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ABSTRACT

Contrastive objectives power state-of-the-art multimodal models, but their training
remains slow, relying on long stochastic optimization. We propose a Unified
Framework for Efficient Contrastive Alignment via Kernels (UniCon), which spans
linear and nonlinear encoders as well as one-to-one and many-to-many alignments.
At its core, UniCon introduces the contrastive similarity weight matrix S(7),
which enables closed-form global solutions that provably replace minibatch back-
propagation with exact updates. Through the lens of reproducing kernel Hilbert
spaces (RKHS), UniCon provides a kernelized perspective that unifies contrastive
alignment and reveals its connection to spectral methods. To validate the theory,
we conduct experiments on synthetic, unimodal, multimodal, and zero-shot tasks,
demonstrating that UniCon achieves substantial efficiency gains while preserving
generality and strong empirical performance.

1 INTRODUCTION

Learning semantically aligned representations across different modalities, such as vision and language,
has long been a central goal in machine learning (Ngiam et al., 2011} |Srivastava & Salakhutdinov,
2012)). In particular, Multimodal Contrastive Learning (MMCL)(Huang et al., [2024) has recently
achieved remarkable success in zero-shot classification (Radford et al., 2021 Jia et al., 2021)), cross-
modal retrieval (Mu et al.| 2022} |Goel et al., [2022)), and general visual understanding (Suris et al.|
2023} [Lin et al.,2023)). These models typically train modality-specific encoders, e.g., a vision encoder
and a language encoder, such that paired inputs are mapped to nearby representations in a shared space,
while unpaired inputs are mapped far apart. At the heart of MMCL lies contrastive representation
learning (Chopra et al., 2005} |Gutmann & Hyvirinen, 2010; |Sohn|, 20165 |Oord et al., [2018}; |Chen
et al., [2020; Radford et al.,[2021]). Its versatility has made it a core component across diverse domains,
including NLP (Gao et al., 2022} [Izacard et al.,[2021)), bioimaging (Sanchez-Fernandez et al., 2023}
Taleb et al.| 2022} |[Han et al.| 2022)), recommendation (Xie et al., [2022; [Yu et al., 2023} Jing et al.}
2023} |Yang et al.l 2023), and graph learning (Kipf et al., 2019; You et al.l 2020). The typical pipeline
involves feature extraction via deep encoders and the optimization of contrastive loss.

Despite the impressive empirical performance of contrastive learning across vision, language, and
multimodal domains, the theoretical foundations underlying its success remain only partially under-
stood. There are works on the analysis of loss and training dynamics(Wang & Liu, [2021} [Tian} 2022
HaoChen & Ma, [2022), provably guarantee of the model generalization (HaoChen et al., 2021} |2022;
Tosh et al.L[2021}; |Parulekar et al., [2023]), duality between contrastive and non-contrastive method(Tian
et al.,2021; |Balestriero & LeCunl[2022). A growing body of theoretical work has sought to formalize
contrastive learning (Saunshi et al.,|2019; Tian et al., [2021; Jing et al.| 2021;|Wen & Li, [2021)), often
by simplifying the problem to single-modality settings. Recent advancements in contrastive learning
have introduced novel loss functions and analytical frameworks to enhance representation quality
and training efficiency.(Xu et al.l 2023} Wang et al.l 2024} Schuhmann et al., 2022)). Analytical
studies have examined contrastive learning from different perspectives. For example, [Shi et al.
(2024)) interpret the CLIP loss through the lens of optimal transport; while [Tian| (2022); Nakada
et al.| (2023) analyze multimodal contrastive learning using SVD- and PCA-based formulations,
showing that, under linear encoders, contrastive loss minimization reduces to calculating a weighted
covariance matrix. Yet, this insight has not been translated into nonlinear encoder settings and
practical implementations.
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We introduce UniCon, a Unified Framework for Efficient Contrastive Alignment via Kernels, which
leverages a structured contrastive similarity weight matrix S(-y) to directly solve contrastive objectives.
As illustrated in Figure[T] UniCon departs from gradient-based training and instead: (i) in the linear
setting(Nakada et al.} [2023), solves a single spectral decomposition yielding optimal encoder matrices
in closed form (ii) in a general nonlinear setting, provides a unified kernelized framework that enables
fast alignment via implicit representation inference.

Our key contributions are as follows:

* Theoretically, we provide a kernel-based perspective that unifies linear and nonlinear en-
coders, showing that minimizing contrastive loss is equivalent to a spectral update. This
leads to a provably optimal solution in closed form and connects contrastive learning to
spectral methods.

* Beyond one-to-one matching, our framework generalizes to many-to-many alignment,
broadening the applicability of contrastive alignment.

* Empirically, we demonstrate that UniCon converges fast and achieves competitive
or superior performance across synthetic, unimodal (CIFAR-10), and multimodal
(Flickr30k,MSCOCO) and zero-shot transfer (image-text retrieval), offering up to 461x
speed-up over minimizing CLIP loss by stochastic gradient descent.
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Figure 1: Unified Framework for Efficient Contrastive Alignment via Kernels (UniCon). Starting
from paired inputs, UniCon builds a contrastive similarity weight matrix S(-y) using hyper-spherical
similarities, then computes either (i) a closed-form spectral update in the linear case (orange) or (ii) a
kernelized solution in the nonlinear case (blue).

2 BACKGROUND

Contrastive Representation. Contrastive learning (Chopra et al., 2005} [Gutmann & Hyvérinen
2010; [Sohn|, 2016}, [Oord et al, 2018}, [Chen et al., [2020; Radford et al., 2021)) leverages paired
inputs as a form of supervision. The central goal is to learn a representation space where positive
(matching) pairs are mapped to nearby embeddings, while negative (non-matching) pairs are pushed
apart. Learning representations on the hypersphere leads to better performance than in Euclidean
space(Wang et al| [2017), as it avoids conflicting forces between attractive and repulsive gradients.
(Wang & Isolal [2020) further shows that the distribution of representations on the unit hypersphere is
encouraged to be uniform.

Contrastive Loss Contrastive loss (Hadsell et al[2006) was first proposed in Siamese networks
to pull together positive pairs and push apart negatives. The formulation was later unified under
the InfoNCE loss 2018)), which serves as the basis for many self-supervised methods,

including SimCLR (Chen et al.,[2020). Supervised Contrastive (SupCon) loss (Khosla et al., [2020)
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extended contrastive learning to the supervised setting, where each anchor can have multiple positive
samples from the same class. Building on the general family of contrastive losses introduced by (Tian,
2022), (Nakada et al.,|2023) showed that these multimodal contrastive objectives can be connected to
singular value decomposition (SVD) under linear setting.

Kernel Method Given a positive finite measure u over a parameter space ©, we define a kernel
k:XxX — Rbyk(z,2) = (¢(x;0), (& = Jo o( ¢(Z;6) dp(0), which induces a
Reproducing Kernel Hilbert Space (RKHS). Any functlon fin thls space admits the representation
flx) = ZT:I w; k(x,z;), w; € R. Kernels are commonly used to learn representations (Kornblith
et al., [2019; Klabunde et al., [2025)), as they capture the relative structure among samples, critical for
many learning algorithms (Aronszajn, |1950; Hofmann et al., 2008; Miiller et al., [2018};|Gong et al.,
2025)).

3 METHODOLOGY

We observe N paired samples {(x;,y;)}Y,, where x; € R% and y; € R9. The objective of
contrastive learning is to learn encoders fp, : R% — R" and fy, : R% — R" with modality-specific
parameters 6, and 65, such that paired inputs are mapped to similar representations in a shared 7-
dimensional embedding space, while non-paired inputs remain dissimilar.

In the sections that follow, we first formalize the general contrastive learning framework, then analyze
it under a linear representation setting, and finally unify our analysis spanning nonlinear encoders in
RKHS. The proof can be found in the Appendix B}

Definition 1 (Hyper-spherical similarity). Define the similarity between x; and y; as the inner
product on the hyper-sphere:

ey
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Definition 2 (Generalized contrastive loss). Given N paired samples {(x;,y:)}X_,, we write the
similarity matrix [s;;]. With ¢,v : R — Ry monotonically increasing, scaling factor v > 1, and
weights €;; € [0, 1], the bidirectional general contrastive loss is
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where P, (i) denotes the index set of all samples in {yz} paired with x; while P, (j) denotes the index
set of all samples in {x;} paired with y;. |Py(t)| is the cardinality of the set P,(i); and R is an
optional regularizer.

This formulation naturally extends from one-to-one alignment (Tian, [2022)) to many-to-many align-
ment: for example, a single image may correspond to multiple valid captions, and data augmentation
can be viewed as creating diverse positive pairs. The scaling factor v > 1 adjusts the relative
influence of positive pairs, while ¢;; > 0 controls which pairs contribute to the loss (often ¢;; = 1
for all negatives). The functions ¢ and 1) are typically convex and monotonic, shaping the loss for
optimization. By choosing specific forms for ¢/ and ¢, we can recover familiar losses. More detailed
examples can be found in Appendix [A]

Definition 3 (Contrastive similarity weight matrix). Consider the general contrastive loss L(61,02),

and a batch of paired samples {(x;,y;)}?,. Denote {e;}_, as the elementary basis vectors of R™.
The contrastive similarity weight is then deﬁned as:
S(y) = _lzl < Yii it > ciel, 3)
n 22\ " 12,0
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with weight coefficients

i = {Qb;j ) (ﬁij(l — )Y ((1 —v)siy) — I/ngpw(i) €imW' (Sim — I/Sij)> , ifj € Py(i) @
! > kep, (i) Pin - (€50 (sij — vsix)), ifj & Pu(i)
5= { bl - (eji({— Y (1= v)sji) = v 3 e, i) Emit (Smi — VSji)) , ifj € Py(i) )
T\ Sker, o) P - (65t (550 — vaw), ifj & Py(i)
where
¢y =0 (e((L=v)sig) + Y cm(sim — vsig)), (6)
mgP; (1)
Gy =¢' (€50 (1 — v)sji + Z Emi(Smi — V8ji))
mgP, (i)

The contrastive similarity weight matrix S() weighs pairwise interactions. We now show that
minimizing the contrastive loss is equivalent to maximizing a new objective function with the
constructed S(7).

Lemma 4 (Gradient equivalence). Consider minimizing the general contrastive loss (see Equation
[2), the gradient of the contrastive loss with respect to encoder parameters satisfies:

otr (Fo, (X)S(7)F, (Y
%:_ r( 0, (X)S(7) 92( )) +w7 — 0
y=7(01,02)
where
X = [Xl,"' aXn] c Rd1><n7Y — [y17"' 7YTL] c Rd2xn

]:91 (X) = [f91 (xl) T f91 (Xn)] € RTXTL7~F92(Y) = [f92(y1) f92(yn)] e R™™.

This result reveals that the gradient of the contrastive loss in Equation [2]is the negative of the gradient
of the proposed objective function in Equation[§] Hence, minimizing the contrastive loss is equivalent
to maximizing the objective with contrastive similarity weight matrix S(v):

tr (Fo, (X)S(7)Fg, (Y)) — R (61,02) . ®)

3.1 LINEAR REPRESENTATION SETTING

We first specialize the general framework to the linear representation case. Here the encoders
are parameterized as matrix multiplications: fy, (x) = Fix, f5,(y) = Fby, where F; € R™%,
F, € R"*% are learnable projection matrices.

Definition 5 (Weighted contrastive covariance). Define the weighted contrastive covariance as:
L1 v Vji T
C) = XSOYT =~ 305 (G + ity ) w) ©
w3\l ) <
with coefficients vy;; share the same definition with Definition E]

Remark 6. Note that the definition of C(vy) exactly matches the definition of S(B) in\Nakada et al.
(2023)) under one-to-one alignment setting, which is proved in details in Appendix[B.1| The structure
of C(v) captures positive and negative pairs relationships, weighted appropriately. Our expression
keeps the diagonal correction (o; + &5 ) /2 that prior work reduced to 1 by assuming that ¢ and v are
identity functions. This modification improves both theoretical generality and empirical performance.

Proposition 7. Under the linear setting, the Lemma|is specialized as

oL _ atr (Flc(’}/)FQT) + GR(Fl,Fg)

OF, oF, oF,
g § v=(F1,F2) F

ke {1,2} (10)

To solve the optimization problem induced by our reformulated objective, we characterize its maxi-
mizer in the linear setting. We arrive at the following theorem, which establishes that the convergence
of the contrastive loss can be replaced by a closed-form spectral update.
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Theorem 8 (Spectral characterization (Nakada et al.,[2023)). Consider minimizing the contrastive
loss function L (Fy, Fy), with R(Fy, Fy) = S||F{ Fs||%. Then,

. 2
argminl (Fy, Fy) = arg max tr (FlC('y)FQT) —(p/2) ||F1TF2HF (11)
Fy,Fa F1ERTXd1,F2€RTXd2
: 1o
={(F1, F) e RN xR FTFy = =) " oyu0] } (12)
P

where {0;,u;,v;}i_, are the top-r singular values and vectors of C(v) according to the
Eckart—Young—Mirsky theorem.

Consequently, in linear case, the global minimum is achieved by projecting the contrastive covariance
C() onto its top-r singular components. Thus, gradient descent on any loss in the contrastive family
(¢, 1) merely tracks the dominant singular subspace of C'(y). Our algorithm UniCon performs this
update in closed form, replacing thousands of SGD steps by one spectral factorization.

3.2 KERNELIZED REPRESENTATION SETTING

Why leave the linear world? The linear setting reveals a clean spectral structure for contrastive
alignment, but cross—modal relations (e.g., vision <> language) are typically nonlinear. Moreover,
with frozen or partially frozen pretrained encoders, the residual alignment is rarely captured by mere
linear heads. We therefore lift the analysis to nonlinear encoders while keeping the output space R”
shared across modalities. Kernelization provides a tractable route with explicit spectral solutions that
reduce to the linear case.

RKHS representation. Let (Hx,kx) and (Hy, ky ) be RKHSs with canonical feature maps

¢x(x) =kx(x) € Hx,  ov(y) =kv(y) € Hy, (13)
satisfying the reproducing property f(x) = (f, ¢x (X)) forall f € Hx (and analogously for
‘Hy). For r-dimensional outputs, the a-th coordinate (¢ = 1,...,r) admits the representer form

n n
fe(f)(') ZZAm kx (xi,"), féj)(-) :ZBja ky (¥5,°), (14)
i=1 j=1

with A, B € R"*". Let Kx = [kx(x;,%;)] and Ky = [ky (y:,y;)]. The batch embeddings are
Fo,(X)=ATKx eR™*" Fp,(Y) = B'Ky € R™*". (15)

The contrastive trace term becomes
t1(Fo, (X) S(v) Fo,(Y) ") = to(AT Kx S(v) Ky B). (16)

With the RKHS parameterization above and the kernelized trace form in equation [16] the entire
objective can be written purely in terms of the Gram matrices. Under this notation, the optimizer is

governed by the principal singular structure of M := K ;(/ ’s (MK 11// ?, as formalized below.

Theorem 9 (Kernelized spectral characterization (unified form)). Let p > 0 and define the regularizer

R(A,B) = || (K)l(/QA)T (K;,/ZB) Hi Then minimizing the contrastive loss is equivalent to the
kernelized maximization
T P 1/2 T (501/2 oy |2
max  tr(A'Kx S(7) KyB) — 5 || (K A) (K,/°B) ||’ (17)
A,BERXT 2
Let A' := ATK;(/Q, B':= BTK;,/Q, M = K;(/Q S(7) K;,/Q. Then equationrewrites
p
max tr(A’/MB'T) — 5 |A"TB||3. (18)

If M = UXV' is an SVD and M, = 22:1 Jiuiv;'— its best rank-r approximation by
Eckart—Young—Mirsky theorem, then all maximizers satisfy the relation

1 1 _
(AYTB'=-M, <= AB" =-K/’M.K;"*. (19)
P p

If Kx or Ky is singular, replace inverse square roots by Moore—Penrose pseudo—inverse square
roots.
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One explicit optimal choice is A* = K§1/2UT and B* = K;l/QVT %./p, where U, = [uq, ..., uy],
Vi = [v1,...,v.), & = diag(oy,...,0,) are SVD of M.

Corollary 10 (Kernel inference (out-of-sample)). Let D = {(x;,y;)}l, be the reference
batch used to build contrastive similarity weight S(v) and let k be a positive definite ker-
nel. For a new pair (x* yj) set kx(x*) = [kx(x1,x*),..., kx (X0, x")]" and ky(y*) =
by (¥1, )y by (Yn,¥y*)] . Withan optimal (A*, B*) from Theorem
fo, (x*) = (A") Thx(x"),  fo,(y") = (B") kv (y"), (20)
and the similarity
* TA*B*T *

1A% T e () 2]l B* Ty (y*) [l

In practice we observe that a simple angular kernel k(u,v) = £ [|ul|[|v]| (sin6 + (7 — 0) cos6) , 6 =

arccos (” T H 0 ) yields the best trade-off between speed and accuracy.

3.3 UNIFIED SPECTRAL VIEW (LINEAR AS A SPECIAL CASE OF KERNEL)

Our kernel formulation strictly generalizes the linear setting. For linear kernels kx (z,z') = (x,z'),
ky (y,y") = (y,y’), the Gram matrices reduce to Kx = XX and Ky = Y'Y. Setting F;, =
ATXT and F, = BTY 7 yields R« (A, B) = |F} Fys||2 = tr(FyF|' Fo Fy ), exactly matching
the penalty used in the linear section. In the linear analysis we considered the weighted contrastive
covariance matrix C(y) = X S(7) Y ", while in the RKHS analysis the central operator is M =

K;(/z S(7) K;,/Q. When the kernels are linear, M = (X T X)'/25(y)(Y TY)'/2,

Let reduced SVDs be X = UxXxVy and Y = Uy Xy Vy, and define T = YxVy S(7)Vy Sy
with SVD T' = U7XV, . Then we obtain

C(vy) =UxTUy = (UxUr)Sr(UyVy) T, M =VxTVy = (VxUr)Sr(WVp)T. (22)

Hence left/right multiplication by orthonormal matrices maps C(y) and M to the same nonzero
singular values Yr. In particular, their best rank—r approximations select the same spectrum
(Eckart—Young—Mirsky). When X or Y is rank-deficient (or for general kernels where K x, Ky may
be singular), all statements hold on the effective subspace using Moore—Penrose square roots.

Thus the kernel SVD of M is the exact RKHS analogue of the linear SVD of C(y), and the linear
setting is recovered as the special case of the linear kernel.

Unified consequence. Theoren[9|provides a unified spectral view for understanding contrastive
alignment:

contrastive loss minimization <= best rank—r approximation with RKHS.

with S () encoding the particular contrastive objective (e.g., InfoNCE, CLIP, triplet) and the kernel
selecting the nonlinear feature space in which the alignment is performed.

3.4 SCALABLE TRAINING

Batch aggregation. In practical scenarios, particularly in large-scale vision-language or multimodal
applications, IV can be substantial, leading to prohibitive computational and memory demands. We
therefore aggregate mini-batch contrastive similarity weight matrix S(b)(fy) by our closed-form
solution. The final S(v) by taking quality weighted sum.

Numerical stability. If Kx or Ky is ill-conditioned or singular, form square roots with a Tikhonov
regularization when needed, replacing K by K 4 AI with A > 0in K*1/2, This enhances robustness
to near-singular Gram matrices and stabilizes the closed-form update. For low rank approximation
step, one can use randomized SVD (Halko et al.,2011) on M or Nystrom approximations of K x, Ky
to reduce both memory and time.
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4 EXPERIMENTS

During implementation, UniCon directly leverages the contrastive similarity weight S(-y) for con-
trastive alignment. The full computation of S(-y) is provided in Appendix We start with synthetic
data and then extend to evaluate the practical utility of UniCon on unimodal and multimodal datasets.
In the unimodal setting, we test on CIFAR-100, where the goal is image-to-image alignment. In
the multimodal setting, we test on FLICKR30K and MS-COCO for image—text retrieval. Across
both settings, we compare UniCon against standard CLIP-style contrastive learning trained with
stochastic gradient descent (SGD—CLIP). All experiments are run on a single NVIDIA L40S GPU,
and wall-clock times are reported for reference.

4.1 SYNTHETIC DATA

To verify our theoretical results in a fully controlled environment, we conduct synthetic experiments
in both linear and nonlinear regimes. Details of setup could be found in AppendixC.2}

Linear Latent-Factor Model. We generate synthetic data from latent vectors z € R" that are
sampled around K = 3 cluster centers in latent space. We compare our method UniCon, which
performs a spectral update using the closed-form SVD of the weighted covariance C(vy), against
a standard baseline trained via stochastic gradient descent (SGD) on the CLIP loss with AdamW
optimizer (Ir = 2 x 10~2). As shown in Figure UniCon achieves 100% matching accuracy after
just 0.02 seconds. CLIP-SGD requires 400 epochs (0.32 seconds) to reach the same accuracy. This
demonstrates that UniCon not only preserves structure in the latent space but also converges faster
than gradient-based methods.

3

' ;-
R

— () — X ¥ug : ¥y x

Data before Alignment SGD-CLIP (Accuracy: 1.0, Training Time: 0.32s) UniCon(Accuracy: 1.0, Training Time: 0.02s)

Figure 2: Visualization of cross-modal alignment using t-SNE embeddings of the shared represen-
tation space. Modality 1 (cross) and modality 2 (circle) are projected from different spaces into a
shared representation space R". Colors indicate ground-truth clusters, and lines connect matched
image—text pairs. Both SGD-CLIP (left) and UniCon (right) successfully align paired samples while
preserving cluster structure. The visual similarity between the two plots is expected: UniCon achieves
a comparable aligned representation to SGD-CLIP with substantially less training time.

Nonlinear Latent-Factor Model. We further evaluate the method under a nonlinear transformation
of the latent space. The baseline model trains nonlinear MLP encoder via SGD on CLIP loss and
AdamW optimizer. Our method UniCon calculates a sequence of (Fy, (x)Fy,(y)) each for one
training batch. Then we apply batch aggregation on validation data to calculate the weight for
each training batch. The performance is evaluated by the correctly matched pairs of test data using
the kernel-weighted generalization. UniCon converges in 2 epochs (0.04 seconds), achieving 86%
matching accuracy, while CLIP-SGD reaches 84% after 500 epochs (0.65 seconds).

Summary. In both linear and nonlinear settings, UniCon demonstrates rapid convergence and
strong alignment performance, validating the theoretical claims that contrastive learning objectives
can be solved via a single spectral step. Figure[3|confirm that UniCon achieves consistent cross-modal
alignment.
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(2) Initial S(vy) (b) After epoch 1 (c) After epoch 2 (converged)

Figure 3: Evolution of the contrastive similarity weight matrix S(-) in the nonlinear latent-factor
model across training.

4.2 IMAGE-IMAGE ALIGNMENT ON CIFAR-10 (UNIMODAL)

Setup. We evaluate UniCon on a unimodal image alignment task using CIFAR-10, a benchmark
dataset containing 10 object categories. Following the convention of SimCLR 2020),
we treat two augmentations derived from the same image as a positive pair, while augmentation
pairs from different images are treated as negative. Feature embeddings are extracted using a frozen
ResNet-18 encoder. The objective is to align these embeddings such that images from the same class
are pulled closer together in the shared feature space, thereby facilitating unimodal classification.

We conduct this experiment under a nonlinear setting. For baseline, we train a lightweight projection
encoder ¢(-) on frozen ResNet-18 features with bidirectional InfoNCE optimized by SGD. The
encoder is a two-layer MLP encoder. We optimize with SGD for 300 epochs. The trained encoder is
then frozen for linear probing with a small classifier on the 128-dimensional embeddings. UniCon
learns a kernelized projection from frozen ResNet-18 features by a spectral closed-form solution.
Given two augmented views (z1, 22), we compute an angular kernel between features and iteratively
estimate a batch-wise feature map A. After learning an average of A, we freeze it and train a small
linear classifier on the 128-dimensional embeddings for linear probing, mirroring the SGD setup for
fair comparison.

Unicon Classifier Confusion Matrix SGD Classifier Confusion Matrix

yyyyy

kkkkk

R I N | & OFR S ¢ PO
gy & & F e PP

Predicted lobel Predicted lobel

(a) Contrastive classification (b) UniCon (c) SGD-CLIP

Figure 4: Visualizations of unimodal alignment on CIFAR-10. (a) Self-supervised contrastive
learning clusters semantically similar images and uniformly distributes clusters on the hypersphere.
(b—c) Unimodal confusion matrices for UniCon and SGD-CLIP, showing predicted vs. true class
accuracy. The near-identity structure and visual similarity of both matrices indicate that UniCon and
SGD-CLIP achieve comparable discriminative performance in unimodal contrastive alignment.

Results. To evaluate classification performance, we report the confusion matrix in Figure @{b-c),
which summarizes the number of correct and incorrect predictions for each class. Each row of the
matrix corresponds to the predicted class, while each column represents the ground truth. Specifically,
the diagonal entries indicate the number of correctly classified samples, and the off-diagonal entries
capture misclassifications between classes. This allows a detailed analysis of model behavior beyond
overall accuracy. Numerically, UniCon can achieve the average accuracy of 61.82% with 23.38s while
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SGD can achieve the average accuracy of 62.21% with 41.98s. Empirically, UniCon can converge
within 2 epochs while SGD requires various iterations to converge to a comparable optimal point.

4.3 IMAGE-TEXT RETRIEVAL AND ZERO-SHOT TRANSFER (MULTIMODAL)

Setup. To evaluate UniCon in a multimodal setting, we benchmark on the standard image—text
retrieval tasks from FLICKR30K and MSCOCO. We consider three backbone choices for image  and
text y: (a) ResNet-18 (He et al.,[2016) for images with Sentence-BERT (all-mpnet-base-v2)
(Reimers & Gurevychl 2019) for text; (b) ResNet-50 + Sentence-BERT; (c) the pretrained CLIP
ViT-B/32 model as a frozen visual-textual feature extractor. UniCon is compared against an SGD-
optimized CLIP baseline (SGD—CLIP) under matched training/evaluation settings; both are trained to
convergence.

Results. Table [l| summarizes top-1/10 recall in both directions. Across all backbones, UniCon
attains competitive or superior accuracy while reducing training time by 25-50x. With CLIP ViT-
B/32 features, UniCon further improves accuracy despite requiring only a single spectral update.
Notably, UniCon on Resnet50+SBERT backbone achieves comparable averaged top-10 retrieval
accuracy with CLIP ViT-B/32 backbone aligned SGD-CLIP. These findings are consistent with our
theory: the spectral step efficiently recovers the dominant cross-modal structure that iterative SGD
approximates over many epochs.

Table 1: Image-text retrieval on FLICKR30K. We report Recall@1 and Recall@10 for both
image—text and text—image directions.

Image—Text Text—Image Average
R@1 R@10 R@l R@10 R@l1 R@I10
SGD-CLIP 45.6s 043 221 .041 217 .042 219

Backbone Method Train time

RN-18 + SBERT

UniCon 17s 020 145 087 361 .054 253

SGD-CLIP  450s 043 221 041 217 042 219

RN-30+SBERT " {;:Con 081s 134 464 .18 567 .161 515
. SGD-CLIP  453s 231 595 241 600 236  .597
CLIPVIT-B32  {jhicon 076s 284 636 421 777 353 701

Table 2: Retrieval on MSCOCO and zero-shot transfer to FLICKR30K. All models are trained
on MSCOCO. We report image to text (F-T) and text to image (T—I) on MSCOCO and zero-shot
on FLICKR30K (no fine-tuning).

MSCOCO FLICKR30K (zero-shot)
R@1 R@I10 R@5 R@10

SGD-CLIP  5121.72 T  .053 253 — —
T—=I .060 .286

UniCon 11.11 =T 105 .388 A71 261
=1 129 439 .249 .353

SGD-CLIP  1066.60 T  .128 415 — —
T—I .123 427

UniCon 11.15 BT 329 .685 308 879
=1 .292 644 766 848

Backbone Method Train (s)  Dir.

RN-50 + SBERT

CLIP ViT-B/32

Table 2| augments our results with MSCOCO retrieval and zero-shot transfer to FLICKR30K. Our
training follows the standard retrieval protocol on MSCOCO with each image paired with 5 captions,
and report test retrieval accuracy on 5,000 held-out pairs. UniCon achieves higher accuracy than
SGD-CLIP on MSCOCO while being 96461 x faster. Beyond scalability, the learned alignment
transfers robustly: models trained on MSCOCO maintain strong performance on FLICKR30K
without any adaptation. Despite distribution shifts in both image and text domains, UniCon maintains
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strong retrieval accuracy. These results underscore UniCon’s scalability, generality, and cross-dataset
transfer, reavealing its potential in real world tasks.

5 DISCUSSION

We propose UniCon, a theoretically grounded and computationally efficient framework for contrastive
alignment, that unifies linear and nonlinear encoders through kernels. We show that minimizing
contrastive loss is equivalent to maximizing a kernelized trace objective, which in turn reduces to
a best rank-r spectral approximation in an RKHS. The closed form update is driven by explicitly
constructing a contrastive similarity weight matrix S(-y). In the linear reduction, UniCon recovers a
projection onto the top-r singular directions of the weighted contrastive cross-covariance. This yields
a clear spectral lens on contrastive learning, interpreting alignment as r-rank structure discovery in
high-dimensional feature spaces.

Computation Efficiency. UniCon achieves rapid stabilization of the alignment subspace through
derived spectral updates, which bypass many small gradient steps, demonstrating computational
efficiency. Details can be found in Appendix|C.I] Empirically, we observe an interesting phenomenon
that M (or C(7y) in the linear case) converges in 2 or a few steps. We provide an intuitive explanation:
Unlike gradient-based methods that take small local steps, each spectral update directly jumps to the
global maximizer of the surrogate objective, making the update much more informative.

Data Efficiency. Additionally, on MSCOCO, using only 200 images (0.24% of the dataset), with
each image paired with 5 captions, already yields meaningful retrieval alignment (66.45% avg
R@10), demonstrating both subspace convergence and data efficiency. As we discussed in Section 3]
alignment is a r-rank discovery problem, which gives an intuition that we don’t need massive datasets
to find the principal axes.

Static vs. Evolving Input Spaces. The theoretical optimality results with r-rank aproximation is
derived under the assumption that the input space of UniCon is static. It includes two cases: (a) Input
space is data space (raw modalities), where UniCon itself performs end-to-end alignment. (b) Input
space is embedding space from frozen encoders. In both cases, UniCon provides a globally optimal
spectral solution to contrastive loss minimization from the perspective of r-rank approximation. When
encoders are trainable (non-static input space), UniCon is applied during jointly optimizing encoders,
the spectral update becomes a conditionally optimal subproblem, i.e., optimal for the current encoder
outputs.

Broader Opportunities. We see two concrete directions: (i) structure-exploiting kernels, for
example random features, to reduce K’s rank and cost; (ii) hybrid spectral-SGD strategy or warm-
start strategy when the input space is non-static (e.g. finetuning for domain adaptation), and we
briefly discuss this potential future direction in Appendix With the theoretical grounding, and
competitive empirical results, UniCon advances understanding contrastive learning for unimodal
representation learning, multimodal alignment and beyond.
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We affirm that this work complies with the ICLR Code of Ethics. Our study does not involve human
subjects, sensitive personal data, or potentially harmful applications. All datasets used are publicly
available (e.g., CIFAR-10) and contain no personally identifiable information. We acknowledge
the importance of fairness and responsible Al development and have taken care to ensure that our
methods do not propagate bias or cause unintended harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All implementation details, including
model architectures, hyperparameters, and training procedures, are described in the Appendix C. We
provide pseudocode for our algorithm in Appendix A and include complete proofs of theoretical
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results in Appendix B. All datasets used in this study are publicly available, and we will release
source code and experiment scripts as supplementary materials later to facilitate replication of our
results.
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LLM Usage We used a large language model (LLM) solely as a writing aid to polish wording, and
improve grammar/clarity. All technical content (definitions, theorems, proofs, experiments, figures,
and tables) was authored and verified by the paper’s authors.
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A CONTRASTIVE LOSS

Under the assumption of one-to-one alignment, let Ejy, : X =+ R" and Eyp, : ) — R" denote two
modality-specific encoders with trainable parameters ;, 6. Given N paired samples {(x;,y;)} ¥,
we form the similarity matrix S = [s;;]. All contrastive objectives used in practice can be written in

the bidirectional general form (Tian|, 2022} Nakada et all,[2023)

N
£(91, 92) = % Z[QS(ZjV:l Eij d)(sij*l/ S“)) +¢(Zjv:1 eij Z/}(Sjifl/ S“)>} + R(Gl, 92), (23)
i=1

with

* Y, ¢: R— R increasing (shape of the loss),
* v : relative weight on the positive pair,
* ¢;; €[0,1] : which pairs are used,

* R : optional regulariser (e.g. weight decay).

Remark Because the embeddings are length-normalised, s;; € [—1,1] and all geometry lives on the
unit hypersphere.

By choosing specific forms for 1 and ¢, we can recover familiar losses. For example, choosing
¢(x) = 7log(x), ¥(x) = exp(x/7) and including positive pairs in the normalization (e;; = 1 for
positive pair (i, 7)), recovers the CLIP(]Radford et al. 2021[) loss, and the InfoNCE 2018))
loss is the same instantiation appears as a simplified variant focusing only on one direction. And
choosing ¢(z) = z, ¥ (x) = [~z + €]+ gives triplet loss(Schroff et al.; 2015). Equation 2|thus unifies
a wide spectrum of contrastive objectives via variant choices of (¢, ¥, v, €), providing a common lens
for analysing and extending multimodal representation learning. This formulation allows for distinct
temperature scaling of positive and negative similarities.
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Derivation for CLIP Radford et al. (2021) / InfoNCE |Oord et al.|(2018) Loss. Set (z) =
e, p(x) =Tlogx, v =1, €j=1—20;;in equation and omit R. We define

1, ifi=j
8i; = (24)
0, ifij

This gives the loss

Eéiz¢ > et (sij — vsii) +%Z¢ > €t (i —vsa) | + R (01, 62)

J€ln] j€ln]
(25)
T Sij — Sii T Sii — Sii
g J€[n] 7 j€E[n]
T > i exp (Z2) - S e exp ()
= TN qop [ ZaEl T r T T N g [ 2E TN 7
2n ; 8 ( exp (%) + 2n - 08 exp (s%) (27)
T exp (%) exp ()
2n i l (Zje[n] eXp ( T )) Zje[n] exp( p )
=Lcrip 29)

For InfoNCE loss, we keep the first term (i.e. only one-directional loss), then

T exp Si;
L = — E —log ——
InfoNCE n [ g Zj exp 5i; ]

i

Derivation for triplet loss Schroff et al. (2015). With a margin ¢ > 0, choose ¢(z) = [e —
2, ¢(z) =z, v=1, 5 =1 -0y,

1 1
L2 o Z @ Z €0 (855 —vsi) | + o Z 10 Z €0 (850 —vsi;) | + R (61,02)
¢ Jeln] i J€[n]
(30)
1 n n .
— % [Z [6 — (Sij - Sii)]+ + Jj;} [6 — (Sjl- - s“-)]_J (31)
i=1 j=1
=
We can also only keep one direction:
L= % Z {Z [e = (517 — su1)] J = %Z [Z max{0, si; — s + e}} (32)
i=1 j=1 i=1 j=1
7 J#i

where s;; captures distance between negative pairs, and s;; captures distance between positive pairs.

Equation equation 23] thus provides a general form that captures various contrastive loss, making it
possible to analyze them collectively and design new variants with principled control over positive /
negative balance, temperature, and weighting.

Many-to-many aligment contrastive loss(Khosla et al.,|2020) Note that the loss in Equation equa-
tionis defined with (x;, y;) being the positive pairs for all :. However, in many cases, a single x;
may have multiple positive pairs. (Khosla et al.,[2020) extended contrastive learning to the supervised
setting with the Supervised Contrastive (SupCon) loss, which is not restricted to one-to-one pairs.
This loss encourages embeddings from the same class to be pulled together while pushing apart
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embeddings from different classes. Formally, given a minibatch of normalized embeddings z; with
labels y;, the SupCon loss is defined as

supiz : sup 72 :
‘Cout - out,? |

icl

Z log Z exp(z; - 2p/T) (33)

e wEA(i )exp(zz 2,/T)

where P (i) = {p € A(i) : §, = ¥;} is the set of indices of all positives in the multiviewed batch
distinct from 4 and | P()| is its cardinality.

Therefore, we extend the general form of the contrastive loss in equation [23]to handle many-to-many
alignment scenarios. We define the unified form as

L(61,02) = Z |P
1
?; |7>y

where P, (i) and P, (j) denote the index sets of all samples in {y;}, {zx} paired with x; and y;,
respectively. The term | P, (7)| denotes the cardinality of P, (i), and R is an optional regularization
term. We incorporate this loss function in the following sections.

Z é( Z €i;0(si5 — vsi) + € (sik — VSik)) (34)
)

kGP JEPL (i

Z G( Y €it(sji — vski) + €inth(ski — vski)) + R(601,60)

kEPU( 1) JEPy (1)

B THEORETICAL PROOFS

Theory Road-map

Definition 3
Contrastive Similarity Weight Matrix
5(v)
Linear case Non-linear case
Theorem 9
Prop.7 Lemma 4 Kernelized Spectral

(linear specialization) Gradient bridge characterization

(unified form)

Theorem 8
Spectral Characterization Cor. 10

Nakada et al.|(2023) Kernel inference

(out-of-sample)

Definition 3 (Contrastive-Covariance Similarity Matrix) Consider the general contrastive loss
L(61,02) in Equation equation[34with choice of (¢,v,€,v), and a batch of samples {(x;,y;)} 1.
Denote {e;}_, as the elementary basis vectors of R™. The contrastive-covariance similarity matrix

is then defined as:
1 L i Vji T
S(v)=—— — J J 35
MAPE (e * ) e 9

with weight coefficients

&1y - (e (1= )W (1= V)s15) = ¥ Doy €om (sim — v333) ) i3 € Pali)
Yij = (36)
>okep, (i) Pin - (€50 (sij — vsin)), ifj & Pu(i)
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5, - (eﬁ(1 (L= )85) = ¥ S, iy Emith ($mi — usﬁ)) . ifj € Py(i)
Yij = ) (37
Dkep, ) Pin - (€5 (850 — vsii)), if 5 ¢ Py(i)

where we define

¢;j :Qﬁl 61J¢((1 — I/)Sij) + Z Eim"/)(sim - I/Sij) 5 (38)
m¢ Py (1)
Oy =0 | eI =v)sjit Y emith(smi — vsji) 9
m¢Py (i)

Lemma 4 (Gradient Equivalence) Consider minimizing the general contrastive loss (see Equa-
tion equation[2)), the gradient of the contrastive loss with respect to encoder parameters satisfies:

oL ot (Fo, (X)S(7)Fy, (Y)) n OR (61,62)

00, o0 o0 ’
k K =y (01,62) b

ke {1,2} (40)

where
X = [Xi;"' axn] c Rd1><n,Y — [Yif" ’yn] c Rdzxn

]:91 (X) = [f91 (Xl) f91 (XQ) f91 (Xn)] e R™"
Fo,(Y) = [fo,(y1) fo,(y2) -~ fo,(yn)] € R

Proof. Let 0 ¢ be the £-th component of ;. We have

Z ¢ (611@1/’((1 - V Szk + Z ezmw Sim — VS'Lk)) (41)

kePT( ) mg Py (i)

aek zE aek v [2171, Z |Pa:

+ % Z B, Z ¢ (Ekﬂ/)((l —V)ski) + Z emit (Smi — z/skl-)> + R(61,02)]

ke Py (i) me Py (i)
(42)
1 n
= 2 Z ¢ E’Lkw 1 - V)Szk + Z Gme (Szm Vszk) (43)
N4 kEPI (4) mé Py (i)
. [Eikwl((l —v)sir)(1 — v)0e, ,Sik + Z €imt) (Sim — vsik) (Do, ,Sim — Vaak,gsik)]
mg Py (i)
1 n
+ % Z | ( z ¢ ekﬂ/) 1 - V)Ski) + Z Emﬂ/) (Smi - VSki) (44)
i=1 v ke Py (i) mé Py (i)

. [Ekz'l//((l —v)ski)(1 — v)0ay, ,Ski + Z €mit (Smi — Vski) (Do, pSmi — Vaakyzski)] +0g,, R

mgPy(i)
45)
1 n
=5 Z | | Z YikOoy, o Sik + Z YimOpy, ¢ Sim (46)
i=1 kE Py (4) m¢ Py (i)

1 1 _ _
+ %; 1201 ( Z ik 0oy, o Ski + Z "Yima%cygsmi) + 0, R 47)

kEPy (i) m Py (i)

i - Vig Vii )3 B 48
20 22( GIREIGIVASES @
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Define
005+ (e (1= )0 (1= ¥)513) = v g, o ot (s5m = v513)) 4 i1 € Po(i)
Vij = 49)
D kep, (i) P - (€19 (sij — vsir)), if j ¢ Pu(i)
Pl - (Eji(l =) (L =v)sji) = v 3,gp, i) Emit (Smi — VSji)) , ifj € Py(d)
Nij = (50)
Dkep, ) Pin - (€50 (850 — vski), if j & Py (i)
where we define
¢ij =9’ (Eijd)((l —V)si)+ D, €mt(sim — VSij)) ) (51
m¢ Pa (i)
¢ij =0 (Ejﬂb(l —V)siit Y emith(smi — Vsji)> (52)
mg Py (i)

To simplify the notation, we assume that the encoded representations fy, (z;) and fy,(y;) are already £o-
normalized. Then the gradient follows that

0oy L=~ ; Z,: ( 7” Z](;)O o ¢ (£9, (:)Fo, (y5)) + Doy, 0 R (53)
_89k ¢ <Z —S(7)is -7:91 X)Fo, (Y))U> + 69k,2R (54

where (Fy, (X)Fo,(V))i; = £5, (xi)fo,(y;) denotes the similarity between sample z; and y;, and S(7)i;
denotes the entry in the i-th row and j-th column of the matrix S(v), which is defined in Equation equation

Note that

=33 (AN Bij =Y ApiBr (55)
i=j k ik

Therefore we have

oL 9u(S() FL(X)Fe,(Y))  OR(0:,62)

T80, a0y 0y (56)
_ 8t1‘(]:91 (X)S(’Y)}—g—g (Y)) _ 8}%(917 ‘92) (57)

where S(+y) is defined as Equation equation
O

B.1 LINEAR REPRESENTATION SETTING

In this setting, the hyper-spherical similarity between a pair (x;,y;) is computed as the inner product
of their /5-normalized embeddings:

x; Py, x; P\ Fay;

sij = (F1Xi, Fayj)sr—1crr = < ; = . (58)

! TR IFxilly” 1F2y;lly /g 1E1Xilly 1251l

Proposition 7 Under the linear setting, the Lemma 4 is specialized as
oL otr (AIXS()YTF) OR (Fy, F.
_ r( 1X5(7) 2) (F1, 2)’ ke {1,2) (59)
B=B(F1,F2)
6131" (FlO(v)F;) 8R (F1 FQ)
= — =k 1,2 60
o SR ke{l2) (60)
B=B(F1,F2)
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where C(7) = XS(7)Y .

To solve the optimization problem induced by our reformulated objective, we characterize its maxi-
mizer in the linear setting. We arrive at the following theorem, which establishes that the convergence
of the contrastive loss can be replaced by a closed-form update.

Theorem 8 (Spectral Characterization (Nakada et al.,2023))) Consider minimizing the contrastive
loss function L (Fy, F), with R(Fy, Fa) = £||F{' Fy||%. Then,

arg min L (F1, F) (61)
FIERTXdl,erRTXd2
2
= arg max tr (F1C(’Y)F2T) —(p/2) HFITF2HF (62)

Fl E]Rrxdl ,erRrxd2

1 r
{(Fl,FQ) c Rrxdl x RTX(h ;FlTFQ = pza'i’u,ﬂ};r} (63)
i=1

where {o;,u;,v;}I_, are the top-r singular values and vectors of C(vy) according to the
Eckart—Young—Mirsky theorem.

Proof. Observe that

tr (RCOET) — (o/2) | FT P (64)
= tr (AC(Y)F)) - gtr (F) FF| ) (65)
1 1
=tr (RC(E) - gtr (F) FiFy Fy) — 55 (CTCMH) + 3 (C(TCy))  (66)
Ly (cmrcH)) ~Lul|(FF —10( ) : F'F —10( ) (67)
2 Y Y 9 1 42 P Y 1 42 P Y
1 s P 1 2
_ _F T _Z
- 5, Icol - R - Sean| (69

The first term is constant for fixed C(7y), and the second term is minimized at I Fy = %C (7). Since

Fi e RT*%4 Fy € R7>42, FlTFQ has rank at most . Thus, the minimization can be achieved at
F'F, = Yoy o, b}{ Eckart—Young—Mirsky theorem for low rank matrix approximation. Here
{0, u;,v;} are the top-r singular values and vectors of S. ]

In summary, in linear case, the global minimum is attained by projecting the contrastive covariance
C(v) onto its top-r singular components. Thus, gradient descent on any loss in the contrastive family
(¢, ¢) merely tracks the dominant singular subspace of C'(-y). UniCon performs this update in closed
form, replacing thousands of SGD steps with one spectral factorization.

Relationship with (Nakada et al.; 2023) Furthermore, the formulation of (Nakada et al., [2023)
can be seen as a special case of our contrastive similarity weight matrix S(-y), which arises under
the specific assumptions of one-to-one alignment in a linear representation setting and with further
restrictions on the functions v and ¢. Similar to the paper (Nakada et al.,|2023)), we define

Q5 = 6ij¢/ Z €imP (Sim - Vsn') 1// (Sij - VSn‘) ) (69)
men]

Qjj £ 6ij¢, Z €im (smi - Vsii) ¢/ (Sji - Vsii) (70)
me(n]
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Then we can derive that when | P, (i)| = |P,(j)| = 1, for positive pairs (z;,y;) with i = j,

(vii + i) =¢" | eab((1 = v)sii) + Z¢ €imW(Sim — Vi) (71)
x| €L =) (L= v)sit) = v > €imt (Sim — vsii) (72)
-
+ ¢ [ @ ((1=v)si) + ) emith(smi — vsia) (73)
i
(L= 0)¢' (1= v)si) = v Y emith (smi — vsia) (74)
—

=¢/ <Z €im¥(Sim — VSii)) <€ii¢/(3ii —v8i) =V Y €imt (Sim — VSn‘)) (75)
m=1 m=1
¢ (Z €mit(Smi — VSu)) (%‘W(Siz‘ —VSii) =V Z €mit’ (Smi — VSm‘))
m=1 m=1

(76)
= + Qyy —V Z (Cim + @im) an
m=1
For negative pairs (z;,y;) with i # j,
Yij + Vi =@ | €0 (1 —v)si + Z EimW(Sim — Vi) | (€9 (sij — vsii)) (78)

+ 0 | €01 =v)si5+ Y emjth(sms — vsjg) | (i (sij —vsiy))  (79)

m#j
:eij¢/ (i Ez'm?/)(sim - VSu‘)) W(&'j - Vsii) (80)
m=1
+ei;¢’ (i €mi¥(Smj — VSjj)) V' (sij — vsj;) (81)
m=1

=ai; + Qj; (82)

Then we can define
Bij = Qi ;Fo_éji7 8, = Vﬁ: Qi ;L@ij Qg J2r Qi 83)

Thus we have
Cly)=XS(Y' = —% Z Enjm + i)y = Z@ ziy; Zﬁijxiy} (84)
i=1 j=1 [y

In (Nakada et al.,[2023), they define the contrastive cross-covariance S(f3) as

= Cin > By - Z Bijxiy; (85)
i=1

iy
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_ Qi+ Qi _ Qij + j
Bij = ——5— x%—vz%Q—L (86)
J n

Therefore, with C,, = n, our C'(v) is equivalent to S(8) in (Nakada et al.,|2023), where their j;
corresponds to the special case of our definition with identity functions for ¢ and ).

Understanding S(5): Consider the trace objective function
1 n -
t(Fy S(7) Fy) = - Z —(=1)% B <F1(Xz'), F2(Yj)>~ (87)

4,J=1

Every similarity inside a batch is multiplied by a scalar —(—1)%3 Bij:

* (3; on the diagonal strengthens the attractive force for the positive pair (x;,¥;);

* B (i # j) on the off-diagonals weights the repulsive force for negative pairs.

where:

Qi + Oy N v+ O + Ol
By = 4 Bi=v)y - (88)
j=1

* «; and &;; encode the bidirectional importance of the pair (¢, 7).

* v adjusts the influence of positive pairs relative to negatives.

The explicit plus/minus pattern makes the “pull” (4-8;) vs. “push” (—/3;;) behaviour of contrastive
learning transparent.

B.2 KERNELIZED CONTRASTIVE ALIGNMENT

RKHS parameterization. Let (%, kx) and (Hy, ky) be RKHSs with kernels kx, ky and canon-
ical feature maps

¢X X = HXv ¢X(X) = kX('aX)7 ¢Y Y — HY; ¢Y(Y) = kY(vy) (89)

They satisfy the reproducing property:
VieHx, vxe X f(x) = (f,¢x (X)),

(90)
VgeHy, Vy €Y g(y) =(9,0v(¥))n-
In particular,
(bx (%), ox (X)) 1y = kx(xi,%), (v (v5); oy (¥ )1y = kv (v5,Y)- oD
By the representer theorem, for each output coordinate a = 1,...,r,
20 =3 Aikx(xi), 20 =Y Biaky(y;. ), (92)
i=1 j=1

and we stack coefficients into matrices A, B € R™*" (column a stores the coefficients of coordinate

a).

Define

kx(x):= [/{:X(xl,x), e l{:X(xmx)]T e R", ky(y) == [k’y(yl,y), R l<:y(yn,y)]T e R"™.

Then the r-dimensional encoder outputs at a point are &9
£, (%) = (f5) (), f3) (%)) = AThx(x) €R", fo,(y) = BTry(y) €R. (94)
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* Theoretically, in infinite-dimensional RKHS,

'(x) = <2n:Aia kx (xi,+), ¢5X(X)>H .
i=1

x
» Computationally, in finite n-dimensional representation,
I () = Al mx ().
Let the Gram matrices be

Kx = [kx (zi,z;)]7 20 € RV, Ky = [ky (yi, y5)]i j=1 € R™™

Stacking the n samples as columns, the r x n batch embeddings are

Fo(X)=A"Kx e R™™"  Fp,(Y)=B'Ky € R™*".

Inner products and induced norms. For any ¢, d € R"”,
<Zci¢X(Xi)a Zdj ¢X(Xj)>HX =c' Kxd, HZQ bx(Xi)
[ 7 7

and similarly with Ky .

Therefore, the total RKHS norm of the r output coordinates is

STIADNZ, = ST AT K A, = (AT K A),
a=1

a=1

and analogously for B with Ky-.
Similarity. For two samples (x;,y;) the predicted similarity is
(£, (x1), fo, (v5))rr = rix (i) AB" Ky (y;),
which is exactly the (7, j) entry of
Spred := Fo, (X)) Fo,(Y) = Kx ABT Ky € R™*"™.

with entry [Spreali; = (Fo, (i), Fo, (45))r-
Definition 11 (Kernel cross—covariance regularizer). Define

Ro(A,B) = tr(ATKxA BTKy B) = | K¥?ABT K}/ ||2.

95)

(96)

o7)

(98)

99)

(100)

(101)

(102)

(103)

The second equality in equationfollows from the identity || AT B'||2 = tr(A’T A’B'T B') with

A’ = AKY/? and B' = BK/?.

In the linear case, fy, (X) = F1X. Let w® " be the a-th row vector of F1y, then fe(la) (x) =w® x,

thus

<f91 U7 RNETN
_ ZWW’“}( )
a=1
=> w3
a=1

= |AllE

Z Hf(a)
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Proposition 12 (Linear-kernel reduction). Suppose kx(z,2') = {x,2') and ky(y,y’a) = (y,v'),
2

and let the sample matrices be X = [z1,...,2,] € RUWX" Y = [y;,...,y,] € R¥2X" Then
Kx =X"Xand Ky =Y 'Y, and with
Fl=ATXT e R"¥d, Fy:=B'YT e R*%, (105)
we have
Ry« (A,B) =tr(A"KxA B"KyB) = tr(F F) BhF) ) = |F) B3 (106)

Proof. With Kx = X "X and Ky = Y TY we compute
PF =(ATXT)(XA) =AT(XTX)A=ATKxA,
FF,) =(B'Y")(YB)=B"(Y'Y)B=B"KyB.

Therefore,
tr(F F) b Fy) ) = tr(ATKxA BT Ky B) = Ry (A, B).

O

Centered (covariance) variant. If one desires a true covariance penalty, replace K x, Ky by their
double-centered versions K = HKxH and Ky, = HKy H with H =1 — %llT:

RV(A,B) :=tr(A"K$ A BTKy B). (107)
We optionally center Gram matrices before optimization; proofs are unchanged.

Theorem 13 (Kernelized spetral charaterization (unified form)). Let p > 0 and define the regularizer

R(A,B) = | (K)l(ﬂA)T (K%/QB) H2F Then minimizing the contrastive loss is equivalent to the
kernelized maximization

p 2
e w(ATESG) EyB) < D AT PR a0y

Let
A= ATKY? eR™, B :=BTK/? cR™", M :=Ky/*S(y)Ky/* e R, (109)
Then equation[I08] rewrites
p
max tr(A'MB'T) — 3 |A"T B||%. (110)

If M = UXV' is an SVD and M, = 2;1 ouv] its best rank-r approximation by
Eckart—Young—Mirsky theorem, then all maximizers satisfy the relation

1 1 ~
(A’)TB’:;MT — ABT:;KX”QMTKYUQ. (111)

(If Kx or Ky is singular, replace inverse square roots by Moore—Penrose pseudo—inverse square
roots.)

Proof. Insert K;(/QK;(/2 = Kx and K;/QK;/Q = Ky into the trace term and set A’ = ATK;(/Q,
B'=BTK{? M = K{/*S(vy)K;/?. to obtain

tr (AT KxS(y) Ky B) — (p/2)| (KY?4) T (Ky/*B) || (112)
—tr (ATK)%K;}S(W)KéKéB) —(p/2)|| ATKYHT(BTKY |5 (113)
=tr (AMB'T) — (p/2)|| AT B || (114)

Now same as steps in proof of Theore complete the square in A’T B’ to see that the maximizer
aligns the column spaces of A’, B’ with the top singular vectors of M, yielding A'T B’ = p~' M,..
Undo the change of variables to get equation
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By Theorem[§] the optimal solution satisfies

1

{(A,B) cA'TB = Mr(v)} (115)
p

1 1 1 .1 1
{as): @ rh = Lekso)rt | (116)
1 1 1 1
{  K2ABTK; = K;S(W)Ké} (117)
p
T+ 1 1 1 L1

{ tAB = -K? )"’(S(V)K;KYQ} (118)
p

If Kx or Ky is singular, use Moore—Penrose pseudoinverses K}l/ K ; 12, 0

One explicit optimal choice is A* = K§1/2Ur and B* = K;l/QVT X./p, where U, = [uq, ..., uy],
Vi = [v1,...,v.), &, = diag(oy,...,0,) are SVD of M.

Corollary 14 (Kernel inference (out-of-sample)). Let D = {(x;,y;)}", be the reference batch used
to build contrastive similarity S(v) and let k be an positive-definite kernel For a new patr (:Tr
thh

set kx(z*) = [kx(z1,2%),... kx(zn, )] and ky (y*) = [ky (y1,¥%), - - ., ky (Yn, y*
an optimal (A*, B*) from Theorem
fo,(z%) = (A") Thx(2%),  fo,(y") = (B*) kv (y"), (119)

and the similarity

(120)

* TA*B*T *
s(x*,y") nx(@) 4 Zé 1

A TR @) |21 B* Ty ()2

C IMPLEMENTATION

The complete code for all experiments will be made publicly available on GitHub.

C.1 COMPUTATION OF S(7)

In this section, we provide the PyTorch implementation of the contrastive similarity weight matrix
S(y) computation used in UniCon. The function below computes the matrix S(-y) in one-to-one
paired settings, and a generalized many-to-many settings, where similarity values s;; are used to form
the weighting terms ;;. We have also provided a complete pseudocode outlining the training pipeline
of UniCon in Algorithm[T|2] which offers a step-by-step description of our method’s implementation
to facilitate reproducibility and deeper understanding.

Algorithm Discussion. In UniCon, our efficiency claim refers to the rapid stabilization of the
mapping ((A, B)) parameters toward the desired alignment subspace through derived-form spectral
updates, which bypass many small gradient steps. Specifically, we reformulate the minimization
of the contrastive loss as an equivalent maximization problem, using the proposed contrastive
similarity matrix S(-y). We will state in the unified nonlinear form, as the notations can be reduced
to linear case as analysis in Section 3.3. The general objective is max tr(AT KxS(v)Ky B) —

81(K /2 A)T (Ky/*B)||%. The optimal solutions satisfy ABT = LK "/*[KK /> S () iy *], ke *
where [-], denotes the best rank-r approximation. Note that S(v) is itself a function of (A, B).

Therefore, the overall optimization becomes a fixed-point problem. We solve it via an iterative
procedure, such as,

ACD B LRGP RS (v AY, BO) RGP K

In this process, we observe rapid convergence of (A, B) to a stable solution. This rapid stabilization,
subspace convergence, is what we refer to as efficiency.
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def

compute_S_gamma (

s, datal_batch, data2_batch,

tau=1.0, nu=0.1,

psi=torch.exp, phi=torch.loglp,

epsilon_ij=1, epsilon_ii=1,

diff_psi=torch.exp,

diff_phi=lambda x, eps=le-8: 1.0 / (1.0 + x + eps)

n = datal_batch.size (0)

# Build epsilon mask for weighting
epsilon = epsilon_ii * torch.eye(n, device=s.device)
epsilon += epsilon_ij * (1 - torch.eye(n, device=s.device))

# Row-wise similarity terms: s _1ij — nu # s_1ii
s_diag_row = torch.diag(s) .unsqueeze (1l) .expand (-1, n)
s_nu_row = s — nu * s_diag_row

psi_terms = psi(s_nu_row)

sum_psi_terms = torch.sum(epsilon * psi_terms, dim=1, keepdim=True)

diff_phi_terms = diff_phi (sum_psi_terms)
diff_psi_terms = diff_psi(s_nu_row)
alpha = epsilon % diff_phi_terms * diff_psi_terms

# Column-wise similarity terms: s_ji nu * s_1i1

s_diag_col = torch.diag(s) .expand(n, n)

s_nu_col = s - nu * s_diag_col

psi_terms_bar = psi(s_nu_col)

sum_psi_terms_bar = torch.sum(epsilon * psi_terms_bar.T, dim=1,
keepdim=True)

diff_phi_terms_bar = diff_phi (sum_psi_terms_bar)
diff_psi_terms_bar = diff_psi(s_nu_col.T)

alpha_bar = epsilon » diff_phi_terms_bar » diff_ psi_terms_bar

# Compute beta weights
gamma_ij = (alpha + alpha_bar.t()) / 2

gamma_1i = nu % torch.sum((alpha + alpha_bar) / 2, dim=1) - torch.diag

(alpha + alpha_bar) / 2

S_gamma = —gamma_ij / n
S_gamma [range (n), range(n)] = gamma_i / n

return S_gamma

Listing 1: Contrastive Smilarity Weight Matrix Computation (one-to-one case)

def

compute_S_gamma_generalized(s, pos_mask, normalized_datal_batch,
normalized_data2_batch, nu=1.5, tau=1.0,psi=torch.exp, phi=torch.
loglp, epsilon_ij=1, epsilon_ii=1, diff_psi=torch.exp, diff_phi=

lambda x, eps=le-8: 1.0 / (1.0 + x + eps)):
n = s.shape[0]
device = s.device

# Create epsilon matrix
epsilon = torch.ones(n, n, device=device) * epsilon_ij
epsilon.fill_diagonal_(epsilon_ii)

# Create masks
neg_mask_base = ~pos_mask

# Expand tensors for broadcasting: (n, n, n) where dim 0 is i,
is j, dim 2 is m

s_i_m = s.unsqueeze(l) .expand(n, n, n) # s[i,m]

s_1_7J = s.unsqueeze(2) .expand(n, n, n) # s[i, 7]
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epsilon_i_m = epsilon.unsqueeze(l) .expand(n, n, n) # epsilon([i,m]

mask_not_i = neg_mask_base.unsqueeze (1) .expand(n, n, n) # mask for m
[1]

# Compute psi terms: epsilon[i,m] #* psi(s[i,m] — nu * s[i,]])

psi_terms = epsilon_i m * psi(s_i_m - nu x s_3i_3j) * mask_not_i

sum_psi = psi_terms.sum(dim=2) # (n, n), sum over m

# Compute diff psi terms

diff psi_terms = epsilon_i m % diff psi(s_i_m - nu » s_i_3j) =

mask_not_1i
sum_diff_psi = diff_psi_terms.sum(dim=2) # (n, n)
# Phi arguments
phi_args = epsilon % psi((l - nu) % s) + sum_psi # (n, n)
# Alpha for positive samples
alpha_pos = diff_phi (phi_args) * (
epsilon » diff_psi((l - nu) » s) * (1 - nu) - nu » sum _diff psi

)

diff_phi_i_k = diff_phi (phi_args) .unsqueeze (1) .expand(n, n, n)
alpha_neg_k = diff_phi_i_k x (epsilon x diff_psi(s_i_j - nu * s_i_m)
pos_mask_k = pos_mask.unsqueeze (l) .expand(n, n, n)

alpha_neg = (alpha_neg_k x pos_mask_Xk) .sum(dim=2)

# For alpha bar positive samples

s_m_i = s.T.unsqueeze (l) .expand(n, n, n) # s[m, 1]
s_Jj_1 = s.T.unsqueeze (2) .expand(n, n, n) # s[7j,1]
epsilon_m i = epsilon.T.unsqueeze(l) .expand(n, n, n) # epsilon[m, 1]

# Compute psi terms for alpha bar

psi_terms_bar = epsilon m i * psi(s_m i - nu * s_j_i) = mask_not_i
sum_psi_bar = psi_terms_bar.sum(dim=2) # (n, n), sum over m

# Compute diff_psi terms for alpha bar (no epsilon in second sum)
diff_psi_terms_bar = diff_psi(s_m i - nu *» s_j_1i) » mask_not_1i

sum_diff psi_bar = diff_psi_terms_bar.sum(dim=2) # (n, n)
# Phi arguments for alpha bar
phi_args_bar = epsilon.T * psi((l - nu) * s.T) + sum_psi_bar # (n,

)
# Alpha _bar for positive samples
alpha_bar_pos = diff_phi (phi_args_bar) x (
epsilon.T » diff _psi((l - nu) * s.T) x= (1 - nu) - nu *
sum_diff psi_bar

)

diff_phi_i_k = diff_phi (phi_args_bar) .unsqueeze (1) .expand(n, n, n)
alpha_bar_neg_k = diff phi_i_k * (epsilon.T % diff_ psi(s_j_1i - nu *

s_m_1i))

pos_mask_k = pos_mask.unsqueeze (l) .expand(n, n, n)
alpha_bar_neg = (alpha_bar_neg_k * pos_mask_k) .sum(dim=2)

# ========== Combine positive and negative samples ==========

alpha = torch.where (pos_mask, alpha_pos, alpha_neq)
alpha_bar = torch.where (pos_mask, alpha_bar_pos, alpha_bar_neqg)

pos_mask_row_sum = pos_mask.sum(dim=1)

pos_mask_col_sum = pos_mask.sum(dim=0)

pos_mask_row_sum_expanded = pos_mask_row_sum.unsqueeze (1) .expand (n,
)

pos_mask_col_sum_expanded = pos_mask_col_sum.unsqueeze (0) .expand (n,

)

gamma = alpha / pos_mask_row_sum_expanded + alpha_bar.T /
pos_mask_col_sum_expanded

C_n =n # Normalization constant
S_gamma = normalized_datal_batch.T @ gamma @ normalized_data2_batch

return -S_gamma
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Listing 2: Contrastive Similarity Weight Matrix Computation (generalized, support many-to-many
matching)

Algorithm 1 Training Pipeline for Linear Case

Require: Initial F, FY, dataset {(X;,Y;)}Y,
Ensure: Trained F and F>5

1: Initialize 'y < FY, Fy < FY

2: while not converged do

3: (F Fy)_sum <+ 0 {accumulator for batch-wise Fy' Fy}
4:  for each batch (X, Y;) do

5: similarity < (F; X;) T (F»Y;)

6: S(v) < compute_S_gamma(similarity, X;, ;)

7: (Fy' F2)i ¢+ 5 XiS(M)Y,"

8: weight, < validation((F} F»);)

9: (F Fy)_sum < (F)| Fy)_sum + (F}| Fy) - weight,

10:  end for

11:  Update Fy, F; based on aggregated (F," F)_sum
12:  decompose F; and F;
13: end while=0

Algorithm 2 Training Pipeline for Nonlinear Case

Require: Initial Ag, By, dataset {(X;,Y;)}¥,
Ensure: Trained A and B
1: Initialize A <+ Ay, B < By
2: while not converged do
3:  AB_sum <+ 0 {accumulator for batch-wise AB "}
4:  for each batch (X;,Y;) do
5: Kx,, Ky, < kernel matrices of X;,Y;
6: similarity + (ATKx,)" (B" Ky,)
7.
8

S(v) + compute_S_gamma(similarity, X;, Y;)
(ABT)s = LK [KY2S(3 A0, BO)KG?| K2
9: weight, < validation((ABT);)
10: AB sum +— AB_sum + (ABT)Z- - weight,
11:  end for
12:  Update A, B based on aggregated AB_sum

13:  decompose A and B
14: end while=0

C.2 EXPERIMENT DETAILS AND CONVERGENCE VISUALIZATIONS

We present additional plots to illustrate the convergence behavior of the SGD-CLIP baseline across
three experimental settings: synthetic latent factor models, unimodal image clustering, and multimodal
image—text retrieval.

These visualizations confirm that our reported SGD-CLIP performance is after sufficient training,
providing a fair comparison against our proposed Unicon method. While SGD-CLIP ultimately
achieves high accuracy, it requires many iterations to converge—underscoring the computational
inefficiency of iterative optimization when compared to the efficient closed form update of Unicon.

Synthetic Setting: Linear Latent-Factor Model. We generate synthetic data from latent vectors
z € R” that are sampled around K = 3 cluster centers in latent space.
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The observed pairs (x,y) are linearly projected from z using orthogonal matrices, followed by
additive Gaussian noise:

x =Uz + &1, y = Usz + &. (121)

Here, U; € R4*"™ and Uy € R%*" are orthogonal projections sampled from the Haar measure on
0y, and Oy, respectively, with d; = 40,ds = 30,7 = 10. Noise vectors ;, &2 are sampled from
N (0, SN R?), with SN R = 0.3. Each of the N = 600 training samples is drawn from one of K = 3
clusters in latent space. Figure[CI|shows the accuracy score of SGD-CLIP method converges across
training epochs.

Synthetic Setting: Nonlinear Latent-Factor Model. We further evaluate the method under a
nonlinear transformation of the latent space:

x = tanh(Uyz + &), y = tanh(Usz + &), (122)

where Uy, Us are again uniformly sampled from orthogonal groups Q4, and Qg,, taking the first r
columns. The additive Gaussian noise is drawn from A/(0, SNR?) with SNR = 0.3.

so0

(a) Linear latent factor model (b) Nonlinear latent factor model

Figure C1: Convergence of SGD-CLIP. Training accuracy over epochs for linear and nonlinear
synthetic settings.

Unimodal Classification (CIFAR-10). Figure [C2]reports the training loss of SGD-CLIP in the
CIFAR-10 image clustering task.

Training Loss Over Epochs

Epoch

Figure C2: Training loss of SGD-CLIP on CIFAR-10. Unimodal image clustering task with frozen
ResNet-18 features.

Multimodal Retrieval. On Flickr30K, we shuffle the dataset into to 25426 (80%), 3178 (10%), and
3179(10%), for train/validation/test. Every image x and text y is embedded once with a) ResNet-18
(He et al.}|2016) for images + Sentence-BERT (all-mpnet-base-v2) (Reimers & Gurevychl
2019); b) ResNet-50 + Sentence-BERT; c¢) the CLIP ViT-B/32 model for visual-textual feature
extraction as frozen backbone. Matching is performed in a shared embedding space of dimension
r = 128 with 7 = 1. SGD-CLIP runs for 50 epochs, and run-time is measured wall-clock. Figure
shows loss curves for SGD-CLIP trained on Flickr30K across three backbones: ResNet-18, ResNet-
50, and CLIP ViT-B/32. Despite faster convergence with stronger backbones, all variants require
many epochs to reach stable loss values, whereas UniCon completes alignment more efficiently.

On MSCOCO, we follow the standard retrieval protocol on MSCOCO. The training set contains
82,783 images, each paired with 5 human captions. We validate on 40,504 image—text pairs and
report test results on 5,000 held-out pairs. We report Recall@1 and Recall@ 10 for both directions.
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Training Loss During Treining Training Loss During Training Training Loss During Training

(a) ResNet-18 + SBERT (b) ResNet-50 + SBERT (c) CLIP ViT-B/32

Figure C3: Training loss of SGD-CLIP on Flickr30K. Loss curves for three backbone architectures
in multimodal alignment.

To further ensure sufficiency of training, we re-evaluated validation accuracies on MSCOCO with
backbone Resnet 50 + SBERT in FigurdC4} it even begin to decline after the peak, suggesting
potential overfitting with additional training. Specifically, on MSCOCO, we trained SGD for 1000
epochs and observed that the best validation performance is already reached around epoch 300.
Beyond this point, the model does not improve further. For comparison, we extended UniCon to 20
iterations across all batches. We observed that model norms stabilize after just 2 iterations, with only
minimal fluctuations thereafter.

Table 3: Image-text retrieval on MSCOCO. We report Recall@1 and Recall@10 for both
image—text and text—image directions. UniCon achieves superior accuracy to SGD—CLIP with
~96-461 x faster training.

Image—Text Text—Image Average
R@l R@10 R@l R@l10 R@l R@10
SGD-CLIP  5121.72s  .053 253 .060 .286 .057 270

Backbone Method Train time

RN-50 + SBERT

UniCon 1L11s  .105 388 .129 439 .17 414
. SGD-CLIP  1066.60s .128 415 123 427 126 421
CLIPVIT-B/32  yhicon 1.15s 329  .685 292 .644 311  .665

Table 4: Zero-shot image—text retrieval on FLICKR30K (trained on MSCOCO, no fine-tuning).
We report Recall@5 and Recall@ 10 for both directions; higher is better.

R@5 R@10
I-T T—=I Avg I-T T—=I Avg

RN-50 + SBERT .171 249 210 261 353 .307
CLIP ViT-B/32 808 .766 .787 .879 .848 .863

Backbone

C.3 SENSITIVITY ANALYSIS

Robustness to batch size. We discuss that the batch size n does not significantly affect the
total model performance. We extensively evaluated the effect of batch sizes on all the experiment
settings, showing robustness of UniCon to batch size variations. For multimodal alignment, we
experimented retrieval task using Flickr30k and MSCOCO varying the batch size across [100, 500,
1000, 10000, 20000]. For unimodal alignment, we experimented clustering using CIFAR-10 with
batch size [200,300,400]. We observed that performance metrics remained nearly identical across
these ranges. Importantly, the retrieval performance was robust to batch size variations, which implies
data efficiency.
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nnnnn

(a) Loss (b) Validation Accuracy

Figure C4: Training loss and validation accuracy of SGD-CLIP on MSCOCO trained for 1000 epochs
to check convergence.

Batch aggregation strategy To reduce memory and computation overhead, we adopt a batch-wise
training strategy. We evaluate several strategies to aggregate multiple batch-level models into a global
predictor, including:

(€23

* Accuracy-weighted fusion: Normalize validation accuracies a; to weights w; = S and

linearly combine predictions.
* Softmax-accuracy weighted fusion: Apply a softmax over {a; } to smooth weights.

* Majority voting: Select the most frequent prediction across batch models.

From our experiments on both unimodal and multimodal settings, we observe that different aggrega-
tion strategies yield similar performance, with variations within a 1-2% gap. Its performance under
extremely biased or imbalanced data distributions remains an open question.

We also evaluate the impact of statistical differences between training batches on CIFAR-10. For
each batch, we form paired inputs datal and data2 under two settings: (1) Random: For each sample
pair, we independently sample classes for datal and data2, then select an image from each chosen
class. This independent sampling creates varying class distributions across batches and introduces
inter-batch differences. (2) Balanced: We iterate through all 10 classes within per batch, sampling
two images per class for datal and data2, ensuring balanced and identical class distributions within
and across batches. From our experiments on unimodal settings on CIFAR10, we find that the random
and balanced sampling strategies yield similar performance, with differences within 1-2%.

C.4 NUMERICAL STABILIZATION FOR SPECTRAL UPDATES IN UNICON

Stabilized SVD. We analyze the numerical profile of C'(y) € R% %492, On large, high-dimensional
tasks, the raw C(~y) often exhibits rapid spectral decay, small singular—value gaps, and large effective
condition numbers. To stabilize the closed—form spectral step, we tested the following techniques:

* Tikhonov regularization. Add A/, to Cy) to improve conditioning and stabilize SVD.

* Randomized SVD with power iterations (Halko et al.,2011). Use randomized SVD with
power iterations to efficiently extract the top-r components.

* Unit-hypersphere normalization. Before forming similarities/covariances, project embed-
dings onto the unit sphere, matching the contrastive geometry.

* Symmetric case (unimodal). When a unimodal subproblem reduces to estimating a sym-
metric target (e.g. solving F'T F in a single modality), use the symmetrized and ridge—shifted
matrixand then apply eigendecomposition.

On the large—scale MSCOCO retrieval benchmark, we compare a baseline that uses a plain truncated

SVD on C(+) against our stabilized pipeline above. The latter yields higher recall with negligible
overhead.
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Table 5: Effect of stabilization on MSCOCO (image—text retrieval). Stabilized SVD = regulariza-
tion + randomized SVD (with power iterations) + unit-sphere normalization.

SVD method Train time (s) R@1 R@5 R@10
Standard truncated SVD 3247 0.2235 0.4486  0.5649
Stabilized SVD (UniCon) 33.28 0.2601  0.4990 0.6149

C.5 PLUG AND PLAY

Theoretically, contrastive alignment is fundamentally a rank-r spectral structure discovery problem
(Section 3), which gives us intuition that we don’t need massive datasets to find the principal axes,
we only need massive datasets to fill in the fine-grained details.

Empirically, on MSCOCO, we observe that using only 200 images (0.24% of the dataset), (with each
image paired with 5 captions), already yields 66.45% avg R@10, indicating data efficiency. And
from this perspective, UniCon has potential to serve as a fast warm-start initializer for large-scale
multimodal models, which has been mentioned in Section 5.

This suggests that UniCon has potential to be used as a warm-start initializer for large-scale contrastive
models, reducing both optimization time and data requirements.

Plug and play. We state the potential hybrid spectral-SGD strategy in principle as follows, where
UniCon can serve as plug-and-play module. Update with momentum at starting of each batch:
S < (1 —a)S + aS®), then refined by SGD. Figurecompared convergence of CLIP loss with
different o

loss

— alpha=0.9

\.,4_‘_ e A s

Figure C5: Comparison of aw = 0.1,0.5,0.9

C.6 EXPERIMENTS WITH OTHER MODALITIES

To further substantiate the general applicability of our approach with other complex modalities,
we additionally evaluate UniCon on an audio text alignment task using the Clotho datase{Drossos
et al.[(2019). In this experiment, we use pre-trained CLIP and Wav2CLIPWu et al.| (2022) encoders
to extract features from text and audio inputs respectively, followed by a linear projection layer
for cross-modal alignment. The results show that without explicit alignment, the original feature
structures exhibit a significant modality gap, while both UniCon and SGD achieve comparable and
effective alignment performance after training. This additional experiment provides further evidence
of our method’s effectiveness in diverse modality alignment scenarios.

We believe this experiment with different modalities provide further support for UniCon’s scalability
and robustness.
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Table 6: Audio-Text Alignment Results on the Clotho Dataset.

Method R@1a2t R@1t2a R@S5a2t R@5t2a R@10a2t R@10t2a  Time
No alignment ~ 0.0010 0.0000 0.0048 0.0029 0.0096 0.0096 0Os
UniCon 0.0335 0.0249 0.1311 0.1110 0.1943 0.1789 13.45s
SGD-CLIP 0.0373 0.0278 0.1244 0.1139 0.1923 0.2077 347.48s

C.7 KERNEL

Why kernel? The kernel-based formulation is essential in nonlinear contrastive alignment, as
it enables an implicit mapping of feature representations into (potentially infinite-dimensional)
Reproducing Kernel Hilbert Spaces (RKHS). This implicit lifting significantly enhances expressivity,
allowing UniCon to capture complex cross-modal relationships that cannot be represented by linear
projections alone, without explicitly constructing high-dimensional coordinates. Moreover, the
kernel mapping effectively unfolds nonlinear manifolds (e.g., spherical or curved distributions) into
a linearized feature space, where the spectral alignment mechanism can operate directly via rank-r
approximation.

Why Angular Kernel? We adopt angular kernels because features are normalized on the unit
hypersphere, which is an effective practice in contrastive learning. Prior work(Wang et al.l 2017) has
shown that learning representations on the hypersphere leads to better performance than in Euclidean
space, as it avoids the conflicting forces between attractive and repulsive gradients. Angular kernels
are particularly well-suited for this geometry: they are theoretically sound, and simple to implement.
In our view, this simplicity is not a limitation but an advantage. For comparison, we also experimented
with the RBF kernel. The results confirmed our hypothesis: angular kernels consistently outperform
RBF when embeddings lie on the hypersphere. It still worth to explore kernel approximation methods
for memory efficient computation.

Kernel Selection Study. To further demonstrate the impact of kernel choice on alignment perfor-
mance, we have included an empirical study in Table[7] The results below show the performance
variance across different kernel types:

Table 7: Ablation study on kernel selection. Results demonstrate that kernels with stronger geometric
expressivity (e.g., Angular and Arc-Cosine) yield superior alignment performance.

Kernel Type Synthetic Accuracy CIFAR-10 Accuracy
RBF .56 11
Matérn 73 44
Cosine 81 .63
Exponential Cosine 73 .63
Arc-Cosine .85 .63
Angular .86 .63

Results in Table [7 highlight that the kernel choice plays a crucial role in capturing nonlinear relation-
ships, validating the importance of the kernelized UniCon formulation.

C.8 Lo0OSS VARIATIONS

Support for Non-Smooth Losses (e.g., Triplet Loss). Our generalized contrastive loss formulation
accommodates both smooth and non-smooth cases. For losses such as the hinge-based triplet
loss, classical gradients are not defined everywhere, yet their optimization is well-defined using
Clarke subgradients. The rank-r spectral characterization of UniCon still applies in this generalized
subdifferential setting. To support this, we performed a synthetic nonlinear experiment (same setup
as Sec. 4.1, replacing CLIP loss with triplet loss), where UniCon achieved 90% alignment accuracy,
confirming its compatibility with margin-based losses.
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Sigmoid-based Contrastive Losses. We further evaluate UniCon under the Sigmoid contrastive loss
used in SigLIP(Zhai et al., [2023). The results show that UniCon achieves performance comparable to
SGD-SigLIP, demonstrating that UniCon is not limited to softmax-based contrastive objectives.

Method RTR@1 T2IR@1 IRTRE@S T2IR@5 IRTR@10 T2IR@10
UniCon (SigLIP) 0.3340 0.2862 0.5816 0.5334 0.6852 0.6394
SGD-SigLIP 0.2852 0.2816 0.5610 0.5538 0.6924 0.6704

Table 8: Comparison of UniCon and SGD-SigLIP under Sigmoid contrastive loss.
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