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Abstract

Large repositories of image-caption pairs are essential for the development of
vision-language models. However, these datasets are often extracted from noisy
data scraped from the web, and contain many mislabeled examples. In order to
improve the reliability of downstream models, it is important to identify and filter
images with incorrect captions. However, beyond filtering based on image-caption
embedding similarity, no prior works have proposed other methods to filter noisy
multimodal data, or concretely assessed the impact of noisy captioning data on
downstream training. In this work, we propose LEMON, a method to automatically
identify label errors in multimodal datasets. Our method leverages the multimodal
neighborhood of image-caption pairs in the latent space of contrastively pretrained
multimodal models. We find that our method outperforms the baselines in label
error identification, and that training on datasets filtered using our method improves
downstream classification and captioning performance.

1 Introduction

Machine learning datasets used to train and finetune large vision, language, and vision-language
models frequently contain millions of labeled instances [64, 35, 73, 7]. Prior work highlights that
some instances in such datasets may be mislabeled [54, 47, 39, 5, 58], as seen in Figure 1. This is
especially problematic in settings such as healthcare, where the reliability of downstream models
may depend on the quality of data used for pretraining [9, 43, 45].
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Figure 1: Samples from
classification and captioning
datasets discovered to be mis-
labeled by our method.

Identifying and correcting label errors in existing datasets at scale
would lead to more reliable and accurate models in the real world [82,
71, 39, 5]. However, given the large size of such datasets, manual
detection of errors is practically infeasible. This is evidenced by the
growth of models trained on noisy data with the web [35, 73, 44], or
with model generated pseudo-labels [48, 33].
Machine learning (ML) based approaches to automatically identi-
fying label errors have also been proposed in prior work [57, 67,
37, 2, 82, 53]. However, we identify two critical limitations: (1) a
majority of such works are unimodal: i.e., they only utilize image-
based representations and detection strategies, and (2) many of the
best-performing approaches depend on having access to a model
already trained on the downstream tasks of interest [57, 67]. We
hypothesize that applying a neighborhood-based approach to mul-
timodal representations in the form of image-text pairs can improve
label error detection without requiring task-specific training, which
may be costly and/or domain specific for some datasets.
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Figure 2: Outline of LEMON, our proposed method for multimodal label error detection. We
demonstrate LEMON on a real sample from the MSCOCO dataset, where an image of a train (x)
is mislabeled as y = “This is a plane from the front view”. (a) We compute the simple
CLIP similarity dmm(x,y). We then find the nearest neighbors of x in the image space (xnj

) and
compute the distance between the corresponding texts and y to compute the score component sn. (b)
To compute the score component sm, we find the nearest neighbors of y in the text space (ymk

), and
compute the distance between the corresponding images and x.

Additionally, a common assumption made in prior works is that each
label is one-of-k classes [2, 82]. The vast majority of label error detection methods proposed in prior
works are hence for classification datasets. In contrast, datasets used to train large vision-language
models contain natural language labels such as image captions [35, 34, 73]. Methods to filter out
instances with noisy labels – e.g., based on the similarity of image and caption representations – have
been utilized in prior work with some success [35, 30] for such datasets. However, to the best of
our knowledge, no prior works have proposed or rigorously compared methods to identify errors in
datasets with natural language labels, or assessed the impact of detection on downstream tasks like
image captioning.
In this work, we propose LEMON– Label Error detection using Multimodal Neighbors – a method
for multimodal label error detection, which can be applied to image-text pairs in datasets such as
MSCOCO [42]. While prior techniques utilize unimodal neighbors for label error detection, LEMON
leverages multi-modal neighborhoods derived using contrastively pretrained vision-language models
such as Contrastive Language-Image Pretraining (CLIP) [59]. Specifically, in addition to considering
pairwise image-text distances, we also retrieve nearest neighbors in the image and text space as
illustrated in Figure 2. This is motivated about rich neighborhood geometry in the joint embedding
space of multimodal models [38, 62]. We then compute distance scores with neighbors in each
modality and combine these into a single score measuring the likelihood of a label error, with the
intuition that higher discordance (or higher distance) with neighbors indicates a higher chance of
label error. We validate the utility of these scores across eight datasets, including one in a healthcare
setting, and compare to over ten baselines.
Our key contributions and findings are as follows:

• We propose LEMON, a novel, theoretically justified multimodal method capable of detecting
label errors in large image-caption datasets (Section 3).

• We show that LEMON outperforms all downstream task-unaware baselines for label error
detection in the classification setting, by up to 3.4% AUROC (Section 6.1).

• We empirically show that LEMON outperforms baselines in three out of four captioning
datasets, by up to 3.9% AUROC (Section 6.1).

• We demonstrate that LEMON improves performance on downstream classification and
captioning models by filtering out data predicted to be label errors. (Section 6.2).

• Finally, we verify that the predictions generated by LEMON are meaningful through a real
world analysis of LEMON on existing datasets without known label errors (Section 6.4).

2 Related Works

Label Noise Detection Noisy and incorrect labels [5] in training data may lead to decreased or
“destabilized” [53, 47] performance on downstream tasks [8, 54]. Two orthogonal approaches can be
taken to reduce the adverse effects of such labels: developing methods to learn in the presence of
label errors [11, 51, 27], and/or detecting and filtering out instances with label errors [21]. In this
work, we focus on the latter approach. Prior approaches [67, 2, 57, 53, 37, 76, 32] for automatic label
error detection include relying on the training dynamics of task-specific downstream models [67]
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and neighborhood-based strategies [2, 21]. Some of these techniques are fully supervised [53, 8]
or unsupervised [57, 67, 21, 2], use pre-trained generative models [17] or are fully training-free
approaches [82, 37]. Previous approaches for label error detection closest to this work includes deep
k-nearest neighbor (deep k-NN) methods using k-NN entropy on vector space embeddings [2, 21] and
SimiFeat [82] which employs a local neighborhood-based voting or ranking for noise identification.
In contrast to these methods, our work enhances label noise detection by harnessing information
across multiple data modalities, such as image and text. Finally, though prior works may have utilized
the idea of semantic neighborhoods in multimodal data (e.g. for cross-modal retrieval) [68, 69], we
believe we are the first to extend concepts to the task of label error detection by proposing a novel,
theoretically justified score for identifying label errors.

Contrastive Learning Contrastive learning is a representation learning strategy that contrasts
positive and negative pairs of data instances [10, 49, 3] to learn an embedding space. The core idea
is to embed similar data points (positive pairs) closer together than dissimilar data points (negative
pairs) [63, 66, 55]. In this work, we primarily utilize pre-trained models that use the CLIP loss (where
the pre-training objective is predicting which text caption goes is paired with which image) for jointly
embedding image and text data [59].

Image Captioning The goal of image captioning is to describe a given image [15] in natural
language. Prior approaches for caption generation have included supervised training of end-to-end
models from scratch [74, 41, 25, 77, 15]. More recently, vision-language models pretrained on large
datasets of noisy image-caption pairs extracted from the web [35, 34, 73] – such as CC12M [7] – have
been utilized for captioning. Some of the pretraining tasks include image-text contrastive learning,
image-text matching, and/or retrieval [35], as well as general purpose text generation conditioned
on an input image [73]. Given that datasets for training such large models are noisy [30], several
steps have been utilized in prior work to filter out noisy captions during training. The most common
strategy involves computing the similarity between representations of the image and caption text
using another pretrained model (e.g., CLIP) prior to training [30]. Another approach in training
the BLIP [35] model is to synthetically generate noisy captions and train a classifier to distinguish
between high quality captions and noisy captions with a cross-entropy loss [35]. To the best of our
knowledge, no previous work has conducted a comprehensive comparison of various strategies for
label error detection in captioning datasets.

Multimodal Neighborhood Methods Previous studies [36, 68, 69, 26, 38, 6] have examined
the geometry of neighborhood spaces in multimodal models, often with the goal of improving
representation learning [26, 36] or retrieval [68, 69]. The closest related work is [69], where the
authors use the semantic neighborhood of multimodal models to identify samples with high semantic
diversity using text-based neighbors of neighbors. However, as the objective of their work is different
from ours, their proposed discrepancy and diversity scores would not provide a signal for label error
in our setting. We further clarify this in Appendix B, and will empirically compare against their
discrepancy score as a baseline. Although prior works have utilized the idea of multimodal neighbors
in other settings, we believe we are the first to apply it to the setting of label error detection.

3 LEMON: Label Error Detection using Multimodal Neighbors

We are given a dataset D = {(x,y)Ni=1} consisting of two modalities x ∈ X and y ∈ Y . For
example, X may represent the set of all natural images, and Y may represent the set of all English
text, or a restricted subset such as {cat, dog, ...}. We assume the existence of, but not access to, an
oracle f∗ : X × Y → {0, 1}, which is able to assign a binary mislabel indicator zi = f∗(xi,yi)
to each sample in D, without ambiguity. Here, zi = 1 indicates that the sample is mislabeled, and
zi = 0 indicates that the sample is correctly labeled. Our goal is to output a score s ∈ R with some
model s := f(x,y) such that

AUROC = E (x,y)∼P(·|z=1)
(x′,y′)∼P(·|z=0)

[1f(x,y)≥f(x′,y′)]

is maximized. Here, inspired by prior work [2, 82], we propose a method for f based on nearest
neighbors, summarized in Figure 2. Suppose we have a query sample (x,y)2. Define B(x, r) :=
{x′ ∈ X : dX (x,x′) ≤ r}, and B(y, r) similarly. Here, rk(x) := inf{r : |B(x, r) ∩ D| ≥ k}.
Then, we define {xn1

,xn2
, ...,xnk

} := B(x, rk(x)) ∩ D the top k nearest neighbors of x, and

2One could take, for any i, (x,y) := (x,y)i, D
′ := D \ {(x,y)i}
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{ym1 ,ym2 , ...,ymk
} := B(y, rk(y)) ∩ D the top k nearest neighbors of y3. We assume that the

neighbors are sorted in order of ascending distance, so for e.g. dX (x,xn2
) ≥ dX (x,xn1

).
If Y is a small discrete set, we could choose d(y,y′) = 1y=y′ . If X or Y are unstructured or high
dimensional, we assume access to multimodal encoders hθ = (hX

θ , hY
θ ), where hX

θ : X → Rd

and hY
θ : Y → Rd. Here, hθ may be a CLIP model [59] trained on a large internet corpus, or, as

we show later, it may be sufficient to train hθ from scratch only on D. Then, we could naturally
use simple distance metrics in the embedding space, such as the cosine distance dX (x,x′) =

dcos(h
X
θ (x), hX

θ (x′)) = 1 − hX
θ (x)·hX

θ (x′)

||hX
θ (x)||2·||hX

θ (x′)||2
. Our proposed score is the linear combination of

three terms:
s = f(x,y) = dmm(x,y) + βsn(x,y,D) + γsm(x,y,D) (1)

Where β, γ ≥ 0 are hyperparameters. Here, dmm(x,y) := dcos(h
X
θ (x), hY

θ (y)) is the multimodal
distance, which has been shown to provide a meaningful signal in prior label error detection work
[37, 30]. We thus use this distance as the basis, and augment it with two additional terms based on
nearest neighbors:

sn(x,y,D) =
1

k

k∑
j=1

dY(y,ynj
)e−τ1,ndX (x,xnj

)e−τ2,ndmm(xnj
,ynj

) (2)

Where (xnj ,ynj ) ∈ D, and τ1,n, τ2,n ≥ 0 are hyperparameters. This corresponds to finding the
nearest neighbors of x in X space, then averaging the distance between their corresponding modality
in Y and y. We weight this average with two additional terms. The τ1,n term corresponds to
downweighting neighbors which are far from x. Intuitively, this is useful when k is too large for x
and not all neighbors are relevant and can be thought of as an adaptive k. The τ2,n term corresponds
to downweighting neighbors which are themselves likely to be mislabeled. If (xnj

,ynj
) is itself

mislabeled, then dY(y,ynj
) would contribute an erroneous signal to whether (x,y) is mislabeled,

and we thus want to downweight those instances.
The third term is analogous to sn, but uses neighbors of y:

sm(x,y,D) =
1

k

k∑
j=1

dX (x,xmj
)e−τ1,mdY(y,ymj

)e−τ2,mdmm(xmj
,ymj

) (3)

Where (xmj ,ymj ) ∈ D, and τ1,m, τ2,m ≥ 0 are hyperparameters. Crucially, note that xnj ̸= xmj ,
and ynj ̸= ymj . Specifically, ynj corresponds to the Y modality of nearest neighbors taken in X
space, and ymj

corresponds to the nearest neighbors of y taken in Y space.
We note that our method is a generalization of several prior methods. When β = γ = 0, the method is
equivalent to CLIP similarity [37]. When β is large, τ1,n = τ2,n = γ = 0, and d(y,ynj

) = 1y=ynj
,

the method is equivalent to Deep kNN [2].
Our method contains several hyperparameters: k, β, γ, τ1,n, τ2,n, τ1.m, and τ2,m. When there is a
validation set with known labels, we perform a grid search over k, and use numerical optimization
methods to search for an optimal value of the remaining hyperparameters which maximize perfor-
mance on this set, which we describe further in Section 5.2. We refer to our method in this setting as
LEMONOPT.
When there is no labeled validation set available, we will show that our method is fairly robust to these
hyperparameter choices, and that choosing a set of reasonable fixed values for these hyperparameters
yields nearly comparable results. We refer to our method in this setting as LEMONFIX.

4 Theoretical Analysis

First, we demonstrate that the embedding models trained via the contrastive multimodal objective are
natural noisy label detectors.
Theorem 4.1 (Contrastive multimodal embedding models can detect noisy labels). Suppose Y = R.
For a training dataset D, Suppose ĥX

θ (x) and ĥY
θ (y) are the two embeddings that minimize the

empirical CLIP objective on this dataset. Then, for an input x and its corresponding positive

3We will use a subscript nj to index nearest neighbors in X , and subscript mj for neighbors in Y .
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counterpart y, assume there exists a noisy label y′ such that y′ = y + η where η ∼ N (0, σ2) and
|η| ≥ ϵ. Then the following holds with probability at least 1− δ, where δ is a function of ϵ.

dmm(ĥX
θ (x), ĥY

θ (y)) ≤ dmm(ĥX
θ (x), ĥY

θ (y
′))

Therefore, we can see that multimodal embeddings are inherently capable of detecting mislabeled
pairs, ensuring the distance between the embeddings of positive pairs is smaller than that of negative
pairs. This motivates the use of dmm in LEMON as well as in prior work [30, 37].
Next, we show that our multimodal kNN scores (Equations (??) and (??)) provide a signal for label
error. Suppose there exists a “paraphrase function” H : Y → P(Y), where P denotes the powerset,
such that for a particular sample (x, y) with H(y) = (ȳ1, ȳ2..., ), (x, ȳi) is considered correctly
labeled for all ȳi ∈ H(y). Informally, H outputs the set of all possible captions which correctly
describe x. Similarly define J (x), which outputs the set of images with identical semantics as x.
Assumption 1 (Structure of H, J ):

• Let (x′, y′) be an arbitrary sample. If y′ ̸∈ H(y), then x′ ̸∈ J (x).

• Let (x′, y′) be an arbitrary mislabeled sample. Then, ∀y′′ ∈ H(y′), x′′ ̸∈ J (x′).

Assumption 2 (Distribution of Distances): Let (X,Y ) be a randomly drawn sample.

• ∀ X ′ ̸∈ J (X) : dX (X,X ′)
iid∼N (µ1, σ

2
1) .

• ∀ X̄ ∈ J (X) : dX (X, X̄)
iid∼N (µ2, σ

2
2) .

We empirically validate this assumption in Appendix A.5.
Let Nk(Y ) = {Ym1

, ..., Ymk
} denote the nearest neighbors of Y in the text space. Let 1

k |H(Y ) ∩
Nk(Y )| = ζY , a random variable. Let P((Xmi

, Ymi
) is mislabeled) = p.

Let Sm(X,Y ) = 1
k

∑
Ymi

∈Nk(Y ) dX (X,Xmi
), which is identical to the proposed Equation (??)

with τ1 = τ2 = 0.

Theorem 4.2 (AUROC of kNN Score). Let (X,Y ) be a randomly selected correctly labeled sample,
and (X ′, Y ′) a randomly selected incorrectly labeled sample. Under Assumptions 1 and 2:

P(Sm(X ′, Y ′) > Sm(X,Y )) = 1− Φ(
−µ

σ
)

where µ = E[ζY ](1−p)(µ1−µ2), σ =

√
E[ζY ](1−p)σ2

2+(2−E[ζY ](1−p))σ2
1

k +Var(ζY )(1− p)2(µ2 − µ1)2,
and Φ is the Gaussian CDF.

This provides an expression for the detection AUROC of the score Sm. The same expression can be
derived for Sn by symmetry.

Lemma 4.3 (Non-random Signal of kNN Score). If the following three conditions hold: (1) p < 1,
(2) E[ζY ] > 0, (3) µ1 > µ2. Then,

P(Sm(X ′, Y ′) > Sm(X,Y )) > 0.5

Under these conditions, Sm, our proposed multimodal neighborhood score, provides a better than
random signal at detecting mislabeled samples. Full proofs can be found in Appendix A.

5 Experiments

5.1 Datasets

We evaluate our method using eight datasets, as shown in Table 1. Four datasets (cifar10, cifar100,
stanfordCars, miniImageNet) are label error detection datasets from the classification setting.
The four remaining datasets are image captioning datasets. For mscoco and flickr30k, we use
the Karpathy split [31]. In the remaining datasets, we randomly split each dataset into three parts
in an 80-10-10 ratio: training or reference set for the label detection method, validation set for
hyperparameter selection, and test set for testing label error detection performance.
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Table 1: Classification and captioning datasets. n is the number of samples. In the main paper,
results shown are for the bolded noise type with 40% noise level for synthetic noise. Performance on
remaining noise types can be found in the appendices.

Dataset n Domain Noise Types
Train Validation Test Image Text

cifar10 40,000 5,000 5,000 Natural images Object labels {human [75], sym., asym.}
cifar100 40,000 5,000 5,000 Natural images Object labels {human [75], sym., asym.}
miniImageNet [28] 49,419 24,710 24,710 Natural images Object labels {real}
stanfordCars [28] 13,501 6,751 6,752 Car images Car year and model {real}
mscoco [42] 82,783 5,000 5,000 Natural images Captions {cat., noun, random}
flickr30k [78] 29,000 1,014 1,000 Natural images Captions {noun, random}
mmimdb [1] 15,552 2,608 7,799 Movie Posters Plot summaries {cat., noun, random}
mimiccxr [29] 368,909 2,991 5,159 Chest X-rays Radiology reports {cat., random}

5.1.1 Noise Types

In cifar10 and cifar100, we utilize a dataset collected in prior work [75] with human mislabels
(human). We also follow prior work [82] in experimenting with class symmetric (sym.) and class
asymmetric (asym.) synthetic noise. For stanfordCars and miniimagenet, we use datasets from
[28], which contain noise from real-world (real) web annotators .
For the four captioning datasets, we devise several ways to inject synthetic noise of prevalence p. The
simplest way is to randomly select p fraction (random) of the samples and assign their text modality
to be that of another random caption. In datasets where additional metadata is available (mscoco:
object category, mmimdb: genre of movie, mimiccxr: disease label), we can randomly swap the
caption with that of another sample from the same category (cat). Finally, in all captioning datasets
except mimiccxr, we tag each token of each caption with its part-of-speech using SpaCy [23], and
then randomly assign a selected sample’s text modality to be from another sample with at least one
noun in common (noun). Dataset processing details are also in Appendix D.
Our motivation for these noise types is to simulate an array of realistic label corruptions that one
might face in the real world. We recognize that the resulting synthetic dataset may not have exact
noise level p, as e.g. a randomly selected caption may actually be correct for the image, as well as
noise in the base datasets, which we explore in Section 6.4. Unless otherwise stated, results shown in
the main paper are for the bolded noise type in Table 1, with 40% synthetic noise. Additional results
for other noise types can be found in the appendices.

5.2 Model Selection and Evaluation

We run LEMON on each dataset, using the training split of each dataset to compute nearest neighbors.
In classification datasets, we use the discrete metric dY(y,y′) = 1y=y′ . In all other cases and for dX ,
we utilize cosine or euclidean distance computed in the embedding space of a pretrained CLIP model,
selecting the best distance metric on the validation set for LEMONOPT, and keeping the distance as
the cosine distance for LEMONFIX. In mimiccxr, we use BiomedCLIP (ViT-B/16) [81], and we use
OpenAI CLIP ViT-B/32 [59] for all other datasets. A full list of hyperparameters for our method and
the baselines are in Appendix G.
For LEMONOPT, we select the hyperparameter combination that maximizes F1 on a labeled validation
set. We report the AUROC, AUPRC, and F1 for this model. For LEMONFIX, we fix the hyperparame-
ters at the following reasonable values: k = 30, β = γ = 5, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5.
We report AUROC and AUPRC, as the F1 requires additional information to compute a threshold for
the score. We recognize that access to such a validation set as in LEMONOPT may be unrealistic, but
we will empirically show that (1) our method is fairly robust to selection of these hyperparameters,
(2) only a few hundred labeled samples may be sufficient to select these hyperparameters, (3) using
LEMONFIX with the fixed hyperparameter setting described above achieves nearly comparable results,
and (4) hyperparameters optimized on a dataset with synthetic noise may transfer well to real datasets.
We repeat each experiment three times, using a different random seed for the noise sampling (for
human and real noise, we use a different random data split). Performance metrics shown are test-set
results averaged over these three runs, with error bounds corresponding to one standard deviation.

Baselines We compare our method versus previous state-of-the-art in both the classification and
captioning settings. We additionally adapt several baselines from the classification setting to the
captioning setting. We briefly list the baselines here, and a detailed description is in the Appendix E.
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Table 2: Label error detection performance across classification datasets. We separate AUM, Datamap,
and Confident learning, as they require training a classifier from scratch. Bold denotes best score
within each training approach. A full version of this table with AUPRC can be found in Appendix I.1.

Method cifar10 cifar100 miniImageNet stanfordCars

AUROC F1 AUROC F1 AUROC F1 AUROC F1
AUM 98.3 (0.1) 94.0 (0.1) 92.2 (0.2) 83.8 (0.4) 83.1 (0.2) 75.3 (0.2) 70.5 (2.4) 62.3 (1.2)
Datamap 98.2 (0.1) 93.4 (0.5) 91.8 (0.2) 83.5 (0.6) 85.0 (0.2) 77.0 (0.2) 72.3 (1.8) 64.9 (2.1)
Confident 93.7 (0.4) 92.7 (0.5) 74.1 (1.7) 69.3 (2.0) 70.5 (0.2) 54.7 (0.4) 61.0 (0.5) 43.4 (1.6)

CLIP Logits 95.5 (0.2) 88.0 (0.5) 84.9 (0.7) 75.5 (0.5) 90.0 (0.2) 82.5 (0.2) 68.8 (0.7) 64.9 (0.4)
CLIP Sim. 93.8 (0.1) 86.9 (0.4) 78.5 (0.6) 69.2 (1.3) 89.3 (0.2) 81.3 (0.5) 69.8 (0.6) 61.7 (0.8)
Simifeat-V 90.6 (0.3) 88.0 (0.4) 79.5 (0.0) 73.1 (0.5) 68.2 (0.3) 55.0 (0.5) 63.7 (1.2) 43.7 (1.5)
Simifeat-R 90.7 (0.3) 88.1 (0.5) 79.7 (0.2) 73.6 (0.6) 68.0 (0.3) 54.7 (0.4) 63.5 (1.3) 43.4 (1.6)
Discrepancy 77.1 (1.9) 68.2 (1.9) 66.0 (1.5) 51.9 (1.8) 79.4 (0.3) 69.8 (0.4) 65.7 (0.7) 59.9 (0.4)
Deep k-NN 97.8 (0.1) 92.5 (0.5) 87.4 (0.3) 78.0 (0.3) 83.2 (0.2) 75.2 (0.4) 71.4 (0.6) 65.3 (0.9)
LEMONFIX (Ours) 97.7 (0.2) - 88.9 (0.7) - 89.5 (0.2) - 72.6 (0.7) -
LEMONOPT (Ours) 98.1 (0.0) 93.1 (0.2) 90.8 (0.0) 81.3 (0.2) 90.2 (0.2) 82.3 (0.1) 73.1 (0.5) 67.3 (1.0)

Classification In the classification setting, we experiment with the following baselines which
require training a classifier on the particular dataset: AUM [57], Datamap [67], and Confident
Learning [53], and the following baselines which do not require classifier training: Deep k-NN [2],
SimiFeat [82]-Voting and Ranking, discrepancy in the image space (Discrepancy) (ΥDIS

X from [69])
CLIP Similarity [30], and CLIP Logits [37, 14].

Captioning In the captioning setting, we compare our method with LLaVA [44] prompting (v1.6-
vicuna-13b), and CapFilt [35]. We note that the latter can be viewed as an oracle for natural image
captioning, as it has been trained in a supervised manner on clean mscoco data. CLIP Similarity [30],
Discrepancy [69], and Datamap [67] can also be used directly in this setting. Finally, to adapt
classification baselines to captioning, we embed the captions using the corresponding CLIP text
encoder, and then use K-means clustering to assign the text caption into one of 100 clusters. We then
apply Deep k-NN [2] and Confident Learning [53], using the cluster ID as the discretized class.

6 Results

Table 3: Label error detection performance on captioning datasets. Bold denotes best (highest) score.
A full version of this table with AUPRC can be found in Appendix I.2.

Method flickr30k mscoco mmimdb mimiccxr

AUROC F1 AUROC F1 AUROC F1 AUROC F1
LLaVA 79.3 (0.8) 65.0 (1.1) 80.3 (0.1) 74.9 (0.3) 58.4 (0.2) 58.5 (0.1) 53.9 (0.5) 28.7 (0.1)
Datamap 54.0 (1.8) 28.2 (2.1) 49.9 (0.7) 28.6 (0.0) 50.1 (0.5) 28.9 (0.3) 50.2 (0.9) 28.9 (0.4)
Discrepancy 73.0 (0.6) 64.7 (1.7) 72.7 (0.3) 67.3 (0.9) 57.4 (0.4) 40.2 (1.7) 60.0 (0.8) 32.8 (2.8)
Deep k-NN 71.1 (0.4) 64.8 (2.7) 76.6 (0.4) 73.2 (0.3) 58.7 (0.7) 44.5 (1.0) 62.9 (0.4) 46.0 (4.4)
Confident 61.6 (0.5) 54.3 (0.8) 66.4 (1.2) 58.9 (1.5) 52.8 (0.8) 53.6 (0.7) 60.2 (0.3) 59.4 (0.1)
CLIP Sim. 94.8 (0.5) 88.1 (0.7) 93.8 (0.2) 87.5 (0.3) 85.1 (0.3) 74.5 (0.3) 64.1 (0.4) 48.6 (3.4)
LEMONFIX (Ours) 93.6 (0.2) - 92.0 (0.1) - 84.3 (0.3) - 66.5 (0.2) -
LEMONOPT (Ours) 94.5 (0.2) 87.7 (0.9) 95.6 (0.2) 89.3 (0.2) 86.0 (0.1) 76.3 (0.1) 70.4 (2.3) 57.0 (1.6)

CapFilt (Supervised Training) 98.6 (0.1) 94.8 (0.5) 99.3 (0.0) 96.2 (0.3) 82.7 (0.7) 71.6 (0.8) 49.2 (0.3) 28.5 (0.0)

6.1 LEMON Outperforms Baselines on Label Error Detection

Classification In Table 2, we show the performance of LEMON against the baselines for label error
detection on classification datasets. We find that our method outperforms existing baselines which
do not require classifier training on both CIFAR-10 and CIFAR-100. Two downstream-task specific
approaches AUM and Datamap outperform all training-free models (particularly on CIFAR-10), but
LEMON performs comparably (within 2%) to these methods, and is consistently within the top-3
methods. Similar results are also observed on the two synthetic error types (see Appendix Table I.2).
We find that LEMONFIX performs almost comparably with LEMONOPT.

Captioning In Table 3, we find that our method outperforms existing neighborhood and similarity-
based baselines. Our model underperforms a fully supervised oracle-like model (CapFilt), where the
supervision and training objective includes distinguishing between accurate and incorrect captions.
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Figure 3: Downstream classification accuracy on cifar10
(left) and cifar100 (right) with LEMONOPT with human
noise versus the baselines. Note that the noise prevalence
is 40% in both datasets.

Dataset Method B@4 CIDER ROUGE

flickr30k

No Filtering 28.1±1.1 64.6 ±2.6 49.6±0.7
CLIP Sim. 29.7±1.0 71.8 ±1.8 50.7±0.5

LEMONOPT 29.6±0.9 71.2 ±2.0 50.7±0.6
Clean 30.8±0.5 74.1 ±1.2 51.7±0.4

mscoco

No Filtering 35.1 ±0.4 116.7 ±1.5 56.4±0.4
CLIP Sim. 37.9 ±0.4 126.7 ±0.7 58.4±0.3

LEMONOPT 38.4 ±0.2 127.3 ±0.2 58.5±0.1
Clean 38.0 ±0.2 126.9±0.5 58.4±0.2

Table 4: Downstream captioning per-
formance when removing 40% sam-
ples with highest mislabel scores. We
observe that filtering noisy data with
LEMONOPT improves captioning.

Results for synthetic error types show similar trends (see Appendix I.2). We present ablations of
various components of LEMON in Table I.9,

Label Error Detection Performance Consistent Across Noise Ranges In Figure I.1, we show the
performance of LEMON versus the CLIP similarity baseline on mscoco and mmimdb, varying the
level of the synthetic noise. We find that our method performs better uniformly across noise levels.

Robustness to Hyperparameters Here, we test the robustness of our method when there is no
labeled validation set available. First, in Appendix I.4, we visualize the F1 of the selected score when
varying β and γ, keeping all other hyperparameters at their selected optimal values. We find that for
most datasets and noise types, there is a reasonably large space of such hyperparameters, bounded
away from the origin, which achieves close to optimal performance.
Next, we compare the performance of LEMONOPT and LEMONFIX with hyperparameters described
in Section 5.2 across all datasets in Table I.8. We find that when there is no labeled validation set
available, using these hyperparameters results in an AUROC drop of only 1.6% on average (std =
1.3%), with a worst-case AUROC drop of 3.9% across all 18 dataset and noise type combinations.
Thus, even when a labeled validation set is not available, LEMONFIX with reasonable hyperparameter
settings is able to outperform most baselines which do use such information.

6.2 Filtering Mislabeled Data Improves Downstream Performance

Classification To assess the impact of label error detection on the performance of the downstream
classification tasks, we filter out samples from the training set with mislabel scores in the top q
percentile. We vary q, train ViT [13] models on the filtered dataset, and evaluate the downstream test
accuracy using clean data. In Figure 3, we find that training with LEMONOPT filtered samples leads to
the highest accuracy on cifar10 (96.84%), after removing more than 20% of the data. Training with
LEMONOPT filtered samples is also on par with baselines on the other datasets (either outperforming
or within 0.5% points of best baseline) as shown in Appendix I.12. Further, unlike other baselines,
LEMoN is consistently in the top-2 best performing methods across all four datasets.

Captioning We finetune a pre-trained Huggingface checkpoint of a transformer decoder conditioned
on CLIP image and text tokens – the GenerativeImage2Text (GIT) [73] model – to generate captions.
Given the large size of the model, we use the parameter-efficient Low-Rank Adaptation (LoRA) [24]
for all captioning models. We train models with clean data, noisy captions (No Filtering), and by
filtering data detected as being mislabeled by a label detection method. In Table 4, we compare
results of using either our model or a strong baseline (CLIP Sim.) for filtering data, as measured by
the BLEU-4 [56], CIDER [72], and ROUGE [40] scores. In all cases, we filtered out the top-40%
percentile of data predicted to be mislabeled (i.e., equal to the expected prevalence of noisy data). We
find that (1) filtering out data predicted to be mislabeled helps recover performance as compared to
training on fully clean data along multiple metrics, and (2) our method performs comparably to the
baseline in improving downstream results, with some marginal improvements over CLIP Similarity
on mscoco.

6.3 Is External Pretraining Required?

Thus far, all of the results for LEMON (and CLIP Similarity) have utilized CLIP models which
have been pretrained on external datasets (e.g. PMC-15M in the case of BiomedCLIP). Here, we
examine whether this is necessary, or whether we can achieve comparable performance by pretraining
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Table 5: Performance of LEMON versus the CLIP similarity baseline on mimiccxr, when external
pretrained models may not be available. BiomedCLIP [80] is trained on a large corpus of biomedical
image-text pairs. We find that pretraining only on noisy data from MIMIC-CXR outperforms
BiomedCLIP, though pretraining on clean mimiccxr data (as in CheXzero [70]) does perform better.

Random Noise Cat. Noise
AUROC AUPRC F1 AUROC AUPRC F1

BiomedCLIP Clip Sim. 66.8 (0.8) 54.4 (0.9) 54.3 (1.0) 64.1 (0.4) 51.7 (0.5) 48.6 (3.4)
LEMONFIX (Ours) 69.5 (0.7) 57.8 (1.0) - 66.5 (0.2) 54.8 (0.4) -
LEMONOPT (Ours) 73.1 (0.9) 63.0 (2.0) 63.1 (3.6) 70.4 (2.3) 60.3 (2.3) 57.0 (1.6)

CLIP Pretrain On
Noisy Data

Clip Sim. 78.8 (0.1) 73.4 (0.5) 70.7 (0.5) 76.5 (0.5) 71.2 (0.4) 67.9 (0.7)
LEMONFIX (Ours) 80.5 (0.1) 76.1 (0.5) - 77.0 (0.5) 72.4 (0.3) -
LEMONOPT (Ours) 80.5 (0.1) 76.7 (0.3) 72.8 (0.7) 77.2 (0.8) 72.4 (0.6) 68.7 (0.2)

CheXzero Clip Sim. 90.8 (0.0) 89.5 (0.0) 82.9 (0.2) 88.4 (0.6) 86.4 (0.7) 79.8 (0.7)
LEMONFIX (Ours) 91.4 (0.1) 90.4 (0.0) - 88.4 (0.7) 87.0 (0.6) -
LEMONOPT (Ours) 91.6 (0.3) 90.5 (0.4) 84.4 (0.5) 89.0 (0.3) 87.0 (0.6) 80.9 (0.6)

CLIP from scratch only on the noisy data. We select mimiccxr as it has the most samples out of
all captioning datasets. Similar to CheXzero [70], we pretrain a CLIP ViT B/16 from scratch on
the mimiccxr training set with 40% noise. We train this model for 10 epochs with a batch size of
64, and do not do any model selection or early stopping. We then apply LEMON and the CLIP
similarity baseline using this model, for the same noise level and noise type. We present our results
in Table 5. Surprisingly, we find that pretraining CLIP only on noisy data from MIMIC-CXR actually
outperforms BiomedCLIP. This could be attributed to the pretraining domain (chest X-rays and
radiology notes) matching the inference domain exactly [52]. As an upper bound, we evaluate the
same methods using CheXzero [70], which has been pretrained on clean MIMIC-CXR data. We
find that, as expected, it far outperforms our method. We conclude that, for large noisy datasets,
pretraining a CLIP model from scratch could be a viable solution, though pretraining on clean data
from the same domain is certainly superior.

6.4 Real-World Analysis

We conduct a preliminary study of LEMON on real datasets without known label errors. We run
LEMONFIX and the CLIP similarity baseline on cifar10, cifar100, flickr30k, and mscoco. As
no labeled validation set is available, we use optimal hyperparameters from models previously run on
each dataset with synthetic noise from Section 6.1 (shown in Appendix I.9). For each dataset, we
select the top 200 images from the validation and test splits with the highest mislabel scores. We then
manually annotated each sample to determine whether it was mislabeled. During labeling, images
were randomly selected, so the labeler is unaware of whether the candidate image originated from
the baseline or our method. We present the accuracy of each method in Table I.14. We find that our
method outperforms the baseline for every dataset, though we recognize that this is a small-scale study
and that many images are ambiguous. Examples of real-world mislabels can be found in Figures 1
and I.5. We present a further comparison of our identified error sets in cifar10 and cifar100 with
a prior work [54] which obtained crowd-sourced labels for these datasets in Appendix I.11.

7 Conclusion

In this work, we proposed LEMON, a novel method that leverages the neighborhood structure of
contrastively pretrained multimodal embeddings to automatically identify label errors in image-
text datasets. Through experiments on multiple datasets with synthetic and real-world noise, we
demonstrated LEMON’s effectiveness in detecting label errors and its ability to improve downstream
model performance when used as a dataset filtering tool.

Limitations In this work, we primarily rely on existing open-sourced datasets. While some parts
of these datasets may have been used as training data in large pretrained vision-language models,
we specifically chose pre-trained models that take care not to include the test sets of such datasets.
Further, we run experiments on a real-world healthcare dataset (mimiccxr) to verify our results.
Additionally, we have not assessed label error detection on synthetic instance-dependent [82] noise,
which is an area of future work. Finally, in our evaluations, we assume that there exists an oracle
binary indicator for whether a sample is mislabeled. As we saw in practice, real-world mislabels
contain much more uncertainty and ambiguity, e.g. due to blurry images and differing interpretations
of text [54, 16, 5, 4, 20, 19]. Evaluating the effectiveness of our score as a measure of this uncertainty,
in the case of a non-binary target, is an area of future work.
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A Theoretical results

A.1 CLIP as Noise Detector

In this section, we present a theoretical analysis of the impact of noisy labels in multimodal learning.
Specifically, we illustrate that multimodal embeddings are robust when there is noise in one modality,
which consequently can be leveraged as noisy detectors in our proposed method.
Let X and Y denote the input space of two modalities.
The objective of multimodal representation learning is to find an encoder for each modality: hX

θ :

X → Rd, and hY
θ : Y → Rd simultaneously, which is usually realized by minimizing over

multimodal contrastive learning loss such as CLIP loss [59]. We define the multimodal distance as
dmm(hX

θ (x), hY
θ (y)) which measures the distance the embeddings from two modalities respectively.

To further proceed with our analysis, we first define y ∈ Y to be the correct label for x and y′ ∈ Y be
the noisy label obtained by flipping y with probability p, chosen uniformly at random from the set of
incorrect labels Y \ {y}. Additionally, we assume hX

θ : X 7→ Rd and hY
θ : Y 7→ Rd to be Lipschitz

continuous with Lipschitz constants LX and LY .

Proposition A.1. Let the objective function L(hX
θ , hY

θ ) be the CLIP loss:

L(hX
θ , hY

θ , δ) = − 1
2

[
1
N

∑N
i=1 ln

exp(hX
θ (xi)

⊤hY
θ (yi)/δ)∑N

k=1 exp(hX
θ (xk)⊤hY

θ (yi)/δ)
+ 1

N

∑N
i=1 ln

exp(hX
θ (xi)

⊤hY
θ (yi)/δ)∑N

k=1 exp(hX
θ (xi)⊤hY

θ (yk)/δ)

]
Then the multimodal representation loss is robust to label noise and satisfies the following property:

|L(hX
θ (x), hY

θ (y))− L(hX
θ (x), hY

θ (y
′))| ≤ C∥hY

θ (y)− hY
θ (y

′)∥2
where C is a constant.

The above proposition indicates that the CLIP loss change is bounded by the embedding difference,
since it inherently provides robustness to noisy labels due to the properties of cosine similarity and
Lipschitz continuity of the embedding functions. Such robustness enables a multimodal contrastive
learning method to train meaningful embeddings under the presence of noisy input [65, 50]. We will
empirically validate this in Section 6.3, by pretraining CLIP from scratch on noisy input.
Moreover, we demonstrate that the embedding models trained via the contrastive multimodal objective
are natural noisy label detectors.
Theorem A.2 (Contrastive multimodal embedding models detect noisy labels). Suppose Y = R. For
a training dataset D, Suppose ĥX

θ (x) and ĥY
θ (y) are the two embeddings that minimize the empirical

CLIP objective on this dataset. Then, for an input x and its corresponding positive counterpart y,
assume there exists a noisy label y′ such that y′ = y + η where η ∼ N (0, σ2) and |η| ≥ ϵ. Then the
following holds with probability at least 1− δ, where δ is a function of ϵ.

dmm(ĥX
θ (x), ĥY

θ (y)) ≤ dmm(ĥX
θ (x), ĥY

θ (y
′))

Therefore, we can see that multimodal embeddings are inherently capable of detecting mislabeled
pairs, ensuring the distance between the embeddings of positive pairs is smaller than that of negative
pairs. This motivates the use of dmm in LEMON as well as in prior work [30, 37].

A.2 Proof: Proposition A.1

Assumptions:

1. Noise Model: Let y ∈ Y be the correct text label and y′ ∈ Y be the noisy label obtained by
flipping y with probability p, chosen uniformly at random from the set of incorrect labels
Y \ {y}. The noisy text embedding is denoted as g′(y).

2. Embedding Functions: Assume f : X → Rd and g : Y → Rd are Lipschitz continuous
functions with Lipschitz constants Lf and Lg , respectively. This means:

∥f(x1)− f(x2)∥ ≤ Lf (∥x1 − x2∥), ∀x1, x2 ∈ X
∥g(y1)− g(y2)∥ ≤ Lg(∥y1 − y2∥), ∀y1, y2 ∈ Y

3. Robust Loss Function: Let L be a robust loss function that satisfies the following property:

|L(f(x), g(y))− L(f(x), g′(y))| ≤ C(∥g(y)− g′(y)∥)
where C is a constant that depends on the specific choice of L.
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Theorem: Under the above assumptions, the multimodal distance D(f(x), g(y)) = ∥f(x)− g(y)∥
is robust to noise in the text modality, satisfying:

|D(f(x), g′(y))−D(f(x), g(y))| ≤ LgC
′p

where C ′ is a constant that depends on the properties of the embedding space and the set of incorrect
labels.
Proof:

1. By the triangle inequality:

|D(f(x), g′(y))−D(f(x), g(y))| ≤ ∥g′(y)− g(y)∥

2. Since g is Lipschitz continuous and y′ is chosen uniformly at random from the set of
incorrect labels Y \ {y}:

E[∥g(y′)− g(y)∥] ≤ LgE[∥y′ − y∥]

≤ Lg
1

|Y | − 1

∑
y′∈Y \{y}

∥y′ − y∥

≤ LgC
′

where C ′ depends on the properties of the embedding space and the set of incorrect labels.
3. By the linearity of expectation and the noise model

E[∥g′(y)− g(y)∥] = pE[∥g(y′)− g(y)∥ |y′ ̸= y] + (1− p)E[∥g(y)− g(y)∥ |y′ = y]

≤ pE[∥g(y′)− g(y)∥]
≤ LgC

′p

4. Combining steps 1 and 3:

|D(f(x), g′(y))−D(f(x), g(y))| ≤ ∥g′(y)− g(y)∥
≤ E[∥g′(y)− g(y)∥]
≤ LgC

′p

Therefore, the multimodal distance is robust to noise in the text modality, with the deviation bounded
by LgC

′p.

A.3 Proof: Theorem 4.1

Consider the case where there is a batch of two pairs of samples. {(x, y), (x, y′)}, where (x, y) are
labelled as positive pairs and (x, y′) are negative pairs, with ∥y − y′∥ ≥ ϵ. The empirical CLIP loss
for this objective is

LCLIP = −2 log
exp(hxh

⊤
y )

exp(hxh⊤
y ) + exp(hxh′⊤

y )

Since we assume an optimal embedding that satisfies the CLIP objective to be ĥX(xi) := xi,
ĥY (yj) := xi if i = j. Also this embedding model gives all embeddings with norm 1, ∥ĥx

θ (x)∥ =

∥ĥy
θ(y)∥ = 1. It can be shown that the above encoders minimize the above CLIP objective. Recall

that the noisy label is considered as a negative pair (x, y′) where y′ = y+ η and η ∼ N (0, σ2I) with
∥η∥ ≥ ϵ.
Given the above encoders, the cosine similarity for positive pairs is given as

cos(ĥx
θ (x), ĥ

y
θ(y)) = ĥx

θ (x) · ĥ
y
θ(y) = 1

And for the noise label

cos(ĥx
θ (x), ĥ

y
θ(y

′)) = ĥx
θ (x) · ĥ

y
θ(y

′) = ĥx
θ (x) · (y + η)

Since y′ = y + η, we can find expectation E[ĥx
θ (x) · η] = 0 and variance Var(ĥx

θ (x) · η) =

σ2∥ĥx
θ (x)∥2 = σ2, therefore E[ĥx

θ (x) · ĥ
y
θ(y

′)] = ĥx
θ (x) · y = 1.
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Bounding the Cosine Similarity: The cosine similarity for negative pairs becomes:

cos(ĥx
θ (x), ĥ

y
θ(y

′)) = ĥx
θ (x) · (y + η) = 1 + ĥx

θ (x) · η

For the similarity to be less than 1:
ĥx
θ (x) · η < 0

We want:
P
[
ĥx
θ (x) · η < 0

]
= 1− P

[
ĥx
θ (x) · η ≥ 0

]
Using Chebyshev’s Inequality: For ĥx

θ (x) · η:

P
[
ĥx
θ (x) · η ≥ ϵ

]
≤ σ2

ϵ2

Hence,

P
[
(ĥx

θ (x) · η < ϵ)
]
≥ 1− σ2

ϵ2

Using Chebyshev’s inequality, we have:

P
[
cos(ĥx

θ (x), ĥ
y
θ(y)) > cos(ĥx

θ (x), ĥ
y
θ(y

′))
]
≥ 1− σ2

ϵ2

Therefore, we can show that given a pair of multimodal samples (x, y) and another one with noisy
label (x, y′), the cosine similarity of the noisy labels will be smaller with a high probability. It is
worth noticing that the existence of optimal multimodal encoders is a relatively strong assumption.
Our theoretical analysis provides a clear implication for our proposed method and, in return, is
empirically verified by our experimental results.

A.4 Proof: Theorem 4.2

For a correctly labeled sample (X,Y ), We have that kζY (1−p) of the neighbors are relevant and have
correct labels, and so each contribute dX (X, X̄) to Sm(X,Y ), and all remaining samples are either
incorrectly labeled, or are not relevant to Y , and so each contribute dX (X,X ′). Since Sm(X,Y ) is
the sum of iid Gaussians, it is also a Gaussian, with:

E[Sm(X,Y )] =
1

k

(
E[E[d(X, X̄1) + ...+ d(X, X̄kζY (1−p))|ζ]] + E[E[d(X,X ′

1) + ...+ d(X,X ′
k−kζY (1−p))|ζ]]

)
= E[ζY ](1− p)µ2 + (1− E[ζY ](1− p))µ1

= E[ζY ](1− p)(µ2 − µ1) + µ1

Var[Sm(X,Y )] = E[Var(Sm(X,Y )|ζY )] + Var(E[Sm(X,Y )|ζY ])

= E[
1

k

(
ζY (1− p)σ2

2 + (1− ζY (1− p))σ2
1

)
] + Var(ζY (1− p)(µ2 − µ1) + µ1)

=
1

k

(
E[ζY ](1− p)σ2

2 + (1− E[ζY ](1− p))σ2
1

)
+Var(ζY )(1− p)2(µ2 − µ1)

2

Similarly,

S(X ′, Y ′) ∼ N (µ1,
σ2
1

k
)

Putting it all together:

P(Sm(X ′, Y ′)− Sm(X,Y ) > 0) = 1− Φ(
−µ

σ
)

Where µ = E[ζY ](1−p)(µ1−µ2), σ =
√

1
k (E[ζY ](1− p)σ2

2 + (2− E[ζY ](1− p))σ2
1) + Var(ζY )(1− p)2(µ2 − µ1)2,

and Φ is the Gaussian CDF. Note that Var(ζY ) is finite as ζY is bounded by [0, 1].
Setting µ > 0 gives Lemma 4.3.
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Figure A.1: Histogram of cosine distances in the CLIP image embedding space

A.5 Empirically Validating Assumption 2

To empirically validate Assumption 2, we utilize the training sets from the original CIFAR-
10 and CIFAR-100 datasets. As these are classification datasets, we naturally define J as:
x2 ∈ J (x1) ⇐⇒ y1 = y2, i.e. all images with the same label are paraphrases. We encode these
images using the image encoder from OpenAI CLIP ViT-B/32 [59], and utilize the cosine distance as
dX . We compute pairwise distance between all 40,000 samples, and categorize these distances into
either x′ ∈ J(x) or x′ ̸∈ J(x). We plot a histogram of these distances in Figure A.1. Visually, both
of these distributions appear to be normal, and we also observe that µ1 > µ2 from Lemma 4.3. We
then run a Shapiro–Wilk test on all four distributions to test for normality, randomly subsampling
to 100 samples, as the Shapiro-Wilk test is not suitable for large sample sizes [18]. We find that in
all four cases, the null hypothesis cannot be rejected (p > 0.05), and the test statistics are all greater
than 0.97, indicating a high degree of normality.

B Comparison with [69]

The goal of [69] to identify samples with semantic diversity, which is different from our goal of
identifying mislabeled examples. As such, their proposed scores (i.e. ΥDIS and ΥDIV ) may not
be effective in identifying mislabeled samples. As an example, consider the score ΥDIS

Y , which
computes the similarity between the original caption, and the captions of its second-degree neighbors
in text-space. Given a particular caption, e.g. “This is a plane from the front view” in Figure 2, it
could have second-degree neighbors in text-space that are semantically very similar to this caption
(e.g. “A plane facing the viewer”). However, only computing the distance of these captions in text
space does not provide any signal for whether the image is correctly paired to the caption. Similarly,
the ΥDIV scores also would not necessarily work, as the closeness of neighbors to each other in
either modality do not provide a signal for whether the original sample is mislabeled.
However, the score from [69] that would intuitively provide a signal for mislabeling is ΥDIS

X , which
computes second-degree neighbors in text space, then examines similarity between images. This is
essentially the sum over dX (x,xmj ) terms in our Equation (??), but using second-degree neighbors
instead of nearest neighbors. In addition, our Equation (??) contains two additional weighting terms
(which we show improve label error performance in our ablation experiments). Finally, our proposed
score contains the sum of two additional terms, which are not explored in [69].
We compare the performance of our method against the ΥDIS

X score in the main paper, and show
performance of all four scores from [69] in Appendix I.7.

C LEMON Algorithm

[H] Dataset D = {(xi,yi)}Ni=1, Multimodal encoders hX
θ , hY

θ , Distance functions dX , dY
Hyperparameters: k, β, γ, τ1,n, τ2,n, τ1,m, τ2,m Scores {si}Ni=1

Cache embeddings hX
θ (xi) and hY

θ (yi) for (xi,yi) ∈ D Cache dmm(xi,yi) = 1 −
hX
θ (xi)·hY

θ (yi)

∥hX
θ (xi)∥2∥hY

θ (yi)∥2
for (xi,yi) ∈ D
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i = 1 N Find indices {nj}kj=1 of k nearest neighbors of xi from D \ {(xi,yi)} using dX *dX can
use cached hX

θ

Find indices {mj}kj=1 of k nearest neighbors of yi from D\{(xi,yi)} using dY *dY can use cached
hY
θ

Compute sn,i :=
1
k

∑k
j=1 dY(yi,ynj

)e−τ1,ndX (xi,xnj
)e−τ2,ndmm(xnj

,ynj
)

Compute sm,i :=
1
k

∑k
j=1 dX (xi,xmj

)e−τ1,mdY(yi,ymj
)e−τ2,mdmm(xmj

,ymj
)

si := dmm(xi,yi) + βsn,i + γsm,i

s

To summarize, for each image-caption pair in the dataset, we first compute how similar the image
and caption are to each other using a pre-trained CLIP model, which gives a basic measure of how
well they match. Then, we compute the nearest neighbors of the caption among other captions in
the dataset. For each neighbor, we look at how similar their corresponding image is to the original
image. The intuition is that if a sample is correctly labeled, the image should be similar to images
of other samples with similar captions. We weight each neighbor based on how close it is to our
original sample and how well-matched the neighboring pairs themselves are. Finally, we repeat this
for nearest neighbors in the image space. LEMoN is then the weighted sum of these three scores.

D Data Processing

D.1 Classification

We utilize CIFAR10N (cifar10) and CIFAR100N (cifar100) object detection [82] datasets for all
classification-based experiments. Each image is associated with a label indicating the primary object
present in the image. These datasets contain 50,000 image-label pairs, with a clean and noisy label
available per image. The noisy labels are examples of real human errors within the dataset. Further,
we also generate synthetically noised labels as described in the main text. All images are resized
to 224x224, center cropped, and normalized using mean and standard deviations corresponding to
CLIP during the pre-processing stage. These two datasets are released under the Creative Commons
Attribution-NonCommercial 4.0 license.
For miniImageNet and stanfordCars, we use the “red” datasets from [28], which contain
noise from real-world web annotators. We split the full dataset (containing all annotations) into
75%/12.5%/12.5% train/val/test sets, stratifying by the mislabel flag. The annotations are licensed by
Google under CC BY 4.0 license, and the images are under CC BY 2.0 license.

D.2 Captioning

We preprocess MSCOCO [42] and Flickr30k [78] by using the Karpathy split [31], and then selecting
one random annotation from the ones available. For the MMIMDB dataset [1], we utilize the plot
outline as the text, and use the dataset splits provided. For MIMIC-CXR [29], we use all images
in the database and the provided data splits, and extract the findings and impression sections from
the radiology note for the text modality. Images were normalized and transformed using the same
procedure described above.
For downstream captioning, we use the pre-trained tokenizer and image processor corresponding to
the pre-trained model (GIT [73]) to pre-process image and captions.
Note that flickr30k is available under Flickr terms of use for non-commercial research and/or
educational purposes4. mscoco is available under Creative Commons Attribution 4.0 License.
mmimdb is available for personal and non-commercial use5. Finally, mimiccxr is available under the
PhysioNet Credentialed Health Data License 1.5.06.

4https://shannon.cs.illinois.edu/DenotationGraph/
5https://developer.imdb.com/non-commercial-datasets/
6https://physionet.org/content/mimic-cxr/view-license/2.0.0/
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E Baseline Methods

E.1 Classification

Training-dependent

AUM [57]: This model assumes access to a classifier that can predict the class that an image likely
belongs to. Then, the margin of difference between the prediction probability from the trained
classifier for the assigned class and the class with the (next) highest probability is computed and
averaged over training epochs. This score is thresholded to identify potential label errors.
Datamap [67]: Similar to AUM, this method requires access to a pretrained classifier. In this baseline,
it is assumed that instances with label errors are ‘hard to learn’, and thus low confidence in prediction
throughout training epochs. To produce a single score, we combine the mean and standard deviation
of the probability associated with the assigned class into a single score7.
Confident Learning [53] is designed to identify labeling errors in classification datasets by modeling
the relationship between true class labels and noisy ones. It sets thresholds for each true-noisy label
pair. Using these thresholds, the model employs predicted class probabilities to rank predictions for
each class, filtering out the noisy data.

Training-free

CLIP Logits [37]: CLIP is used as a zero-shot classifier to obtain the softmax-based probability
for the assigned class. This value is then thresholded to identify label errors. Recently, [14] used
a similar zero-shot prediction jointly with a semi-supervised training approach for learning in the
presence of label noise.
CLIP Similarity [30]: The distance (either euclidean or cosine) between image and text embeddings
from CLIP are computed and thresholded.
Deep k-NN[2] The proportion of k nearest neighbors8 with the same label is computed for each image
of interest. Prior works have utilized different representations for obtaining neighbors, including logits
and representations from pre-trained [82] vision models. We find that pre-trained representations
from CLIP outperformed logits from a zero-shot CLIP classifier [82].
SimiFeat [82] uses nearby features to detect noisy labels under the assumption that local groups of
features share clean or noisy labels. SimiFeat-V [82] uses local voting and SimiFeat-R leverages
ranking to detect noisy labels based on HOC estimator. The binary outputs produced are used for
all score computations. Note that the difference between Simifeat-V and deep k-NN is in the data
processing and augmentation.
Discrepancy [69] finds second-degree nearest neighbors in the text space, then computes the average
distance of these neighbors to the original sample in image space. We utilize the same CLIP model to
compute semantic distance here as in LEMON.

E.2 Captioning

Pre-trained or Supervised

LLaVA [44]: We prompt LLaVA (v1.6-vicuna-13b) with the following prompt: The proposed
caption for this image is "{}". Is this caption correct? Only answer with
"Yes" or "No". We examine the probability distribution over the first non-special token, and find
the likelihood of the token with the highest probability. If the corresponding token in lower case starts
with “yes”, we return 1− this probability as the mislabel score. Otherwise, we return the probability.
CapFilt (oracle-like): We generate predictions using pre-trained model trained on distinguishing
between high-quality MSCOCO and noisy synthetic captions [35]. This forms an oracle-like, fully
supervised baseline.

Unsupervised

Datamap: We compute the cross-entropy across training epochs and compute the ratio of the mean
and variance in loss across epochs. That is, we expect captioning loss for instances with label errors

7We experimented with different strategies, and the square root of the product of the mean and (1-standard
deviation) and (1-mean) and standard deviation led to comparable, high validation F1 scores.

8Note that this score is not continuous.
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to be consistently high. We train captioning models for 3 epochs, with LoRA rank set to 4, and a
maximum length of 1009 for the finetuning task.
Confident Learning: We adapt this approach for dual-modality datasets, such as image-text pairs, by
clustering text embeddings to serve as class labels for noise detection.

Downstream-task Unaware
Deep KNN: We cluster captions similar to confident learning, adapting classification baseline.
CLIP Similarity: This is the same setup as classification.
Discrepancy: This is the same setup as classification.

F Compute Setup

We run our experiments on a shared Slurm cluster. Each experiment used one RTX A6000 with 48
GB VRAM, 10 CPU cores of Intel Xeon Ice Lake Platinum 8368, and 50 GB RAM.

G Hyperparameters in Label Error Detection

G.1 Classification

1. AUM, Datamap: learning rate ∈ {5e− 5, 5e− 6}, training for epochs ∈ {5, 10}10

2. Confident learning: learning rate ∈ {5e − 7, 5e − 6, 5e − 5}, upto 30 epochs with early
stopping with a patience of 10.

3. CLIP Sim.: cosine distance metric, no other hyperparameters

4. CLIP Zero shot: distance metric

5. Discrepancy: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}
6. deep k-NN: k, cosine distance metric

G.2 Captioning

For most baselines requiring a class index–obtained by clustering captions–we set the number of
clusters to be 100.

1. LLAVA: Small amount of prompt tuning

2. Confident learning: learning rate ∈ {5e − 7, 5e − 6, 5e − 5}, upto 30 epochs, number of
clusters

3. CLIP Zero shot: distance metric (either cosine or euclidean)

4. deep k-NN: representation type, k ∈ {1, 2, 5, 10, 15, 20, 30, 50}, distance metric (either
cosine or euclidean)

G.3 Our Method

We search the following hyperparameters for our LEMONOPT:

1. k ∈ {1, 2, 5, 10, 15, 20, 30, 50}
2. Distance metric (either cosine or euclidean)

3. β, γ, τ1,n, τ2,n, τ1,m, τ2,m: We take the hyperparameter set which achieves the best valida-
tion set F1 from these two strategies: (1) Using Scipy’s minimize function, with initial
guess (1, 1, ..., 1), and with no explicit bounds. (2) Using a grid search with the following
grid:

• β ∈ {0, 5, 10, 15, ..., 100}
• γ ∈ {0, 5, 10, 15, ..., 100}
• τ1,n, τ2,n, τ1,m, τ2,m ∈ {0, 1, 5, 10}

9This is longer than captions in the train sets of all datasets except the medical dataset, and we verified that
higher maximum length does not change results.

10Note that we experiment with training for fewer epochs to avoid memorization, following [57].
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Figure I.1: Test-set performance of LEMONOPT compared to the CLIP similarity baseline for varying
levels of the synthetic noise.

H Hyperparameters in Downstream Models

H.1 Classification

We train a Vision Transformer (ViT)-based image classification [13]11 model pre-trained on
ImageNet-21k [60] and fine-tuned on ImageNet 2012 [61] with an additional linear layer. We
add a linear layer above the classification logits, with an initial learning rate of 0.01, and learning rate
scheduling for 10 epochs, and early stopping with a patience of 3. For miniImageNet, we use linear
probing with just a layer added on top of the standard ViT classification logits (since the pre-trained
task matches the downstream task to an extent).

H.2 Captioning

The hyperparameter tuning grid for the captioning model12 are: learning rate in {1e − 5, 1e − 4},
batch size: 16, maximum number of epochs: 10. The model checkpoint from the epoch with lowest
validation loss is used for caption generation at test time. For LoRA, we use a rank in {4,16}. For text
generation, we use beam search with 4 beams, following [73]. We use the AdamW optimizer [46],
with cosine scheduling for learning rate with 1000 warmup steps.

I Additional Experimental Results

I.1 Label Error Detection in Classification Settings

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can
be found in Table I.1.
The performance of all baselines and our method on the two types of synthetic errors are shown in
Table I.2, all at a noise level of 40% (comparable to the amount of error in the noisy CIFAR datasets).

I.2 Label Error Detection in Captioning Settings

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can
be found in Table I.3.
Results on the remaining synthetic noise types (at 40%) can be found in: flickr30k I.4, mscoco I.5,
mmimdb I.6, and mimic-cxr I.7. Across all datasets and noising types, we find that our model
outperforms other non-oracle/supervised baselines.

I.3 Varying Noise Level

We show the AUROC for varying noise levels in Figure I.1.
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Figure I.2: F1 of our method for varying β and γ, keeping all other hyperparameters their fixed
optimal values.
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Table I.1: Label error detection performance on classification datasets.

Dataset Method Training-free AUROC (%) AUPRC (%) F1 (%)

cifar10

AUM
✗

98.3 (0.1) 97.9 (0.1) 94.0 (0.1)
Datamap 98.2 (0.1) 97.6 (0.1) 93.4 (0.5)

Confident 93.7 (0.4) 89.4 (0.6) 92.7 (0.5)

CLIP Logits

✓

95.5 (0.2) 93.9 (0.3) 88.0 (0.5)
CLIP Sim. 93.8 (0.1) 92.4 (0.2) 86.9 (0.4)
Simifeat-V 90.6 (0.3) 87.9 (0.7) 88.0 (0.4)
Simifeat-R 90.7 (0.3) 88.0 (0.4) 88.1 (0.5)

Discrepancy 77.1 (1.9) 70.4 (2.7) 68.2 (1.9)
Deep k-NN 97.8 (0.1) 96.5 (0.2) 92.5 (0.5)

LEMONFIX (Ours) 97.7 (0.2) 96.8 (0.3) -
LEMONOPT (Ours) 98.1 (0.0) 97.4 (0.1) 93.1 (0.2)

cifar100

AUM
✗

92.2 (0.2) 90.0 (0.4) 83.8 (0.4)
Datamap 91.8 (0.2) 89.4 (0.3) 83.5 (0.6)

Confident 74.1 (1.7) 59.3 (2.2) 69.3 (2.0)

CLIP Logits

✓

84.9 (0.7) 80.3 (1.2) 75.5 (0.5)
CLIP Sim. 78.5 (0.6) 72.1 (0.7) 69.2 (1.3)
Simifeat-V 79.5 (0.0) 71.1 (0.8) 73.1 (0.5)
Simifeat-R 79.7 (0.2) 71.1 (0.8) 73.6 (0.6)

Discrepancy 66.0 (1.5) 57.4 (2.3) 51.9 (1.8)
Deep k-NN 87.4 (0.3) 77.9 (1.0) 78.0 (0.3)

LEMONFIX (Ours) 88.9 (0.7) 84.6 (1.1) -
LEMONOPT (Ours) 90.8 (0.0) 87.4 (0.3) 81.3 (0.2)

miniImageNet

AUM
✗

83.1 (0.2) 73.2 (0.5) 75.3 (0.2)
Datamap 85.0 (0.2) 71.9 (0.7) 77.0 (0.2)

Confident 70.5 (0.2) 52.8 (0.3) 54.7 (0.4)

CLIP Logits

✓

90.0 (0.2) 80.9 (0.5) 82.5 (0.2)
CLIP Sim. 89.3 (0.2) 80.8 (0.3) 81.3 (0.5)
Simifeat-V 68.2 (0.3) 53.0 (0.4) 55.0 (0.5)
Simifeat-R 68.0 (0.3) 52.8 (0.3) 54.7 (0.4)

Discrepancy 79.4 (0.3) 65.6 (0.7) 69.8 (0.4)
Deep k-NN 83.2 (0.2) 70.9 (0.6) 75.2 (0.4)

LEMONFIX (Ours) 89.5 (0.2) 81.5 (0.3) -
LEMONOPT (Ours) 90.2 (0.2) 81.4 (1.3) 82.3 (0.1)

stanfordCars

AUM
✗

70.5 (2.4) 42.8 (1.6) 62.3 (1.2)
Datamap 72.3 (1.8) 39.8 (0.5) 64.9 (2.1)

Confident 61.0 (0.5) 33.2 (1.7) 43.4 (1.6)

CLIP Logits

✓

68.8 (0.7) 39.7 (0.9) 64.9 (0.4)
CLIP Sim. 69.8 (0.6) 40.7 (1.0) 61.7 (0.8)
Simifeat-V 63.7 (1.2) 33.7 (1.2) 43.7 (1.5)
Simifeat-R 63.5 (1.3) 33.2 (1.7) 43.4 (1.6)

Discrepancy 65.7 (0.7) 33.1 (0.6) 59.9 (0.4)
Deep k-NN 71.4 (0.6) 42.7 (0.5) 65.3 (0.9)

LEMONFIX (Ours) 72.6 (0.7) 44.9 (1.4) -
LEMONOPT (Ours) 73.1 (0.5) 40.5 (0.5) 67.3 (1.0)

I.4 Robustness to Hyperparameters

We show the test-set F1 of LEMON for varying β and γ, keeping all other hyperparameters at
their fixed optimal values, in Figure I.2. In Table I.8, we show the performance of LEMON when
hyperparameters are fixed (at k = 30, cosine distance, β = γ = 5, τ1,n = τ1,m = 0.1, and
τ2,n = τ2,m = 5) versus when they are optimized using a labeled validation set. Note that F1 is not
computed as it requires external information to select a threshold.

I.5 Ablations of our Method

Ablations of our method can be found in Table I.9.

11https://huggingface.co/google/vit-base-patch16-224
12https://huggingface.co/microsoft/git-base
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Table I.2: Label error detection performance on synthetic errors

AUROC (%) AUPRC (%) F1 (%)

mean std mean std mean std

Dataset Flip Type Method

cifar10

asymmetric

AUM 93.6% 0.6% 86.6% 0.6% 88.9% 0.8%
Confident 96.2% 0.8% 91.3% 1.6% 95.0% 1.0%

CLIP Logits 98.8% 0.2% 97.9% 0.3% 94.3% 0.4%
CLIP Sim. 98.2% 0.2% 97.1% 0.3% 93.4% 0.1%

Datamap 93.6% 0.5% 86.2% 0.8% 88.2% 0.8%
Simifeat-V 69.8% 0.5% 58.4% 0.9% 60.4% 0.7%
Simifeat-R 70.1% 0.5% 58.5% 1.0% 61.1% 0.7%
Deep k-NN 85.2% 0.7% 66.2% 0.9% 81.1% 1.2%
LEMONFIX 97.5% 0.2% 94.8% 0.6% - -
LEMONOPT 98.8% 0.2% 97.8% 0.5% 94.9% 0.3%

symmetric

AUM 99.8% 0.0% 99.7% 0.0% 98.4% 0.2%
Confident 97.6% 0.4% 94.1% 1.3% 96.8% 0.7%

CLIP Logits 98.5% 0.0% 97.9% 0.1% 93.4% 0.1%
CLIP Sim. 97.9% 0.0% 97.1% 0.2% 92.5% 0.3%

Datamap 99.8% 0.0% 99.7% 0.0% 98.3% 0.1%
Simifeat-V 96.6% 0.0% 94.1% 0.1% 94.3% 0.1%
Simifeat-R 96.4% 0.2% 93.8% 0.5% 94.1% 0.3%
Deep k-NN 99.2% 0.1% 98.1% 0.2% 96.7% 0.3%
LEMONFIX 99.5% 0.1% 99.2% 0.1% - -
LEMONOPT 99.6% 0.1% 99.4% 0.1% 97.3% 0.2%

cifar100

asymmetric

AUM 82.4% 2.0% 67.5% 2.6% 75.2% 1.5%
Confident 63.0% 1.9% 48.4% 1.1% 59.0% 1.5%

CLIP Logits 96.6% 0.3% 94.8% 0.5% 90.1% 0.7%
CLIP Sim. 94.7% 0.5% 92.7% 0.7% 87.3% 0.4%

Datamap 74.0% 1.8% 58.7% 2.3% 65.4% 1.5%
Simifeat-V 65.5% 1.5% 52.5% 1.8% 57.3% 1.9%
Simifeat-R 65.3% 1.3% 53.0% 1.6% 56.7% 1.8%
Deep k-NN 63.3% 0.8% 48.3% 1.1% 55.9% 0.6%
LEMONFIX 94.9% 0.3% 92.1% 0.4% - -
LEMONOPT 96.6% 0.3% 95.1% 0.2% 90.0% 0.5%

symmetric

AUM 99.2% 0.3% 99.0% 0.5% 96.0% 1.0%
Confident 88.3% 0.9% 75.3% 1.7% 85.3% 1.2%

CLIP Logits 96.8% 0.1% 95.2% 0.3% 90.7% 0.4%
CLIP Sim. 95.1% 0.3% 93.2% 0.5% 87.6% 0.0%

Datamap 99.2% 0.4% 98.8% 0.7% 95.9% 1.0%
Simifeat-V 91.2% 0.5% 85.0% 1.2% 84.8% 0.7%
Simifeat-R 90.9% 0.6% 84.6% 1.2% 84.5% 0.9%
Deep k-NN 96.7% 0.1% 91.7% 0.3% 92.3% 0.4%
LEMONFIX 98.4% 0.1% 97.7% 0.2% - -
LEMONOPT 99.0% 0.0% 98.7% 0.1% 95.1% 0.1%
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Table I.3: Label error detection performance on captioning datasets.

Dataset Method AUROC (%) AUPRC (%) F1 (%)

flickr30k

LLaVA 79.3 (0.8) 58.5 (0.2) 65.0 (1.1)
Datamap 54.0 (1.8) 38.8 (0.6) 28.2 (2.1)

Discrepancy 73.0 (0.6) 59.2 (1.8) 64.7 (1.7)
Deep k-NN 71.1 (0.4) 52.0 (1.0) 64.8 (2.7)

Confident 61.6 (0.5) 40.6 (0.6) 54.3 (0.8)
CLIP Sim. 94.8 (0.5) 92.8 (0.5) 88.1 (0.7)

LEMONFIX (Ours) 93.6 (0.2) 92.0 (0.2) -
LEMONOPT (Ours) 94.5 (0.2) 92.8 (0.3) 87.7 (0.9)

CapFilt (Oracle) 98.6 (0.1) 98.1 (0.1) 94.8 (0.5)

mscoco

LLaVA 80.3 (0.1) 63.4 (0.3) 74.9 (0.3)
Datamap 49.9 (0.7) 40.3 (0.5) 28.6 (0.0)

Discrepancy 72.7 (0.3) 67.2 (0.4) 67.3 (0.9)
Deep k-NN 76.6 (0.4) 70.3 (0.6) 73.2 (0.3)

Confident 66.4 (1.2) 52.1 (1.2) 58.9 (1.5)
CLIP Sim. 93.8 (0.2) 93.0 (0.4) 87.5 (0.3)

LEMONFIX (Ours) 92.0 (0.1) 91.8 (0.3) -
LEMONOPT (Ours) 95.6 (0.2) 94.6 (0.3) 89.3 (0.2)

CapFilt (Oracle) 99.3 (0.0) 99.1 (0.0) 96.2 (0.3)

mmimdb

LLaVA 58.4 (0.2) 46.4 (0.2) 58.5 (0.1)
Discrepancy 57.4 (0.4) 45.5 (0.9) 40.2 (1.7)

Datamap 50.1 (0.5) 40.0 (0.3) 28.9 (0.3)
deep k-NN 58.7 (0.7) 45.0 (0.5) 44.5 (1.0)
Confident 52.8 (0.8) 41.4 (0.4) 53.6 (0.7)

CLIP Sim. 85.1 (0.3) 77.8 (0.7) 74.5 (0.3)
LEMONFIX (Ours) 84.3 (0.3) 77.7 (0.8) -
LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 76.3 (0.1)

CapFilt 82.7 (0.7) 73.3 (1.2) 71.6 (0.8)

mimiccxr

LLaVA 53.9 (0.5) 42.7 (0.7) 28.7 (0.1)
Datamap 50.2 (0.9) 39.5 (0.9) 28.9 (0.4)

Discrepancy 60.0 (0.8) 50.3 (0.7) 32.8 (2.8)
deep k-NN 62.9 (0.4) 48.0 (0.3) 46.0 (4.4)
Confident 60.2 (0.3) 45.6 (0.3) 59.4 (0.1)

CLIP Sim. 64.1 (0.4) 51.7 (0.5) 48.6 (3.4)
LEMONFIX (Ours) 66.5 (0.2) 54.8 (0.4) -
LEMONOPT (Ours) 70.4 (2.3) 60.3 (2.3) 57.0 (1.6)

CapFilt 49.2 (0.3) 39.3 (0.6) 28.5 (0.0)

Table I.4: flickr30k: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

flickr30k

noun LLAVA 79.3% 0.8% 58.5% 0.2% 65.0% 1.1%
captfilt 98.6% 0.1% 98.1% 0.1% 94.8% 0.5%

Datamap 54.0% 1.8% 38.8% 0.6% 28.2% 2.1%
Deep kNN 71.1% 0.4% 52.0% 1.0% 64.8% 2.7%
Confident 61.6% 0.5% 40.6% 0.6% 54.3% 0.8%

CLIP Sim. 94.8% 0.5% 92.8% 0.5% 88.1% 0.7%
LEMONFIX 93.6% 0.2% 92.0% 0.2% - -
LEMONOPT 94.5% 0.2% 92.8% 0.3% 87.7% 0.9%

random LLAVA 81.3% 1.0% 65.6% 1.4% 72.2% 1.1%
captfilt 99.9% 0.0% 99.8% 0.0% 98.3% 0.2%

Datamap 50.1% 1.5% 40.6% 1.3% 29.6% 0.9%
Deep kNN 81.1% 1.6% 65.3% 1.8% 73.0% 1.0%
Confident 68.5% 1.8% 52.0% 1.5% 66.3% 1.6%

CLIP Sim. 99.5% 0.1% 99.3% 0.1% 96.4% 0.4%
LEMONFIX 99.4% 0.2% 99.3% 0.2% - -
LEMONOPT 99.5% 0.2% 99.4% 0.3% 96.9% 0.8%
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Table I.5: msccoco: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mscoco

cat LLAVA 80.3% 0.1% 63.4% 0.3% 74.9% 0.3%
captfilt 99.3% 0.0% 99.1% 0.0% 96.2% 0.3%

Datamap 49.9% 0.7% 40.3% 0.5% 28.6% 0.0%
Deep kNN 76.6% 0.4% 70.3% 0.6% 73.2% 0.3%
Confident 66.4% 1.2% 52.1% 1.2% 58.9% 1.5%

CLIP Sim. 93.8% 0.2% 93.0% 0.4% 87.5% 0.3%
LEMONFIX 92.0% 0.1% 91.8% 0.3% - -
LEMONOPT 95.6% 0.2% 94.6% 0.3% 89.3% 0.2%

noun LLAVA 79.4% 0.2% 61.3% 0.3% 72.6% 0.2%
captfilt 98.7% 0.2% 98.4% 0.2% 94.9% 0.4%

Datamap 51.2% 1.4% 39.4% 1.4% 27.8% 0.4%
Deep kNN 76.1% 1.3% 68.9% 1.2% 72.3% 1.0%
Confident 64.6% 1.1% 48.4% 1.1% 55.6% 1.9%

CLIP Sim. 92.1% 0.2% 90.5% 0.2% 84.8% 0.7%
LEMONFIX 90.4% 0.5% 89.5% 0.4% - -
LEMONOPT 92.9% 0.5% 91.5% 0.5% 86.1% 0.3%

random LLAVA 82.6% 0.3% 65.1% 0.6% 76.7% 0.2%
captfilt 99.9% 0.0% 99.9% 0.0% 99.1% 0.1%

Datamap 49.9% 0.2% 40.2% 0.3% 28.6% 0.0%
Deep kNN 93.8% 0.2% 85.8% 0.3% 89.2% 0.5%
Confident 83.5% 1.5% 69.4% 2.3% 80.2% 1.6%

CLIP Sim. 99.5% 0.1% 99.4% 0.1% 97.6% 0.1%
LEMONFIX 99.5% 0.2% 99.4% 0.1% - -
LEMONOPT 99.6% 0.1% 99.5% 0.1% 97.9% 0.1%

Table I.6: mmimdb: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mmimdb

cat

LLAVA 58.4% 0.2% 46.4% 0.2% 58.5% 0.1%
captfilt 82.7% 0.7% 73.3% 1.2% 71.6% 0.8%

Datamap 50.1% 0.5% 40.0% 0.3% 28.9% 0.3%
Deep kNN 58.7% 0.7% 45.0% 0.5% 44.5% 1.0%
Confident 52.8% 0.8% 41.4% 0.4% 53.6% 0.7%

CLIP Sim. 85.1% 0.3% 77.8% 0.7% 74.5% 0.3%
LEMONFIX 84.3% 0.3% 77.7% 0.8% - -
LEMONOPT 86.0% 0.1% 79.4% 0.6% 76.3% 0.1%

noun

LLAVA 59.1% 0.3% 44.2% 0.6% 55.2% 0.2%
captfilt 79.9% 0.1% 66.2% 0.4% 70.0% 0.3%

Datamap 50.3% 0.4% 37.2% 0.7% 28.0% 1.5%
Deep kNN 61.4% 0.1% 44.2% 0.3% 45.3% 4.1%
Confident 52.1% 2.2% 38.0% 1.3% 50.3% 1.6%

CLIP Sim. 82.8% 0.4% 72.8% 0.5% 72.7% 0.4%
LEMONFIX 82.1% 0.4% 72.7% 0.6% - -
LEMONOPT 84.4% 0.2% 75.9% 1.2% 75.2% 0.1%

random

LLAVA 58.5% 0.8% 46.7% 0.5% 58.5% 0.1%
captfilt 84.9% 0.4% 76.4% 0.7% 73.6% 0.2%

Datamap 50.6% 0.2% 40.4% 0.4% 29.3% 0.6%
Deep kNN 62.1% 0.5% 47.3% 0.3% 50.0% 0.6%
Confident 52.9% 1.8% 41.5% 0.9% 54.1% 2.1%

CLIP Sim. 88.1% 0.1% 82.0% 0.2% 78.2% 0.9%
LEMONFIX 87.6% 0.1% 81.9% 0.3% - -
LEMONOPT 89.4% 0.3% 84.1% 0.8% 80.1% 0.4%
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Table I.7: mimiccxr: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mimiccxr

cat

LLAVA 53.9% 0.5% 42.7% 0.7% 28.7% 0.1%
captfilt 49.2% 0.3% 39.3% 0.6% 28.5% 0.0%

Datamap 50.2% 0.9% 39.5% 0.9% 28.9% 0.4%
Deep kNN 62.9% 0.4% 48.0% 0.3% 46.0% 4.4%
Confident 60.2% 0.3% 45.6% 0.3% 59.4% 0.1%

CLIP Sim. 64.1% 0.4% 51.7% 0.5% 48.6% 3.4%
LEMONFIX 66.6% 0.2% 54.8% 0.4% - -
LEMONOPT 70.4% 2.3% 60.3% 2.3% 57.0% 1.6%

random

LLAVA 50.8% 0.4% 40.6% 0.2% 57.1% 0.0%
captfilt 50.8% 0.4% 40.5% 0.7% 28.6% 0.0%

Datamap 51.1% 0.9% 40.7% 0.5% 28.8% 0.2%
Confident 61.1% 0.7% 46.3% 0.5% 60.7% 0.5%

CLIP Sim. 66.8% 0.8% 54.4% 0.9% 54.3% 1.0%
LEMONFIX 69.5% 0.7% 57.8% 1.0% - -
LEMONOPT 73.1% 0.9% 63.0% 2.0% 63.1% 3.6%

Table I.8: We show the AUROC and AUPRC of LEMON when we search for the optimal hyper-
parameters using a labeled validation set (LEMONOPT) and when we use fixed hyperparameters
(LEMONFIX: k = 30, cosine distance, β = γ = 5, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5). The
mean gap in AUROC is -1.6 (1.3), and the mean gap in AUPRC is -1.6 (2.2). Note that F1 is not
computed as it requires external information to select a threshold.

AUROC AUPRC
Dataset Noise Type LEMONOPT LEMONFIX Gap LEMONOPT LEMONFIX Gap

cifar10
asymmetric 98.8 (0.2) 97.5 (0.2) -1.4 (0.1) 97.8 (0.5) 94.8 (0.6) -3.0 (0.1)

real 98.1 (0.0) 97.7 (0.2) -0.5 (0.2) 97.4 (0.1) 96.8 (0.3) -0.5 (0.2)
symmetric 99.6 (0.1) 99.5 (0.1) -0.2 (0.1) 99.4 (0.1) 99.2 (0.1) -0.2 (0.1)

cifar100
asymmetric 96.6 (0.3) 94.9 (0.3) -1.8 (0.0) 95.1 (0.2) 92.1 (0.4) -3.0 (0.2)

real 90.8 (0.0) 88.9 (0.7) -1.8 (0.7) 87.4 (0.3) 84.6 (1.1) -2.8 (0.9)
symmetric 99.0 (0.0) 98.4 (0.1) -0.7 (0.1) 98.7 (0.1) 97.7 (0.2) -1.0 (0.1)

miniImageNet human 90.2 (0.2) 89.5 (0.2) -0.7 (0.2) 81.4 (1.3) 81.5 (0.3) 0.0 (0.1)

StanfordCars human 73.1 (0.5) 72.6 (0.7) -0.7 (0.1) 40.5 (0.5) 44.9 (1.4) 4.3 (0.7)

flickr30k noun 94.5 (0.2) 93.6 (0.2) -0.9 (0.3) 92.8 (0.3) 92.0 (0.2) -0.8 (0.1)
random 99.5 (0.2) 99.4 (0.2) -0.0 (0.1) 99.4 (0.3) 99.3 (0.2) -0.1 (0.2)

mimiccxr cat 70.4 (2.3) 66.5 (0.2) -3.9 (2.1) 60.3 (2.3) 54.8 (0.4) -5.5 (1.9)
random 73.1 (0.9) 69.5 (0.7) -3.6 (0.2) 63.0 (2.0) 57.8 (1.0) -5.1 (1.0)

mmimdb
cat 86.0 (0.1) 84.3 (0.3) -1.6 (0.3) 79.4 (0.6) 77.7 (0.8) -1.7 (0.2)

noun 84.4 (0.2) 82.1 (0.4) -2.3 (0.3) 75.9 (1.2) 72.7 (0.6) -3.2 (0.8)
random 89.4 (0.3) 87.6 (0.1) -1.8 (0.4) 84.1 (0.8) 81.9 (0.3) -2.2 (0.8)

mscoco
cat 95.6 (0.2) 92.0 (0.1) -3.6 (0.1) 94.6 (0.3) 91.8 (0.3) -2.8 (0.1)

noun 92.9 (0.5) 90.4 (0.5) -2.5 (0.2) 91.5 (0.5) 89.5 (0.4) -2.0 (0.3)
random 99.6 (0.1) 99.5 (0.2) -0.1 (0.0) 99.5 (0.1) 99.4 (0.1) -0.1 (0.0)

Table I.9: Performance of our method after ablating various components. We find that mislabel
detection performance almost decreases monotonically as we remove additional components, with
the exception of two metrics on mmimdb where one ablation is statistically comparable to the original
method.

mmimdb mscoco

AUROC AUPRC F1 AUROC AUPRC F1
LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 76.3 (0.1) 95.5 (0.1) 94.5 (0.3) 89.3 (0.3)
−τ1 85.3 (0.3) 78.2 (1.1) 75.4 (0.5) 94.6 (0.3) 93.8 (0.4) 88.0 (0.5)
−τ2 85.4 (0.6) 77.1 (2.4) 75.4 (0.2) 94.7 (0.3) 93.6 (0.5) 87.7 (0.8)
−τ1, τ2 85.4 (0.2) 78.1 (0.7) 75.2 (0.3) 94.7 (0.3) 93.8 (0.5) 88.0 (0.8)
−sn 86.1 (0.3) 79.6 (0.5) 76.1 (1.1) 94.6 (0.3) 93.6 (0.5) 87.5 (0.6)
−sm 85.3 (0.3) 77.9 (0.7) 75.5 (0.4) 94.9 (0.2) 94.0 (0.4) 89.0 (0.6)
−sn, sm (CLIP Sim.) 85.1 (0.3) 77.8 (0.7) 74.5 (0.3) 93.8 (0.2) 93.0 (0.4) 87.5 (0.3)
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I.6 Varying Validation Set Size

In Figure I.3, we examine the effect of varying validation set size (by random subsampling) on
LEMONOPT.

101 102 103

|Val Set|

0.7

0.8

0.9

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(a) mscoco, cat noise

101 102 103

|Val Set|

0.90

0.92

0.94

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(b) flickr30k, cat noise

101 102 103

|Val Set|

0.6

0.7

0.8

0.9

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(c) mmimdb, noun noise

101 102 103

|Val Set|

0.55

0.60

0.65

0.70

AU
RO

C
LEMoNopt

LEMoNfix

CLIP Sim.

(d) mimiccxr, cat noise

Figure I.3: Test-set AUROC of mislabel detection with varying size of the labeled validation set for
LEMONOPT. Note that LEMONFIX and CLIP Sim. do not have any hyperparameters and as such do
not rely on a labeled validation set.

I.7 Empirical Comparison with [69]

In Table I.10, we compare the performance of LEMONOPT against the four scores proposed in [69],
using the datasets and noise types shown in Table 1.

Table I.10: Comparison of label error detection performance of LEMoN versus baselines from [69].
AUROC AUPRC F1

ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT

cifar10 77.1 (1.9) 48.2 (1.2) 50.3 (1.9) 45.0 (1.9) 98.1 (0.0) 70.4 (2.7) 41.2 (1.1) 41.6 (1.6) 38.9 (2.1) 97.4 (0.1) 68.2 (1.9) 29.2 (0.4) 29.2 (0.4) 29.2 (0.4) 93.1 (0.2)
cifar100 66.0 (1.5) 49.4 (1.1) 49.9 (1.4) 49.7 (1.9) 90.8 (0.0) 57.4 (2.3) 39.2 (0.7) 39.9 (1.2) 39.3 (0.8) 87.4 (0.3) 51.9 (1.8) 29.4 (1.4) 32.5 (5.5) 29.4 (0.4) 81.3 (0.2)
miniImageNet 79.4 (0.3) 47.4 (0.5) 64.6 (0.2) 48.0 (0.5) 90.2 (0.2) 65.6 (0.7) 32.5 (0.0) 46.3 (0.2) 32.7 (0.8) 81.4 (1.3) 69.8 (0.4) 28.0 (2.3) 55.8 (2.3) 27.0 (0.9) 82.3 (0.1)
stanfordCars 65.7 (0.7) 50.8 (1.1) 51.9 (0.9) 50.1 (0.5) 73.1 (0.5) 33.1 (0.6) 23.3 (0.7) 24.5 (0.8) 23.4 (0.2) 40.5 (0.5) 59.9 (0.4) 20.6 (1.3) 25.3 (5.6) 20.6 (1.4) 67.3 (1.0)
flickr30k 73.0 (0.6) 53.3 (1.4) 49.9 (2.9) 52.9 (0.2) 94.5 (0.2) 59.2 (1.8) 37.1 (1.8) 33.7 (2.4) 37.0 (0.8) 92.8 (0.3) 64.7 (1.7) 26.2 (0.8) 27.4 (1.7) 26.1 (1.0) 87.7 (0.9)
mimiccxr 60.0 (0.8) 49.6 (0.4) 50.0 (1.3) 49.1 (1.3) 70.4 (2.3) 50.3 (0.7) 39.3 (0.5) 39.8 (1.2) 39.6 (0.7) 60.3 (2.3) 32.8 (2.8) 28.5 (0.0) 28.5 (0.0) 28.5 (0.0) 57.0 (1.6)
mmimdb 57.4 (0.4) 49.8 (0.4) 48.6 (0.4) 50.0 (0.5) 86.0 (0.1) 45.5 (0.9) 40.1 (0.4) 38.9 (0.5) 40.1 (0.5) 79.4 (0.6) 40.2 (1.7) 28.6 (0.1) 29.1 (0.5) 28.9 (0.6) 76.3 (0.1)
mscoco 72.7 (0.3) 48.5 (0.8) 52.9 (0.8) 48.7 (0.3) 95.6 (0.2) 67.2 (0.4) 39.1 (0.5) 42.3 (1.0) 39.3 (0.1) 94.6 (0.3) 67.3 (0.9) 29.7 (0.1) 29.0 (0.2) 28.9 (0.4) 89.3 (0.2)

I.8 Real-World Web Scale Corpus

We conduct an experiment of LEMONFIX on CC3M [7], a large web-scraped dataset of images and
annotations, where we demonstrate the utility of LEMON filtered data on CLIP pretraining. We
download CC3M, which contains 2.9 million valid URLs to image-caption pairs. We then pretrain
a CLIP model (ViT-B/16) from scratch on this dataset for 20 epochs, with a batch size of 128, and
using a cyclic learning rate scheduler with a learning rate of 10−4.
We then use this CLIP model as the basis to compute distances for LEMONFIX, using the reasonable
hyperparameters from the main paper: k = 30, cosine distance, τ1,n = τ1,m = 0.1, and τ2,n =
τ2,m = 5. We then select the 1 million samples with the lowest mislabel scores, filtering out the
1.9 million samples most suspected to be mislabels. We pre-train another CLIP model from scratch
on this subset using the same architecture and setup as above. We evaluate the resulting model on
zero-shot classification using the VTAB benchmark [79], and compare it with CLIP models trained
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using data filtered to 1 million examples using the CLIP similarity baseline, and the original unfiltered
model.
In Table I.8, we find that LEMONFIX marginally outperforms the CLIP similarity baseline on average
zero-shot accuracy, though both underperform pretraining on the full corpus. One likely explanation
of this is that although a large proportion of images in the CC3M dataset are technically “mislabelled”
in that the caption is not a precisely correct description of the image, some substrings of these noisy
captions may, on aggregate, contain useful word associations which the model learns, and thus may
be useful to downstream tasks.
We examine images of images selected to be mislabels by our method in Figure I.4. We find that our
method identifies images that are completely mislabeled – one cause of which is images changing
after they have been indexed. In addition, our method also identifies samples which are ambiguous or
imprecise.

Table I.11: Zero-shot accuracy (%) of various CLIP models on the VTAB benchmark [79]. CLIP
models (ViT-B/16) are pretrained from scratch on a subset of CC3M [7] which has been filtered
to 1 million samples using LEMONFIX and the CLIP similarity baseline, using a version of CLIP
pretrained on the entire dataset.

CLIP Sim. LEMONFIX Unfiltered
caltech101 28.25 28.99 51.43
cifar100 11.02 6.79 18.65
clevr_closest_object_distance 18.11 22.58 25.76
clevr_count_all 12.98 12.65 12.05
dmlab 14.78 16.22 16.62
dsprites_label_orientation 2.44 1.34 1.98
dsprites_label_x_position 3.06 3.20 3.13
dsprites_label_y_position 3.11 2.89 3.20
dtd 6.60 3.94 12.34
eurosat 14.37 22.07 9.93
flowers 6.11 5.19 6.83
food101 4.94 5.31 9.02
pets 7.63 4.69 8.23
sun397 13.89 14.22 24.02
svhn 7.80 12.35 8.00

Average 10.34 10.83 14.08

I.9 Hyperparameters Used for Real-World

We show the hyperparameters used for the real-world experiment in Table I.12. We use k = 30, cosine
distance, and these hyperparameters, which originate from a hyperparameter search on synthetically
noised data. We note that flickr30k has some negative hyperparameters, which we attribute to
overfitting to a relatively small validation set during hyperparameter selection.

Table I.12: Hyperparameters used for the real-world experiment. We use k = 30, cosine distance, and
the hyperparameters below, which originate from a hyperparameter search on synthetically noised
data.

β γ τ1,n τ2,n τ1,m τ2,m

cifar10 20 10 0 5 0 5
cifar100 15 0 0 5 0 0
mscoco 5.324 11.057 5.143 10.498 7.233 15.637
mmimdb 15 5 5 10 5 10
flickr30k 0.092 -0.177 -0.274 -0.074 -0.072 0.000
mimiccxr 5 10 5 10 5 10

I.10 Examples of Detected Real Label Errors

We show additional examples of label errors in Figure I.5.
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fresh milk in the glass on colour
background, illustration

a very young baby girl playing with toys
in a white studio portrait of a stock photo

homes for sale and luxury real estate
including horse farms and property in

the areas
tangled tree roots on a forest trail

a park covered in yellow leaves and
lined with tall trees turning bright yellow

during an autumn day

face of people -- stock
photo #

begin your exercise with a
jump rope easy and funny

evil looking person sitting
atop a hay bale royalty - free

Figure I.4: Sample images and captions from CC3M which have been identified as mislabeled by
LEMONFIX.
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This is a plane from the
front view 

MSCOCO

The emu is sitting in the
dirt near a metal fence.

A WOMAND IN ALL BLACK
BEHIND TO WHITE DOGS

A small house stands in
a small constraining

carriage.

Are you coming with me
for a cup of coffee?

Flickr30k

A young girl celebrating her team
after winning world series in the

world finals held in texas.

A boy in red shirt
playing ball.

The policeman car driving
down the street.

CIFAR100CIFAR10

Leopard

Bus

Lobster

Camel

Automobile

Airplane

Horse

Deer

Figure I.5: Example images in each dataset identified by our method to be mislabels, and labeled as
errors by a human annotator.
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I.11 Comparison with Northcutt et al., 2021 [54]

In Northcutt et al., 2021 [54], the authors utilized confident learning [53] to identify suspected errors
in the test sets of cifar10 and cifar100. They then obtained 5 human labels for each suspected
error using Amazon Mechanical Turk, and confirmed the image to be a mislabel if at least 3 of
5 workers stated so. This amounts to 54 confirmed mislabels in cifar10 (out of 221 suspected),
and 585 confirmed mislabels in cifar100 (out of 1650 suspected). In this section, we compare
the performance of LEMONFIX versus the CLIP similarity baseline on this set. As this set is a
subset of the images identified to be mislabels by confident learning, we are not able to compare our
model performance with confident learning itself. In addition, this presents a pessimistic view (lower
bound) of the performance of our method, as there are many images identified by LEMON which are
mislabeled, but were not selected by confident learning in [54]. We demonstrate examples of these
images in Figure I.6.
In Table I.13, we compare the performance of LEMONFIX with the CLIP similarity baseline on the
error set from Northcutt et al., 2021 [54]. First, we compute the mean ranking of all error set samples
as ranked by each method, out of 10,000 test-set samples. We find that our method ranks error set
samples higher on average than the baseline, though the variance is large. Next, we subset to the
top |CL Set| ranked samples for each method, and compute the percentage of which are actually in
the error set. We note that this precision metric is upper bounded by the precision of the reference
method (confident learning). Again, we find that LEMONFIX outperforms the baseline, and is able to
identify more actual label errors than CLIP similarity at this threshold.

CIFAR10

CIFAR100

idx = 3309
label = deer

idx = 4175
label = cat

idx = 7524
label = cat

idx = 5031
label = camel

idx = 5681
label = seal

idx = 9269
label = pear

Figure I.6: Demonstrative examples of mislabeled samples in cifar10 and cifar100 which have
been identified by our method in the top |CL Set|, but was not identified by confident learning in
Northcutt et al., 2021 [54] and thus was not a part of their error set.

Table I.13: Comparison of LEMONFIX (Ours) with the CLIP similarity baseline on the human labeled
error set from Northcutt et al., 2021 [54]. In this prior work, the authors used confident learning to
identify |CL Set| candidate label errors in cifar10 and cifar100, |Error Set| of which are confirmed
to be mislabels by Mechanical Turkers. Mean Ranking denotes the average ranking of all error set
samples as ranked by each method. Precision @ Top |CL Set| involves taking the top |CL Set| samples
as ranked by each method, and computing the percentage of which are in the error set. Note that
each dataset’s test set consists of 10,000 samples. Numbers in parentheses represent one standard
deviation.

Mean Ranking Precision @ Top |CL Set|
Dataset |CL Set| |Error Set| LEMONFIX CLIP Sim. Oracle LEMONFIX CLIP Sim.
cifar10 275 54 1269.7 (1905.1) 2681.0 (2507.1) 19.64% 6.55% 1.45%
cifar100 2235 585 2357.5 (1981.5) 3642.1 (2719.5) 26.17% 14.41% 10.16%
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Table I.14: We manually label 200 images from real-world datasets that each method identifies as the
most likely to be mislabeled and show the percentage (%) of times where it is actually mislabeled.
Numbers in parentheses are 95% confidence intervals from a binomial proportion.

CLIP Sim. Ours

cifar10 5.5 (3.2) 10.0 (4.2)
cifar100 11.0 (4.3) 20.5 (5.6)

flickr30k 32.5 (6.5) 41.0 (6.8)
mscoco 19.5 (5.5) 25.5 (6.0)

I.12 Downstream Classification with Label Error Detection-based Filtering

Here, we show the impact of filtering out different proportions of the training data based on label
error predictions, and obtaining test performance.

I.12.1 Average accuracy
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Figure I.7: Downstream accuracy on stanfordCars, and miniImageNet.

I.13 Out-of-Domain Robustness

We report the test performance on an Out-of-Domain (OOD) dataset CIFAR-10C [22], when models
are trained on the cifar10 noisy train set, and validated and tested with clean data with early
stopping. The CIFAR-10C dataset contains 19 corruptions applied to the cifar10 test set, with
varying severity of corruption. Then, robustness is measured as the average test top-1 class accuracy
performance on the CIFAR-10C dataset (across all corruption types and severities), following prior
work [12]. We see that: highest robustness is obtained when the proportion of data retained in the
train set = 60%, which matches the degree of noise in the dataset. Thus, this implies that filtering out
atypical samples using LEMoN increases robustness to image corruptions.
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Figure I.8: Downstream accuracy on CIFAR-10C, averaged across all corruption types.
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