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ABSTRACT

We present SPHINX, a synthetic gym for visual perception and reasoning tasks that targets core
cognitive primitives. SPHINX procedurally generates problems using motifs, tiles, charts, icons,
and geometric primitives, each paired with verifiable ground-truth solutions. This design enables
both precise evaluation and the creation of scalable datasets. We implement 25 task types spanning
symmetry detection, geometric transformation, spatial reasoning, chart interpretation, and sequence
prediction. Benchmarking recent multimodal vision–language models (vLLMs) reveals that even state-
of-the-art GPT-5 struggles on these tasks, achieving 47.32% accuracy and performing significantly
below human baselines. Finally, we demonstrate that reinforcement learning with verifiable rewards
(RLVR) improves model accuracy on these reasoning tasks, underscoring its potential for advancing
multimodal reasoning.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated striking advances in reasoning, achieving gold medal level
performance at the International Mathematical Olympiad Castelvecchi (2025) and strong results across mathematics,
logical reasoning, and coding Guo et al. (2025); Jaech et al. (2024); Wu et al. (2024); Comanici et al. (2025); Yang et al.
(2025a). Because reasoning is a core component of human intelligence, it has become a central benchmark for progress
toward Artificial General Intelligence (AGI) Goertzel (2014). Techniques such as Chain-of-Thought prompting Wei
et al. (2022), test-time compute scaling Jaech et al. (2024), and post-training strategies like rule-based reinforcement
learning in DeepSeek-R1 have further improved model performance, helping mitigate reward hacking Guo et al. (2025)
and enabling more robust generalization across domains Xie et al. (2025); Albalak et al. (2025); He et al. (2025).
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Figure 1: Radar plot shows accuracies (%) achieved by
LLMs and by human on the broad categories of SPHINX.

In contrast to the rapid progress of LLMs, multimodal
large language models (MLLMs) remain far less capable
in visual reasoning. Unlike text-based systems that can
leverage structured prompts and post-training strategies,
MLLMs must jointly parse visual inputs and integrate
them with language, a substantially more complex chal-
lenge Gandhi et al. (2025); Guo et al. (2025); Xie et al.
(2025); Wang et al. (2025c). Current models often fail to
construct coherent reasoning chains and stumble on tasks
trivial for humans Yang et al. (2025b). While reinforce-
ment learning has been applied to strengthen MLLMs Liu
et al. (2025a); Peng et al. (2025), progress is constrained
by benchmarks that emphasize perception over reasoning,
such as referring expression comprehension or math-with-
diagram datasets, where models frequently reduce visual
inputs to text and rely on language reasoning Xu et al.
(2025b); Zhang et al. (2024).

More recently, several works have begun to investigate
abstract visual reasoning (AVR) in MLLMs Xu et al.
(2025b); Cao et al. (2024); Małkiński et al. (2024); Jiang
et al. (2024a); Lee et al. (2024); Chollet et al. (2025). Yet
these efforts still fall short of systematically evaluating
core perceptual primitives such as symmetry detection,
mental rotation, and structured pattern matching. Cog-
nitive science has long shown that such abilities under-
pin fluid intelligence and matrix reasoning Fisher et al.
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(1981); Carpenter et al. (1990); Pizlo & De Barros (2021); Shepard & Cooper (1986). For machine learning, this sug-
gests that practical evaluation must directly target these primitives through controlled tasks that disentangle perception
from abstraction.

SPHINX: Visual Perception and Reasoning Gym. We introduce SPHINX, a synthetic environment for generating
families of visual perception and reasoning tasks centered on symmetry, transformation, and related primitives. Each
instance is paired with an unambiguous ground-truth solution, enabling precise evaluation. SPHINX serves a dual
purpose: it provides controllable task generation that systematically targets different perceptual and reasoning abilities,
and it offers insight into model failure modes. Moreover, the synthetic generation pipeline scales to produce datasets
large enough for reinforcement learning, paralleling the role of synthetic reasoning environments in advancing text-based
LLM reasoning Stojanovski et al. (2025a); Chen et al. (2025a).

Contributions. We make the following key contributions:

1. We introduce SPHINX, a synthetic environment for generating datasets in visual perception and reasoning, comprising
25 tasks across five broad categories (see Figure 1). To the best of our knowledge, this represents the largest-scale
synthetic environment designed for such tasks.

2. We construct a benchmark dataset with 2,500 questions using SPHINX and evaluate a range of proprietary and
open-source MLLMs. We provide a comparative analysis between human performance and MLLM performance
across task categories.

3. We conduct reinforcement learning with verifiable rewards (RLVR) on a separate training set derived from SPHINX,
demonstrating both improved in-distribution performance and the potential to generalize to out-of-distribution tasks.

2 SPHINX DESIGN

SPHINX is a modular framework for programmatically generating visual reasoning data with verifiable ground truth. Its
central idea is to decouple appearance from rule structure through three composable modules: motifs, tilings, and tasks,
allowing each dimension to be flexibly combined or independently varied.

2.1 DESIGN PRINCIPLES

1. Factorized control of variation. Appearance (motifs), spatial layout (tilings), and reasoning rules (tasks) are
separated, enabling systematic exploration across perceptual diversity, geometric structures, and rule families.

2. Verifiable supervision. Each instance is paired with a deterministic checker that certifies rule satisfaction and
guarantees a single correct answer; this eliminates ambiguity and supports exact evaluation as well as reinforcement
learning with verifiable rewards (RLVR).

3. Distribution and difficulty control. Weighted samplers govern the mix of tasks and motifs, while difficulty knobs
(e.g., step sizes, noise ranges, path lengths) provide fine-grained control over problem complexity.

4. Standardized artifacts. Every sample exports a composite image, natural-language prompt, ground-truth answer,
distractors (if any), and rich metadata (including construction parameters and lightweight complexity scores) in
analysis-ready formats.

2.2 BUILDING BLOCKS

Motifs (rendered primitives). A motif is a parameterized renderer m(θ) that produces an RGBA tile from attributes
such as kind, size, count, angle, and stroke. Families include dots, rings, polygons and star polygons, crescents,
glyphs, and other iconographic primitives. Motifs expose attribute ranges and a clamp to guarantee validity; tasks
can bias selection via per-task motif weights and request asymmetric variants to avoid trivial self-mappings in
symmetry/transform problems. Example motifs are shown in Figure 2.

Geometric primitives. Beyond motifs, SPHINX renders canonical geometry shapes including circles, n-gons, angles,
polylines constrained to grid edges, grids, and Venn-style region unions. These support tasks hinge on spatial relations
and combinatorial structure (e.g., symmetry classification, shortest paths, connected components, region area/perimeter).

Tilings (geometric canvases). Tilings define cell layouts and adjacency (square, triangular, hexagonal, rhombille, and
circle variants). Tiling specs control grid size, margins, adjacency notion, and coloring regime. Uniform schemes and
palette-driven non-uniform schemes yield structured variation. Example tilings are shown in Figure 3.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Example Motifs (from left): Crescent, Glyph, Pinwheel, Polygon, Polyomino and Icons

Figure 3: Example Tilings: circles, square, triangular, hexagonal, rhombille.

2.3 TASKS

A task r maps one or more motif instances and/or tiled regions into a well-defined question, optionally with multiple-
choice options. Each instance outputs a composite image, a natural-language prompt, and precisely one unique correct
answer, along with distractors when applicable. For MCQ formats, all options are rendered with consistent borders and
labels to eliminate formatting cues. A key design principle in our task formulation is that questions should be visually
answerable directly from the image by a human, without requiring detailed, paper-and-pencil style reasoning.

We categorize the tasks into five broad families. Figure 4 illustrates representative examples, with additional cases
provided in the Appendix.

Geometric Reasoning. This category comprises tasks where spatial relations, shape sizes, areas, perimeters, or
comparative geometry are the key factors. Such problems align with relational and geometric reasoning in the literature,
focusing on spatial arrangements and geometric properties, and with formal geometric reasoning tasks that require
constructing and analyzing geometric diagrams Lu et al. (2021a); Zhang et al. (2024). The tasks include:

1. Positional Count: Count how many small shapes satisfy a specific spatial relation (inside, outside, above,
below) relative to larger reference shapes.

2. Shape Sorting): Sort a set of geometric shapes (polygons, ellipses, angles, lines) by area, perimeter, or angle
measure.

3. Stack Count: Count objects that lie strictly inside a specified sheet in a stack of overlapping shapes, where
only the top shapes are fully visible.

4. Pie Chart: Rank the slices of a pie chart by their visual size.

5. Chart Comparison: Match a pie chart with a bar chart by visually comparing the relative proportions of their
segments.

Counting. Tasks in this group focus on counting discrete elements or measuring linear features in visual scenes, akin
to the counting and comparison tasks emphasised by early diagnostic benchmarks such as CLEVR Johnson et al. (2017).
They include:

6. Venn Diagram: Compute sums in different regions of a Venn diagram rendered with overlapping shapes.

7. Shape Counting: Count the number of sub-shapes (e.g., rectangles, squares, triangles, parallelograms)
contained within a composite figure.

8. Tiles Line Length: Measure the length of a highlighted polyline in a tiling by counting edge steps.
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Task: Positional Count
Q: What is the total number of triangles strictly below
the red triangle (below its bottommost point)?
A: 5

Task: Chart Comparison
Q: The top diagram is a bar chart. The bottom row
contains four pie charts. Which pie chart matches the
same proportional breakdown by color as the bar
chart?
A: (b)

Task: Missing Tiles
Q: Look at the top image: one region is uncolored.
Which option (a)–(d) provides the exact missing
colors?
A: (d)

Task: Sequence Rotation
Q: In the top row, the motif rotates by a constant angle
each step. Which option (a)–(d) below fills the blank?
A: (b)

Task: Tiles Recoloring
Q: Two tiles are shown (left/right). A cell counts as
different if its color differs (including filled vs. blank).
How many cells differ?
A: 5

Task: Transform Pair Infer
Q: Identify the transformation applied between the left
and right images. (a) pure translation (shift), (b) rotate
270° counterclockwise, (c) reflect across the
anti-diagonal (↙), (d) main-diagonal reflection, (e)
quarter-turn CCW (90°), (f) horizontal line symmetry
A: (c)

Task: Wallpaper Groups
Q: Three options belong to the same wallpaper
symmetry. Which tile in the 2×2 grid (a–d) belongs to
a different group?
A: (b)

Task: Tiles Shortest Path
Q: Using edge adjacency, dark gray tiles are
impassable and light gray tiles are passable. Start =
blue (#1976d2), End = red (#e6194b). What is the
length of the shortest path in steps?
A: 10

Task: Venn Diagram
Q: Determine the sum of values that exist solely within
the purple rectangle(s), not in any overlapping area.
A: 5

Figure 4: SPHINX task illustrations

9. Tiles Line Intersections: Count the intersection points between coloured polylines constrained to tile edges.

10. Tiles Recoloring: Count the number of cells that differ between two coloured boards, typically reflecting the
size of a modified region.

Symmetry & Pattern Recognition. These tasks require detecting symmetry, periodicity, or odd-one-out patterns.
Similar phenomena are explored in visual oddity and abstract reasoning benchmarks, where participants must identify
the element that violates a geometric rule or pattern Zerroug et al. (2022b); Woźniak et al. (2023). The SPHINX tasks
are:

11. Mirror Identification: Classify an image according to the type of mirror symmetry present.

12. Symmetry Fill: Complete a 2× 2 grid by selecting the tile that satisfies a specified mirror symmetry.
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Models Overall Geometric
Reasoning

Counting Symmetry &
Pattern

Recognition

Sequence &
Transforma-

tion

Topological &
Graph

Reasoning

Reference

Human 75.39 87.97 69.23 68.14 83.43 64.89

Closed Source LLMs

GPT-5 47.32 73.80 36.60 37.50 44.33 43.00
GPT-5 Mini 44.68 65.80 35.60 43.50 41.33 37.60
GPT-5 Nano 32.44 44.40 24.60 39.25 31.50 24.00

Open Source LLMs

InternVL3-8B 18.28 27.60 13.00 18.25 16.00 17.00
InternVL3-38B 25.08 41.00 18.80 18.25 23.00 23.40
Llama-3.2-11B 14.64 17.40 1.60 20.00 23.67 9.80
Qwen2.5-VL-3B 16.96 27.80 7.00 16.75 19.83 12.80
Qwen2.5-VL-7B 24.08 37.80 14.60 28.25 22.83 18.00
Qwen2.5-VL-32B 32.16 52.40 21.80 33.25 26.67 28.00

Table 1: Performance comparison of human, close-source, and open-source LLMs across multiple reasoning categories.

13. Frieze Groups: In a set of four frieze patterns, identify the one that belongs to a different symmetry group.

14. Wallpaper Groups: Identify the odd patch among four wallpaper patterns.

Sequence & Transformation Reasoning. This category encompasses tasks involving temporal sequences, rota-
tion progressions, or transformation inference. These tasks correspond to temporal reasoning and mental-rotation
challenges Wexler et al. (1998). The tasks include:

15. Transform Result Identify: Choose the correct result when a specific transformation is applied to an image.

16. Transform Pair Infer: Given two tiles, determine the transformation that maps the source to the target.

17. Transform Similarity Identify: Identify which option is similar or dissimilar to a base shape under Euclidean
similarity transformations (uniform scaling, rotation, reflection).

18. Sequence Rotation: Predict the missing panel in a sequence of rotated motifs.

19. Sequence Arithmetic: Predict the missing panel in a numeric progression of shapes.

20. Sequence Multi-Column Arithmetic: Predict the next panel when each column in a grid independently
undergoes its own arithmetic progression.

Topological & Graph Reasoning. These tasks involve reasoning about connectivity, paths, and assembly on tilings
or grids. Graph-reasoning benchmarks classify such problems under path-query and connectivity tasks Wei et al. (2024).
The tasks are:

21. Tiles Geometry: Compute areas, perimeters, number of holes, or union perimeters of colored regions on a
tiling.

22. Tiles Connected Component: Determine the size or number of connected components of a specified colour
under different adjacency notions.

23. Tiles Shortest Path: Find the minimal number of steps between two tiles or determine that no path exists.

24. Missing Tiles: Restore missing tiles by selecting shapes or colour assignments that fit the blanked region.

25. Tiles Composition: Decompose a connected region into smaller pieces or compose multiple pieces into a
single connected shape.

5
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Figure 6: Tasks where humans exceed GPT-5.
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Figure 7: Tasks where GPT-5 exceeds or is close to human
performance.

3 BENCHMARK

Figure 5: Comparison of human and GPT-5 accuracy.

We curated the SPHINX benchmark to consist of 2,500
questions, with 100 instances per task. We evaluate three
proprietary ChatGPT-5 variants (regular, mini, and nano)
using their default reasoning settings OpenAI (2025).
In addition, we assess six open-source vision–language
models (VLMs), including the Qwen2.5 family Bai et al.
(2025), Llama 3.2 Meta (2024), and InternVL3 Zhu et al.
(2025), spanning parameter scales from 3B to 38B.

The results are summarized in Table 1. Overall, GPT-5
achieves the best performance with an average accuracy
of 47.32% across tasks, although it still falls short of hu-
man accuracy by 28.07%. GPT-5 mini performs compara-
bly, with only a 2.64% drop relative to the regular model.
Among open-source models, Qwen2.5-VL-32B achieves
the highest accuracy (32.16%), followed by InternVL3-
38B at 25.08%.

Performance varies substantially across task categories.
The most significant gap between models and human
evaluators occurs in Sequence and Transformation tasks,
where GPT-5 lags human accuracy by 39.2%. In contrast,
the gap is less pronounced on Geometric Reasoning and
Tiles-based tasks that emphasize topological or graph-
structured reasoning. Figure 5 shows performance across
all 25 tasks, comparing GPT-5 with human accuracy. While there is an overall positive correlation, several tasks exhibit
substantial disparities, which we analyze in detail below.

4 ANALYSIS

4.1 GPT-5 VS. HUMANS

In Figure 6, we present the five tasks where human performance most clearly surpasses GPT-5, while Figure 7 highlights
the opposite cases where GPT-5 performs comparably to or better than humans. Three of the tasks where GPT-5
struggles involve reasoning over tiles (Tiles Line Length, Tiles Recoloring, and Tiles Line Intersections), which humans
find substantially easier. The remaining two tasks involve identifying mirror symmetry and inferring transformations
between paired images. Figure 10(left) shows an example of GPT-5 incorrect response for the Tiles Line Length task.

Conversely, GPT-5 fares much better on tasks involving counting over plain backgrounds with geometric shapes, where
humans may struggle due to the shapes being relatively small compared to the overall image.
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Figure 8: Tasks where GPT-5 exceeds GPT-5 mini
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Figure 9: Tasks where GPT-5 mini exceeds GPT-5.

Additional tasks where GPT-5 approaches human performance include Pie Chart and Chart Comparison from geometric
reasoning, as well as Tiles Composition from topological and graph reasoning. Notably, these are also among the tasks
where human evaluators performed the worst across all 25 tasks.

4.2 GPT-5 VS. GPT-5 MINI

(Figure 8 and Figure 9) compare the five tasks where GPT-5 outperforms GPT-5 mini and vice versa, with one
representative pair of example responses shown in Figure 10 (middle and right). We find that GPT-5 generally performs
better on tasks with explicit instructions, such as counting or identifying the result of a specified transformation. In
contrast, GPT-5 mini performs better on tasks that require no explicit guidance, where the model must infer underlying
rules to answer correctly, such as symmetry identification or transformation inference. This contrast highlights the
tendency of larger MLLMs to “overthink” certain problems, whereas smaller variants may benefit from relying on
simpler heuristics.

5 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

We perform reinforcement learning with verifiable rewards on synthetic datasets generated by SPHINX.

Data Split. We designate 20 tasks as in-distribution and withhold five tasks from training to assess generalization
to unseen tasks. The withheld tasks are Geometric Position Count, Tiles Recoloring, Wallpaper Groups, Sequence
Multi-Column Arithmetic, and Tiles Composition. We generate 100,000 synthetic samples using a fixed random
seed. From these, we select 1,600 samples per in-distribution task (a total of 32,000 training samples) such that the
minimum semantic similarity (with respect to evaluation samples of the same task) is maximized. Semantic similarity is
computed using the sentence-transformers library Reimers & Gurevych (2019), employing the CLIP ViT-B/32
embedding model.

Model Training. We train using GRPO (Group Relative Policy Optimization), an RL method that eliminates the
need for a separate value (critic) network by ranking multiple outputs per prompt and using their relative scores as a
baseline Shao et al. (2024). Our base model is Qwen2.5-7B and 3B parameter Bai et al. (2025), fine-tuned using the
EasyR1 framework Yaowei Zheng (2025). Training is conducted for 100 iterations with hyperparameters set as follows:
kl_coef = 1.0× 10−2, maximum response length = 2048, optimizer = adamw (learning rate 1.0× 10−6, weight decay
1.0× 10−2), rollout parameters n = 5, temperature = 1.0, batch size = 128, and total 500 training steps.

We use the default prompt and reward from EasyR1 framework Yaowei Zheng (2025). We use a binary correctness
reward: if a generated response is correct, it receives a reward of 1; otherwise, it receives a reward of 0. We also include
a format reward, combining the two as

reward = λ · format_reward + (1− λ) · correctness_reward,

with λ = 0.1. Correctness is verified against the ground truth using the mathruler library hiyouga (2025).

Model Performance. Table 2 reports the performance of RLVR-trained models across different datasets. Along with
the IID and OOD splits of the SPHINX benchmark, we also evaluate on three external benchmarks: MathVision Wang
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Question: Measure the blue
(#1976d2) line strictly along
tile edges. How many tile-
edge units long is it?

Response from GPT-5:
To measure the length, count
the number of unit edges...
The blue path uses 4 units in
each of the three directions,
so the total is 4+4+4 = 12.
12

Correct output: 9

(a) GPT-5 incorrect response for Tiles Line
Length

Question: Consider color
differences only (pres-
ence/absence included).
How many cells differ
between the tiles?

Response from GPT-5:
Step-by-step:
- Represent each tile as a 3×4
grid...
- Left tile colors:
- r1: [brown, brown, brown,
orange]... - Right tile colors:
- r1: [blue, blue, blue, or-
ange]... - Compare cell by
cell. Matching cells: (r1,c4),
(r2,c3), (r3,c3) → 3 matches.
- Total cells = 12, so differing
cells = 12 - 3 = 9.
9

Correct output: 9

(b) GPT-5 response correct response for
Tiles Recoloring.

Question: Consider color
differences only (pres-
ence/absence included).
How many cells differ
between the tiles?

Response from GPT-5 mini:
Label rows 1–3... and
columns 1–4... Reading the
two tiles:
Left tile:
- Row1: brown, brown,
brown, orange...
Right tile:
- Row1: blue, blue, blue, or-
ange...
Compare each... cell;
cells that change color are:
(1,1),(1,2),(1,3),(2,1),
(2,2),(3,1),(3,2),(3,4) — 8
cells.
Answer: 8

Correct output: 9

(c) GPT-5 mini incorrect response for Tiles
Recoloring.

Figure 10: Three qualitative examples of model responses on visual reasoning tasks.

Table 2: Performance of Qwen2.5 models with and without RLVR across benchmarks. Values are accuracies (%).

Model Sphinx IID Sphinx OOD MathVision MM-IQ Geo3k
Qwen2.5-7B 25.15 19.8 16.8 24.6 37.9

+RLVR 42.55 26.8 23.9 25.9 37.1
Qwen2.5-3B 17.55 14.6 21.8 22.8 24.5

+RLVR 31.65 22.2 21.8 24.7 29.0

et al. (2024), MM-IQ Cai et al. (2025), and Geo3k Lu et al. (2021a). We use the same prompting and evaluation setup
as in training for all datasets.

We observe substantial performance gains on the IID split of the 20 shared tasks between training and testing for both
models, and these improvements also transfer to the five OOD tasks, with Qwen2.5-7B improving by 7%. Results on
the three external datasets are more mixed: we see improvements in some cases, such as MathVision for the 7B model
and Geo3k for the 3B model, but gains are not consistent across benchmarks. We hypothesize that closer integration of
our synthetic datasets with existing benchmarks could yield more systematic improvements.
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6 RELATED WORKS

Research on visual reasoning has long been motivated by studies in psychology and cognitive science. Human cognition
is often assessed through tests such as Raven’s Progressive Matrices (RPM) Carpenter et al. (1990) and the Wechsler
Intelligence Scale for Children (WISC) Wechsler (1949), which measure abstraction, analogy, and fluid intelligence.
These tasks emphasize core perceptual and reasoning primitives, such as symmetry detection, pattern completion, and
spatial transformation, that emerge early in human development and remain challenging for artificial systems.

Datasets and fixed benchmarks. Inspired by these traditions, many datasets adapt cognitive test formats for evaluating
models. The Abstraction and Reasoning Corpus (ARC) Lee et al. (2024), Bongard Problems Małkiński et al. (2025),
and BONGARD-LOGO Nie et al. (2020) probe concept learning and analogy-making. IQ-inspired datasets such as
MM-IQ Cai et al. (2025), MARVEL Jiang et al. (2024b), and SMART-101 Cherian et al. (2023) measure abstraction
and generalization using puzzles originally designed for standardized exams or children’s competitions. MATH-
Vision Wang et al. (2024) targets multimodal mathematical reasoning, while MaRs-VQA Cao et al. (2025) provides
psychologist-certified matrix reasoning tests to compare humans and multimodal models. Reviews of RPM-solving
methods Małkiński & Mańdziuk (2025b) consistently highlight large human–model performance gaps, particularly in
zero-shot generalization. While these datasets reveal important weaknesses, they are typically fixed in size and limited
in diversity.

Synthetic and procedural benchmarks. To overcome the limitations of fixed datasets, several works adopt procedural
generation. Compositional Visual Reasoning (CVR) Zerroug et al. (2022a), A-I-RAVEN and I-RAVEN-Mesh Małkiński
& Mańdziuk (2025a), and NTSEBench Pandya et al. (2025) extend RPM-like designs with controlled variation. IconQA
Lu et al. (2021b) introduces programmatically generated diagram problems, while VisuLogic Xu et al. (2025a) and
Visual Riddles Bitton-Guetta et al. (2024) emphasize multimodal abstraction and commonsense puzzles. Broader
synthetic environments include Reasoning Gym Stojanovski et al. (2025b), Enigmata Chen et al. (2025b), and UniBench
Al-Tahan et al. (2024), which demonstrate scalable generator–verifier frameworks or unified evaluation protocols.
Despite these advances, most efforts focus on narrow domains or lack integrated verifiable feedback. SPHINX builds
on this line of work by offering procedurally generated problems that span a wide range of perceptual and reasoning
categories, each paired with deterministic verifiers for precise and repeatable evaluation.

Reinforcement learning for visual reasoning. Recent work has explored reinforcement learning with verifiable
rewards (RLVR) to improve model reasoning. Reason-RFT Tan et al. (2025), Visual-RFT Liu et al. (2025b), and
Jigsaw-R1 Wang et al. (2025b) demonstrate that reinforcement fine-tuning improves generalization in visual reasoning
tasks. ViGoRL Sarch et al. (2025) grounds reasoning steps spatially for interpretability, while MoDoMoDo Liang et al.
(2025) investigates data mixture strategies. VL-Rethinker Wang et al. (2025a) and VL-Cogito Yuan et al. (2025) further
incorporate RL for self-reflection and curriculum-based training. Generator–verifier setups such as Reasoning Gym
Stojanovski et al. (2025b) and Enigmata Chen et al. (2025b) underscore the importance of scalable reward signals.
SPHINX complements these approaches by providing a synthetic gym where every task has a verifiable ground-truth
solution, making it naturally suited for RLVR experiments.

7 LIMITATIONS & FUTURE WORK

While SPHINX provides a large-scale synthetic environment for visual perception and reasoning, our current focus
is limited to a specific set of task families. As a result, performance gains may not fully translate to more diverse
benchmarks. Future work should expand the range of task types to capture the breadth of multimodal reasoning
challenges better. Additionally, curriculum training strategies that explicitly incorporate task difficulty could further
enhance model generalization Stojanovski et al. (2025b). Another important direction is reducing the guessability of
multiple-choice questions during RL training, ensuring that improvements arise from genuine reasoning rather than
shortcut exploitation Guo et al. (2025).

8 CONCLUSION

We introduced SPHINX, a synthetic gym for visual perception and reasoning tasks. It currently implements twelve tasks,
and our evaluation shows that state-of-the-art multimodal LLMs struggle on most of them, while reinforcement learning
with verifiable rewards (RLVR) offers promising gains. Future work will expand SPHINX with additional tasks in visual
puzzles, geometric and spatial reasoning, and multi-step transformations, alongside improved reinforcement learning
paradigms. We plan to release the framework as open source to support broader adoption and community extensions.
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APPENDIX

A IMPLEMENTATION SUMMARY

A.1 OVERVIEW

SPHINX is a framework for generating visual reasoning tasks by pairing a registry of motifs or tiles with a registry
of task classes. Each task produces an instance consisting of a composed image, the specifications of its component
motifs, and task metadata. Tasks are discovered dynamically and sampled according to configurable weights, enabling
controlled variation during dataset generation. Some tasks include visual multiple-choice options; in these cases,
distractors are constructed to be unique and clearly distinct from the ground-truth answer. Other tasks have text-based
multiple-choice formats or integer outputs. To further increase variety, we use ten prompt templates for each task. The
engine selects a task, samples motif specifications, renders the composite scene, and records metadata such as the
question, answer, and distractors.

A.2 TASK SUMMARIES

SPHINX currently implements twelve tasks grouped into four categories: symmetry, sequence, tiles, and transforma-
tion.

Symmetry.

• Symmetry grid mirror fill: Generates a 2× 2 grid with one blank cell; the solver must choose the option that
completes the grid according to a specified mirror symmetry (vertical, horizontal, or diagonal).

• Symmetry scene mirror identify: Arranges motifs on a canvas according to a sampled mirror symmetry and
asks the model to classify whether the scene exhibits vertical, horizontal, diagonal, or no symmetry.

• Symmetry wallpaper groups: Presents four tiling patches from wallpaper-group symmetries, three of which
share the same class while one differs; the solver must detect the odd one out.

Sequence.

• Sequence arithmetic: Shows a row of motifs whose counts follow an arithmetic progression, with one panel
masked; the solver selects the missing panel from candidate options. In half the prompts, the arithmetic rule is
explicitly stated, while in the other half the task is posed more generally without hints.

• Sequence rotation: Displays motifs undergoing a constant rotational step across panels, with one rotation
hidden; the solver identifies the correct missing rotation.

• Sequence multi-column arithmetic: Extends the arithmetic progression task to a grid where each column
evolves independently; the solver must recover the missing entry from visual options.

Tiles.

• Tiles connected component: Requires counting connected components of a given color or identifying the
largest or smallest connected region.

• Tiles shortest path: Presents start and end cells on a tiling with obstacles, and the solver must compute the
minimal-step path under adjacency constraints.

• Tiles missing tiles: Shows a partially occluded tiling, and the solver selects the missing piece that completes it,
with rotations or reflections allowed.

• Tiles geometry: Asks questions about geometric properties of regions, such as area, perimeter, or the number
of enclosed voids.

Transformation.

• Transform result identify: Shows a source tile and a specified transformation; the solver must select the
correctly transformed result from candidate options.

• Transform pair infer: Presents a source and target tile and asks the solver to identify the transformation
(rotation, reflection, transposition, or none) that maps one to the other.
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Figure 11: Randomly sampled example from each Motif family.

A.3 IMPLEMNTED MOTIFS

Figure 11 shows representative instances of the 25 motifs currently implemented in SPHINX.

B TASK DESCRIPTIONS

B.1 GEOMETRIC REASONING

Figure 12 shows examples of the this type of task.
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B.1.1 POSITIONAL COUNT

Problem. Positional counting relative to non-overlapping reference shapes (rectangles, circles, triangles). The objective
is to count small shapes satisfying a strict spatial relation to a chosen reference.

Construction. Place 1-4 large reference shapes with enough separation. Sample small shapes (circle, triangle, square,
pentagon, hexagon) with pairwise non-overlap and strict clearance from all reference boundaries. Evaluate strict,
radius-aware predicates (inside, outside, above, below, left, right) to form the label.

Variants. Six relation categories crossed with multiple small-shape kinds; background and counts vary with seed.

Difficulty controls. We measure difficulty with the count of correct shapes.

Answer type. Integer count.

B.1.2 SHAPE SORTING

Problem. Ordinal sorting over labeled geometric primitives under a specified metric.

Construction. Sample a family (polygon, ellipse, angle, line) and a metric (polygon/ellipse area or perimeter; angle
measure; line length). Sample values with a minimum relative gap and render using a random-pack layout with uniform
label font height.

Variants. Four families with metrics as above; the number of items k is drawn from configured bounds.

Difficulty controls. We control the difficulty with the number of items k.

Answer type. Free-form ranking over letters (comma-separated). No explicit distractors.

B.1.3 STACK COUNT

Problem. Given overlapping sheets of equal area, count small objects that lie strictly inside a designated non-top sheet.

Construction. Choose a stack kind (rectangle, circle, equilateral triangle). Generate k sheets with controlled pairwise
overlap ratios and identical area; draw small objects (circle, triangle, square) on top of the stack. Pose an inside-of-border
query about an occluded sheet.

Variants. Three stack families × three small-object kinds. Prompts vary in target sheet (color) and object kind.

Difficulty controls. We control difficulty with the number of correct shapes.

Answer type. Integer count.

B.1.4 PIE CHART

Problem. Ordinal reasoning over a single pie chart. The model must rank categories by slice size (ascending or
descending) without access to numeric labels.

Construction. Sample k categories with percentages satisfying a strict relative gap; optionally derive consistent integer
counts for provenance. Render a legend-only chart (values hidden in the pie).

Variants. Four light variants induced by the crossing of sort direction (ascending/descending, 50/50) and value kind
(percentage vs. count), with k spanning the configured range.

Difficulty controls. The number of k categories controls the difficulty of the problem.

Answer type. Free-form categorical ranking (letters only, comma-separated). No multiple-choice distractors are
presented.

B.1.5 CHART COMPARISON

Problem. Proportion matching across two charts. A top chart (pie or bar) defines the color→percentage mapping; the
choice set comprises four options of the opposite chart type. Exactly one option preserves the mapping.

Construction. Sample k categories, distinct integer percentages for the categories that sum to 100, and a distinct color
palette.

Variants. Two display regimes with the top chart as a pie chart or a bar chart and the options as the opposite chart type.
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Difficulty controls. We control difficulty by adjusting how many k categories are in the charts.

Distractors. Wrong options are produced by jittering and/or permuting the percentage vector. Candidates are admitted
only if they pass absolute/relative difference thresholds and pairwise image-level distinctness checks.

B.2 COUNTING

Figure 13 shows examples of the this type of task.

B.2.1 VENN DIAGRAM

Problem. Inclusion/exclusion over axis-aligned shapes with per-region numeric labels.

Construction. Sample 2-4 axis-aligned rectangles or ellipses with a connected union. Induce a partition grid, place one
integer in each non-empty atomic region (with skinny-region fallbacks), and pose include/exclude queries whose truth
set uniquely determines the sum.

Variants. Two layout families (rectangles vs. ellipses) with 2-4 sets.

Difficulty controls. We control difficulty with the number of atomic regions.

Answer type. Integer sum.

B.2.2 SHAPE COUNTING

Problem. Counting of sub-shapes (rectangles, squares, triangles, parallelograms) within a single connected figure.

Construction. Draw one connected figure using one of several generators (axis-aligned polyomino, skewed poly-
parallelogram, irregular/regular grids, staircase, triangular lattice, inscribed overlay). Render on a plain white back-
ground and compute the ground-truth count using exact combinatorial routines matched to the generator.

Variants. Eleven generator families (as above), each paired with appropriate query types. Instances are only emitted
when the computed answer lies within configured bounds.

Difficulty controls. The number of shapes in a figure.

Answer type. Integer count; no multiple-choice choice set.

B.2.3 TILES LINE LENGTH

Problem. Edge-step length estimation for a highlighted colored polyline.

Construction. On a chosen tiling, sample k non-overlapping polylines, record their lengths, and prompt for the length
of one specified by color.

Variants. K ∈ {2, . . . , 5} with tiling, palette, and length targets varying by seed.

Difficulty controls. The correct line length is the measure of difficulty.

Answer type. Integer length.

B.2.4 TILES LINE INTERSECTIONS

Problem. Intersection counting over colored polylines constrained to tile edges.

Construction. Build a vertex graph for the selected tiling; lay out k vertex-simple polylines with distinct colors and no
shared edges.

Variants. k ∈ {2, . . . , 5} with tiling family and target count sampled per instance.

Difficulty controls. The number of intersections measures difficulty.

Answer type. Integer number of shared vertices (including endpoints).

B.2.5 TILES RECOLORING

Problem. Cell-wise recoloring/difference counting between two related boards.
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(a) Positional Count Count the small shapes that satisfy a specific spatial relation to a larger shape.

(b) Shape Sorting Sort the labeled shapes by a given metric, such as area or angle.

(c) Stack Count Count the number of a certain small shape that are fully inside one of the occluded, overlapping sheets.

(d) Pie Chart Rank the slices of the pie chart by size.

(e) Chart Comparison Find the bar/pie chart that correctly represents the proportions in the top chart.

Figure 12: Examples of Geometric Reasoning and Chart tasks.
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Construction. Grow a connected region on the left board; derive the right board by adding/removing a connected set
(same-color variant) or additionally recoloring overlap (color-change variant).

Variants. Two variants - same color vs. color change - across several tiling families.

Difficulty controls. The number of different cells measures the difficulty.

Answer type. Integer number of differing cells.

B.3 SYMMETRY & PATTERN RECOGNITION

Figure 14 shows examples of the this type of task.

B.3.1 MIRROR IDENTIFICATION

Problem. Textual classification of mirror symmetry (including “none”) for a composite scene.

Construction. Place motif instances inside class-specific fundamental regions to synthesize scenes. Verify the final
bitmap’s category via color-aware symmetry tests; pair with six textual options and shuffle.

Variants. Six labels - vertical, horizontal, main diagonal, anti-diagonal, vertical+horizontal, none - with target count
and canvas scale adapted to the class.

Distractors. The five incorrect textual descriptions serve as distractors; all six labels are offered.

B.3.2 SYMMETRY FILL

Problem. Grid completion under a specified mirror constraint. A 2×2 grid is shown with one tile missing; select the
tile that restores the target symmetry.

Construction. Render a base tile, apply the rule (vertical, horizontal, both, main-diagonal, anti-diagonal) to fill the grid,
remove one tile, and construct options by applying distinct transforms while enforcing pairwise distinctness.

Variants. Five rule keys as above; missing position and motif vary.

Distractors. Transform pool filtered to retain only visually distinct candidates; select three and shuffle with the correct
transform.

B.3.3 FRIEZE GROUPS

Problem. Odd-one-out identification among four horizontal strips, each generated from a frieze symmetry; three share
the same neighbor rule, one differs.

Construction. Sample a motif family; choose a majority frieze group for three strips and a distinct group for the odd
strip. Render with consistent spacing and label (a-d).

Variants. Six Conway frieze groups (step, sidle, jump, spinning hop, spinning sidle, spinning jump). Strip length and
option order vary per instance.

Distractors. The distractors are simply additional strips from the majority frieze class; the odd class is unique by
construction.

B.3.4 WALLPAPER GROUPS

Problem. Odd-one-out among four 2D wallpaper patches; three are sampled from one wallpaper group and one from
another.

Construction. Sample a motif family and wallpaper groups; generate patches under each group, crop to equal square
tiles, and compose a labeled 2×2 grid.

Variants. Seventeen IUC wallpaper groups; majority/odd selection and option order are randomized.

Distractors. The three majority-group patches form the distractor set by construction.
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(a) Venn Diagram Calculate the sum of numbers in specified regions in the Venn diagram.

(b) Shape Counting Count the total number of a specific sub-shape within the larger figure.

(c) Tiles Line Length Count the number of tile edges that make up the highlighted line.

(d) Tiles Line Intersections Count the number of points where the two colored lines intersect.

(e) Tiles Recoloring Count the number of cells that have different colors between the two boards.

Figure 13: Examples of Counting tasks.
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(a) Mirror Identification Identify the axis of mirror symmetry in the image if there is one.

(b) Symmetry Fill Choose the tile that completes the grid according to the specified symmetry rule.

(c) Frieze Groups Identify which of the four patterns belongs to a different frieze symmetry group.

(d) Wallpaper Groups Identify which of the four patterns belongs to a different wallpaper symmetry group.

Figure 14: Examples of Symmetry tasks.
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B.4 SEQUENCE & TRANSFORMATION REASONING

Figure 15 shows examples of the this type of task.

B.4.1 TRANSFORM RESULT IDENTIFY

Problem. Visual selection of the result of applying a sampled transform to the original tile.

Construction. Render a motif patch, center it on graph paper, sample a transform from TF_RULES, and construct one
correct and three incorrect image options with consistent placement and borders. Compose a top/bottom layout with
labels.

Variants. Eight transform families; translations use randomized vectors.

Distractors. Render alternative transforms (including alternative translation vectors) and retain only candidates that are
pairwise distinct.

B.4.2 TRANSFORM PAIR INFER

Problem. Identify the single transformation that maps a source tile to a target tile; “none of the above” may be correct
by omission.

Construction. Render an asymmetrized motif on graph paper, choose a true transform from mirrors/rotations/translation,
synthesize the target, and verify uniqueness against the full rule set. Compose a side-by-side display with an arrow and
six labeled textual options.

Variants. Up to eight answer classes: seven concrete transforms (vertical mirror, horizontal mirror, main diagonal
mirror, anti-diagonal mirror, 90◦ rotation, 180◦ rotation, 270◦ rotation, translation) plus none (correct with probability
1/6 when the true transform is withheld).

Distractors. When the true transform is present, sample other transforms as distractors with uniqueness filtering; when
omitted, append none and select the remainder accordingly (with none fixed to the final slot for clarity).

B.4.3 TRANSFORM SIMILARITY IDENTIFY

Problem. Similarity-based selection under Euclidean similarity (uniform scale + D4 rigid/mirror motions). Either
select the single similar option, or the single dissimilar one.

Construction. Render an asymmetrical motif and produce options via allowed D4 transformations with optional uniform
scaling and translation. For “dissimilar”, apply enabled breaker warps (e.g., anisotropic scale, shear, perspective) and
reject near-similar outcomes via a canonical checker.

Variants. Two core variants (one similar, one dissimilar) with four options.

Distractors. For “similar”, distractors are other (dis)allowed outcomes that remain distinct; for “dissimilar”, distractors
are similar options.

B.4.4 SEQUENCE ROTATION

Problem. Rotation-only progression over a single bitmap with a constant angular step; one panel is masked.

Construction. Render a base motif, compute a global scale fitting all sampled rotations, and generate tiles using a step
from {30◦, 45◦, 60◦, 90◦} in either direction. Mask one panel and present four options.

Variants. Eight rotation regimes (four step sizes × two directions); mask index is uniform.

Distractors. Alternative rotation angles filtered by separation thresholds; weakly separated candidates are rejected.

B.4.5 SEQUENCE ARITHMETIC

Problem. Next-step prediction in a count-based progression with one masked panel.

Construction. Sample a motif by weights. Draw a sequence with the count changing by a set increment/decrement;
mask one panel and provide four choices.
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Variants. Two architectural paths (direct-count vs. repeated-layout), four layout templates, and a uniformly sampled
mask index.

Distractors. Different incorrect counts are made and checked for enough visual difference from other options.

B.4.6 SEQUENCE MULTI-COLUMN ARITHMETIC

Problem. Multi-column next-step prediction where each column follows its own arithmetic progression.

Construction. Sample 2-6 columns, motif kinds, and per-column base specs; draw four time steps using a shared
within-column scale set by the maximum count. Hide the final panel and provide four candidates for the continuation.

Variants. Continuous parameterization over column count, motifs, and steps; the core schematic is fixed (three observed
panels, one to predict).

Difficulty controls. The number of columns is used to measure difficulty.

Distractors. Edit exactly one column per wrong option, escalating ±∆ until the local change exceeds a threshold;
reject duplicate/low-contrast candidates.

B.5 TOPOLOGICAL & GRAPH REASONING

Figure 16 shows examples of the this type of task.

B.5.1 TILES GEOMETRY

Problem. Geometric measurement over colored regions on a tiling (area, perimeter, holes, area difference, union
perimeter).

Construction. Sample a tiling, paint disjoint regions, compute region graphs, and evaluate the requested measure.
Render a crisp board on white with a natural-language prompt.

Variants. Five query types - single region area, single region perimeter, single region hole, two region area difference,
union of two region perimeter - with per-instance color selection.

Difficulty controls. The size of the tiling is the measure of difficulty.

Answer type. Integer.

B.5.2 TILES CONNECTED COMPONENT

Problem. Component analysis on a colored tiling. Query the size of the largest/smallest component or the number of
components within a specified color under a given adjacency notion.

Construction. Sample a tiling and a non-uniform coloring; build the dual graph with edge adjacency (or point-touch
for circular tilings). Compute per-color connected components and select a query with a unique answer (enforced for
extreme queries).

Variants. Six combinations from three measures (largest size, smallest size, count components) × two adjacency
regimes (edge vs. point-touch when applicable).

Difficulty controls. The number of components measures difficulty.

Answer type. Integer.

B.5.3 TILES SHORTEST PATH

Problem. Shortest-path computation on a cell graph with obstacles; return the minimum number of edge-steps or -1 if
unreachable.

Construction. Sample a tiling, build the dual graph, sample an obstacle field from beta-regime priors (sparse, dense,
balanced, patchy), choose start/end tiles, and use BFS to verify distance or enforce unreachable cases.

Variants. There are four obstacle regimes. With probability 0.1, unreachable instances are generated.

Difficulty controls. The length of the shortest path is the difficulty.
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(a) Transform Result Identify Choose the image that shows the correct result of applying the given transformation.

(b) Transform Pair Infer Identify the transformation that maps the left image to the right image.

(c) Transform Similarity Identify Find the shape that is a similar version (rotated, scaled) of the target.

(d) Sequence Rotation Complete the sequence by finding the missing panel, which follows a constant rotation.

(e) Sequence Arithmetic Complete the sequence, which follows an arithmetic progression of shapes.

(f) Sequence Multi-Column Arithmetic Predict the final panel where each column follows its own progression.

Figure 15: Examples of Transformation and Sequence tasks.
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Answer type. Integer (distance) or -1.

B.5.4 MISSING TILES

Problem. Completion of a partially blanked tiling via color restoration or shape fitting (orientation changes allowed).

Construction. Sample a tiling and remove a connected region of bounded size. In the color variant, recover the
exact color assignment for the missing cells. In the shape variant, recover the exact shape up to the tiling’s dihedral
symmetries.

Variants. Two balanced variants (color vs. shape) across four tilings (square, triangular, hexagonal, rhombille).

Difficulty controls. The size of the tiling is used to measure difficulty

Distractors. Color variant performs pairwise color swaps or Dirichlet-weighted palette shuffles; shape variant samples
alternative connected subsets of equal size that are non-congruent under allowed symmetries.

B.5.5 TILES COMPOSITION

Problem. Piece equivalence and assembly. Either decompose a connected region into a multiset of connected pieces
(bags) or compose a bag into a single connected target.

Construction. Sample a tiling and connected region; split into 2-5 connected pieces via randomized BFS growth. In
“decompose”, show the region on top and candidate bags below; in “compose”, show a bag on top and candidate target
shapes below. Normalize framing across options.

Variants. Two modes (decompose vs. compose) × two color modes (uniform, random_per_cell). Additional variation
from piece counts and tiling families.

Difficulty controls. The number of connected pieces is used as a measure for difficulty.

Distractors. For decompose, bags reuse piece cardinalities but alter piece shapes. For compose, candidates match area
but do not correspond to the true union of pieces.

C HUMAN EVALUATION

We conducted a controlled human evaluation using a custom-built web application. Participants accessed the app
through a browser and were assigned a of 25 problems (or 10 problems if explicitly chosen by the participant). Each
problem consisted of a visual prompt (image and/or text) and an input field for responses.

This setup allowed us to systematically measure accuracy, timing, and subjective feedback across participants and tasks,
enabling comparison of human performance against large language models (LLMs).

Figure 17: Web application interface used for the human
evaluation. Participants were shown a visual prompt (image
and/or text) and provided responses in the answer box.

The application enforced basic validation (e.g., number
formats, single-choice letters, or ordered lists) to ensure
responses were well-formed. For each participant, we
recorded:

• Response text
• Correctness (with respect to the ground truth)
• Per-question time taken
• Overall completion time
• Types of tasks assigned

To reduce variability in prior knowledge, the interface
also provided a dedicated Definitions panel containing
concise explanations of key terms and concepts (e.g., sym-
metry, rotation, translation). This feature ensured that all
participants could engage with the tasks from a com-
parable baseline of conceptual understanding, thereby
minimizing confounds due to varying background knowl-
edge.
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(a) Tiles Geometry Calculate a geometric property, such as area or perimeter, of a specified region.

(b) Tiles Connected Component Find the size of the largest/smallest connected group of colored tiles.

(c) Tiles Shortest Path Find the length of the shortest path between the two marked tiles if it exists.

(d) Missing Tiles Find the correct shape and color of tiles to fill the blank region.

(e) Tiles Composition Choose the option that composes or decomposes into the top figure.

Figure 16: Examples of Topological and Tiling tasks.
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Figure 18: Human evaluation results. (a) Scatter plot of participant perceived difficulty versus accuracy (b) Task-level
time and accuracy.

After completing the problem set, participants filled out a
post-questionnaire survey in which they rated the per-
ceived difficulty, clarity, familiarity, and engagement,
along with providing optional feedback.

C.1 HUMAN EVALUATION SETUP

Figure 17 shows the web interface used for collecting human responses for the assigned tasks implemented specifically
for SPHINX.

C.2 HUMAN PERFORMANCE ANALYSIS

Figure 18 shows the human performance on the evaluation tasks, highlighting accuracy distributions, time–accuracy
analysis, and the relationship between subjective difficulty ratings and objective outcomes.
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