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ABSTRACT

Estimating the effect of human-interpretable concepts on model predictions is cru-
cial for explaining and auditing machine learning systems, as well as for miti-
gating their reliance on spurious correlations. Most existing approaches assume
complete concept annotations, but in practice some concepts may remain unob-
served and act as confounders, biasing causal effect estimates. We introduce Un-
CoVAEr (Unobserved Confounding Variational AutoEncoder), a latent-variable
model that partitions image latent representations into confounder-related and
non-confounding residual components. This allows us to (i) identify which ob-
served concepts are confounded, (ii) obtain corrected unbiased effect estimates
via backdoor adjustment, and (iii) learn confounder-proxy variables that align with
underlying latent factors. On a controlled semi-synthetic MorphoMNIST bench-
mark, we show that UnCoVAETr yields substantially less biased effect estimates
than prior methods, providing practitioners with a practical tool for trustworthy
concept-level causal inference in partially annotated image datasets.

1 INTRODUCTION

Human-interpretable visual concepts are being increasingly used to explain, audit and control the
behavior of machine learning models. Concept-based explanations enable domain experts to ask
and answer targeted causal questions such as “how much does hippocampal atrophy, as seen on an
MRI, contribute to an Alzheimer’s diagnosis?” (Castro et al., 2020) or “which facial attributes drive
perceived attractiveness in our annotated dataset?” (Lingenfelter et al.,|2022). In practice, however,
causal statements at the concept level are only as valid as the assumptions that underlie them. Most
existing concept effect estimators implicitly assume that we have measured all relevant visual factors
that confound concept-label relations. When important factors are missing from the annotation set,
naive observational estimates can be severely biased and lead practitioners to mistaken conclusions
and harmful interventions.

Consider a scenario in medical imaging where an interpretable concept-based model concludes that
hippocampal atrophy is a dominant predictor of Alzheimer’s disease. However, this association may
be inflated by confounders such as scanner hardware or acquisition protocols: different scanners
alter image appearance in ways that affect how atrophy is manifested and measured, while also
correlating with hospital site and diagnostic practices that influence the diagnosis. As a result,
a naive estimate of the effect of hippocampal atrophy on diagnosis may capture site- or device-
specific artifacts rather than a genuine biological causal effect, potentially misleading auditors and
downstream clinical decisions. Next, consider a facial-attribute dataset where a set of annotated
concepts such as smiling, makeup or age are used to predict attractiveness. Yet, unannotated factors
like skin tone, lighting, or demographic imbalance in the dataset can act as confounders, inflating
the estimated influence of certain attributes and masking annotator prejudice (Lingenfelter et al.,
2022). Obtaining unbiased causal effect estimates enables practitioners and researchers to estimate
bias in datasets (Madras et al.,|2019;|Di Stefano et al.,|2020), decide if they need to collect additional
metadata or reweight training examples (Zhao et al.| 2023)). Moreover, obtaining corrected causal
effect estimates can be useful to improve the performance of domain generalization methods by
penalizing reliance on spurious attributes (Kumar et al., 2023).

Concept-based models are not new: they can be understood as a principled evolution of feature
engineering in which model decisions are expressed in terms of semantically meaningful factors
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Figure 1: (a) The causal graph shows a case where one of our observed concepts C' (intensity) and
our label of interest Y are caused by an unobserved confounder (thickness). (b) As a result, when
computing the effect of intensity on Y without taking this confounding into account , we get a wrong
estimate. (c¢) Our method Unobserved Confounding Variational AutoEncoder (UnCoVAETr) esti-
mates the correct causal effects and finds which observed concepts are confounded. After training
our model, we provide C, Y, and the image X to the encoder, which outputs a confounder-related
latent Z¢ and a non-confounding residual Zg used only for image reconstruction. We then perform
backdoor-adjustment using the learned proxy Z¢ to debias the Average Treatment Effect (ATE) es-
timation. Additionally, we can intervene on the confounder proxy and interpret its effect.

rather than opaque input dimensions. Early work assumed a fixed, complete set of predefined con-
cepts (Koh et al.l [2020); subsequent methods allow concepts to be learned post-hoc or discovered
from images (Yuksekgonul et al.,|2023}; Oikarinen et al.| 2023; [Sawada & Nakamural 2022} |Shang
et al.| [2024; Rao et al.|[2024)), and a growing body of research takes a causal formulation on concept
models [Dominici et al.|(2025b3a); [Moreira et al.| (2024). Separately, a line of work that builds on
proximal causal inference (Tchetgen et al.| |2020) studies causal question in the presence of latent
confounders that manifest through proxies, estimating treatment effects originally in tabular settings
(Louizos et al.l |2017; |Wu & Fukumizu, 2022; Zhang et al., |2020; [Miao et al., 2018; (Wang & Bleil,
2021) and extending to high-dimensional data such as images (Kaddour et al.| 2021; [Kompa et al.,
2022; [Israel et al., 2023 Jerzak et al.l [2023; |Schulte et al.| [2025). Our work sits at the intersection
of these two threads: we incorporate a deep latent-variable method from the proximal causal in-
ference literature to robustly estimate causal quantities when unobserved visual concepts confound
both observed concepts and the label.

We propose UnCoVAEr, a latent-variable model inspired by Causal Effect Variational AutoEn-
coder (CEVAE) that explicitly accounts for concept incompleteness by partitioning the latent space
into two parts: a confounder-related component that explains variation shared between concepts and
label, and a non-confounding block that captures residual image variation. This structured decom-
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position lets us (i) recover proxies for the confounders, (ii) use them to estimate concept effects
via backdoor-adjustment, and (iii) identify which observed concepts are substantially confounded
by latent visual factors. We validate our approach on a controlled semi-synthetic Morpho-MNIST
benchmark. UnCoVAEr reduces bias in concept-effect estimates compared to prior concept-based
and latent-variable baselines.

Our contributions are as follows: (1) we formalize concept incompleteness as a latent confounding
problem in image datasets and introduce partitioned-latent representations as an effective inductive
bias; (2) we propose a principled criterion to distinguish confounded from unconfounded concepts
and correct their effect estimates via backdoor adjustment; and (3) we provide empirical evidence
that UnCoVAETr reduces bias in causal effect estimates compared to strong baselines and learns
proxy variables that correlate with underlying latent confounders on a controlled semi-synthetic
MorphoMNIST dataset.

2 RELATED WORK

Latent-variable proximal causal inference UnCoVAEr builds on a line of work that utilizes
deep latent-variable models to estimate causal quantities like ATE in the presence of unobserved
confounders. CEVAE (Louizos et al., 2017) assumes a causal graph where latent confounders are
also causes of observed proxies and uses a Variational AutoEncoder (VAE) formulation to model the
data-generating process and estimate ATE with backdoor adjustment. While CEVAE has demon-
strated promising empirical performance, its reliance on variational inference raises concerns about
identifiability. Rissanen & Marttinen|(2021) provide an extensive critique, showing analytically and
experimentally that CEVAE can fail when the latent space is misspecified or when the data dis-
tribution is complex, despite working in simple synthetic setups, while they also provide simple
experiments on digit images. Follow-up works provide identification under limited overlap assump-
tions (Wu & Fukumizu, [2022) and disentangle instrumental, risk, and confounding factors to better
isolate causal effects (Zhang et al., [2020), while Madras et al.| (2019) utilize CEVAE to improve
causal effect estimates between sensitive attributes and outcome in a fairness setting. At the same
time, proximal causal inference literature (Tchetgen et al.,[2020) and related proxy-variable identi-
fication results provide formal conditions (completeness / rank) under which proxies identify causal
effects (Miao et al., [2018}; |[Wang & Blei, [2021). A number of recent works tackles causal effect
estimation assuming that images or image-derived features act as proxies for latent confounders.
Some approaches apply standard adjustment ideas by learning a model that extracts confounding in-
formation from the image via propensity score matching (Jerzak et al., 2023)) or by extracting image
features (Xu et al.|[2021;|Schulte et al.;[2025)). Others develop neural methods that directly learn the
necessary adjustment functions from high-dimensional proxies (Kompa et al., 2022). |[Kumar et al.
(2023) also use the image directly to perform backdoor adjustment and use the estimated causal
effects of the attributes to regularize classifiers for domain generalization.

Concept-based explanations Concept-based explanation methods such as TCAV (Kim et al
2018)) or Concept Bottleneck Model (CBM) (Koh et al.l [2020) treat concepts as interpretable prim-
itives for explaining image classification, enabling interventions and attributing predictions directly
to concepts. Follow-up work has extended CBMs to incorporate concepts not predefined in the
concept set (Yuksekgonul et al.| [2023; |Oikarinen et al.| 2023 [Sawada & Nakamural [2022; |Shang
et al.,[2024; Rao et al.|[2024)), while also revealing important limitations, such as whether the learned
concepts truly correspond to human-understandable semantics or instead capture spurious shortcuts
(Mahinpei et al., [2021; [Margeloiu et al., 2021; Havasi et al., [2022)). In this line of work, Bahadori &
Heckerman| (2021)) address biases in concept-based explanations arising from confounding informa-
tion. They propose a two-stage regression technique, inspired by instrumental variable methods, to
remove the impact of confounders and noise. Their approach also considers the completeness of the
concept set (Yeh et al.l 2020), demonstrating effectiveness even when the set is incomplete. |Goyal
et al.| (2020) introduce the notion of CaCE (Causal Concept Effect), defining it as the effect of the
presence or absence of a human-interpretable concept on a deep neural network’s prediction. They
train a conditional VAE to generate counterfactuals by disentangling and intervening on the concept
of interest. While they highlight the importance of causality for concept explanations, they rely
on the assumption that unobserved confounders do not significantly impact the observed concepts.
Gao & Chen|(2024) explicitly tackle concept incompleteness by constructing pseudo-concepts or-
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thogonal to the observed ones and using a linear predictor to capture residual bias. However, their
orthogonality assumption does not allow for confounding.
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Figure 2: Our causal graph assumption. We assume that the image X is jointly caused by a set
of observed concepts C, the unobserved confounder Z¢ and some Zg (e.g. writing style, point of

view) that is irrelevant for C' and the outcome Y. C' cause Y, while the unobserved confounder Z¢
causes both C'and Y.

3 PRELIMINARIES AND PROBLEM SETUP

We observe i.i.d. samples (X,C,Y) ~ D, where X € X is an image, C = (C4,...,Cp) €
{0,1}M are observed binary concept annotations, and Y € {0, 1} is a binary outcome of interest.
We are interested in quantifying how changes to a single concept C; causally affect Y. Two com-
mon estimands for this are the individual (or conditional) treatment effect (ITE) and the population
Average Treatment Effect (ATE):

ITE;(z) = E[Y | do(C; =1),X =z]| — E[Y | do(C; =0), X =z |

ATE, = E[Y | do(C; = 1)] — E[Y | do(C; = 0)]. M
Concept-based explanation methods such as CBMs (Koh et al.| [2020) perform concept-interventions
by editing intermediate concept values and re-evaluating the outcome classifier. These types of
interventions and the treatment effects they yield are similar to those obtained by meta-learners in
the causal inference literature (Kiinzel et al.,|2019). For example, the S-learner, which is one of the
simplest methods for treatment effect estimation, performs the same operation: it fits a predictor
of Y given covariates and treatment (concepts in this case) and then estimates treatment effects by
changing the treatment value in the input. These estimators coincide with the do-intervention only
under the ignorability assumption (no unobserved confounding) and can work well enough only in
this setting. However, in the presence of unobserved confounders, the estimates will be biased.

Confounding and backdoor adjustment Let V' denote an observed variable that jointly causes
some observed concepts C' and the outcome Y. If V blocks all backdoor paths from C; to Y, the
interventional mean is given by the backdoor formula:

E[Y | do(C; = ¢)] = /VE[Y | C; = ¢,V =v]p(v) dv. (2)

Thus, if V' is observed, then Eq. [2] gives an unbiased estimand for the ATE as an immediate conse-
quence of the backdoor-criterion |Pearl| (1993).

Proxy learning from images In our setup, instead of an observed V', we have a set of unobserved
variables U. We assume that the unobserved confounders of interest manifest themselves in the
image X (e.g. scanner type, lighting or a separate attribute that affects both annotations and labels).
Thus X serves as a high-dimensional proxy for U. Because X also contains many features irrelevant
to the causal relation between C' and Y, we aim to learn a lower-dimensional proxy latent Z¢ from
(X, C,Y) with the following operational properties:
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(P1) Adjustment sufficiency: conditioning on Z¢ blocks the backdoor paths between C; and YV
(so Z¢ plays the role of V' in Eq.[2);

(P2) Parsimony: Z¢ is low-dimensional and amenable to downstream estimation and marginal-
ization.

(P3) Interpretability: We model Z¢ as a binary variable to fit well in our setup of binary con-
cepts and outcomes

We assume the causal structure shown in Figure 2] As we want Z¢ to contain only the confounding
information for adjustment, we decompose the image into two parts: a discrete confounder-specific
latent Z¢ € {0,1}% and a continuous residual latent Zg € R?. Intuitively, Z¢ captures the visual
variation that (partially) explains both some observed concepts C' and the label Y, while Zg contains
the remaining image variation that is irrelevant for the causal relationship between C' and Y, but
necessary to model X accurately.

Under (P1), we have:

p(Y | X,do(C; =¢)) = Y p(Y | X,C; =c,Zc)p(Zc | X) . (3)
Zc
Thus, to estimate ITE;(x) = E[Y | X = z,do(C; = c)| and ATE; = E[ITE;(z)] we need to
learn the conditional p(Y | X, C, ZC)EI and the posterior p(Z¢ | X).

Identification requirements and limitations Identification of causal effects from observational
(X, C,Y) rests on standard proxy-type and overlap assumptions. First, the observed image X must
carry sufficient proxy signal of the unobserved confounder: if the confounder leaves no detectable
trace in pixels, then no method can recover its effect. Second, the support of relevant predictive
distributions must overlap (positivity), so that the requisite conditional expectations are well defined.
Additionally, we assume that there are no unobserved colliders: no latent variables caused by both
the outcome Y and a concept C;. If such a collider exists, conditioning on it opens a spurious path.
Under these conditions, and assuming a sufficiently expressive latent-variable model, our adjusted
estimator using Z¢ is consistent in principle. We offer three clarifications: (i) we do not require
recovery of the true confounder, only that the learned proxy Z suffices for valid adjustment; (ii)
if the confounder leaves no observable imprint, identification is impossible for any method; and
(iii) while practical estimation is subject to approximation error, our results show that UnCoVAEr
recovers unbiased ATEs whenever these identification assumptions hold.

4 UNCOVAER: UNOBSERVED CONFOUNDING VARIATIONAL
AUTOENCODER

We now introduce UnCoVAET, a variational autoencoder designed to recover causal concept effects
under unobserved confounding.

Generative model The assumed causal graph of Figure [2|leads to the following factorization of
the joint distribution:

p(X,C.Y, Zc,Zs) = p(Zc)p(Zs)p(C' | Zo)p(X | C, Zo, Zs)p(Y | C, Zc). 4)

Our model parameterizes three decoders: py, (X | C, Z¢, Zs), po.(C | Zc), and pg, (Y | C, Zc).
Because the exact posterior p(Z¢, Zs | X, C,Y) is intractable, we introduce a variational encoder:
Ape.¢s (ZC7 Zs | X,C, Y) = q¢c(ZC | X,C, Y) 4o, (ZS | X,C, Y)

We implement a shared backbone with separate output heads: logits for the discrete confounder-
related latent Z¢ (parameters ¢.) and Gaussian parameters (u,, 0y, ) for the continuous residual
latent Zg. Z¢ is sampled with the Gumbel-Softmax relaxation during training (Jang et al.,|2017). To
reduce information leakage between the two blocks, we additionally include a mutual-information
regularizer that minimizes MI(Z¢, Zg) using the CLUB estimator with parameters ¢ (Cheng et al.,
2020). This encourages Z¢ to capture confounder-related variation distinct from the residual infor-

mation in Zg.

"Note that under the assumed causal graph of FigureY is independent of X given C and Z¢, so p(Y |
C, Zc¢) suffices.
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Training objective We maximize the evidence lower bound (ELBO):
Lerso =By, , (zo.zs1x,cv) [108po, (X | C, Zc, Zs) +logpe, (C | Zc) +logps, (Y | C, Zc)]
- KL(q¢c (ZC ‘ Xv Ca Y) || p(ZC)) - KL(Q¢5 (ZS | Xa Cv Y) || p(ZS))a (5)

using the following priors: p(Z¢) = H3K=1 Bern(m = 0.5) and p(Zg) = H?zl N(Zs, |0,1).

We augment Lgrgo with two auxiliary discriminative losses, implemented as small classification
heads (following |Louizos et al.|(2017)):

Laux,C = _]Epdam(ﬂlyc) [1Og q¢c (C ‘ X)L ‘Caux,Y = _Epdm(z,qy) [IOg 3% (Y | Xv C)]

The auxiliary losses serve two roles: (i) they are used during inference, providing predictors for C'
and Y, and (ii) they encourage representations that capture task-relevant information, sharpening the
posterior and improving the quality of learned Z¢ as a confounder proxy. Adding the CLUB-based

mutual-information estimate Ly = 1\//[\1,/,(2(;, Zs), The overall training objective is therefore
Liain = —LELBO + AcLaux,c + Ay Laux,y + AM1Lwr, (6)

where A¢, Ay, Amr > 0 balance the auxiliary and independence terms. In our experiments, setting
(Ao, Ay, Amr) = (1.0,1.0,0.1) yielded the best performance.

The auxiliary g¢, (C' | X) is analogous to the concept layer in concept-bottleneck models (it pro-
vides an image-to-concept mapping), while g¢, (Y | X, C') functions similar to an outcome layer
with a residual connection (Yuksekgonul et al., 2023)).

While the original CEVAE utilizes a TARNET-style architecture (Shalit et al.| |2017) that fits separate
outcome heads per treatment, our model shares decoders and conditions on C, since the networks
would scale exponentially with the number of concepts. In our experiments we also explore a variant
that allocates an independent discrete latent Z, for each concept C; (i.e., separate confounder
proxies per concept). This allows us to estimate confounder proxies separately per concept and
better interpret their relation with the observed proxies.

We use KL-annealing for the latent KL terms (gradually increasing their weight from 0 to 1 dur-
ing early epochs) to avoid posterior collapse (Bowman et al.,|2016) and temperature annealing for
the Gumbel-Softmax relaxation of Zs (start at 79 and reduce to 7Ty,i,) to transition from smooth
relaxation to near-discrete samples (Jang et al., 2017).

ATE estimation After training, we estimate interventional means by marginalizing over the ag-
gregated posterior of the confounder-latent Z¢. Concretely, for each test image x we draw samples
(c,y,2z) with e ~ qe. (C | ), y ~ gy, (Y | @,¢), and z ~ ¢4.(Z¢c | ,c,y). This yields approx-
imate draws from ¢4, (Z¢ | ), analogous to the marginalization strategy in |[Louizos et al.| (2017).
For each target concept C;, we intervene by setting it to ¢ € {0, 1} while leaving the remaining
concepts C_; at their sampled values, and evaluate

N M
~ 1 1 m m
E[Y|d0(cizc)]zﬁ § Vi E Eey[Y|Ci=C, C_i:c(ﬂ-), ZC:Z( )}, (7)
n=1 m=1

where M (100 in our experiments) is the number of posterior samples per image. For each Cj,
the ATE is the difference in predicted outcomes under interventions C; = 1 and C; = 0. To de-
tect confounding, we compare the above ATE with the estimated difference in conditional means:
ATEpaive = E[Y | C; = 1] — E[Y | C; = 0], which would . We flag a concept as confounded
when the computed ATE significantly and systematically differs from ATE,,;yc. For this, we em-
ploy a bootstrap test, in which we resample and recompute ATEs per batch and flag a concept as
confounded if the 95% confidence intervals of the ATE do not overlap.

5 EXPERIMENTAL SETUP

5.1 DATASET

We evaluate UnCoVAEr on a controlled semi-synthetic benchmark derived from Morpho-MNIST
(Castro et al.||2019), where digit images are systematically modified along interpretable morpholog-
ical axes. All experiments use 5 random seeds; for each seed we select a different digit class (0—4).
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This design minimizes variation due to digit identity and isolates causal effects arising purely from
morphology.

We focus on four pixel-level morphological attributes as binary concepts: thickness, intensity, slant,
and width. Continuous values for each concept are sampled conditionally from A(0.25,0.01) when
C; = 0and N(0.75,0.01) when C; = 1. The values are then scaled according to the attribute.

The outcome Y is a synthetic label constructed as a logical rule over the concepts:
Y = 1{thickness + slant 4+ width > 2},
i.e., Y = 1if at least two of these three concepts are active, with intensity not causing Y.

We design three dataset variants to probe distinct confounding patterns:

(i) Single confounder: observed concepts: {intensity, slant, width}; unobserved: {rhickness}.
Thickness causally influences intensity, making it the only observed concept affected by an
unobserved confounder.

(ii) Common confounder: observed: {
emphintensity, slant, width}; unobserved: {thickness}. Here thickness jointly drives both
intensity and slant, acting as a shared confounder across multiple observed concepts.

(iii) Multiple confounders: observed: {intensity, width}; unobserved: {thickness, slant}. Both
thickness and slant affect intensity through a non-linear XOR causal mechanism, so a single
observed concept is influenced by two distinct unobserved confounders.

Across all variants we control the confounding strength «.. For a causal link C; — C}, the label of
Cj is set equal to C; with probability o. We evaluate under two regimes: an in-distribution (ID)
test set with strong confounding (o« = 0.9) and an out-of-distribution (OOD) test set with much
weaker confounding (o = 0.6), enabling us to assess robustness of ATE estimation under shifts in
the confounding mechanism.

Lastly, to ensure that our method correctly adjusts for observed confounders, we construct an addi-
tional experimental setup by modifying the Multiple confounders variant. We assume that thickness
is now observed (slant remains unobserved).

5.2 BASELINES AND ABLATIONS

We benchmark UnCoVAEr against latent-variable, concept-based, and feature-adjustment methods.

CEVAE (Louizos et all [2017) is adapted for the image domain with convolutional en-
coders/decoders. Its difference from our method is that it does not partition the latent space but
uses a single continuous latent.

CaCE (Goyal et al.,2020) estimates causal concept effects via counterfactual generation. Its original
formulation refers to estimating effect on a classifier, rather than the true causal effect. For fair
comparison we use the same architecture for encoder/decoder and we train an auxiliary predictor
ge(Y | X), which we use to assess change in outcome.

Image-adjustment (Jerzak et al. 2023) conditions directly on image embeddings by fitting a
propensity score model é;(z) = p(C; = 1 | X = z) and applying inverse-probability weight-
ing (IPW) to estimate E[Y | do(C;)].

Concept Bottleneck Model (CBM) (Koh et al.| 2020) predicts Y through an intermediate concept
layer C' = f(X) and enables interventions by editing C;.

Residual CBM (Res-CBM) augments standard CBM by explicitly modeling variation unexplained
by observed concepts. Predictions are of the form Y = g(C, (X)), where (X)) is a residual rep-
resentation. During training the concept layer remains fixed and we discretize r(X ) with Gumbel-
Softmax. To estimate causal effects, we use IPW with é;(C; | r(X)).

Finally, we include two meta-learners in the style of S-learners: (i) a Naive Estimator, which
conditions only on C' (biased under unobserved confounding); and (ii) an Oracle Estimator, which
additionally conditions on the true latent confounder(s), providing an empirical upper bound.



Under review as a conference paper at ICLR 2026

To assess the contribution of each component of UnCoVAEr, we perform the following ablations:
(i) removing the image reconstruction term pg_ (X | C, Z¢, Zs), (ii) using only a shared discrete
latent Z¢, (iii) the default model with shared Z. and residual Zg; and (iv) a variant with separate
per-concept confounder proxies Z¢;,.

6 RESULTS

Table E]reports ATE estimation error across methods, datasets, and test regimes. Several consistent
patterns emerge. First, in the single confounder setting, UnCoVAEr substantially outperforms all
baselines, apart from the oracle which has access to the true confounder. The closest competitor
is CEVAE, which itself can be seen as a restricted instance of our model using only a continuous
latent.

Second, in the common confounder scenario, UnCoVAEr again improves upon feature-adjustment
and CBM-based approaches. Interestingly, CaCE performs competitively here. Counterfactual con-
cept editing remains effective when a single latent factor drives multiple observed pathways. Nev-
ertheless, UnCoVAEr maintains strong performance, especially in-distribution.

Third, the multiple confounders variant exposes an interesting case. Since intensity is caused by
the logical XOR of two latent factors, naive conditioning and CBMs manage to directly learn and
exploit the intenisty-Y relation without accounting for the unobserved confounder at all, performing
unexpectedly close to the oracle. Image-based methods, by contrast, are misled by this non-linear
dependence. Among them, UnCoVAEr provides the lowest error, though the per-concept Z¢, variant
proves unstable in this regime. This suggests that while our structured latent partition is generally
robust, learning disentangled proxies remains challenging under interacting confounders.

Finally, across all scenarios, UnCoVAEr shows improved out-of-distribution robustness: errors re-
main consistently lower than baselines when the strength of confounding shifts from o« = 0.9 to
o = 0.6. This supports our central claim that learning an explicit confounder proxy yields more
stable causal effect estimates under distributional change.

Ablations and Diagnostics Table|l|further shows the effectiveness of the partitioned latent space
design of UnCoVAEr. When the same bottleneck latent is used for reconstruction and for recovering
the confounder proxy, the method underperforms. Moreover, our hypothesis that the proxy should
guide image reconstruction is validated, as is evident in the performance drop. Finally, per-concept
latents Z¢, provide marginal gains, but become unstable under complex confounding. Figure
indicates that our confounding-detection criterion is generally effective, especially in the common
confounder scenario, where it correctly characterizes both observed concepts. We report occasional
false positives in the single case and a significant deterioration in the multiple-confounder case,
where the naive estimators approximate the true ATE more closely than our estimands.

Table 1: Mean ATE estimation error (MAE, lower is better) across methods, datasets, and test
regimes (averaged across concepts). Results are reported as mean * std over 5 seeds. ID: in-
distribution test set (o = 0.9); OOD: out-of-distribution test set (o« = 0.6). Best non-oracle baseline
per column is in bold.

Single confounder Common confounder Multiple confounders
Method ID OOD 1D 00D D 00D
Naive A31£.18  135+£.19  .163£.11 213+.04 .009+.01 .009=+.01
Oracle 003£.01 .002£.00 .002+.01 .009+.02 .001+.01 .001+.01
Image-adjustment 168 +£.16 133 4+.18 440+ .24 183+ .14 109+ .14 117+ .15
CBM A36+ .18 136 £.18  .163+.11  214+.04 .011+.01 .012+£ .01
Res-CBM 331220 418£.09 .171£.17 560+ .40 287+ .24 253+ .23
CaCE d14£.14  087£.09 .058+.05 .065+.03 .157+.13 .166 £ .07
CEVAE 058+£.06 .049+.05 .079+.08 .112+.05 .106+.09 .096 & .06
UnCoVAEr (no p(X)) A13£.07  112£.06 .064+.06 .119+.07 210+.14 .209+.14
UnCoVAEr (only Z¢) 070£.11 089 £.11 .098+.10 .172+£.08 .080=£.10 .077 £.10
UnCoVAEr (Zs + Z¢) .036+.04 .040£.03 .055£.07 .097£.06 .070£.05 .065=£.05

UnCoVAEr (Zs + Z¢,/C;)  .041 £.04 .037+.04 .047+.03 .105+.04 .136+.11 .138+.09
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Detection rate by dataset and concept

I Confounded
B Not Confounded

Confounding-detection rate

intensity width slant intensity width slant intensity width intensity width thickness
Single Common Multiple Multiple
(observed)

Figure 3: Empirical rate at which each concept was detected as confounded across random seeds
(confounding detection rate). Results are shown for all three MorphoMNIST variants, plus the
multiple-confounders setting where one of the confounders (thickness) is observed.

7 DISCUSSION

Our work addresses a critical gap in concept-based model interpretation: the presence of unobserved
visual confounders that bias causal effect estimates. While concept-based methods have gained
traction for their interpretability, our results demonstrate that ignoring latent confounding can lead
to substantially biased conclusions about which concepts truly drive model predictions.

Our experiments reveal interesting nuances in different confounding scenarios. While UnCoVAEr
excels with single or shared confounders, performance degrades when confounders interact in non-
linear ways (e.g., XOR). In such cases, direct statistical associations remain easier to capture than
the underlying more complex causal structure, and all tested image-based methods fail. Handling
complex, interacting confounders remains an open challenge requiring further methodological de-
velopment. Still, the OOD evaluations are encouraging: robustness to shifts in confounding strength
indicates that Z captures meaningful causal signals rather than overfitting correlations. This robust-
ness is essential for real-world applications where confounding patterns may vary across datasets or
deployment contexts.

Limitations and Future Work UnCoVAEr’s primary limitation is its reliance on the assumption
that confounders manifest visually in the image. Our experiments also highlight that complex causal
structures or interactions remain challenging for current latent-variable approaches. However, the
most critical challenge—and the most important direction for future work—is validating UnCoV-
AFEr on complex real-world datasets. The true test of our model’s practical utility lies in its ability to
perform robustly in settings like medical imaging or model auditing, where concepts interact in un-
predictable ways and the ground-truth confounding variables are fundamentally unknown. Success-
fully demonstrating effectiveness in these noisy, high-stakes environments is essential for moving
from a theoretical proof of concept to a reliable tool for causal interpretability in applied domains.

8 CONCLUSIONS

We introduced UnCoVAETr, a deep latent-variable model for estimating causal concept effects under
visual latent confounding. By partitioning the latent space into confounder-related and residual com-
ponents, our method recovers proxy variables that enable valid backdoor adjustment even when key
visual concepts remain unannotated. On controlled benchmarks, UnCoVAEr substantially reduces
bias in causal effect estimates compared to existing concept-based and latent-variable approaches,
while maintaining robustness under distribution shift. Our work highlights a critical considera-
tion for practitioners that rely on concept-based explanations: incomplete concept annotations can
severely bias causal conclusions. UnCoVAEr provides a practical tool for detecting and correcting
such biases, enabling more trustworthy concept-level causal inference in partially annotated image
datasets.
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A CODE AND IMPLEMENTATION DETAILS

All code, configuration files, and instructions required to reproduce our experiments are available
at https://anonymous.4open.science/r/causal-residual-concepts-346E/
README . md. The repository includes full implementations of UnCoVAEr and all baselines, as well
as scripts for dataset preparation, training, and evaluation. We provide detailed configuration files
specifying model architectures, optimizer settings, training schedules, and hyperparameter choices.
Additional results, including json files and qualitative figures (e.g., counterfactual visualizations for
benchmarked methods), are also included in the repository.

Reproducibility checklist

* Datasets: MorphoMNIST variants described in Section[5] with generation scripts included
in the repository.

* Evaluation metrics: mean absolute error (MAE) of ATE estimates, bootstrap uncertainty
test for confounding assessment, as described in Section @

* Code availability: full training/evaluation code and pre-trained model checkpoints are
provided.

* Hyperparameters: all hyperparameters (learning rate, optimizer type, batch size, KL-
annealing schedules, Gumbel-Softmax temperature annealing) are specified in configura-
tion files.

* Compute: experiments were run on a single NVIDIA A10 GPU (24GB memory); training
a model typically takes around 15 minutes.

* Randomness: results are averaged over 5 seeds, with random seeds fixed and logged for
reproducibility.

B USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as assistive tools during the preparation of this paper.
Their role was limited to improving readability and presentation: for example, rephrasing para-
graphs for smoother academic flow, standardizing LaTeX formatting, and polishing grammar. In
some cases, LLMs were also used to suggest more concise ways of summarizing experimental find-
ings. They were not involved in research ideation, experimental design, implementation, or inter-
pretation of results. All scientific contributions are the sole responsibility of the authors, who take
full responsibility for the final content.
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