
Workshop track - ICLR 2018

EXPLORING DEEP RECURRENT MODELS WITH REIN-
FORCEMENT LEARNING FOR MOLECULE DESIGN

Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed
Dean Plumbley, Matthew Sellwood, Nathan Brown
BenevolentAI
London, UK
{daniel.neil, marwin.segler}@benevolent.ai

ABSTRACT

The design of small molecules with bespoke properties is of central importance
to drug discovery. However significant challenges yet remain for computational
methods, despite recent advances such as deep recurrent networks and reinforce-
ment learning strategies for sequence generation, and it can be difficult to compare
results across different works. This work proposes 19 benchmarks selected by
subject experts, expands smaller datasets previously used to approximately 1.1
million training molecules, and explores how to apply new reinforcement learning
techniques effectively for molecular design. The benchmarks here, built as OpenAI
Gym environments, will be open-sourced to encourage innovation in molecular
design algorithms and to enable usage by those without a background in chemistry.
Finally, this work explores recent development in reinforcement-learning methods
with excellent sample complexity (the A2C and PPO algorithms) and investigates
their behavior in molecular generation, demonstrating significant performance
gains compared to standard reinforcement learning techniques.

1 INTRODUCTION

Novel drugs are developed using design - make - test cycles: molecules are designed, synthesized in
the laboratory, and then tested for their biological effect. The insights gained from these tests then
inform the design for the next iteration. The objective of de novo design methodologies is to perform
this cycle with computational methods (Brown, 2015; Schneider, 2013). The test phase was the first
to be automated, using the broad categorization of machine learning models known as quantitative
structure-activity/property relationships (QSAR/QSPR) to predict the activity of a molecule against
a certain biological target, or physicochemical properties. To make virtual molecules, symbolic
approaches based on graph rewriting have been used, which are domain-specific and rely on extensive
hand-engineering by experts. To optimize the properties of a molecule, for example its activity against
a biological target (design), global optimization approaches such as evolutionary algorithms or ant
colony optimization have been used (Brown, 2015; Schneider, 2013). Symbolic approaches have
been highlighted as either generating unrealistic molecules that would be difficult to synthesize, or
for being too conservative, and therefore not sufficiently exploring the space of tractable molecules
(Schneider, 2013; Brown & Boström, 2016).

Recently, generative models have been proposed to learn the distribution of real druglike molecules
from data, and then to generate chemical structures that are appropriate for the application domain
(White & Wilson, 2010). Interestingly, the generation of molecules is related to natural language
generation (NLG). Two classic problems of NLG – preserving coherent long-range dependencies,
and syntactic and semantic correctness – directly map to molecules. Current investigations draw
heavily from tools developed for language tasks, including variational autoencoders (VAE) (Gómez-
Bombarelli et al., 2016; Kusner et al., 2017), recurrent neural network (RNN) models (Segler et al.,
2017; Jaques et al., 2017; Olivecrona et al., 2017), generative adversarial networks (GAN) (Guimaraes
et al., 2017) and Monte Carlo Tree Search (MCTS) (Yang et al., 2017).

This work seeks to consolidate the growing body of recurrent models for molecular design that
employ reinforcement learning. Here, we suggest a set of 19 benchmarks of relevance to de novo

1

Workshop track - ICLR 2018

N
H

O
OH

CC(=O)Nc1ccc(O)cc1

Paracetamol

Figure 1: Molecular graphs can be represented as strings using the SMILES notation. Letters
correspond to element symbols, rings opening and closing is indicated with numbers, and branching
with round brackets.

design. Furthermore, an implementation of these benchmarks as an OpenAI Gym is provided to the
community to spur further innovation. Finally, we demonstrate state-of-the-art performance using
new techniques drawing from recent advances in reinforcement learning.

2 REPRESENTING MOLECULES AS SEQUENCES

De novo design can be seen as a structured prediction problem, where molecular structures have to
be predicted. This paper will use the term “molecule” to denote the chemical structures of interest.
Molecular structures are represented well as labeled graphs M = (A,B), with atoms A as vertices
and bonds B as edges, elemental types as vertex labels, and bond order as edge labels (Brown, 2009).
While neural network models which output graphs remain underexplored, sequence generation is well
established. To encode molecules as sequences of symbols (strings), the canonicalized Simplified
Molecular-Input Line-Entry System (SMILES) notation (Weininger, 1988; Weininger et al., 1989)
can be used (see Fig. 1). This establishes the link to sequence-based language-focused neural network
models (Segler et al., 2017; Goldberg, 2016), which can be then be used to generate molecules.

3 DATA AND BENCHMARKS

3.1 DATA

In this paper, we expand the scope of previous work to a standardized, much larger dataset, which
furthermore is of real-world interest to drug discovery scientists. Here, we build on the ChEMBL-23
dataset (Gaulton et al., 2011), a collection extracted from the scientific literature of 1,735,442 distinct
compounds and their reported biological activities on 11,538 targets. Though partitioned and filtered,
this work employs substantially more training examples than previous work to access the breadth of
chemistries that have been demonstrated to be of interest. The preprocessing steps can be found in
the Appendix.

To stimulate further work in this domain, our OpenAI Gym interface to these benchmarks will be
open-sourced to allow the community to prototype new RL algorithms for chemistry.1 Here, we
offer 19 benchmarks to be used for molecule generation, comprised of basic suitability benchmarks,
basic physicochemical property optimizations, drug-likeness approximations, and multi-objective
balancing. The benchmark framework is general enough to be used with any possible small molecule
generation method, whether rule-based or learned, and is not limited to sequence-based generation
relying on SMILES.

3.2 VALIDITY AND DIVERSITY OF GENERATED MOLECULES

A basic but crucial molecular generation benchmark is simply what percentage of the sampled
molecules are valid. For a sample set S of cardinality m sampled from a model M , the percentage of
valid molecules is:

Yi ∼ πθ; S = {Y1, . . . , Ym}; Rvalid =
1

m

m∑
i

valid(Yi); Rvalid ∈ [0, 1] (1)

1https://github.com/BenevolentAI/molecule_design_benchmark

2

https://github.com/BenevolentAI/molecule_design_benchmark

Workshop track - ICLR 2018

OH

N

ONH

FI

F

F

HN

Cobimetinib

Cl

N

N
OO N

H

Cl

Aripiprazole

O
N N

NH

O
H
N

N

N

N

Osimertinib

O

O

OH

N

N

O

H
N

Ranolazine

Figure 2: Four of ten target molecules for the Tanimoto benchmark. See Supplementary Material for
the full set.

where valid() is a function returning 1 if the open-source chemoinformatics toolkit RDKit (Landrum
et al.) is able to return a valid molecular object given the SMILES representation, and 0 otherwise.

Similarly, it is not ideal if the generative model is able to produce a valid molecule, but only repeats
the same molecule. Therefore, the ratio unique benchmark samples m molecules from the model,
and measures the number of unique molecules:

Yi ∼ πθ; Runique =
1

m

∣∣∣∣∣
m⋃
i=1

{Yi}

∣∣∣∣∣ ; Runique ∈ [0, 1] (2)

3.3 SINGLE OBJECTIVE MAXIMIZATION

Previous work has explored a variety of optimization objectives of interest to molecular designers.
Physicochemical properties, such as the octanol-water partition coefficient (ClogP) and molecular
weight (MW), have strong implications for the viability of a molecule progressing as a potential
drug and have been explored as optimization objectives in previous work (Firth et al., 2015; Jaques
et al., 2017; Gómez-Bombarelli et al., 2016). Similarly, SMARTS (SMILES Arbitrary Target
Specification) sequences allow to specify substructures (subgraphs) which should be contained in
the target molecules. This allows to define a reward function SMARTS(X, Y) which returns 1
if a generated molecule Y contains subgraph X and −1 otherwise. The RDKit (Landrum et al.)
includes automatic code to calculate these functions, providing a straightforward route to include
these objectives in RL scenarios. For a target value x or respectively subgraph X , and a generated
sequence Y , the reward is:

RLogP (x, Y) =
1

25
(x− LogP(Y))2 + 1; RLogP (x, Y) ∈ [−∞, 1] (3)

RMW (x, Y) =
1

105
(x−MW(Y))2 + 1; RMW (x, Y) ∈ [−∞, 1] (4)

RSMARTS(X,Y) = SMARTS(X,Y); RSMARTS(x, Y) ∈ {−1, 1} (5)

This work chooses five ClogP points x ∈ {−1, 0, 1, 2, 3} as benchmarks.

A more challenging optimization objective is to generate a family of molecules similar to a target
given only a fingerprint of the target molecule, in an unpopulated area of chemical space. Here, the
commonly-used Functional Connectivity Fingerprint Counts (FCFC4; Rogers & Hahn (2010)) is
used to encode the molecular graph as a fixed-size integer vector. After encoding both the proposed
molecule and the target molecule, their Tanimoto (akin to Jaccard) similarity is calculated. This
work uses ten marketed drugs which modulate different biological target types (Figure 2, Table 3) as
molecular targets for approximation. To ensure that no leakage occurs between test and train set, the
target molecules themselves as well as compounds similar to them were removed from the training
data (see Appendix). The reward of the Tanimoto similarity with x, y as the fingerprint vectors of
X,Y is:

RTani(X,Y) = 2

∑n
i=1 xiyi∑n

i=1(x2i + y2i − xiyi)
− 1; RTani(X,Y) ∈ [−1, 1] (6)

3.4 MULTI-OBJECTIVE MAXIMIZATION

To test balanced optimization, two further tests are proposed: Lipinski’s Rule-of-Five (Ro5) pa-
rameters for the estimation of solubility and permeability important for oral bioavailability, and a

3

Workshop track - ICLR 2018

weighted multi-parameter optimization. The Ro5 is a heuristic for druglikeness, evaluating four
parameters that can be calculated readily from a molecular structure: molecular weight (MW), ClogP,
hydrogen-bond donors (HBD) and acceptors (HBA) (Ghose et al., 1999; Lipinski, 2004) In this work,
the Ro5 formulation used is to penalize (a) via MSE, the MW if outside the interval [180, 500]; (b)
via MSE, the ClogP if outside [-0.4, 5.6]; (c) by absolute error, the number of HBDs if greater than 5;
(d) by absolute error, the number of HBAs if greater than 10. The final penalties are summed, scaled
by 1e-3, and added to 1 to place the reward RRo5 ∈ [−∞, 1].

Similarly, any arbitrary balanced weighting of objective functions can be used to simulate a multi-
objective optimization, similar to those that are recognized in drug discovery scenarios. Here, an
equally-weighted target of ClogP=4, SMARTS fragment-matching to include a benzene ring, and a
MW of 180 is defined.

RMPO =
1

3
(RLogP (4, Y) +RSMARTS(′c1ccccc1′, Y) +RMolWt(180, Y)) (7)

RMPO ∈ [−∞, 1] (8)

4 MODELS

4.1 RECURRENT NEURAL NETWORKS

Gated recurrent models such as Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997)
are important for modern deep RNN models, and are used as the principal deep model used in this
work (Graves, 2013). These RNN models are able to process the SMILES format strings with the
addition of an embedding layer as is commonly used in natural language tasks (Gal & Ghahramani,
2016; Cho et al., 2014). Fully-connecting the output of the RNN model to a layer of neurons equal in
cardinality to the vocabulary size of our SMILES language (42 symbols, see Supplementary Material
Table 2) can be trained to produce a probability distribution over the output symbols. A model πθ
parameterized by θ trained on sequences z of length T in dataset S can be trained with the following
standard differentiable loss (the cross-entropy loss):

LMLE(θ) = −
T∑
t=1

log πθ(zt|z1:t−1); z = (z1, . . . , zT) ∈ S (9)

In this work, this is called the pretrained maximum likelihood estimation (MLE) model and can
be trained using standard supervised gradient descent techniques with backpropagation (Goldberg,
2016). This model functions as a composable, initialized block for more advanced architectures due
to its effectiveness in generating realistic chemical sequences. Algorithm 1 demonstrates a slightly
more unusual formulation in which a pretrained MLE model πθ is combined with an arbitrary reward
function R to maximize reward by alternately sampling and retraining via Eq. 9 on the k-highest
reward sequences (Segler et al., 2017), which we call Hillclimb-MLE (HC-MLE) .

Algorithm 1 Hillclimb-MLE Training Method for fitness functions

Require: pretrained MLE model πθ; a reward function R; initial set of sequences Σ = ∅
1: for n-steps do
2: for m-sequences do
3: Generate a sequence Yi,1:T = (y1, . . . , yT) ∼ πθ
4: Calculate ri = R(Yi,1:T)
5: end for
6: Σ← Σ ∪

m⋃
i=1

{Yi}

7: Keep k-top sequences in Σ with highest corresponding ri
8: Fine-tune MLE model πθ to minimize cross-entropy according to Eq. 9 on dataset Σ
9: end for

4.1.1 REINFORCEMENT LEARNING

Recently, advances in reinforcement learning (RL) have prompted explorations into using RL methods
within the drug discovery loop (Jaques et al., 2017; Olivecrona et al., 2017; Segler et al., 2017).

4

Workshop track - ICLR 2018

RL is a natural environment for drug discovery, which requires online learning balanced against
expensive sample evaluation and generation. Moreover, most molecule characteristics are not directly-
optimizable since they are non-differentiable quantities. Instead, casting it into a RL framework
allows for the exploration of chemical space in the absence of true loss gradients. Formally, a SMILES
string is a sequence y:

y = (a1, . . . , am) a ∈ D (10)
Thus, each string is comprised of a set of m symbols from the symbol dictionary D, including
the padding character, establishing the SMILES environment as a large but discrete state space of
size |D|m and a discrete action space of size |D|. From an RL perspective, each symbol in the
SMILES sequence corresponds to an action at taken at sequence step t. The goal of an RL agent
here is to develop a policy πθ, parameterized by θ, to calculate an action at from the current state
st = (a1, . . . , at−1) that maximizes the expected reward. That is, to maximize the following:

E[R(y1:t)|s0, θ] =
∑
y∈Y

∑
at∈y

πθ(at|y1:t−1) ·Q(at, y1:t−1) (11)

where our policy predicts the probability of choosing an action at in sequence y from the set of all
possible sequences Y , and the reward function Q(at, y1:t−1) provides the reward for that action given
the sequence so far, y1:t−1. However, molecule generation is inherently episodic, producing rewards
only at the completion of the SMILES string (in our dictionary, '\n'); for example, parentheses may
be open which results in an invalid molecule for evaluation until the matching parentheses closes the
branch.

To acquire a training gradient to use with a neural network as πθ, the log-derivative trick can be used
to arrive at:

∇θEy1:t∼π(y|θ)[R(y)] = Ey1:t∼π(y|θ)[R(y) log(πθ(y))] (12)
which yields the differentiable loss used in the REINFORCE algorithm (Williams, 1992), used here
as the policy gradient model:

LPG(θ) = Êt[log πθ(at|st)r(at)] (13)
r(at) = R(Y1:T), at ∈ Y (14)

Notably, the final reward R(Y1:t) is distributed equally without temporal discounting to every action
in the sequence, as temporal distance in SMILES strings is less relevant than most action-spaces.

Reinforced Generative Adversarial Networks The recently-introduced GANs (Goodfellow et al.,
2014) have experienced a surge of popularity, extending in new ways their original formulation:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (15)

which describes the minimax zero-sum game that combines a generator G, converting samples z from
a standard distribution pz into data-like samples, and a discriminator D which attempts to determine
whether samples x are from the true distribution pdata and which are generated samples G(z ∼ pz).
GANs have been applied as a novel architecture type to a variety of domains, particularly in image
synthesis where they have been found to generate perceptually realistic images (Radford et al., 2015;
Zhu et al., 2017).

The GAN formulation was extended in Yu et al. (2017) to allow sequences to be generated with a
GAN-like architecture, using RL and a policy gradient technique to train. This forms the basis of the
method published in Guimaraes et al. (2017) to use a RL framework with GANs to optimize arbitrary
fitness functions. Training is comprised of three phases: a maximum-likelihood pretraining phase
during which the RNN generator learns to generate molecules from a chemical structure dataset,
while a discriminator is pretrained on produced versus within-dataset sequences; a RL generator
phase in which the generator learns to maximize the reward function balanced with the discriminator;
and, finally, a discrimination phase which subsequently guides generation. The latter two phases are
alternated throughout the optimization phase.

The reward used to reinforce the network uses a parameter λ which balances the likelihood that the
discriminator Dφ classifies the generated sequence as true data against the arbitrary fitness objective
O:

R(Y1:T) = λDφ(Y1:T) + (1− λ)O(Y1:T) (16)

5

Workshop track - ICLR 2018

However, while calculating the reward during sequence generation, the final reward is not yet available
until the end of the sequence. In order to maximize the number of training steps (rather than one step
per sequence) and to guide the generation process, the objective-reinforced GAN (Guimaraes et al.,
2017) uses Monte-Carlo rollouts from the current state to estimate the reward of the available actions.
This strategy, however, can have high variance and significantly undersamples the large branching in
molecule generation (with 42 symbols per step and an average sequence length of 44 steps).

Advantage Actor-Critic Networks A wealth of new techniques for reinforcement learning have
recently appeared which have yet to be adapted to molecule generation. One technique to minimize
the variance that hinders policy gradient training and to accelerate convergence is to subtract an
estimate of the reward from the true reward. Importantly, this does not introduce estimator bias
but can diminish the variance. This can be seen as an actor-critic model that separates the policy
training from the value estimation in which the actor is the policy πθ and the baseline value estimate
Vst is the critic that gives the approximate value of that state (Degris et al., 2012; Sutton & Barto,
1998; Mnih et al., 2016). This advantage actor-critic (A2C) training is the synchronous version of
the asynchronous advantage actor critic (A3C) model (Mnih et al., 2016) and can use generalized
advantage estimation (Schulman et al., 2015). In this work, the following differentiable loss function
is used to simultaneously reduce the variance of the reward and to minimize the difference between
the expected reward Vφ and the true reward:

LA2C(θ, φ) = Êt[log πθ(at|st)(R− Vφ(st)) + (R(st)− Vφ(st))
2] (17)

The value estimation function Vφ is a neural network itself here, parameterized by φ; this work uses a
fully-connected network from the hidden state of the LSTM to a single node predicting reward.

Proximal Policy Optimization Finally, great success has been found recently in the family of
proximal policy optimization algorithms (Schulman et al., 2017). These algorithms exhibit very
low sample complexity and are of particular interest as reliable data is always at a premium in
chemistry, and both generation and evaluation time of a molecule can be long. Using the advantage
Ât = R(st)− Vφ(st) from above, the following clipped PPO loss is used:

LCLIP (θ, φ) = Êt
[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip
(

πθ(at|st)
πθold(at|st)

, 1 + ε, 1− ε
)
Ât

)
+ Ât

2
]

(18)

The motivation for this pessimistic loss given by the min() function, succinctly stated in Schulman
et al. (2017), ignores changes in the probability ratio when it would increase the objective and focuses
learning in which the objective would worsen. Furthermore, the clipped boundary region provides a
tight bound, outside of which the loss has function has no incentive to further change, encouraging
smaller changes. The hyperparameter ε controls the width of this region and can be found in Table 4.

Regularization for Molecular Generation There are additional costs that can be combined with
the above techniques. As the goal of de novo design is not to generate a single molecule, but rather a
family of candidate molecules to present to an expert domain scientist; a diverse set of suggested
molecules is always beneficial. To encourage robust learning, a regularization factor on the Kullback-
Leibler (KL) divergence between the current policy and the original policy can be added to encourage
the model to not stray far from a good model of chemical distributions:

CMLE = λMLEÊt

[∑
ai∈D

πθ(ai|st) log
πθ(ai|st)

πMLE
θ (ai|st)

]
(19)

using a weight parameter λ and evaluating the static, pretrained policy πMLE
θ (ai|st). Similarly, for

RL scenarios, a way to explicitly encourage exploration is to place a cost on the distribution entropy
of the model:

CENT = λentÊt

[
−
∑
ai∈D

πθ(ai|st) log πθ(ai|st)

]
(20)

The values used in this work can be found in the supplementary material. Additionally, we evaluate
the policy gradient regularization scheme proposed by Olivecrona et al. (2017), denoted “Aug. MLE”
in this paper.

6

Workshop track - ICLR 2018

LogP=1

ThiothixeneMestranol

Train Time
0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

wa
rd

s

Celecoxxib

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

wa
rd

s

MPO LogP=2LogP=-1

Fexofenadine

Aripiprazole

Cobimetinib

Ro5 LogP=3

Osimertinib Ranolazine

Albuterol

Troglitazone

Policy Gradient
Reg. PG
A2C
PPO
HC MLE
GAN
Aug. MLE

LogP=0

Figure 3: Sample RL trajectories for the tasks (independently-scaled).

5 RESULTS

These algorithms were built using PyTorch (Paszke et al., 2017), with RDKit (Landrum et al.)
providing the chemoinformatics functionality. These benchmarks were built as new environments in
the OpenAI Gym (Brockman et al., 2016), and will be released as open-source to the community.
The code was run using an NVIDIA Tesla V100 GPU, with optimization times for 1000 action-steps
shown in the “Runtime” category of Table 1. The final RNN architecture that underlies the Policy
Gradient, Regularized PG, GAN, A2C, PPO, HC MLE, and Augmented MLE models consists of
three layers of 512 LSTM neurons, with a 512-dimensional embedding layer and a fully-connected
output layer of 42 neurons. It takes approximately eight hours to train for 70 epochs on the filtered
ChEMBL dataset, with 50,000 randomly-sampled SMILES strings for development, 200,000 for
test, and the remaining 1190203 used for training. For the GAN architecture, the discriminator is a
convolutional network with two alternating layers of ten kernels of 3x3 convolutions followed by 2x2
max-pooling, with global averaging over the final two (real and fake) outputs. Experiments were run
for approximately 1.6M action-steps, corresponding roughly to 1000 SMILES in batches of 32 with
an average sequence length of 44.

Encouragingly, the baseline MLE model after training produces 94.7% valid SMILES out of 10k
generated molecules without further fine-tuning, establishing an extremely competitive benchmark.
For similar evaluation, a GVAE was trained on the same dataset and achieved 37.1% valid molecules.
Moreover, 99.87% of these MLE-sampled molecules were unique, establishing very high diversity.

The RL model results, which are the remaining 17 benchmark tasks including multi-objective
optimization, Ro5 optimization, ClogP targeting, and drug-fingerprint targeting, can be found in
Table 1, with example RL curves in Fig. 3. The benchmarks referred to by a drug name are the
Tanimoto-approach benchmarks, in which a drug is held out from the training set and the model must
design a similar drug given only the FCFC4 semantic hash of the drug. The baseline model samples
10k random molecules from the training set, keeping only the best-performing ones.

Hillclimb-MLE Perhaps surprisingly, the alternating sampling and HC-MLE training algorithm
was the most successful model. The model effectively avoided nonoptimal local minima and steadily
increased reward throughout training. Given a large computation budget, this model appears the most
successful for widely sampling while still optimizing towards a target.

PPO The PPO with the clipped objective was the most successful standard RL algorithm for this
task. It often converges an order-of-magnitude faster than other algorithms, but occasionally chooses
a less optimal final configuration or occasional catastrophic loss. For future work where molecule
fitness function testing time is significant - if, for example, an assay is required - PPO is a valuable

7

Workshop track - ICLR 2018

Table 1: Model performance, given by mean fitness in the final timestep over three random initializa-
tions, while single-best SMILES result from the plotted runs is given in parentheses.

Baseline Reg. PG A2C PPO HC-MLE

Property LogP=-1 1.00 0.66 (1.00) 0.98 (1.00) 1.00 (1.00) 0.97 (1.00)
LogP=0 1.00 0.78 (1.00) 0.98 (1.00) 1.00 (1.00) 0.98 (1.00)
LogP=1 1.00 0.83 (1.00) 0.98 (1.00) 1.00 (1.00) 0.97 (1.00)
LogP=2 1.00 0.86 (1.00) 0.97 (1.00) 1.00 (1.00) 0.97 (1.00)
LogP=3 1.00 0.86 (1.00) 0.97 (1.00) 0.91 (1.00) 0.97 (1.00)

Mult. Obj. MPO 1.00 0.82 (1.00) 0.95 (1.00) 1.00 (1.00) 0.98 (1.00)
Ro5 1.00 0.77 (1.00) 0.96 (1.00) 1.00 (1.00) 0.59 (1.00)

Tanimoto Albuterol 0.02 -0.55 (0.41) 0.14 (-0.08) 0.04 (-0.10) 0.32 (0.83)
Aripiprazole -0.15 -0.34 (0.63) 0.38 (-0.12) 0.40 (0.29) 0.51 (1.00)
Celecoxxib -0.22 -0.35 (0.69) 0.20 (-0.06) 0.25 (0.14) 0.43 (1.00)
Cobimetinib -0.18 -0.47 (0.17) -0.01 (-0.01) 0.11 (0.06) 0.32 (0.57)
Fexofenadine -0.26 -0.33 (0.50) -0.24 (-0.13) 0.18 (0.19) 0.47 (0.82)
Mestranol -0.17 -0.46 (0.62) 0.14 (-0.22) 0.06 (0.30) 0.34 (0.85)
Osimertinib -0.44 -0.43 (0.15) -0.36 (-0.26) -0.11 (0.11) 0.13 (0.48)
Ranolazine -0.20 -0.32 (0.49) 0.32 (-0.19) 0.14 (0.47) 0.50 (1.00)
Thiothixene -0.26 -0.35 (0.28) -0.09 (-0.19) 0.07 (0.29) 0.33 (0.57)
Troglitazone -0.28 -0.39 (0.27) -0.19 (-0.27) 0.06 (0.18) 0.24 (0.56)

Summary Mean 0.30 0.09 (0.66) 0.42 (0.32) 0.48 (0.53) 0.59 (0.81)
Runtime 0.025s 0.68s 2.5s 8.54s 0.31s

candidate as an optimization strategy. A wide range of learning rates and entropy exploration costs
were sampled (not shown) with PPO consistently and reliably training to achieve good performance.

GAN The GAN is a nascent and intriguing architecture, but was found to not be optimal for this
task yet. The complexity of balancing the discriminator against the generator, interleaving epochs,
and choosing a correct architecture made it difficult to use, though a significant body of literature
is working to address more stable training (Arjovsky et al., 2017; Salimans et al., 2016). Though
MC rollouts are costly in action-steps (leading to the slightly unfair showing in Figure 3), the other
problem is more fundamental: as Fig. 4a shows in a Principal Component Analysis (PCA) plot of the
MQN descriptors (Nguyen et al., 2009) of the generated molecules, stronger discriminator weight
φD forces the generated molecules to more closely match the primary modes of the training data.
Effectively reproducing the training data, however, contrasts with the purpose of the generator for
optimizing towards a given molecule. While this operates effectively as a regularizer, it is far more
stable and explicit to regularize against the KL divergence as is done for the Regularized Policy
Gradient model than to balance the hyperparameters of a GAN. Perhaps future work can investigate
other uses of the GAN to, e.g., coerce the architecture away from reproducing identical sequences
rather than memorizing the training data.

Benefits of extended sampling Examining the difference in the best single reward on the plotted
runs (parentheses) in Table 1 and the final timestep mean (no parentheses), algorithms clearly
benefit merely from sampling from a well-trained initial model for an extended period of time. The
regularized policy gradient model, in particular, demonstrates high peak performance yet consistently
does not learn effectively, suggesting that straightforward sampling for a large, diverse model may be
an acceptable strategy in the absence of convergence-time costs.

Temperature Sampling A temperature factor is often included in available implementations to
allow the generation of more diverse molecules. It has a straightforward formulation for an output
distribution P yielding Pt = 1

Z e
P/t, with normalization constant Z, temperature t, and temperature-

altered probability distribution Pt. However, as shown in the t-distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten & Hinton, 2008) plot in Fig. 4b, higher temperatures do not necessarily
translate to a better coverage of chemical space. As a large proportion of possible SMILES strings are
invalid, increasing the temperature is likely to invalidate the SMILES string. The molecules generated

8

Workshop track - ICLR 2018

(a)
(b)

Figure 4: In (a), PCA plot of the GAN generator under various influences of the discriminator. In (b),
sampling from a model at higher temperatures counter-intuitively does not increase coverage.

in the highest-temperature network favor short, brief SMILES strings that vastly undersample the
chemical space. Indeed, this suggests the best strategy to achieve high diversity and a larger sampling
of valid space is to not use temperature sampling at all.

6 CONCLUSION

In this work, we proposed a large, standardized dataset and a set of 19 benchmarks to evaluate models
for molecule generation and design. Several RL strategies were investigated on these benchmarks.
Here, the results suggest that the Hillclimb-MLE model is a surprisingly robust technique with large
datasets and deep models, outperforming PPO given sufficient compute times and sample evaluations.
In the space of constrained compute and sample evaluations, PPO was shown to be an effective
learning algorithm, converging an order of magnitude before other reinforcement-learning algorithms
for molecule generation.

Nevertheless, there is still tremendous need for more efficient and effective models for molecular
design, which could have a profound impact on molecular design — including drug, materials and
agrochemicals discovery — and thus immediately on human well-being. With the present, easily
usable benchmark, we hope to inspire the machine learning community to pick up this challenge.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Dean G Brown and Jonas Boström. Analysis of past and present synthetic methodologies on medicinal
chemistry: where have all the new reactions gone? J. Med. Chem, 59(10):4443–4458, 2016.

Nathan Brown. Chemoinformatics – an introduction for computer scientists. ACM Computing
Surveys (CSUR), 41(2):8, 2009.

Nathan Brown. In Silico Medicinal Chemistry: Computational Methods to Support Drug Design.
Royal Society of Chemistry, 2015.

9

Workshop track - ICLR 2018

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Thomas Degris, Patrick M Pilarski, and Richard S Sutton. Model-free reinforcement learning with
continuous action in practice. In American Control Conference (ACC), 2012, pp. 2177–2182.
IEEE, 2012.

Nicholas C Firth, Butrus Atrash, Nathan Brown, and Julian Blagg. Moarf, an integrated workflow
for multiobjective optimization: implementation, synthesis, and biological evaluation. Journal of
chemical information and modeling, 55(6):1169–1180, 2015.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in neural information processing systems, pp. 1019–1027, 2016.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2011.

Arup K Ghose, Vellarkad N Viswanadhan, and John J Wendoloski. A knowledge-based approach in
designing combinatorial or medicinal chemistry libraries for drug discovery. 1. a qualitative and
quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1(1):
55–68, 1999.

Yoav Goldberg. A primer on neural network models for natural language processing. J. Artif. Intell.
Res.(JAIR), 57:345–420, 2016.

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-
Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical de-
sign using a data-driven continuous representation of molecules. arXiv preprint arXiv:1610.02415,
2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias, and Alán Aspuru-
Guzik. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation
Models. arXiv preprint arXiv:1705.10843, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E Turner,
and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
kl-control. In International Conference on Machine Learning, pp. 1645–1654, 2017.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar Variational Autoencoder.
mar 2017. URL http://arxiv.org/abs/1703.01925.

Greg Landrum et al. Rdkit: Open-source cheminformatics. URL http://www.rdkit.org.

Christopher A Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery
Today: Technologies, 1(4):337–341, 2004.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

10

http://arxiv.org/abs/1703.01925
http://www.rdkit.org

Workshop track - ICLR 2018

Kong T Nguyen, Lorenz C Blum, Ruud Van Deursen, and Jean-Louis Reymond. Classification of
organic molecules by molecular quantum numbers. ChemMedChem, 4(11):1803–1805, 2009.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):1–14, 2017.

Adam Paszke, Sam Gross, and Soumith Chintala. Pytorch, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742–754, 2010.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems, pp.
2234–2242, 2016.

Gisbert Schneider. De novo molecular design. John Wiley & Sons, 2013.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating Fo-
cussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks. arXiv preprint
arXiv:1701.01329, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. J. Chem. Inf. Comp. Sci., 28(1):31–36, 1988.

David Weininger, Arthur Weininger, and Joseph L Weininger. Smiles. 2. algorithm for generation of
unique smiles notation. J. Chem. Inf. Comp. Sci., 29(2):97–101, 1989.

David White and Richard C Wilson. Generative models for chemical structures. J. Chem. Inf. Mod.,
50(7):1257–1274, 2010.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda. Chemts: an efficient
python library for de novo molecular generation. Science and Technology of Advanced Materials,
18(1):972–976, 2017.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, pp. 2852–2858, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

11

Workshop track - ICLR 2018

A SUPPLEMENTARY MATERIAL

This supplementary material section offers additional information and to aid in reproducibility for the
reader. For visibility regarding the extent to which the MLE pretrained-model matches the trained
space of chemistry, Figure 5 demonstrates its ability to effectively map and generate the space of
ChEMBL molecules. In Table 2, the SMILES dictionary used in this work can be found. The drugs
used in the Tanimoto fingerprint approach task can be found in Table 3, with the hyperparameters
used in this work in Table 4.

DATASET PROPROCESSING

Preprocessing the Chembl-23 dataset is comprised of a few steps. First, all molecules containing
the compounds are neutralized and salts are stripped, keeping only the largest connected component.
Then, the canonical SMILES representation of the molecules are generated using RDKit (Landrum
et al.), and all SMILES sequences longer than 100 characters are filtered out. Most molecules with
more than 100 SMILES symbols are either peptides, too heavy or too complex to be considered in de
novo-design, and 96.7% of ChEMBL is less than 100 symbols in length. Any SMILES containing
forbidden symbols (Table 2) are filtered out. Further, the molecules of the Tanimoto benchmark
are removed from the set. Finally, all molecules similar to these benchmark molecules in terms a
Tanimoto coefficient greater than 0.5 on ECFC4 fingerprints are removed. The remaining molecules
are randomly split into train, test and development set.

Before one-hot encoding, the four multi-character included atoms (Br, Cl, Si, Se) were replaced
with single-character substitutes. Then, the included symbols (including start character 'Q' and end
character '\n' are converted to integer token equivalents.

12

Workshop track - ICLR 2018

Figure 5: t-SNE visualization (Maaten & Hinton, 2008) of MLE sampling of generated space. The
MLE model effectively covers the space of ChEMBL and even reproduces the subspaces around the
ChEMBL molecules.

Table 2: Dictionary of SMILES

Forbidden Symbols 'Li','Be','Ne','Na','Mg','Al','Ar','K','Ca','Sc',
'Ti','V','Cr','Mn','Fe','Co','Ni','Cu','Zn','Ga',
'Ge','As','Kr','Rb','Sr','Y','Zr','Nb','Mo','Tc',
'Ru','Rh','Pd','Ag','Cd','In','Sn','Sb','Xe','Cs',
'Ba','Hf','Ta','W','Re','Os','Ir','Pt','Au','Hg',
'Tl','Pb','Bi','Po','At','Rn','Fr','Ra','Rf','Db',
'Sg','Bh','Hs','Mt','Ds','Rg','Cn','Fl','Lv','La',
'Ce','Pr','Nd','Pm','Sm','Eu','Gd','Tb','Dy','Ho',
'Er','Tm','Yb','Lu','Ac','Th','Pa','U','Np','Pu',
'Am','Cm','Bk','Cf','Es','Fm','Md','No','Lr','as',
'te','Te','se'

Multi-character Symbols 'Br':Y, 'Cl':X, 'Si':A, 'Se':Z

Included Symbols 'Q','\n',' ','#','%','(', ')','+','-','.','0','1',
'2','3','4','5','6','7','8','9','=','A','B','C',
'F','H','I','N','O','P','S','X','Y','Z','[',']',
'b','c','n','o','p','s'

Table 3: Drugs used in the Tanimoto benchmark task

Drug SMILES

Albuterol CC(C)(C)NCC(O)c1ccc(O)c(CO)c1
Aripiprazole Clc1cccc(N2CCN(CCCCOc3ccc4CCC(=O)Nc4c3)CC2)c1Cl
Celecoxxib Cc1ccc(cc1)-c1cc(nn1-c1ccc(cc1)S(N)(=O)=O)C(F)(F)F
Cobimetinib OC1(CN(C1)C(=O)c1ccc(F)c(F)c1Nc1ccc(I)cc1F)C1CCCCN1
Fexofenadine CC(C)(C(O)=O)c1ccc(cc1)C(O)CCCN1CCC(CC1)C(O)(c1ccccc1)c1ccccc1
Mestranol COc1ccc2C3CCC4(C)C(CCC4(O)C#C)C3CCc2c1
Osimertinib COc1cc(N(C)CCN(C)C)c(NC(=O)C=C)cc1Nc2nccc(n2)c3cn(C)c4ccccc34
Ranolazine COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2
Thiothixene CN(C)S(=O)(=O)c1ccc2Sc3ccccc3C(=CCCN4CCN(C)CC4)c2c1
Troglitazone Cc1c(C)c2OC(C)(COc3ccc(CC4SC(=O)NC4=O)cc3)CCc2c(C)c1O

13

Workshop track - ICLR 2018

N
N

S
NH2

O

O

F3C

Celecoxxib

OH

N

ONH

FI

F

F

HN

Cobimetinib

Cl

N

N
OO N

H

Cl

Aripiprazole

O
N N

NH

O
H
N

N

N

N

Osimertinib

O

S
O

HN
O

O

OH

Troglitazone

O

O

OH

N

N

O

H
N

Ranolazine

N
S

O

O

S

N

N

Thiothixene

N
H

OH

HO

HO

Albuterol

OH

O

OH

N

HO

Fexofenadine

MeO

HO

Mestranol

Figure 6: Target molecules for the Tanimoto benchmark.

14

Workshop track - ICLR 2018

Table 4: Hyperparameters

Model Param Explanation

Baseline batchsize = 10 Number of SMILES per batch
epochs = 1000 Number of batches

Reg. PG max len=100 Max length of a SMILES
batchsize=128 Number of parallel batches
num epochs=128 Number of batches of RL optimization
c reg=10 Weight of the MLE regularizer
lr=1e-4 Learning rate of Adam optimizer

A2C num actions=1e6 Total number of actions of RL optimization
max grad norm=0.5 Maximum norm of gradient before clipping
gamma=1.0 Time-discount factor
lr=4e-4 Learning rate of Adam optimizer
eps=1e-8 Epsilon parameter for Adam optimizer
num steps=40 Number of steps of forward steps
batch size=32 Number of parallel environments
entropy coef=0.013 Multiplicative cost of the entropy
gae=1 Use generalized advantage estimation
tau=0.95 Generalized advantage estimation tau
val loss wt=0.5 Weight of the value loss

GAN pretrain discrim=5 Number of epochs to pretrain the discriminator
num rounds=4 Number of rounds of RL-and-discriminator alternating training
rl epochs=5 Number of RL epochs per round
discr epochs=1 Number of discriminator epochs per round
phi D=0.05 Weight of the discriminator in reward
batch size=8 Batch size of training
max len=100 Max rollout length
gamma=0.98 Time-discount factor for rollouts
num rollouts=3 Number of rollouts per action-step
lr=1e-3 Learning rate of Adam optimizer for generator
lr=1e-3 Learning rate of Adam optimizer for discriminator

PPO ppo batch size=64 Batch size of the PPO updates
ppo epoch=4 Number of PPO epochs
epsilon=0.2 Width of the PPO clip region
num actions=1e6 Total number of actions of RL optimization
max grad norm=0.5 Maximum norm of gradient before clipping
gamma=1.0 Time-discount factor
lr=4e-4 Learning rate of Adam optimizer
eps=1e-8 Epsilon parameter for Adam optimizer
num steps=40 Number of steps of forward steps
batch size=32 Number of parallel environments
entropy coef=0.013 Multiplicative cost of the entropy
gae=0 Do not use generalized advantage estimation
val loss wt=0.5 Weight of the value loss

15

	Introduction
	Representing Molecules as Sequences
	Data and Benchmarks
	Data
	Validity and Diversity of Generated Molecules
	Single Objective Maximization
	Multi-Objective Maximization

	Models
	Recurrent Neural Networks
	Reinforcement Learning

	Results
	Conclusion
	Supplementary Material

