

000 UNCoVAEr: ESTIMATING CAUSAL CONCEPT 001 EFFECTS UNDER VISUAL LATENT CONFOUNDING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

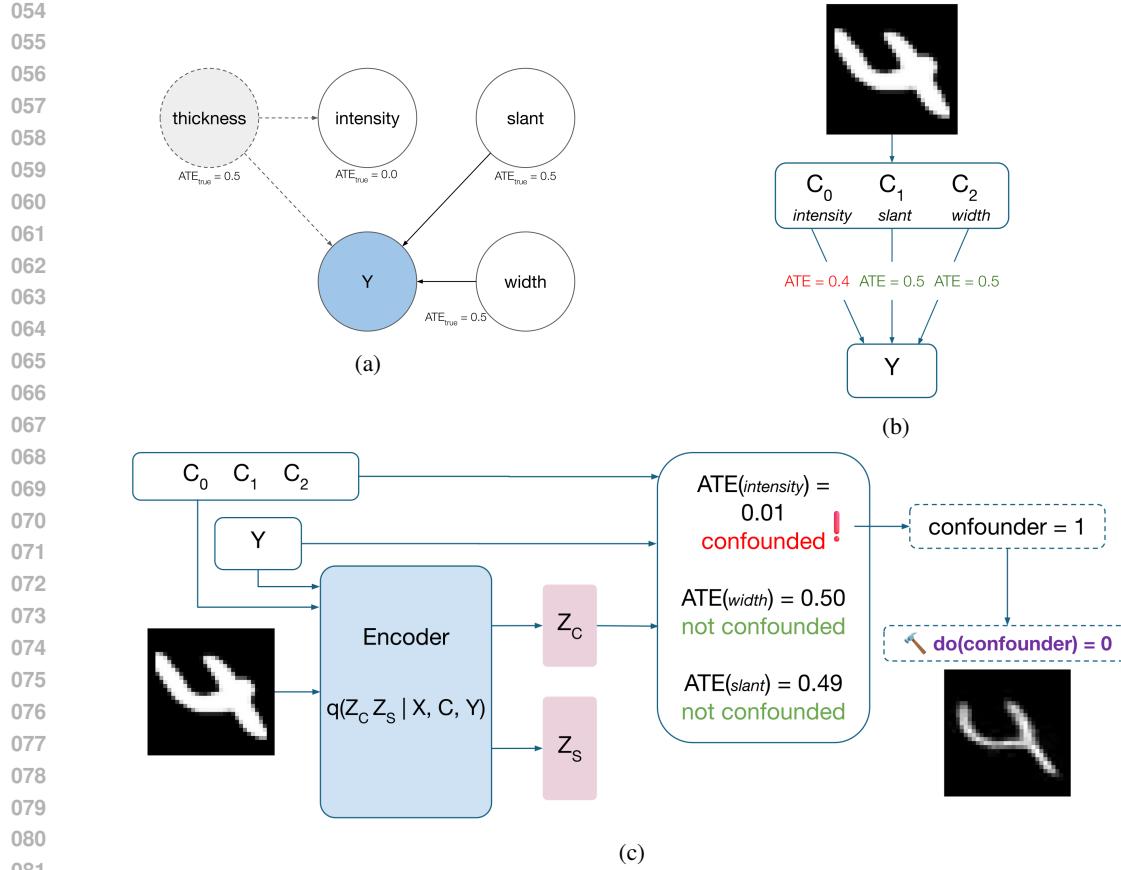
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Estimating the effect of human-interpretable concepts on model predictions is crucial for explaining and auditing machine learning systems, as well as for mitigating their reliance on spurious correlations. Most existing approaches assume complete concept annotations, but in practice some concepts may remain unobserved and act as confounders, biasing causal effect estimates. We introduce **UNCoVAEr** (Unobserved Confounding Variational AutoEncoder), a latent-variable model that partitions image latent representations into confounder-related and non-confounding residual components. This allows us to (i) identify which observed concepts are confounded, (ii) obtain corrected unbiased effect estimates via backdoor adjustment, and (iii) learn confounder-proxy variables that align with underlying latent factors. On a controlled semi-synthetic MorphoMNIST benchmark, we show that UnCoVAEr yields substantially less biased effect estimates than prior methods, providing practitioners with a practical tool for trustworthy concept-level causal inference in partially annotated image datasets.

1 INTRODUCTION

Human-interpretable visual concepts are being increasingly used to explain, audit and control the behavior of machine learning models. Concept-based explanations enable domain experts to ask and answer targeted causal questions such as “how much does hippocampal atrophy, as seen on an MRI, contribute to an Alzheimer’s diagnosis?” (Castro et al., 2020) or “which facial attributes drive perceived attractiveness in our annotated dataset?” (Lingenfelter et al., 2022). In practice, however, causal statements at the concept level are only as valid as the assumptions that underlie them. Most existing concept effect estimators implicitly assume that we have measured all relevant visual factors that confound concept-label relations. When important factors are missing from the annotation set, naive observational estimates can be severely biased and lead practitioners to mistaken conclusions and harmful interventions.

Consider a scenario in medical imaging where an interpretable concept-based model concludes that hippocampal atrophy is a dominant predictor of Alzheimer’s disease. However, this association may be inflated by confounders such as scanner hardware or acquisition protocols: different scanners alter image appearance in ways that affect how atrophy is manifested and measured, while also correlating with hospital site and diagnostic practices that influence the diagnosis. As a result, a naive estimate of the effect of hippocampal atrophy on diagnosis may capture site- or device-specific artifacts rather than a genuine biological causal effect, potentially misleading auditors and downstream clinical decisions. Next, consider a facial-attribute dataset where a set of annotated concepts such as smiling, makeup or age are used to predict attractiveness. Yet, unannotated factors like skin tone, lighting, or demographic imbalance in the dataset can act as confounders, inflating the estimated influence of certain attributes and masking annotator prejudice (Lingenfelter et al., 2022). Obtaining unbiased causal effect estimates enables practitioners and researchers to estimate bias in datasets (Madras et al., 2019; Di Stefano et al., 2020), decide if they need to collect additional metadata or reweight training examples (Zhao et al., 2023). Moreover, obtaining corrected causal effect estimates can be useful to improve the performance of domain generalization methods by penalizing reliance on spurious attributes (Kumar et al., 2023).

Concept-based models are not new: they can be understood as a principled evolution of feature engineering in which model decisions are expressed in terms of semantically meaningful factors



082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: **(a)** The causal graph shows a case where one of our observed concepts C (*intensity*) and our label of interest Y are caused by an unobserved confounder (*thickness*). **(b)** As a result, when computing the effect of *intensity* on Y without taking this confounding into account, we get a wrong estimate. **(c)** Our method *Unobserved Confounding Variational AutoEncoder (UnCoVAE)* estimates the correct causal effects and finds which observed concepts are confounded. After training our model, we provide C , Y , and the image X to the encoder, which outputs a confounder-related latent Z_C and a non-confounding residual Z_S used only for image reconstruction. We then perform backdoor-adjustment using the learned proxy Z_C to debias the Average Treatment Effect (ATE) estimation. Additionally, we can intervene on the confounder proxy and interpret its effect.

rather than opaque input dimensions. Early work assumed a fixed, complete set of predefined concepts (Koh et al., 2020); subsequent methods allow concepts to be learned post-hoc or discovered from images (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Sawada & Nakamura, 2022; Shang et al., 2024; Rao et al., 2024), and a growing body of research takes a causal formulation on concept models Dominici et al. (2025b;a); Moreira et al. (2024). Separately, a line of work that builds on proximal causal inference (Tchetgen et al., 2020) studies causal question in the presence of latent confounders that manifest through proxies, estimating treatment effects originally in tabular settings (Louizos et al., 2017; Wu & Fukumizu, 2022; Zhang et al., 2020; Miao et al., 2018; Wang & Blei, 2021) and extending to high-dimensional data such as images (Kaddour et al., 2021; Kompa et al., 2022; Israel et al., 2023; Jerzak et al., 2023; Schulte et al., 2025). Our work sits at the intersection of these two threads: we incorporate a deep latent-variable method from the proximal causal inference literature to robustly estimate causal quantities when unobserved visual concepts confound both observed concepts and the label.

We propose **UnCoVAE**, a latent-variable model inspired by Causal Effect Variational AutoEncoder (CEVAE) that explicitly accounts for concept incompleteness by partitioning the latent space into two parts: a confounder-related component that explains variation shared between concepts and label, and a non-confounding block that captures residual image variation. This structured decom-

108 position lets us (i) recover proxies for the confounders, (ii) use them to estimate concept effects
 109 via backdoor-adjustment, and (iii) identify which observed concepts are substantially confounded
 110 by latent visual factors. We validate our approach on a controlled semi-synthetic Morpho-MNIST
 111 benchmark. UnCoVAEr reduces bias in concept-effect estimates compared to prior concept-based
 112 and latent-variable baselines.

113 Our contributions are as follows: (1) we formalize concept incompleteness as a latent confounding
 114 problem in image datasets and introduce partitioned-latent representations as an effective inductive
 115 bias; (2) we propose a principled criterion to distinguish confounded from unconfounded concepts
 116 and correct their effect estimates via backdoor adjustment; and (3) we provide empirical evidence
 117 that UnCoVAEr reduces bias in causal effect estimates compared to strong baselines and learns
 118 proxy variables that correlate with underlying latent confounders on a controlled semi-synthetic
 119 MorphoMNIST dataset.

120

121

2 RELATED WORK

123

124

Latent-variable proximal causal inference UnCoVAEr builds on a line of work that utilizes
 125 deep latent-variable models to estimate causal quantities like ATE in the presence of unobserved
 126 confounders. CEVAE (Louizos et al., 2017) assumes a causal graph where latent confounders are
 127 also causes of observed proxies and uses a Variational AutoEncoder (VAE) formulation to model the
 128 data-generating process and estimate ATE with backdoor adjustment. While CEVAE has demon-
 129 strated promising empirical performance, its reliance on variational inference raises concerns about
 130 identifiability. Rissanen & Marttinen (2021) provide an extensive critique, showing analytically and
 131 experimentally that CEVAE can fail when the latent space is misspecified or when the data dis-
 132 tribution is complex, despite working in simple synthetic setups, while they also provide simple
 133 experiments on digit images. Follow-up works provide identification under limited overlap assump-
 134 tions (Wu & Fukumizu, 2022) and disentangle instrumental, risk, and confounding factors to better
 135 isolate causal effects (Zhang et al., 2020), while Madras et al. (2019) utilize CEVAE to improve
 136 causal effect estimates between sensitive attributes and outcome in a fairness setting. At the same
 137 time, proximal causal inference literature (Tchetgen et al., 2020) and related proxy-variable identi-
 138 fication results provide formal conditions (completeness / rank) under which proxies identify causal
 139 effects (Miao et al., 2018; Wang & Blei, 2021). A number of recent works tackles causal effect
 140 estimation assuming that images or image-derived features act as proxies for latent confounders.
 141 Some approaches apply standard adjustment ideas by learning a model that extracts confounding in-
 142 formation from the image via propensity score matching (Jerezak et al., 2023) or by extracting image
 143 features (Xu et al., 2021; Schulte et al., 2025). Others develop neural methods that directly learn the
 144 necessary adjustment functions from high-dimensional proxies (Kompa et al., 2022). Kumar et al.
 145 (2023) also use the image directly to perform backdoor adjustment and use the estimated causal
 146 effects of the attributes to regularize classifiers for domain generalization.

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Concept-based explanations Concept-based explanation methods such as TCAV (Kim et al.,
 158 2018) or Concept Bottleneck Model (CBM) (Koh et al., 2020) treat concepts as interpretable primitives
 159 for explaining image classification, enabling interventions and attributing predictions directly
 160 to concepts. Follow-up work has extended CBMs to incorporate concepts not predefined in the
 161 concept set (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Sawada & Nakamura, 2022; Shang
 162 et al., 2024; Rao et al., 2024), while also revealing important limitations, such as whether the learned
 163 concepts truly correspond to human-understandable semantics or instead capture spurious shortcuts
 164 (Mahinpei et al., 2021; Margelou et al., 2021; Havasi et al., 2022). In this line of work, Bahadory &
 165 Heckerman (2021) address biases in concept-based explanations arising from confounding infor-
 166 mation. They propose a two-stage regression technique, inspired by instrumental variable methods,
 167 to remove the impact of confounders and noise. Their approach also considers the completeness of the
 168 concept set (Yeh et al., 2020), demonstrating effectiveness even when the set is incomplete. Goyal
 169 et al. (2020) introduce the notion of *CaCE* (*Causal Concept Effect*), defining it as the effect of the
 170 presence or absence of a human-interpretable concept on a deep neural network’s prediction. They
 171 train a conditional VAE to generate counterfactuals by disentangling and intervening on the concept
 172 of interest. While they highlight the importance of causality for concept explanations, they rely
 173 on the assumption that unobserved confounders do not significantly impact the observed concepts.
 174 Gao & Chen (2024) explicitly tackle concept incompleteness by constructing pseudo-concepts or

thogonal to the observed ones and using a linear predictor to capture residual bias. However, their orthogonality assumption does not allow for confounding.

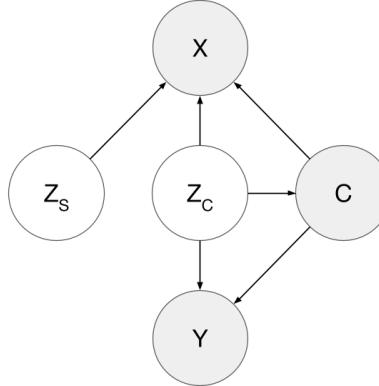


Figure 2: Our causal graph assumption. We assume that the image X is jointly caused by a set of observed concepts C , the unobserved confounder Z_C and some Z_S (e.g. writing style, point of view) that is irrelevant for C and the outcome Y . C cause Y , while the unobserved confounder Z_C causes both C and Y .

3 PRELIMINARIES AND PROBLEM SETUP

We observe i.i.d. samples $(X, C, Y) \sim \mathcal{D}$, where $X \in \mathcal{X}$ is an image, $C = (C_1, \dots, C_M) \in \{0, 1\}^M$ are observed binary concept annotations, and $Y \in \{0, 1\}$ is a binary outcome of interest. We are interested in quantifying how changes to a single concept C_i causally affect Y . Two common estimands for this are the individual (or conditional) treatment effect (ITE) and the population Average Treatment Effect (ATE):

$$\begin{aligned} \text{ITE}_i(x) &:= \mathbb{E}[Y | do(C_i = 1), X = x] - \mathbb{E}[Y | do(C_i = 0), X = x] \\ \text{ATE}_i &= \mathbb{E}[Y | do(C_i = 1)] - \mathbb{E}[Y | do(C_i = 0)]. \end{aligned} \quad (1)$$

Concept-based explanation methods such as CBMs (Koh et al., 2020) perform *concept-interventions* by editing intermediate concept values and re-evaluating the outcome classifier. These types of interventions and the treatment effects they yield are similar to those obtained by meta-learners in the causal inference literature (Künzel et al., 2019). For example, the S-learner, which is one of the simplest methods for treatment effect estimation, performs the same operation: it fits a predictor of Y given covariates and treatment (concepts in this case) and then estimates treatment effects by changing the treatment value in the input. These estimators coincide with the *do*-intervention only under the ignorability assumption (no unobserved confounding) and can work well enough only in this setting. However, in the presence of unobserved confounders, the estimates will be biased.

Confounding and backdoor adjustment Let V denote an observed variable that jointly causes some observed concepts C and the outcome Y . If V blocks all backdoor paths from C_i to Y , the interventional mean is given by the backdoor formula:

$$\mathbb{E}[Y | do(C_i = c)] = \int_V \mathbb{E}[Y | C_i = c, V = v] p(v) dv. \quad (2)$$

Thus, if V is observed, then Eq. 2 gives an unbiased estimand for the ATE as an immediate consequence of the backdoor-criterion Pearl (1993).

Proxy learning from images In our setup, instead of an observed V , we have a set of unobserved variables U . We assume that the unobserved confounders of interest manifest themselves in the image X (e.g. scanner type, lighting or a separate attribute that affects both annotations and labels). Thus X serves as a high-dimensional proxy for U . Because X also contains many features irrelevant to the causal relation between C and Y , we aim to learn a lower-dimensional proxy latent Z_C from (X, C, Y) with the following operational properties:

216 (P1) *Adjustment sufficiency*: conditioning on Z_C blocks the backdoor paths between C_i and Y
 217 (so Z_C plays the role of V in Eq. 2);
 218 (P2) *Parsimony*: Z_C is low-dimensional and amenable to downstream estimation and marginal-
 219 ization.
 220 (P3) *Interpretability*: We model Z_C as a binary variable to fit well in our setup of binary con-
 221 cepts and outcomes
 222

223 We assume the causal structure shown in Figure 2. As we want Z_C to contain only the confounding
 224 information for adjustment, we decompose the image into two parts: a discrete confounder-specific
 225 latent $Z_C \in \{0, 1\}^K$ and a continuous residual latent $Z_S \in \mathbb{R}^d$. Intuitively, Z_C captures the visual
 226 variation that (partially) explains both some observed concepts C and the label Y , while Z_S contains
 227 the remaining image variation that is irrelevant for the causal relationship between C and Y , but
 228 necessary to model X accurately.

229 Under (P1), we have:

$$p(Y | X, do(C_i = c)) = \sum_{Z_C} p(Y | X, C_i = c, Z_C) p(Z_C | X). \quad (3)$$

230 Thus, to estimate $ITE_i(x) = \mathbb{E}[Y | X = x, do(C_i = c)]$ and $ATE_i = \mathbb{E}[ITE_i(x)]$ we need to
 231 learn the conditional $p(Y | X, C, Z_C)$ ¹ and the posterior $p(Z_C | X)$.
 232

233 **Identification requirements and limitations** Identification of causal effects from observational
 234 (X, C, Y) rests on standard proxy-type and overlap assumptions. First, the observed image X must
 235 carry *sufficient proxy signal* of the unobserved confounder: if the confounder leaves no detectable
 236 trace in pixels, then no method can recover its effect. Second, the support of relevant predictive
 237 distributions must overlap (positivity), so that the requisite conditional expectations are well defined.
 238 Additionally, we assume that there are no *unobserved colliders*: no latent variables caused by both
 239 the outcome Y and a concept C_i . If such a collider exists, conditioning on it opens a spurious path.
 240 Under these conditions, and assuming a sufficiently expressive latent-variable model, our adjusted
 241 estimator using Z_C is consistent in principle. We offer three clarifications: (i) we do not require
 242 recovery of the true confounder, only that the learned proxy Z_C suffices for valid adjustment; (ii)
 243 if the confounder leaves no observable imprint, identification is impossible for *any* method; and
 244 (iii) while practical estimation is subject to approximation error, our results show that UnCoVAEr
 245 recovers unbiased ATEs whenever these identification assumptions hold.
 246

247 4 UNCOVAER: UNOBSERVED CONFOUNDING VARIATIONAL 248 AUTOENCODER

249 We now introduce *UnCoVAEr*, a variational autoencoder designed to recover causal concept effects
 250 under unobserved confounding.

251 **Generative model** The assumed causal graph of Figure 2 leads to the following factorization of
 252 the joint distribution:

$$253 p(X, C, Y, Z_C, Z_S) = p(Z_C) p(Z_S) p(C | Z_C) p(X | C, Z_C, Z_S) p(Y | C, Z_C). \quad (4)$$

254 Our model parameterizes three decoders: $p_{\theta_x}(X | C, Z_C, Z_S)$, $p_{\theta_c}(C | Z_C)$, and $p_{\theta_y}(Y | C, Z_C)$.
 255 Because the exact posterior $p(Z_C, Z_S | X, C, Y)$ is intractable, we introduce a variational encoder:

$$256 q_{\phi_c, \phi_s}(Z_C, Z_S | X, C, Y) = q_{\phi_c}(Z_C | X, C, Y) q_{\phi_s}(Z_S | X, C, Y).$$

257 We implement a shared backbone with separate output heads: logits for the discrete confounder-
 258 related latent Z_C (parameters ϕ_c) and Gaussian parameters $(\mu_{\phi_s}, \sigma_{\phi_s})$ for the continuous residual
 259 latent Z_S . Z_C is sampled with the Gumbel–Softmax relaxation during training (Jang et al., 2017). To
 260 reduce information leakage between the two blocks, we additionally include a mutual-information
 261 regularizer that minimizes $MI(Z_C, Z_S)$ using the CLUB estimator with parameters ψ (Cheng et al.,
 262 2020). This encourages Z_C to capture confounder-related variation distinct from the residual infor-
 263 mation in Z_S .
 264

265 ¹Note that under the assumed causal graph of Figure 2 Y is independent of X given C and Z_C , so $p(Y |$
 266 $C, Z_C)$ suffices.

270 **Training objective** We maximize the evidence lower bound (ELBO):
 271

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\phi_c, \phi_s}(Z_C, Z_S | X, C, Y)} [\log p_{\theta_x}(X | C, Z_C, Z_S) + \log p_{\theta_c}(C | Z_C) + \log p_{\theta_y}(Y | C, Z_C)] \\ - \text{KL}(q_{\phi_c}(Z_C | X, C, Y) \| p(Z_C)) - \text{KL}(q_{\phi_s}(Z_S | X, C, Y) \| p(Z_S)), \quad (5)$$

274 using the following priors: $p(Z_C) = \prod_{j=1}^K \text{Bern}(\pi = 0.5)$ and $p(Z_S) = \prod_{j=1}^d \mathcal{N}(Z_{S_j} | 0, 1)$.
 275

276 We augment $\mathcal{L}_{\text{ELBO}}$ with two auxiliary discriminative losses, implemented as small classification
 277 heads (following Louizos et al. (2017)):

$$\mathcal{L}_{\text{aux}, C} = -\mathbb{E}_{p_{\text{data}}(x, c)} [\log q_{\xi_C}(C | X)], \quad \mathcal{L}_{\text{aux}, Y} = -\mathbb{E}_{p_{\text{data}}(x, c, y)} [\log q_{\xi_Y}(Y | X, C)].$$

280 The auxiliary losses serve two roles: (i) they are used during inference, providing predictors for C
 281 and Y , and (ii) they encourage representations that capture task-relevant information, sharpening the
 282 posterior and improving the quality of learned Z_C as a confounder proxy. Adding the CLUB-based
 283 mutual-information estimate $\mathcal{L}_{\text{MI}} = \widehat{\text{MI}}_{\psi}(Z_C, Z_S)$, The overall training objective is therefore
 284

$$\mathcal{L}_{\text{train}} = -\mathcal{L}_{\text{ELBO}} + \lambda_C \mathcal{L}_{\text{aux}, C} + \lambda_Y \mathcal{L}_{\text{aux}, Y} + \lambda_{\text{MI}} \mathcal{L}_{\text{MI}}, \quad (6)$$

285 where $\lambda_C, \lambda_Y, \lambda_{\text{MI}} \geq 0$ balance the auxiliary and independence terms. In our experiments, setting
 286 $(\lambda_C, \lambda_Y, \lambda_{\text{MI}}) = (1.0, 1.0, 0.1)$ yielded the best performance.
 287

288 The auxiliary $q_{\xi_C}(C | X)$ is analogous to the concept layer in concept-bottleneck models (it pro-
 289 vides an image-to-concept mapping), while $q_{\xi_Y}(Y | X, C)$ functions similar to an outcome layer
 290 with a residual connection (Yuksekgonul et al., 2023).

291 While the original CEVAE utilizes a TARNET-style architecture (Shalit et al., 2017) that fits separate
 292 outcome heads per treatment, our model shares decoders and conditions on C , since the networks
 293 would scale exponentially with the number of concepts. In our experiments we also explore a variant
 294 that allocates an independent discrete latent Z_{C_i} for each concept C_i (i.e., separate confounder
 295 proxies per concept). This allows us to estimate confounder proxies separately per concept and
 296 better interpret their relation with the observed proxies.

297 We use KL-annealing for the latent KL terms (gradually increasing their weight from 0 to 1 dur-
 298 ing early epochs) to avoid posterior collapse (Bowman et al., 2016) and temperature annealing for
 299 the Gumbel-Softmax relaxation of Z_C (start at τ_0 and reduce to τ_{min}) to transition from smooth
 300 relaxation to near-discrete samples (Jang et al., 2017).

301 **ATE estimation** After training, we estimate interventional means by marginalizing over the ag-
 302 gregated posterior of the confounder-latent Z_C . Concretely, for each test image x we draw samples
 303 (c, y, z) with $c \sim q_{\xi_C}(C | x)$, $y \sim q_{\xi_Y}(Y | x, c)$, and $z \sim q_{\phi_c}(Z_C | x, c, y)$. This yields approx-
 304 imate draws from $q_{\phi_c}(Z_C | x)$, analogous to the marginalization strategy in Louizos et al. (2017).
 305 For each target concept C_i , we intervene by setting it to $c \in \{0, 1\}$ while leaving the remaining
 306 concepts C_{-i} at their sampled values, and evaluate
 307

$$\widehat{\mathbb{E}}[Y | \text{do}(C_i = c)] \approx \frac{1}{N} \sum_{n=1}^N \frac{1}{M} \sum_{m=1}^M \mathbb{E}_{\theta_y} [Y | C_i = c, C_{-i} = c_{-i}^{(m)}, Z_C = z^{(m)}], \quad (7)$$

310 where M (100 in our experiments) is the number of posterior samples per image. For each C_i ,
 311 the ATE is the difference in predicted outcomes under interventions $C_i = 1$ and $C_i = 0$. To de-
 312 tect confounding, we compare the above ATE with the estimated difference in conditional means:
 313 $\text{ATE}_{\text{naive}} = \mathbb{E}[Y | C_i = 1] - \mathbb{E}[Y | C_i = 0]$, which would . We flag a concept as confounded
 314 when the computed ATE significantly and systematically differs from $\text{ATE}_{\text{naive}}$. For this, we em-
 315 ploy a bootstrap test, in which we resample and recompute ATEs per batch and flag a concept as
 316 confounded if the 95% confidence intervals of the ATE do not overlap.

318 5 EXPERIMENTAL SETUP

320 5.1 DATASET

322 We evaluate UnCoVAE on a controlled semi-synthetic benchmark derived from Morpho-MNIST
 323 (Castro et al., 2019), where digit images are systematically modified along interpretable morpholog-
 ical axes. All experiments use 5 random seeds; for each seed we select a different digit class (0–4).

324 This design minimizes variation due to digit identity and isolates causal effects arising purely from
 325 morphology.

326 We focus on four pixel-level morphological attributes as binary concepts: *thickness*, *intensity*, *slant*,
 327 and *width*. Continuous values for each concept are sampled conditionally from $\mathcal{N}(0.25, 0.01)$ when
 328 $C_i = 0$ and $\mathcal{N}(0.75, 0.01)$ when $C_i = 1$. The values are then scaled according to the attribute.

329 The outcome Y is a synthetic label constructed as a logical rule over the concepts:

$$330 \quad Y = \mathbf{1}\{\text{thickness} + \text{slant} + \text{width} \geq 2\},$$

331 i.e., $Y = 1$ if at least two of these three concepts are active, with *intensity* not causing Y .

332 We design three dataset variants to probe distinct confounding patterns:

- 333 (i) **Single confounder:** observed concepts: $\{\text{intensity}, \text{slant}, \text{width}\}$; unobserved: $\{\text{thickness}\}$.
 334 Thickness causally influences intensity, making it the only observed concept affected by an
 335 unobserved confounder.
- 336 (ii) **Common confounder:** observed: $\{\text{intensity}, \text{slant}, \text{width}\}$; unobserved: $\{\text{thickness}\}$. Here thickness jointly drives both
 337 intensity and slant, acting as a shared confounder across multiple observed concepts.
- 338 (iii) **Multiple confounders:** observed: $\{\text{intensity}, \text{width}\}$; unobserved: $\{\text{thickness}, \text{slant}\}$. Both
 339 thickness and slant affect intensity through a non-linear XOR causal mechanism, so a single
 340 observed concept is influenced by two distinct unobserved confounders.

341 Across all variants we control the *confounding strength* α . For a causal link $C_i \rightarrow C_j$, the label of
 342 C_j is set equal to C_i with probability α . We evaluate under two regimes: an *in-distribution* (ID)
 343 test set with strong confounding ($\alpha = 0.9$) and an *out-of-distribution* (OOD) test set with much
 344 weaker confounding ($\alpha = 0.6$), enabling us to assess robustness of ATE estimation under shifts in
 345 the confounding mechanism.

346 Lastly, to ensure that our method correctly adjusts for observed confounders, we construct an additional
 347 experimental setup by modifying the *Multiple confounders* variant. We assume that thickness
 348 is now observed (slant remains unobserved).

352 5.2 BASELINES AND ABLATIONS

353 We benchmark UnCoVAEr against latent-variable, concept-based, and feature-adjustment methods.

354 **CEVAE** (Louizos et al., 2017) is adapted for the image domain with convolutional
 355 encoders/decoders. Its difference from our method is that it does not partition the latent space but
 356 uses a single continuous latent.

357 **CaCE** (Goyal et al., 2020) estimates causal concept effects via counterfactual generation. Its original
 358 formulation refers to estimating effect on a classifier, rather than the true causal effect. For fair
 359 comparison we use the same architecture for encoder/decoder and we train an auxiliary predictor
 360 $q_\xi(Y | X)$, which we use to assess change in outcome.

361 **Image-adjustment** (Jerzak et al., 2023) conditions directly on image embeddings by fitting a
 362 propensity score model $\hat{e}_i(x) \approx p(C_i = 1 | X = x)$ and applying inverse-probability weighting
 363 (IPW) to estimate $E[Y | do(C_i)]$.

364 **Concept Bottleneck Model (CBM)** (Koh et al., 2020) predicts Y through an intermediate concept
 365 layer $\hat{C} = f(X)$ and enables interventions by editing \hat{C}_i .

366 **Residual CBM (Res-CBM)** augments standard CBM by explicitly modeling variation unexplained
 367 by observed concepts. Predictions are of the form $\hat{Y} = g(\hat{C}, r(X))$, where $r(X)$ is a residual
 368 representation. During training the concept layer remains fixed and we discretize $r(X)$ with Gumbel-
 369 Softmax. To estimate causal effects, we use IPW with $\hat{e}_i(C_i | r(X))$.

370 Finally, we include two meta-learners in the style of S-learners: (i) a **Naive Estimator**, which
 371 conditions only on C (biased under unobserved confounding); and (ii) an **Oracle Estimator**, which
 372 additionally conditions on the true latent confounder(s), providing an empirical upper bound.

378 To assess the contribution of each component of UnCoVAEr, we perform the following ablations:
 379 (i) removing the image reconstruction term $p_{\theta_x}(X | C, Z_C, Z_S)$, (ii) using only a shared discrete
 380 latent Z_C , (iii) the default model with shared Z_C and residual Z_S ; and (iv) a variant with separate
 381 per-concept confounder proxies Z_{C_i} .
 382

383 6 RESULTS

385 Table 1 reports ATE estimation error across methods, datasets, and test regimes. Several consistent
 386 patterns emerge. First, in the *single confounder* setting, UnCoVAEr substantially outperforms all
 387 baselines, apart from the oracle which has access to the true confounder. The closest competitor
 388 is CEVAE, which itself can be seen as a restricted instance of our model using only a continuous
 389 latent.
 390

391 Second, in the *common confounder* scenario, UnCoVAEr again improves upon feature-adjustment
 392 and CBM-based approaches. Interestingly, CaCE performs competitively here. Counterfactual con-
 393 cept editing remains effective when a single latent factor drives multiple observed pathways. Nev-
 394 ertheless, UnCoVAEr maintains strong performance, especially in-distribution.
 395

396 Third, the *multiple confounders* variant exposes an interesting case. Since intensity is caused by
 397 the logical XOR of two latent factors, naive conditioning and CBMs manage to directly learn and
 398 exploit the *intensity-Y* relation without accounting for the unobserved confounder at all, performing
 399 unexpectedly close to the oracle. Image-based methods, by contrast, are misled by this non-linear
 400 dependence. Among them, UnCoVAEr provides the lowest error, though the per-concept Z_{C_i} variant
 401 proves unstable in this regime. This suggests that while our structured latent partition is generally
 402 robust, learning disentangled proxies remains challenging under interacting confounders.
 403

404 Finally, across all scenarios, UnCoVAEr shows improved out-of-distribution robustness: errors re-
 405 main consistently lower than baselines when the strength of confounding shifts from $\alpha = 0.9$ to
 406 $\alpha = 0.6$. This supports our central claim that learning an explicit confounder proxy yields more
 407 stable causal effect estimates under distributional change.
 408

409 **Ablations and Diagnostics** Table 1 further shows the effectiveness of the partitioned latent space
 410 design of UnCoVAEr. When the same bottleneck latent is used for reconstruction and for recovering
 411 the confounder proxy, the method underperforms. Moreover, our hypothesis that the proxy should
 412 guide image reconstruction is validated, as is evident in the performance drop. Finally, per-concept
 413 latents Z_{C_i} provide marginal gains, but become unstable under complex confounding. Figure 3
 414 indicates that our confounding-detection criterion is generally effective, especially in the common
 415 confounder scenario, where it correctly characterizes both observed concepts. We report occasional
 416 false positives in the single case and a significant deterioration in the multiple-confounder case,
 417 where the naive estimators approximate the true ATE more closely than our estimands.
 418

419 Table 1: Mean ATE estimation error (MAE, lower is better) across methods, datasets, and test
 420 regimes (averaged across concepts). Results are reported as mean \pm std over 5 seeds. ID: in-
 421 distribution test set ($\alpha = 0.9$); OOD: out-of-distribution test set ($\alpha = 0.6$). Best non-oracle baseline
 422 per column is in **bold**.
 423

424 Method	Single confounder		Common confounder		Multiple confounders	
	425 ID	426 OOD	427 ID	428 OOD	429 ID	430 OOD
431 Naive	.131 \pm .18	.135 \pm .19	.163 \pm .11	.213 \pm .04	.009 \pm .01	.009 \pm .01
Oracle	.003 \pm .01	.002 \pm .00	.002 \pm .01	.009 \pm .02	.001 \pm .01	.001 \pm .01
Image-adjustment	.168 \pm .16	.133 \pm .18	.440 \pm .24	.183 \pm .14	.109 \pm .14	.117 \pm .15
CBM	.136 \pm .18	.136 \pm .18	.163 \pm .11	.214 \pm .04	.011 \pm .01	.012 \pm .01
Res-CBM	.331 \pm .20	.418 \pm .09	.171 \pm .17	.560 \pm .40	.287 \pm .24	.253 \pm .23
CaCE	.114 \pm .14	.087 \pm .09	.058 \pm .05	.065 \pm .03	.157 \pm .13	.166 \pm .07
CEVAE	.058 \pm .06	.049 \pm .05	.079 \pm .08	.112 \pm .05	.106 \pm .09	.096 \pm .06
UnCoVAEr (no $p(X)$)	.113 \pm .07	.112 \pm .06	.064 \pm .06	.119 \pm .07	.210 \pm .14	.209 \pm .14
UnCoVAEr (only Z_C)	.070 \pm .11	.089 \pm .11	.098 \pm .10	.172 \pm .08	.080 \pm .10	.077 \pm .10
UnCoVAEr ($Z_S + Z_C$)	.036 \pm .04	.040 \pm .03	.055 \pm .07	.097 \pm .06	.070 \pm .05	.065 \pm .05
UnCoVAEr ($Z_S + Z_{C_i}/C_i$)	.041 \pm .04	.037 \pm .04	.047 \pm .03	.105 \pm .04	.136 \pm .11	.138 \pm .09

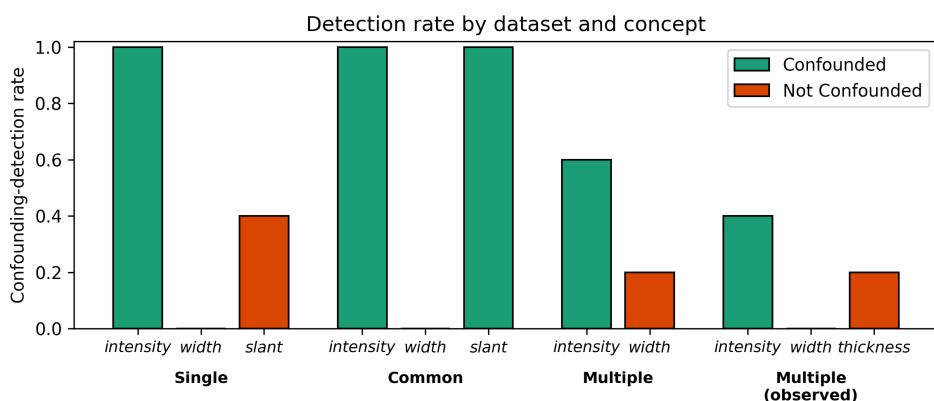


Figure 3: Empirical rate at which each concept was detected as confounded across random seeds (*confounding detection rate*). Results are shown for all three MorphoMNIST variants, plus the multiple-confounders setting where one of the confounders (thickness) is observed.

7 DISCUSSION

Our work addresses a critical gap in concept-based model interpretation: the presence of unobserved visual confounders that bias causal effect estimates. While concept-based methods have gained traction for their interpretability, our results demonstrate that ignoring latent confounding can lead to substantially biased conclusions about which concepts truly drive model predictions.

Our experiments reveal interesting nuances in different confounding scenarios. While UnCoVAEr excels with single or shared confounders, performance degrades when confounders interact in non-linear ways (e.g., XOR). In such cases, direct statistical associations remain easier to capture than the underlying more complex causal structure, and all tested image-based methods fail. Handling complex, interacting confounders remains an open challenge requiring further methodological development. Still, the OOD evaluations are encouraging: robustness to shifts in confounding strength indicates that Z_C captures meaningful causal signals rather than overfitting correlations. This robustness is essential for real-world applications where confounding patterns may vary across datasets or deployment contexts.

Limitations and Future Work UnCoVAEr’s primary limitation is its reliance on the assumption that confounders manifest visually in the image. Our experiments also highlight that complex causal structures or interactions remain challenging for current latent-variable approaches. However, the most critical challenge—and the most important direction for future work—is validating UnCoVAEr on complex real-world datasets. The true test of our model’s practical utility lies in its ability to perform robustly in settings like medical imaging or model auditing, where concepts interact in unpredictable ways and the ground-truth confounding variables are fundamentally unknown. Successfully demonstrating effectiveness in these noisy, high-stakes environments is essential for moving from a theoretical proof of concept to a reliable tool for causal interpretability in applied domains.

8 CONCLUSIONS

We introduced UnCoVAEr, a deep latent-variable model for estimating causal concept effects under visual latent confounding. By partitioning the latent space into confounder-related and residual components, our method recovers proxy variables that enable valid backdoor adjustment even when key visual concepts remain unannotated. On controlled benchmarks, UnCoVAEr substantially reduces bias in causal effect estimates compared to existing concept-based and latent-variable approaches, while maintaining robustness under distribution shift. Our work highlights a critical consideration for practitioners that rely on concept-based explanations: incomplete concept annotations can severely bias causal conclusions. UnCoVAEr provides a practical tool for detecting and correcting such biases, enabling more trustworthy concept-level causal inference in partially annotated image datasets.

486 REFERENCES
487

488 Mohammad Taha Bahadori and David Heckerman. Debiasing concept-based explanations with
489 causal analysis. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=6puUoArESGp>.

490

491 Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
492 Generating sentences from a continuous space. In *Proceedings of the 20th SIGNLL conference
493 on computational natural language learning*, pp. 10–21, 2016.

494

495 Daniel C Castro, Jeremy Tan, Bernhard Kainz, Ender Konukoglu, and Ben Glocker. Morpho-mnist:
496 Quantitative assessment and diagnostics for representation learning. *Journal of Machine Learning
497 Research*, 20(178):1–29, 2019.

498

499 Daniel C Castro, Ian Walker, and Ben Glocker. Causality matters in medical imaging. *Nature
Communications*, 11(1):3673, 2020.

500

501 Pengyu Cheng, Zhijie Hao, Wenyue Dai, Xinyuan Liu, and Weinan Chen. Club: A contrastive
502 log-ratio upper bound of mutual information. In *International Conference on Machine Learning
(ICML)*, 2020.

503

504 Pietro G Di Stefano, James M Hickey, and Vlasios Vasileiou. Counterfactual fairness: removing
505 direct effects through regularization. *arXiv preprint arXiv:2002.10774*, 2020.

506

507 Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Giuseppe Marra, and
508 Marc Langheinrich. Counterfactual concept bottleneck models. In *The Thirteenth Interna-
509 tional Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=w7pMjyjsKN>.

510

511 Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski,
512 Giuseppe Marra, and Marc Langheinrich. Causal concept graph models: Beyond causal opacity in
513 deep learning. In *The Thirteenth International Conference on Learning Representations*, 2025b.
514 URL <https://openreview.net/forum?id=lmKJ1b6PaL>.

515

516 Jifan Gao and Guanhua Chen. Mcce: Missingness-aware causal concept explainer, 2024. URL
<https://arxiv.org/abs/2411.09639>.

517

518 Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal concept effect
(cace), 2020. URL <https://arxiv.org/abs/1907.07165>.

519

520 Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck
521 models. *Advances in Neural Information Processing Systems*, 35:23386–23397, 2022.

522

523 Daniel Israel, Aditya Grover, and Guy Van den Broeck. High dimensional causal inference with
524 variational backdoor adjustment, 2023. URL <https://arxiv.org/abs/2310.06100>.

525

526 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
527 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=rkE3y85ee>.

528

529 Connor T. Jerezak, Fredrik Johansson, and Adel Daoud. Estimating causal effects under image con-
530 founding bias with an application to poverty in africa, 2023. URL <https://arxiv.org/abs/2206.06410>.

531

532 Jean Kaddour, Yuchen Zhu, Qi Liu, Matt Kusner, and Ricardo Silva. Causal effect inference for
533 structured treatments. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
534 *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=0v9EPJGc10>.

535

536 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
537 sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
538 vectors (TCAV). In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
539 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp.
2668–2677. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/kim18d.html>.

540 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 541 Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp.
 542 5338–5348. PMLR, 2020.

543

544 Benjamin Kompa, David Bellamy, Tom Kolokotrones, James M. Robins, and Andrew Beam. Deep
 545 learning methods for proximal inference via maximum moment restriction. In S. Koyejo,
 546 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 547 Information Processing Systems*, volume 35, pp. 11189–11201. Curran Associates, Inc.,
 548 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/487c9d6ef55e73aa9dfd4b48fe3713a6-Paper-Conference.pdf.

549

550 Abhinav Kumar, Amit Deshpande, and Amit Sharma. Causal effect regularization: Automated de-
 551 tection and removal of spurious correlations. *Advances in Neural Information Processing Systems*,
 552 36:20942–20984, 2023.

553

554 Sören R. Küngel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating het-
 555 erogeneous treatment effects using machine learning. *Proceedings of the National Academy of
 556 Sciences*, 116(10):4156–4165, 2019. doi: 10.1073/pnas.1804597116. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1804597116>.

557

558 Bryson Lingenfelter, Sara R. Davis, and Emily M. Hand. A quantitative analysis of labeling issues
 559 in the celeba dataset. In George Bebis, Bo Li, Angela Yao, Yang Liu, Ye Duan, Manfred Lau,
 560 Rajiv Khadka, Ana Crisan, and Remco Chang (eds.), *Advances in Visual Computing*, pp. 129–
 561 141, Cham, 2022. Springer International Publishing. ISBN 978-3-031-20713-6.

562

563 Christos Louizos, Uri Shalit, Joris M. Mooij, David Sontag, Richard Zemel, and Max Welling.
 564 Causal effect inference with deep latent-variable models. *Advances in Neural Information Pro-
 565 cessing Systems*, 30, 2017.

566

567 David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Fairness through causal aware-
 568 ness: Learning causal latent-variable models for biased data. In *Proceedings of the Conference on
 569 Fairness, Accountability, and Transparency*, FAT* ’19, pp. 349–358, New York, NY, USA, 2019.
 570 Association for Computing Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287564.
 URL <https://doi.org/10.1145/3287560.3287564>.

571

572 Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and
 573 pitfalls of black-box concept learning models. *arXiv preprint arXiv:2106.13314*, 2021.

574

575 Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen, Mateja Jamnik, and Adrian
 576 Weller. Do concept bottleneck models learn as intended? *arXiv preprint arXiv:2105.04289*,
 2021.

577

578 Wang Miao, Zhi Geng, and Eric J. Tchetgen Tchetgen. Identifying causal effects with proxy variables
 579 of an unmeasured confounder. *Biometrika*, 105(4):987–993, 2018.

580

581 Ricardo Miguel de Oliveira Moreira, Jacopo Bono, Mário Cardoso, Pedro Saleiro, Mário A. T.
 582 Figueiredo, and Pedro Bizarro. Diconstruct: Causal concept-based explanations through black-
 583 box distillation. In Francesco Locatello and Vanessa Didelez (eds.), *Proceedings of the Third
 584 Conference on Causal Learning and Reasoning*, volume 236 of *Proceedings of Machine Learn-
 585 ing Research*, pp. 740–768. PMLR, 01–03 Apr 2024. URL <https://proceedings.mlr.press/v236/moreira24a.html>.

586

587 Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottle-
 588 neck models. In *The Eleventh International Conference on Learning Representations*, 2023.

589

590 Judea Pearl. [bayesian analysis in expert systems]: Comment: Graphical models, causality and
 591 intervention. *Statistical Science*, 8(3):266–269, 1993. ISSN 08834237. URL <http://www.jstor.org/stable/2245965>.

592

593 Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-
 agnostic concept bottlenecks via automated concept discovery. In *Computer Vision – ECCV*

594 2024: *18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXVII*, pp. 444–461, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-
 595 031-72979-9. doi: 10.1007/978-3-031-72980-5_26. URL https://doi.org/10.1007/978-3-031-72980-5_26.

596

597

598

599 Severi Rissanen and Pekka Marttinen. A critical look at the consistency of causal estimation
 600 with deep latent variable models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
 601 Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=vU96vWPrWL>.

602

603

604 Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised
 605 concepts. *IEEE Access*, 10:41758–41765, 2022.

606

607 Rickmer Schulte, David Rügamer, and Thomas Nagler. Adjustment for confounding using pre-
 608 trained representations. In *Forty-second International Conference on Machine Learning*, 2025.
 609 URL <https://openreview.net/forum?id=D2cDJzotb8>.

610

611 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
 612 ization bounds and algorithms. In *International conference on machine learning*, pp. 3076–3085.
 613 PMLR, 2017.

614

615 Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, and Yuwang Wang. In-
 616 cremental residual concept bottleneck models. In *Proceedings of the IEEE/CVF Conference on*
 617 *Computer Vision and Pattern Recognition*, pp. 11030–11040, 2024.

618

619 Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to
 620 proximal causal learning. *arXiv preprint arXiv:2009.10982*, 2020.

621

622 Yixin Wang and David Blei. A proxy variable view of shared confounding. In *International Con-
 623 ference on Machine Learning*, pp. 10697–10707. PMLR, 2021.

624

625 Pengzhou Abel Wu and Kenji Fukumizu. β -intact-VAE: Identifying and estimating causal
 626 effects under limited overlap. In *International Conference on Learning Representations*, 2022.
 627 URL <https://openreview.net/forum?id=q7n2RngwOM>.

628

629 Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its application
 630 to confounded bandit policy evaluation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
 631 Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=0FDxsIEv9G>.

632

633

634 Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
 635 On completeness-aware concept-based explanations in deep neural networks. *Advances in neural*
 636 *information processing systems*, 33:20554–20565, 2020.

637

638 Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In
 639 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=nA5AZ8CEyow>.

640

641

642 Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled la-
 643 tent factors. In *AAAI Conference on Artificial Intelligence*, 2020. URL <https://api.semanticscholar.org/CorpusID:210943075>.

644

645

646 Xuan Zhao, Klaus Broelemann, Salvatore Ruggieri, and Gjergji Kasneci. Causal fairness-guided
 647 dataset reweighting using neural networks. In *2023 IEEE International Conference on Big Data
 (BigData)*, pp. 1386–1394. IEEE, 2023.

648 **A CODE AND IMPLEMENTATION DETAILS**
649650 All code, configuration files, and instructions required to reproduce our experiments are available
651 at <https://anonymous.4open.science/r/causal-residual-concepts-346E/>
652 README.md. The repository includes full implementations of UnCoVAEr and all baselines, as well
653 as scripts for dataset preparation, training, and evaluation. We provide detailed configuration files
654 specifying model architectures, optimizer settings, training schedules, and hyperparameter choices.
655 Additional results, including json files and qualitative figures (e.g., counterfactual visualizations for
656 benchmarked methods), are also included in the repository.
657658 **Reproducibility checklist**
659660

- **Datasets:** MorphoMNIST variants described in Section 5, with generation scripts included
661 in the repository.
- **Evaluation metrics:** mean absolute error (MAE) of ATE estimates, bootstrap uncertainty
662 test for confounding assessment, as described in Section 6.
- **Code availability:** full training/evaluation code and pre-trained model checkpoints are
663 provided.
- **Hyperparameters:** all hyperparameters (learning rate, optimizer type, batch size, KL-
664 annealing schedules, Gumbel-Softmax temperature annealing) are specified in configura-
665 tion files.
- **Compute:** experiments were run on a single NVIDIA A10 GPU (24GB memory); training
666 a model typically takes around 15 minutes.
- **Randomness:** results are averaged over 5 seeds, with random seeds fixed and logged for
667 reproducibility.

668669 **B USE OF LARGE LANGUAGE MODELS**
670671 Large Language Models (LLMs) were used as assistive tools during the preparation of this paper.
672 Their role was limited to improving readability and presentation: for example, rephrasing para-
673 graphs for smoother academic flow, standardizing LaTeX formatting, and polishing grammar. In
674 some cases, LLMs were also used to suggest more concise ways of summarizing experimental
675 findings. They were not involved in research ideation, experimental design, implementation, or inter-
676 pretation of results. All scientific contributions are the sole responsibility of the authors, who take
677 full responsibility for the final content.
678679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701