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Abstract. Regulators in cities face the need to enforce limits on the
number of free-floating vehicle sharing schemes and vehicles. The tried-
and-tested instrument for cities are tenders, for fleet sizes of the individ-
ual vehicle types. The composition of fleet sizes is often, however, guess-
work or based on anecdotal evidence rather than reliable data. Factors
that are of interest include cost of operation, social equity, and environ-
mental sustainability. Balancing them is a complex problem, but solving
it could greatly support decision makers in making informed decisions
for an optimal configuration of the urban mobility system. We use a
large-scale multi-agent simulation, based on empirical data from Berlin,
Germany, genetic algorithm and heuristics to generate a partial solution
set and discuss its applicability and boundaries.
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1 Introduction

Urban mobility is undergoing a rapid transformation, driven by technological ad-
vancements and the rise of shared mobility services. The emergence of connected,
autonomous, shared, and electric (CASE) vehicle technologies has created a dig-
ital layer atop the traditional physical mobility system, offering opportunities
for a more efficient and sustainable transportation ecosystem [13]. Free-floating
vehicle sharing (FFVS) services are a prominent example of this shift, offering on-
demand access to transportation without the burdens of ownership [2]. However,
the proliferation of these services presents new challenges for city regulators.

A critical challenge is the need to enforce limits on the number of sharing
schemes and vehicles operating within a city. Uncontrolled growth can lead to
sidewalk clutter, increased competition for limited street space, and potentially
negative impacts on public transit and active travel modes. Recent examples
show that the absence of well implemented regulation has a detrimental effect
on the system [15, 4, 19]. Cities often use tenders as a tried-and-tested instrument
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to manage this, setting limits on fleet sizes for individual vehicle types. However,
determining the optimal composition of these fleets (i.e., the ideal mix of bikes,
scooters, cars, et cetera) is often based on guesswork or anecdotal evidence rather
than rigorous analysis . This lack of data-driven decision-making hinders the
ability of cities to create truly sustainable and equitable mobility systems.

The optimal fleet composition must consider multiple, often conflicting, fac-
tors. These include the operational costs for service providers, social equity and
accessibility for all residents, and environmental sustainability (e.g., reducing
emissions). Balancing these objectives is a complex problem [6], but solving it
would provide valuable support for policymakers in making informed decisions
about the future of urban mobility. It is clear, that transportation is one of the
major sources for energy consumption and emission generation, and to limit the
negative impacts, effective policies are needed [20].

Multi-agent simulation (MAS) is a powerful tool for modeling complex socio-
technical systems and analyzing the behavioral aspects of their components [22].
It allows researchers to create virtual representations of cities and their trans-
portation networks, including the interactions between individual agents (e.g.,
travelers, vehicles, service providers). Crucially, MAS can be used to evaluate
hypothetical scenarios, testing the impact of different policies and feasibility of
interventions without real-world consequences [5, 9].

While some prior work has explored aspects of fleet optimization, it often
focuses on single objectives or simplified models. This paper leverages MAS to
address the fleet sizing and composition problem for shared mobility services
in a more holistic way. Specifically, we use MAS to simulate the operation of
various vehicle sharing modes (bikes, scooters, kick scooters, cars) in a realistic
urban environment. We evaluate potential fleet configurations based on relevant
system metrics, including emissions, service provider profits, and travel demand
fulfillment rates. To find good fleet configurations, we further employ evolution-
ary algorithms, specifically genetic algorithms, known for their ability to handle
complex optimization problems.

This work-in-progress paper focuses on optimizing single objective functions
individually, while exploring the interplay between objectives by using the ful-
fillment rate as a penalty for the other objectives. In future work, we will extend
this to the full multi-objective optimization problem (MOOP).

2 Related Work

Research on shared mobility systems, encompassing services like car sharing, bike
sharing, and e-scooter sharing, increasingly addresses the challenges of fleet sizing
and composition. The literature explores this problem space through various
optimization and simulation approaches.

One line of research focuses on fleet size minimization. Some algorithms devel-
oped for large-scale bike-sharing systems demonstrate potential fleet size reduc-
tions, although the magnitude of reduction is sensitive to the inclusion of future
demand uncertainties [11]. Other studies have analyzed optimal fleet composi-
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tion, often highlighting the tension between maximizing service provider profit
and maintaining user satisfaction, sometimes suggesting the need for public sub-
sidies [17]. The interaction between shared mobility and other transportation
modes is another area of investigation. Research incorporating public transport
has explored scenarios where optimized shared vehicle systems partially sub-
stitute for public transport and active modes (walking, cycling), rather than
primarily replacing private vehicle trips [26]. Studies examining shared electric
scooters reveal that larger fleets, while accommodating more trips, can lead to
lower overall fleet utilization and a potentially increased environmental burden
per kilometer due to vehicle production impacts [25]. This underscores the im-
portance of considering the entire lifecycle impact of shared vehicles. In light of
these complex interactions, the role of government regulation and collaboration
between stakeholders (local governments, service providers, users) is frequently
emphasized [1].

Simulation has emerged as a key tool for understanding the dynamics of
shared mobility systems. Agent-based modeling, implemented in frameworks like
MATSim, allows researchers to analyze the integration of multiple shared mo-
bility services and the effects of different fleet sizes on competition and com-
plementarity between vehicle types. These simulations have demonstrated the
existence of saturation effects, where increasing fleet size beyond a certain point
provides diminishing returns. [10, 2]. Similarly, SUMO has been used to com-
pare the social costs and benefits of Mobility-as-a-Service (MaaS) environments,
highlighting the need for a minimum demand level to ensure benefits for all
stakeholders [3, 18].

Optimization techniques, often in conjunction with simulation, are used to
identify optimal fleet configurations. Genetic Algorithms (GA) have been applied
to problems such as determining the optimal location and capacity of shared
mobility hubs [26]. GA have also been employed to optimize the placement of
electric vehicle charging stations, incorporating demand data, points of interest,
and social network information [12]. Other optimization studies often focus on
scalability in large urban environments or address specific operational aspects
[21, 23]. However, the simultaneous consideration of multiple, conflicting objec-
tives (e.g., cost, emissions, accessibility) within a detailed, realistic simulation
environment remains a relatively unexplored area.

3 Method

3.1 Different Perspective Optimization Problems

The decision variable is a vector n of the number of vehicles ni∀i ∈ M, with M
the set of vehicle types in question.

Social Perspective: Fulfillment Rate The first objective takes the society
perspective of accessibility and inclusion. Travel demands that cannot be ful-
filled by another mean of transport (e.g., public transport), can be fulfilled with
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FFVS services. The regulator should aim to maximize the share of fulfilled FFVS
demands with the right fleet sizing and composition:

max
j

∑
j fj∑
j 1

(1)

where fj is an indicator variable that denotes whether trip request j was fulfilled
(1) or not (0).

Environmental Perspective: CO2 Emissions The second objective again
takes a societal perspective, this one specifically that of minimizing the environ-
mental impact the FFVS services have. The regulator should aim to minimize
the emissions that are created from operating fleets of the respective vehicle
types:

min
i,j

∑
i

∑
j

LCAifjmijdj (2)

where mij is an indicator variable that denotes whether a trip was carried out
with the vehicle type i and dj the trip distance. LCAi is the lifecycle assessment
of emissions in gCO2eq/pkm [1]. Specifically, we use measures derived from a
meta-analysis of the literature, as shown in Table 13. By using LCA measures
for the emissions, both emissions from fulfilling user demands and operations
are captured.

Vehicle Type Bikes Kick Scooters Scooters Cars
LCA (gCO2eq/pkm) 46.3 105 51.3 236

Table 1. Emissions from Lifecycle Assessment (LCA) Meta-Analysis

Economic Perspective: Operator Profits The third objective takes the
FFVS operator perspective, and can motivate them to participate in the tender.
Specifically, the operator aims to maximize their revenue of fulfilled trips:

min
i,j

∑
i

∑
j

fjmij(P
u
i + P t

i tj) (3)

with the two price components, Pu
i the unlock fee of the vehicle type and P t

i the
price per minute.

Cumulative Fleet Size All three problems must satisfy an equality constraint
that limits the total number of vehicles of modes that are on the road, ni, to
some parameter N. This cumulative number of vehicles on the road is expected
3 Due to space constraints, the meta-analysis is available upon request.
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to be set by policymakers. In section 4 we exemplify how a city could inform
this step, simplified. ∑

i

ni = N (4)

3.2 Multi-Agent Simulation

The effect of vehicle numbers of the different types on system metrics such
as emissions, fulfillment rate, and operator profits is complex and cannot be
parametrized in functional form. Rather, we employ agent-based modeling (ABM)
to create a function-like, yet opaque, mapping of inputs (decision variables) to
outputs (objectives) through MAS.

The MAS takes a mesoscopic perspective, as it does not simulate microscopic
travel itineraries of individual inhabitants (like MatSIM [10]) nor simply use
stochastic models for system-level metrics [24]. Rather, it utilizes ephemeral
user agents characterized by a spatio-temporal travel demand: The modelled city
is discretized into cells, and as time progresses, generator processes in each cell
draw inter arrival times from a Poisson distribution. After waiting for that arrival
time, a user agent is spawned at that origin cell and draws a destination cell for
its transport task from a multinomial distribution of weekday, time bucket, and
spawning cell [7].

Service Task
(Relocate or Recharge)Service Task

(Relocate or Recharge)

Poisson ProcessUser Agent
spawns

Multinomial Distribution
draw from

Transport Task to
Destination Fleet Agent

Vehicle
n

manages

Transportation Alternative
- Distance and Price

Utility Function

decide using

ranks and decides on

returns

ask / give

repeat, if allocation not successful

after x repetitions, fail Transport Task

Service Task
(Relocate or Recharge)create

Service Worker
m

fulfill

relocates

Fig. 1. User, Vehicle, and Fleet Operator Interactions in Simulation

Figure 1 shows core interactions between user agents and vehicles that are op-
erated by a fleet. The fleets present users with valid transportation alternatives
for their transport tasks, a selection of vehicle types, each linked to a specific
price, distance, and duration. Users choose among the presented alternatives
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based on utility functions. A lower threshold utility is set to model any outside
alternative. The mode choice utilities are derived from Demircan et al. [8]. Fleet
operators utilize service workers to recharge and relocate vehicles as needed, cre-
ating costs, which are albeit heterogeneous in their structure: Multiple bicycles
and kick scooters can be collected in a single service trip to relocate or recharge
as needed, as opposed to scooters and cars.

3.3 Genetic Algorithm Solution Approximation

We utilize the MAS to estimate expected values for the metrics through multiple
runs, as it has stochastic components and is thus non-deterministic. Using this as
the evaluation function of decision variable, we opt for a standard GA approach
with direct representation of the decision variable vector as chromosomes and
tournament selection. We implement custom crossover and mutation functions
to account for the integer nature of the problem. Figure 2 exemplifies how two
chromosomes from a parent population breed children chromosomes: A real-
valued two point crossover switches out two genes from the parents (2a) and
rebalances the genes for the equality constraint (2b). Afterward, a mutation of
the children randomly subtracts a value between 1 and 100 from one of the genes
and adds it to another to again balance the total number of vehicles.

3. Mutation1. Parent Generation 2a.Crossover & 2b. Fixing Constraint
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Fig. 2. Example of Custom Crossover and Mutation (B: Bike, S: Scooter, KS: Kick
Scooter, C: Car)

Finally, we augment the fitness function, which is just the respective met-
ric at the end of the simulation, with a penalty factor. A penalty is applied
when the fulfillment rate drops below a certain threshold, which we set at the
benchmark fulfillment rate with equal fleet sizes at N vehicles total. In order to
favor results that are closer to the threshold than the ones that are far off, an
exponential factor using the difference from the threshold and the achieved ful-
fillment rate is multiplied with the metric x of the respective objective function:

For minimization: e0.65
∑

j fj∑
j 1 x. For maximization: 1/e0.65

∑
j fj∑
j 1 x.
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4 Case Study

We use Berlin, Germany as a case study scenario. We use data from six incum-
bent vehicle sharing services of four vehicle modes M: Bicycles, (electric) kick
scooters, (electric) scooters, and cars. Figure 3 shows the distribution of trip dis-
tances carried out with the four modes in the data set. The data set consists of
origin-destination encoded trips and features like estimated price, distance and
duration. We use this to estimate a) the Poisson distributions for demand spawn
times in the discretized city grid, and b) the multinomial distribution of travel
destinations. The space is discretized to equidistant cells of about 1 kilometer
across. We simulate for one full week (with warm start).
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Fig. 3. Histogram Plots of the Distances Travelled by Vehicle Type

As a preliminary step, we simulate with a focus on fulfillment and fleet uti-
lization rate over an increasing total number of vehicles. Figure 4 shows the
metrics for fleet sizes from 400 to 8000 total vehicles. For this step only, we
assume an equal share of each mode. We define the point of diminishing returns
as the configuration which does not improve over the previous configuration by
more than 1%. We use the resulting cumulative fleet size of N = 4000 vehicles
as the equality constraint in all other steps.

5 Preliminary Results

In this work, we present preliminary results from individual optimization of the
three objectives and a discussion of how one objective (fulfillment rate), im-
pacts the other two as a constraint. We do not have Pareto front results at
this stage due to the extended runtime of the full multi-objective optimization
problem. Figure 5 presents the solutions of the single-objective problems solved
individually. Bicycles and cars clearly drive the min emission and max fulfill-
ment objectives solution, respectively. The max revenue solution interestingly
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Fig. 4. Finding Fleet Size Equality Constraint

trades off both kick scooters and cars for more bicycles compared to the max
fulfillment solution. This is likely due to the cost structure of operations, as the
non-electric bicycles rarely need to be relocated and charged. This, moreover,
provides a clear indication that the problem indeed has competing objectives,
and the relationship is not trivial.

Car

Scooter

Kick Scooter

Bike
0 500 1000

1500
2000

Objective
Min CO2
Max Revenue
Max Fulfillment

Fig. 5. Comparison of Individual Objective Solutions

Figure 6 illustrates the evolution of fleet composition across three distinct
optimization perspectives, each targeting a different objective: minimizing CO2
emissions (a), maximizing revenue (b), and maximizing fulfillment rate (c). Each
plot tracks the changes in the number of vehicles of each type over several gen-
erations of the optimization process.

In the emission minimization perspective (a), the number of cars decreases
substantially, while the population of bikes remains relatively constant. Scooters
and kick-scooters show a slight downward trend, suggesting a selection pressure
towards lower-emission modes within the evolving population. In the revenue
maximization perspective (b), the number of cars initially decreases but then
stabilizes at a relatively high value, indicating their importance for revenue.
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Scooters decline sharply, while bikes increase significantly before stabilizing, po-
tentially reflecting a balance between cost and demand. Kick scooters see a
modest increase.

The fulfillment maximization perspective (c), sees the number of cars drop
dramatically as soon as the second generation. Scooter and kick scooter numbers
rise and stabilize, while bike numbers also decrease and then stabilize. The slight
fluctuations observed towards the later generations in (c) can be attributed to
the stochastic nature of the simulation and the algorithm exploring the solution
space using estimates of the fitness function. Near-optimal fleet compositions
might exhibit very similar performance, leading to minor variations in the vehicle
counts as the GA fine-tunes the solution.
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Fig. 7. Varying the Imposed Fulfillment Rate Impacts the Emission Objective
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Finally, we briefly look at the interplay of two of the objectives (perspec-
tives): Fulfillment rate (social) and emissions (environmental). Figure 7 shows
the effect of varying the fulfillment threshold in the penalty term of the fitness
function. The leftmost solution is the fulfillment rate achieved with the emis-
sion minimization objective, the rightmost solution represents the one achieved
in the maximization of fulfillment rate. The solutions in between use uniformly
distributed fulfillment rate thresholds and a log-transformed trend line is fitted
to interpolate them. This highlights the inherent conflict between environmental
sustainability and demand fulfilling. By effectively visualizing a rough estimate
of a portion of the Pareto front, this analysis provides valuable insights for
decision-makers, allowing them to understand the environmental consequences
of different service level targets.

6 Discussion and Conclusion

This work is still a work-in-progress, and as such we list some next steps neces-
sary, but also limitations and open questions.

Most obviously, we will implement the full MOOP to search the Pareto front
of the solution space. We will discuss how regulators can interpret the results
and select solutions on this front based on preference weighting.

Additionally, we will reformulate the equality constraint of fleet size to ac-
count for the fact that different vehicle types take up a different amount of
parking space on the road. This will introduce a more realistic space constraint
on the fleet size. Because this will be computationally much more taxing, we
will limit the integer mutation and crossover steps to multiple of, e.g., 10. This
does not only shrink the number of solutions on the Pareto front and thus take
some mental load away from policymakers, it is also still much more fine-grained
than the rule-of-thumbs that are currently in place and round vehicle numbers
to hundreds.

Next, the operator perspective objective (max revenue) lacks an explicit
model of costs. In the MAS, we track both revenue and costs during all phases of
the fleet lifecycle, but as of now, costs are only implicitly modelled in the rental
prices that operators post. Because these costs are intricately linked to the fleet
size and potential under-/overutilization of resources, we will model profit as a
function of revenue and costs to alleviate this limitation.

Lastly, runtime is a serious limitation of our work. Even if we reduce the
number of solutions drastically, a drawback of the simulation as a function sim-
ulator is its runtime, which is a couple of minutes for two full weeks simulated.
As the simulation is in parts stochastic, several runs are necessary for each con-
figuration to be able to work with expected values in the EA. Because of this,
at some point, we might be forced to try out some form of surrogate modelling
combined with clever initialization, sampling, and update (e.g., Latin hypercube
sampling) [16, 14]. This, however, could defeat the purpose of using intricately
modelled MAS as opaque function models. We are highly interested in inputs
on this point.
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