓ

(∑
i,j

−S(γ)ij(F⊤
θ1(X)Fθ2(Y))ij

)
+ ∂θk,ℓR (54)

where (F⊤
θ1
(X )Fθ2(Y))ij = f⊤θ1(xi)fθ2(yj) denotes the similarity between sample xi and yj , and S(γ)ij

denotes the entry in the i-th row and j-th column of the matrix S(γ), which is defined in Equation equation 35.

Note that

tr(A⊤B) =
∑
i=j

∑
k

(A⊤)ik ·Bkj =
∑
ik

AkiBki (55)

Therefore we have

− ∂L
∂θk

=
∂ tr(S(γ)⊤F⊤

θ1
(X)Fθ2(Y))

∂θk
− ∂R(θ1, θ2)

∂θk
(56)

=
∂ tr(Fθ1(X)S(γ)F⊤

θ2
(Y))

∂θk
− ∂R(θ1, θ2)

∂θk
(57)

where S(γ) is defined as Equation equation 35.

B.1 LINEAR REPRESENTATION SETTING

In this setting, the hyper-spherical similarity between a pair (xi,yj) is computed as the inner product
of their ℓ2-normalized embeddings:

sij = ⟨F1xi, F2yj⟩Sr−1⊂Rr =

〈
F1xi

∥F1xi∥2
,
F2yj

∥F2yj∥2

〉
Rr

=
x⊤
i F

⊤
1 F2yj

∥F1xi∥2 ∥F2yj∥2
. (58)

Proposition 7 Under the linear setting, the Lemma 4 is specialized as

∂L
∂Fk

=−
∂ tr

(
F1XS(γ)Y

⊤F⊤
2

)
∂Fk

∣∣∣∣∣
β=β(F1,F2)

+
∂R (F1, F2)

∂Fk
, k ∈ {1, 2} (59)

=−
∂ tr

(
F1C(γ)F

⊤
2

)
∂Fk

∣∣∣∣∣
β=β(F1,F2)

+
∂R (F1, F2)

∂Fk
, k ∈ {1, 2} (60)
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where C(γ) = XS(γ)Y⊤.

To solve the optimization problem induced by our reformulated objective, we characterize its maxi-
mizer in the linear setting. We arrive at the following theorem, which establishes that the convergence
of the contrastive loss can be replaced by a closed-form update.

Theorem 8 (Spectral Characterization (Nakada et al., 2023)) Consider minimizing the contrastive
loss function L (F1, F2), with R(F1, F2) =

ρ
2 ||F

T
1 F2||2F . Then,

argmin
F1∈Rr×d1 ,F2∈Rr×d2

L (F1, F2) (61)

= argmax
F1∈Rr×d1 ,F2∈Rr×d2

tr
(
F1C(γ)F

⊤
2

)
− (ρ/2)

∥∥F⊤
1 F2

∥∥2
F

(62)

=

{
(F1, F2) ∈ Rr×d1 × Rr×d2 : F⊤

1 F2 =
1

ρ

r∑
i=1

σiuiv
⊤
i

}
(63)

where {σi, ui, vi}ri=1 are the top-r singular values and vectors of C(γ) according to the
Eckart–Young–Mirsky theorem.

Proof. Observe that

tr
(
F1C(γ)F

⊤
2

)
− (ρ/2)

∥∥F⊤
1 F2

∥∥2
F

(64)

= tr
(
F1C(γ)F

⊤
2

)
− ρ

2
tr
(
F⊤
2 F1F

⊤
1 F2

)
(65)

= tr
(
F1C(γ)F

⊤
2

)
− ρ

2
tr
(
F⊤
2 F1F

⊤
1 F2

)
− 1

2ρ
tr
(
C(γ)⊤C(γ)

)
+

1

2ρ
tr
(
C(γ)⊤C(γ)

)
(66)

=
1

2ρ
tr
(
C(γ)TC(γ)

)
− ρ

2
tr

[(
F⊤
1 F2 −

1

ρ
C(γ)

)⊤(
F⊤
1 F2 −

1

ρ
C(γ)

)]
(67)

=
1

2ρ
∥C(γ)∥2F −

ρ

2

∥∥∥∥F⊤
1 F2 −

1

ρ
(C(γ))

∥∥∥∥2
F

(68)

The first term is constant for fixed C(γ), and the second term is minimized at F⊤
1 F2 = 1

ρC(γ). Since
F1 ∈ Rr×d1 , F2 ∈ Rr×d2 , F⊤

1 F2 has rank at most r. Thus, the minimization can be achieved at
F⊤
1 F2 =

∑r
i=1 σiuiv

⊤
i by Eckart–Young–Mirsky theorem for low rank matrix approximation. Here

{σi, ui, vi} are the top-r singular values and vectors of S.

In summary, in linear case, the global minimum is attained by projecting the contrastive covariance
C(γ) onto its top-r singular components. Thus, gradient descent on any loss in the contrastive family
(ϕ, ψ) merely tracks the dominant singular subspace of C(γ). UniCon performs this update in closed
form, replacing thousands of SGD steps with one spectral factorization.

Relationship with (Nakada et al., 2023) Furthermore, the formulation of (Nakada et al., 2023)
can be seen as a special case of our contrastive similarity weight matrix S(γ), which arises under
the specific assumptions of one-to-one alignment in a linear representation setting and with further
restrictions on the functions ψ and ϕ. Similar to the paper (Nakada et al., 2023), we define

αij ≜ ϵijϕ
′

 ∑
m∈[n]

ϵimψ (sim − νsii)

ψ′ (sij − νsii) , (69)

ᾱij ≜ ϵijϕ
′

 ∑
m∈[n]

ϵimψ (smi − νsii)

ψ′ (sji − νsii) (70)
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Then we can derive that when |Px(i)| = |Py(j)| = 1, for positive pairs (xi, yj) with i = j,

(γii + γ̄ii) =ϕ
′

ϵiiψ((1− ν)sii) +∑
m̸=i

ϵimψ(sim − νsii)

 (71)

×

ϵii(1− ν)ψ′((1− ν)sii)− ν
∑
m̸=i

ϵimψ
′(sim − νsii)

 (72)

+ ϕ′

ϵiiψ((1− ν)sii) +∑
m̸=i

ϵmiψ(smi − νsii)

 (73)

×

ϵii(1− ν)ψ′((1− ν)sii)− ν
∑
m̸=i

ϵmiψ
′(smi − νsii)

 (74)

=ϕ′

(
n∑

m=1

ϵimψ(sim − νsii)

)(
ϵiiψ

′(sii − νsii)− ν
n∑

m=1

ϵimψ
′(sim − νsii)

)
(75)

+ ϕ′

(
n∑

m=1

ϵmiψ(smi − νsii)

)(
ϵiiψ

′(sii − νsii)− ν
n∑

m=1

ϵmiψ
′(smi − νsii)

)
(76)

=αii + ᾱii − ν
n∑

m=1

(αim + ᾱim) (77)

For negative pairs (xi, yj) with i ̸= j,

γij + γ̄ji =ϕ
′

ϵiiψ(1− ν)sii +∑
m̸=i

ϵimψ(sim − νsii)

 (ϵijψ
′(sij − νsii)) (78)

+ ϕ′

ϵjjψ(1− ν)sjj + ∑
m̸=j

ϵmjψ(smj − νsjj)

 (ϵijψ
′(sij − νsjj)) (79)

=ϵijϕ
′

(
n∑

m=1

ϵimψ(sim − νsii)

)
ψ′(sij − νsii) (80)

+ ϵijϕ
′

(
n∑

m=1

ϵmjψ(smj − νsjj)

)
ψ′(sij − νsjj) (81)

=αij + ᾱji (82)

Then we can define

βij =
αij + ᾱji

2
, βi = ν

n∑
j=1

αij + ᾱij

2
− αii + ᾱii

2
. (83)

Thus we have

C(γ) = XS(γ)Y ⊤ = − 1

2n

n∑
i=1

n∑
j=1

(γij + γ̄ji)xiy
⊤
j =

1

n

n∑
i=1

βixiy
⊤
i −

1

n

∑
i̸=j

βijxiy
⊤
j (84)

In (Nakada et al., 2023), they define the contrastive cross-covariance S(β) as:

S(β) =
1

Cn

n∑
i=1

βixiy
⊤
i −

1

Cn

∑
i̸=j

βijxiy
⊤
j , (85)
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βij =
αij + ᾱji

2
, βi = ν

∑
j∈[n]

αij + ᾱij

2
− 1. (86)

Therefore, with Cn = n, our C(γ) is equivalent to S(β) in (Nakada et al., 2023), where their βi
corresponds to the special case of our definition with identity functions for ϕ and ψ.

Understanding S(β): Consider the trace objective function

tr
(
F1 S(γ)F

⊤
2

)
=

1

n

n∑
i,j=1

−(−1)δijβij
〈
F1(xi), F2(yj)

〉
. (87)

Every similarity inside a batch is multiplied by a scalar −(−1)δijβij :

• βi on the diagonal strengthens the attractive force for the positive pair (xi,yi);

• βij (i ̸= j) on the off-diagonals weights the repulsive force for negative pairs.

where:

βij =
αij + ᾱji

2
, βi = ν

n∑
j=1

αij + ᾱij

2
− αii + ᾱii

2
. (88)

• αij and ᾱij encode the bidirectional importance of the pair (i, j).

• ν adjusts the influence of positive pairs relative to negatives.

The explicit plus/minus pattern makes the “pull” (+βi) vs. “push” (−βij) behaviour of contrastive
learning transparent.

B.2 KERNELIZED CONTRASTIVE ALIGNMENT

RKHS parameterization. Let (HX , kX ) and (HY , kY) be RKHSs with kernels kX , kY and canon-
ical feature maps

ϕX : X → HX , ϕX(x) := kX(·,x), ϕY : Y → HY , ϕY (y) := kY (·,y). (89)

They satisfy the reproducing property:

∀f ∈ HX , ∀x ∈ X : f(x) = ⟨f, ϕX(x)⟩HX
,

∀g ∈ HY , ∀y ∈ Y : g(y) = ⟨g, ϕY (y)⟩HY
.

(90)

In particular,

⟨ϕX(xi), ϕX(x)⟩HX
= kX(xi,x), ⟨ϕY (yj), ϕY (y)⟩HY

= kY (yj ,y). (91)

By the representer theorem, for each output coordinate a = 1, . . . , r,

f
(a)
θ1

(·) =
n∑

i=1

Aia kX(xi, ·), f
(a)
θ2

(·) =
n∑

j=1

Bja kY (yj , ·), (92)

and we stack coefficients into matrices A,B ∈ Rn×r (column a stores the coefficients of coordinate
a).

Define

κX(x) :=
[
kX(x1,x), . . . , kX(xn,x)

]⊤ ∈ Rn, κY (y) :=
[
kY (y1,y), . . . , kY (yn,y)

]⊤ ∈ Rn.
(93)

Then the r-dimensional encoder outputs at a point are

fθ1(x) :=
(
f
(1)
θ1

(x), . . . , f
(r)
θ1

(x)
)⊤

= A⊤κX(x) ∈ Rr, fθ2(y) = B⊤κY (y) ∈ Rr. (94)
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• Theoretically, in infinite-dimensional RKHS,

f
(a)
θ1

(x) =
〈 n∑

i=1

Aia kX(xi, ·), ϕX(x)
〉
HX

. (95)

• Computationally, in finite n-dimensional representation,

f
(a)
θ1

(x) = A⊤
·a κX(x). (96)

Let the Gram matrices be

KX = [kX(xi, xj)]
n
i,j=1 ∈ Rn×n, KY = [kY (yi, yj)]

n
i,j=1 ∈ Rn×n. (97)

Stacking the n samples as columns, the r × n batch embeddings are

Fθ1(X) = A⊤KX ∈ Rr×n, Fθ2(Y ) = B⊤KY ∈ Rr×n. (98)

Inner products and induced norms. For any c, d ∈ Rn,〈∑
i

ci ϕX(xi),
∑
j

dj ϕX(xj)
〉
HX

= c⊤KXd,
∥∥∥∑

i

ci ϕX(xi)
∥∥∥2
HX

= c⊤KXc, (99)

and similarly with KY .

Therefore, the total RKHS norm of the r output coordinates is
r∑

a=1

∥f (a)θ1
∥2HX

=

r∑
a=1

A⊤
·aKXA·a = tr(A⊤KXA), (100)

and analogously for B with KY .

Similarity. For two samples (xi,yj) the predicted similarity is

⟨fθ1(xi), fθ2(yj)⟩Rr = κX(xi)
⊤AB⊤κY (yj), (101)

which is exactly the (i, j) entry of

Spred := Fθ1(X)⊤Fθ2(Y ) = KX AB⊤KY ∈ Rn×n. (102)

with entry [Spred]ij = ⟨Fθ1(xi),Fθ2(yj)⟩Rr .

Definition 11 (Kernel cross–covariance regularizer). Define

R×(A,B) := tr
(
A⊤KXA B⊤KYB

)
=
∥∥K1/2

X AB⊤K
1/2
Y

∥∥2
F
. (103)

The second equality in equation 103 follows from the identity ∥A′⊤B′∥2F = tr(A′⊤A′B′⊤B′) with
A′ = AK

1/2
X and B′ = BK

1/2
Y .

In the linear case, fθ1(X) = F1X. Let w(a)⊤ be the a-th row vector of F1, then f (a)θ1
(x) = w(a)⊤x,

thus
r∑

a=1

∥∥∥f (a)θ1

∥∥∥2
HX

=

r∑
a=1

⟨f (a)θ1
, f

(a)
θ1
⟩HX

=

r∑
a=1

⟨w(a), w(a)⟩

=

r∑
a=1

∥w(a)∥22

= ∥F1∥2F

(104)
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Proposition 12 (Linear-kernel reduction). Suppose kX(x, x′) = ⟨x, x′⟩ and kY (y, y′) = ⟨y, y′⟩,
and let the sample matrices be X = [x1, . . . , xn] ∈ Rd1×n, Y = [y1, . . . , yn] ∈ Rd2×n. Then
KX = X⊤X and KY = Y ⊤Y , and with

F1 := A⊤X⊤ ∈ Rr×d1 , F2 := B⊤Y ⊤ ∈ Rr×d2 , (105)

we have
R×(A,B) = tr

(
A⊤KXA B⊤KYB

)
= tr(F1F

⊤
1 F2F

⊤
2 ) = ∥F⊤

1 F2∥2F . (106)

Proof. With KX = X⊤X and KY = Y ⊤Y we compute

F1F
⊤
1 = (A⊤X⊤)(XA) = A⊤(X⊤X)A = A⊤KXA,

F2F
⊤
2 = (B⊤Y ⊤)(Y B) = B⊤(Y ⊤Y )B = B⊤KYB.

Therefore,
tr(F1F

⊤
1 F2F

⊤
2 ) = tr

(
A⊤KXA B⊤KYB

)
= R×(A,B).

Centered (covariance) variant. If one desires a true covariance penalty, replace KX ,KY by their
double-centered versions Kc

X = HKXH and Kc
Y = HKYH with H = I − 1

n11
⊤:

Rcov
× (A,B) := tr

(
A⊤Kc

XA B⊤Kc
YB
)
. (107)

We optionally center Gram matrices before optimization; proofs are unchanged.

Theorem 13 (Kernelized spetral charaterization (unified form)). Let ρ > 0 and define the regularizer
R(A,B) =

∥∥ (K1/2
X A)⊤(K

1/2
Y B)

∥∥2
F
. Then minimizing the contrastive loss is equivalent to the

kernelized maximization

max
A,B∈Rn×r

tr
(
A⊤KX S(γ)KYB

)
− ρ

2

∥∥ (K1/2
X A)⊤(K

1/2
Y B)

∥∥2
F
. (108)

Let

A′ := A⊤K
1/2
X ∈ Rr×n, B′ := B⊤K

1/2
Y ∈ Rr×n, M := K

1/2
X S(γ)K

1/2
Y ∈ Rn×n. (109)

Then equation 108 rewrites

max
A′,B′

tr(A′MB′⊤)− ρ

2
∥A′⊤B′∥2F . (110)

If M = UΣV ⊤ is an SVD and Mr =
∑r

i=1 σiuiv
⊤
i its best rank-r approximation by

Eckart–Young–Mirsky theorem, then all maximizers satisfy the relation

(A′)⊤B′ =
1

ρ
Mr ⇐⇒ AB⊤ =

1

ρ
K

−1/2
X MrK

−1/2
Y . (111)

(If KX or KY is singular, replace inverse square roots by Moore–Penrose pseudo–inverse square
roots.)

Proof. Insert K1/2
X K

1/2
X = KX and K1/2

Y K
1/2
Y = KY into the trace term and set A′ = A⊤K

1/2
X ,

B′ = B⊤K
1/2
Y , M = K

1/2
X S(γ)K

1/2
Y , to obtain

tr
(
A⊤KXS(γ)KYB

)
− (ρ/2)

∥∥ (K1/2
X A)⊤(K

1/2
Y B)

∥∥2
F

(112)

= tr
(
A⊤K

1
2

XK
1
2

XS(γ)K
1
2

YK
1
2

Y B
)
− (ρ/2)

∥∥ (A⊤K
1/2
X )⊤(B⊤K

1/2
Y )

∥∥2
F

(113)

= tr
(
A′MB′⊤)− (ρ/2)

∥∥A′⊤B′ ∥∥2
F

(114)

Now same as steps in proof of Theorem8, complete the square in A′⊤B′ to see that the maximizer
aligns the column spaces of A′, B′ with the top singular vectors of M , yielding A′⊤B′ = ρ−1Mr.
Undo the change of variables to get equation 111.
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By Theorem 8, the optimal solution satisfies{
(A,B) : A′⊤B′ =

1

ρ
Mr(γ)

}
(115){

(A,B) : (A⊤K
1
2

X)⊤(B⊤K
1
2

Y ) =
1

ρ
K

1
2

XS(γ)K
1
2

Y

}
(116){

(A,B) : K
1
2

XAB
⊤K

1
2

Y =
1

ρ
K

1
2

XS(γ)K
1
2

Y

}
(117){

(A,B) : AB⊤ =
1

ρ
K

− 1
2

X K
1
2

XS(γ)K
1
2

YK
− 1

2

Y

}
(118)

If KX or KY is singular, use Moore–Penrose pseudoinverses K+1/2
X , K+1/2

Y .

One explicit optimal choice is A⋆ = K
−1/2
X Ur and B⋆ = K

−1/2
Y Vr Σr/ρ, where Ur = [u1, . . . , ur],

Vr = [v1, . . . , vr], Σr = diag(σ1, . . . , σr) are SVD of M .

Corollary 14 (Kernel inference (out-of-sample)). Let D = {(xi,yi)}ni=1 be the reference batch used
to build contrastive similarity S(γ) and let k be an positive-definite kernel. For a new pair (x∗, y∗),
set κX(x∗) = [kX(x1, x

∗), . . . , kX(xn, x
∗)]⊤ and κY (y∗) = [kY (y1, y

∗), . . . , kY (yn, y
∗)]⊤. With

an optimal (A⋆, B⋆) from Theorem 9,

fθ1(x
∗) = (A⋆)⊤κX(x∗), fθ2(y

∗) = (B⋆)⊤κY (y
∗), (119)

and the similarity

s(x∗,y∗) =
κX(x∗)⊤A⋆B⋆⊤κY (y

∗)

∥A⋆⊤κX(x∗)∥2∥B⋆⊤κY (y∗)∥2
(120)

C IMPLEMENTATION

The complete code for all experiments will be made publicly available on GitHub.

C.1 COMPUTATION OF S(γ)

In this section, we provide the PyTorch implementation of the contrastive similarity weight matrix
S(γ) computation used in UniCon. The function below computes the matrix S(γ) in one-to-one
paired settings, and a generalized many-to-many settings, where similarity values sij are used to form
the weighting terms γij . We have also provided a complete pseudocode outlining the training pipeline
of UniCon in Algorithm 1 2, which offers a step-by-step description of our method’s implementation
to facilitate reproducibility and deeper understanding.

Algorithm Discussion. In UniCon, our efficiency claim refers to the rapid stabilization of the
mapping ((A,B)) parameters toward the desired alignment subspace through derived-form spectral
updates, which bypass many small gradient steps. Specifically, we reformulate the minimization
of the contrastive loss as an equivalent maximization problem, using the proposed contrastive
similarity matrix S(γ). We will state in the unified nonlinear form, as the notations can be reduced
to linear case as analysis in Section 3.3. The general objective is max tr(ATKXS(γ)KYB) −
ρ
2 ||(K

1/2
X A)T (K

1/2
Y B)||2F . The optimal solutions satisfy ABT = 1

ρK
−1/2
X [K

1/2
X S(γ)K

1/2
Y ]rK

−1/2
Y

where [·]r denotes the best rank-r approximation. Note that S(γ) is itself a function of (A,B).
Therefore, the overall optimization becomes a fixed-point problem. We solve it via an iterative
procedure, such as,

A(t+1), B(t+1) ← 1
ρK

−1/2
X [K

1/2
X S(γ;A(t), B(t))K

1/2
Y ]rK

−1/2
Y .

In this process, we observe rapid convergence of (A,B) to a stable solution. This rapid stabilization,
subspace convergence, is what we refer to as efficiency.
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1 def compute_S_gamma(
2 s, data1_batch, data2_batch,
3 tau=1.0, nu=0.1,
4 psi=torch.exp, phi=torch.log1p,
5 epsilon_ij=1, epsilon_ii=1,
6 diff_psi=torch.exp,
7 diff_phi=lambda x, eps=1e-8: 1.0 / (1.0 + x + eps)
8 ):
9 n = data1_batch.size(0)

10

11 # Build epsilon mask for weighting
12 epsilon = epsilon_ii * torch.eye(n, device=s.device)
13 epsilon += epsilon_ij * (1 - torch.eye(n, device=s.device))
14

15 # Row-wise similarity terms: s_ij - nu * s_ii
16 s_diag_row = torch.diag(s).unsqueeze(1).expand(-1, n)
17 s_nu_row = s - nu * s_diag_row
18 psi_terms = psi(s_nu_row)
19 sum_psi_terms = torch.sum(epsilon * psi_terms, dim=1, keepdim=True)
20 diff_phi_terms = diff_phi(sum_psi_terms)
21 diff_psi_terms = diff_psi(s_nu_row)
22 alpha = epsilon * diff_phi_terms * diff_psi_terms
23

24 # Column-wise similarity terms: s_ji - nu * s_ii
25 s_diag_col = torch.diag(s).expand(n, n)
26 s_nu_col = s - nu * s_diag_col
27 psi_terms_bar = psi(s_nu_col)
28 sum_psi_terms_bar = torch.sum(epsilon * psi_terms_bar.T, dim=1,

keepdim=True)
29 diff_phi_terms_bar = diff_phi(sum_psi_terms_bar)
30 diff_psi_terms_bar = diff_psi(s_nu_col.T)
31 alpha_bar = epsilon * diff_phi_terms_bar * diff_psi_terms_bar
32

33 # Compute beta weights
34 gamma_ij = (alpha + alpha_bar.t()) / 2
35 gamma_i = nu * torch.sum((alpha + alpha_bar) / 2, dim=1) - torch.diag

(alpha + alpha_bar) / 2
36

37

38 S_gamma = -gamma_ij / n
39 S_gamma[range(n), range(n)] = gamma_i / n
40

41 return S_gamma

Listing 1: Contrastive Smilarity Weight Matrix Computation (one-to-one case)

1 def compute_S_gamma_generalized(s, pos_mask, normalized_data1_batch,
normalized_data2_batch, nu=1.5, tau=1.0,psi=torch.exp, phi=torch.
log1p, epsilon_ij=1, epsilon_ii=1, diff_psi=torch.exp, diff_phi=
lambda x, eps=1e-8: 1.0 / (1.0 + x + eps)):

2 n = s.shape[0]
3 device = s.device
4

5 # Create epsilon matrix
6 epsilon = torch.ones(n, n, device=device) * epsilon_ij
7 epsilon.fill_diagonal_(epsilon_ii)
8

9 # Create masks
10 neg_mask_base = ~pos_mask
11

12 # Expand tensors for broadcasting: (n, n, n) where dim 0 is i, dim 1
is j, dim 2 is m

13 s_i_m = s.unsqueeze(1).expand(n, n, n) # s[i,m]
14 s_i_j = s.unsqueeze(2).expand(n, n, n) # s[i,j]
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15 epsilon_i_m = epsilon.unsqueeze(1).expand(n, n, n) # epsilon[i,m]
16 mask_not_i = neg_mask_base.unsqueeze(1).expand(n, n, n) # mask for m

[i]
17 # Compute psi terms: epsilon[i,m] * psi(s[i,m] - nu * s[i,j])
18 psi_terms = epsilon_i_m * psi(s_i_m - nu * s_i_j) * mask_not_i
19 sum_psi = psi_terms.sum(dim=2) # (n, n), sum over m
20 # Compute diff_psi terms
21 diff_psi_terms = epsilon_i_m * diff_psi(s_i_m - nu * s_i_j) *

mask_not_i
22 sum_diff_psi = diff_psi_terms.sum(dim=2) # (n, n)
23 # Phi arguments
24 phi_args = epsilon * psi((1 - nu) * s) + sum_psi # (n, n)
25 # Alpha for positive samples
26 alpha_pos = diff_phi(phi_args) * (
27 epsilon * diff_psi((1 - nu) * s) * (1 - nu) - nu * sum_diff_psi
28 )
29

30 diff_phi_i_k = diff_phi(phi_args).unsqueeze(1).expand(n, n, n)
31 alpha_neg_k = diff_phi_i_k * (epsilon * diff_psi(s_i_j - nu * s_i_m))
32 pos_mask_k = pos_mask.unsqueeze(1).expand(n, n, n)
33 alpha_neg = (alpha_neg_k * pos_mask_k).sum(dim=2)
34

35 # For alpha_bar positive samples
36 s_m_i = s.T.unsqueeze(1).expand(n, n, n) # s[m,i]
37 s_j_i = s.T.unsqueeze(2).expand(n, n, n) # s[j,i]
38 epsilon_m_i = epsilon.T.unsqueeze(1).expand(n, n, n) # epsilon[m,i]
39 # Compute psi terms for alpha_bar
40 psi_terms_bar = epsilon_m_i * psi(s_m_i - nu * s_j_i) * mask_not_i
41 sum_psi_bar = psi_terms_bar.sum(dim=2) # (n, n), sum over m
42 # Compute diff_psi terms for alpha_bar (no epsilon in second sum)
43 diff_psi_terms_bar = diff_psi(s_m_i - nu * s_j_i) * mask_not_i
44 sum_diff_psi_bar = diff_psi_terms_bar.sum(dim=2) # (n, n)
45 # Phi arguments for alpha_bar
46 phi_args_bar = epsilon.T * psi((1 - nu) * s.T) + sum_psi_bar # (n, n

)
47 # Alpha_bar for positive samples
48 alpha_bar_pos = diff_phi(phi_args_bar) * (
49 epsilon.T * diff_psi((1 - nu) * s.T) * (1 - nu) - nu *

sum_diff_psi_bar
50 )
51

52 diff_phi_i_k = diff_phi(phi_args_bar).unsqueeze(1).expand(n, n, n)
53 alpha_bar_neg_k = diff_phi_i_k * (epsilon.T * diff_psi(s_j_i - nu *

s_m_i))
54 pos_mask_k = pos_mask.unsqueeze(1).expand(n, n, n)
55 alpha_bar_neg = (alpha_bar_neg_k * pos_mask_k).sum(dim=2)
56

57 # ========== Combine positive and negative samples ==========
58 alpha = torch.where(pos_mask, alpha_pos, alpha_neg)
59 alpha_bar = torch.where(pos_mask, alpha_bar_pos, alpha_bar_neg)
60

61 pos_mask_row_sum = pos_mask.sum(dim=1)
62 pos_mask_col_sum = pos_mask.sum(dim=0)
63 pos_mask_row_sum_expanded = pos_mask_row_sum.unsqueeze(1).expand(n, n

)
64 pos_mask_col_sum_expanded = pos_mask_col_sum.unsqueeze(0).expand(n, n

)
65

66 gamma = alpha / pos_mask_row_sum_expanded + alpha_bar.T /
pos_mask_col_sum_expanded

67

68 C_n = n # Normalization constant
69 S_gamma = normalized_data1_batch.T @ gamma @ normalized_data2_batch
70

71 return -S_gamma
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Listing 2: Contrastive Similarity Weight Matrix Computation (generalized, support many-to-many
matching)

Algorithm 1 Training Pipeline for Linear Case

Require: Initial F 0
1 , F

0
2 , dataset {(Xi, Yi)}Ni=1

Ensure: Trained F1 and F2

1: Initialize F1 ← F 0
1 , F2 ← F 0

2
2: while not converged do
3: (F⊤

1 F2)_sum← 0 {accumulator for batch-wise F⊤
1 F2}

4: for each batch (Xi, Yi) do
5: similarity← (F1Xi)

⊤(F2Yi)
6: S(γ)← compute_S_gamma(similarity, Xi, Yi)
7: (F⊤

1 F2)i ← 1
ρXiS(γ)Y

⊤
i

8: weighti ← validation((F⊤
1 F2)i)

9: (F⊤
1 F2)_sum← (F⊤

1 F2)_sum + (F⊤
1 F2)

⊤
i · weighti

10: end for
11: Update F1, F2 based on aggregated (F⊤

1 F2)_sum
12: decompose F1 and F2

13: end while=0

Algorithm 2 Training Pipeline for Nonlinear Case

Require: Initial A0, B0, dataset {(Xi, Yi)}Ni=1
Ensure: Trained A and B

1: Initialize A← A0, B ← B0

2: while not converged do
3: AB_sum← 0 {accumulator for batch-wise AB⊤}
4: for each batch (Xi, Yi) do
5: KXi ,KYi ← kernel matrices of Xi, Yi
6: similarity← (A⊤KXi)

⊤(B⊤KYi)
7: S(γ)← compute_S_gamma(similarity, Xi, Yi)

8: (AB⊤)i ← 1
ρK

−1/2
Xi

[
K

1/2
Xi

S(γ;A(t), B(t))K
1/2
Yi

]
r
K

−1/2
Yi

9: weighti ← validation((AB⊤)i)
10: AB_sum← AB_sum + (AB⊤)i · weighti
11: end for
12: Update A,B based on aggregated AB_sum
13: decompose A and B
14: end while=0

C.2 EXPERIMENT DETAILS AND CONVERGENCE VISUALIZATIONS

We present additional plots to illustrate the convergence behavior of the SGD-CLIP baseline across
three experimental settings: synthetic latent factor models, unimodal image clustering, and multimodal
image–text retrieval.

These visualizations confirm that our reported SGD-CLIP performance is after sufficient training,
providing a fair comparison against our proposed Unicon method. While SGD-CLIP ultimately
achieves high accuracy, it requires many iterations to converge—underscoring the computational
inefficiency of iterative optimization when compared to the efficient closed form update of Unicon.

Synthetic Setting: Linear Latent-Factor Model. We generate synthetic data from latent vectors
z ∈ Rr that are sampled around K = 3 cluster centers in latent space.
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The observed pairs (x,y) are linearly projected from z using orthogonal matrices, followed by
additive Gaussian noise:

x = U1z+ ξ1, y = U2z+ ξ2. (121)

Here, U1 ∈ Rd1×r and U2 ∈ Rd2×r are orthogonal projections sampled from the Haar measure on
Od1

and Od2
respectively, with d1 = 40, d2 = 30, r = 10. Noise vectors ξ1, ξ2 are sampled from

N (0, SNR2), with SNR = 0.3. Each of theN = 600 training samples is drawn from one ofK = 3
clusters in latent space. Figure C1 shows the accuracy score of SGD-CLIP method converges across
training epochs.

Synthetic Setting: Nonlinear Latent-Factor Model. We further evaluate the method under a
nonlinear transformation of the latent space:

x = tanh(U1z + ξ1), y = tanh(U2z + ξ2), (122)
where U1, U2 are again uniformly sampled from orthogonal groups Od1

and Od2
, taking the first r

columns. The additive Gaussian noise is drawn from N (0, SNR2) with SNR = 0.3.

(a) Linear latent factor model (b) Nonlinear latent factor model

Figure C1: Convergence of SGD-CLIP. Training accuracy over epochs for linear and nonlinear
synthetic settings.

Unimodal Classification (CIFAR-10). Figure C2 reports the training loss of SGD-CLIP in the
CIFAR-10 image clustering task.

Figure C2: Training loss of SGD-CLIP on CIFAR-10. Unimodal image clustering task with frozen
ResNet-18 features.

Multimodal Retrieval. On Flickr30K, we shuffle the dataset into to 25426 (80%), 3178 (10%), and
3179(10%), for train/validation/test. Every image x and text y is embedded once with a) ResNet-18
(He et al., 2016) for images + Sentence-BERT (all-mpnet-base-v2) (Reimers & Gurevych,
2019); b) ResNet-50 + Sentence-BERT; c) the CLIP ViT-B/32 model for visual-textual feature
extraction as frozen backbone. Matching is performed in a shared embedding space of dimension
r = 128 with τ = 1. SGD-CLIP runs for 50 epochs, and run-time is measured wall-clock. Figure C3
shows loss curves for SGD-CLIP trained on Flickr30K across three backbones: ResNet-18, ResNet-
50, and CLIP ViT-B/32. Despite faster convergence with stronger backbones, all variants require
many epochs to reach stable loss values, whereas UniCon completes alignment more efficiently.

On MSCOCO, we follow the standard retrieval protocol on MSCOCO. The training set contains
82,783 images, each paired with 5 human captions. We validate on 40,504 image–text pairs and
report test results on 5,000 held-out pairs. We report Recall@1 and Recall@10 for both directions.
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(a) ResNet-18 + SBERT (b) ResNet-50 + SBERT (c) CLIP ViT-B/32

Figure C3: Training loss of SGD-CLIP on Flickr30K. Loss curves for three backbone architectures
in multimodal alignment.

To further ensure sufficiency of training, we re-evaluated validation accuracies on MSCOCO with
backbone Resnet 50 + SBERT in FigureC4: it even begin to decline after the peak, suggesting
potential overfitting with additional training. Specifically, on MSCOCO, we trained SGD for 1000
epochs and observed that the best validation performance is already reached around epoch 300.
Beyond this point, the model does not improve further. For comparison, we extended UniCon to 20
iterations across all batches. We observed that model norms stabilize after just 2 iterations, with only
minimal fluctuations thereafter.

Table 3: Image-text retrieval on MSCOCO. We report Recall@1 and Recall@10 for both
image→text and text→image directions. UniCon achieves superior accuracy to SGD–CLIP with
∼96–461× faster training.

Backbone Method Train time Image→Text Text→Image Average

R@1 R@10 R@1 R@10 R@1 R@10

RN-50 + SBERT SGD–CLIP 5121.72 s .053 .253 .060 .286 .057 .270
UniCon 11.11 s .105 .388 .129 .439 .117 .414

CLIP ViT-B/32 SGD–CLIP 1066.60 s .128 .415 .123 .427 .126 .421
UniCon 11.15 s .329 .685 .292 .644 .311 .665

Table 4: Zero-shot image–text retrieval on FLICKR30K (trained on MSCOCO, no fine-tuning).
We report Recall@5 and Recall@10 for both directions; higher is better.

Backbone R@5 R@10

I→T T→I Avg I→T T→I Avg

RN-50 + SBERT .171 .249 .210 .261 .353 .307
CLIP ViT-B/32 .808 .766 .787 .879 .848 .863

C.3 SENSITIVITY ANALYSIS

Robustness to batch size. We discuss that the batch size n does not significantly affect the
total model performance. We extensively evaluated the effect of batch sizes on all the experiment
settings, showing robustness of UniCon to batch size variations. For multimodal alignment, we
experimented retrieval task using Flickr30k and MSCOCO varying the batch size across [100, 500,
1000, 10000, 20000]. For unimodal alignment, we experimented clustering using CIFAR-10 with
batch size [200,300,400]. We observed that performance metrics remained nearly identical across
these ranges. Importantly, the retrieval performance was robust to batch size variations, which implies
data efficiency.
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(a) Loss (b) Validation Accuracy

Figure C4: Training loss and validation accuracy of SGD-CLIP on MSCOCO trained for 1000 epochs
to check convergence.

Batch aggregation strategy To reduce memory and computation overhead, we adopt a batch-wise
training strategy. We evaluate several strategies to aggregate multiple batch-level models into a global
predictor, including:

• Accuracy-weighted fusion: Normalize validation accuracies ai to weights wi =
ai∑
i ai

and
linearly combine predictions.

• Softmax-accuracy weighted fusion: Apply a softmax over {ai} to smooth weights.

• Majority voting: Select the most frequent prediction across batch models.

From our experiments on both unimodal and multimodal settings, we observe that different aggrega-
tion strategies yield similar performance, with variations within a 1–2% gap. Its performance under
extremely biased or imbalanced data distributions remains an open question.

We also evaluate the impact of statistical differences between training batches on CIFAR-10. For
each batch, we form paired inputs data1 and data2 under two settings: (1) Random: For each sample
pair, we independently sample classes for data1 and data2, then select an image from each chosen
class. This independent sampling creates varying class distributions across batches and introduces
inter-batch differences. (2) Balanced: We iterate through all 10 classes within per batch, sampling
two images per class for data1 and data2, ensuring balanced and identical class distributions within
and across batches. From our experiments on unimodal settings on CIFAR10, we find that the random
and balanced sampling strategies yield similar performance, with differences within 1–2%.

C.4 NUMERICAL STABILIZATION FOR SPECTRAL UPDATES IN UNICON

Stabilized SVD. We analyze the numerical profile of C(γ) ∈ Rd1×d2 . On large, high–dimensional
tasks, the raw C(γ) often exhibits rapid spectral decay, small singular–value gaps, and large effective
condition numbers. To stabilize the closed–form spectral step, we tested the following techniques:

• Tikhonov regularization. Add λId1
to C(γ) to improve conditioning and stabilize SVD.

• Randomized SVD with power iterations (Halko et al., 2011). Use randomized SVD with
power iterations to efficiently extract the top-r components.

• Unit–hypersphere normalization. Before forming similarities/covariances, project embed-
dings onto the unit sphere, matching the contrastive geometry.

• Symmetric case (unimodal). When a unimodal subproblem reduces to estimating a sym-
metric target (e.g. solving F⊤F in a single modality), use the symmetrized and ridge–shifted
matrixand then apply eigendecomposition.

On the large–scale MSCOCO retrieval benchmark, we compare a baseline that uses a plain truncated
SVD on C(γ) against our stabilized pipeline above. The latter yields higher recall with negligible
overhead.
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Table 5: Effect of stabilization on MSCOCO (image–text retrieval). Stabilized SVD = regulariza-
tion + randomized SVD (with power iterations) + unit-sphere normalization.

SVD method Train time (s) R@1 R@5 R@10

Standard truncated SVD 32.47 0.2235 0.4486 0.5649
Stabilized SVD (UniCon) 33.28 0.2601 0.4990 0.6149

C.5 PLUG AND PLAY

Theoretically, contrastive alignment is fundamentally a rank-r spectral structure discovery problem
(Section 3), which gives us intuition that we don’t need massive datasets to find the principal axes,
we only need massive datasets to fill in the fine-grained details.

Empirically, on MSCOCO, we observe that using only 200 images (0.24% of the dataset), (with each
image paired with 5 captions), already yields 66.45% avg R@10, indicating data efficiency. And
from this perspective, UniCon has potential to serve as a fast warm-start initializer for large-scale
multimodal models, which has been mentioned in Section 5.

This suggests that UniCon has potential to be used as a warm-start initializer for large-scale contrastive
models, reducing both optimization time and data requirements.

Plug and play. We state the potential hybrid spectral-SGD strategy in principle as follows, where
UniCon can serve as plug-and-play module. Update with momentum at starting of each batch:
Ŝ ← (1− α)Ŝ + α Ŝ(b), then refined by SGD. Figure C5 compared convergence of CLIP loss with
different α.

Figure C5: Comparison of α = 0.1, 0.5, 0.9

C.6 EXPERIMENTS WITH OTHER MODALITIES

To further substantiate the general applicability of our approach with other complex modalities,
we additionally evaluate UniCon on an audio text alignment task using the Clotho datasetDrossos
et al. (2019). In this experiment, we use pre-trained CLIP and Wav2CLIPWu et al. (2022) encoders
to extract features from text and audio inputs respectively, followed by a linear projection layer
for cross-modal alignment. The results show that without explicit alignment, the original feature
structures exhibit a significant modality gap, while both UniCon and SGD achieve comparable and
effective alignment performance after training. This additional experiment provides further evidence
of our method’s effectiveness in diverse modality alignment scenarios.

We believe this experiment with different modalities provide further support for UniCon’s scalability
and robustness.
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Table 6: Audio-Text Alignment Results on the Clotho Dataset.

Method R@1 a2t R@1 t2a R@5 a2t R@5 t2a R@10 a2t R@10 t2a Time

No alignment 0.0010 0.0000 0.0048 0.0029 0.0096 0.0096 0s
UniCon 0.0335 0.0249 0.1311 0.1110 0.1943 0.1789 13.45s
SGD-CLIP 0.0373 0.0278 0.1244 0.1139 0.1923 0.2077 347.48s

C.7 KERNEL

Why kernel? The kernel-based formulation is essential in nonlinear contrastive alignment, as
it enables an implicit mapping of feature representations into (potentially infinite-dimensional)
Reproducing Kernel Hilbert Spaces (RKHS). This implicit lifting significantly enhances expressivity,
allowing UniCon to capture complex cross-modal relationships that cannot be represented by linear
projections alone, without explicitly constructing high-dimensional coordinates. Moreover, the
kernel mapping effectively unfolds nonlinear manifolds (e.g., spherical or curved distributions) into
a linearized feature space, where the spectral alignment mechanism can operate directly via rank-r
approximation.

Why Angular Kernel? We adopt angular kernels because features are normalized on the unit
hypersphere, which is an effective practice in contrastive learning. Prior work(Wang et al., 2017) has
shown that learning representations on the hypersphere leads to better performance than in Euclidean
space, as it avoids the conflicting forces between attractive and repulsive gradients. Angular kernels
are particularly well-suited for this geometry: they are theoretically sound, and simple to implement.
In our view, this simplicity is not a limitation but an advantage. For comparison, we also experimented
with the RBF kernel. The results confirmed our hypothesis: angular kernels consistently outperform
RBF when embeddings lie on the hypersphere. It still worth to explore kernel approximation methods
for memory efficient computation.

Kernel Selection Study. To further demonstrate the impact of kernel choice on alignment perfor-
mance, we have included an empirical study in Table 7. The results below show the performance
variance across different kernel types:

Table 7: Ablation study on kernel selection. Results demonstrate that kernels with stronger geometric
expressivity (e.g., Angular and Arc-Cosine) yield superior alignment performance.

Kernel Type Synthetic Accuracy CIFAR-10 Accuracy
RBF .56 .11
Matérn .73 .44
Cosine .81 .63
Exponential Cosine .73 .63
Arc-Cosine .85 .63
Angular .86 .63

Results in Table 7 highlight that the kernel choice plays a crucial role in capturing nonlinear relation-
ships, validating the importance of the kernelized UniCon formulation.

C.8 LOSS VARIATIONS

Support for Non-Smooth Losses (e.g., Triplet Loss). Our generalized contrastive loss formulation
accommodates both smooth and non-smooth cases. For losses such as the hinge-based triplet
loss, classical gradients are not defined everywhere, yet their optimization is well-defined using
Clarke subgradients. The rank-r spectral characterization of UniCon still applies in this generalized
subdifferential setting. To support this, we performed a synthetic nonlinear experiment (same setup
as Sec. 4.1, replacing CLIP loss with triplet loss), where UniCon achieved 90% alignment accuracy,
confirming its compatibility with margin-based losses.
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Sigmoid-based Contrastive Losses. We further evaluate UniCon under the Sigmoid contrastive loss
used in SigLIP(Zhai et al., 2023). The results show that UniCon achieves performance comparable to
SGD–SigLIP, demonstrating that UniCon is not limited to softmax-based contrastive objectives.

Method I2T R@1 T2I R@1 I2T R@5 T2I R@5 I2T R@10 T2I R@10
UniCon (SigLIP) 0.3340 0.2862 0.5816 0.5334 0.6852 0.6394
SGD–SigLIP 0.2852 0.2816 0.5610 0.5538 0.6924 0.6704

Table 8: Comparison of UniCon and SGD–SigLIP under Sigmoid contrastive loss.

34


	Introduction
	Background
	Methodology
	Linear representation setting
	Kernelized representation setting
	Unified Spectral View (Linear as a Special Case of Kernel)
	Scalable training

	Experiments
	Synthetic data
	Image-Image Alignment on CIFAR-10 (unimodal)
	Image–text retrieval and zero-shot transfer (multimodal)

	Discussion
	Contrastive Loss
	Theoretical Proofs
	Linear Representation Setting
	Kernelized contrastive alignment

	Implementation
	Computation of S()
	Experiment details and Convergence visualizations
	Sensitivity Analysis
	Numerical stabilization for spectral updates in UniCon
	Plug and play
	Experiments with other modalities
	Kernel
	Loss Variations


