Under review as a conference paper at ICLR 2025

NOT ALL PARAMETERS ARE EQUAL: A HESSIAN IN-
FORMED DIFFERENTIAL LEARNING RATE FOR DEEP
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential learning rate (DLR), a technique that applies different learning rates
to different model parameters, has been widely used in deep learning and achieved
empirical success via its various forms. For example, parameter-efficient training
(PET) applies zero learning rates to most parameters so as to significantly saves
the computational cost; adaptive optimizers such as Adam apply the coordinate-
wise learning rate to accelerate the convergence.

At the core, DLR leverages the observation that different parameters can have
different loss curvature, which is hard to characterize in general. We propose
the Hessian-informed differential learning rate (Hi-DLR), an efficient approach
that captures the loss curvature of parameters for any model and optimizer adap-
tively. Given a proper grouping of parameters, we empirically demonstrate that
Hi-DLR can improve the convergence by dynamically determining the learning
rates during the training. Furthermore, we can quantify the influence of different
parameters and freeze the less-contributing parameters, which leads to a new PET
that automatically adapts to various tasks and models.

1 INTRODUCTION

DLR by parameter groups We term the differential learning rate (DLR) as a technique that as-
signs different learning rates to different parameter groups. Here the parameter groups are partitions
of model parameters w € R” such that w = [w(1), ..., w(x)] and the gradient g = [g(1), ..., & (k)]
and we defer the notations to Section 2,11

When K = 1, this reduces to the uniform learning rate (ULR) and we update with n; € R such that
W41 = Wt — N Bie-

When K > 1, we have multiple learning rates 7)) for & € [K] such that
Wip1 = Wi — [N10)8(1),t o NEK)B(K).t] 1= Wi — MK 18Kt

Motivation of DLR. At high level, DLR can be beneficial because the loss curvature can be very
different for different parameters. The loss curvature is captured by the Hessian information matrix
and its eigen-spectrum, as demonstrated by Figure 1-5 in|Ghorbani (2019), Figure 1 and 3 in|Yao
et al.| (2020), Figure 1 and 6 in Sankar et al.| (2021), and Figure 1-2 in [Zhang et al.| (2024). We
visualize in Figure [T|that, by grouping the parameters into biases and weights, the two groups have
significantly different curvatures and prefer different learning rates. We give further motivation from
an optimization perspective in Section [2.2]and Section[2.3]

Related works to DLR. In fact, DLR has been widely used in deep learning, including parameter-
efficient training (PET), layer-wise learning rate, and adaptive optimizers.

For example, PET methods include Adapter Houlsby et al., BitFit Zaken et al.[(2022), LoRA and its
variants Hu et al.[(2022)); Hayou et al.| (2024) and others (see more in|Han et al.| (2024))) are special
cases of two-group DLR, because the majority of parameters is frozen and non-trainable (i.e. using
a learning rate of 0) and a small portion of parameters uses a non-zero learning rate. These methods

Under review as a conference paper at ICLR 2025

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Figure 1: Second-order Taylor approximation in equation is sufficiently accurate. We visualize
losses with two-group Hi-DLR (bias) under the settings in Section Left&Middle: L(w() —
€;81y) and L(w o) — £;g(2)) in dots at iteration 200. Solid lines are the fitted quadratic functions,
with minimizer marked by dashed vertical lines. Right: the loss truth is the left side of equation
plus L(w), and the loss prediction is the right side of equationplus L(w).

have shown strong performance in fine-tuning large vision and language models, including GPT,
ViT, ResNet, etc.

Another example is the layer-wise learning rate. Howard & Ruder| (2018) proposed a depth-wise
DLR where deeper layers use larger learning rate with 1),y = 1-2.6" and [is the layer index. Similar
ideas have been proposed not only in fine-tuning but also in pre-training |You et al.| (2019); [Zheng
& Kwok] (2019); [You et al.|(2017); |Singh et al.| (2015); |Ginsburg et al.|(2019); |Zhang et al.| (2022);
Sun et al.| (2019); [Ioannou et al.| (2023). Some variants have extended the depth-wise DLR in a
block-wise manner, by grouping multiple layers into a block for faster computation.

From a different angle, we can view the adaptive optimizers including Adam |Kingma & Ba|(2014)
as SGD with coordinate-wise DLR (K = D where D is the model size), since each parameter uses
a different learning rate. For example, we can write SignSGD [Bernstein et al.| (2018) — a special
subcase of Adam as

Wi = We—15 — N9¢,i/|9¢,i] = We—1,i — NiGe.i (1.1)

where 1; = 1/|g..;| is the i-th coordinate’s learning rate. Note the general Adam can be written as
the SGD with DLR similarly, though the coordinate’s learning rate is more complicated due to the
exponential moving averages.

Despite the success of DLR in many areas, there are some challenges for its wider application which
we introduce in the following.

Potential challenges in DLR. Naively implemented, DLR will introduce K hyperparameters in-
stead of 1 hyperparameter by ULR. This leads to the challenge of hyperparameter tuning, which can
be prohibitively expensive, especially when model size D or number of learning rates K is large.

One approach that reduces the number of effective hyperparameters in DLR, which is adopted by
the aforementioned works, is to incorporate a heuristic structure among 7). As we have discussed,
different PET methods freeze different parameters; the depth-wise learning rate uses a fixed ratio
2.6 to scale 7;); SignSGD or Adam uses the coordinate-wise gradient norm to scale 7;, so that K
hyperparameters have only 1 degree of freedom in 7.

Nevertheless, such heuristic structure may fail to work in some cases. For example, the fixed ratio in
depth-wise learning rate is expected to vary for different models and tasks. We also see in first two
rows of Table@]that LoRA is comparable to full model training (FMT) on SST-2, MNLI and QNLI,
but not so on MRPC and ColA. Further experiments in Figure [6] and Figure [7]lend strengths to our
observation that no one PET method fits all cases.

We consider an orthogonal approach that preserves the K degrees of freedom and adaptively adjusts
7(x) With minimal overhead, which can be used in combination with PET and adaptive optimizers.

Automatic ULR. In the ULR regime, recent advances have proposed automatic learning rate
schedule (or parameter-free, or learning-rate-free methods), including but not limited to D-
Adaptation Defazio & Mishchenko| (2023)), Prodigy Mishchenko & Defazio| (2023), DoG [Ivgi et al.
(2023)), and GeN Bu & Xu| (2024), among which GeN uniquely leverages the Hessian information.

Under review as a conference paper at ICLR 2025

However, these methods cannot easily optimize the DLR in general. In this work, we extends GeN
from ULR to DLR in Algorithm |I} We term our method as Hessian-informed DLR (Hi-DLR) and
highlight that its subcase Hi-ULR is equivalent to GeN.

We note there are more learning rate techniques that can leverage Hessian information, such as
line-search Drori & Taylor| (2020); |(Goujaud et al.[(2022); |Armijo| (1966); Bertsekas| (1997), but an
extra overhead is incurred for a fine-grained search. We have developed some efficient tricks so that
Hi-DLR can be almost as fast as ULR in Section[3

Contribution.

* We introduce Hi-DLR in equation [2.4] to enrich the approximation of Hessian information, in
addition to the pre-conditioning of any optimizer, so as to leverage the different loss curvature of
different parameters through different learning rates.

* We propose Algorithm [I] to efficiently compute Hi-DLR, with a novel diagonalization trick in
equation which not only significantly reduces the computation cost, but also separates the
contribution of different parameter groups in equation5.1]

* We demonstrate that Hi-DLR is favorable for various tasks like image/text classification, regres-
sion, multi-task learning, as well as parameter-efficient fine-tuning.
* We develop a meta-framework of PET as an application of Hi-DLR, where we use the per-

parameter influence to select trainable parameters and thus an adaptive PET method for general
models and tasks.

2 DIFFERENTIAL LEARNING RATE AND HESSIAN INFORMATION

2.1 NOTATIONS

We denote w as the parameters of a model, while w; € RP represents the iteration ¢ and W)
represents the k-th parameter group. We use [w(1), w(a)] € R™*™ to concatenate two parameter
groups in R™ and R™. The same notation follows for other variables including the mini-batch
gradient g € RP, and we denote the learning rates k) = [77(1), e T K)] € R¥ for K parameter

OL(w)
ow

We omit ¢ whenever it is obvious from the context.

groups. We denote the loss as L(w), its first-order derivative as G(w) := and its second-
9% L(w)

ow?

order derivative as H(w) :=

2.2 A GLOBAL PERSPECTIVE: HYPERPARAMETER OPTIMIZATION PROBLEM OF DLR

To set the stage, we define the hyperparameter optimization problems and give some motivation of
using DLR over uniform learning rate (ULR). We aim to minimize the loss after 7" iterations, given
any optimzier and any K groups of the model parameters,
ULR problem: min L(wyr), DLRproblem: min L(wr).
Nay=--=MN(K) (1) N(K)

Here the ULR problem is a univariate optimization, with 1 degree of freedom, which can be solved
through grid search, Prodigy, D-adaptation, GeN, etc. In contrast, the DLR problem is a multi-
variate optimization, with K degrees of freedom. Therefore, ULR problem is a constrained DLR
problem: denoting the optimal learning rate of DLR as 772‘1), vy nE“K), then the solution of URL
problem is sub-optimal unless 772‘1) =..= nZ‘K).

Remark 2.1. Optimizers with coordinate-wise learning rates (e.g. Adam/SignSGD in equation[I.T))
are DLR methods, yet the hyperparameter optimization problem is a ULR problem when K = 1.

To put this into perspective, we test two functions in Figure [2} (1) the ellipse L(wo,w;) = wg +
100w?, which is convex; (2) the sum of Beale and Rosenbrock functions, which is non-convex.
We leave more details and explanation in Appendix [A.T] We see that our Hi-DLR significantly
accelerates the convergenceﬂ when compared ULR methods.

1Speciﬁcally, for the ellipse function, we note that Hi-DLR reduces to the Newton’s method, which is known
to find the minimum in one iteration.

Under review as a conference paper at ICLR 2025

— HI-DLR(SGD)
Hi

LR(SGD)
—— HLULR (adam)
56D

Figure 2: Optimizing over 2D test functions. The left two plots are the results of optimizing an
ellipse function; the right two plots show the optimization on a function that is the sum of Beale
and Rosenbrock. Hi-DLR is our method; Hi-ULR recovers GeN; the rest uses a manually selected
learning rate. See experiment details in Appendix@

2.3 A LOCAL PERSPECTIVE: NEXT-LOSS MINIMIZATION

To understand the mechanism of DLR’s improvement over ULR, we focus on one iteration and
analyze the next-loss minimization along any direction d € R” by w;;; = w; — d. Using the
Taylor expansion to capture the loss curvature, we get

1
QPLQWH):QFL@&—dym%nuwg—cfd+§dﬁﬁd (2.1)

The minimizer dj of equation is Hy LG,, which leads to the Newton’s method as Wiy =
w; —df = w, — H;'G,.

However, H; € RP*P is hard to compute for large-scale optimization, because of the complication
in second-order differentiation and the prohibitive memory cost to store H,. In practice, H; ' G,
is approximated by n,g™"™ = 1,P~'g,, i.e. the pre-conditioned gradient multiplied with a proper
learning rate, and thus H=! ~ nP~! = (nI) - P~1. The majority of existing methods focus on
merging the Hessian information into P~1. For example, Adam Kingma & Bal (2014), AdamW

oshchilov & Hutter (2017), AdaGrad [Duchi et al.| (2011), AdaDelta (2012), RMSPro% Hin-

ton et al.[|(2012) use the square root of diagonal Fisher information as P~"; AdaHessian Yao et al.

(2021) and Sophia[Liu et al.| (2023) use the diagonal Hessian information or Gauss-Newton decom-
position.

Orthogonal to these works, DLR (with K parameter groups) extends nI to a K -dimensional diagonal
matrix, up to permutation of elements,

H—l ~ 0 7’](2)1 0 P—l
0 . 0
0 0 77(1{)1

As a consequence, DLR enriches the approximation to H~! with a higher degree of freedom, which
allows the learning rates to capture the Hessian information and thus translates to improved conver-
gence when the learning rates 7 are properly set.

2.4 OPTIMAL DIFFERENTIAL LEARNING RATES

We now derive the optimal DLR in the sense of equationwith d =ng g([’f;i]m,

1
L(wi1) — L(w) = -G (nirigx) + E(n[K]g[K])TH(n[K]g[K]) +o(lnx?) 2

G(Tl)gu) 1 g(Tl)H(n)gu) g(Tl)HaK)g(K)
N — Nk GT... +§n[K] . H . H NK] 2.3)
(K)8(K) Sx)yH(KHBL - B(g)TH(KK)E(K)
b. (g]k") €ERK A (g ERK XK

Under review as a conference paper at ICLR 2025

This approximation is sufficiently accurate when 7 is small (c.f. Figure 2 in Bu & Xu (2024)

when K = 1; see also our Figure , because the error term o(n?) is very small for the commonly
used learning rates.

If A, and b, are known and if A, is positive definite, the quadratic function in equation admits
a unique minimum at

THi-DLR = [’I’}Ekl), . T]zK)] = A;lb* S RK (24)

which we term as the Hessian-informed DLR (Hi-DLR). Notice that A, and b, can be defined on
any g™ hence Hi-DLR applies to any optimizer and the Hessian information is captured by both
the pre-conditioning (through P! in gf’ptim) and the learning rate (through A, in ny;.prr). In what
follows, we omit the superscript in g°"™ for the simplicity of presentation.

3 COMPUTING HI-DLR WITHOUT ADDITIONAL BACK-PROPAGATION

We propose Algorithm [I]to efficiently compute Hi-DLR, which requires the knowledge of A and
b, in equation or equivalently G&)g(k) and g(Tk)H(kk)g(k). Specifically, we demonstrate what,

how, and when to derive these coefficients, thus reducing the computation overhead from O(D?)
to O(1) and allowing Algorithm [I|to be almost as fast as standard optimization. See our detailed
complexity analysis in Appendix |B|

Algorithm 1 Generalized Newton’s optimizers with multiple parameter groups

1: fortel,--- ,Tdo

2: Compute loss Ly = L(w;) by the forward pass

3 Compute gradient g(w;) by the back-propagation on Lg

4: Modify gradient as g = g™ by AdamW, momentum SGD, etc.
5: if t mod ® == 0: then
6
7
8
9

for j €1,....,4K do:
Randomly select 7 := [1)1), ..., (k)] ~ N(0, diag(n))
Compute L; = L(w; — [1)1)8(1), ---]) by the forward pass

Fit the quadratic function from {#}; — {L; — Lo}

10: Derive G(Tk)g(k) and g(Tk)H(kk)g(k) in equation

) . IG (&I
11: Compute per-parameter influence &7 e 800 for each group
12: Derive the optimal learning rate 7 by equation [3.2]

13: Update w41 = w;y — [n(l)g(l)a]

What to derive. A, € RE*K contains O(K?) elements to be derived, which can be costly and
hard-to-scale for large K (say K = 40 in CelebA), because we will use one forward pass to estimate
each element. In practice, we simplify the multivariate quadratic function in equation by only
deriving the diagonal of A,

1) 1
L(wiy1) — L(w;) & —nfjeba + gn[}]dlag(A*)n[K] = Z(in}%g&)H(kk)g(k) — G () (k)
k
3.D
which is minimized, if all g(Tk)H(kk) 8(k) are positive, at

G/.g
= 02 for =1, K. (32)
8 (k) H(kr)8(k)

In summary, we derive diag(A.) instead of the full A, thus reducing the computation overhead
from O(K?) to O(1) with negligible accuracy degradation empirically.

Under review as a conference paper at ICLR 2025

How to derive. We adopt the back-propagation-free approach in Bu & Xu| (2024) to fit the
quadratic function equation [3.1} without ever instantiating the computationally expensive G or H.
We solve a finite-sum problem:

. 1
A.,b, = argmin, , Z |L(w: — &58x7) — L(wy) + E;b — §§;A£j|2
J

Note this is a multivariate problem with 2K variables and Algorithmuses 4K different ¢; € RE.

When to derive. We derive 7;, through A, and b, infrequently, say every ® iterations following
Bu & Xu| (2024). This reduces the overhead from O(K) to O(1) if we set & = O(K). We do
not update the learning rate if not all g&)Hkg(k) are positive, i.e. we use 7k from the previous

iteration whenever equation [3.1]is not convex in 7.

— all

N VT I
| ARy w}{w”m

2 00

1007

Per-parameter influence
Per-parameter influence

21010

0.005 A
0.0025 \
0.0004 0.0020

o 00020 head 0004

A
nort /
£ /
3 0.0010 WAL 0.002 y A
0.0005 /W/ \\ 0.001 \\
NS R

0.0000 e ———— 0.000

ate

£o.0015
2
£ 0.0010

© 0.0003

9
Learning rate

£ 0.0002

Leal

S
0.0001 0.0005

0.0000 — 0.0000

80 0 20 60 80

20 30 20 30 40 60 40
Iterations Iterations. Iterations Iterations

Figure 3: Per-parameter influence in equation and learning rates by two-group Hi-DLR under
the settings in Section {f.1] Left to right: CIFAR10, CIFAR100, SVHN, and Food101. Note all
corresponds to Hi-ULR.

4 IMPROVING CONVERGENCE WITH HI-DLR

We experiment Hi-DLR with multiple tasks, including image classification, multi-task learning,
regression, and language modeling. We leave the experiment details in Appendix[A] In what follows,
we refer to DLR as the optimization problem with degree of freedom K > 1 and ULR otherwise.

4.1 IMAGE CLASSIFICATION

We experiment on 5 image datasets for multi-class classification, in which we test 2-group Hi-DLR
under full-model fine-tuning. We indicate one parameter group in the parenthesis in Table [T] (e.g.
head, bias, and layer normalization), and treat the remaining parameters as the other group.

Table 1: Test accuracy of ViT (optimized by AdamW) on image classification. We mark the best
two results in bold for each dataset.

Dataset CIFAR10 | CIFAR100 Food101 GTSRB SVHN
Reference Krizhevsky et al.|(2009) | [Bossard et al.|(2014) | [Houben et al.|(2013) | Netzer et al.|(2011)
Hi-DLR (head) | 98.80 93.03 | 90.76 1T 99.10 1T 96.73 -
Hi-DLR (bias) 98.95 93.40 90.68 99.07 96.80
Hi-DLR (norm) 98.86 93.36 90.45 99.06 96.82
Hi-ULR (GeN) 98.68 92.62 90.48 99.06 97.14
Prodigy 98.92 92.49 90.42 98.88 97.13
D-Adaptation 97.56 88.11 89.45 99.04 96.77
Constant 97.49 89.23 88.44 98.54 96.65
Linear decay 98.48 92.60 90.54 98.74 97.08
Cosine decay 98.73 92.71 90.46 98.77 97.16

Widely used ULR methods include heuristic learning rate schedulers (i.e. Constant Raffel et al.
(2020), Linear decay |Smith| (2015) and Cosine decay |[Loshchilov & Hutter (2016)); [Radford et al.

Under review as a conference paper at ICLR 2025

(2021)) as well as automatic optimizers like GeN, Prodigy and D-Adaptation. We compare Hi-DLR
with these ULR methods and observe that Hi-DLR improves over the best ULR in all datasets except
SVHN, since it takes our method some iterations to search the appropriate learning rates.

4.2 MULTI-TASK LEARNING

We experiment on CelebA [Liu et al,| (2015), a large-scale image dataset with 40 labels of face
attributes and over 200k samples. This is a multi-label and multi-task problem, each label corre-
sponding to one binary classification task. Hence we have 40 losses in total and will assign 40
learning rates to them. We use a pre-trained ResNet18 He et al.[(2016) from Wightman|(2019) and
only train the last layer, i.e. the classifier head. To be specific, the last layer has a shape (512, 40)
and we group the parameters that connect the last hidden layer to each output neuron as one group
with shape (512, 1), which corresponds to one task.

081

0

0.80

0 200 400 600 800 1000 1200
I

nnnnnnnnnnnnnnnnnn

Figure 4: Fine-tuning results on CelebA. From left to right, the first panel shows the average train
loss over 40 labels; the second panel shows their average test accuracy; the third and fourth panels
are two individual test losses of two labels. See the results of all 40 tasks in Appendix

In Figure[d](right two plots), we observe that the difficulty of learning different tasks can vary. Hence
assigning different learning rates can improve both overall and individual convergence.

4.3 INTERPRETABLE REGRESSION WITH NEURAL ADDITIVE MODEL (NAM)

NAM Agarwal et al.|(2021)); | Xu et al.|(2023) is a special neural network architecture, which has mul-
tiple sub-networks in parallel such that g(y) = 5 + 21521 fj (Xk). Here y is the target variable, g
is the link function, Xy, is the k-th feature of data, 3 is the bias, and f} is the k-th sub-network. Each
sub-network attends to a single feature separately so that the effect of each feature is interpretable.

Empirically, different features have various degrees of difficulty in learning, which requires different
learning rates during training. We experiment on one synthetic data and the California housing
dataset |Pace & Barry| (1997)), as two regression tasks on tabular data. See experiment details in

Appendix [A.3]

We apply Hi-DLR to fj as follows: for K sub-networks, we create K +1 parameter groups, with one
for each f, and one for the bias 3. The learning rates are shown in the right-most panel of Figure[5]
For Hi-DLR, the [r0 (black lines) is the learning rate for the bias. Irl, [r2 - - - is the learning rate
selected using Hessian information of parameter group 1,2,--- , K.

In sum, the experiments in Figure [5] show that NAM with Hi-DLR converges significantly faster
than manually selected learning rates or Hi-ULR.

4.4 LORA ON NATURAL LANGUAGE UNDERSTANDING

Low-Rank Adaptation (LoRA, Hu et al.[(2022)) is a popular PET method that adds two low-rank
matrices to the pretrained weight matrix,

w— w+ BA

and only trains the parameters in B and A. Recent research has shown that freezing A (LoRA-FA,
Zhang et al.[(2023))) or choosing different learning rates for A and B (Lora+, Hayou et al.[(2024))
can boost LoRA’s performance. These variants can be deemed as applying DLR to the vanilla LoRA.

We fine-tune RoBERTa-base |Liu et al.[(2019) model on five GLUE datasets Wang et al.|(2018]) with
LoRA. For Hi-DLR, we split the parameters into three groups: A, B and head. In Table 2] Hi-DLR

Under review as a conference paper at ICLR 2025

40 0.200
— HIDLR

35 e 0.175

0.150{ — 4

— HiDLRIS
@ — HiDLR I
£ 012517 i0 s
= — HiDLR 8
20.100 HIDLRIS
— HIDLRI0
§0.0751 -~
3

Train loss
[FE
S
Test loss
~
S
mil

&

0.050

0.025

0.000

0 20 40 60 80 0 20 40 60 80 0 250 500 750 1000 1250 1500 1750
Iterations Iterations Iterations

[Ty — oo
R 075 0175 HiDLRI2
0.70 0.150 LRira

0.8 90125 LR 6
3

o
o
&

0.60 20100 —— HIDLRS

Train loss
e
3
Test loss

£
g 0.075

0.6 i H
, i, \ : : 0.050

0.025

)
o
o

)
I
S

o
P
&

— Hi-DLR
— HIULR 0.000

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200 1400 1600
Iterations Iterations Iterations

o
S
o
PN
S

Figure 5: Loss and learning rate of NAM on two regression tasks. The first row is the synthetic
dataset. The second row is the California Housing dataset. From left to right, the first two plots show
the training losses, and test losses, where the grey lines are results trained with a list of manually
picked learning rates, the blue curves correspond to Hi-ULR, and the red curves correspond to Hi-
DLR; the last plot shows the learning rates for different groups.

Table 2: Performance of ROBERTa-base model with different methods on GLUE datasets. The best
performance in PET is marked in bold.

‘ Trainable | \ o\ GST2 MRPC CoLA QNLI
param

ULR (FMT) 125M | 8745 9438 8897 8082 9246

ULR (PET) 03M | 8501 9381 7549 69.13 91.05

Hi-ULR (PET) 03M | 8249 9335 8358 79.58 90.43

Hi-DLR (PET) 03M | 8521 94.15 8578 8159 90.48

outperforms Hi-ULR and ULR in PET on 4 out of 5 datasets. Experiment details can be found in
Appendix [A.4]

We notice that LoRA can underperform FMT significantly on some datasets such as CoLA and
MRPC. This phenomenon has also been witnessed in other models (see Table 1 of Wang et al.
(2024); Wang & Liang (2024)). Additionally, Table 4 of Bu & Xu| (2024) shows that BitFit|Zaken
et al.| (2022)), another PET method can outperform LoRA one some GLUE datasets but not on others.

These evidences indicate that there is no one PET that can fit all tasks, which is further confirmed in
the next section and motivates our new PET method.

5 HESSIAN-INFORMED INFLUENCE OF PARAMETERS

In this section, we leverage DLR to quantify the influence of parameters, which identifies the im-
portant parameters that could lead to new PET.

5.1 PER-PARAMETER INFLUENCE

From equation [3.1] and under the Hi-DLR 7, = 7; in equation we can attribute the loss im-
. GT 2
provement to each parameter group: we can separate the total improvement %
(ry Her) 8

that each summand is the group’s contribution, and we define

T 2
|G(k)g(k)|
g&)H(kk)g(k) - dy,

Per-Parameter Influence (PPI) = 5.1

Under review as a conference paper at ICLR 2025

where dj, is the number of parameters in group k that sums to), d, = D. Note the PPIis computed
during training by Algorithm T}

We visualize the PPI in Figure] for K = 2 and image classification. We further visualize in
Figure[6]and Figure[7|for ' > 5 across CV, NLU, NLG tasks. Here we have equipped a model with
parameter groups in LORA (2022)); with module names lora_A and lora_B), BitFiT
(2022); bias), linear probing (head), LayerNorm tuning norm), and embedding

layer tuning (embed).
10 I

I
m others

£

2 3

E. i

E— ’ ‘5_ ’
3

8- i

2

£
5

°© = N w & u o

embed lora B lora A b

-1 o
H

3

00 05 10 15 20 25 30 35 40 45 50 00 01 02 03 04 05 06 07 08 09 1.0 00 05 10 15 20 25 30 35 40 45 50
Epochs Epochs Epochs

norm others

head lora B lora A bias

e e e e S T S S -2
0 1 2 3 4 5 6 7 8 9 10
Epochs

Figure 6: Heatmap of PPI for multiple parameter groups in log-scale. Upper row, left to
right: (CIFAR100,ViT-base), (ImageNet, ViT-base), (E2E, GPT2). Lower row, left to right:
(MRPC,RoBERTa-base), (CoLA,RoBERTa-base), (SST-2, RoOBERTa-base).

Epoch:

EEEEEE Epochs Epochs

Figure 7: Heatmap of PPI on CoLA dataset in log-scale. Left to right: RoOBERTa-base, RoOBERTa-
large, T5-small, and T5-base.

We consistently observe that existing PET methods indeed have selected the highly influencial pa-
rameters, which have about 10*x higher PPI than the majority of model parameters in Figure
This supports the effectiveness of PET, in the sense that it may suffice to train with a small portion
of selected parameters and freeze most parameters, with little degradation in performance.

The light-colored regions in Figure [6] have revealed some PET methods, which may be new. On
CIFAR100 and ImageNet, ViT model can be effectively trained with BitFit together with LayerNorm
tuning; on E2E, GPT2 model can leverage LoRA together with LayerNorm tuning; on RoBERTa
models, LoRA with frozen A (LoRA-FA [Zhang et al.| (2023)) and BitFit seem to work well. It is
clear that different datasets can lead to different PPI even on the same model, e.g. the last row in
Figure[6] and so can different model architectures, e.g. T5 v.s. RoBERTa in Figure 7]

In summary, we have obtained that there is no one PET method that fits all cases, and the PPI is
highly dependent on the tasks (i.e. model architectures, datasets and parameter groups). Specifically,
a combination of multiple PET methods usually gives the optimal performanceEl In what follows,
we propose a meta-framework that adaptively identifies strong PET methods given any task.

2For example, the LoRA library (2022) states that training bias vectors in tandem with LoORA might
be a cost-efficient way to squeeze out extra task performance.

Under review as a conference paper at ICLR 2025

5.2 A META-FRAMEWORK OF ADAPTIVE PET

Our meta-framework is flexible and model-agnostic: given a number of PET methods and the corre-
sponding parameter groups, we leverage Algorithm [I]to select the parameter groups with high PPI
and freeze the others if PPI;, < ¢ - min PPI,. Here ¢ is an adjustable hyperparameter, with) = 1
meaning full model training (FMT) and ¢¥» > 1 meaning PET. We note that higher v leads to fewer
trainable parameters and likely worse performance but better computation efficiency).

In particular, we can determine v and thus the PET method by experimenting on a small model, and
then transfer to larger models, since we empirically observe that different model sizes (within the
same architecture) have similar PPI by parameter groups in Figure

Table 3: Performance of ROBERTa models on CoLA. (Y)es indicates a parameter group is trainable.
(N)o indicates a group is frozen. We transfer the PET identified at ¢ = 10 to larger model.

model RoBERTa-base RoBERTa-large
P 1 1.1 10 500 1000 | 2000 FMT PET
others N N N N N N
norm N N N
bias N
head
loraA N N N N N
loraB N N
accuracy 84.37 | 81.97 | 82.16 | 81.88 | 81.88 | 80.82 || 85.71 | 84.66
num param | 12494 | 1.00 | 0.86 | 0.84 | 0.69 | 0.59 || 356.14 | 1.76
% param 100 0.80 | 0.69 | 0.67 | 0.55 | 047 100 0.49

Table 4: Performance of GPT models on E2E. (Y)es indicates a parameter group is trainable. (N)o
indicates a group is frozen. We transfer the PET identified at ¢ = 10 to larger models.

model GPT2-small GPT2-medium GPT2-large
P 1 1.1 10 500 | 1000 FMT | PET FMT | PET
Others N N N N N N
norm
bias N N N N N
loraA N N
loraB N
embed N N N N N
perplexity 3.09 3.15 | 343 | 3.61 | 3.79 3.02 3.26 2.96 3.12
num param | 124.58 | 39.65 | 0.18 | 0.11 | 0.04 || 355.21 | 0.49 || 774.76 | 0.92
% param 100 31.82 | 0.15 | 0.09 | 0.03 100 0.14 100 0.12

In Table3]and Tabled] we first experiment on the smaller models, RoOBERTa-base and GPT2-small.
We allocate 10% of training iterations to determine the PET method at each indicator ranging from
1.1 (training any PET parameters that are more influential than the majority) to 1000 (beyond which
all parameters are frozen). We observe that the model performance tend to worsen as 1) increases and
the percentage of trainable parameters quickly drops below 1%. We then transfer the PET method
at 1 = 10 to larger models, which enjoy ~ 150% training speed and similar performance compared
to FMT even though the trainable parameters is < 0.5% of the full model.

6 DISCUSSION

In this work, we have demonstrated that different parameters have different loss curvatures and
influences on the convergence, through the lens of Hi-DLR. We propose an efficient algorithm to
compute Hi-DLR adaptively, so as to leverage it for faster convergence or PET strategies. We
believe there are more and new ways to leverage Hessian information from DLR, that could be
future directions. We also leave a discussion of Hi-DLR’s limitations in Appendix [C|

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699—4711, 2021.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1-3, 1966.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560-569. PMLR, 2018.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334-334, 1997.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
nents with random forests. In Computer Vision—-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446-461. Springer, 2014.

Zhiqi Bu and Shiyun Xu. Automatic gradient descent with generalized newton’s method. arXiv
preprint arXiv:2407.02772, 2024.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449-7479. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yoel Drori and Adrien B Taylor. Efficient first-order methods for convex minimization: a construc-
tive approach. Mathematical Programming, 184(1):183-220, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Behrooz Ghorbani. An investigation into neural net optimization via hessian eigenvalue density.
2019.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Stochastic gradi-
ent methods with layer-wise adaptive moments for training of deep networks. arXiv preprint
arXiv:1905.11286, 2019.

Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Optimal first-order methods for convex
functions with a quadratic upper bound. arXiv preprint arXiv:2205.15033, 2022.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detec-
tion of traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In
International Joint Conference on Neural Networks, number 1288, 2013.

11

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanistaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

George lIoannou, Thanos Tagaris, and Andreas Stafylopatis. Adalip: An adaptive learning rate
method per layer for stochastic optimization. Neural Processing Letters, 55(5):6311-6338, 2023.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465-14499. PMLR,
2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291-297, 1997.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
look at the hessian eigenspectrum of deep neural networks and its applications to regularization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9481-9488,
2021.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2025

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific
adaptive learning rates for deep networks. In 2015 IEEE 14th International Conference on Ma-
chine Learning and Applications (ICMLA), pp. 364-368. IEEE, 2015.

Leslie N Smith. No more pesky learning rate guessing games. CoRR, abs/1506.01186, 5:575, 2015.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classification? In
Chinese computational linguistics: 18th China national conference, CCL 2019, Kunming, China,
October 18-20, 2019, proceedings 18, pp. 194-206. Springer, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
arXiv preprint arXiv:2407.05000, 2024.

Zhengbo Wang and Jian Liang. Lora-pro: Are low-rank adapters properly optimized? arXiv preprint
arXiv:2407.18242, 2024.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—image—-models, 2019.

Shiyun Xu, Zhiqi Bu, Pratik Chaudhari, and Ian J Barnett. Sparse neural additive model: Inter-
pretable deep learning with feature selection via group sparsity. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 343-359. Springer, 2023.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data),
pp- 581-590. IEEE, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665-10673, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1-9, 2022.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Guogiang Zhang, Kenta Niwa, and W Bastiaan Kleijn. A dnn optimizer that improves over adabelief
by suppression of the adaptive stepsize range. arXiv preprint arXiv:2203.13273, 2022.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in atten-
tion: Towards efficient multi-modal llm finetuning. In The Twelfth International Conference on
Learning Representations.

Shuai Zheng and James T Kwok. Blockwise adaptivity: Faster training and better generalization in
deep learning. arXiv preprint arXiv:1905.09899, 2019.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2025

A EXPERIMENT DETAILS

A.1 TOY DATA FOR OPTIMIZATION

To manually select the best learning rate, we grid search from {le — 5 x 10%/ Y fork = 0,...,11.
The learning rate that gives the smallest loss after 100 iterations will be chosen.

Ellipse function

Ellipse(wp, wy) = 2 + 100y
. We optimize from the initialization at (wg, w;) = (50, 1). The minimizer of the ellipse function is
(wo, w1) = (0,0).

Sum of Beale and Rosenbrock Beale is a convex function and Rosenbrock is a non-convex func-
tion.

Beale(z,y) = (1.5 — 2 + 2y)* + (2.25 — z + 2¢°)? + (2.625 — x + 2y*)?
Rosenbrock(z, y) = 100(y — 2?)* + (1 — z)?

The unique minimizer for Beale is (3, 0.5), for Rosenbrock is (1, 1). The optimization problem is a
sum of Beale and Rosenbrock:

L(wo,wy) = Beale(wy, 0.5) + Rosenbrock(wy, 1).

So the minimizer of this new L is (3, 1). We optimize from the initialization at (4, 3).

A.2 MULTI-TASK LEARNING ON CELEBA

Each result is trained on 2 epochs with a training batch size of 500, optimized by a standard AdamW
optimizer. No data augmentation is used. For ULR, we use a fixed learning rate of 1e-3. For Hi-ULR
and Hi-DLR, we use an initial learning rate le-3 and ® = 10.

A.3 INTERPRETABLE REGRESSION WITH NAM

Synthetic data The data X € R3%99%10_ Let’s denote the j-th column of X as X j- y is generated
by an additive model:

10
y= Z Fi(X35) + N(0,1)

where f; are zero functions for j = 7,8, 9, 10. The rest features are generated in the following way:

fi(z) = 22%tanhx, fo(z) =sinzcosz + 2%, f3(x) =20/(1 + e~ 751 7)
fa(z) = 20sin® 22 — 6cosx + 2%, fs(x) =2, fo(z) =2

For synthetic regression data, learning rates for ULR are selected from the list [Se-4, 7e-4, le-3,
3e-3, Se-3, 7e-3, le-2]. All the models are trained with SGD. The total number of epochs is 100 and
batch size is 256. ® = 2 for Hi-ULR and Hi-DLR. Plots start from the 5th epoch.

California housing This dataset collects the house values of various California districts in 1990.
The regression task is to predict house prices with 20,640 examples and 8 housing features including
location, layout, etc.

For California housing, learning rates for ULR are selected from a list [Se-6, 7e-6, le-5, 3e-5, Se-5,
7e-5, le-4]. We use the Adam optimizer. The total number of epochs 200 is and batch size is 256.
® = § for Hi-ULR and Hi-DLR. Plots start from the 50th epoch.

14

Under review as a conference paper at ICLR 2025

Train loss.

Train loss.

Train loss,

Train loss

Train loss

Train loss.

Train loss.

Train loss.

5_0_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald
09
— U — uR — U 0.600 — U
—— Hi-ULR —— Hi-ULR —— Hi-ULR —— Hi-ULR 0.40
—— Hi-DLR 12 —— Hi-DLR —— Hi-DLR 0575 —— Hi-DLR
08 035
0550
030
1
gt° 3 40525 4
2 &os 8 Bo2s
< < < 0.500 <
Eos & £ £ 020
06 0475
015
06 0.450
010
05 0425
0 0.05
250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Tterations. Tterations. Tterations Tterations
Bangs L Big_Lips Big_Nose Black_Hair Blond_Hair
080
060 — U
11 075 06 —— Hi-ULR
— HiDIR
055
070
10 o0s
gos g0 5050 5
§os § 00 § 0as £ 04
& £ £ £
055
07 0.40 03
050
06 035
045 02
05
250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 0 250 500 750 1000 1250
Iterations rerations Tterations. Tterations. Tterations
Blurry Brown_Hair Bushy_Eyebrows Chubby Double_Chin
12 0325
— U — U 09
16 — HiUR — BR[| os00 s
— HIDIR — HDIR
14 Lo
0275 07
8 £os §o2s0 goe
§ 10 § § § 0
& & £0225 £oe
06
o8 0.200
03
06
04 0175 0.2
o4 0.150 01
250 750 1000 1250 25 500 750 1000 1250 250 1000 1250 250 750 1000 1250 0 25 500 750 1000 1250
iterations terations. terations. terations. terations
Eyeglasses Goatee Gray_Hair Heavy_Makeup High_Cheekbones
06 0.5
055 09
080
050
05 08
045 075
4 0.40 04 407 4070
g0 §os gos §oss
€ o0 £ £ £
os 060
025 02
055
020 04
050
015 ot 03
25 500 750 1000 1250 25 500 750 1000 1250 250 500 1000 1250 25 500 750 1000 1250 0 25 500 750 1000 1250
iterations terations, terations. terations terations
Male Mouth_Slightly_Open Mustache Narrow_Eyes No_Beard
Y 0.48 055
075 — HIUR 022 s
— HIDIR 050
0.4
0.70 020 0.45
3] g 042 [
<065 i = 040 <040
£ £ £ £
016 0.38 0.35
060
036
014 030
055 034
012 032 025
250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 0 250 00 750 1000 1250
iterations terations, terations terations terations
Oval_Face Pale_Skin Pointy_Nose Receding_Hairline Rosy_Cheeks
— U 020 — U — U — U
— HIUR 0.700 — HIUR — HIUR 06 — HIUR
— HiDIR — HIDIR 20 — HIDLR — HiDIR
o018 0675
0s
0650
H H g1s g
<ol Soes £ L
£ & o600 g £
014 0578 03
0.550 05 02
012
0525
250 500 750 1000 1250 250 500 750 1000 1250 25 500 750 1000 1250 25 500 730 1000 1250 0 250 500 750 1000 1250
Iterations terations. terations terations tterations
Sideburns Smiling Straight_Hair Wavy_Hair Wearing_Earrings
085 09 ~—— ULR —— ULR
080 — HIUR 070 055 — HULR
o8 — HiDIR — HiDIR
075 0565
4 070 . 4 0.60 %%
F 060 Fo6 = =045
050
055
0s 0.45 0.40
050
o045 o 0.40
250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Tterations. Tterations. Tterations Tterations
Wearing_Hat Wearing_Lipstick Wearing_Necklace Wearing_Necktie Young
0325
— U 08 — U — U 065
— HUR 055 — Hiutr | 0300 — HiUR
— HiDIR — HiDIR — HiDIR
o7 0275 0.60
050
0250 055
406 4 8 4
£ £ L0225 £
€ 043 € €050
£os £ £ 0.200 £
0.40 0.45
0175
04
035 0150 0.40
03
0125 035

250

00 750 1000 1250
iterations.

250 500 750
Iterations

1000 1250

250

750
Iterations

1000 1250

250

500 750 1000 1250
Iterations

0 25 500 750 1000 1250
erations

Figure 8: Individual train loss for 40 different labels of fine-tuning CelebA.

15

Under review as a conference paper at ICLR 2025

5_o_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald
— —— ULR 075 ~—— ULR 056 ~—— ULR
036 —— Hi-ULR —— Hi-ULR 0.54 —— Hi-ULR
065 — HiDIR 070 — HiDIR — HiDIR
034 052
032
065
P 4 0.60 . L 050 B
o0 g g g H
% o028 3 5 0.60 5% ¥
® ©oss # * 046 #
026 055
0.44
024
050 050 0.42
022
0.40
0.5 045
§ 250 s00 750 1000 1250 0 250 500 750 1000 1250 § 250 s00 750 1000 1250 G 25 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Iterations Iterations Iterations Tterations
Bangs Big_Lips Big_Nose Black_Hair Blond_Hair
090 045
045 060 — R 060 — UR F—TTY
— HIUR o040 — HIUR
0.85 — HIDLR 055 — HIDLR
040
0.80 055 035
9 e 9 i 050)
20 Zo7s % 0so H S o030
& & & & 045 &
030 070 025
o0as 0.40
065 020
025 035
0.60 0.40 015
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 25 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Iterations Iterations Iterations Tterations
Blurry Brown_Hair Bushy_Eyebrows Chubby Double_Chin
— R
— HiUR 026
055 —— Hi-DLR
024
050
H H] H fo2 H
8 £oas 8 €020 &
00 018
016
035
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 25 500 750 1000 1250 0 25 500 750 1000 1250
iterations iterations Iterations iterations Iterations
Eyeglasses Goatee Gray_Hair - Heavy Makeup High_Cheekbones
020 070
065
018
0.60
£ 2 £oss £
g 016 F 4 Fl
& 8 & 050 &
014 045
0.40
012 035
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 25 500 750 1000 1250 0 25 500 750 1000 1250
iterations iterations Iterations iterations Iterations
Male Mouth_Slightly_Open Mustache Narrow_Eyes. No_Beard
019
07125 — R — ur
— Hi-ULR 018 050 — Hi-ULR
0.6 0.700 ~—— Hi-DLR
4
0675 017 0.48
405 4 0650 4 016 4 046 "
% g 0625 015 B 044 ¥
oa & & & &
0600 n 042
0575 013
03 040
0550 012
02 0525 038
0 250 s00 750 1000 1250 0 250 s00 750 1000 1250 0 250 500 750 1000 1250 G 250 s00 750 1000 1250 0 250 500 750 1000 1250
Iterations iterations Iterations iterations Iterations
Oval_Face Pale_Skin Pointy_Nose Receding_Hairline Rosy_Cheeks
0566 0.425
018 —— ULR 0.68 — ULR —— ULR 0.32 —— ULR
— HIUR — HUR | 0400 — HIUR 030 — HIUR
064 017 — HiDLR 0.66 — Hi-DLR — HIDLR - — HI-DLR
0375
0.62 0.16 064 028
" @ " g 0350 "
& &oas §oe2 g go
060 % ¥ 503 =
€014 £ 060 i Fo
0300
058 013 058 022
0275
012 056 020
056 0250
0.11 0.54 0.18
§ 250 s00 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 G 250 s00 750 1000 1250 0 250 500 750 1000 1250
Iterations Iterations Iterations Iterations Iterations
Sideburns Smiling Straight_Hair Wavy_Hair Wearing_Earrings
— UR 065 — UR 0.65 — UR 0575 — UR
075 — HUR — HULR — WU | — HULR
— HiDIR — HiDIR — HiDIR — HiDIR
0.70 0.60 o0.60 0.525
H goss £oss §oss g 0500
g % 060 g K % o475
g & g L €
0.55 0.50 0.450
0.50 0.45 0.45 0.425
0.400
045 0.40
© 250 s00 750 1000 1250 0 250 500 750 1000 1250 § 250 s00 750 1000 1250 G 25 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Iterations Iterations Iterations Iterations
Wearing_Hat Wearing_Lipstick Wearing_Necklace Wearing_Necktie Young
022
— U 07 — R — U 026 — R
0.20 —— Hi-ULR —— Hi-UR 055 —— Hi-ULR —— Hi-ULR
—— Hi-DLR —— Hi-DLR —— Hi-DLR 024 —— Hi-DLR
018
06 050 022
016
8 014 k] 8 3 0.20 8
2o 8 H £ H
% 50 g 045 %018 %
8o € g & &
016
0.10 0.4 0.40
0.08 014
0.06 03 035 012
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 25 500 750 1000 1250 0 250 500 750 1000 1250
Iterations Iterations Iterations Iterations Tterations

Figure 9: Individual test loss for 40 different labels of fine-tuning CelebA.

16

Under review as a conference paper at ICLR 2025

0.4751
0.7
0.450
w
£ 06/ §0.425—
& % 0.400
g g
805 ©0.375
© ©
Q [
g 2 0.350
< 0.4
0.325
0.3 0.300
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Iterations Iterations
— ULR
0.851

o
©
S

e
9
o

Average train accuracy
o
~
w

Average test accuracy

o
o
o

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Iterations Iterations

Figure 10: Average performance of fine-tuning CelebA over 40 labels.

A.4 LORA ON NATURAL LANGUAGE UNDERSTANDING

Synthetic data Except for the GLUE benchmarks, we also experimented with a toy example in
LoRA+ to better demonstrate DLR’s power. The settings are the same as it is in Appendix C.1.1. of
Hayou et al.| (2024) except for n. We use n = 1000 instead of n = 100.

We train on 1000 iterations for each method and the plots start from the 50th epoch. For ULR, we
grid search for the best learning rate based on the last test loss after 500 iterations. Assume 74
and 7z is the learning rate for A and B respectively. The search range for 14 is 10* for k evenly
searched from -4 to -3 for 20 points. The 775’s search range starts from k = —4 to k = —1 for 20
points.

Finally, the selected ULR learning rates are (n4,np) = (le — 4,1e — 4). The best DLR learning
rate are (n4,n5) = (le —4,1e — 1).

NLU tasks For NLU tasks, we use batch size 128 for all datasets. The evaluation metric is test
accuracy. We use AdamW with a Cosine scheduler and warm-up ratio of 0.03. For every dataset,
the full fine-tuning learning rates are 10 times smaller than their corresponding LoRA learning rate.
The lazy frequency is selected based on batch size and data size.

Initial learning rate

Data size for FT #of epochs @

MRPC 3668 4e-5 3 4
SST2 67349 Se-5 3 10
MNLI 392702 Se-5 1 10
CoLA 8551 4e-5 1 1
QNLI 104743 4e-5 3 10

Table 5: Hyper-parameters for GLUE training.

17

Under review as a conference paper at ICLR 2025

Feature 0 Feature 1 Feature 2 Feature 3 Feature 4
60
20 @ Prediction 3 . o Prediction 20] @ Prediction dwqe o Prediction ® Prediction .
® Tuth L4 0% o Truth o Truth . o Tuth o Tuth .
!o' . 30 0 4 (]
10
ot o - »
_ o . . s o -
2 2 g 0
g g gw E | g
-10 4 ° -20
> 10
2 - —
201 o' . 401 e
g 20
. o ° -60 ®
-) 3 B 3 2 a1 o0 1 32 3 Y 0 2 = 13 : B 0 : 3
x x x x x
Feature 5 Feature 6 Feature 7 Feature 8 Feature 9
010
o Prediction . 03s{® o Prediction 03{ey o Prediction o Prediction -~ N o prediction
o Tuth - o Tuth o Tum 0051 o Tuth - o Tuth
4 b 030 o0s{ &
02 0.00 L]
os] ¢ 04
) 01 005
020 1o 03
2 B 2 o0 - g g
0 015 o 02
-01
o0 -0.20 01
-2
0.05 0.2 4
o 05| & 00
< o
. P 000 oo o -03 o -030{e -01
=) 2 3 = 3 3 3 2) 3 R 3 H = 0 2
x x x x x
Feature 0 Feature 1 Feature 2 Feature 3 Feature 4
60
20{ @ Prediction . . ® Prediction Prediction a0 ® ® Prediction o Prediction .
o Tuth . 0] ® o Tum . o Tuth Truth .
o, . » . “ $
10 [
s
, 20 20
L0 L6 v 2 10 g o
g g g g
10 4 0 o 20
2 10
a0
201 of . M
. 20
. o —60{ e
-4) 3 2 S 2 1 o0 1 2z 3 2 o 2 2 o 2 - = 0 2 3
x x x x x
Feature 5 Feature 6 Feature 7 Feature 8 Feature 9
006 04
4] o prediction s o Prediction o Prediction o Prediction 7 D o Prediction
® Tuth o Tuth o Tuth 03 o Truth ® Tuth
004 01 02
) 02
002
0.0 - o1 01
20 2 oo0e P g o0 sd I
o1 o1 00
= —0021{® o2
02 -
e 1) -0.3 0.1
2 -0.04
o -
“12 o o4 4
o os s .
= 0 2 3 = 3 b 3) 0 H R 3 : B 0 2
x x x x x
Feature 0 Feature 1 Feature 2 Feature 3 Feature 4
50
20] @ prediction) D o Prediction Prediction . o Prediction o Prediction 0
o Tuth 10{@ o 0 o Tuth o Tun
- 0 U
10 % . » .
; ” 20
3 s - =
2 g 2 10 g 0
g g g o 2
.
-10 4 o -20
2 -10 .
-20 .’ . 40
-20
. o -60®
-4 2 0 2 5 2 a1 o0 1 2 3 2 o 2 2 3 2 4 2 0 2 3
x x x x x
Feature 5 Feature 6 Feature 7 Feature 8 Feature 9
0010
4] o Prediction D o Prediction . o Prediction . . o Pediction o Prediction
02 T 030 0005
o Tuth o Tuth o Tuth o Tuth ! o Tuth
3 e 0008
00{e om o 025 H 0000
2
-02 [0006 0,005
1 020 .
04 . 0010
2 0 = = s o |z o004 g
g g . Zo1s]e s | E E
06 i 0015
-1
os 010] o 0002 o2
-2
. 10 os| @ l soc0 —ooas
4 \
- . 000 ®| o002
=) 2 3 4 2 o 2 3 Y o 3 = o : = [3
X X X x X

Figure 11: Individual effect learned by NAM on synthetic regression. Blue dots are predictions and
orange dots are the truth. The first two rows are results optimized by ULR. The next two rows are
features learned by Hi-ULR. The last two rows are the results of Hi-DLR.

For hyper-parameters not mentioned here, we follow Table 9 of

2022).

A5 GPT2

For GPT2, we experimented on the E2E dataset. The initial learning rate for full fine-tuning is
le-4 while it is 1e-3 for PET. The sequence length is 128, the total batch size is 256 and the total
validation batch size is 64. The total number of epochs for GPT2-small is 5, and for GPT2-medium

and large is 3. The rest hyper-parameters are the same as in 2022).

18

Under review as a conference paper at ICLR 2025

A.6 VIT CLASSIFICATION

We use the pre-trained ViT-base-patchl6-224 which can be can be loaded from t imm library.
This model has been trained on ImageNet following |Dosovitskiy et al.|(2020). We resize all images
to 224x224 and normalize the pixel values to [-1,1]. We use AdamW optimizer with the default
hyperparameters in Pytorch, except the learning rates. For methods that are not ours, we follow the
learning rate settings in |Bu & Xu! (2024). For Hi-DLR, we use initial learning rate 1e-4, which is
the same as Hi-ULR (GeN). We use batch size 500 across datasets with ® = 4.

B COMPLEXITY ANALYSIS

We follow the same analysis as in | Bu & Xu|(2024) and it follows that Hi-DLR has the same peak
memory cost as a base optimizer. For time complexity, we consider three operations: the forward
pass F', the back-propagation B and other costs C'. Therefore, the base optimizer takes F' + B + C
whereas Hi-DLR takes (1 + %)F + B+ C. Here the additional computation is from extra forward
passes. In a full-parameter training on a single GPU, C' is negligible and B ~ 2F, the relative
training speed of Hi-DLR is @ For instance, when K = 3, ® = 10, Hi-DLR is roughly 70% as
fast as a base optimizer. While training with PET methods, the B ~ F/, the relative speed becomes
—1 . When K = 3,® = 10, Hi-DLR is roughly 62.5% as fast as a base optimizer.

1+45
C LIMITATIONS

The success of DLR depends on the grouping of parameters: a sub-optimal grouping strategy might
lead to a less effective learning rate adaptation. It remains an interesting future direction on how to
leverage human’s prior knowledge to efficiently find a good grouping strategy. Computation-wise,
the training time of Hi-DLR increases linearly with the number of groups K unless ® also increases
linearly, limiting its application to very large K if the total number of iterations is small.

19

Under review as a conference paper at ICLR 2025

Feature 0 Feature 1 Feature 2 Feature 3
® Prediction @ 101 e Prediction ® Prediction ®e 0 ® Prediction
4 5
08
-1
3 4
06
-2 .
%2 = <3 < °
g g o g . g
-3
2 Lad
1 0.2 °
4 .
0 0.0 1
s -
—02 o nd
00 25 50 75 100 125 150 0 0 20 30 40 50 0 25 50 75 100 125 0 10 20 30
X X X X
Feature 4 Feature 5 Feature 6 Feature 7
-23
o o ® Prediction PRI Prediction L4 e Prediction e Prediction
2 . 24
o ' o ©
0 =
1 2.5
- -26
= © = =
& 2 & 27
. -4
-1
-2.8
. 6 .
-2 -2.9
-8
-3 -3.0
° °
0 10000 20000 30000 0 200 400 600 800 1000 1200 34 36 38 40 2 124 -122 -120 -118 -116 -114
X X X
Feature 0 Feature 1 Feature 2 Feature 3
6 @ Prediction ® Prediction ® Prediction . ® Prediction
. 04
08 4
5
06 1]
3
4 _ o4 - - %
= = = =
= = = E o
3 02 2 ‘.'
°
34 .
2 1
1 -4 .
0
00 25 50 75 100 125 15.0 0 0 20 30 4 50 0 25 S0 75 100 125 0 10 20 30
X X X X
Feature 4 Feature 5 Feature 6 Feature 7
2.00 142
@ Prediction L4 @ Prediction @ Prediction - @ Prediction ,
-0.29
175
1 —1.44
150 —0:30
125 0 k —031 ~1.46 4
- o _ -032 _ -148-
2 g =
= = =
. -0.33 ~1.50
.
-2 -034
~1.524
-0.35
-3 -1.544
° -0.36
4 10000 20000 30000 0 200 400 600 800 1000 1200 34 36 38 40 a2 -124 -122 -120 -118 -116 -114
X X X
Feature 0 Feature 1 Feature 2 Feature 3
5| @ Prediction ® Prediction ® Prediction 0.0 Lad b4 hd
08 10
-05
t 06 08
-10
< 0 < 04 = 06 -
S S = =
= = = =
-15
a1 02 04
.
0.0 02 .0 -2.0
-2
o2 00 e 2sle o Prediction
00 25 50 75 100 125 150 0 0 20 30 4 50 0 25 50 75 100 125 4 10 20 30
X X X X
Feature 4 Feature 5 03 Feature 6 Feature 7
175 - - -
e Prediction b4 e Prediction @ Prediction 5.05 e Prediction
1
2.4
150 500
125 0 -25 4.95
1.00 . -2.6 4.90
= P = =
2 075 P & o S 27 X ass
° 4.80
0.50 -2 -28
475
0.25 -2.9
o -3 470
0.00 -
o 30 465 \
o 10000 20000 30000 0 200 400 600 800 1000 1200 34 36 38 40 2 -124 122 -120 -118 -116 -114
X X X X

Figure 12: Individual effect learned by NAM on California housing data. Blue dots are predictions.
The first two rows are predictions of NAM optimized by ULR. The next two rows are features
learned by Hi-ULR. The last two rows are the results of Hi-DLR.

20

Under review as a conference paper at ICLR 2025

0.144
0.10 1
0.121
. 0.081 0.101
] @
o o]
e 0.06 g 0.08
©
= # 0.06
0.041
0.041
0.02 A
0.021
0.001_, . . . i 0.001.
0 200 400 600 800 0 200 400 600 800
Iterations Iterations

Figure 13: LoraPlus Synthetic data

0.10 1
“ 0.08 1
o —— Manual
f= .
5 0.06 Hi-DLR
= /\
0.041 “W
0.02 1

0 10 20 30 40 50 60 70
Time (s)

Figure 14: The loss of Hi-DLR (K = 3, ® = 10) v.s. Cosine decay learning rate on RoOBERTa-base
on CoLA. The x-axis is the wall-clock training time on a single L4 GPU. The experiment details are
the same as in Appendix [A.4]

21

	Introduction
	Differential learning rate and Hessian information
	Notations
	A global perspective: hyperparameter optimization problem of DLR
	A local perspective: next-loss minimization
	Optimal differential learning rates

	Computing Hi-DLR without additional back-propagation
	Improving convergence with Hi-DLR
	Image classification
	Multi-task learning
	Interpretable regression with neural additive model (NAM)
	LoRA on natural language understanding

	Hessian-informed influence of parameters
	Per-parameter influence
	A meta-framework of adaptive PET

	Discussion
	Experiment details
	Toy data for optimization
	Multi-task learning on CelebA
	Interpretable regression with NAM
	LoRA on natural language understanding
	GPT2
	ViT classification

	Complexity analysis
	Limitations

