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ABSTRACT

Graph property prediction usually involves using a model topredict the label for
the entire graph, which often has complex structures. Because input graphs have
different sizes, current methods generally use graph pooling to coarsen them into
a graph-level representation with a unified vector pattern.However, this coarsen-
ing process can lead to a significant loss of graph information. In this work, we
explore the graph representation by using a matrix pattern and introduce an al-
gorithm called Matrix-pattern-oriented Pooling (MatPool) that provides a unified
graph-level representation for different graphs. MatPoolmultiplies the transposed
feature matrix by the feature matrix itself and then conducts an isomorphic map-
ping to create a Matrix Representation (MR) that preserves the graph information
and satisfies permutation invariance. Since the multiplication operation calculates
the relationships between each feature, MR exhibits row-column correlations un-
der the matrix pattern. To match this correlation, MatPool uses a novel and ef-
ficient Matrix Neural Network (MNN) with two-sided weight matrices to match
the row-column correlation under the matrix pattern. We provide theoretical anal-
yses to reveal the properties of MatPool and explain why it can preserve graph
information and satisfy the permutation invariance. Extensive experiments on var-
ious graph property prediction benchmarks show the efficiency and effectiveness
of MatPool.

1 INTRODUCTION

Graph-structured data Hu et al. (2020) are everywhere and play a key role in social networks
Fan et al. (2022), recommender systems Liu et al. (2023b), transportation Ye et al. (2020), and pro-
tein prediction Gao et al. (2023). With the development of Graph Neural Networks (GNNs) Wu et al.
(2021; 2022b), GNNs are excellent at handling tasks that predict properties for individual nodes
Gao et al. (2018); Wu et al. (2023). When working with individual nodes, the goal is to predict
labels based on their connections and features within the graph.

In contrast, graph property prediction Xie et al. (2022) predicts labels for entire graphs, which can
vary significantly in size. Machine learning algorithms Bishop (2007); Goodfellow et al. (2016)
usually require data in a unified size, but the different sizes of graphs make it hard to use them
directly as inputs. Therefore, developing methods to provide a uniform graph-level representation
is crucial for accurately predicting graph properties and improving the effectiveness of GNNs in
various graph-level applications.

Similar to how pooling in Convolutional Neural Networks (CNNs) Rawat & Wang (2017) uses
down-sampling to gather feature information, graph pooling Liu et al. (2023a); Jin et al. (2020) gen-
erally applies down-sampling to coarsen node information into a unified graph-level representation
with a consistent vector size. This approach is especially useful for graphs that change in size, as it
makes it easier to apply these representations to various machine-learning techniques.

Motivation : However, downsizing and coarsening in pooling methods often lead to significant loss
of graph information. To address this issue, we explore a newway of representing graphs using a
matrix pattern that retains graph information. Additionally, we design a specialized neural network
to handle this matrix pattern, capturing the relationshipsbetween its rows and columns.
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Why matrix? The features of entire graphs are presented in the form of matrices. Although the
number of nodes in different graphs varies, resulting in different feature scales, all these graphs can
be transformed or mapped into a unified matrix space through isomorphic mappings. This means
that, despite the potential differences in their original features, through such transformations, they
can be compared, analyzed, or processed within a common space. Moreover, matrix pattern can
provide a more detailed and richer view of graphs than vectorpattern.

Consequently, we propose Matrix-pattern-oriented Pooling (MatPool) for graph property prediction.
MatPool has two key components: Matrix Representation (MR)to handle graphs of different sizes
and Matrix Neural Network (MNN) to explore the features of MRmore deeply.

Matrix Representation (MR) : We design a message-passing way called Positive Eigenvalue Map-
ping (PEM), enhancing the propagation influence of primary nodes and making the eigenvalues of
the adjacency matrix positive. Next, we multiply the transposed feature matrix by the feature matrix
itself and perform a isomorphic mapping to create a Matrix Representation (MR) for each graph.

Matrix Neural Network (MNN) : The matrix-pattern-oriented MR for each graph exhibits strong
connections between rows and columns, which traditional CNNs or MLPs struggle to capture. To
address this, we design a Matrix Neural Network (MNN) that uses two-sided weight matrices, al-
lowing for more effective output calculations and naturally captures the row-column correlations.

As a result, we propose MatPool, a graph-level learning framework designed to predict properties
for graphs of varying sizes without losing graph information. The contributions of this study are
summarized as follows:

• We create a Positive Eigenvalue Mapping (PEM), which enhances the propagation influ-
ence of primary nodes, to aggregate the node features in the graph.

• We propose a Matrix Representation (MR) that isomorphically maps the varying graph
feature space into a unified graph-level space without lossing graph information.

• We design a novel Matrix Neural Network (MNN) that uses two-sided weight matrices to
efficiently capture row-column correlations and extract deeper features from the MR.

• We provide theoretical analyses to reveal the properties ofMatPool and explain why it
can preserve graph information and satisfy permutation invariance. Extensive experiments
validate the efficiency and effectiveness of MatPool.

The rest of this paper is organized as follows: Section 2 briefly surveys related work on graph repre-
sentation learning and matrix learning. Section 3 describes the detailed implementation of MatPool.
In Section 4, experimental results on benchmark graph datasets demonstrate the effectiveness and
efficiency of MatPool. Finally, the conclusion is presentedin Section 5.

2 RELATED WORK

Graph Neural Networks (GNNs): GNNs are powerful machine learning algorithms for process-
ing graph-structured data. They capture the dependency relationships between nodes during the
message-passing process, enabling accurate and comprehensive analysis and prediction. As a novel
learning technology, GNNs continue to attract significant research interest and find applications in
various fields Gilmer et al. (2017); He & Zhao (2020); Saha et al. (2022). The Graph Convolutional
Network (GCN) Kipf & Welling (2017) is the most typical message-passing method for graph data,
aggregating node information from downstream layers.

With in-depth research on graph-structured data, many algorithms have been proposed in recen-
t years to address various problems such as heterogeneous graphs Wang et al. (2019); Ma et al.
(2022), over-smoothing Keriven (2022); Wei et al. (2023), and more Chen et al. (2022); Zhu et al.
(2023). For example, GraphSAGE Hamilton et al. (2017) utilizes sampling technology to solve
non-inductive and non-batch training issues. GIN Xu et al. (2019) improves the performance and
efficiency of graph neural networks based on the WL-test Shervashidze et al. (2011) that analyzes
the expressive ability of GNNs for different graph structures. DeepGCN Li et al. (2019; 2021b) and
DeeperGCN Li et al. (2021a) draw inspiration from the residual idea, modifying the propagating
and aggregating framework to adapt to the training of deep models.
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Graph Pooling: The size of different graphs often varies, making it difficult for algorithms to handle
these size-varying graphs directly. Therefore, a unified graph-level representation is essential for
graph property prediction. Graph pooling methods Shen et al. (2018); Lee et al. (2018); Wang & Ji
(2023) effectively provide this unified representation forgraphs of different scales. These methods
can be categorized into global pooling and hierarchical pooling.

Global pooling methods Yuan & Ji (2020a); Bianchi et al. (2020b) consider the information of al-
l nodes and pool the entire graph directly. For example, Set2Set Vinyals et al. (2016) finds the
importance of nodes to provide a unified graph-level representation for different graphs. Global-
Attention Li et al. (2016) uses an attention mechanism to aggregate entire graph information. Sort-
Pool Zhang et al. (2018) transforms the nodes by sorting and concatenating them. However, global
pooling may overly compress graph information during downsizing and coarsening.

Hierarchical pooling methods Gao et al. (2022); Wu et al. (2022a) aggregate node features in a hi-
erarchical structure. For example, DiffPool Ying et al. (2018) uses a differentiable pooling layer to
form a fixed number of clusters. TopK Gao & Ji (2019) scores nodes using a trainable projection vec-
tor and samples them based on their scores. Self-Attention Pooling Lee et al. (2019) improves TopK
by attention scores. Adaptive Structure Aware Pooling Ranjan et al. (2020) uses a self-attention
network to learn graph information by hierarchically capturing local subgraph information. These
hierarchical pooling methods align the size of graphs during the coarsening process.

Matrix Learning : Matrix and vector features are two common data representations in machine
learning. Compared to vector features, matrix features Wang et al. (2008) provide a more detailed
and richer view, which is crucial for representing graph-structured data. Matrix features also nat-
urally express the interaction between features. Early methods like MatMHKS Chen et al. (2007)
were designed to handle matrix samples, such as images, without converting them to vectors, p-
reserving the spatial structure. Algorithms like MLMMPC Zhu et al. (2015) and BPDMatMHKS
Wang & Zhu (2018) integrate localization information to improve performance. More recent meth-
ods, such as EMatMHKS Zhu et al. (2020), greatly accelerate the training speed of MatMHKS and
demonstrate the generalization ability of matrix classifiers.

Although these matrix classifiers can be directly applied tomatrix samples, they optimize the objec-
tive function using the Moore-Penrose inverse under the minimum square error. Consequently, they
fail to form a deep learning framework.

Relations to Our Work : Key differences between our work and related research can be summarized
as follows: (i) We create a propagating and aggregating way called Positive Eigenvalue Mapping
(PEM), which differs from existing GNNs; (ii) We provide a graph-level Matrix Representation
(MR) and reveal its properties, which differ from existing vector-based models; (iii) We design a
novel Matrix Neural Network (MNN) using two-sided weight matrices to extract deeper features
from the MR.

3 PROPOSEDMETHOD

3.1 PRELIMINARIES

Let G(X , E) denote a directed or undirected graph with node setX = {x1, x2, ..., xn} and edge set
E = {e11, ..., ei11, e12, ...ei22, ..., e1n, ..., einn}, wherexi ∈ R

dX stands for the feature of theith

node andeji ∈ RdE as the feature of the edge connecting nodexj to nodexi.

To simplify the process and proof, we will use a matrix approach and redefineG(X , E) as
G(A,X,E). Here,A ∈ R

n×n denotes the adjacency matrix without self-loop andAi,j = 1 s-
tands for thejth nodexj is connect to theith nodexi, X = [x1, x2, ..., xn]

T ∈ R
n×dX denotes

the feature matrix of nodes.E = [e1, e2, ..., en]
T ∈ R

n×dE denotes the edge feature matrix, where
ei =

∑

xi∈N (xj)
eji represents the sum of the edge features directed towardsxi.

Given a set of graphs{G1,G2, ...,GN}, where the graphs have varying sizes of nodes, the primary
goal of the graph pooling functionPool is to provide a unified graph-level representation for each
graph. Suppose the functionSize returns the shape of the matrix. Then, the goal ofPool can be
described as follows,

Size(Pool(Gi)) = Size(Pool(Gj)), ∀i, j ≤ N (1)

3
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Table 1: Comparison of message-passing and aggregating process schemes.

MODEL MESSAGE-PASSING ANDAGGREGATING

GCN D̃−0.5(AT + I)D̃−0.5X + E′

GIN (AT + (1 + ǫ)In)X + E
PEM ApemX + E

3.2 POSITIVE EIGENVALUE MAPPING

We propose a message-passing way named Positive EigenvalueMapping (PEM) that keeps the eigen-
values of the adjacency matrix positive and enhances the propagation influence of primary nodes.
PEM is the groundwork for subsequent graph-level representation.

Firstly, considering both directed and undirected graphs,we calculate the normalized adjacency
matrix as follows,

Â = (aij)n×n = D−0.5ATD−0.5 (2)

whereD is a diagonal matrix and each diagonal elementDi,i =
∑n

j=1 Aj,i. Next, we calculate the
reconstructed adjacency matrix as follows,

Apem =







ǫ+
∑n

i=1 a1i . . . a1n
...

. . .
...

an1 . . . ǫ+
∑n

i=1 ani






(3)

whereǫ is a small positive perturbation value.

Proposition 3.1. Given an adjacency matrixA ∈ R
n×n, letλi be the eigenvalue of the reconstruct-

ed adjacency matrixApem. Then,∀i ≤ n, λi > 0.

Suppose the dimensions of the node and edge features are equal. The process of propagating and
aggregating in PEM, without considering the neural networkmapping, is conducted as follows:

Agg(G(Apem, X,E)) = ApemX + E (4)

Table 1 lists the message-passing processes of various GNNs, including GCN, GIN, and PEM. From
the table, it is evident that PEM maintains relatively high diagonal values inApem, indicating that
PEM enhances the propagation influence of primary nodes.

In GCN, the re-normalization process is used, whereD̃ is a diagonal matrix with each diagonal
elementD̃i,i = 1 +

∑n
j=1 Aj,i. GCN considers the weight of edges, and eache′i in E′ can be

calculated ase′i =
∑

xj∈N (xi)
D̃−0.5

i,i D̃−0.5
j,j eji. Moreover, GIN treats all nodes roughly equally.

3.3 MATRIX REPRESENTATION

We design a graph-level Matrix Representation (MR) for graphs of varying sizes and demonstrated
its potential properties. Additionally, we explain why MR can preserve graph information.

Once we obtain the feature matrixAgg(G(A,X,E)) of the graph, the functionPool multiplies the
transposed feature matrix by the feature matrix itself and provides the graph-level representation as
follows,

Pool(G) = Agg(G(AT
pem, X,E))TAgg(G(Apem, X,E))

= XTA2
pemX +XTApemE + ETApemX + ETE

(5)

Formally, the complete node features and adjacency matrixApem are retained. Additionally, whether
the graph is directed or undirected,Apem andA2

pem have a one-to-one correspondence.

Lemma 3.2. For matrixA ∈ R
m×m andB ∈ R

n×n, if A andB do not have the same eigenvalues,
then the solution to the matrix equationAX = XB isX = 0.

4
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According toLemma 3.2, we can prove the following corollary.

Corollary 3.3. For matrix A ∈ R
n×n andB ∈ R

n×n, let the eigenvalues ofA beλAi for i =
1, 2, ..., n, and the eigenvalues ofB beλBi for i = 1, 2, ..., n. If ∀i ≤ n, λAi > 0 andλBi > 0, and
A2 = B2, thenA = B.

According toProposition3.1 andCorollary 3.3,Apem andA2
pem have a one-to-one correspondence

because all eigenvalues ofApem are positive. Furthermore,Pool(G) is an injective mapping for the
input graph if the graph is undirected and the node feature matrix is fixed. In this way, we can learn
the connectivity structure of undirect graph without node features.

Proposition 3.4. For undirected graphs with equal and fixed node and edge features, if
∀i 6= j, Pool(Gi(Ai, Xfix, Efix)) = Pool(Gj(Aj , Xfix, Efix)), thenGi = Gj .

The equation ofPool(G) 5 shows thatPool(G) performs the aggregation processAgg(G) twice to
obtain two feature matrices for directed graphs. Consequently, we modifyPool(G) as follows,

Pool(G) = Agg(G(Apem, X,E))TAgg(G(Apem, X,E)) (6)

For undirect graphs, Equation 5 equals Equation 6. For direct graphs, the primary difference lies in
convertingA2

pem intoApem
TApem. In this way, we have the following proposition.

Proposition 3.5. For matrixA ∈ R
m×m andB ∈ R

n×n with positive eigenvalues, ifATA = BTB,
then we haveA = QB, whereQ is an orthogonal matrix anddet(Q) = 1.

We then attempt to introduce a neural network to fit orthogonal transformation, thus maintaining the
one-to-one correspondence. The aggregation process is calculated as follows:

Agg(G(Apem, X,E)) = φN (ApemX + φE(E)) (7)

whereφN : VdX → Vd andφE : VdE → VdX are neural network modules that act on each row of
the input matrix. The correspondingPool(G) is then modified as follows,

Pool(G) = φN (ApemX + φE(E))TφN (ApemX + φE(E)) (8)

Due to the nonlinear changes in neural networks, the theoretical results mentioned above will shift
from being deterministic to being existent, meaning the properties depend on the neural network.

The functionPool(G) in Equation 8 has two important properties: permutation invariance and re-
tention of graph information.

Proposition 3.6. If feature matrix of nodes is not fixed,Pool(G) is permutation invariant.

Moreover,Pool(G) is an effective operation that maintains graph information. To clarify the process,
we approach the problem from a geometric perspective. LetφN (ApemX + φE(E))TφN (ApemX +
φE(E)) be a linear operatorψ ∈ L(Vd), andφN (ApemX + φE(E)) be a linear operatorη ∈
L(Vd,Un). Then, we haveψ = ηT η.

Proposition 3.7. Supposeη ∈ L(Vd,Un) andψ = ηT η ∈ L(Vd). Then, the image space ofψ is
isomorphic to that ofη and there exist a isomorphic mappingξ that makesξψ = η.

SincePool(G) andAgg(G) mapG into the same geometric space, their representation powersare
equal. Then, we perform a linear transformation to providethe final MR as follows,

Mat(G) = Agg(G)TAgg(G)⊙M (9)

whereM = (mij)d×d is a combination of natural base∈ R
d×d, conducing as linear transformation.

Proposition 3.8. Let f(A) = A ⊙M , whereA ∈ R
d×d andM ∈ R

d×d. If ∀i, j ∈ {1, 2, ..., d},
Mi,j 6= 0, thenf is a isomorphic mapping.

Therefore, the mappingMat : Rni×d → R
d×d, ∀ni ∈ N

+ can provide a unified graph-level repre-
sentation and preserve the graph information.

5
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Figure 1: Illustration of Matrix Neural Network.
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Figure 2: The entire process of MatPool includes the following steps: (i) Utilize PEM to aggregate
the node information; (ii) Calculate the graph-level MR; (iii) Feed the graph-level MR into the MNN
to extract deeper features for graph property prediction.

3.4 MATRIX NEURAL NETWORK

We design a novel Matrix Neural Network (MNN) to extract deeper features from MR, emphasizing
row-column correlations caused by multiplication of feature matrix in the functionMat(G).

AssumeAgg(G) returns[v1, v2, ..., vd] ∈ R
n×d andd is the embedding dimension. Then,Mat(G)

can be rewritten in the following matrix form,

Mat(G) =











vT1 v1m11 vT1 v2m12 . . . vT1 vdm1d

vT2 v1m21 vT2 v2m22 . . . vT2 vdm2d

...
...

...
...

vTd v1md1 vTd v2md2 . . . vTd vdmdd











(10)

Mat(G) provides a matrix-based representation where each elementis an inner product of paired
features. Figure 1 shows the row-column correlation, the elementMat(G)i,j in the matrix are
closely related to the elements in the respectiveith row andjth column.

To extract deeper features from the MR, we designed a Matrix Neural Network (MNN) that directly
processes MR by using two-sided weight matrices. For a matrix representationMat(G) ∈ R

d×d,
MNN returns anoutput ∈ R

m×n by performing the following operations,

Mat(G) = φM (WL
m×dMat(G)d×dW

R
d×n) (11)

6
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whereφM is an activation function applied to each element of the matrix feature.WL
m×d ∈ R

m×d

andWR
d×n ∈ R

d×n are two-sided weight matrices acting on the MR. The forward and backward
processes of the MNN are detailed in 6 and the MNN has the following properties:

• Since matrix multiplication can run quickly, it provides a significant advantage for MNN
in terms of running speed.

• If the output is∈ R
d×d, the MNN only requires2d2 parameters to handle a matrix-pattern-

oriented feature∈ R
d×d.

• The MNN naturally constrains the rows and columns ofMat(G) through the columns of
WR and the rows ofWL, respectively.

The framework of the MatPool is shown in Figure 2, and its pseudo-code is listed in Algorithm
1. According to the pseudo-code, suppose the number of GNN layers, nodes, edges, and feature
dimensions in one graph areL, n, e, andd respectively. The time complexities of PEM, MR, and
MNN areO(Ln2d+Lned+Lnd2),O(nd2), andO(d3), respectively. Therefore, the primary time
complexity is concentrated on the message-passing processes.

4 EXPERIMENT

In this section, we validate the effectiveness and efficiency of MatPool through extensive experi-
ments. The computations are performed on a computer with an Intel i9 12900K processor and an
RTX A6000 GPU. In the experiment, we will address the following questions:

• The Effectiveness of Positive Eigenvalue Mapping (PEM): Why is PEM used as the
propagating and aggregating way to calculate the feature matrix for providing the Matrix
Representation (MR)?

• The Effectiveness of Matrix Neural Network (MNN): Why MNN is used as the neural
network structure to extract deeper features from the MR?

• The Effectiveness of MatPool: How does MatPool compare to other pooling methods for
graph property prediction?

• The efficiency of MatPool: Does MatPool offer advantages in training speed for graph
property prediction?

1 2

3 4

5 6

PEM PEM PEM Mat MNN

Readout

Readout

Readout

Labels

Figure 3: The algorithm flowchart of MatPool

Figure 3 shows the flowchart corresponding to the pseudo-code of MatPool. In the implemen-
tation, we accumulate the feature matrix mapped may PEM layer by layer. Then, we conduct
Mat((G)) that multiplies the transpose of accumulated feature matrix by the feature matrix itself
and a Hadamard product to provide a unified MR for each graph. Next, MNN extracts the deeper
feature from MR, followed by a neural network to predict the final label.

4.1 EXPERIMENT SETTING

Used Datasets: We compare the experimental results of all algorithms on 20widely used graph
datasets. Four of these datasets are from the OGBG graph datasets Hu et al. (2021), which naturally
divide the training, validation, and testing sets. Since most values in the node features of PPA are
zero, edge features are necessary for conducting experiments on PPA. The remaining 16 datasets are
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Table 2: Comparison results (%) of the combination of propagating and aggregating way and neural
network structure. (The best result on each data set is written in bold).

Name MOLHIV MOLPCBA PPA CODE2 Average
Edge Feature w/ w/o w/ w/o w/ w/ w/o

PEM+MNN 79.2±0.7 79.5±1.1 24.0±0.5 24.1±0.3 71.3±0.5 15.5±0.9 16.0±0.6 44.2±0.7

GCN+MNN 78.0±1.9 76.9±1.3 23.4±0.2 23.3±0.4 63.5±4.9 16.0±0.6 16.0±0.3 42.4±1.4

GIN+MNN 78.4±1.3 78.9±1.4 24.5±0.3 24.6±0.3 66.5±1.3 15.6±1.0 15.5±1.1 43.4±0.9

PEM+MLP 77.4±1.6 77.8±0.9 23.0±0.3 23.0±0.4 71.1±0.7 14.2±0.3 14.4±0.4 43.0±0.6

PEM+CNN 79.1±1.0 79.3±1.3 22.8±0.5 22.8±1.3 52.2±19.4 13.1±0.2 13.0±0.3 40.3±3.4

from TUDataset (Morris et al., 2020). The performance of themethods is tested using 10-fold cross-
validation, with one fold for validation, one for testing, and the remaining for training. Detailed
descriptions of all datasets are provided in 5. Because someTUDataset datasets lack attributes, we
add degree as a feature for all datasets in TUDataset.

Basic Setting: In the experiment, we validate the effectiveness of PEM andthen adopt PEM as the
backbone to test the effectiveness of all pooling methods. The descriptions of all hyper-parameters
are listed in 6. We conduct experiments on each combination of hyper-parameters 10 times, averag-
ing the results to obtain the final outcome. For the TUDataset, we select the best learning rate on the
validation set to predict the test set. Adam Kingma & Ba (2015) is selected as the optimizer. The
learning rate begins to decay after 20 epochs at a rate of 0.95. We stop the training process early if
there is no improvement for 15 epochs on OGBG datasets and 20 epochs on TUDatasets.

Comparison Methods: We have selected eight pooling methods categorized into global and hierar-
chical pooling as comparison methods. The global pooling methods include Global Attention (GA)
Li et al. (2016), Set2Set Vinyals et al. (2016), Memory-based Pooling (MEN) Khasahmadi et al.
(2020), and Second-Order Pooling (SOPool) Wang & Ji (2023).Hierarchical pooling methods in-
clude TopK Pooling Gao & Ji (2019), Self-Attention Pooling (SAG) Lee et al. (2019), Path Integral
Based Pooling (PAN) Ma et al. (2020) and Adaptive Structure Aware Pooling (ASAP) Ranjan et al.
(2020). The eight pooling methods can be easily callable into the framework of MatPool.

Moreover, we compare MatPool with other important baselines such as DiffPool Ying et al. (2018),
MuchPool , GMT Baek et al. (2021), StructPool Yuan & Ji (2020b), MinCutPool Bianchi et al.
(2020a), DKEPool Chen et al. (2023), and SortPool Zhang et al. (2018). The settings of datasets
and algorithms follow that in GMT, and the results of the comparison algorithms are directly copied
from GMT. The experimental results can be seen in Table 7 in the Appendix.

4.2 PERFORMANCE OFPOSITIVE EIGENVALUE MAPPING AND MATRIX NEURAL NETWORK

This experiment on large-scale graph datasets demonstrates that PEM and MNN are essential com-
ponents of MatPool. Replacing either module results in a decline in performance.

Table 2 shows that using both PEM and MNN achieves the best performance on most OGBG dataset-
s. When the MNN module is fixed, PEM achieves the best performance on 4 out of 7 datasets and
the highest average performance, demonstrating its superiority for graph property prediction.

When we fix the PEM module and use MLP, we compress the large matrix and flatten it into a vector
for graph property prediction. Additionally, we use AlexNet (Krizhevsky et al., 2012) as the CNN
model. The scale of parameters in MLP and CNN are similar to that in MNN. From the table, it is
clear that MNN has a significant performance advantage over the other datasets, demonstrating that
MNN surpasses both MLP and CNN comprehensively.

When the message-passing model is combined with MNN, PEM focuses on key nodes and achieves
the best results. GIN treats all nodes equally, doing slightly better than PEM on MOLPCBA but
worse on other datasets. GCN, which adjusts the adjacency matrix based on node degrees, performs
the worst overall.

From Table 3, it is evident that the Hadamard product operation ⊙M plays an important role in
MatPool. Regardless of whether the subsequent networks areMNN, CNN, or MLP, the operation
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Table 3: Comparison results (%) of MatPool with and without the operation of⊙M . (The improved
result on each data set is written in bold).

Name MOLHIV MOLPCBA PPA CODE2 Average
Edge Feature w/ w/o w/ w/o w/ w/ w/o

PEM+MNN 78.4±1.3 78.5±1.4 21.9±0.5 21.9±0.7 66.4±1.2 14.9±0.6 15.4±0.6 42.5±0.9

PEM+⊙M+MNN 79.2±0.7 79.5±1.1 24.0±0.5 24.1±0.3 71.3±0.5 15.5±0.9 16.0±0.6 44.2±0.7

⊙M Improvement 0.8↑ 1 ↑ 2.1↑ 2.2↑ 4.9↑ 0.6↑ 0.6↑ 1.7↑

PEM+CNN 78.3±1.5 78.9±1.4 22.1±4.2 21.5±4.1 47.3±20.8 12.9±0.3 13.0±0.2 39.1±4.6

PEM+⊙M+CNN 79.1±1.0 79.3±1.3 22.8±0.5 22.8±1.3 52.2±19.4 13.1±0.2 13.0±0.3 40.3±3.4

⊙M Improvement 0.8↑ 0.4↑ 0.7↑ 1.3↑ 4.9↑ 0.2↑ 0 1.2↑

PEM+MLP 77.3±1.2 77.2±1.4 22.8±0.4 22.8±0.3 67.8±0.7 14.6±0.2 14.6±0.2 42.4±0.6

PEM+⊙M+MLP 77.4±1.6 77.8±0.9 23.0±0.3 23.0±0.4 71.1±0.7 14.2±0.3 14.4±0.4 43.0±0.6

⊙M Improvement 0.1↑ 0.6↑ 0.2↑ 0.2↑ 3.3↑ -0.4 -0.2 0.6↑

⊙M improves the results. This improvement is more significant with MNN because MNN operates
on the entire matrix. CNN operates on local matrices, while MLP destroys the matrix structure after
flattening. Therefore, the improvement on CNN and MLP is slightly smaller than that on MNN.

In summary, for feature representations with row-column correlations, MNN can extract deeper fea-
tures and achieve better experimental results. MLP generally converts the matrix form into a vector
form, destroying the matrix structure and resulting in a high-dimensional vector. Although CNN
can process matrix features like images, it fails to capturethe row-column correlation effectively.

4.3 PERFORMANCE OFMATPOOL FORGRAPH PROPERTYPREDICTION

This experiment on graph datasets demonstrates that MatPool outperforms other easily callable pool-
ing methods for graph property prediction.

Table 4: Experimental results (%) for all pooling methods using PEM as the message-passing way
are reported here (The best result on each data set is writtenin bold).

Name MatPool SOPool GA Set2Set MEM TopK SAG PAN ASAP

MOLHIV 79.5±1.1 78.7±0.9 75.9±2.4 74.9±2.2 78.6±1.2 74.0±1.9 74.0±3.2 73.5±2.2 73.5±2.1

MOLPCBA 24.1±0.3 20.5±1.8 22.3±0.4 21.5±0.6 23.8±0.3 17.2±2.5 18.5±0.8 15.1±0.3 19.6±1.2

PPA 71.3±0.5 33.2±19 33.0±8.4 71.8±2.1 64.6±16 54.3±21 67.0±1.9 69.7±0.8 OOT
CODE2 16.0±0.7 12.7±3.1 15.5±0.7 15.3±0.4 14.0±0.4 14.5±0.4 15.0±0.6 14.4±0.7 OOT
AIDS 99.0±0.1 99.2±0.2 98.6±0.1 98.7±0.2 99.5±0.2 99.0±0.2 99.0±0.3 98.6±0.2 98.8±0.2

FRANKENSTEIN 73.9±0.5 72.2±0.8 73.8±0.5 72.6±0.7 74.1±0.5 71.6±0.9 71.7±0.9 69.8±0.8 70.2±0.9

MUTAGENICITY 82.4±0.4 82.3±0.4 82.8±0.3 81.9±0.5 82.5±0.4 78.7±1.1 79.0±1.1 80.6±0.5 78.2±1.2

NCI1 81.5±0.4 80.7±0.4 81.1±0.4 80.3±0.5 81.4±0.7 77.3±0.9 77.8±0.6 76.9±0.6 77.8±1.0

NCI109 80.5±0.4 79.2±0.5 79.8±0.5 79.7±0.6 80.3±0.4 76.4±1.1 77.0±0.9 76.1±0.7 76.7±1.2

DD 75.6±0.7 76.0±0.4 67.6±1.1 71.1±1.2 76.4±0.8 74.7±1.1 74.4±1.0 73.8±0.8 74.1±0.9

PROTEINS 75.1±0.8 74.9±0.8 71.8±0.8 70.8±1.2 74.6±0.5 73.8±0.5 73.6±0.5 74.6±0.8 74.2±1.1

COIL-DEL 83.9±0.3 76.6±0.6 81.7±0.6 81.5±0.6 79.1±0.4 71.7±0.6 69.5±0.5 70.0±0.7 75.5±0.8

COIL-RAG 95.9±0.4 95.4±0.3 95.8±0.3 97.0±0.2 96.0±0.3 94.9±0.4 95.1±0.2 95.4±0.2 95.8±0.3

Letter-high 89.5±0.5 87.7±0.5 87.7±0.6 89.4±0.6 89.2±0.4 82.8±0.8 85.4±1.0 93.3±0.4 86.9±0.8

Letter-low 98.4±0.2 97.8±0.4 98.1±0.2 98.0±0.2 98.2±0.3 96.7±0.4 96.7±0.3 98.0±0.2 97.1±1.2

Letter-med 93.4±0.4 92.1±0.5 92.0±0.6 92.5±0.3 93.3±0.5 88.9±0.3 89.7±0.7 95.6±0.4 90.7±0.4

COLLAB 81.7±0.5 80.3±0.8 79.1±1.4 80.9±0.9 78.6±3.6 77.9±1.2 77.7±1.3 79.0±0.8 65.0±3.4

IMDB-BINARY 72.9±1.2 72.2±1.3 72.6±1.0 70.3±1.3 73.6±1.0 71.2±1.0 71.2±0.9 70.3±0.7 70.9±1.3

IMDB-MULTI 50.3±0.7 49.8±0.6 48.8±0.9 46.8±1.9 50.0±0.8 48.6±0.7 48.9±0.9 49.0±1.2 48.7±0.8

COLORS-3 100.0±0.0 99.2±0.9 36.1±1.4 51.1±1.1 100.0±0.0 65.7±3.0 61.2±1.9 52.8±1.8 58.1±2.8

Average 76.2±0.5 73.0±1.7 69.7±1.1 72.3±0.9 75.4±1.5 70.5±2.0 71.1±1.0 71.3±0.7 NA

Table 4 shows the experimental results of all pooling methods across the graph datasets used. Mat-
Pool achieves the highest results on 11 out of 20 datasets andhas the highest average result. Overall,
global pooling methods outperform hierarchical pooling methods, and MatPool performs better than
other global pooling methods.
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The Friedman test Iman & Davenport (1980); Nemenyi (1963) and Bayesian signed-rank test analy-
sis Benavoli et al. (2016) shown in 4 indicate that MatPool achieves the highest ranking. Except for
MEM, other methods are incomparable to MatPool. Additionally, the heatmap of MatPool demon-
strates an absolute advantage over other graph pooling methods with a probability of nearly 100%.
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Figure 4: Statical results by using Friedman test and Bayesian signed-rank test.

4.4 TRAINING EFFICIENCY FORGRAPH PROPERTYPREDICTION

This experiment demonstrates that MatPool, as a global pooling method, offers the advantages of
simple implementation and fast training speed.
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Figure 5: Training time of all pooling methods on OGBG datasets.

In our experiment, all global pooling methods have a similarscale of parameters. Following the
example of MNN, the other pooling methods also use two heads to map the features. From Figure 5,
all global pooling methods have similar training times, while hierarchical pooling methods require
significantly more time due to the need for additional operations in the layer-by-layer pooling.

5 CONCLUSION

Unlike existing graph pooling methods that provide graph-level representations based on vector pat-
terns and loss graph information, we explore the use of matrix patterns and propose a new method
named MatPool for representing and predicting graphs of different size. MatPool consists of three
main components: Positive Eigenvalue Mapping (PEM), Matrix Representation (MR), and Matrix
Neural Network (MNN). PEM reconstructs the adjacency matrix to have positive eigenvalues, en-
hancing the propagation ability of primary nodes. MR provides a unified matrix-pattern-oriented
representation with key properties such as permutation invariance and retention of graph informa-
tion. MNN is specifically designed to extract deeper features from the row-column correlated MR.
We have theoretically analyzed the properties of MatPool and conducted extensive experiments to
validate its efficiency and effectiveness in graph properties prediction.

The main drawback of MatPool lies in the process of multiplying the feature matrix by its transpose.
Each feature in MR is obtained by summing the squares, which may result in significant numerical
variation. Therefore, a more reasonable normalization process and careful initialization of values in
the MNN network are needed in the future.
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A A PPENDIX

This appendix provides theoretical and experimental materials and is organized as follows: Sub-
section A.1 contains detailed proofs, including six propositions, one corollary, and one lemma of
MatPool. It also outlines the forward and backward processes of MNN. Subsection A.2 provides
the pseudo-code and detailed time complexity analysis of MatPool. Subsection A.3 offers detailed
dataset descriptions and hyper-parameter settings. Subsection A.4 presents additional results, includ-
ing the convergence of MatPool and the effectiveness of hyper-parameters. Subsection A.5 presents
comparison results between MatPool and other classical pooling methods.

A.1 THEORETICAL PROOFS OFMATPOOL AND GRADIENT CALCULATION OF MNN

Proposition 3.1.Given an adjacency matrixA ∈ R
n×n, letλi be the eigenvalue of the reconstructed

adjacency matrixApem. Then,∀i ≤ n, λi > 0.

Proof. Each diagonal element in the reconstructed adjacency matrix Apem is positive. ∀i =
1, 2, ..., n, we have the following equation,

aii >

n
∑

j=1,j 6=i

|aij | =

n
∑

j=1,j 6=i

aij . (12)

Therefore,Apdm is a diagonally dominant matrix. Based on the Gerschgorin Circle Theorem and
the property of the eigenvalue of the matrix, we have the following equation, indicating that the
eigenvalues ofApem fall within the following circle,

|z − aii| ≤ Ri =

n
∑

j=1,j 6=i

aij (13)

Consequently,∀i ≤ n, λi > 0, and we can conclude that each eigenvalue ofApem is positive.

Lemma 3.2.For matrixA ∈ R
m×m andB ∈ R

n×n, if A andB do not have the same eigenvalues,
then the solution to the matrix equationAX = XB isX = 0.

Proof. Assume thatf(λ) = |λI − A| is the characteristic polynomial ofA. According to Cayley-
Hanmilton Theorem, we have,

f(A) = 0 (14)

Next, we modifyAX = XB as follows,

A2X = A(AX) = A(XB) = (AX)B = XB2 (15)

Then, we can get the following equation,

f(A)X = Xf(B) = 0 (16)

Assume that the eigenvalues ofB are µ1, µ2, ..., µn, and the eigenvalues off(B) are
f(µ1), f(µ2), ..., f(µn).

Assert:µ1, µ2, ..., µn are not the eigenvalues ofA.

If ∃µi such thatf(µi) = 0, thenµi is an eigenvalue ofA. However,A andB do not share the
same eigenvalues. Therefore,∀i, µi is not a root of the characteristic polynomialf(A), and we can
conclude thatf(B) is an invertible matrix.

Finally, we can calculate the solution of the matrix equationAX = XB as follows,

Xf(B) = 0 (17)

X = 0f(B)
−1

= 0 (18)
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Corollary 3.3. For matrix A ∈ R
n×n andB ∈ R

n×n, let the eigenvalues ofA be λAi for i =
1, 2, ..., n, and the eigenvalues ofB beλBi for i = 1, 2, ..., n. If ∀i ≤ n, λAi > 0 andλBi > 0, and
A2 = B2, thenA = B.

Proof. ProvingA = B is equivalent to provingA − B = 0. Therefore, we present the following
equation,

A(A −B) = A2 −AB = B2 −AB = (A−B)(−B) (19)

Because∀i ≤ n, λAi > 0 andλBi > 0, the eigenvalues ofA are positive while those of−B are
negative, meaning thatA and−B do not share the same eigenvalues. According toLemma 3.2, we
can conclude that,

A−B = 0 (20)

Therefore, we conclude thatApem andA2
pem have one-to-one correspondence for undirect graphs.

Proposition 3.4. For undirected graphs with equal and fixed node and edge features, if
∀i 6= j, Pool(Gi(Ai, Xfix, Efix)) = Pool(Gj(Aj , Xfix, Efix)), thenGi = Gj .

Proof. Assume the node feature matrixXfix is fixed for all graphs, and adjacency matrices of
Gi andGj areAi = A andAj = B, respectively. Then, provingPool(Gi(Ai, Xfix, Efix)) =
Pool(Gj(Aj , Xfix, Efix)) is equivalent to proving follows,

Pool(Gi) = XT
fixAXfix = XT

fixBXfix = Pool(Gj) (21)

Let α = αi + αj , whereαi andαj are unit column vectors. SinceA = (aij) is a real symmetric
matrix, if Pool(Gi) = 0, we obtain the following equation,

aii = αT
i Aαi = 0, (22)

Moreover, we have the following equations,

aij+aji = αT
i Aαj+α

T
j Aαi = αT

i Aαi+α
T
j Aαj+α

T
i Aαj+α

T
j Aαi = (αi+αj)

TA(αi+αj) = 0
(23)

Sinceaij = aji, we can conclude thataij = 0. This leads toA = 0, meaning that the kernel space
of Pool functionKer(Pool) = 0. Therefore,Pool(G(A,Xfix, Efix)) and the adjacency matrixA
are in one-to-one correspondence when the node features arefixed for all graphs.

In the implementation, the multiplication operation ensures the size of the adjacency matrix is con-
sistent by padding zeros to the right and bottom, which does not cause substantial changes to the
matrix.

Proposition 3.5.For matrixA ∈ R
m×m andB ∈ R

n×n with positive eigenvalues, ifATA = BTB,
then we haveA = QB, whereQ is an orthogonal matrix anddet(Q) = 1..

Proof. In MatPool, the eigenvalues ofApem are positive. Therefore, we havedet(A) > 0 and
det(B) > 0. This meansA andB are an invertible matrices, and we have,

A = (AT )−1BTB = QB (24)

Next, we have

QQT = (AT )−1BT ((AT )−1BT )T

= (AT )−1BTB((AT )−1)T

= (AT )−1ATAA−1

= I

(25)

Therefore,Q is an orthogonal matrix. According to the following equation,

det(A) = det(QB) = det(Q)det(B) (26)

Becausedet(A) > 0 anddet(B) > 0, we havedet(Q) = 1, eliminating the possibility of mirror
transformation..
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Proposition 3.6.If feature matrix of nodes is not fixed,Pool(G) is permutation invariant.

Proof. According to the Equation 8, we have,

Pool(G) = Agg(G)TAgg(G) = φN (ApemX + φE(E))T φN (ApemX + φE(E)) (27)

whereφN : VdX → Vd andφE : VdE → VdX are neural network modules that act on each row of
the input matrix.

Here, we define the permutation operationPij as swapping theith row and thejth row of the matrix,
meaning swap two nodes in the input graph andPT

ijPij = I. If we randomly swap theith row and
thejth row of the graphG, the adjacency matrix and the feature matrix will be modifiedaccordingly.
Then, the process ofPool(G) can be calculated as follows,

Pool(G) = φN (PijAP
T
ijPijX + φE(PijE))TφN (PijAP

T
ijPijX + φE(PijE))

= φN (PijAX + Pijφ
E(E))TφN (PijAX + Pijφ

E(E))
(28)

Since the neural network mapping functionsφN andφE operate on individual rows, the swapping
operationPij does not affect the results and can be factored out of the mapping functions. The
equation forPool(G) can be calculated as follows,

Pool(G) = φN (AX + φE(E))TPT
ijPijφ

N (AX + φE(E))

= φN (AX + φE(E))TφN (AX + φE(E))
(29)

Therefore, all permutation operations are cancelled out inthis function, meaning that thatPool(G)
is permutation invariant.Mat(G) also inherits the permutation invariance.

Proposition 3.7. Supposeη ∈ L(Vd,Un) andψ = ηT η ∈ L(Vd). Then, the image space ofψ is
isomorphic to that ofη and there exist a isomorphic mappingξ that makesξψ = η.

Proof. Suppose a vectorx ∈ R
d, if the linear operatorη acts onx , we have,

η(x) = 0 ⇒ ηT η(x) = 0 (30)

Moreover, we have,

ηT η(x) = 0 ⇒ (η(x))T η(x) = 0

⇒ ||η(x)|| = 0

⇒ η(x) = 0

(31)

Therefore, we conclude that the kernel space ofη equals that ofψ = ηT η, meaningKer(ψ) =
Ker(η). Thus, we have

dimIm(ψ) = d− dimKer(ψ) = d− dimKer(η) = dimIm(η) (32)

Therefore, there exist an isomorphic mappingξ : Im(ψ) → Im(η), such thatξψ = ξηT η = η.

Proposition 3.8. Let f(A) = A ⊙M , whereA ∈ R
d×d andM ∈ R

d×d. If ∀i, j ∈ {1, 2, ..., d},
Mi,j 6= 0, thenf is a isomorphic mapping.

Proof. ∀A ∈ R
d×d, B ∈ R

d×d, we have

f(A+B) = (A+B)⊙M = A⊙M +B ⊙M = f(A) + f(B) (33)

Moreover,∀k ∈ R, we have

f(kA) = (kA)⊙M = k(A⊙M) = kf(A) (34)

Therefore,f is a linear transformation. Moreover, if∀i, j ∈ {1, 2, ..., d}, Mi,j 6= 0, we can
the relationship betweenAi,j and f(A)ij is one-to-one. In this way, the functionf(A) =
A⊙M, foralli, j ∈ 1, 2, ..., d,Mi,j 6= 0 is a linear isomorphism.
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Figure 6: Illustration of the forward process of MNN.

Forward and backward propgation of Matrix Neural Network (M NN). Figure 6 presents an
example that we conduct MNN on a matrix representationMat(G) ∈ R

2×2.

Taking Figure 6 as an example of the calculation process of MNN. The forward propagation that
calculates the outputM ′

ij , ∀i, j is as follows,

M ′
11 =

2
∑

k=1

2
∑

l=1

WL
1kMklW

R
l1 (35)

M ′
12 =

2
∑

k=1

2
∑

l=1

WL
1kMklW

R
l2 (36)

M ′
21 =

2
∑

k=1

2
∑

l=1

WL
2kMklW

R
l1 (37)

M ′
22 =

2
∑

k=1

2
∑

l=1

WL
2kMklW

R
l2 (38)

Suppose the loss value for the graph property prediction task is L. According to the chain rule, the
partial derivative ofL with respect toWL

ij can be calculated as follows,

∂L

∂WL
11

=
∂L

∂M ′
11

∂M ′
11

∂WL
11

+
∂L

∂M ′
12

∂M ′
12

∂WL
11

=
∂L

∂M ′
11

(

2
∑

l=1

M1lW
R
l1 ) +

∂L

∂M ′
12

(

2
∑

l=1

M1lW
R
l2 ) (39)

∂L

∂WL
12

=
∂L

∂M ′
11

∂M ′
11

∂WL
12

+
∂L

∂M ′
12

∂M ′
12

∂WL
12

=
∂L

∂M ′
11

(

2
∑

l=1

M2lW
R
l1 ) +

∂L

∂M ′
12

(

2
∑

l=1

M2lW
R
l2 ) (40)

∂L

∂WL
21

=
∂L

∂M ′
21

∂M ′
21

∂WL
21

+
∂L

∂M ′
22

∂M ′
22

∂WL
21

=
∂L

∂M ′
21

(

2
∑

l=1

M1lW
R
l1 ) +

∂L

∂M ′
22

(

2
∑

l=1

M1lW
R
l2 ) (41)

∂L

∂WL
22

=
∂L

∂M ′
21

∂M ′
21

∂WL
22

+
∂L

∂M ′
22

∂M ′
22

∂WL
22

=
∂L

∂M ′
21

(

2
∑

l=1

M2lW
R
l1 ) +

∂L

∂M ′
22

(

2
∑

l=1

M2lW
R
l2 ) (42)

Similarly, we can calculate the partial derivative ofL with respect toWR
ij . Moreover, the partial

derivative ofL with respect toMij can be calculated as follows,

∂L

∂M11
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

∂M ′
pq

∂M11
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

(WL
p1W

R
1q) (43)

∂L

∂M12
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

∂M ′
pq

∂M12
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

(WL
p1W

R
2q) (44)

∂L

∂M21
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

∂M ′
pq

∂M21
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

(WL
p2W

R
1q) (45)

∂L

∂M22
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

∂M ′
pq

∂M22
=

2
∑

p=1

2
∑

q=1

∂L

∂M ′
pq

(WL
p2W

R
2q) (46)
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By summarizing the patterns, we can obtain more universal formulas as follows,

M ′
ij =

Lin
∑

k=1

Rin
∑

l=1

WL
ikMklW

R
lj (47)

whereLin andRin denote the number of rows and columns of the matrix representationM ∈
R

Lin×Rin , respectively.

Suppose the loss value for the graph property prediction task isL and the outputM ′ ∈ R
Lout×Rout .

Then, the universal partial derivative ofL with respect toWL
ij can be calculated as follows,

∂L

∂WL
ij

=

Rout
∑

q=1

∂L

∂M ′
iq

∂M ′
iq

∂WL
ij

=

Rout
∑

q=1

Rin
∑

l=1

∂L

∂M ′
iq

MilW
R
lq (48)

Similarly, the universal partial derivative ofL with respect toWR
ij can be calculated as follows,

∂L

∂WR
ij

=

Lout
∑

p=1

∂L

∂M ′
pj

∂M ′
pj

∂WR
ij

=

Lout
∑

p=1

Lin
∑

k=1

∂L

∂M ′
pj

WL
pkMkj (49)

Finally, the universal partial derivative ofL with respect toMij can be calculated as follows,

∂L

∂Mij

=

Lout
∑

p=1

Rout
∑

q=1

∂L

∂M ′
pq

∂M ′
pq

∂Mij

=

Lout
∑

p=1

Rout
∑

q=1

∂L

∂M ′
pq

(WL
piW

R
jq) (50)

At this point, the complete forward and backward propagation processes of MNN have been derived.

A.2 PSEUDO-CODE AND DETAIL TIME COMPLEXITY OF MATPOOL

Algorithm 1 Pseudo-code of MatPool

Input: Graph-structured dataG(A,X,E) with true labelY
Output: PEM parametersφNl andφEl , l = 1, ..., lg; MNN parametersWL

l , WR
l and activation

φMl , l = 1, ..., lm; Neural networkNN(:, θ) with parametersθ;
repeat
Temp = 0
for l = 1 to lg do
X = φNl (ApemX + φEl (E))
Temp = Temp+X

end for
Pool(G) = TempTTemp
Mat(G) = Pool(G)⊙M
for l = 1 to lm do
Mat(G) = φMl (WL

l Mat(G)WR
l )

end for
output = NN(Flatten(Mat(G), θ))
Loss = CrossEntropyLoss(output, Y )
Updateparameters by minimizingLoss

until Stop criteria is true

Algorithm 1 presents the pseudo-code of MatPool. Accordingto the pseudo-code, we analyze the
time complexity of MatPool in detail. Suppose the number of nodes, edges, and feature dimensions
aren, e, andd respectively. The time complexity of PEM focuses on the propagating and aggregating
process. In this process,ApemX costsO(n2d), φEl (E) costsO(nd2), and theφNl assumed as a
linear mapping costsO(nd2). In summary, the time complexity of PEM isO(n2d+ ned+ nd2).

The time complexity of MR focuses on the multiplication operation that costsO(nd2). Moreover,
the dot product operation costsd2. Therefore, the time complexity of MR isO(nd2).
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Finally, the time complexity of MNN focuses on the multiplication of two weight matrices. Suppose
the output is∈ R

d×d, both the left and right multiplications costO(d3). Although the time com-
plexity of MNN is O(d3), it remains fast due to the inherent parallelism of matrix multiplication.
Moreover, if the matrix is flattened into a vector, then a linear neural network is used and the time
complexity will reachO(d4).

Therefore, the primary time complexity is concentrated on the propagation and aggregation process
of graph neural network module. If the number of GNN layers isL, the main time complexity of
MatPool isO(Ln2d+Lned+Lnd2). This also explains why hierarchical pooling methods consume
more training time than global pooling.

A.3 DETAILED DESCRIPTIONS ANDHYPER-PARAMETER SETTINGS OFMATPOOL

Table 5: Summary statistics of datasets.

Name Graphs Avg Nodes Avg Edges Classes Source Metric

MOLHIV 41,127 25.5 27.5 2 OGBG ROC-AUC
MOLPCBA 437,929 26.0 28.1 2 OGBG AP

PPA 158,100 243.4 2,266.1 100 OGBG ACC
CODE2 452,741 125.2 124.2 5002 OGBG F1 score
AIDS 2,000 15,69 16.20 2 Molecules ACC

FRANKENSTEIN 4,337 16.90 17.88 2 Molecules ACC
MUTAGENICITY 4,337 30.32 30.77 2 Molecules ACC

NCI1 4,110 29.87 32.30 2 Molecules ACC
NCI109 4,127 29.68 32.13 2 Molecules ACC

DD 1,178 284.3 715.66 2 Bioinformatics ACC
PROTEINS 1,113 39.06 72.82 2 Bioinformatics ACC
COIL-DEL 3,900 21.54 54.24 100 Computer Vision ACC
COIL-RAG 3,900 3.01 3.02 100 Computer Vision ACC
Letter-high 2,250 4.67 4.50 15 Computer Vision ACC
Letter-low 2,250 4.68 3.13 15 Computer Vision ACC
Letter-med 2,250 4.67 3.21 15 Computer Vision ACC
COLLAB 5,000 74.49 2457.78 3 Social Networks ACC

IMDB-BINARY 1,000 19.77 96.53 2 Social Networks ACC
IMDB-MULTI 1,500 13.00 65.94 3 Social Networks ACC

COLORS-3 10,500 61.31 91.03 13 Synthetic ACC

In this work, we select 20 datasets to validate the performance of MatPool and other comparison
algorithms. These datasets come from seven categories: OGBG, Molecules, Bioinformatics, Com-
puter Vision, Social Networks, and Synthetic. Detailed descriptions of these datasets are provided
in Table 5.

Table 6 lists the detailed descriptions of the hyper-parameters. In the experiments, TUDatasets
generally use different hyper-parameters, and there are two tuning hyper-parameters including the
learning rate selected from{0.001, 0.0001} and the batch size selected from{32, 128}. The oth-
er hyper-parameters are fixed. Accordingly, there are two combinations of hyper-parameters on
TUDatasets. We experiment with each combination of hyper-parameters and selected the best com-
bination on the validation set to predict the test set.

A.4 CONVERGENCE AND HYPER-PARAMETERS OFMATPOOL

Convergence: 7 shows the values of losses and the corresponding validation score on the OGBG
graph datasets. From the figure, the convergence speed of MatPool on these OGBG graph datasets
is relatively fast, and the scores of the validation set can also be rapidly improved in the early stages
of training.

Hyper-parameters: The detailed setting of hyper-parameter in Table 6. In our method, two hyper-
parameters, including learning rate and batch size, are adjusted for different graphs on TUDatasets.
The batch size is set to 32 for OGBG-PPA, because a large batchsize for OGBG-PPA frequently
occurs non-convergence. Therefore, We tune the learning rate on 16 graph datasets from TUDataset.

20



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

Table 6: Summary statistics of used hyper-parameters in theexperiments.

Hyper-parameters MOLHIV/MOLPCBA PPA CODE2 TUDatasets

Learning rate 0.0001 0.001 0.001 {0.001, 0.0001}
Embedding dim 256 256 256 256

Batch size 128 32 128 {32, 128}
Max epochs 100 100 25 100
GNN layers 3 3 3 3
Least epoch 20 20 20 30

Early stop patient 15 15 15 20
Learning rate decay 0.95 0.95 0.95 0.95

Weight decay 1e-8 1e-8 1e-8 1e-8
Droupout 0 0 0 0
Run times 10 10 10 10

Random seeds 0∼9 0∼9 0∼9 0∼9
Max seq length NA NA 5 NA

Number of vocabulary NA NA 5000 NA
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Figure 7: The figures are corresponding to the values of loss and the validation scores of MatPool
on OGBG graph datasets.
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Figure 8: The sub-figure in the left is the classification result under different learning rate, while that
in the right is the classification result under different batch size.
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Table 7: Comparison results (%) between MatPool and other classical pooling methods are reported
here (The best result on each data set is written in bold).

Name MatPool DKEPool GMT MinCutPool StructPool DiffPool SortPool

DD 75.60±0.21 75.26±0.47 78.72±0.59 78.22±0.54 78.45±0.40 77.56±0.41 75.58±0.72

PROTEINS 75.14±0.54 74.37±0.50 75.09±0.59 74.72±0.48 75.16±0.86 73.03±1.00 73.17±0.88

MUTAG 88.33±0.56 88.33±1.37 83.44±1.33 79.17±1.64 79.50±1.75 79.22±1.02 71.94±3.55

HIV 78.90±0.53 78.30±0.56 77.56±1.25 75.37±2.05 75.85±1.81 75.64±1.86 71.82±1.63

Tox21 75.93±0.10 75.96±0.36 77.30±0.59 75.11±0.69 75.43±0.79 74.88±0.81 69.54±0.75

ToxCast 65.95±1.03 64.35±0.45 65.44±0.58 62.48±1.33 62.17±1.61 62.28±0.56 58.69±1.71

BBBP 69.47±0.45 68.10±0.79 68.31±1.62 65.97±1.13 67.01±2.65 68.25±0.96 65.98±1.70

IMDB-B 73.75±1.05 73.05±0.95 73.48±0.76 72.65±0.75 72.06±0.64 73.14±0.70 72.12±1.12

IMDB-M 49.47±0.53 51.00±0.13 50.66±0.82 51.04±0.70 50.23±0.53 51.31±0.72 48.18±0.83

COLLAB 82.00±0.30 81.01±0.19 80.74±0.54 80.87±0.34 77.27±0.51 78.68±0.43 77.87±0.47

Average 73.45±0.53 72.97±0.58 73.07±0.87 71.56±0.97 71.31±1.16 71.40±0.85 68.49±1.34

From Figure 8, the left sub-figure shows that when the learning rate of MatPool is set to 0.001,
optimal results are achieved in all datasets except for the COLLAB, NCI1 and, NCI109 datasets.
The right figure indicates that when the batch size of MatPoolis set to 32, the results are better than
when the batch size is set to 128. Therefore, a smaller batch size and a learning rate of 0.001 are
generally more suitable for MatPool.

A.5 COMPARISON WITH OTHER CLASSICAL POOLING METHODS

We compare MatPool with other important baselines such as DiffPool, MuchPool, GMT, Struct-
Pool, MinCutPool, DKEPool, and SortPool. In this experiment, the experimental settings of these
algorithms are consistent with those of GMT, and the experimental results are directly derived from
GMT’s results.

From Table 7, MatPool achieved optimal results on 6 out of 10 datasets, and its average results are
also the best. Compared to GMT, it performs worse only on the DD and Tox21 datasets, while it
outperforms GMT on the remaining datasets. Overall, MatPool also performs better than DKEPool.
Compare to the remaining methods, MatPoll has significant advantages. Therefore, we can conclude
that MatPool is a simple yet powerful global pooling method.
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