Under review as a conference paper at ICLR 2025

MATPoOOL: MATRIX-PATTERN-ORIENTED POOLING
FOR GRAPH PROPERTYPREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph property prediction usually involves using a modedriedict the label for
the entire graph, which often has complex structures. Beeaput graphs have
different sizes, current methods generally use graph poadi coarsen them into
a graph-level representation with a unified vector pattelowever, this coarsen-
ing process can lead to a significant loss of graph informatia this work, we
explore the graph representation by using a matrix pattedhistroduce an al-
gorithm called Matrix-pattern-oriented Pooling (MatPiblat provides a unified
graph-level representation for different graphs. MatRoultiplies the transposed
feature matrix by the feature matrix itself and then consglact isomorphic map-
ping to create a Matrix Representation (MR) that presetvegtaph information
and satisfies permutation invariance. Since the multipinaoperation calculates
the relationships between each feature, MR exhibits rolwron correlations un-
der the matrix pattern. To match this correlation, MatPa&#sua novel and ef-
ficient Matrix Neural Network (MNN) with two-sided weight rireces to match
the row-column correlation under the matrix pattern. Wevjate theoretical anal-
yses to reveal the properties of MatPool and explain why it meeserve graph
information and satisfy the permutation invariance. Egtemexperiments on var-
ious graph property prediction benchmarks show the effigiemd effectiveness
of MatPool.

1 INTRODUCTION

Graph-structured data Hu et al. (2020) are everywhere aagl plkey role in social networks

Fan et al.|(2022), recommender systems Liu et al. (20230)sportation Ye et al. (2020), and pro-
tein prediction Gao et al. (2023). With the development cdjibrNeural Networks (GNNs) Wu et/al.
(2021;/2022b), GNNs are excellent at handling tasks thadigr@roperties for individual nodes

Gao et al. [(2018); Wu et al. (2023). When working with indivéd nodes, the goal is to predict
labels based on their connections and features within tyehgr

In contrast, graph property prediction Xie et al. (2022)dicts labels for entire graphs, which can
vary significantly in size. Machine learning algorithms ¢ (20017); Goodfellow et all (2016)
usually require data in a unified size, but the differentsiaégraphs make it hard to use them
directly as inputs. Therefore, developing methods to mlewa uniform graph-level representation
is crucial for accurately predicting graph properties amgrioving the effectiveness of GNNs in
various graph-level applications.

Similar to how pooling in Convolutional Neural Networks (Gs) [Rawat & Wang|(2017) uses
down-sampling to gather feature information, graph papliiu_et al. (2023a); Jin et al. (2020) gen-
erally applies down-sampling to coarsen node informatibo & unified graph-level representation
with a consistent vector size. This approach is especiakyjul for graphs that change in size, as it
makes it easier to apply these representations to variookimelearning techniques.

Motivation : However, downsizing and coarsening in pooling methodsoliéad to significant loss
of graph information. To address this issue, we explore awawof representing graphs using a
matrix pattern that retains graph information. Additidpalive design a specialized neural network
to handle this matrix pattern, capturing the relationshigisveen its rows and columns.

Under review as a conference paper at ICLR 2025

Why matrix? The features of entire graphs are presented in the form aficeat Although the
number of nodes in different graphs varies, resulting ifedént feature scales, all these graphs can
be transformed or mapped into a unified matrix space throsmidorphic mappings. This means
that, despite the potential differences in their origiretfires, through such transformations, they
can be compared, analyzed, or processed within a commoe.spéareover, matrix pattern can
provide a more detailed and richer view of graphs than veszgern.

Consequently, we propose Matrix-pattern-oriented PgdviatPool) for graph property prediction.
MatPool has two key components: Matrix Representation (MRjandle graphs of different sizes
and Matrix Neural Network (MNN) to explore the features of Mire deeply.

Matrix Representation (MR): We design a message-passing way called Positive Eigexnivédip-
ping (PEM), enhancing the propagation influence of primargles and making the eigenvalues of
the adjacency matrix positive. Next, we multiply the tramsgd feature matrix by the feature matrix
itself and perform a isomorphic mapping to create a Matripieeentation (MR) for each graph.

Matrix Neural Network (MNN) : The matrix-pattern-oriented MR for each graph exhibitersy
connections between rows and columns, which traditional€Nr MLPs struggle to capture. To
address this, we design a Matrix Neural Network (MNN) thasusvo-sided weight matrices, al-
lowing for more effective output calculations and natwyratptures the row-column correlations.

As a result, we propose MatPool, a graph-level learning éwaark designed to predict properties
for graphs of varying sizes without losing graph informaticrhe contributions of this study are
summarized as follows:

e \We create a Positive Eigenvalue Mapping (PEM), which enbsitice propagation influ-
ence of primary nodes, to aggregate the node features irrdpé g

e \We propose a Matrix Representation (MR) that isomorphjcalaps the varying graph
feature space into a unified graph-level space withoutdgsgiaph information.

e We design a novel Matrix Neural Network (MNN) that uses tvided weight matrices to
efficiently capture row-column correlations and extracir features from the MR.

e We provide theoretical analyses to reveal the propertidglatfool and explain why it
can preserve graph information and satisfy permutatioariamce. Extensive experiments
validate the efficiency and effectiveness of MatPool.

The rest of this paper is organized as follows: Section Zlgrieirveys related work on graph repre-

sentation learning and matrix learning. Section 3 dessribe detailed implementation of MatPool.

In Section 4, experimental results on benchmark graph éistaemonstrate the effectiveness and
efficiency of MatPool. Finally, the conclusion is presenite&ection 5.

2 REeLATED WORK

Graph Neural Networks (GNNs): GNNs are powerful machine learning algorithms for proeess
ing graph-structured data. They capture the dependenatiarethips between nodes during the
message-passing process, enabling accurate and comgivetemalysis and prediction. As a novel
learning technology, GNNs continue to attract significasiearch interest and find applications in
various fields Gilmer et al. (2017); He & Zheo (2020); Sahd.g2822). The Graph Convolutional
Network (GCN) Kipf & Welling (2017) is the most typical meggapassing method for graph data,
aggregating node information from downstream layers.

With in-depth research on graph-structured data, manyritthgas have been proposed in recen-
t years to address various problems such as heterogenempissgWang et al. (2019); Ma et al.

(2022), over-smoothing Keriven (2022); Wei et al. (2023)d anore_Chen et all (2022); Zhu et al.
(2023). For example, GraphSAGE Hamilton et al. (2017) zg#i sampling technology to solve

non-inductive and non-batch training issues. GIN Xu et2010) improves the performance and
efficiency of graph neural networks based on the WL:test\&istidze et all (2011) that analyzes
the expressive ability of GNNSs for different graph struesirDeepGCN Li et al. (2019; 2021b) and
DeeperGCN_Li et al.[(20211a) draw inspiration from the realddea, modifying the propagating

and aggregating framework to adapt to the training of deegatso

Under review as a conference paper at ICLR 2025

Graph Pooling: The size of different graphs often varies, making it diffi¢ar algorithms to handle
these size-varying graphs directly. Therefore, a unifiebbflevel representation is essential for
graph property prediction. Graph pooling methods Shenl ¢2alL8); Lee et all (2018); Wang & Ji
(2023) effectively provide this unified representationdoaphs of different scales. These methods
can be categorized into global pooling and hierarchicalipgo

Global pooling methods Yuan & Ji (2020a); Bianchi et al. (@BRconsider the information of al-
| nodes and pool the entire graph directly. For example, S=i%/inyals et al.|(2016) finds the
importance of nodes to provide a unified graph-level repriegion for different graphs. Global-
Attention[Li et al. (2016) uses an attention mechanism taeggte entire graph information. Sort-
PoollZhang et all (2018) transforms the nodes by sorting andatenating them. However, global
pooling may overly compress graph information during ddwing and coarsening.

Hierarchical pooling methods Gao et al. (2022); Wu et al2@%) aggregate node features in a hi-
erarchical structure. For example, DiffPool Ying et al. 18Puses a differentiable pooling layer to
form a fixed number of clusters. TopK Gao & Ji (2019) scoressagsing a trainable projection vec-
tor and samples them based on their scores. Self-AttentohirfglLee et al.[(2019) improves TopK
by attention scores. Adaptive Structure Aware Pooling Baej al. |(2020) uses a self-attention
network to learn graph information by hierarchically captg local subgraph information. These
hierarchical pooling methods align the size of graphs dytfire coarsening process.

Matrix Learning : Matrix and vector features are two common data representain machine
learning. Compared to vector features, matrix featuresg/édml. (2008) provide a more detailed
and richer view, which is crucial for representing grapfuctured data. Matrix features also nat-
urally express the interaction between features. Earhhaut like MatMHKS Chen et al. (2007)
were designed to handle matrix samples, such as imageyuitionverting them to vectors, p-
reserving the spatial structure. Algorithms like MLMMPRC wZét al. (2015) and BPDMatMHKS
Wang & Zhui (2018) integrate localization information to irape performance. More recent meth-
ods, such as EMatMHKS Zhu etlzl. (2020), greatly acceletatertining speed of MatMHKS and
demonstrate the generalization ability of matrix classsfie

Although these matrix classifiers can be directly appliech&drix samples, they optimize the objec-
tive function using the Moore-Penrose inverse under thémmim square error. Consequently, they
fail to form a deep learning framework.

Relations to Our Work: Key differences between our work and related researcheanimmarized
as follows: (i) We create a propagating and aggregating vedlga Positive Eigenvalue Mapping
(PEM), which differs from existing GNNs; (ii) We provide aaph-level Matrix Representation
(MR) and reveal its properties, which differ from existingctor-based models; (iii) We design a
novel Matrix Neural Network (MNN) using two-sided weight triees to extract deeper features
from the MR.

3 PROPOSEDMETHOD

3.1 PRELIMINARIES

LetG(X, &) denote a directed or undirected graph with nodetset {z1, 1, ..., z,, } and edge set
E = {e11, ., €i 1, €12, --Cin2, -y €1n, -, €in }, Wherer; € Rex stands for the feature of thé"
node anck;; € R as the feature of the edge connecting nogéo nodex;.

To simplify the process and proof, we will use a matrix applo@and redefinegg (X, &) as
G(A,X,E). Here,A € R™"*" denotes the adjacency matrix without self-loop ahd = 1 s-
tands for thej*" nodez; is connect to the!” nodex;, X = [x1, 72, ...,x,]T € R"*4* denotes
the feature matrix of nodes? = [ej, ea, ..., e,]T € R™"*% denotes the edge feature matrix, where
e; = Zzie./\f(zj) e;; represents the sum of the edge features directed towards

Given a set of graph§G,, Ga, ..., Gn }, where the graphs have varying sizes of nodes, the primary
goal of the graph pooling functioRool is to provide a unified graph-level representation for each
graph. Suppose the functidfize returns the shape of the matrix. Then, the goaPobl can be
described as follows,

Size(Pool(G;)) = Size(Pool(G;)),Vi,j <N Q)

Under review as a conference paper at ICLR 2025

Table 1: Comparison of message-passing and aggregatingggschemes.

MODEL MESSAGEPASSING ANDAGGREGATING

GCN D7 %5(AT +)D™%°X + E’
GIN (AT+(1+e)L)X+E
PEM ApemX + E

3.2 POSITIVE EIGENVALUE MAPPING

We propose a message-passing way named Positive EigeMajyeng (PEM) that keeps the eigen-
values of the adjacency matrix positive and enhances theagadion influence of primary nodes.
PEM is the groundwork for subsequent graph-level reprasient

Firstly, considering both directed and undirected graptes,calculate the normalized adjacency
matrix as follows,

A= (aij)nxn _ D*O.SATDf().S (2)
whereD is a diagonal matrix and each diagonal elembnt = >°7_, A;;. Next, we calculate the
reconstructed adjacency matrix as follows,

€+ Z?:1 ay; .- a1n
Apem = : - : 3)
Gn1 D
wheree is a small positive perturbation value.

Proposition 3.1. Given an adjacency matrid € R™*", let \; be the eigenvalue of the reconstruct-
ed adjacency matri¥d,.,,. ThenVi < n, A; > 0.

Suppose the dimensions of the node and edge features atle €hagrocess of propagating and
aggregating in PEM, without considering the neural netwodpping, is conducted as follows:

Agg(G(Apem, X, E)) = Apem X + E (4)

Table] lists the message-passing processes of various GidNgling GCN, GIN, and PEM. From
the table, it is evident that PEM maintains relatively highgbnal values im,.,,, indicating that
PEM enhances the propagation influence of primary nodes.

In GCN, the re-normalization process is used, whBrés a diagonal matrix with each diagonal
elementD;; = 1+ 2?21 A;,;. GCN considers the weight of edges, and eecin E’ can be

calculated a8} = 3°, cr(a,) D; " D; J%e;;. Moreover, GIN treats all nodes roughly equally.

3.3 MATRIX REPRESENTATION

We design a graph-level Matrix Representation (MR) for §sapf varying sizes and demonstrated
its potential properties. Additionally, we explain why MBrcpreserve graph information.

Once we obtain the feature mattityg(G(A, X, E)) of the graph, the functio®ool multiplies the
transposed feature matrix by the feature matrix itself amodipges the graph-level representation as
follows,

Pool(G) = Agg(G(A}en, X, E))" Agg(G(Apem, X, E))
=XTA2 X+ XTApnE+E"Ape,, X+ ETE

pem

®)

Formally, the complete node features and adjacency majgix, are retained. Additionally, whether
the graph is directed or undirected,.,,, andA2_, have a one-to-one correspondence.

pem

Lemma 3.2. For matrix A € R™*"™ and B € R™*", if A and B do not have the same eigenvalues,
then the solution to the matrix equatighX = X B is X = 0.

Under review as a conference paper at ICLR 2025

According toLemmal[3.2, we can prove the following corollary.

Corollary 3.3. For matrix A € R™*™ and B € R"*", let the eigenvalues of be A\ for i =
1,2,...,n, and the eigenvalues & be \? fori = 1,2,....n. If Vi <n, A4 > 0and)\? > 0, and
A? = B?,thenA = B.

According toProposition[3.J andCorollary 8.3, Aperm andAgem have a one-to-one correspondence

because all eigenvalues 4f...,, are positive. Furthermoréool(G) is an injective mapping for the
input graph if the graph is undirected and the node featutexis fixed. In this way, we can learn
the connectivity structure of undirect graph without noelatéires.

Proposition 3.4. For undirected graphs with equal and fixed node and edge festuif
Vi # j, Pool(Gi(Ai, X tiz, Efiz)) = Pool(G;(Aj, X fiz, Etiz)), theng; = G;.

The equation 0Pool(G) B shows thaPool (G) performs the aggregation procegg(G) twice to
obtain two feature matrices for directed graphs. Consetyy@re modify Pool(G) as follows,

POOl(g) = Agg(g(Apemv X, E)>TAgg(g(Apema X, E)) (6)

For undirect graphs, Equatiéh 5 equals Equdtion 6. For dipephs, the primary difference lies in
convertingAf)em into A,,e,,,LTApem. In this way, we have the following proposition.

Proposition 3.5. For matrix A € R™*™ and B € R"*" with positive eigenvalues,#” A = BT B,
then we havel = Q B, where@ is an orthogonal matrix andet(Q) = 1.

We then attempt to introduce a neural network to fit orthogsaasformation, thus maintaining the
one-to-one correspondence. The aggregation procesgidatald as follows:

Agg(g(Apevav E)) = ¢N(ApemX + ¢E(E)) (7)

whereg? : Vix — Vdandg? : Vi — Vx are neural network modules that act on each row of
the input matrix. The correspondidtpol(G) is then modified as follows,

Pool(G) = ¢N (Apem X + ¢E(E))T¢N (Apem X + ¢E (£)) (8)
Due to the nonlinear changes in neural networks, the thiealeesults mentioned above will shift
from being deterministic to being existent, meaning thegprties depend on the neural network.

The functionPool(G) in Equatior8 has two important properties: permutatiomiiance and re-
tention of graph information.

Proposition 3.6. If feature matrix of nodes is not fixeBpol(G) is permutation invariant.
Moreover,Pool(G) is an effective operation that maintains graph informatitinclarify the process,
we approach the problem from a geometric perspectivepllétd ..., X + ¢¥ (E))T ¢V (Apem X +

¥ (E)) be a linear operatop € L£(V?), and¢™ (Apem X + ¢¥(E)) be a linear operatoy €
L(V4,U™). Then, we havey = n77.

Proposition 3.7. Suppose; € £(V¢,u™) andy = nTn € £L(V?). Then, the image space o¢fis
isomorphic to that of) and there exist a isomorphic mappifighat makegy = 7.

SincePool(G) and Agg(G) mapg into the same geometric space, their representation pawers
equal. Then, we perform a linear transformation to protigefinal MR as follows,

Mat(G) = Agg(G)T Agg(G) © M 9

whereM = (m;;)axq IS @ combination of natural baseR?*?, conducing as linear transformation.

Proposition 3.8. Let f(A) = A ® M, whereA € R4 and M € R4, If Vi, j € {1,2,....d},
M; ; # 0, thenf is a isomorphic mapping.

Therefore, the mapping/at : R®>*4 — R¥¥4 ¥n, ¢ N* can provide a unified graph-level repre-
sentation and preserve the graph information.

Under review as a conference paper at ICLR 2025

1
T T T T
Wi (Wi |Wis (Wi, V1 VMyy V1 VMyy V3 VzMy3 Vg v4m14]| wWE ||W1R2 Wi
T T T T
v, Vqm V>, UVom U, Vam Vo U,m
L Iz sl art 2 V1imz1 2 V2My3 2V3My3 2VaMyy R I r R
Woi |Was (Was (Waa | X || T T T T W21 |W22 Wa3
U3 VM3 V3 VM3 V3VU3M33z V3 VUsM3zy
L |zl bt |zt R /R [11/R
W31 W32 W33 W34 v1v1m41 UZU2m42 171173m43 va4m44 W31 32 W33
R lasR |14/ R
Wi HW“ Wiz

Figure 1: lllustration of Matrix Neural Network.

Graph1 (Gy) Agg(Gy) Mat(G,) = Agg(G)TAgg(G) OM Mat(G) = pM(WEMat(G)WR)

__

/

~
m
ES)
w
X
w
-

>

=

/ € R*X \
! | Myq (Myy (My3 |Mys
1 1
1 1
[| My Mz (Ma3 |May
] M
o) R | aw
! H M3y (M3 M3z | M3,
1 1
H ’: \ Myq |Myp My (Mg /
\

__

Figure 2: The entire process of MatPool includes the foltaysteps: (i) Utilize PEM to aggregate
the node information; (ii) Calculate the graph-level MR) ffeed the graph-level MR into the MNN
to extract deeper features for graph property prediction.

3.4 MATRIX NEURAL NETWORK

We design a novel Matrix Neural Network (MNN) to extract deefeatures from MR, emphasizing
row-column correlations caused by multiplication of featmatrix in the function\/ at(G).

AssumeAgg(G) returnsfvy, va, ..., vg] € R"*? andd is the embedding dimension. TheW,at(G)
can be rewritten in the following matrix form,

T T T
vy U111 Uy v2Mmiz ... V1 vgMid
T T T
V5 U121 Vg V2122 e V5 VgMad
Mat(G) = . . . : (10)
T T T
Vg V1MMg1 Vg V2Mmge ... Vg VaMdd

Mat(G) provides a matrix-based representation where each elémantinner product of paired
features. Figur€ll shows the row-column correlation, tleeneht) at(G), ; in the matrix are

closely related to the elements in the respecii’eow and;*” column.

To extract deeper features from the MR, we designed a Magix&l Network (MNN) that directly
processes MR by using two-sided weight matrices. For a maggresentatiod/at(G) € R¥*4,
MNN returns amutput € R™*™ by performing the following operations,

Mat(G) = o™ (W, aMat(G)axaWis,) (11)

Under review as a conference paper at ICLR 2025

where¢ is an activation function applied to each element of the in&ature. WL, € R™*4

andW£k € R are two-sided weight matrices acting on the MR. The forward backward
processes of the MNN are detailedin 6 and the MNN has theviolig properties:

e Since matrix multiplication can run quickly, it provides igmificant advantage for MNN
in terms of running speed.

o Ifthe output isc R**?, the MNN only require€d? parameters to handle a matrix-pattern-
oriented feature R%*4,

e The MNN naturally constrains the rows and columns\éét(G) through the columns of
W and the rows ofV -, respectively.

The framework of the MatPool is shown in Figlire 2, and its psecode is listed in Algorithm
[@. According to the pseudo-code, suppose the number of GM&{danodes, edges, and feature
dimensions in one graph afe n, e, andd respectively. The time complexities of PEM, MR, and
MNN areO(Ln?d + Lned + Lnd?), O(nd?), andO(d?), respectively. Therefore, the primary time
complexity is concentrated on the message-passing pexess

4 EXPERIMENT

In this section, we validate the effectiveness and effigiasfcMatPool through extensive experi-
ments. The computations are performed on a computer witimtahi® 12900K processor and an
RTX A6000 GPU. In the experiment, we will address the follogvguestions:

e The Effectiveness of Positive Eigenvalue Mapping (PEM)Why is PEM used as the
propagating and aggregating way to calculate the featutexhiar providing the Matrix
Representation (MR)?

e The Effectiveness of Matrix Neural Network (MNN): Why MNN is used as the neural
network structure to extract deeper features from the MR?

e The Effectiveness of MatPoal How does MatPool compare to other pooling methods for
graph property prediction?

e The efficiency of MatPool Does MatPool offer advantages in training speed for graph
property prediction?

mm ':>£ PEMiEMiEM }E>9_{ et }Eﬂ 21
G'A Readout ﬂ
e R

Figure 3: The algorithm flowchart of MatPool

Figure[3 shows the flowchart corresponding to the pseude-oddatPool. In the implemen-
tation, we accumulate the feature matrix mapped may PEMr laydayer. Then, we conduct
Mat((G)) that multiplies the transpose of accumulated feature mhbgrithe feature matrix itself
and a Hadamard product to provide a unified MR for each grapxt,NMINN extracts the deeper
feature from MR, followed by a neural network to predict theafilabel.

4.1 EXPERIMENT SETTING

Used Datasets We compare the experimental results of all algorithms owiiely used graph
datasets. Four of these datasets are from the OGBG grapgettatiu et 2l (2021), which naturally
divide the training, validation, and testing sets. Sincestnalues in the node features of PPA are
zero, edge features are necessary for conducting expasme®PA. The remaining 16 datasets are

Under review as a conference paper at ICLR 2025

Table 2: Comparison results (%) of the combination of prapiag and aggregating way and neural
network structure. (The best result on each data set isewriitt bold).

Name MOLHIV MOLPCBA PPA CODE2 Average
Edge Feature w/ w/o w/ w/o w/ w/ w/o

PEM+MNN 79.2407 795111 24.0405 241403 71.3t05 15.540.0 16.0t06 44.2107
GCNHMNN 78.0+19 76.9+13 2344092 233404 63.5449 16.0t06 16.0103 424414
G|N+MNN 78‘4i1‘3 78‘9i144 24.&03 24.@03 66.5i1A3 15.6i1A0 15.5i1A1 43.4i0“9
PEM+MLP 774116 7784109 23.0403 23.0004 7l.1i07 142403 144104 43.01056
PEM+CNN 79.1410 79.3+13 228405 22.8413 52.24194 13.1402 13.040.3 40.3434

from TUDataset (Morris et al., 2020). The performance ofrttethods is tested using 10-fold cross-
validation, with one fold for validation, one for testingacathe remaining for training. Detailed
descriptions of all datasets are providedJin 5. Because Jabmtaset datasets lack attributes, we
add degree as a feature for all datasets in TUDataset.

Basic Setting In the experiment, we validate the effectiveness of PEMtaed adopt PEM as the
backbone to test the effectiveness of all pooling methotie descriptions of all hyper-parameters
are listed i6. We conduct experiments on each combinafibgmer-parameters 10 times, averag-
ing the results to obtain the final outcome. For the TUDatageselect the best learning rate on the
validation set to predict the test set. Adam Kingma & Ba ()(%Selected as the optimizer. The
learning rate begins to decay after 20 epochs at a rate of WBStop the training process early if
there is no improvement for 15 epochs on OGBG datasets anpdthe on TUDatasets.

Comparison Methods We have selected eight pooling methods categorized itoegland hierar-

chical pooling as comparison methods. The global poolinthods include Global Attention (GA)

Lietall (2016), Set2Set Vinyals etlal. (2016), Memory-lth&moling (MEN)| Khasahmadi etlal.
(2020), and Second-Order Pooling (SOPaool) Wang & Ji (202Bgrarchical pooling methods in-
clude TopK Pooling Gao & Ji (2019), Self-Attention Poolir®AG)/Lee et al.|(2019), Path Integral
Based Pooling (PAN) Ma et al. (2020) and Adaptive Structusare Pooling (ASAP) Ranjan etlal.
(2020). The eight pooling methods can be easily callabtetim framework of MatPool.

Moreover, we compare MatPool with other important basslgwech as DiffPool Ying et al. (2018),
MuchPool , GMT| Baek et al. (2021), StructPool Yuan & Ji (20R0KlIinCutPool| Bianchi et al.
(2020a), DKEPool Chen etlal. (2023), and SortRool Zhang ¢R818). The settings of datasets
and algorithms follow that in GMT, and the results of the camigon algorithms are directly copied
from GMT. The experimental results can be seen in Table 7émbpendix.

4.2 PERFORMANCE OFPOSITIVE EIGENVALUE MAPPING AND MATRIX NEURAL NETWORK

This experiment on large-scale graph datasets demorsstratePEM and MNN are essential com-
ponents of MatPool. Replacing either module results in dikein performance.

Table2 shows that using both PEM and MNN achieves the befstrpgance on most OGBG dataset-
s. When the MNN module is fixed, PEM achieves the best perfocean 4 out of 7 datasets and
the highest average performance, demonstrating its sujigfior graph property prediction.

When we fix the PEM module and use MLP, we compress the larg@saad flatten it into a vector
for graph property prediction. Additionally, we use AlexiNKrizhevsky et al., 2012) as the CNN
model. The scale of parameters in MLP and CNN are similarabithMNN. From the table, it is
clear that MNN has a significant performance advantage beeother datasets, demonstrating that
MNN surpasses both MLP and CNN comprehensively.

When the message-passing model is combined with MNN, PEMsERon key nodes and achieves
the best results. GIN treats all nodes equally, doing diighetter than PEM on MOLPCBA but
worse on other datasets. GCN, which adjusts the adjacentrixibased on node degrees, performs
the worst overall.

From TableB, it is evident that the Hadamard product opanatiM/ plays an important role in
MatPool. Regardless of whether the subsequent networkeglidid, CNN, or MLP, the operation

Under review as a conference paper at ICLR 2025

Table 3: Comparison results (%) of MatPool with and withdwatdperation oM . (The improved
result on each data set is written in bold).

Name MOLHIV MOLPCBA PPA CODE2 Average
Edge Feature w/ w/o w/ w/o w/ w/ w/o

PEM+MNN 784413 T85+14 21.9405 219407 66.4412 149406 154406 42.5409
PEM+OM+MNN 79.21097 79.5111 24.0005 241103 71.3105 155109 16.0006 44.2107
©OM Improvement 0.87 1t 211 2271 497 0.61 0.61 1.71

PEM+CNN 783415 789+14 221442 215441 4734208 129403 13.0402 39.1446
PEM+OM+CNN 79.1410 79.311.3 228405 22.8413 52.24194 131102 13.0403 40.3134
OM Improvement 0.87 0.471 0.71 1.31 497 0.2¢ 0 1.2¢1

PEM+MLP 773412 772414 228104 228103 6781407 14.6102 14.6102 4241056
PEM+>M+MLP TT.4416 T7.840.9 23.0+0.3 23.040.4 711107 14.240.3 144404 43.0t+06
OM Improvement 0.17 0.67 0.27 0.27 3.31 -0.4 -0.2 0.61

©M improves the results. This improvementis more significatit MNN because MNN operates
on the entire matrix. CNN operates on local matrices, whiléP\estroys the matrix structure after
flattening. Therefore, the improvement on CNN and MLP istgligsmaller than that on MNN.

In summary, for feature representations with row-colummedations, MNN can extract deeper fea-
tures and achieve better experimental results. MLP gdpe@hverts the matrix form into a vector
form, destroying the matrix structure and resulting in ahhitjmensional vector. Although CNN
can process matrix features like images, it fails to captugeow-column correlation effectively.

4.3 PFERFORMANCE OFMATPOOL FORGRAPH PROPERTYPREDICTION
This experiment on graph datasets demonstrates that Mai&tperforms other easily callable pool-
ing methods for graph property prediction.

Table 4: Experimental results (%) for all pooling methodsmgd?EM as the message-passing way
are reported here (The best result on each data set is wiritheid).

Name MatPool SOPool GA Set2Set MEM TopK SAG PAN ASAP
MOLHIV 79.5:11 T8 T+09 759424 749400 78.6+1.2 T4.041.9 740432 73.5422 73.5+21
MOLPCBA 241103 20.5+1.8 223404 21.5406 23.840.3 172405 185408 151403 19.641.2
PPA 713405 33.2410 33.04s4 71.8i21 64.6+16 543121 67.0x19 69.7108 ooT
CODE2 16.040.7 12.7431 15.5407 15.310.4 14.0+0.4 14.5404 15.0106 144107 ooT
AIDS 99.040.1 99.2102 986401 98.710.2 99.5: 0.2 99.0402 99.0103 98.6402 98.810.2

FRANKENSTEIN 73.940.5 722408 738405 72.6+0.7 741405 71.6+0.9 T1.740.0 69.8408 70.2409
MUTAGENICITY 82.440.4 82.3404 82803 819405 82.540.4 787411 79.0+1.1 80.6+05 78.2+1.2

NCI1 81.510.4 80.7+0.4 81.14+04 80.3+05 8l.4+o0.7 77.340.9 778406 T76.9+06 77.8+1.0
NCI109 80.5:04 79.2+05 79.8+t05 T79.7106 80.3104 76.4411 T7.0x09 T76.1to7 76.711.2
DD 75.6+0.7 76.0+0.4 67.6411 7l.1i12 764105 747411 T44410 T73.810s T4dliog
PROTEINS 75.110.8 74.9+0.8 T71.8408 70.8+12 74.6+0.5 73.840.5 T73.6+0.5 T4.6+08 T4.241.1
COIL-DEL 83.9%0.3 76.6+0.6 81.7+0.6 81l.5+06 79.140.4 T1.7406 695105 70.0107 75.5+0.8
COIL-RAG 95.940.4 954403 958403 97.010.2 96.0+0.3 949404 951402 954402 95.8+03
Letter-high 89.5+0.5 87.7+05 87.7+06 894106 89.2+04 82.8408 854110 933104 8694058
Letter-low 98.440.2 97.8404 981102 98.040.2 98.240.3 96.7+0.4 96.7+0.3 98.0402 97.141.2
Letter-med 93.440.4 9214105 92.040.6 92.540.3 93.340.5 88.940.3 89.7+0.7 95.640.4 90.7+0.4
COLLAB 8l. 7105 80.3+0.8 79.1414 809409 78.6+36 779412 T7.7+13 79.0408 65.0434
IMDB-BINARY 72.941.2 722413 726410 70.3+1.3 73.611.0 712410 712409 703107 709413
IMDB-MULTI 50.310.7 49.8406 48.840.9 46.8+1.9 50.040.8 48.640.7 4891009 49.0412 48.7108
COLORS-3 100.0t0.0 99.240.9 36.1414 51.1411 100.0r0.0 65.743.0 612419 528418 581425
Average 76.210.5 73.041.7 69.7411 72.340.0 754415 70.542.0 711410 71.3+0.7 NA

Table[4 shows the experimental results of all pooling mestaoss the graph datasets used. Mat-
Pool achieves the highest results on 11 out of 20 datasetsaaritie highest average result. Overall,
global pooling methods outperform hierarchical poolingtmoels, and MatPool performs better than
other global pooling methods.

Under review as a conference paper at ICLR 2025

The Friedman test Iman & Davenpart (1980); Nemenyi (1968)Bayesian signed-rank test analy-
sis|Benavoli et al. (2016) shown[ih 4 indicate that MatPodbi@ees the highest ranking. Except for
MEM, other methods are incomparable to MatPool. Additibnaihe heatmap of MatPool demon-
strates an absolute advantage over other graph poolingdeethith a probability of nearly 100%.

ASAP \% MatPool-
PAN ——— SOPool-
SAG v GA-
w TopK v Set2Set- .
°
S Set2set v TopK- 0 0002 008 0028 ©0 0 0051|04 ﬂ
GA —— SAG- 0 0.002 0.084 0.041 0 0 0.43.
50Pool e e PAN- 0 004 033 018 OONE 0
MatPool ——— ASAP- 0 0 00140024 0 034 019 03 0
- P S N
10 1 2 3Av;ragse Rasnks7 &8 9 10 11 \‘@',8 66200 o G)QOG)Z \‘&v“ P Qv.% vﬂ)\}

(a) Friedmen test result (b) Heat-map of Bayesian signed-rank test

Figure 4: Statical results by using Friedman test and Bapesigned-rank test.

4.4 TRAINING EFFICIENCY FORGRAPH PROPERTYPREDICTION

This experiment demonstrates that MatPool, as a globaimmpaiethod, offers the advantages of

simple implementation and fast training speed.

Epoch Time

Time (second)

Time (second)

a1 412

95.0 957 972

a0z B 414

Time (second)

Epoch Time

_Time (second)

1085 1100

1
1016 103.7

164

2200 2183 2198

o G
o 0q %
% %

S % B & 4
Y % e e u
%

%,

%, %
%

RN
%, % % Yo M
%, % o e W

Q

R
%,

S

PR
Y % e e u
%

%
%,

Y S S % % A S %
B 0 T Y %y % T Hy
% %, r (I

(2) MOLHIV (b) MOLPCBA (c) PPA (d) CODE2

Figure 5: Training time of all pooling methods on OGBG datase

In our experiment, all global pooling methods have a sinsleale of parameters. Following the
example of MNN, the other pooling methods also use two headsp the features. From Figlirde 5,
all global pooling methods have similar training times, Mhiierarchical pooling methods require
significantly more time due to the need for additional ogeratin the layer-by-layer pooling.

5 CONCLUSION

Unlike existing graph pooling methods that provide grag¥el representations based on vector pat-
terns and loss graph information, we explore the use of mp#iterns and propose a new method
named MatPool for representing and predicting graphs érdift size. MatPool consists of three
main components: Positive Eigenvalue Mapping (PEM), Maepresentation (MR), and Matrix
Neural Network (MNN). PEM reconstructs the adjacency matihave positive eigenvalues, en-
hancing the propagation ability of primary nodes. MR preg@ unified matrix-pattern-oriented
representation with key properties such as permutaticariamce and retention of graph informa-
tion. MNN is specifically designed to extract deeper feadrem the row-column correlated MR.
We have theoretically analyzed the properties of MatPodl@nducted extensive experiments to
validate its efficiency and effectiveness in graph propsnpirediction.

The main drawback of MatPool lies in the process of multipdythe feature matrix by its transpose.
Each feature in MR is obtained by summing the squares, whaghnmesult in significant numerical
variation. Therefore, a more reasonable normalizationgse and careful initialization of values in
the MNN network are needed in the future.

10

Under review as a conference paper at ICLR 2025

REFERENCES

J. Baek, M. Kang, and S.J. Hwang. Accurate learning of graphesentations with graph multiset
pooling. Ininternational Conference on Learning Representati@enReview.net, 2021.

A. Benavoli, G. Corani, and J. Demsar. Time for a change: arialtfor comparing multiple
classifiers through bayesian analysleurnal of Machine Learning Researchi(1):1-36, 2016.

F.M. Bianchi, D. Grattarola, and C. Alippi. Spectral clugstg with graph neural networks for graph
pooling. Ininternational Conference on Machine Learnjnglume 119, pp. 874-883. PMLR,
2020a.

F.M. Bianchi, D. Grattarola, and C. Alippi. Spectral clugtg with graph neural networks for graph
pooling. InProceedings of the 37th International Conference on Maehiearning volume 119,
pp. 874-883, 2020b.

C.M. Bishop.Pattern Recognition and Machine Learningpringer, 2007.

K. Chen, J. Song, S. Liu, N. Yu, Z. Feng, G. Han, and M. Songtrbigtion knowledge embedding
for graph pooling.|IEEE Transactions on Knowledge and Data Engineerid®y8):7898—7908,
2023.

S. Chen, Z. Wang, and Y. Tian. Matrix-pattern-oriented raskyap classifier with regularization
learning.Pattern Recognitiom0(5):1533-1543, 2007.

X. Chen, S. Chen, J. Yao, H. Zheng, Y. Zhang, and |.W. Tsangtrieg on attribute-missing graphs.
IEEE Transactions on Pattern Analysis and Machine Inteltige 44(2):740-757, 2022.

W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and D. Yin. A graygural network framework
for social recommendationslEEE Transactions on Knowledge and Data Engineeridg(5):
2033-2047,2022.

H. Gao and S. Ji. Graph u-nets. Pnoceedings of the 36th International Conference on Maghin
Learning volume 97 ofProceedings of Machine Learning Researpp. 2083-2092. PMLR,
20109.

H. Gao, Z. Wang, and S. Ji. Large-scale learnable graph tatimoal networks. IrProceedings of
the 24th ACM SIGKDD International Conference on Knowledgedvery and Data Miningop.
1416-1424,2018.

X. Gao, W. Dai, C. Li, H. Xiong, and P. Frossard. ipool-inf@tion-based pooling in hierarchical
graph neural networkslEEE Transactions on Neural Networks and Learning Syst&8€):
5032-5044, 2022.

Z. Gao, C. Tan, and S.Z. Li. Pifold: Toward effective and éfit protein inverse folding. Iifhe
Eleventh International Conference on Learning Repreg@ana OpenReview.net, 2023.

J. Gilmer, S. S Schoenholz, P.F. Riley, O. Vinyals, and G.&BhID Neural message passing for
quantum chemistry. Iimternational Conference on Machine Learnjmgp. 1263-1272, 2017.

I. Goodfellow, Y. Bengio, and A. CourvilleRattern Recognition and Machine LearningIT Press,
2016.

W.L. Hamilton, Z. Ying, and J. Leskovec. Inductive represgion learning on large graphs. In
Advances in Neural Information Processing Systemps1024-1034, 2017.

J. He and H. Zhao. Fault diagnosis and location based on gieytal network in telecom networks.
In International Conference on Networking and Network Amlans pp. 304-309, 2020.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, &d. Leskovec. Open graph
benchmark: Datasets for machine learning on grapbsiv preprint arXiv:2005.0068,72020.

W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec. @gb-A large-scale challenge for
machine learning on grapharXiv preprint arXiv:2103.0943®021.

11

Under review as a conference paper at ICLR 2025

R. L. Iman and J. M. Davenport. Approximations of the criticegion of the friedman statistic.
Communications in Statisticpp. 571-595, 1980.

Y. Jin, A. Loukas, and J. JaJa. Graph coarsening with predespectral properties. [hhe 23rd
International Conference on Artificial Intelligence anafistics pp. 4452—-4462, 2020.

N. Keriven. Not too little, not too much: a theoretical arsa$yof graph (over)smoothing. In
Advances in Neural Information Processing Systetig2.

A. Hosein Khasahmadi, K. Hassani, P. Moradi, L. Lee, and Qrrido Memory-based graph net-
works. InInternational Conference on Learning Representatj@@20.

D. Kingma and J. Ba. Adam: A method for stochastic optimaatiin International Conference on
Learning Representation2015.

T.N. Kipf and M. Welling. Semi-supervised classificationtvgraph convolutional networks. In
International Conference on Learning Representatj@@4.7.

A. Krizhevsky, |. Sutskever, and G.E. Hinton. Imagenetsiksation with deep convolutional neural
networks. InAdvances in Neural Information Processing Systemns1106-1114, 2012.

J. Lee, I. Lee, and J. Kang. Self-attention graph poolingPrisceedings of the 36th International
Conference on Machine Learningolume 97, pp. 3734-3743, 2019.

J.B. Lee, R. Rossi, and X. Kong. Graph classification usingctiral attention. IfProceedings of
the 24th ACM SIGKDD International Conference on Knowledgedvery and Data Miningop.
1666-1674, 2018.

G. Li, M. Muller, A.K. Thabet, and B. Ghanem. Deepgcns: Canggo as deep as cnns? In
IEEE/CVF International Conference on Computer Visipp. 9266—-9275, 2019.

G. Li, M. Muller, B. Ghanem, and V. Koltun. Training graphural networks with 1000 layers. In
Proceedings of the 38th International Conference on Maehiearning volume 139, pp. 6437-
6449, 2021a.

G. Li, M. Muller, G. Qian, I.C. Delgadillo, A. Abualshour, K. Thabet, and B. Ghanem. Deep-
gens: Making gens go as deep as cnhSEE Transactions on Pattern Analysis and Machine
Intellegence45(6):6923-6939, 2021b.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated gramysence neural networks. In
International Conference on Learning Representatj@@4 6.

C. Liu, Y. Zhan, J. Wu, C. Li, Bo Du, W. Hu, T. Liu, and D. Tao. @fapooling for graph neural net-
works: Progress, challenges, and opportunitieBrateedings of the Thirty-Second International
Joint Conference on Atrtificial Intelligencpp. 6712—-6722, 2023a.

Y. Liu, S. Yang, Y. Xu, C. Miao, M. Wu, and J. Zhang. Conteximatl graph attention network
for recommendation with item knowledge graplEEE Transactions on Knowledge and Data
Engineering35(1):181-195, 2023b.

Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessitygi@ph neural networks? In
International Conference on Learning Representatj@@R2.

Z.Ma, J. Xuan, Y.G. Wang, M. Li, and P. Lio. Path integral lthsenvolution and pooling for graph
neural networks. Idvances in Neural Information Processing Syste2020.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristigarsting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasete#oning with graphs. InCML
2020 Workshop on Graph Representation Learning and BeyziigD.

P. B. NemenyiDistribution-free multiple comparison$hD thesis, Princeton University, 1963.

E. Ranjan, S. Sanyal, and P. Talukdar. Asap: Adaptive stracware pooling for learning hierar-
chical graph representations. The Thirty-Fourth AAAI Conference on Atrtificial Intelligez pp.
5470-5477, 2020.

12

Under review as a conference paper at ICLR 2025

W. Rawat and Z. Wang. Deep convolutional neural networkatiage classification: A comprehen-
sive review.Neural computation29(9):2352—-2449, 2017.

S. Saha, J. Gao, and R. Gerlach. A survey of the applicatigmagfh-based approaches in stock
market analysis and predictiomternational Journal of Data Science and Analytitd(1):1-15,
2022.

Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud lostauctures by kernel correlation
and graph pooling. IfProceedings of the IEEE Conference on Computer Vision aritkipa
Recognitionpp. 4548-4557, 2018.

N. Shervashidze, P. Schweitzer, E.J. Van Leeuwen, K. Meh|lamd K.M. Borgwardt. Weisfeiler-
lehman graph kerneldournal of Machine Learning Researct?:2539-2561, 2011.

O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Seqednsequence for sets. limernational
Conference on Learning Representatio?316.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P.S. Yu. Hegeneous graph attention network.
In Proceedings of the ACM Web Conferenge. 2022—2032, 2019.

Z. Wang and S. Ji. Second-order pooling for graph neural orétsvIEEE Transactions on Pattern
Analysis and Machine Intelligencé5(6):6870-6880, 2023.

Z. Wang and Z. Zhu. Matrix-pattern-oriented classifier withundary projection discrimination.
Knowledge-Based System49:1-17, 2018.

Z. Wang, S. Chen, J. Liu, and D. Zhang. Pattern representatifeature extraction and classifier
design: Matrix versus vectolEEE Transations on Neural Netwqrk9(5):758-769, 2008.

L. Wei, Z. He, H. Zhao, and Q. Yao. Search to capture long-eadependency with stacking gnns
for graph classification. IRroceedings of the ACM Web Conferenge. 588-598, 2023.

C. Wu, C. Wang, J. Xu, Z. Liu, K. Zheng, X. Wang, Y. Song, and Ki.G5raph contrastive learning
with generative adversarial network. Rroceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Miningp. 2721-2730, 2023.

J. Wu, X. Chen, K. Xu, and S. Li. Structural entropy guideddrhierarchical pooling. IProceed-
ings of the 39th International Conference on Machine Leagnivolume 162, pp. 24017-24030,
2022a.

S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural nelte@m recommender systems: A
survey.ACM Computing Survey85(5):1-37, 2022b.

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P.S. Yu. A congm&te survey on graph neural
networks.IEEE Transactions on Neural Networks and Learning Syst8&(4):4-24, 2021.

Y. Xie, Z. Xu, and S. Ji. Self-supervised representatiomnieg via latent graph prediction. In
International Conference on Machine Learnjmplume 162 oProceedings of Machine Learning
Researchpp. 24460-24477, 2022.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful ar@lgr@eural networks? Imterna-
tional Conference on Learning Representatid?(¥19.

J. Ye, J. Zhao, K. Ye, and C. Xu. How to build a graph-based desming architecture in traffic
domain: A survey.lEEE Transactions on Intelligent Transportation Systef85):3904—-3924,
2020.

R.Ying, J.n You, C. Morris, X. Ren, W.L. Hamilton, and J. Leskc. Hierarchical graph representa-
tion learning with differentiable pooling. I1Advances in Neural Information Processing Systems
pp. 4805-4815, 2018.

H. Yuan and S. Ji. Structpool: Structured graph pooling wiaditional random fields. linterna-
tional Conference on Learning Representatid2320a.

13

Under review as a conference paper at ICLR 2025

H. Yuan and S. Ji. Structpool: Structured graph pooling wiaditional random fields. linterna-
tional Conference on Learning RepresentatiadbpenReview.net, 2020b.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deaming architecture for graph
classification. IrProceedings of the Thirty-Second AAAI Conference on Adifictelligence pp.
4438-4445, 2018.

Y. Zhu, Z. Wang, and D. Gao. Matrixized learning machine witbdified pairwise constraints.
Pattern Recognitiom48(11):3797-3809, 2015.

Z. Zhu, Z. Wang, D. Li, W. Du, and J. Zhang. Efficient matrixdzelassification learning with
separated solution proceggeural Computing and Application32(14):10609-10632, 2020.

Z. Zhu, H. Xing, and Y. Xu. Balanced neighbor exploration$emi-supervised node classification
on imbalanced graph dattformation Science$31:31-44, 2023.

14

Under review as a conference paper at ICLR 2025

A APPENDIX

This appendix provides theoretical and experimental redseand is organized as follows: Sub-
section A.1 contains detailed proofs, including six prapass, one corollary, and one lemma of
MatPool. It also outlines the forward and backward procesgeMNN. Subsection A.2 provides
the pseudo-code and detailed time complexity analysis dPblal. Subsection A.3 offers detailed
dataset descriptions and hyper-parameter settings. &idrsA.4 presents additional results, includ-
ing the convergence of MatPool and the effectiveness ofigpeameters. Subsection A.5 presents
comparison results between MatPool and other classicdingomethods.

A.1 THEORETICAL PROOFS OFMATPOOL AND GRADIENT CALCULATION OF MNN

Proposition[3.1. Given an adjacency matriz € R™*", let\; be the eigenvalue of the reconstructed
adjacency matrixd,.,,. Thenvi <mn, A; > 0.

Proof. Each diagonal element in the reconstructed adjacency xmayi,, is positive. Vi =
1,2, ...,n, we have the following equation,

Qg > Z |aij|: Z Q. (12)

J=1,j#i J=Lj#i

Therefore, A4, is a diagonally dominant matrix. Based on the Gerschgonl€irheorem and
the property of the eigenvalue of the matrix, we have theoWwalhg equation, indicating that the
eigenvalues of4,,.,, fall within the following circle,

|Z — (1“'| § R1 = Z aij (13)

j=1.5#i

Consequentlyyi < n, A\; > 0, and we can conclude that each eigenvalud f,, is positive. [

Lemmal3.2. For matrix A € R™*™ and B € R™"*", if A and B do not have the same eigenvalues,
then the solution to the matrix equatiehX = X B is X = 0.

Proof. Assume thaif(\) = |\ — A| is the characteristic polynomial of. According to Cayley-
Hanmilton Theorem, we have,

f(A)=0 (14)
Next, we modifyAX = X B as follows,
A?’X = A(AX) = A(XB) = (AX)B = XB? (15)
Then, we can get the following equation,
f(A)X =Xf(B)=0 (16)

Assume that the eigenvalues dB are pq,po,...,un, and the eigenvalues of (B) are

f(u1)7 f(u2)7 ey f(un)

Assert:pq, p2, ..., i1y, are not the eigenvalues df.

If 3u; such thatf(u;) = 0, theny; is an eigenvalue off. However,A and B do not share the
same eigenvalues. Therefov&, 11; is not a root of the characteristic polynomjgl4), and we can
conclude thayf (B) is an invertible matrix.

Finally, we can calculate the solution of the matrix equatioX = X B as follows,

Xf(B)=0 17)
X=0fB)'=0 (18)
O

15

Under review as a conference paper at ICLR 2025

Corollary B3l For matrix A € R™*"™ and B € R"*", let the eigenvalues ol be \# for i =
1,2,...,n, and the eigenvalues & be \? fori = 1,2,....n. If Vi <n, A} > 0and\? > 0, and
A? = B? thenA = B.

Proof. ProvingA = B is equivalent to provingd — B = 0. Therefore, we present the following
equation,

A(A—B)=A*> - AB=DB?-AB = (A—- B)(—B) (19)
Becausevi < n, A} > 0 and\? > 0, the eigenvalues aoft are positive while those of B are
negative, meaning that and— B do not share the same eigenvalues. Accordingtomal3.2, we
can conclude that,

A-B=0 (20)
Therefore, we conclude that,.,, and A2, have one-to-one correspondence for undirect graphs.
O

Proposition [3.4. For undirected graphs with equal and fixed node and edge fesjtuif
Vi 7é j,POOl(gZ(A“XfZI,Efzm)) = POOl(gj(Aj,Xfim,EfiI», thengi = gj.

Proof. Assume the node feature matriy;, is fixed for all graphs, and adjacency matrices of
G; andgG; areA; = AandA; = B, respectively. Then, provingool(G;(Ai, X fiz: Eriz)) =
Pool(G;(Aj, X fiz, Efiz)) is €quivalent to proving follows,

Pool(G;) = X{;, AX fix = X {;, BX iz = Pool(G;) (21)

Leta = «o; + o, wherea; ande; are unit column vectors. Sincé = (a;;) is a real symmetric
matrix, if Pool(G;) = 0, we obtain the following equation,

Qi = OLZTAOQ = 0, (22)
Moreover, we have the following equations,
aijt+aj; = az-TAajJrajTAai = aiTAaZ—Jra]-TAajJraiTAajJra]TAai = (ai+aj)TA(ai+aj) =0
Sincea;; = a;;, we can conclude that;; = 0. This leads tod = 0, meaning that the kernel space

of Pool functionKer(Pool) = 0. Therefore Pool(G(A, Xz, Efiz)) and the adjacency matrig
are in one-to-one correspondence when the node featurégetdor all graphs.

In the implementation, the multiplication operation ersuthe size of the adjacency matrix is con-
sistent by padding zeros to the right and bottom, which datsause substantial changes to the
matrix. O

Proposition[3.5. For matrix A € R™*™ and B € R™*" with positive eigenvalues, #©’ A = BT B,
then we havel = @B, whereQ is an orthogonal matrix andet(Q) = 1..

Proof. In MatPool, the eigenvalues of,.,, are positive. Therefore, we hadet(4) > 0 and
det(B) > 0. This meansi andB are an invertible matrices, and we have,

A= (A""'B"B=QB (24)
Next, we have
QQT _ (AT)leT((AT)leT)T
— T\—1pT T\—1I\T
_ (AT>—1ATAA—1
=1
Therefore() is an orthogonal matrix. According to the following equatio
det(A) = det(QB) = det(Q)det(B) (26)

Becauselet(A) > 0 anddet(B) > 0, we havedet(Q) = 1, eliminating the possibility of mirror
transformation.. O

16

Under review as a conference paper at ICLR 2025

Proposition[3.8. If feature matrix of nodes is not fixeBpol (G) is permutation invariant.

Proof. According to the Equatidnl 8, we have,
Pool(G) = Agg(G)" Agg(G) = ¢™ (Apem X + 9" (E))T oM (Apem X + 0" (E)) (27)

whereg? : Vix — Vdandg? : Vi — Vx are neural network modules that act on each row of
the input matrix.

Here, we define the permutation operatidn as swapping the” row and thej*" row of the matrix,
meaning swap two nodes in the input graph mjjfdPL-j = I. If we randomly swap thé&" row and

thej*" row of the graptg, the adjacency matrix and the feature matrix will be modiéiedordingly.

Then, the process dPool(G) can be calculated as follows,
Pool(G) = ¢V (P APL Py X + ¢" (P E))T o™ (P APL P X + ¢" (P E)) 28)
= ¢V (P AX + Po" (E))T o™ (P AX + 6" (E))

Since the neural network mapping functian® and¢” operate on individual rows, the swapping
operationP;; does not affect the results and can be factored out of the imgyfpnctions. The
equation forPool(G) can be calculated as follows,

Pool(G) = ¢" (AX + ¢" (E))" P Pio™ (AX + ¢ (E))
= ¢V (AX + 6% (B)) "oV (AX + ¢"(E))

Therefore, all permutation operations are cancelled otiti;yfunction, meaning that tha&ool(G)
is permutation invariantM at(G) also inherits the permutation invariance. O

(29)

Proposition[3.7. Suppose) € £L(V¢,14™) andy = nTn € L£(V?). Then, the image space o¢fis
isomorphic to that of) and there exist a isomorphic mappifighat makegy = 7.
Proof. Suppose a vectar € R<, if the linear operaton acts onz , we have,

(@) =0=n"n(x)=0 (30)
Moreover, we have,

n"n(z) = 0= (n)"n(z) =0
= |In(@)|[=0 (31)
=n(z)=0

Therefore, we conclude that the kernel space efjuals that ofy = 75, meaningKer(y) =
Ker(n). Thus, we have

dimIm(y) = d — dimKer(y) = d — dimKer(n) = dimIm(n) (32)
Therefore, there exist an isomorphic mappinglm(y)) — Im(n), such thaty = &n’n=n. O
Proposition[3.8. Let f(A) = A ® M, whereA € R¥>? and M € R4, Ifvi,j € {1,2,...,d},
M; ; # 0, thenf is a isomorphic mapping.
Proof. VA € R%*? B € R4*? we have

f(A+B)=(A+B) o M=A0M+BoM=f(A)+ f(B) (33)
MoreoverVk € R, we have

f(EA) = (KA)OM =k(AOM)=Fkf(A) (34)

Therefore, f is a linear transformation. Moreover, ¥fi,j € {1,2,...,d}, M,;; # 0, we can
the relationship betweerl; ; and f(A),;; is one-to-one. In this way, the functiof(4) =
AOM, foralli,j € 1,2,...,d, M; ; # 0 is alinear isomorphism. O

17

Under review as a conference paper at ICLR 2025

W1L1 W1L2 Mll M12 WlRl W1R2 Mil M{Z

WZLl WZLZ M21 MZZ WZSL WZRZ Mél MéZ

Figure 6: lllustration of the forward process of MNN.

Forward and backward propgation of Matrix Neural Network (M NN). Figure[6 presents an
example that we conduct MNN on a matrix representalibm (G) € R?*2.

Taking Figurd ® as an example of the calculation process oNMRMhe forward propagation that

calculates the output/;;, Vi, j is as follows,

2 2
My =" W MW (35)
k=1 1=1
2 2
My =" WhMyW§ (36)
k=1 1=1
2 2
My =" W MW (37)
k=1 [=1
2 2
My =" Wi My W5 (38)
k=1 1=1

Suppose the loss value for the graph property predictidnisas. According to the chain rule, the
partial derivative ofL with respect tCWi? can be calculated as follows,

0L 9L oM, 9L oM,

- MW MuWE) (39
oWE ~ OM, oW | OMl, oWl 8M{1 lz; ulii) aM;2; uliz) - (39)

0L 9L oM, 9L oM,

_ Mo Wi MuWE) (40
oWl ~ OM], oWl T M, oWy 8M{1 ; «Wir) aM{QZ; aWiz) (40)

oL OL oM}, — OL 0M}, OL <

_ - M M a
oW = oy, owh * agg, owh — aagg, 2 M)+ oL Z ulVia) (4)

oL OL OMj, — OL 0Mj, OL o e OL R
= = My W) + (3" My W, 42
oWl ~ OMG, oWl | ML, oWl aMgl(l; . ”)+8M§2(Z aWiz) - (42)

Similarly, we can calculate the partial derivative bfwith respect tonf. Moreover, the partial
derivative ofL with respect tal/;; can be calculated as follows,

oL 2 2 9L oM, 2 2 o1 o
= — 4
OMiy ZZ oM! 5‘M11 ZZ M’ (Wplwlq) (43)
p=lg=1 "~ "P1 p=lg=1"" P4
D) PLALITES w UF (as)
OMyy — = OM}, OMio o — £ OM], p1"V2q
p=1g= p=1q=
OL G~ 0L OML, & 0L
B = WpW. 45
OMz Z;Z;aMzgq OMa Z;Z; aM;,q(1‘1) (45)
p=1g= p=1q=
OL G 0L OM), & 0L
N = 46
OMae Z—;Z—;M%q OMaz Z_:lz_:l 6M;)q(w 2Waq) (46)
p=1lg= p=1gq=

Under review as a conference paper at ICLR 2025

By summarizing the patterns, we can obtain more universaliditas as follows,

Lin Rin

=D WiMuW (47)

k=11=1
where L;,, and R;,, denote the number of rows and columns of the matrix repraentd €
REnxRin respectively.

Suppose the loss value for the graph property predictidnisas and the outpu/’ € RLout X foutr,
Then, the universal partial derivative bfwith respect tdVx can be calculated as follows,

8L Rout 5‘L aMLI Rout Rin R
OWE ~ 2 M, oWl DI 6M’ MiWig (48)

qg=1 1=1

Similarly, the universal partial derivative @f with respect td/fo can be calculated as follows,

L L
aL out aL aM/ ouf in
oWl > oM, oI = 2 Z a Wi M (49)
% p=1 %]

p=1 k=1

Finally, the universal partial derivative @fwith respect ta\/;; can be calculated as follows,

Lout Rou Lout Rou
t oL aM/ t t

Z Z e Z Z aM, WhW) (50)

At this point, the complete forward and backward propaggtimcesses of MNN have been derived.

A.2 PseuDO-cODE AND DETAIL TIME COMPLEXITY OF MATPOOL

Algorithm 1 Pseudo-code of MatPool

Input: Graph-structured dat@(A, X, E) with true labelY’
Output: PEM parameterg and¢?, [= 1,...,1,; MNN parameters¥Z, W/ and activation
M| =1,...,1;,; Neural networkV N (:,) with parameters;
repeat
Temp=20
for{ =1tol, do
X = ¢l]V(Az)e'rnX + (blE(E))
Temp=Temp+ X
end for
Pool(G) = Temp” Temp
Mat(G) = Pool(G) ® M
forl=1tol,, do
Mat(G) = ¢ (W Mat(G)W}R)
end for
output = NN (Flatten(Mat(G),0))
Loss = CrossEntropyLoss(output,Y)
Updateparameters by minimizing Loss
until Stop criteria is true

Algorithm[1 presents the pseudo-code of MatPool. Accordintipe pseudo-code, we analyze the
time complexity of MatPool in detail. Suppose the numberades, edges, and feature dimensions
aren, e, andd respectively. The time complexity of PEM focuses on the pgating and aggregating
process. In this process,.., X costsO(n2d), ¢F (E) costsO(nd?), and thes;’ assumed as a
linear mapping cost®(nd?). In summary, the time complexity of PEM @3(n2d + ned + nd?).

The time complexity of MR focuses on the multiplication ogtésn that cost®)(nd?). Moreover,
the dot product operation costs. Therefore, the time complexity of MR @&(nd?).

19

Under review as a conference paper at ICLR 2025

Finally, the time complexity of MNN focuses on the multi@i@on of two weight matrices. Suppose
the output isc R%*<, both the left and right multiplications coél(d?). Although the time com-
plexity of MNN is O(d?), it remains fast due to the inherent parallelism of matrixtiplication.
Moreover, if the matrix is flattened into a vector, then adineeural network is used and the time
complexity will reachO(d*).

Therefore, the primary time complexity is concentratedrangropagation and aggregation process
of graph neural network module. If the number of GNN layerg jighe main time complexity of
MatPool isO(Ln?d+ Lned+ Lnd?). This also explains why hierarchical pooling methods comesu
more training time than global pooling.

A.3 DETAILED DESCRIPTIONS ANDHYPER-PARAMETER SETTINGS OFMATPOOL

Table 5: Summary statistics of datasets.

Name Graphs AvgNodes AvgEdges Classes Source Metric
MOLHIV 41,127 255 27.5 2 OGBG ROC-AUC
MOLPCBA 437,929 26.0 28.1 2 OGBG AP
PPA 158,100 243.4 2,266.1 100 OGBG ACC
CODE2 452,741 125.2 124.2 5002 OGBG F1 score
AIDS 2,000 15,69 16.20 2 Molecules ACC
FRANKENSTEIN 4,337 16.90 17.88 2 Molecules ACC
MUTAGENICITY 4,337 30.32 30.77 2 Molecules ACC
NCI1 4,110 29.87 32.30 2 Molecules ACC
NCI109 4,127 29.68 32.13 2 Molecules ACC
DD 1,178 284.3 715.66 2 Bioinformatics ACC
PROTEINS 1,113 39.06 72.82 2 Bioinformatics ACC
COIL-DEL 3,900 21.54 54.24 100 Computer Vision ACC
COIL-RAG 3,900 3.01 3.02 100 Computer Vision ACC
Letter-high 2,250 4.67 4.50 15 Computer Vision ACC
Letter-low 2,250 4.68 3.13 15 Computer Vision ACC
Letter-med 2,250 4.67 3.21 15 Computer Vision ACC
COLLAB 5,000 74.49 2457.78 3 Social Networks ACC
IMDB-BINARY 1,000 19.77 96.53 2 Social Networks ACC
IMDB-MULTI 1,500 13.00 65.94 3 Social Networks ACC
COLORS-3 10,500 61.31 91.03 13 Synthetic ACC

In this work, we select 20 datasets to validate the perfoomari MatPool and other comparison
algorithms. These datasets come from seven categoriesGQ®Blecules, Bioinformatics, Com-
puter Vision, Social Networks, and Synthetic. Detailedadigtions of these datasets are provided
in Table[B.

Table[® lists the detailed descriptions of the hyper-patamae In the experiments, TUDatasets
generally use different hyper-parameters, and there arduning hyper-parameters including the
learning rate selected frof0.001,0.0001} and the batch size selected frai$2, 128}. The oth-

er hyper-parameters are fixed. Accordingly, there are twalgnations of hyper-parameters on
TUDatasets. We experiment with each combination of hypeameters and selected the best com-
bination on the validation set to predict the test set.

A.4 CONVERGENCE AND HYPERPARAMETERS OFMATPOOL

Convergence [7 shows the values of losses and the corresponding validatiore on the OGBG
graph datasets. From the figure, the convergence speed Bblain these OGBG graph datasets

is relatively fast, and the scores of the validation set dsm lae rapidly improved in the early stages
of training.

Hyper-parameters: The detailed setting of hyper-parameter in Table 6. In oethmod, two hyper-
parameters, including learning rate and batch size, atesgad] for different graphs on TUDatasets.
The batch size is set to 32 for OGBG-PPA, because a large batetior OGBG-PPA frequently
occurs non-convergence. Therefore, We tune the learnia@rel6 graph datasets from TUDataset.

20

Under review as a conference paper at ICLR 2025

Table 6: Summary statistics of used hyper-parameters iaxperiments.

Hyper-parameters MOLHIV/IMOLPCBA PPA CODE2 TUDatasets
Learning rate 0.0001 0.001 0.001 {0.001, 0.000%
Embedding dim 256 256 256 256
Batch size 128 32 128 {32,128
Max epochs 100 100 25 100
GNN layers 3 3 3 3
Least epoch 20 20 20 30
Early stop patient 15 15 15 20
Learning rate decay 0.95 0.95 0.95 0.95
Weight decay le-8 le-8 le-8 le-8
Droupout 0 0 0 0
Run times 10 10 10 10
Random seeds ~9 0~9 0~9 0~9
Max seq length NA NA 5 NA
Number of vocabulary NA NA 5000 NA
. == with edge a) \ == with edge O
Sess —— without edge . ?‘:“\‘ ,",:. f:\[‘/I,“‘"J s \ —— without edge _f "\,_v_\’
S N R AR :‘J}‘"‘\,‘,’ RSTTaR I A ,/
I RVA R R
s R sonl f s e, s /’”
(a) MOLHIV (b) MOLHIV (c) MOLPCBA (d) MOLPCBA
(e) PPA (f) PPA (g) CODE2 (h) CODE2

Figure 7: The figures are corresponding to the values of Ioddfge validation scores of MatPool
on OGBG graph datasets.

batch size=32
batch size=128

X

g

&

<

S

ki

o

B h T % % B B O . e @ O % % D% h T o % % G D e e e D % %

%%, % B 0 T %, %, T % % % R B %, %%, Y, b g P T ", %, % % % % T %,
. %, % U X e m, k. e G, o, % % U X T m, h, . e G, T,
%) O T 4 Yo, % ¥ % S T 4 Y, %
KA K3 %, & W

(a) Learning Rate (b) Batch Size

Figure 8: The sub-figure in the left is the classification hasader different learning rate, while that
in the right is the classification result under differentdbegize.

21

Under review as a conference paper at ICLR 2025

Table 7: Comparison results (%) between MatPool and otlassital pooling methods are reported
here (The best result on each data set is written in bold).

Name MatPool DKEPool GMT MinCutPool StructPool DiffPool rgoool

DD 75.60+0.21 75.26+0.47 78.72t050 78224054 78.4540.40 77.56+041 75.58+0.72
PROTEINS 75.1440.54 74.37+050 75.0940.59 T4.72+0.48 75.161086 73.03+1.00 73.17+0.88
MUTAG 88.33t0.56 88.33t1.37 83444133 79.17+164 79.50+1.75 79.224102 71.944355
HIV 78.90r0.53 78.30+0.56 77.56+1.25 75.37+2.05 75.85+1.81 75.64+18 71.8241.63
Tox21 75-93i0.10 75~96j:0.36 77.3QH)_59 75-11i0.69 75-43i0.79 74~88j:0_81 69~54i0.75
ToxCast 65.95:1.03 64.3540.45 65441058 62481133 62171161 62281056 58.69+1.71
BBBP 69.47:0.45 68.1040.79 68311162 65974113 67.0l4265 68.254+0.96 65.98+1.70
IMDB-B 73.75:1.05 73.05+0.05 73.4810.76 72.65+0.75 72.06+0.64 73144070 72.12+1.12
IMDB-M 49.474053 51.0040.13 50.66+0.82 51.04+0.70 50.23+0.53 51.3Lio72 48.1840.83
COLLAB 82.000.30 81.0140.19 80.74+0.54 80.87+0.3¢ 77.27+051 78.684043 77.87+0.47

Average 73.45.053 72971058 73.0710s87 71.561+097 71311116 71.401085 68.49+1.34

From Figure 8, the left sub-figure shows that when the legrnatte of MatPool is set to 0.001,

optimal results are achieved in all datasets except for eL@B, NCI1 and, NCI109 datasets.

The right figure indicates that when the batch size of MatPosét to 32, the results are better than
when the batch size is set to 128. Therefore, a smaller batelaad a learning rate of 0.001 are
generally more suitable for MatPool.

A.5 COMPARISON WITHOTHER CLASSICAL POOLING METHODS

We compare MatPool with other important baselines such &&ul, MuchPool, GMT, Struct-
Pool, MinCutPool, DKEPool, and SortPool. In this experimeine experimental settings of these
algorithms are consistent with those of GMT, and the expental results are directly derived from
GMT's results.

From Tabld Y, MatPool achieved optimal results on 6 out of didskts, and its average results are
also the best. Compared to GMT, it performs worse only on tBead Tox21 datasets, while it
outperforms GMT on the remaining datasets. Overall, MatBIso performs better than DKEPool.
Compare to the remaining methods, MatPoll has significavamtages. Therefore, we can conclude
that MatPool is a simple yet powerful global pooling method.

22

	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Positive Eigenvalue Mapping
	Matrix Representation
	Matrix Neural Network

	Experiment
	Experiment Setting
	Performance of Positive Eigenvalue Mapping and Matrix Neural Network
	Performance of MatPool for Graph Property Prediction
	Training Efficiency for Graph Property Prediction

	Conclusion
	Appendix / supplemental material
	Theoretical Proofs of MatPool and Gradient Calculation of MNN
	Pseudo-code and Detail Time Complexity of MatPool
	Detailed Descriptions and Hyper-parameter Settings of MatPool
	Convergence and hyper-parameters of MatPool
	Comparison with Other Classical Pooling Methods

