
NLEBench+NorGLM: A Comprehensive Empirical Analysis and
Benchmark Dataset for Generative Language Models in Norwegian

Anonymous ACL submission

Abstract

Norwegian, spoken by only 5 million popula-001
tion, is under-representative within the most002
impressive breakthroughs in NLP tasks. To003
the best of our knowledge, there has not yet004
been a comprehensive evaluation of the exist-005
ing language models (LMs) on Norwegian gen-006
eration tasks during the article writing process.007
To fill this gap, we 1) compiled the existing008
Norwegian dataset and pre-trained 4 Norwe-009
gian Open Language Models varied from pa-010
rameter scales and architectures, collectively011
called NorGLM; 2) introduced a comprehen-012
sive benchmark, NLEBench, for evaluating nat-013
ural language generation capabilities in Nor-014
wegian, encompassing translation and human015
annotation. Based on the investigation, we find016
that: 1) the mainstream, English-dominated017
LM GPT-3.5 has limited capability in under-018
standing the Norwegian context; 2) the in-019
crease in model parameter scales demonstrates020
limited impact on the performance of down-021
stream tasks when the pre-training dataset is022
constrained in size; 3) smaller models also023
demonstrate the reasoning capability through024
Chain-of-Thought; 4) a multi-task dataset that025
includes synergy tasks can be used to verify the026
generalizability of LLMs on natural language027
understanding and, meanwhile, test the inter-028
connectedness of these NLP tasks. We share029
our resources and code for reproducibility1 un-030
der a CC BY-NC 4.0 license.031

1 Introduction032

Recent advancements in Generative Language033

Models (GLMs) have significantly improved Nat-034

ural Language Processing (NLP) tasks. How-035

ever, most models remain partially closed-source036

due to business competition and data privacy con-037

cerns, which hinders transparency, flexibility, and038

progress in the NLP ecosystem. Open-sourcing039

models can leverage community contributions, fa-040

1https://github.com/Smartmedia-AI/NorGLM/

cilitate collaboration, and accelerate technolog- 041

ical advancements while better controlling data 042

use. This approach is especially beneficial for low- 043

resource languages, aiding their preservation and 044

development. Currently, benchmarks focus mainly 045

on languages like English and Chinese, leaving 046

Low-Resource Languages (LRLs) under-evaluated. 047

Most benchmarks for low-resourced languages ei- 048

ther cater to discriminative models (Kutuzov et al., 049

2021; Koto et al., 2020; Kummervold et al., 2021) 050

like BERT (Devlin et al., 2019) or are adapted or 051

translated from existing English datasets (Luukko- 052

nen et al., 2023). Nielsen (2023) proposes a closed- 053

source platform, ScanEval, for evaluating Nordic 054

languages. However, these benchmarks have two 055

limitations: First, many nominal generation tasks 056

are adapted from classification tasks, like multiple- 057

choice questions, which restrict answer options and 058

do not assess generative models’ ability to produce 059

longer texts. Second, most benchmarks are single- 060

task, with multi-task datasets being particularly 061

scarce. We argue that by designing a multi-task 062

dataset that includes several synergy tasks2 in natu- 063

ral language understanding, it may be possible to 064

evaluate the generalization ability of large language 065

models (LLMs) in text comprehension. 066

To address these gaps, we propose a comprehen- 067

sive benchmark, NLEBench, specifically tailored 068

to evaluate the natural language generation capabil- 069

ities in Norwegian. NLEBench comprises various 070

real-world NLP tasks and provides relative compar- 071

isons for Norwegian GLMs with different param- 072

eter scales and Transformer-based architectures. 073

Specifically, our benchmark is purposefully de- 074

signed to be capability probing, such as instructions 075

specific to Norwegian culture and special expres- 076

sions, and a document-grounded multi-task dataset 077

with human-annotated question-answer pairs and 078

2Here, synergy tasks mean that one task can provide mean-
ingful contexts used to improve the performance of another
task in the multi-task dataset/scenario.
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summaries. We hope that such a side-by-side per-079

formance benchmark will inspire future research080

on more advanced GLMs for Norwegian and other081

LRLs.082

In summary, this paper makes the following con-083

tributions:084

• We release a new benchmark dataset,085

NLEBench, for the purpose of evaluating086

generative language modelling in Norwegian.087

To the best of our knowledge, this is the088

first benchmarking dataset for Norwegian089

causal/autoregressive language modelling3.090

• We contribute two novel, high-quality091

datasets: an instruction dataset comprising092

human-written instructions specific to Norwe-093

gian culture, and a document-grounded multi-094

task dataset, which is beneficial for evaluating095

GLMs’ comprehension of language nuances096

and their ability to navigate intricate logical097

challenges.098

• We build upon the pioneering work to develop099

a series of fundamental Norwegian Generative100

Language Models (NorGLMs) with different101

parameter scales and Transformer-based archi-102

tectures. By in-depth evaluation of these mod-103

els on the proposed benchmarks, we provide104

crucial insights for understanding the capabil-105

ities and scalability of GLMs when applied to106

underrepresented languages like Norwegian.107

2 Related Work108

2.1 Language Models for Low-resource109

Languages110

Despite the effectiveness of popular LLMs, the111

inherent data-hungry attribute limits their perfor-112

mance and application to data scarce settings such113

as with low-resource languages (Hedderich et al.,114

2020). Such languages may also suffer from dif-115

ficulties in acquiring readily-accessible resources116

compared with mainstream languages such as pre-117

trained word embeddings and expert-annotated cor-118

pora (Zoph et al., 2016), leading to a significant119

open challenge in NLP tasks for low-resourced120

scenarios. Several efforts have been made in dif-121

ferent low-resource languages (Koto et al., 2020;122

Kutuzov et al., 2021; Kummervold et al., 2021) but123

the models are based on BERT architecture and124

3Generative, causal or autoregressive language models are
used interchangeably in this paper.

tested for language discriminative tasks. Recently, 125

researchers have proposed several standard evalu- 126

ation benchmarks on a collection of low-resource 127

language datasets for language generative tasks 128

(Ekgren et al., 2022; de Vries and Nissim, 2020; 129

De Mattei et al., 2020; Antoun et al., 2020). For 130

instance, Google released a comprehensive bench- 131

mark, BIG-bench, for over 200 tasks on language 132

generative tasks (Srivastava et al., 2023), among 133

which there are only two tasks that contain the 134

Norwegian language, namely Which Wiki Edit to 135

match a recent Wikipedia revision to its correspond- 136

ing edit message, and Language Identification tasks. 137

They only cover very limited Norwegian samples. 138

Later, Luukkonen et al. (2023) filtered Finnish from 139

BIG-bench to build a Finnish benchmark for gener- 140

ative LMs. However, these existing evaluation data 141

either originate from pre-existing English datasets 142

through machine translation or lack the evaluation 143

data types required for assessing LLMs on multi- 144

task reasoning. 145

2.2 Benchmark on Multi-task Datasets 146

Most existing benchmarks focus on single tasks, 147

such as question answering, cloze tests, summariza- 148

tion, and classification. Fine-tuning language mod- 149

els on individual datasets lacks persuasiveness in 150

evaluating their ability to generalize across multiple 151

tasks. Xu et al. (2020) proposed MATINF, a jointly 152

labeled Chinese dataset for classification, question 153

answering, and summarization in the maternal and 154

infant domain. However, this web-crawled dataset 155

contains significant noise and consists of short texts, 156

with an average length of 42 Chinese characters. As 157

language models become more capable of handling 158

longer texts (Brown et al., 2020; Chen et al., 2023), 159

datasets with short texts may not reliably predict 160

the transformative potential of LLMs. Additionally, 161

the annotated tasks in MATINF lack synergy and 162

interconnections, leading to assessments still being 163

conducted on individual tasks and overlooking the 164

potential effects of task interactions, such as the 165

feasibility of employing Chain-of-Thought (CoT) 166

techniques. 167

3 Norwegian Generative Language Model 168

Suite - NorGLM 169

NorGLM models are trained from scratch using 170

multi-source datasets. We filtered Norwegian texts 171

from the mC4 and OSCAR web-crawled corpora 172

and included non-copyrighted Norwegian material 173
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Figure 1: The data distribution within the pre-training
dataset. The inner segment represents languages, and
the outer segment denotes various sourced datasets in
Norwegian. Dataset sizes are shown by numbers (Unit:
Gigabyte), and their percentage contribution to the over-
all dataset. Tags on the right side indicate the number
of tokens for each language, measured in billions.

from the Norwegian National Library (Nasjonal-174

biblioteket)(Kummervold et al., 2021)4. We also175

sourced high-quality news articles from Schibsted176

and collected tweets (January 2012 to December177

2022) and Reddit posts (October 2017 to Decem-178

ber 2022) via their respective APIs. To enhance179

robustness in downstream tasks, we included Dan-180

ish, Swedish, and German texts from the North181

Germanic language family, along with a small por-182

tion of the English corpus. The size and distribution183

of each language are shown in Figure 1.184

The models are based on the GPT-2 architec-185

ture and are named NorGPT-369M, NorGPT-3B,186

and NorGPT-23B, corresponding to their parame-187

ter sizes. We also trained a three billion-parameter188

model, NorLlama-3B, based on the Llama architec-189

ture using Tencent Pre-training Framework (Zhao190

et al., 2023). The details of parameter settings are191

shown in Table 6. To investigate the potential im-192

provement in overall model performance through193

oversampling qualified data such as from publish-194

ers, akin to Samuel et al. (2023), we continued195

training NorGPT-3B (referred to as NorGPT-3B-196

continue) using a subset of high-quality data, in-197

cluding news articles and material from Nasjonal-198

biblioteket5. In addition, we incorporated NB-GPT-199

J-6B, which is a model continued-trained from the200

English GPT-J-6B model6. We applied similar fine-201

4https://huggingface.co/datasets/NbAiLab/NCC
5Please refer to Appendix for model training details.
6https://huggingface.co/NbAiLab/nb-gpt-j-6B

tuning methods to evaluate these models on down- 202

stream tasks listed in Section 4, aiming to study the 203

differences between training from scratch and con- 204

tinuing training on an English pre-trained model. 205

It’s important to note that GPT-J-6B was continued- 206

trained with a dataset of 402 billion tokens, approx- 207

imately 20 times larger than the training dataset 208

used for our NorGPT models. Additionally, we 209

evaluated GPT-3.5-Turbo7 on our benchmarks. To 210

prevent any potential data contamination, the 211

pre-training dataset is carefully curated to en- 212

sure there is no overlap with the benchmark 213

dataset. 214

4 Norwegian Benchmark Dataset - 215

NLEBench 216

This section introduces tasks in NLEBench specif- 217

ically designed for Norwegian GLMs. The 218

datasets are sourced from three categories: exist- 219

ing datasets, machine-translated datasets using the 220

Google Translation API, and manually annotated 221

datasets. Our native Norwegian colleagues evalu- 222

ated random samples from both the Google Transla- 223

tion API8 and another free translation API9 support- 224

ing Norwegian, finding that the former performs 225

better, especially with confusing words and long 226

texts. Table 1 outlines the differences and evalu- 227

ation settings of these datasets. The statistics of 228

different datasets are shown in Table 7-9. 229

4.1 Open-domain conversation 230

NO-ConvAI2 is machine-translated from the En- 231

glish ConvAI2 dataset (Dinan et al., 2020), which 232

itself is a refined version of the PersonaChat cor- 233

pus (Zhang et al., 2018). This task is designed to 234

evaluate whether the fine-tuned NorGLMs can gen- 235

erate responses based on knowledge from previous 236

interactions. 237

4.2 News summarization 238

In this task, we assess the abstractive sum- 239

marization capabilities of NorGLMs using our 240

NO-CNN/DailyMail dataset, which is machine- 241

translated from CNN/DailyMail—an English 242

dataset that includes journalists’ annotated sum- 243

maries. We employ fine-tuning and the Reinforce- 244

ment Learning with Human Feedback (RLHF) 245

strategy on NorGLMs. In step 2 of RLHF, we 246

7GPT-3.5 and GPT-3.5-Turbo are used interchangeably if
not specified.

8https://cloud.google.com/translate/docs
9https://pypi.org/project/translate-api/
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Table 1: Overview of the NLEBench dataset and evaluation setups. LoRA denotes Low-Rank Adaptation. RLHF
denotes Reinforcement Learning from Human Feedback. Dist-4 denotes Distinct-4 score. PPL denotes Perplexity.

Datasets Size (#Samples) Task Evaluation Technique Evaluation Metrics

Existing Datasets
NO-Alpaca 51.942K Instruction Finetuning LoRA BLEU, ROUGE-1/L, Dist-4, MAUVE, PPL
NO-BoolQ 12.697K Question Answering LoRA Accuracy, F1 score
NO-QNLI 110.206K Natural Language Inference LoRA Accuracy, F1 score
NO-MRPC 4076 Paraphrase LoRA Accuracy, F1 score

Automatic Machine Translated Datasets (Ours)
NO-ConvAI2 19.845K Open-domain Conversation LoRA BLEU, ROUGE-1/L, Dist-4, MAUVE
NO-CNN/DailyMail 76.468K Summarization LoRA, RLHF BLEU, ROUGE-1/L, Dist-4, MAUVE

NO-CrowS-Pairs 1677 Bias Detection Zero-shot Prompt PPL
1508 Toxicity Detection Zero-shot Prompt Toxicity Score from Perspective API

Human Annotated Datasets (Ours)
NO-Alpaca (extra) 110 Instruction Finetuning LoRA BLEU, ROUGE-1/L, Dist-4, MAUVE, PPL

NO-Multi-QA-Sum 467 Summaries
2755 Dialogues Multi-task Learning Chain-of-Thought BLEU, ROUGE-1/L, Dist-4, MAUVE, En-

tailment Score

train the reward model by estimating semantic sim-247

ilarity between the candidate generated text and248

the human-annotated summary (golden summary)249

using the NorBERT model (Kutuzov et al., 2021).250

Summaries generated with higher cosine similarity251

to the golden summary are prioritized during the252

training of the reward model.253

4.3 Instructions254

This task utilizes datasets from two sources: NO-255

Alpaca10, translated from the Stanford Alpaca256

dataset (Wang et al., 2022) into Norwegian using257

OpenAI’s GPT-3.5-turbo, and a manually anno-258

tated set of 110 instructions collected from 10 of259

our Norwegian colleagues, focusing specifically on260

Norwegian culture and expressions. This combined261

dataset is named NO-Alpaca-Plus.262

4.4 Natural Language Understanding (NLU)263

This task aims to analyze the natural language un-264

derstanding capabilities of our NorGLMs. We ex-265

tracted the Norwegian portion from the OverLim266

dataset11 and selected three tasks commonly used267

in evaluating English generative language models:268

BoolQ, MRPC, and QNLI. Notably, OverLim is269

translated from the GLUE12 and SuperGLUE13270

benchmarks. To distinguish it from the original271

English version, we use the prefix "NO-" for the272

versions used in this paper. The data split follows273

the original protocol.274

10https://huggingface.co/NbAiLab/nb-gpt-j-6B-alpaca
11https://huggingface.co/datasets/KBLab/overlim
12https://huggingface.co/datasets/glue
13https://super.gluebenchmark.com/

4.5 Toxicity and bias 275

Generative language models are notorious for am- 276

plifying biases inherent in the training data (Sheng 277

et al., 2019) and producing toxic text (Gehman 278

et al., 2020). To evaluate these issues in NorGLMs, 279

we used the Perspective API14 on 1508 prompts for 280

toxicity evaluation and calculated ppl on 1677 sam- 281

ple pairs for bias evaluation from the NO-CrowS- 282

Pairs benchmark, a machine-translated version of 283

the French CrowS-Pairs (Névéol et al., 2022). Due 284

to the API’s lack of Norwegian support, we trans- 285

lated the NorGLM generated text into Swedish for 286

assessment. This benchmark also helps evaluate 287

potential biases in NorGLMs. 288

4.6 Multi-task learning 289

Apart from the benchmarks and translated datasets 290

mentioned above, we release a multi-task dataset 291

called NO-Multi-QA-Sum. This section details the 292

dataset collection process and the tasks performed 293

using this benchmark. 294

Data Collection. We recruited three Norwe- 295

gian college students as annotators, allowing them 296

to work in pairs or independently. Annotators 297

were tasked with conducting a conversation about 298

a given news article, using content from the article 299

without a limit on the number of dialogue turns or 300

question types. After the conversation, they were 301

required to write a generic summary of the article. 302

The dialogue and summary content did not need to 303

fully overlap, giving annotators some freedom in 304

their dialogue choices. Most annotators chose to 305

use self-dialogue and summarization for efficiency 306

and flexibility. Each student is compensated 230 307

NOK (approx. $21,75 USD) per hour. 308

14https://perspectiveapi.com/
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To facilitate the annotation process, we devel-309

oped an API, shown in Figure 6, that can connect310

with the OpenAI GPT-4 model to suggest annota-311

tions. However, annotators were required to verify312

the fidelity and usability of the suggested texts. To313

ensure quality, each annotation should be cross-314

validated and corrected by two other annotators,315

achieving one hundred percent internal consensus316

on the final annotations. The cross-validation in-317

cluded checking the rationality of question-answer318

pairs, factual consistency, and language fluency.319

Many annotators reported that while GPT-4 (specif-320

ically gpt-4-0613)15 was good at generating sug-321

gested questions and summaries, it struggled with322

producing high-quality answers, necessitating hu-323

man effort to maintain annotation quality.324

Tasks. In particular, for this dataset, we primar-325

ily explored two tasks using the Chain-of-Thought326

(CoT) method: based on the given news article, 1)327

we first let the model answer the annotated ques-328

tions, and then let the model generate a summary329

of the article based on the article, questions and330

the answers generated by the model. 2) We first331

let the model generate summaries, and then ask the332

model to answer questions based on the article and333

summary generated by the model. We tested these334

tasks on NorGPT-3B/23B, NB-GPT-J-6B, which335

are fine-tuned on the NO-CNN/DailyMail and NO-336

ConvAI2 datasets, and GPT-3.5-Turbo. These tasks337

are designed based on the hypothesis that DGQA338

and summarization are inherently correlated, and339

the synergies between these tasks may influence340

the model’s performance on individual tasks. To341

address potential annotator oversight in associat-342

ing content with the summarization task during343

question answering, we instructed annotators to344

manually categorize the data based on whether the345

question-answering content includes or excludes346

a summary, and experiments were conducted on347

each subset.348

Wang et al. (2023) developed an element-349

aware summarization method using CoT approach350

by instructing LLM to generate four key ele-351

ments—Entity, Date, Event, and Result—to be in-352

tegrated into the summary. They evaluated the pro-353

posed method on 200 annotated samples. However,354

we argue that human-written summaries demon-355

strate greater diversity and flexibility beyond these356

four elements. In contrast to their work, our task357

15https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4

aims to investigate potential correlations among the 358

benchmark datasets proposed in this paper, with 359

the goal of enhancing language model performance 360

across various tasks. 361

5 Experimental Results 362

In this section, we only list key results for the 363

benchmark datasets due to the page limit. More 364

results can be seen in the Appendix. 365

5.1 Evaluation Metrics 366

We aim to comprehensively evaluate our models 367

across various tasks using widely used metrics for 368

NLP tasks, including BLEU, ROUGE, Distinct, 369

and MAUVE, which is used to assess the generated 370

and human-written text based on their probabil- 371

ity distribution differences (Pillutla et al., 2021). 372

Furthermore, follow the work of Xie et al. (2023), 373

to measure faithfulness and factual consistency in 374

multi-task learning, we utilize Entailment scores 375

from a fine-tuned NorBERT model trained on the 376

VitaminC dataset (Schuster et al., 2021), which are 377

translated with Google Cloud Translation API. 378

5.2 Evaluation Results on NO-ConvAI2 379

As shown in Table 2, all models, except for GPT- 380

3.5-Turbo, perform quite similarly. Notably, the 381

NorGPT-3B model achieves the best results across 382

multiple evaluation metrics, while the NorGPT- 383

23B model only shows an advantage in BLEU 384

scores. GPT-3.5-Turbo, although specifically cu- 385

rated for conversational purposes, did not exhibit 386

the advantages expected from its extensive knowl- 387

edge base. This may be because the knowledge 388

of other languages in GPT-3.5-Turbo cannot be 389

directly transferred to understanding Norwegian 390

conversations, highlighting the unique linguistic 391

properties of the Norwegian language. 392

5.3 Evaluation Results on NO-CNN/DailyMail 393

In Table 3, GPT-3.5-Turbo and NB-GPT-J-6B out- 394

perform our NorGPTs on BLEU and ROUGE met- 395

rics. This suggests a substantial number of ex- 396

pression patterns resembling news articles in their 397

pre-training datasets. This is plausible given that 398

their datasets likely include a diverse range of news- 399

papers, magazines, and government reports. Addi- 400

tionally, this trend is evident in common test sam- 401

ples, where GPT-3.5-Turbo tends to generate more 402

formal language compared to conversational lan- 403

guage. Despite this, we observed that the models’ 404

performance improves after reinforcement learning, 405
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Table 2: Experimental Results on the Conversation Task.

Metrics/Models NorGPT-369M NorGPT-3B NorLlama-3B NorGPT-3B-continue NorGPT-23B NB-GPT-J-6B GPT-3.5

BLEU 3.37 4.14 3.82 3.63 4.28 3.87 2.14
ROUGE-1 16.94 17.09 15.20 16.47 16.72 17.05 10.82
ROUGE-L 16.21 16.33 14.53 15.73 15.95 16.26 9.96

Dist-4 86.54 84.68 82.47 86.33 84.41 85.83 85.80
MAUVE 0.56 0.87 0.61 0.71 0.64 0.68 0.72

Table 3: Experimental Results on the News Summarization Task.

Metrics/Models NorGPT-
369M

NorGPT-
3B

NorLlama-
3B

NorGPT-3B-
continue NorGPT-23B NorGPT-3B-

RLHF NB-GPT-J-6B GPT-3.5

BLEU 2.38 2.61 0.68 2.72 1.90 5.41 4.35 4.38
ROUGE-1 20.97 20.31 12.32 20.53 22.44 23.01 25.64 26.00
ROUGE-L 19.68 19.05 11.56 19.26 21.13 21.63 24.25 24.28

Dist-4 95.32 94.43 92.62 94.35 97.66 92.18 96.41 97.13
MAUVE 0.57 0.62 0.75 0.64 0.50 21.03 0.65 4.38

especially in replicating the word distribution of406

human writing and generating summaries of simi-407

lar length. This is supported by the highest scores408

in MAUVE and BLEU. Although the model with409

reinforcement learning may not always surpass the410

fine-tuned model in accuracy, it actively strives to411

mimic human writing patterns.412

5.4 Evaluation Results on NO-Alpaca-Plus413

Table 12 demonstrates the performance of our base-414

line models after fine-tuning on the NO-Alpaca415

dataset. Given that this dataset is translated using416

GPT-3.5-Turbo, we could not use GPT-3.5-Turbo417

as a baseline due to OpenAI’s terms and policies16.418

NB-GPT-J-6B outperforms other models on most419

evaluation metrics, likely due to its pre-training on420

a set of self-annotated Norwegian instructions, as421

described on their model webpage. Among our422

NorGLM models, NorLlama-3B achieved better423

BLEU and ROUGE scores compared to others, but424

worse MAUVE and perplexity scores. This is an425

interesting phenomenon, indicating that NorLlama-426

3B’s results hit the most n-grams, yet its token427

probability distribution deviates the most from428

human-annotated results. A case study revealed429

that while NorLlama-3B generates overlapping430

words or phrases with the golden answer, it some-431

times lacks logical coherence between sentences,432

and the meanings of sentences can even be mutu-433

ally exclusive, as shown in Figure 2.434

Meanwhile, in our self-annotated 110 instruc-435

tions, we select two typical cases generated from436

GPT-3.5-Turbo related to Norwegian culture and437

special expression shown in Figure 3 and Figure 4438

16https://openai.com/policies/

respectively. Specifically, Figure 3 shows a factual 439

inconsistency issue in generated texts. In Figure 4, 440

the input prompt asks who uses the word, but the 441

model interprets the meaning of the word rather 442

than understanding the question. Therefore, with 443

limited annotated data, we can still find limitations 444

in the model’s understanding of the specific culture 445

behind the language. 446

5.5 Evaluation Results on NLU tasks 447

Table 13 reports the results on NLU tasks. Among 448

NorGLMs, NorGPT-23B model consistently out- 449

performs others on different NLU datasets across 450

both evaluation metrics. However, NB-GPT-J- 451

6B performs better on the NO-QNLI benchmark 452

and achieves a higher F1-score on the NO-MRPC 453

benchmark. 454

5.6 Evaluation Results on Toxicity and Bias 455

The results of average toxicity scores from 6 per- 456

spectives including Toxicity, Severe toxicity, Iden- 457

tity attack, Insult, Profanity and Threat are shown 458

in Table 14. All toxicity scores range from 0 to 459

1, with lower values indicating less toxic text gen- 460

erated by the model. Although NorLlama-3B ex- 461

hibits the lowest values across all metrics, a sig- 462

nificant portion of its generated text consists of 463

meaningless characters or words. We conducted a 464

random sampling of texts generated by GPT mod- 465

els with high toxicity values and traced hazardous 466

words back to the pre-training dataset. Surpris- 467

ingly, most of these hazardous words did not origi- 468

nate from social media, as commonly assumed, but 469

from daily news articles. For instance, the phrase 470

"tok livet av" (taken life from/kill) often appeared 471

6



in news reports describing murders, as illustrated472

in Figure 1. These original news articles did not473

convey toxic information but were instead factual474

descriptions of criminal events. This discovery un-475

derscores the importance of not only filtering out476

toxic inputs during the pre-training process but also477

considering which prompts may lead the model to478

generate toxic text.479

Table 15 presents findings from stereotype and480

bias detection using the NO-CrowS-Pairs dataset.481

This dataset encompasses nine categories: gender,482

religion, race/color, sexual orientation, age, nation-483

ality, disability, physical appearance, and socioe-484

conomic status. Each sample consists of a stereo-485

type (sent_more) paired with an anti-stereotype486

(sent_less) sentence. Following the work of Tou-487

vron et al. (2023), model bias is assessed by com-488

paring perplexity scores between these pairs and re-489

porting the percentage of the model biased towards490

sent_more in the table. Higher values indicate a491

stronger bias towards public stereotypes. Overall,492

the benchmark models demonstrated robust perfor-493

mance across most bias categories. However, they494

exhibited a bias towards sent_less in relation to495

religion, suggesting a relative bias in this specific496

category.497

5.7 Evaluation with CoT498

In this task, all baseline models except GPT-3.5499

were fine-tuned on the NO-CNN/DailyMail and500

NO-ConvAI2 datasets, enabling them to handle501

related tasks effectively. However, none of these502

models were fine-tuned using document-grounded503

question answering datasets or similar CoT tasks in-504

vestigated in this study. Table 4 and Table 5 present505

the outcomes of the multi-task dataset under dif-506

ferent scenarios. The tables distinguish datasets507

where the question answering content includes or508

excludes a summary, labeled as "contain" and "not509

contain" respectively. For both tasks, we utilized510

different prompt templates and reported the opti-511

mal performance in the tables. From the results,512

we draw several observations:513

In task one, we observed that GPT-3.5 signif-514

icantly improved in summarization performance515

with the CoT method, while other models saw a516

degradation in this aspect. For DGQA, NorGPT-3B517

and NorGPT-23B models showed improvements518

through CoT, whereas NB-GPT-J-6B exhibited519

mixed results across different datasets. Analyz-520

ing these results solely based on the tables proved521

challenging, as there was no clear correlation be-522

tween CoT improvements and model sizes or pre- 523

training dataset sizes. This contrasts with prior find- 524

ings suggesting CoT benefits are more pronounced 525

with larger models (Wei et al., 2022). Combin- 526

ing results from Table 2 and Table 3, we observed 527

models that initially performed well in their tasks 528

showed further enhancement with CoT adaptations. 529

For instance, GPT-3.5 excelled in summarization 530

on the NO-CNN/DailyMail dataset after CoT, and 531

NorGPT-3B and NorGPT-23B models improved in 532

document-grounded question answering on the NO- 533

ConvAI2 dataset. Figure 5 illustrates an example 534

where CoT-generated summaries closely approxi- 535

mate human-written summaries compared to direct 536

prompts for the model to generate summaries. 537

While we observe that the synergy between the 538

two tasks enhances the model’s performance on 539

both, we also find that incorporating a summary 540

into a QA task improves the quality of the gener- 541

ated summary compared to QA tasks without one. 542

However, the reverse scenario is not necessarily 543

true. We speculate that QA breaks down the sum- 544

marization task into smaller components, enabling 545

the model to better comprehend the input text. This 546

process mirrors the human learning process. 547

Moreover, as shown in both Table 4 and Table 548

5, we find that after CoT, the Entailment scores of 549

most models increased, indicating that the answers 550

and summaries generated by the models are more 551

aligned with the context described in the article. 552

Therefore, CoT has the potential to enhance the 553

factual consistency of the generated outputs. 554

6 Discussion 555

In this subsection, we present observations from 556

the longitudinal comparison of different models 557

in downstream tasks, as detailed in Section 5: 1) 558

While NB-GPT-J-6B did not achieve the highest 559

scores across all tasks, it showed consistent perfor- 560

mance and the best perplexity scores compared to 561

our NorGLMs on nearly all tasks. This consistency 562

is likely due to its initial training on large English 563

datasets before being continue-trained on Norwe- 564

gian data. 2) The 23B model did not show the 565

expected absolute advantage in downstream tasks. 566

We find that with a small-scale pre-training dataset, 567

a larger model cannot demonstrate its ability to bet- 568

ter cope with complex problems, which also sup- 569

ports the findings in Hoffmann et al. (2022). 3) The 570

results highlight the promising abilities of smaller 571

language models on specific tasks. However, these 572
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Table 4: Experimental Results on task one using NO-Multi-QA-Sum dataset for summarization task.

Datasets Metrics NorGPT-3B NB-GPT-J-6B NorGPT-23B GPT-3.5

Zero-Shot CoT Zero-Shot CoT Zero-Shot CoT Zero-Shot CoT

Contain

BLEU 0.43 0.38 1.31 1.10 1.30 1.01 10.31 13.19
ROUGE-1 10.71 7.91 12.86 11.31 18.36 16.37 34.77 40.95
ROUGE-L 9.46 7.51 12.11 10.74 17.12 14.77 32.21 37.19

Dist-4 79.88 81.98 94.14 91.86 95.69 92.43 96.66 96.78
MAUVE 0.41 2.10 6.02 8.13 8.53 24.43 77.83 85.08

Entailment Score 71.43 75.00 80.28 74.65 77.46 78.87 81.69 83.10

Not Contain

BLEU 0.40 0.36 1.33 0.99 1.28 1.03 9.60 11.70
ROUGE-1 10.32 7.31 13.36 10.98 18.40 15.67 34.14 38.57
ROUGE-L 9.15 6.92 12.73 10.40 17.01 14.28 31.20 35.47

Dist-4 79.13 80.25 93.89 92.17 95.24 94.10 96.59 96.82
MAUVE 0.41 0.57 0.96 0.56 3.38 0.94 83.25 81.40

Entailment Score 77.19 77.95 82.32 82.58 82.83 81.57 87.12 87.12

Table 5: Experimental Results on task two using NO-Multi-QA-Sum dataset for document-grounded question
answering task.

Datasets Metrics NorGPT-3B NB-GPT-J-6B NorGPT-23B GPT-3.5

Zero-Shot CoT Zero-Shot CoT Zero-Shot CoT Zero-Shot CoT

Contain

BLEU 1.88 1.84 1.93 1.93 1.55 1.69 25.62 25.36
ROUGE-1 7.55 9.15 7.16 7.26 11.57 14.45 52.25 52.09
ROUGE-L 7.04 8.51 6.78 6.90 10.49 13.05 48.99 48.72

Dist-4 81.20 82.73 87.43 87.10 89.57 91.67 86.67 86.51
MAUVE 0.45 0.57 0.65 0.42 1.01 0.93 41.79 51.16

Entailment Score 73.65 74.88 79.56 79.01 76.60 77.83 83.25 82.76

Not Contain

BLEU 1.80 1.90 1.92 1.89 1.55 1.72 24.70 24.45
ROUGE-1 7.38 8.61 7.19 7.09 10.65 13.91 50.77 50.44
ROUGE-L 6.89 7.92 6.77 6.67 9.67 12.49 47.40 46.99

Dist-4 81.22 81.47 86.80 86.74 90.35 91.43 85.99 85.70
MAUVE 0.51 0.46 0.59 0.46 0.95 0.72 49.58 49.20

Entailment Score 77.52 77.14 80.90 81.16 81.27 81.61 85.78 85.61

models often lack consistency in generating high-573

quality, meaningful text. 4) A comparison between574

Table 3 and Table 4 reveals significant differences575

between summaries written by journalists and those576

generated by GPT-3.5 or non-professionals. How-577

ever, the model’s performance on the latter datasets578

appears to be proportional to its size. GPT-3.5’s per-579

formance on NO-Multi-QA-Sum has improved sig-580

nificantly, possibly due to the similarity of frame-581

works and training data overlap between GPT-3.5582

and GPT-4. 5) GPT-3.5’s difficulties with special-583

ized Norwegian instructions highlight the unique584

complexities of the Norwegian language, which are585

challenging for English-dominated models. This586

emphasizes the need to focus on low-resource lan-587

guages to better understand their cultural nuances.588

7 Conclusion589

In this paper, we introduced a suite of Norwegian590

Generative Language Models and a comprehensive591

benchmark with seven tasks tailored for the under-592

represented Norwegian language. Through exten-593

sive analysis, we uncovered insights not previously 594

revealed by existing benchmarks. Our evaluation 595

of the NO-Multi-QA-Sum dataset highlighted the 596

effectiveness of multi-task datasets in assessing 597

natural language understanding through complex 598

tasks like Chain-of-Thought (CoT). We also noted 599

differences between human-annotated summaries 600

and those generated by GPT-3.5, providing valu- 601

able insights for future abstractive summarization 602

advancements. Furthermore, our study emphasized 603

the unique linguistic and cultural aspects of Norwe- 604

gian, suggesting that mainstream benchmarks may 605

not fully capture the performance of language mod- 606

els on low-resource languages. Thus, developing 607

benchmarks specific to these languages is essential 608

for accurate evaluation and development. 609

8 Limitations 610

Although NLEBench is currently the most com- 611

prehensive benchmark for Norwegian, its coverage 612

of applications and downstream tasks remains lim- 613

ited. Our benchmark is open-ended and inevitably 614
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cannot cover everything in Norway. Nevertheless,615

we believe that the published resources will signifi-616

cantly aid research in generative language models617

for low-resource scenarios. While Balahur and618

Turchi (2014) suggested that translation systems619

produce good quality data, translation errors and620

misconceptions persist. Due to budget constraints621

and the large volume of translation samples, ensur-622

ing the quality of our translated dataset was chal-623

lenging. However, the value of machine-translated624

datasets should not be dismissed. For instance, we625

use NO-ConvAI2 to fine-tune the model, endowing626

it with conversational capabilities, and NO-Alpaca627

includes general knowledge about Norway, such628

as The capital of Norway is Oslo, although the629

coverage remains limited.630

Another constraint is the scarcity of human-631

annotated samples in our benchmark, largely at-632

tributable to the extensive time and financial re-633

sources required for their collection. Notably, the634

process of amassing over 500 samples for the NO-635

Multi-QA-Sum dataset was time-intensive and ne-636

cessitated thorough quality control measures be-637

fore implementation. Moreover, acquiring suffi-638

cient Norwegian pre-training data and considering639

the copyright issues of data poses a formidable640

challenge. The current difficulty lies in obtain-641

ing a training dataset of comparable size to those642

available for English, severely constraining the per-643

formance of our pre-trained models. Despite our644

efforts to procure data from diverse sources and pro-645

vide pertinent statistical insights, certain data can-646

not be redistributed, complicating efforts to repli-647

cate our pretraining phase. Looking ahead, we aim648

to mitigate the shortage of textual data through649

manual annotation efforts or by integrating multi-650

modal data, thereby fostering advancements in low-651

resource language model development within the652

broader research community.653
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A NorGLM Model Parameter Settings823

Table 6: The training parameter settings of NorGLMs

Items/Models NorGPT-
369M

NorGPT-
3B

NorLlama-
3B

NorGPT-
23B

#Params 369.94M 2.95B 3.07B 23.03B
#Layers 24 32 32 49

#Attention heads 16 32 32 32
#Hidden units 1024 2688 2688 6144

Context window 2048 2048 2048 2048
Initial lr 1.5E-04 1.5E-04 5.6E-05 9.7E-05

Global batch size 24 16 16 112
Training data size 196G 196G 196G 196G
Vocabulary size 64,000 64,000 64,000 64,000

B The Statistics of Benchmark Datasets824

Data statistics are in Table 7-9.825

C Case Study on the Instruction826

Finetuning Task827

Examples of generated responses for the instruc-828

tions in the NO-Alpaca(-Plus) benchmark are829

shown in Figure 2-4.830

Figure 2: Example of NorLlama-3B on NO-Alpaca
benchmark. The texts that coincide between the gener-
ated and annotated text are highlighted in red. Transla-
tions are in the brackets.

Figure 3: Example of generated performance of GPT-
3.5 on Norwegian culture instruction of NO-Alpaca-
Plus. Translations are on the right.

Figure 4: Example of generated performance of GPT-
3.5 on Norwegian special expression instruction of NO-
Alpaca-Plus. Translations are on the right.

D Efficiency Benchmarks 831

In this section, we report our NorGLM pre-training 832

specifications and the results are shown in Table 10. 833

We estimated the energy consumption in the model 834

training according to Eq. (1): 835

KWh =
Hours to train × Number of Processors × APP × PUE

1000
(1) 836

The NVIDIA A100 40G and 80G GPUs are re- 837

ported to have a Thermal Design Power (TDP) of 838

250W and 300W 17. We have used these TDP val- 839

ues as the Average Power per Processor (APP) in 840

our calculations. Power usage effectiveness (PUE) 841

is a metric to describe data center efficiency and is 842

calculated from the total energy use divided by the 843

energy directly consumed by a datacenter’s com- 844

puting equipment. The average industry data centre 845

PUE in 2020 was 1.58 (Patterson et al., 2021), and 846

we have used this PUE value in our calculations. 847

It is widely acknowledged that large-scale pre- 848

training demands a significant amount of compu- 849

tational resources, and larger models typically re- 850

quire more computational resources and energy 851

consumption to achieve convergence given the 852

same pre-training dataset. When training the 3B 853

models, we note that NorLlama-3B took less time 854

than NorGPT-3B to converge. This may be related 855

to the different model architectures and different 856

training platforms. 857

We can also see that the estimated energy con- 858

sumption grows significantly with the model size 859

(number of parameters). The number of parame- 860

ters grows with a factor of 8.1 when we go from 861

17https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-
us-nvidia-1758950-r4-web.pdf
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Table 7: Statistics on NO-Alpaca, NO-CNN/DailyMail dataset, where P denotes prompt, A denotes answer, Ar is
article and S is summary.

Name type #samples #total_words #avg_words #total_tokens #avg_tokens

NO-Alpaca train 41,554 544,388(P) 1,730,937(A) 13.10(P) 41.66(A) 756,749(P) 2,416,338(A) 18.21(P) 58.15(A)
test 10,388 137,587(P) 445,037(A) 13.25(P) 42.84(A) 19,071(P) 622,560(A) 18.37(P) 59.93(A)

NO-CNN/
DailyMail

train 61,181 39,518,361(Ar)2,546,653(S) 645.93P(Ar) 41.62(S) 55,225,295(Ar) 3,630,417(S) 902.65P(Ar)59.344(S)
test 15,287 9,878,627(Ar) 634,898(S) 646.21(Ar) 41.53(S) 13,802,673(Ar) 904,731(S) 902.90(Ar) 59.18(S)

Table 8: Statistics on NO-ConvAI2 dataset.

Type #dialogues #avg_turns/dialogue #utterances #avg_utterances #tokens #avg_tokens

Train 17,878 6.85 1,785,227 10.29 2,211,098 12.74
Test 1,967 7.78 304,245 10.28 374,618 12.66

Table 9: Statistics on NO-Multi-QA-Sum dataset.

Type #articles #dialogues #avg_turns
/dialogue

#total_words
in articles

#avg_words
/article

#total_tokens
in articles

#avg_tokens
/article

Zero-shot 467 2,755 5.90 203,606 435.99 276,708 592.52

#total_words
in questions

#avg_words
/question

#total_tokens
in questions

#avg_tokens
/question

#total_words
in answers

#avg_words
/answer

#total_tokens
in answers

#avg_tokens
/answer

24,767 8.99 33,967 12.33 43,165 15.67 58,176 21.12

#total_words in summaries #avg_words /summary #total_tokens in summaries #avg_tokens /summary

28,167 60.31 37,309 79.89

NorGPT-369M to the 3B models. However, the en-862

ergy consumption grows only with a factor of 2.5863

(NorGPT-3B) and 2.1 (NorLlama-3B). When we864

compare the 3B and 23B models, we have a growth865

factor of only 7.7 in parameter size, but a growth866

factor of 20.0 (NorGPT-3B vs. NorGPT-23B) and867

24.6 (NorLlama-3B vs. NorGPT-23B) in energy868

consumption.869

Efficiency is also measured in downstream tasks.870

For simplicity, we use NO-CNN/DailyMail bench-871

mark and report run time in Table 11 to compare the872

fine-tuning efficiency. To ensure fair comparison,873

all models were fine-tuned on the same platform874

on 4 A100 80G GPUs. We can observe that despite875

having the same number of parameters, NorLlama-876

3B is nearly 10 times slower than NorGPT-3B and877

even lags behind NB-GPT-J-6B model in terms of878

fine-tuning speed. However, such a pattern is not879

common in other downstream tasks. It is worth880

noting that the values of training parameters are881

heavily conditioned on hardware and implementa-882

tion details.883

The smallest model, NorGPT-369M, uses more884

time and energy than the larger NorGPT-3B in885

this downstream task. We have a growth factor886

of 34.2 when we compare the energy consumption887

of NorGPT-3B and NorGPT-23B. This is signifi- 888

cantly larger than what we had in the pre-training 889

phase. 890

Table 10: Pre-training efficiency of NorGLMs. NorGPT-
369M was trained on NVIDIA A100 40G, and other
models were trained on NVIDIA A100 80G GPUs.

Metrics/Models NorGPT-
369M

NorGPT-
3B

NorLlama-
3B

NorGPT-
23B

Time (h) 207.42 648.22 539.36 1893.75
Avg_FLOPS/step 4.28E+11 4.08E+11 - 6.91E+11
#Avg_samples/s 34.65 3.06 - 4.97
#Avg_steps/s 1.44 0.19 - 0.04

#Avg_tokens/s 3.29E+4 7.1E+3 4.41E+3 1.03E+4
#GPUs 6 4 4 28

TDP(W) 250 300 300 300
Energy

consum.(kWh) 492 1 229 1 023 25 134
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Table 11: Experimental results on the efficiency of fine-tuning for news summarization tasks. All models were
fine-tuned with initial lr (learning rate) as 9E-08 and batch size as 8. Total training epoch is set to 1.

Metrics/Models NorGPT-369M NorGPT-3B NorLlama-3B NB-GPT-J-6B NorGPT-23B

Time (h) 12.69 9.00 109.67 98.15 306.84
#Samples/s 1.339 1.888 0.31 0.173 0.055

#Steps/s 0.167 0.059 0.052 0.022 0.007
#GPUs 4 4 4 4 4

TDP(W) 300 300 300 300 300
Energy consum.(kWh) 24 17 208 186 581

Table 12: Experimental Results on the Instruction Finetuning Task.

Metrics/Models NorGPT-369M NorGPT-3B NorLlama-3B NorGPT-3B-continue NorGPT-23B NB-GPT-J-6B

BLEU 2.91 2.16 2.96 2.18 2.33 2.99
ROUGE-1 15.50 15.22 15.70 15.36 15.67 16.10
ROUGE-L 14.63 14.43 14.83 14.53 14.84 14.89

Dist-4 96.36 98.20 96.85 98.29 98.01 97.30
MAUVE 1.45 1.75 1.58 1.78 1.82 1.60

PPL 9.83 6.62 9.90 6.88 6.15 5.76

Table 13: Experimental Results on the NLU Tasks.

Datasets Metrics NorGPT-369M NorGPT-3B NorLlama-3B NorGPT-3B-continue NorGPT-23B NB-GPT-J-6B

NO-BoolQ Accuracy 58.6 60.6 56.2 58.5 63.2 56.7
F1 score 47.8 50.3 49.0 46.7 52.5 52.5

NO-QNLI Accuracy 75.8 76.4 61.7 76.9 79.7 84.1
F1 score 75.7 76.3 61.7 76.8 79.7 84.1

NO-MRPC Accuracy 71.0 68.8 66.8 69.5 73.7 71.7
F1 score 54.5 46.1 52.0 55.1 64.4 66.6

Table 14: Experimental Results on the Toxicity of Norwegian Generative Language Models. Scores were obtained
using the Perspective API, with higher scores indicating more toxic generations.

Metrics/Models NorGPT-369M NorGPT-3B NorLlama-3B NorGPT-3B-continue NorGPT-23B NB-GPT-J-6B

Toxicity 5.09 5.55 2.24 6.77 6.65 6.59
Severe toxicity 0.25 0.37 0.15 0.47 0.31 0.42
Identity attack 0.82 0.80 0.45 1.17 1.05 0.94

Insult 1.95 1.82 0.90 2.23 2.97 2.15
Profanity 2.59 2.76 1.44 3.53 2.99 3.60

Threat 2.21 2.82 1.22 3.50 2.66 2.75

Table 15: Experimental Results on the Bias of Norwegian Generative Language Models. Scores represent the
percentage of perplexity scores that are prone to sentence_more.

Bias types/Models NorGPT-369M NorGPT-3B NorLlama-3B NorGPT-3B-continue NorGPT-23B NB-GPT-J-6B

Race-color 52.6 50.8 53.1 49.8 49.8 57.5
Socioeconomic 42.6 44.2 45.3 44.2 45.3 37.9

Gender 48.4 47.8 50.3 48.1 44.4 42.2
Disability 47.7 44.6 47.7 43.1 41.5 43.1

Nationality 44.9 42.1 49.5 37.5 37.5 53.7
Sexual orientation 41.9 44.1 44.1 40.9 47.3 32.3

Physical appearance 45.8 45.8 38.9 48.6 43.1 38.9
Religion 32.4 32.4 36.0 29.7 34.2 34.2

Age 48.4 45.1 51.6 44.0 47.3 39.6
Politics 63.6 45.5 45.5 54.5 45.5 54.5
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Figure 5: Example of task one on NO-Multi-QA-Sum benchmark. Translations are on the right.

Figure 6: API appearance for multi-task benchmark annotation.
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